KVM: x86: Route pending NMIs from userspace through process_nmi()
[linux-block.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 #include "lapic.h"
33 #include "xen.h"
34 #include "smm.h"
35
36 #include <linux/clocksource.h>
37 #include <linux/interrupt.h>
38 #include <linux/kvm.h>
39 #include <linux/fs.h>
40 #include <linux/vmalloc.h>
41 #include <linux/export.h>
42 #include <linux/moduleparam.h>
43 #include <linux/mman.h>
44 #include <linux/highmem.h>
45 #include <linux/iommu.h>
46 #include <linux/cpufreq.h>
47 #include <linux/user-return-notifier.h>
48 #include <linux/srcu.h>
49 #include <linux/slab.h>
50 #include <linux/perf_event.h>
51 #include <linux/uaccess.h>
52 #include <linux/hash.h>
53 #include <linux/pci.h>
54 #include <linux/timekeeper_internal.h>
55 #include <linux/pvclock_gtod.h>
56 #include <linux/kvm_irqfd.h>
57 #include <linux/irqbypass.h>
58 #include <linux/sched/stat.h>
59 #include <linux/sched/isolation.h>
60 #include <linux/mem_encrypt.h>
61 #include <linux/entry-kvm.h>
62 #include <linux/suspend.h>
63
64 #include <trace/events/kvm.h>
65
66 #include <asm/debugreg.h>
67 #include <asm/msr.h>
68 #include <asm/desc.h>
69 #include <asm/mce.h>
70 #include <asm/pkru.h>
71 #include <linux/kernel_stat.h>
72 #include <asm/fpu/api.h>
73 #include <asm/fpu/xcr.h>
74 #include <asm/fpu/xstate.h>
75 #include <asm/pvclock.h>
76 #include <asm/div64.h>
77 #include <asm/irq_remapping.h>
78 #include <asm/mshyperv.h>
79 #include <asm/hypervisor.h>
80 #include <asm/tlbflush.h>
81 #include <asm/intel_pt.h>
82 #include <asm/emulate_prefix.h>
83 #include <asm/sgx.h>
84 #include <clocksource/hyperv_timer.h>
85
86 #define CREATE_TRACE_POINTS
87 #include "trace.h"
88
89 #define MAX_IO_MSRS 256
90 #define KVM_MAX_MCE_BANKS 32
91
92 struct kvm_caps kvm_caps __read_mostly = {
93         .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
94 };
95 EXPORT_SYMBOL_GPL(kvm_caps);
96
97 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
98
99 #define emul_to_vcpu(ctxt) \
100         ((struct kvm_vcpu *)(ctxt)->vcpu)
101
102 /* EFER defaults:
103  * - enable syscall per default because its emulated by KVM
104  * - enable LME and LMA per default on 64 bit KVM
105  */
106 #ifdef CONFIG_X86_64
107 static
108 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
109 #else
110 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
111 #endif
112
113 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
114
115 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
116
117 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
118
119 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
120                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
121
122 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
123 static void process_nmi(struct kvm_vcpu *vcpu);
124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
125 static void store_regs(struct kvm_vcpu *vcpu);
126 static int sync_regs(struct kvm_vcpu *vcpu);
127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
128
129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
131
132 static DEFINE_MUTEX(vendor_module_lock);
133 struct kvm_x86_ops kvm_x86_ops __read_mostly;
134
135 #define KVM_X86_OP(func)                                             \
136         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
137                                 *(((struct kvm_x86_ops *)0)->func));
138 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
139 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
140 #include <asm/kvm-x86-ops.h>
141 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
142 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
143
144 static bool __read_mostly ignore_msrs = 0;
145 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
146
147 bool __read_mostly report_ignored_msrs = true;
148 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
149 EXPORT_SYMBOL_GPL(report_ignored_msrs);
150
151 unsigned int min_timer_period_us = 200;
152 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
153
154 static bool __read_mostly kvmclock_periodic_sync = true;
155 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
156
157 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
158 static u32 __read_mostly tsc_tolerance_ppm = 250;
159 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
160
161 /*
162  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
163  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
164  * advancement entirely.  Any other value is used as-is and disables adaptive
165  * tuning, i.e. allows privileged userspace to set an exact advancement time.
166  */
167 static int __read_mostly lapic_timer_advance_ns = -1;
168 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
169
170 static bool __read_mostly vector_hashing = true;
171 module_param(vector_hashing, bool, S_IRUGO);
172
173 bool __read_mostly enable_vmware_backdoor = false;
174 module_param(enable_vmware_backdoor, bool, S_IRUGO);
175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
176
177 /*
178  * Flags to manipulate forced emulation behavior (any non-zero value will
179  * enable forced emulation).
180  */
181 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
182 static int __read_mostly force_emulation_prefix;
183 module_param(force_emulation_prefix, int, 0644);
184
185 int __read_mostly pi_inject_timer = -1;
186 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
187
188 /* Enable/disable PMU virtualization */
189 bool __read_mostly enable_pmu = true;
190 EXPORT_SYMBOL_GPL(enable_pmu);
191 module_param(enable_pmu, bool, 0444);
192
193 bool __read_mostly eager_page_split = true;
194 module_param(eager_page_split, bool, 0644);
195
196 /* Enable/disable SMT_RSB bug mitigation */
197 bool __read_mostly mitigate_smt_rsb;
198 module_param(mitigate_smt_rsb, bool, 0444);
199
200 /*
201  * Restoring the host value for MSRs that are only consumed when running in
202  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
203  * returns to userspace, i.e. the kernel can run with the guest's value.
204  */
205 #define KVM_MAX_NR_USER_RETURN_MSRS 16
206
207 struct kvm_user_return_msrs {
208         struct user_return_notifier urn;
209         bool registered;
210         struct kvm_user_return_msr_values {
211                 u64 host;
212                 u64 curr;
213         } values[KVM_MAX_NR_USER_RETURN_MSRS];
214 };
215
216 u32 __read_mostly kvm_nr_uret_msrs;
217 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
218 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
219 static struct kvm_user_return_msrs __percpu *user_return_msrs;
220
221 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
222                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
223                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
224                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
225
226 u64 __read_mostly host_efer;
227 EXPORT_SYMBOL_GPL(host_efer);
228
229 bool __read_mostly allow_smaller_maxphyaddr = 0;
230 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
231
232 bool __read_mostly enable_apicv = true;
233 EXPORT_SYMBOL_GPL(enable_apicv);
234
235 u64 __read_mostly host_xss;
236 EXPORT_SYMBOL_GPL(host_xss);
237
238 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
239         KVM_GENERIC_VM_STATS(),
240         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
241         STATS_DESC_COUNTER(VM, mmu_pte_write),
242         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
243         STATS_DESC_COUNTER(VM, mmu_flooded),
244         STATS_DESC_COUNTER(VM, mmu_recycled),
245         STATS_DESC_COUNTER(VM, mmu_cache_miss),
246         STATS_DESC_ICOUNTER(VM, mmu_unsync),
247         STATS_DESC_ICOUNTER(VM, pages_4k),
248         STATS_DESC_ICOUNTER(VM, pages_2m),
249         STATS_DESC_ICOUNTER(VM, pages_1g),
250         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
251         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
252         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
253 };
254
255 const struct kvm_stats_header kvm_vm_stats_header = {
256         .name_size = KVM_STATS_NAME_SIZE,
257         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
258         .id_offset = sizeof(struct kvm_stats_header),
259         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
260         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
261                        sizeof(kvm_vm_stats_desc),
262 };
263
264 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
265         KVM_GENERIC_VCPU_STATS(),
266         STATS_DESC_COUNTER(VCPU, pf_taken),
267         STATS_DESC_COUNTER(VCPU, pf_fixed),
268         STATS_DESC_COUNTER(VCPU, pf_emulate),
269         STATS_DESC_COUNTER(VCPU, pf_spurious),
270         STATS_DESC_COUNTER(VCPU, pf_fast),
271         STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
272         STATS_DESC_COUNTER(VCPU, pf_guest),
273         STATS_DESC_COUNTER(VCPU, tlb_flush),
274         STATS_DESC_COUNTER(VCPU, invlpg),
275         STATS_DESC_COUNTER(VCPU, exits),
276         STATS_DESC_COUNTER(VCPU, io_exits),
277         STATS_DESC_COUNTER(VCPU, mmio_exits),
278         STATS_DESC_COUNTER(VCPU, signal_exits),
279         STATS_DESC_COUNTER(VCPU, irq_window_exits),
280         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
281         STATS_DESC_COUNTER(VCPU, l1d_flush),
282         STATS_DESC_COUNTER(VCPU, halt_exits),
283         STATS_DESC_COUNTER(VCPU, request_irq_exits),
284         STATS_DESC_COUNTER(VCPU, irq_exits),
285         STATS_DESC_COUNTER(VCPU, host_state_reload),
286         STATS_DESC_COUNTER(VCPU, fpu_reload),
287         STATS_DESC_COUNTER(VCPU, insn_emulation),
288         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
289         STATS_DESC_COUNTER(VCPU, hypercalls),
290         STATS_DESC_COUNTER(VCPU, irq_injections),
291         STATS_DESC_COUNTER(VCPU, nmi_injections),
292         STATS_DESC_COUNTER(VCPU, req_event),
293         STATS_DESC_COUNTER(VCPU, nested_run),
294         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
295         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
296         STATS_DESC_COUNTER(VCPU, preemption_reported),
297         STATS_DESC_COUNTER(VCPU, preemption_other),
298         STATS_DESC_IBOOLEAN(VCPU, guest_mode),
299         STATS_DESC_COUNTER(VCPU, notify_window_exits),
300 };
301
302 const struct kvm_stats_header kvm_vcpu_stats_header = {
303         .name_size = KVM_STATS_NAME_SIZE,
304         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
305         .id_offset = sizeof(struct kvm_stats_header),
306         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
307         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
308                        sizeof(kvm_vcpu_stats_desc),
309 };
310
311 u64 __read_mostly host_xcr0;
312
313 static struct kmem_cache *x86_emulator_cache;
314
315 /*
316  * When called, it means the previous get/set msr reached an invalid msr.
317  * Return true if we want to ignore/silent this failed msr access.
318  */
319 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
320 {
321         const char *op = write ? "wrmsr" : "rdmsr";
322
323         if (ignore_msrs) {
324                 if (report_ignored_msrs)
325                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
326                                       op, msr, data);
327                 /* Mask the error */
328                 return true;
329         } else {
330                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
331                                       op, msr, data);
332                 return false;
333         }
334 }
335
336 static struct kmem_cache *kvm_alloc_emulator_cache(void)
337 {
338         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
339         unsigned int size = sizeof(struct x86_emulate_ctxt);
340
341         return kmem_cache_create_usercopy("x86_emulator", size,
342                                           __alignof__(struct x86_emulate_ctxt),
343                                           SLAB_ACCOUNT, useroffset,
344                                           size - useroffset, NULL);
345 }
346
347 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
348
349 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
350 {
351         int i;
352         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
353                 vcpu->arch.apf.gfns[i] = ~0;
354 }
355
356 static void kvm_on_user_return(struct user_return_notifier *urn)
357 {
358         unsigned slot;
359         struct kvm_user_return_msrs *msrs
360                 = container_of(urn, struct kvm_user_return_msrs, urn);
361         struct kvm_user_return_msr_values *values;
362         unsigned long flags;
363
364         /*
365          * Disabling irqs at this point since the following code could be
366          * interrupted and executed through kvm_arch_hardware_disable()
367          */
368         local_irq_save(flags);
369         if (msrs->registered) {
370                 msrs->registered = false;
371                 user_return_notifier_unregister(urn);
372         }
373         local_irq_restore(flags);
374         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
375                 values = &msrs->values[slot];
376                 if (values->host != values->curr) {
377                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
378                         values->curr = values->host;
379                 }
380         }
381 }
382
383 static int kvm_probe_user_return_msr(u32 msr)
384 {
385         u64 val;
386         int ret;
387
388         preempt_disable();
389         ret = rdmsrl_safe(msr, &val);
390         if (ret)
391                 goto out;
392         ret = wrmsrl_safe(msr, val);
393 out:
394         preempt_enable();
395         return ret;
396 }
397
398 int kvm_add_user_return_msr(u32 msr)
399 {
400         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
401
402         if (kvm_probe_user_return_msr(msr))
403                 return -1;
404
405         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
406         return kvm_nr_uret_msrs++;
407 }
408 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
409
410 int kvm_find_user_return_msr(u32 msr)
411 {
412         int i;
413
414         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
415                 if (kvm_uret_msrs_list[i] == msr)
416                         return i;
417         }
418         return -1;
419 }
420 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
421
422 static void kvm_user_return_msr_cpu_online(void)
423 {
424         unsigned int cpu = smp_processor_id();
425         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
426         u64 value;
427         int i;
428
429         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
430                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
431                 msrs->values[i].host = value;
432                 msrs->values[i].curr = value;
433         }
434 }
435
436 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
437 {
438         unsigned int cpu = smp_processor_id();
439         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
440         int err;
441
442         value = (value & mask) | (msrs->values[slot].host & ~mask);
443         if (value == msrs->values[slot].curr)
444                 return 0;
445         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
446         if (err)
447                 return 1;
448
449         msrs->values[slot].curr = value;
450         if (!msrs->registered) {
451                 msrs->urn.on_user_return = kvm_on_user_return;
452                 user_return_notifier_register(&msrs->urn);
453                 msrs->registered = true;
454         }
455         return 0;
456 }
457 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
458
459 static void drop_user_return_notifiers(void)
460 {
461         unsigned int cpu = smp_processor_id();
462         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
463
464         if (msrs->registered)
465                 kvm_on_user_return(&msrs->urn);
466 }
467
468 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
469 {
470         return vcpu->arch.apic_base;
471 }
472
473 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
474 {
475         return kvm_apic_mode(kvm_get_apic_base(vcpu));
476 }
477 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
478
479 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
480 {
481         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
482         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
483         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
484                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
485
486         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
487                 return 1;
488         if (!msr_info->host_initiated) {
489                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
490                         return 1;
491                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
492                         return 1;
493         }
494
495         kvm_lapic_set_base(vcpu, msr_info->data);
496         kvm_recalculate_apic_map(vcpu->kvm);
497         return 0;
498 }
499
500 /*
501  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
502  *
503  * Hardware virtualization extension instructions may fault if a reboot turns
504  * off virtualization while processes are running.  Usually after catching the
505  * fault we just panic; during reboot instead the instruction is ignored.
506  */
507 noinstr void kvm_spurious_fault(void)
508 {
509         /* Fault while not rebooting.  We want the trace. */
510         BUG_ON(!kvm_rebooting);
511 }
512 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
513
514 #define EXCPT_BENIGN            0
515 #define EXCPT_CONTRIBUTORY      1
516 #define EXCPT_PF                2
517
518 static int exception_class(int vector)
519 {
520         switch (vector) {
521         case PF_VECTOR:
522                 return EXCPT_PF;
523         case DE_VECTOR:
524         case TS_VECTOR:
525         case NP_VECTOR:
526         case SS_VECTOR:
527         case GP_VECTOR:
528                 return EXCPT_CONTRIBUTORY;
529         default:
530                 break;
531         }
532         return EXCPT_BENIGN;
533 }
534
535 #define EXCPT_FAULT             0
536 #define EXCPT_TRAP              1
537 #define EXCPT_ABORT             2
538 #define EXCPT_INTERRUPT         3
539 #define EXCPT_DB                4
540
541 static int exception_type(int vector)
542 {
543         unsigned int mask;
544
545         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
546                 return EXCPT_INTERRUPT;
547
548         mask = 1 << vector;
549
550         /*
551          * #DBs can be trap-like or fault-like, the caller must check other CPU
552          * state, e.g. DR6, to determine whether a #DB is a trap or fault.
553          */
554         if (mask & (1 << DB_VECTOR))
555                 return EXCPT_DB;
556
557         if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
558                 return EXCPT_TRAP;
559
560         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
561                 return EXCPT_ABORT;
562
563         /* Reserved exceptions will result in fault */
564         return EXCPT_FAULT;
565 }
566
567 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
568                                    struct kvm_queued_exception *ex)
569 {
570         if (!ex->has_payload)
571                 return;
572
573         switch (ex->vector) {
574         case DB_VECTOR:
575                 /*
576                  * "Certain debug exceptions may clear bit 0-3.  The
577                  * remaining contents of the DR6 register are never
578                  * cleared by the processor".
579                  */
580                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
581                 /*
582                  * In order to reflect the #DB exception payload in guest
583                  * dr6, three components need to be considered: active low
584                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
585                  * DR6_BS and DR6_BT)
586                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
587                  * In the target guest dr6:
588                  * FIXED_1 bits should always be set.
589                  * Active low bits should be cleared if 1-setting in payload.
590                  * Active high bits should be set if 1-setting in payload.
591                  *
592                  * Note, the payload is compatible with the pending debug
593                  * exceptions/exit qualification under VMX, that active_low bits
594                  * are active high in payload.
595                  * So they need to be flipped for DR6.
596                  */
597                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
598                 vcpu->arch.dr6 |= ex->payload;
599                 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
600
601                 /*
602                  * The #DB payload is defined as compatible with the 'pending
603                  * debug exceptions' field under VMX, not DR6. While bit 12 is
604                  * defined in the 'pending debug exceptions' field (enabled
605                  * breakpoint), it is reserved and must be zero in DR6.
606                  */
607                 vcpu->arch.dr6 &= ~BIT(12);
608                 break;
609         case PF_VECTOR:
610                 vcpu->arch.cr2 = ex->payload;
611                 break;
612         }
613
614         ex->has_payload = false;
615         ex->payload = 0;
616 }
617 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
618
619 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
620                                        bool has_error_code, u32 error_code,
621                                        bool has_payload, unsigned long payload)
622 {
623         struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
624
625         ex->vector = vector;
626         ex->injected = false;
627         ex->pending = true;
628         ex->has_error_code = has_error_code;
629         ex->error_code = error_code;
630         ex->has_payload = has_payload;
631         ex->payload = payload;
632 }
633
634 /* Forcibly leave the nested mode in cases like a vCPU reset */
635 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
636 {
637         kvm_x86_ops.nested_ops->leave_nested(vcpu);
638 }
639
640 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
641                 unsigned nr, bool has_error, u32 error_code,
642                 bool has_payload, unsigned long payload, bool reinject)
643 {
644         u32 prev_nr;
645         int class1, class2;
646
647         kvm_make_request(KVM_REQ_EVENT, vcpu);
648
649         /*
650          * If the exception is destined for L2 and isn't being reinjected,
651          * morph it to a VM-Exit if L1 wants to intercept the exception.  A
652          * previously injected exception is not checked because it was checked
653          * when it was original queued, and re-checking is incorrect if _L1_
654          * injected the exception, in which case it's exempt from interception.
655          */
656         if (!reinject && is_guest_mode(vcpu) &&
657             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
658                 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
659                                            has_payload, payload);
660                 return;
661         }
662
663         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
664         queue:
665                 if (reinject) {
666                         /*
667                          * On VM-Entry, an exception can be pending if and only
668                          * if event injection was blocked by nested_run_pending.
669                          * In that case, however, vcpu_enter_guest() requests an
670                          * immediate exit, and the guest shouldn't proceed far
671                          * enough to need reinjection.
672                          */
673                         WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
674                         vcpu->arch.exception.injected = true;
675                         if (WARN_ON_ONCE(has_payload)) {
676                                 /*
677                                  * A reinjected event has already
678                                  * delivered its payload.
679                                  */
680                                 has_payload = false;
681                                 payload = 0;
682                         }
683                 } else {
684                         vcpu->arch.exception.pending = true;
685                         vcpu->arch.exception.injected = false;
686                 }
687                 vcpu->arch.exception.has_error_code = has_error;
688                 vcpu->arch.exception.vector = nr;
689                 vcpu->arch.exception.error_code = error_code;
690                 vcpu->arch.exception.has_payload = has_payload;
691                 vcpu->arch.exception.payload = payload;
692                 if (!is_guest_mode(vcpu))
693                         kvm_deliver_exception_payload(vcpu,
694                                                       &vcpu->arch.exception);
695                 return;
696         }
697
698         /* to check exception */
699         prev_nr = vcpu->arch.exception.vector;
700         if (prev_nr == DF_VECTOR) {
701                 /* triple fault -> shutdown */
702                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
703                 return;
704         }
705         class1 = exception_class(prev_nr);
706         class2 = exception_class(nr);
707         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
708             (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
709                 /*
710                  * Synthesize #DF.  Clear the previously injected or pending
711                  * exception so as not to incorrectly trigger shutdown.
712                  */
713                 vcpu->arch.exception.injected = false;
714                 vcpu->arch.exception.pending = false;
715
716                 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
717         } else {
718                 /* replace previous exception with a new one in a hope
719                    that instruction re-execution will regenerate lost
720                    exception */
721                 goto queue;
722         }
723 }
724
725 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
726 {
727         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
728 }
729 EXPORT_SYMBOL_GPL(kvm_queue_exception);
730
731 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
734 }
735 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
736
737 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
738                            unsigned long payload)
739 {
740         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
741 }
742 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
743
744 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
745                                     u32 error_code, unsigned long payload)
746 {
747         kvm_multiple_exception(vcpu, nr, true, error_code,
748                                true, payload, false);
749 }
750
751 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
752 {
753         if (err)
754                 kvm_inject_gp(vcpu, 0);
755         else
756                 return kvm_skip_emulated_instruction(vcpu);
757
758         return 1;
759 }
760 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
761
762 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
763 {
764         if (err) {
765                 kvm_inject_gp(vcpu, 0);
766                 return 1;
767         }
768
769         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
770                                        EMULTYPE_COMPLETE_USER_EXIT);
771 }
772
773 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
774 {
775         ++vcpu->stat.pf_guest;
776
777         /*
778          * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
779          * whether or not L1 wants to intercept "regular" #PF.
780          */
781         if (is_guest_mode(vcpu) && fault->async_page_fault)
782                 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
783                                            true, fault->error_code,
784                                            true, fault->address);
785         else
786                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
787                                         fault->address);
788 }
789
790 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
791                                     struct x86_exception *fault)
792 {
793         struct kvm_mmu *fault_mmu;
794         WARN_ON_ONCE(fault->vector != PF_VECTOR);
795
796         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
797                                                vcpu->arch.walk_mmu;
798
799         /*
800          * Invalidate the TLB entry for the faulting address, if it exists,
801          * else the access will fault indefinitely (and to emulate hardware).
802          */
803         if ((fault->error_code & PFERR_PRESENT_MASK) &&
804             !(fault->error_code & PFERR_RSVD_MASK))
805                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
806                                        fault_mmu->root.hpa);
807
808         fault_mmu->inject_page_fault(vcpu, fault);
809 }
810 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
811
812 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
813 {
814         atomic_inc(&vcpu->arch.nmi_queued);
815         kvm_make_request(KVM_REQ_NMI, vcpu);
816 }
817
818 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
819 {
820         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
821 }
822 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
823
824 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
827 }
828 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
829
830 /*
831  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
832  * a #GP and return false.
833  */
834 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
835 {
836         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
837                 return true;
838         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
839         return false;
840 }
841
842 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
843 {
844         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
845                 return true;
846
847         kvm_queue_exception(vcpu, UD_VECTOR);
848         return false;
849 }
850 EXPORT_SYMBOL_GPL(kvm_require_dr);
851
852 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
853 {
854         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
855 }
856
857 /*
858  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
859  */
860 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
861 {
862         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
863         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
864         gpa_t real_gpa;
865         int i;
866         int ret;
867         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
868
869         /*
870          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
871          * to an L1 GPA.
872          */
873         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
874                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
875         if (real_gpa == INVALID_GPA)
876                 return 0;
877
878         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
879         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
880                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
881         if (ret < 0)
882                 return 0;
883
884         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
885                 if ((pdpte[i] & PT_PRESENT_MASK) &&
886                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
887                         return 0;
888                 }
889         }
890
891         /*
892          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
893          * Shadow page roots need to be reconstructed instead.
894          */
895         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
896                 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
897
898         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
899         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
900         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
901         vcpu->arch.pdptrs_from_userspace = false;
902
903         return 1;
904 }
905 EXPORT_SYMBOL_GPL(load_pdptrs);
906
907 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
908 {
909         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
910                 kvm_clear_async_pf_completion_queue(vcpu);
911                 kvm_async_pf_hash_reset(vcpu);
912
913                 /*
914                  * Clearing CR0.PG is defined to flush the TLB from the guest's
915                  * perspective.
916                  */
917                 if (!(cr0 & X86_CR0_PG))
918                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
919         }
920
921         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
922                 kvm_mmu_reset_context(vcpu);
923
924         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
925             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
926             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
927                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
928 }
929 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
930
931 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
932 {
933         unsigned long old_cr0 = kvm_read_cr0(vcpu);
934
935         cr0 |= X86_CR0_ET;
936
937 #ifdef CONFIG_X86_64
938         if (cr0 & 0xffffffff00000000UL)
939                 return 1;
940 #endif
941
942         cr0 &= ~CR0_RESERVED_BITS;
943
944         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
945                 return 1;
946
947         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
948                 return 1;
949
950 #ifdef CONFIG_X86_64
951         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
952             (cr0 & X86_CR0_PG)) {
953                 int cs_db, cs_l;
954
955                 if (!is_pae(vcpu))
956                         return 1;
957                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
958                 if (cs_l)
959                         return 1;
960         }
961 #endif
962         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
963             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
964             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
965                 return 1;
966
967         if (!(cr0 & X86_CR0_PG) &&
968             (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
969                 return 1;
970
971         static_call(kvm_x86_set_cr0)(vcpu, cr0);
972
973         kvm_post_set_cr0(vcpu, old_cr0, cr0);
974
975         return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_set_cr0);
978
979 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
980 {
981         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
982 }
983 EXPORT_SYMBOL_GPL(kvm_lmsw);
984
985 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
986 {
987         if (vcpu->arch.guest_state_protected)
988                 return;
989
990         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
991
992                 if (vcpu->arch.xcr0 != host_xcr0)
993                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
994
995                 if (vcpu->arch.xsaves_enabled &&
996                     vcpu->arch.ia32_xss != host_xss)
997                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
998         }
999
1000 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1001         if (static_cpu_has(X86_FEATURE_PKU) &&
1002             vcpu->arch.pkru != vcpu->arch.host_pkru &&
1003             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1004              kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
1005                 write_pkru(vcpu->arch.pkru);
1006 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1007 }
1008 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1009
1010 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1011 {
1012         if (vcpu->arch.guest_state_protected)
1013                 return;
1014
1015 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1016         if (static_cpu_has(X86_FEATURE_PKU) &&
1017             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1018              kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1019                 vcpu->arch.pkru = rdpkru();
1020                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1021                         write_pkru(vcpu->arch.host_pkru);
1022         }
1023 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1024
1025         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1026
1027                 if (vcpu->arch.xcr0 != host_xcr0)
1028                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1029
1030                 if (vcpu->arch.xsaves_enabled &&
1031                     vcpu->arch.ia32_xss != host_xss)
1032                         wrmsrl(MSR_IA32_XSS, host_xss);
1033         }
1034
1035 }
1036 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1037
1038 #ifdef CONFIG_X86_64
1039 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1040 {
1041         return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1042 }
1043 #endif
1044
1045 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1046 {
1047         u64 xcr0 = xcr;
1048         u64 old_xcr0 = vcpu->arch.xcr0;
1049         u64 valid_bits;
1050
1051         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1052         if (index != XCR_XFEATURE_ENABLED_MASK)
1053                 return 1;
1054         if (!(xcr0 & XFEATURE_MASK_FP))
1055                 return 1;
1056         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1057                 return 1;
1058
1059         /*
1060          * Do not allow the guest to set bits that we do not support
1061          * saving.  However, xcr0 bit 0 is always set, even if the
1062          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1063          */
1064         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1065         if (xcr0 & ~valid_bits)
1066                 return 1;
1067
1068         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1069             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1070                 return 1;
1071
1072         if (xcr0 & XFEATURE_MASK_AVX512) {
1073                 if (!(xcr0 & XFEATURE_MASK_YMM))
1074                         return 1;
1075                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1076                         return 1;
1077         }
1078
1079         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1080             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1081                 return 1;
1082
1083         vcpu->arch.xcr0 = xcr0;
1084
1085         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1086                 kvm_update_cpuid_runtime(vcpu);
1087         return 0;
1088 }
1089
1090 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1091 {
1092         /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1093         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1094             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1095                 kvm_inject_gp(vcpu, 0);
1096                 return 1;
1097         }
1098
1099         return kvm_skip_emulated_instruction(vcpu);
1100 }
1101 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1102
1103 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1104 {
1105         if (cr4 & cr4_reserved_bits)
1106                 return false;
1107
1108         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1109                 return false;
1110
1111         return true;
1112 }
1113 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1114
1115 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1116 {
1117         return __kvm_is_valid_cr4(vcpu, cr4) &&
1118                static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1119 }
1120
1121 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1122 {
1123         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1124                 kvm_mmu_reset_context(vcpu);
1125
1126         /*
1127          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1128          * according to the SDM; however, stale prev_roots could be reused
1129          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1130          * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1131          * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1132          * so fall through.
1133          */
1134         if (!tdp_enabled &&
1135             (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1136                 kvm_mmu_unload(vcpu);
1137
1138         /*
1139          * The TLB has to be flushed for all PCIDs if any of the following
1140          * (architecturally required) changes happen:
1141          * - CR4.PCIDE is changed from 1 to 0
1142          * - CR4.PGE is toggled
1143          *
1144          * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1145          */
1146         if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1147             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1148                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1149
1150         /*
1151          * The TLB has to be flushed for the current PCID if any of the
1152          * following (architecturally required) changes happen:
1153          * - CR4.SMEP is changed from 0 to 1
1154          * - CR4.PAE is toggled
1155          */
1156         else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1157                  ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1158                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1159
1160 }
1161 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1162
1163 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1164 {
1165         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1166
1167         if (!kvm_is_valid_cr4(vcpu, cr4))
1168                 return 1;
1169
1170         if (is_long_mode(vcpu)) {
1171                 if (!(cr4 & X86_CR4_PAE))
1172                         return 1;
1173                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1174                         return 1;
1175         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1176                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1177                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1178                 return 1;
1179
1180         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1181                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1182                         return 1;
1183
1184                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1185                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1186                         return 1;
1187         }
1188
1189         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1190
1191         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1192
1193         return 0;
1194 }
1195 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1196
1197 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1198 {
1199         struct kvm_mmu *mmu = vcpu->arch.mmu;
1200         unsigned long roots_to_free = 0;
1201         int i;
1202
1203         /*
1204          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1205          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1206          * also via the emulator.  KVM's TDP page tables are not in the scope of
1207          * the invalidation, but the guest's TLB entries need to be flushed as
1208          * the CPU may have cached entries in its TLB for the target PCID.
1209          */
1210         if (unlikely(tdp_enabled)) {
1211                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1212                 return;
1213         }
1214
1215         /*
1216          * If neither the current CR3 nor any of the prev_roots use the given
1217          * PCID, then nothing needs to be done here because a resync will
1218          * happen anyway before switching to any other CR3.
1219          */
1220         if (kvm_get_active_pcid(vcpu) == pcid) {
1221                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1222                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1223         }
1224
1225         /*
1226          * If PCID is disabled, there is no need to free prev_roots even if the
1227          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1228          * with PCIDE=0.
1229          */
1230         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1231                 return;
1232
1233         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1234                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1235                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1236
1237         kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1238 }
1239
1240 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1241 {
1242         bool skip_tlb_flush = false;
1243         unsigned long pcid = 0;
1244 #ifdef CONFIG_X86_64
1245         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1246
1247         if (pcid_enabled) {
1248                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1249                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1250                 pcid = cr3 & X86_CR3_PCID_MASK;
1251         }
1252 #endif
1253
1254         /* PDPTRs are always reloaded for PAE paging. */
1255         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1256                 goto handle_tlb_flush;
1257
1258         /*
1259          * Do not condition the GPA check on long mode, this helper is used to
1260          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1261          * the current vCPU mode is accurate.
1262          */
1263         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1264                 return 1;
1265
1266         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1267                 return 1;
1268
1269         if (cr3 != kvm_read_cr3(vcpu))
1270                 kvm_mmu_new_pgd(vcpu, cr3);
1271
1272         vcpu->arch.cr3 = cr3;
1273         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1274         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1275
1276 handle_tlb_flush:
1277         /*
1278          * A load of CR3 that flushes the TLB flushes only the current PCID,
1279          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1280          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1281          * and it's impossible to use a non-zero PCID when PCID is disabled,
1282          * i.e. only PCID=0 can be relevant.
1283          */
1284         if (!skip_tlb_flush)
1285                 kvm_invalidate_pcid(vcpu, pcid);
1286
1287         return 0;
1288 }
1289 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1290
1291 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1292 {
1293         if (cr8 & CR8_RESERVED_BITS)
1294                 return 1;
1295         if (lapic_in_kernel(vcpu))
1296                 kvm_lapic_set_tpr(vcpu, cr8);
1297         else
1298                 vcpu->arch.cr8 = cr8;
1299         return 0;
1300 }
1301 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1302
1303 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1304 {
1305         if (lapic_in_kernel(vcpu))
1306                 return kvm_lapic_get_cr8(vcpu);
1307         else
1308                 return vcpu->arch.cr8;
1309 }
1310 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1311
1312 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1313 {
1314         int i;
1315
1316         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1317                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1318                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1319         }
1320 }
1321
1322 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1323 {
1324         unsigned long dr7;
1325
1326         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1327                 dr7 = vcpu->arch.guest_debug_dr7;
1328         else
1329                 dr7 = vcpu->arch.dr7;
1330         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1331         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1332         if (dr7 & DR7_BP_EN_MASK)
1333                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1334 }
1335 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1336
1337 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1338 {
1339         u64 fixed = DR6_FIXED_1;
1340
1341         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1342                 fixed |= DR6_RTM;
1343
1344         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1345                 fixed |= DR6_BUS_LOCK;
1346         return fixed;
1347 }
1348
1349 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1350 {
1351         size_t size = ARRAY_SIZE(vcpu->arch.db);
1352
1353         switch (dr) {
1354         case 0 ... 3:
1355                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1356                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1357                         vcpu->arch.eff_db[dr] = val;
1358                 break;
1359         case 4:
1360         case 6:
1361                 if (!kvm_dr6_valid(val))
1362                         return 1; /* #GP */
1363                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1364                 break;
1365         case 5:
1366         default: /* 7 */
1367                 if (!kvm_dr7_valid(val))
1368                         return 1; /* #GP */
1369                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1370                 kvm_update_dr7(vcpu);
1371                 break;
1372         }
1373
1374         return 0;
1375 }
1376 EXPORT_SYMBOL_GPL(kvm_set_dr);
1377
1378 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1379 {
1380         size_t size = ARRAY_SIZE(vcpu->arch.db);
1381
1382         switch (dr) {
1383         case 0 ... 3:
1384                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1385                 break;
1386         case 4:
1387         case 6:
1388                 *val = vcpu->arch.dr6;
1389                 break;
1390         case 5:
1391         default: /* 7 */
1392                 *val = vcpu->arch.dr7;
1393                 break;
1394         }
1395 }
1396 EXPORT_SYMBOL_GPL(kvm_get_dr);
1397
1398 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1399 {
1400         u32 ecx = kvm_rcx_read(vcpu);
1401         u64 data;
1402
1403         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1404                 kvm_inject_gp(vcpu, 0);
1405                 return 1;
1406         }
1407
1408         kvm_rax_write(vcpu, (u32)data);
1409         kvm_rdx_write(vcpu, data >> 32);
1410         return kvm_skip_emulated_instruction(vcpu);
1411 }
1412 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1413
1414 /*
1415  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1416  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1417  *
1418  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1419  * extract the supported MSRs from the related const lists.
1420  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1421  * capabilities of the host cpu. This capabilities test skips MSRs that are
1422  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1423  * may depend on host virtualization features rather than host cpu features.
1424  */
1425
1426 static const u32 msrs_to_save_base[] = {
1427         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1428         MSR_STAR,
1429 #ifdef CONFIG_X86_64
1430         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1431 #endif
1432         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1433         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1434         MSR_IA32_SPEC_CTRL,
1435         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1436         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1437         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1438         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1439         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1440         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1441         MSR_IA32_UMWAIT_CONTROL,
1442
1443         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1444 };
1445
1446 static const u32 msrs_to_save_pmu[] = {
1447         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1448         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1449         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1450         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1451         MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1452
1453         /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1454         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1455         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1456         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1457         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1458         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1459         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1460         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1461         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1462
1463         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1464         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1465
1466         /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1467         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1468         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1469         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1470         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1471 };
1472
1473 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1474                         ARRAY_SIZE(msrs_to_save_pmu)];
1475 static unsigned num_msrs_to_save;
1476
1477 static const u32 emulated_msrs_all[] = {
1478         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1479         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1480         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1481         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1482         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1483         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1484         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1485         HV_X64_MSR_RESET,
1486         HV_X64_MSR_VP_INDEX,
1487         HV_X64_MSR_VP_RUNTIME,
1488         HV_X64_MSR_SCONTROL,
1489         HV_X64_MSR_STIMER0_CONFIG,
1490         HV_X64_MSR_VP_ASSIST_PAGE,
1491         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1492         HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1493         HV_X64_MSR_SYNDBG_OPTIONS,
1494         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1495         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1496         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1497
1498         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1499         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1500
1501         MSR_IA32_TSC_ADJUST,
1502         MSR_IA32_TSC_DEADLINE,
1503         MSR_IA32_ARCH_CAPABILITIES,
1504         MSR_IA32_PERF_CAPABILITIES,
1505         MSR_IA32_MISC_ENABLE,
1506         MSR_IA32_MCG_STATUS,
1507         MSR_IA32_MCG_CTL,
1508         MSR_IA32_MCG_EXT_CTL,
1509         MSR_IA32_SMBASE,
1510         MSR_SMI_COUNT,
1511         MSR_PLATFORM_INFO,
1512         MSR_MISC_FEATURES_ENABLES,
1513         MSR_AMD64_VIRT_SPEC_CTRL,
1514         MSR_AMD64_TSC_RATIO,
1515         MSR_IA32_POWER_CTL,
1516         MSR_IA32_UCODE_REV,
1517
1518         /*
1519          * The following list leaves out MSRs whose values are determined
1520          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1521          * We always support the "true" VMX control MSRs, even if the host
1522          * processor does not, so I am putting these registers here rather
1523          * than in msrs_to_save_all.
1524          */
1525         MSR_IA32_VMX_BASIC,
1526         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1527         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1528         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1529         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1530         MSR_IA32_VMX_MISC,
1531         MSR_IA32_VMX_CR0_FIXED0,
1532         MSR_IA32_VMX_CR4_FIXED0,
1533         MSR_IA32_VMX_VMCS_ENUM,
1534         MSR_IA32_VMX_PROCBASED_CTLS2,
1535         MSR_IA32_VMX_EPT_VPID_CAP,
1536         MSR_IA32_VMX_VMFUNC,
1537
1538         MSR_K7_HWCR,
1539         MSR_KVM_POLL_CONTROL,
1540 };
1541
1542 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1543 static unsigned num_emulated_msrs;
1544
1545 /*
1546  * List of msr numbers which are used to expose MSR-based features that
1547  * can be used by a hypervisor to validate requested CPU features.
1548  */
1549 static const u32 msr_based_features_all[] = {
1550         MSR_IA32_VMX_BASIC,
1551         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1552         MSR_IA32_VMX_PINBASED_CTLS,
1553         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1554         MSR_IA32_VMX_PROCBASED_CTLS,
1555         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1556         MSR_IA32_VMX_EXIT_CTLS,
1557         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1558         MSR_IA32_VMX_ENTRY_CTLS,
1559         MSR_IA32_VMX_MISC,
1560         MSR_IA32_VMX_CR0_FIXED0,
1561         MSR_IA32_VMX_CR0_FIXED1,
1562         MSR_IA32_VMX_CR4_FIXED0,
1563         MSR_IA32_VMX_CR4_FIXED1,
1564         MSR_IA32_VMX_VMCS_ENUM,
1565         MSR_IA32_VMX_PROCBASED_CTLS2,
1566         MSR_IA32_VMX_EPT_VPID_CAP,
1567         MSR_IA32_VMX_VMFUNC,
1568
1569         MSR_AMD64_DE_CFG,
1570         MSR_IA32_UCODE_REV,
1571         MSR_IA32_ARCH_CAPABILITIES,
1572         MSR_IA32_PERF_CAPABILITIES,
1573 };
1574
1575 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1576 static unsigned int num_msr_based_features;
1577
1578 /*
1579  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1580  * does not yet virtualize. These include:
1581  *   10 - MISC_PACKAGE_CTRLS
1582  *   11 - ENERGY_FILTERING_CTL
1583  *   12 - DOITM
1584  *   18 - FB_CLEAR_CTRL
1585  *   21 - XAPIC_DISABLE_STATUS
1586  *   23 - OVERCLOCKING_STATUS
1587  */
1588
1589 #define KVM_SUPPORTED_ARCH_CAP \
1590         (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1591          ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1592          ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1593          ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1594          ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1595
1596 static u64 kvm_get_arch_capabilities(void)
1597 {
1598         u64 data = 0;
1599
1600         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1601                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1602                 data &= KVM_SUPPORTED_ARCH_CAP;
1603         }
1604
1605         /*
1606          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1607          * the nested hypervisor runs with NX huge pages.  If it is not,
1608          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1609          * L1 guests, so it need not worry about its own (L2) guests.
1610          */
1611         data |= ARCH_CAP_PSCHANGE_MC_NO;
1612
1613         /*
1614          * If we're doing cache flushes (either "always" or "cond")
1615          * we will do one whenever the guest does a vmlaunch/vmresume.
1616          * If an outer hypervisor is doing the cache flush for us
1617          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1618          * capability to the guest too, and if EPT is disabled we're not
1619          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1620          * require a nested hypervisor to do a flush of its own.
1621          */
1622         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1623                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1624
1625         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1626                 data |= ARCH_CAP_RDCL_NO;
1627         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1628                 data |= ARCH_CAP_SSB_NO;
1629         if (!boot_cpu_has_bug(X86_BUG_MDS))
1630                 data |= ARCH_CAP_MDS_NO;
1631
1632         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1633                 /*
1634                  * If RTM=0 because the kernel has disabled TSX, the host might
1635                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1636                  * and therefore knows that there cannot be TAA) but keep
1637                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1638                  * and we want to allow migrating those guests to tsx=off hosts.
1639                  */
1640                 data &= ~ARCH_CAP_TAA_NO;
1641         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1642                 data |= ARCH_CAP_TAA_NO;
1643         } else {
1644                 /*
1645                  * Nothing to do here; we emulate TSX_CTRL if present on the
1646                  * host so the guest can choose between disabling TSX or
1647                  * using VERW to clear CPU buffers.
1648                  */
1649         }
1650
1651         return data;
1652 }
1653
1654 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1655 {
1656         switch (msr->index) {
1657         case MSR_IA32_ARCH_CAPABILITIES:
1658                 msr->data = kvm_get_arch_capabilities();
1659                 break;
1660         case MSR_IA32_PERF_CAPABILITIES:
1661                 msr->data = kvm_caps.supported_perf_cap;
1662                 break;
1663         case MSR_IA32_UCODE_REV:
1664                 rdmsrl_safe(msr->index, &msr->data);
1665                 break;
1666         default:
1667                 return static_call(kvm_x86_get_msr_feature)(msr);
1668         }
1669         return 0;
1670 }
1671
1672 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1673 {
1674         struct kvm_msr_entry msr;
1675         int r;
1676
1677         msr.index = index;
1678         r = kvm_get_msr_feature(&msr);
1679
1680         if (r == KVM_MSR_RET_INVALID) {
1681                 /* Unconditionally clear the output for simplicity */
1682                 *data = 0;
1683                 if (kvm_msr_ignored_check(index, 0, false))
1684                         r = 0;
1685         }
1686
1687         if (r)
1688                 return r;
1689
1690         *data = msr.data;
1691
1692         return 0;
1693 }
1694
1695 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1696 {
1697         if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1698                 return false;
1699
1700         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1701                 return false;
1702
1703         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1704                 return false;
1705
1706         if (efer & (EFER_LME | EFER_LMA) &&
1707             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1708                 return false;
1709
1710         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1711                 return false;
1712
1713         return true;
1714
1715 }
1716 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1717 {
1718         if (efer & efer_reserved_bits)
1719                 return false;
1720
1721         return __kvm_valid_efer(vcpu, efer);
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1724
1725 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1726 {
1727         u64 old_efer = vcpu->arch.efer;
1728         u64 efer = msr_info->data;
1729         int r;
1730
1731         if (efer & efer_reserved_bits)
1732                 return 1;
1733
1734         if (!msr_info->host_initiated) {
1735                 if (!__kvm_valid_efer(vcpu, efer))
1736                         return 1;
1737
1738                 if (is_paging(vcpu) &&
1739                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1740                         return 1;
1741         }
1742
1743         efer &= ~EFER_LMA;
1744         efer |= vcpu->arch.efer & EFER_LMA;
1745
1746         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1747         if (r) {
1748                 WARN_ON(r > 0);
1749                 return r;
1750         }
1751
1752         if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1753                 kvm_mmu_reset_context(vcpu);
1754
1755         return 0;
1756 }
1757
1758 void kvm_enable_efer_bits(u64 mask)
1759 {
1760        efer_reserved_bits &= ~mask;
1761 }
1762 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1763
1764 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1765 {
1766         struct kvm_x86_msr_filter *msr_filter;
1767         struct msr_bitmap_range *ranges;
1768         struct kvm *kvm = vcpu->kvm;
1769         bool allowed;
1770         int idx;
1771         u32 i;
1772
1773         /* x2APIC MSRs do not support filtering. */
1774         if (index >= 0x800 && index <= 0x8ff)
1775                 return true;
1776
1777         idx = srcu_read_lock(&kvm->srcu);
1778
1779         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1780         if (!msr_filter) {
1781                 allowed = true;
1782                 goto out;
1783         }
1784
1785         allowed = msr_filter->default_allow;
1786         ranges = msr_filter->ranges;
1787
1788         for (i = 0; i < msr_filter->count; i++) {
1789                 u32 start = ranges[i].base;
1790                 u32 end = start + ranges[i].nmsrs;
1791                 u32 flags = ranges[i].flags;
1792                 unsigned long *bitmap = ranges[i].bitmap;
1793
1794                 if ((index >= start) && (index < end) && (flags & type)) {
1795                         allowed = !!test_bit(index - start, bitmap);
1796                         break;
1797                 }
1798         }
1799
1800 out:
1801         srcu_read_unlock(&kvm->srcu, idx);
1802
1803         return allowed;
1804 }
1805 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1806
1807 /*
1808  * Write @data into the MSR specified by @index.  Select MSR specific fault
1809  * checks are bypassed if @host_initiated is %true.
1810  * Returns 0 on success, non-0 otherwise.
1811  * Assumes vcpu_load() was already called.
1812  */
1813 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1814                          bool host_initiated)
1815 {
1816         struct msr_data msr;
1817
1818         switch (index) {
1819         case MSR_FS_BASE:
1820         case MSR_GS_BASE:
1821         case MSR_KERNEL_GS_BASE:
1822         case MSR_CSTAR:
1823         case MSR_LSTAR:
1824                 if (is_noncanonical_address(data, vcpu))
1825                         return 1;
1826                 break;
1827         case MSR_IA32_SYSENTER_EIP:
1828         case MSR_IA32_SYSENTER_ESP:
1829                 /*
1830                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1831                  * non-canonical address is written on Intel but not on
1832                  * AMD (which ignores the top 32-bits, because it does
1833                  * not implement 64-bit SYSENTER).
1834                  *
1835                  * 64-bit code should hence be able to write a non-canonical
1836                  * value on AMD.  Making the address canonical ensures that
1837                  * vmentry does not fail on Intel after writing a non-canonical
1838                  * value, and that something deterministic happens if the guest
1839                  * invokes 64-bit SYSENTER.
1840                  */
1841                 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1842                 break;
1843         case MSR_TSC_AUX:
1844                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1845                         return 1;
1846
1847                 if (!host_initiated &&
1848                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1849                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1850                         return 1;
1851
1852                 /*
1853                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1854                  * incomplete and conflicting architectural behavior.  Current
1855                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1856                  * reserved and always read as zeros.  Enforce Intel's reserved
1857                  * bits check if and only if the guest CPU is Intel, and clear
1858                  * the bits in all other cases.  This ensures cross-vendor
1859                  * migration will provide consistent behavior for the guest.
1860                  */
1861                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1862                         return 1;
1863
1864                 data = (u32)data;
1865                 break;
1866         }
1867
1868         msr.data = data;
1869         msr.index = index;
1870         msr.host_initiated = host_initiated;
1871
1872         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1873 }
1874
1875 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1876                                      u32 index, u64 data, bool host_initiated)
1877 {
1878         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1879
1880         if (ret == KVM_MSR_RET_INVALID)
1881                 if (kvm_msr_ignored_check(index, data, true))
1882                         ret = 0;
1883
1884         return ret;
1885 }
1886
1887 /*
1888  * Read the MSR specified by @index into @data.  Select MSR specific fault
1889  * checks are bypassed if @host_initiated is %true.
1890  * Returns 0 on success, non-0 otherwise.
1891  * Assumes vcpu_load() was already called.
1892  */
1893 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1894                   bool host_initiated)
1895 {
1896         struct msr_data msr;
1897         int ret;
1898
1899         switch (index) {
1900         case MSR_TSC_AUX:
1901                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1902                         return 1;
1903
1904                 if (!host_initiated &&
1905                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1906                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1907                         return 1;
1908                 break;
1909         }
1910
1911         msr.index = index;
1912         msr.host_initiated = host_initiated;
1913
1914         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1915         if (!ret)
1916                 *data = msr.data;
1917         return ret;
1918 }
1919
1920 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1921                                      u32 index, u64 *data, bool host_initiated)
1922 {
1923         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1924
1925         if (ret == KVM_MSR_RET_INVALID) {
1926                 /* Unconditionally clear *data for simplicity */
1927                 *data = 0;
1928                 if (kvm_msr_ignored_check(index, 0, false))
1929                         ret = 0;
1930         }
1931
1932         return ret;
1933 }
1934
1935 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1936 {
1937         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1938                 return KVM_MSR_RET_FILTERED;
1939         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1940 }
1941
1942 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1943 {
1944         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1945                 return KVM_MSR_RET_FILTERED;
1946         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1947 }
1948
1949 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1950 {
1951         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1952 }
1953 EXPORT_SYMBOL_GPL(kvm_get_msr);
1954
1955 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1956 {
1957         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1958 }
1959 EXPORT_SYMBOL_GPL(kvm_set_msr);
1960
1961 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1962 {
1963         if (!vcpu->run->msr.error) {
1964                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1965                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1966         }
1967 }
1968
1969 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1970 {
1971         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1972 }
1973
1974 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1975 {
1976         complete_userspace_rdmsr(vcpu);
1977         return complete_emulated_msr_access(vcpu);
1978 }
1979
1980 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1981 {
1982         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1983 }
1984
1985 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1986 {
1987         complete_userspace_rdmsr(vcpu);
1988         return complete_fast_msr_access(vcpu);
1989 }
1990
1991 static u64 kvm_msr_reason(int r)
1992 {
1993         switch (r) {
1994         case KVM_MSR_RET_INVALID:
1995                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1996         case KVM_MSR_RET_FILTERED:
1997                 return KVM_MSR_EXIT_REASON_FILTER;
1998         default:
1999                 return KVM_MSR_EXIT_REASON_INVAL;
2000         }
2001 }
2002
2003 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2004                               u32 exit_reason, u64 data,
2005                               int (*completion)(struct kvm_vcpu *vcpu),
2006                               int r)
2007 {
2008         u64 msr_reason = kvm_msr_reason(r);
2009
2010         /* Check if the user wanted to know about this MSR fault */
2011         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2012                 return 0;
2013
2014         vcpu->run->exit_reason = exit_reason;
2015         vcpu->run->msr.error = 0;
2016         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2017         vcpu->run->msr.reason = msr_reason;
2018         vcpu->run->msr.index = index;
2019         vcpu->run->msr.data = data;
2020         vcpu->arch.complete_userspace_io = completion;
2021
2022         return 1;
2023 }
2024
2025 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2026 {
2027         u32 ecx = kvm_rcx_read(vcpu);
2028         u64 data;
2029         int r;
2030
2031         r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2032
2033         if (!r) {
2034                 trace_kvm_msr_read(ecx, data);
2035
2036                 kvm_rax_write(vcpu, data & -1u);
2037                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2038         } else {
2039                 /* MSR read failed? See if we should ask user space */
2040                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2041                                        complete_fast_rdmsr, r))
2042                         return 0;
2043                 trace_kvm_msr_read_ex(ecx);
2044         }
2045
2046         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2047 }
2048 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2049
2050 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2051 {
2052         u32 ecx = kvm_rcx_read(vcpu);
2053         u64 data = kvm_read_edx_eax(vcpu);
2054         int r;
2055
2056         r = kvm_set_msr_with_filter(vcpu, ecx, data);
2057
2058         if (!r) {
2059                 trace_kvm_msr_write(ecx, data);
2060         } else {
2061                 /* MSR write failed? See if we should ask user space */
2062                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2063                                        complete_fast_msr_access, r))
2064                         return 0;
2065                 /* Signal all other negative errors to userspace */
2066                 if (r < 0)
2067                         return r;
2068                 trace_kvm_msr_write_ex(ecx, data);
2069         }
2070
2071         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2072 }
2073 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2074
2075 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2076 {
2077         return kvm_skip_emulated_instruction(vcpu);
2078 }
2079
2080 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2081 {
2082         /* Treat an INVD instruction as a NOP and just skip it. */
2083         return kvm_emulate_as_nop(vcpu);
2084 }
2085 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2086
2087 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2088 {
2089         kvm_queue_exception(vcpu, UD_VECTOR);
2090         return 1;
2091 }
2092 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2093
2094
2095 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2096 {
2097         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2098             !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2099                 return kvm_handle_invalid_op(vcpu);
2100
2101         pr_warn_once("%s instruction emulated as NOP!\n", insn);
2102         return kvm_emulate_as_nop(vcpu);
2103 }
2104 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2105 {
2106         return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2107 }
2108 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2109
2110 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2111 {
2112         return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2113 }
2114 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2115
2116 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2117 {
2118         xfer_to_guest_mode_prepare();
2119         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2120                 xfer_to_guest_mode_work_pending();
2121 }
2122
2123 /*
2124  * The fast path for frequent and performance sensitive wrmsr emulation,
2125  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2126  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2127  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2128  * other cases which must be called after interrupts are enabled on the host.
2129  */
2130 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2131 {
2132         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2133                 return 1;
2134
2135         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2136             ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2137             ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2138             ((u32)(data >> 32) != X2APIC_BROADCAST))
2139                 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2140
2141         return 1;
2142 }
2143
2144 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2145 {
2146         if (!kvm_can_use_hv_timer(vcpu))
2147                 return 1;
2148
2149         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2150         return 0;
2151 }
2152
2153 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2154 {
2155         u32 msr = kvm_rcx_read(vcpu);
2156         u64 data;
2157         fastpath_t ret = EXIT_FASTPATH_NONE;
2158
2159         switch (msr) {
2160         case APIC_BASE_MSR + (APIC_ICR >> 4):
2161                 data = kvm_read_edx_eax(vcpu);
2162                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2163                         kvm_skip_emulated_instruction(vcpu);
2164                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2165                 }
2166                 break;
2167         case MSR_IA32_TSC_DEADLINE:
2168                 data = kvm_read_edx_eax(vcpu);
2169                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2170                         kvm_skip_emulated_instruction(vcpu);
2171                         ret = EXIT_FASTPATH_REENTER_GUEST;
2172                 }
2173                 break;
2174         default:
2175                 break;
2176         }
2177
2178         if (ret != EXIT_FASTPATH_NONE)
2179                 trace_kvm_msr_write(msr, data);
2180
2181         return ret;
2182 }
2183 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2184
2185 /*
2186  * Adapt set_msr() to msr_io()'s calling convention
2187  */
2188 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2189 {
2190         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2191 }
2192
2193 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2194 {
2195         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2196 }
2197
2198 #ifdef CONFIG_X86_64
2199 struct pvclock_clock {
2200         int vclock_mode;
2201         u64 cycle_last;
2202         u64 mask;
2203         u32 mult;
2204         u32 shift;
2205         u64 base_cycles;
2206         u64 offset;
2207 };
2208
2209 struct pvclock_gtod_data {
2210         seqcount_t      seq;
2211
2212         struct pvclock_clock clock; /* extract of a clocksource struct */
2213         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2214
2215         ktime_t         offs_boot;
2216         u64             wall_time_sec;
2217 };
2218
2219 static struct pvclock_gtod_data pvclock_gtod_data;
2220
2221 static void update_pvclock_gtod(struct timekeeper *tk)
2222 {
2223         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2224
2225         write_seqcount_begin(&vdata->seq);
2226
2227         /* copy pvclock gtod data */
2228         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2229         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2230         vdata->clock.mask               = tk->tkr_mono.mask;
2231         vdata->clock.mult               = tk->tkr_mono.mult;
2232         vdata->clock.shift              = tk->tkr_mono.shift;
2233         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2234         vdata->clock.offset             = tk->tkr_mono.base;
2235
2236         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2237         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2238         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2239         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2240         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2241         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2242         vdata->raw_clock.offset         = tk->tkr_raw.base;
2243
2244         vdata->wall_time_sec            = tk->xtime_sec;
2245
2246         vdata->offs_boot                = tk->offs_boot;
2247
2248         write_seqcount_end(&vdata->seq);
2249 }
2250
2251 static s64 get_kvmclock_base_ns(void)
2252 {
2253         /* Count up from boot time, but with the frequency of the raw clock.  */
2254         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2255 }
2256 #else
2257 static s64 get_kvmclock_base_ns(void)
2258 {
2259         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2260         return ktime_get_boottime_ns();
2261 }
2262 #endif
2263
2264 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2265 {
2266         int version;
2267         int r;
2268         struct pvclock_wall_clock wc;
2269         u32 wc_sec_hi;
2270         u64 wall_nsec;
2271
2272         if (!wall_clock)
2273                 return;
2274
2275         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2276         if (r)
2277                 return;
2278
2279         if (version & 1)
2280                 ++version;  /* first time write, random junk */
2281
2282         ++version;
2283
2284         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2285                 return;
2286
2287         /*
2288          * The guest calculates current wall clock time by adding
2289          * system time (updated by kvm_guest_time_update below) to the
2290          * wall clock specified here.  We do the reverse here.
2291          */
2292         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2293
2294         wc.nsec = do_div(wall_nsec, 1000000000);
2295         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2296         wc.version = version;
2297
2298         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2299
2300         if (sec_hi_ofs) {
2301                 wc_sec_hi = wall_nsec >> 32;
2302                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2303                                 &wc_sec_hi, sizeof(wc_sec_hi));
2304         }
2305
2306         version++;
2307         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2308 }
2309
2310 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2311                                   bool old_msr, bool host_initiated)
2312 {
2313         struct kvm_arch *ka = &vcpu->kvm->arch;
2314
2315         if (vcpu->vcpu_id == 0 && !host_initiated) {
2316                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2317                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2318
2319                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2320         }
2321
2322         vcpu->arch.time = system_time;
2323         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2324
2325         /* we verify if the enable bit is set... */
2326         if (system_time & 1)
2327                 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2328                                  sizeof(struct pvclock_vcpu_time_info));
2329         else
2330                 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2331
2332         return;
2333 }
2334
2335 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2336 {
2337         do_shl32_div32(dividend, divisor);
2338         return dividend;
2339 }
2340
2341 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2342                                s8 *pshift, u32 *pmultiplier)
2343 {
2344         uint64_t scaled64;
2345         int32_t  shift = 0;
2346         uint64_t tps64;
2347         uint32_t tps32;
2348
2349         tps64 = base_hz;
2350         scaled64 = scaled_hz;
2351         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2352                 tps64 >>= 1;
2353                 shift--;
2354         }
2355
2356         tps32 = (uint32_t)tps64;
2357         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2358                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2359                         scaled64 >>= 1;
2360                 else
2361                         tps32 <<= 1;
2362                 shift++;
2363         }
2364
2365         *pshift = shift;
2366         *pmultiplier = div_frac(scaled64, tps32);
2367 }
2368
2369 #ifdef CONFIG_X86_64
2370 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2371 #endif
2372
2373 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2374 static unsigned long max_tsc_khz;
2375
2376 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2377 {
2378         u64 v = (u64)khz * (1000000 + ppm);
2379         do_div(v, 1000000);
2380         return v;
2381 }
2382
2383 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2384
2385 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2386 {
2387         u64 ratio;
2388
2389         /* Guest TSC same frequency as host TSC? */
2390         if (!scale) {
2391                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2392                 return 0;
2393         }
2394
2395         /* TSC scaling supported? */
2396         if (!kvm_caps.has_tsc_control) {
2397                 if (user_tsc_khz > tsc_khz) {
2398                         vcpu->arch.tsc_catchup = 1;
2399                         vcpu->arch.tsc_always_catchup = 1;
2400                         return 0;
2401                 } else {
2402                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2403                         return -1;
2404                 }
2405         }
2406
2407         /* TSC scaling required  - calculate ratio */
2408         ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2409                                 user_tsc_khz, tsc_khz);
2410
2411         if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2412                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2413                                     user_tsc_khz);
2414                 return -1;
2415         }
2416
2417         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2418         return 0;
2419 }
2420
2421 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2422 {
2423         u32 thresh_lo, thresh_hi;
2424         int use_scaling = 0;
2425
2426         /* tsc_khz can be zero if TSC calibration fails */
2427         if (user_tsc_khz == 0) {
2428                 /* set tsc_scaling_ratio to a safe value */
2429                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2430                 return -1;
2431         }
2432
2433         /* Compute a scale to convert nanoseconds in TSC cycles */
2434         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2435                            &vcpu->arch.virtual_tsc_shift,
2436                            &vcpu->arch.virtual_tsc_mult);
2437         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2438
2439         /*
2440          * Compute the variation in TSC rate which is acceptable
2441          * within the range of tolerance and decide if the
2442          * rate being applied is within that bounds of the hardware
2443          * rate.  If so, no scaling or compensation need be done.
2444          */
2445         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2446         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2447         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2448                 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2449                          user_tsc_khz, thresh_lo, thresh_hi);
2450                 use_scaling = 1;
2451         }
2452         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2453 }
2454
2455 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2456 {
2457         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2458                                       vcpu->arch.virtual_tsc_mult,
2459                                       vcpu->arch.virtual_tsc_shift);
2460         tsc += vcpu->arch.this_tsc_write;
2461         return tsc;
2462 }
2463
2464 #ifdef CONFIG_X86_64
2465 static inline int gtod_is_based_on_tsc(int mode)
2466 {
2467         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2468 }
2469 #endif
2470
2471 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2472 {
2473 #ifdef CONFIG_X86_64
2474         bool vcpus_matched;
2475         struct kvm_arch *ka = &vcpu->kvm->arch;
2476         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2477
2478         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2479                          atomic_read(&vcpu->kvm->online_vcpus));
2480
2481         /*
2482          * Once the masterclock is enabled, always perform request in
2483          * order to update it.
2484          *
2485          * In order to enable masterclock, the host clocksource must be TSC
2486          * and the vcpus need to have matched TSCs.  When that happens,
2487          * perform request to enable masterclock.
2488          */
2489         if (ka->use_master_clock ||
2490             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2491                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2492
2493         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2494                             atomic_read(&vcpu->kvm->online_vcpus),
2495                             ka->use_master_clock, gtod->clock.vclock_mode);
2496 #endif
2497 }
2498
2499 /*
2500  * Multiply tsc by a fixed point number represented by ratio.
2501  *
2502  * The most significant 64-N bits (mult) of ratio represent the
2503  * integral part of the fixed point number; the remaining N bits
2504  * (frac) represent the fractional part, ie. ratio represents a fixed
2505  * point number (mult + frac * 2^(-N)).
2506  *
2507  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2508  */
2509 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2510 {
2511         return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2512 }
2513
2514 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2515 {
2516         u64 _tsc = tsc;
2517
2518         if (ratio != kvm_caps.default_tsc_scaling_ratio)
2519                 _tsc = __scale_tsc(ratio, tsc);
2520
2521         return _tsc;
2522 }
2523
2524 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2525 {
2526         u64 tsc;
2527
2528         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2529
2530         return target_tsc - tsc;
2531 }
2532
2533 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2534 {
2535         return vcpu->arch.l1_tsc_offset +
2536                 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2537 }
2538 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2539
2540 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2541 {
2542         u64 nested_offset;
2543
2544         if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2545                 nested_offset = l1_offset;
2546         else
2547                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2548                                                 kvm_caps.tsc_scaling_ratio_frac_bits);
2549
2550         nested_offset += l2_offset;
2551         return nested_offset;
2552 }
2553 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2554
2555 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2556 {
2557         if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2558                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2559                                        kvm_caps.tsc_scaling_ratio_frac_bits);
2560
2561         return l1_multiplier;
2562 }
2563 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2564
2565 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2566 {
2567         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2568                                    vcpu->arch.l1_tsc_offset,
2569                                    l1_offset);
2570
2571         vcpu->arch.l1_tsc_offset = l1_offset;
2572
2573         /*
2574          * If we are here because L1 chose not to trap WRMSR to TSC then
2575          * according to the spec this should set L1's TSC (as opposed to
2576          * setting L1's offset for L2).
2577          */
2578         if (is_guest_mode(vcpu))
2579                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2580                         l1_offset,
2581                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2582                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2583         else
2584                 vcpu->arch.tsc_offset = l1_offset;
2585
2586         static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2587 }
2588
2589 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2590 {
2591         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2592
2593         /* Userspace is changing the multiplier while L2 is active */
2594         if (is_guest_mode(vcpu))
2595                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2596                         l1_multiplier,
2597                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2598         else
2599                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2600
2601         if (kvm_caps.has_tsc_control)
2602                 static_call(kvm_x86_write_tsc_multiplier)(
2603                         vcpu, vcpu->arch.tsc_scaling_ratio);
2604 }
2605
2606 static inline bool kvm_check_tsc_unstable(void)
2607 {
2608 #ifdef CONFIG_X86_64
2609         /*
2610          * TSC is marked unstable when we're running on Hyper-V,
2611          * 'TSC page' clocksource is good.
2612          */
2613         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2614                 return false;
2615 #endif
2616         return check_tsc_unstable();
2617 }
2618
2619 /*
2620  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2621  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2622  * participates in.
2623  */
2624 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2625                                   u64 ns, bool matched)
2626 {
2627         struct kvm *kvm = vcpu->kvm;
2628
2629         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2630
2631         /*
2632          * We also track th most recent recorded KHZ, write and time to
2633          * allow the matching interval to be extended at each write.
2634          */
2635         kvm->arch.last_tsc_nsec = ns;
2636         kvm->arch.last_tsc_write = tsc;
2637         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2638         kvm->arch.last_tsc_offset = offset;
2639
2640         vcpu->arch.last_guest_tsc = tsc;
2641
2642         kvm_vcpu_write_tsc_offset(vcpu, offset);
2643
2644         if (!matched) {
2645                 /*
2646                  * We split periods of matched TSC writes into generations.
2647                  * For each generation, we track the original measured
2648                  * nanosecond time, offset, and write, so if TSCs are in
2649                  * sync, we can match exact offset, and if not, we can match
2650                  * exact software computation in compute_guest_tsc()
2651                  *
2652                  * These values are tracked in kvm->arch.cur_xxx variables.
2653                  */
2654                 kvm->arch.cur_tsc_generation++;
2655                 kvm->arch.cur_tsc_nsec = ns;
2656                 kvm->arch.cur_tsc_write = tsc;
2657                 kvm->arch.cur_tsc_offset = offset;
2658                 kvm->arch.nr_vcpus_matched_tsc = 0;
2659         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2660                 kvm->arch.nr_vcpus_matched_tsc++;
2661         }
2662
2663         /* Keep track of which generation this VCPU has synchronized to */
2664         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2665         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2666         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2667
2668         kvm_track_tsc_matching(vcpu);
2669 }
2670
2671 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2672 {
2673         struct kvm *kvm = vcpu->kvm;
2674         u64 offset, ns, elapsed;
2675         unsigned long flags;
2676         bool matched = false;
2677         bool synchronizing = false;
2678
2679         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2680         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2681         ns = get_kvmclock_base_ns();
2682         elapsed = ns - kvm->arch.last_tsc_nsec;
2683
2684         if (vcpu->arch.virtual_tsc_khz) {
2685                 if (data == 0) {
2686                         /*
2687                          * detection of vcpu initialization -- need to sync
2688                          * with other vCPUs. This particularly helps to keep
2689                          * kvm_clock stable after CPU hotplug
2690                          */
2691                         synchronizing = true;
2692                 } else {
2693                         u64 tsc_exp = kvm->arch.last_tsc_write +
2694                                                 nsec_to_cycles(vcpu, elapsed);
2695                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2696                         /*
2697                          * Special case: TSC write with a small delta (1 second)
2698                          * of virtual cycle time against real time is
2699                          * interpreted as an attempt to synchronize the CPU.
2700                          */
2701                         synchronizing = data < tsc_exp + tsc_hz &&
2702                                         data + tsc_hz > tsc_exp;
2703                 }
2704         }
2705
2706         /*
2707          * For a reliable TSC, we can match TSC offsets, and for an unstable
2708          * TSC, we add elapsed time in this computation.  We could let the
2709          * compensation code attempt to catch up if we fall behind, but
2710          * it's better to try to match offsets from the beginning.
2711          */
2712         if (synchronizing &&
2713             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2714                 if (!kvm_check_tsc_unstable()) {
2715                         offset = kvm->arch.cur_tsc_offset;
2716                 } else {
2717                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2718                         data += delta;
2719                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2720                 }
2721                 matched = true;
2722         }
2723
2724         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2725         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2726 }
2727
2728 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2729                                            s64 adjustment)
2730 {
2731         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2732         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2733 }
2734
2735 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2736 {
2737         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2738                 WARN_ON(adjustment < 0);
2739         adjustment = kvm_scale_tsc((u64) adjustment,
2740                                    vcpu->arch.l1_tsc_scaling_ratio);
2741         adjust_tsc_offset_guest(vcpu, adjustment);
2742 }
2743
2744 #ifdef CONFIG_X86_64
2745
2746 static u64 read_tsc(void)
2747 {
2748         u64 ret = (u64)rdtsc_ordered();
2749         u64 last = pvclock_gtod_data.clock.cycle_last;
2750
2751         if (likely(ret >= last))
2752                 return ret;
2753
2754         /*
2755          * GCC likes to generate cmov here, but this branch is extremely
2756          * predictable (it's just a function of time and the likely is
2757          * very likely) and there's a data dependence, so force GCC
2758          * to generate a branch instead.  I don't barrier() because
2759          * we don't actually need a barrier, and if this function
2760          * ever gets inlined it will generate worse code.
2761          */
2762         asm volatile ("");
2763         return last;
2764 }
2765
2766 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2767                           int *mode)
2768 {
2769         long v;
2770         u64 tsc_pg_val;
2771
2772         switch (clock->vclock_mode) {
2773         case VDSO_CLOCKMODE_HVCLOCK:
2774                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2775                                                   tsc_timestamp);
2776                 if (tsc_pg_val != U64_MAX) {
2777                         /* TSC page valid */
2778                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2779                         v = (tsc_pg_val - clock->cycle_last) &
2780                                 clock->mask;
2781                 } else {
2782                         /* TSC page invalid */
2783                         *mode = VDSO_CLOCKMODE_NONE;
2784                 }
2785                 break;
2786         case VDSO_CLOCKMODE_TSC:
2787                 *mode = VDSO_CLOCKMODE_TSC;
2788                 *tsc_timestamp = read_tsc();
2789                 v = (*tsc_timestamp - clock->cycle_last) &
2790                         clock->mask;
2791                 break;
2792         default:
2793                 *mode = VDSO_CLOCKMODE_NONE;
2794         }
2795
2796         if (*mode == VDSO_CLOCKMODE_NONE)
2797                 *tsc_timestamp = v = 0;
2798
2799         return v * clock->mult;
2800 }
2801
2802 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2803 {
2804         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2805         unsigned long seq;
2806         int mode;
2807         u64 ns;
2808
2809         do {
2810                 seq = read_seqcount_begin(&gtod->seq);
2811                 ns = gtod->raw_clock.base_cycles;
2812                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2813                 ns >>= gtod->raw_clock.shift;
2814                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2815         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2816         *t = ns;
2817
2818         return mode;
2819 }
2820
2821 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2822 {
2823         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2824         unsigned long seq;
2825         int mode;
2826         u64 ns;
2827
2828         do {
2829                 seq = read_seqcount_begin(&gtod->seq);
2830                 ts->tv_sec = gtod->wall_time_sec;
2831                 ns = gtod->clock.base_cycles;
2832                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2833                 ns >>= gtod->clock.shift;
2834         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2835
2836         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2837         ts->tv_nsec = ns;
2838
2839         return mode;
2840 }
2841
2842 /* returns true if host is using TSC based clocksource */
2843 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2844 {
2845         /* checked again under seqlock below */
2846         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2847                 return false;
2848
2849         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2850                                                       tsc_timestamp));
2851 }
2852
2853 /* returns true if host is using TSC based clocksource */
2854 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2855                                            u64 *tsc_timestamp)
2856 {
2857         /* checked again under seqlock below */
2858         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2859                 return false;
2860
2861         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2862 }
2863 #endif
2864
2865 /*
2866  *
2867  * Assuming a stable TSC across physical CPUS, and a stable TSC
2868  * across virtual CPUs, the following condition is possible.
2869  * Each numbered line represents an event visible to both
2870  * CPUs at the next numbered event.
2871  *
2872  * "timespecX" represents host monotonic time. "tscX" represents
2873  * RDTSC value.
2874  *
2875  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2876  *
2877  * 1.  read timespec0,tsc0
2878  * 2.                                   | timespec1 = timespec0 + N
2879  *                                      | tsc1 = tsc0 + M
2880  * 3. transition to guest               | transition to guest
2881  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2882  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2883  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2884  *
2885  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2886  *
2887  *      - ret0 < ret1
2888  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2889  *              ...
2890  *      - 0 < N - M => M < N
2891  *
2892  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2893  * always the case (the difference between two distinct xtime instances
2894  * might be smaller then the difference between corresponding TSC reads,
2895  * when updating guest vcpus pvclock areas).
2896  *
2897  * To avoid that problem, do not allow visibility of distinct
2898  * system_timestamp/tsc_timestamp values simultaneously: use a master
2899  * copy of host monotonic time values. Update that master copy
2900  * in lockstep.
2901  *
2902  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2903  *
2904  */
2905
2906 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2907 {
2908 #ifdef CONFIG_X86_64
2909         struct kvm_arch *ka = &kvm->arch;
2910         int vclock_mode;
2911         bool host_tsc_clocksource, vcpus_matched;
2912
2913         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2914         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2915                         atomic_read(&kvm->online_vcpus));
2916
2917         /*
2918          * If the host uses TSC clock, then passthrough TSC as stable
2919          * to the guest.
2920          */
2921         host_tsc_clocksource = kvm_get_time_and_clockread(
2922                                         &ka->master_kernel_ns,
2923                                         &ka->master_cycle_now);
2924
2925         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2926                                 && !ka->backwards_tsc_observed
2927                                 && !ka->boot_vcpu_runs_old_kvmclock;
2928
2929         if (ka->use_master_clock)
2930                 atomic_set(&kvm_guest_has_master_clock, 1);
2931
2932         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2933         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2934                                         vcpus_matched);
2935 #endif
2936 }
2937
2938 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2939 {
2940         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2941 }
2942
2943 static void __kvm_start_pvclock_update(struct kvm *kvm)
2944 {
2945         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2946         write_seqcount_begin(&kvm->arch.pvclock_sc);
2947 }
2948
2949 static void kvm_start_pvclock_update(struct kvm *kvm)
2950 {
2951         kvm_make_mclock_inprogress_request(kvm);
2952
2953         /* no guest entries from this point */
2954         __kvm_start_pvclock_update(kvm);
2955 }
2956
2957 static void kvm_end_pvclock_update(struct kvm *kvm)
2958 {
2959         struct kvm_arch *ka = &kvm->arch;
2960         struct kvm_vcpu *vcpu;
2961         unsigned long i;
2962
2963         write_seqcount_end(&ka->pvclock_sc);
2964         raw_spin_unlock_irq(&ka->tsc_write_lock);
2965         kvm_for_each_vcpu(i, vcpu, kvm)
2966                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2967
2968         /* guest entries allowed */
2969         kvm_for_each_vcpu(i, vcpu, kvm)
2970                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2971 }
2972
2973 static void kvm_update_masterclock(struct kvm *kvm)
2974 {
2975         kvm_hv_request_tsc_page_update(kvm);
2976         kvm_start_pvclock_update(kvm);
2977         pvclock_update_vm_gtod_copy(kvm);
2978         kvm_end_pvclock_update(kvm);
2979 }
2980
2981 /*
2982  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
2983  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
2984  * can change during boot even if the TSC is constant, as it's possible for KVM
2985  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
2986  * notification when calibration completes, but practically speaking calibration
2987  * will complete before userspace is alive enough to create VMs.
2988  */
2989 static unsigned long get_cpu_tsc_khz(void)
2990 {
2991         if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
2992                 return tsc_khz;
2993         else
2994                 return __this_cpu_read(cpu_tsc_khz);
2995 }
2996
2997 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2998 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2999 {
3000         struct kvm_arch *ka = &kvm->arch;
3001         struct pvclock_vcpu_time_info hv_clock;
3002
3003         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3004         get_cpu();
3005
3006         data->flags = 0;
3007         if (ka->use_master_clock &&
3008             (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3009 #ifdef CONFIG_X86_64
3010                 struct timespec64 ts;
3011
3012                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3013                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3014                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3015                 } else
3016 #endif
3017                 data->host_tsc = rdtsc();
3018
3019                 data->flags |= KVM_CLOCK_TSC_STABLE;
3020                 hv_clock.tsc_timestamp = ka->master_cycle_now;
3021                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3022                 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3023                                    &hv_clock.tsc_shift,
3024                                    &hv_clock.tsc_to_system_mul);
3025                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3026         } else {
3027                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3028         }
3029
3030         put_cpu();
3031 }
3032
3033 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3034 {
3035         struct kvm_arch *ka = &kvm->arch;
3036         unsigned seq;
3037
3038         do {
3039                 seq = read_seqcount_begin(&ka->pvclock_sc);
3040                 __get_kvmclock(kvm, data);
3041         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3042 }
3043
3044 u64 get_kvmclock_ns(struct kvm *kvm)
3045 {
3046         struct kvm_clock_data data;
3047
3048         get_kvmclock(kvm, &data);
3049         return data.clock;
3050 }
3051
3052 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3053                                     struct gfn_to_pfn_cache *gpc,
3054                                     unsigned int offset)
3055 {
3056         struct kvm_vcpu_arch *vcpu = &v->arch;
3057         struct pvclock_vcpu_time_info *guest_hv_clock;
3058         unsigned long flags;
3059
3060         read_lock_irqsave(&gpc->lock, flags);
3061         while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3062                 read_unlock_irqrestore(&gpc->lock, flags);
3063
3064                 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3065                         return;
3066
3067                 read_lock_irqsave(&gpc->lock, flags);
3068         }
3069
3070         guest_hv_clock = (void *)(gpc->khva + offset);
3071
3072         /*
3073          * This VCPU is paused, but it's legal for a guest to read another
3074          * VCPU's kvmclock, so we really have to follow the specification where
3075          * it says that version is odd if data is being modified, and even after
3076          * it is consistent.
3077          */
3078
3079         guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3080         smp_wmb();
3081
3082         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3083         vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3084
3085         if (vcpu->pvclock_set_guest_stopped_request) {
3086                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3087                 vcpu->pvclock_set_guest_stopped_request = false;
3088         }
3089
3090         memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3091         smp_wmb();
3092
3093         guest_hv_clock->version = ++vcpu->hv_clock.version;
3094
3095         mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3096         read_unlock_irqrestore(&gpc->lock, flags);
3097
3098         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3099 }
3100
3101 static int kvm_guest_time_update(struct kvm_vcpu *v)
3102 {
3103         unsigned long flags, tgt_tsc_khz;
3104         unsigned seq;
3105         struct kvm_vcpu_arch *vcpu = &v->arch;
3106         struct kvm_arch *ka = &v->kvm->arch;
3107         s64 kernel_ns;
3108         u64 tsc_timestamp, host_tsc;
3109         u8 pvclock_flags;
3110         bool use_master_clock;
3111
3112         kernel_ns = 0;
3113         host_tsc = 0;
3114
3115         /*
3116          * If the host uses TSC clock, then passthrough TSC as stable
3117          * to the guest.
3118          */
3119         do {
3120                 seq = read_seqcount_begin(&ka->pvclock_sc);
3121                 use_master_clock = ka->use_master_clock;
3122                 if (use_master_clock) {
3123                         host_tsc = ka->master_cycle_now;
3124                         kernel_ns = ka->master_kernel_ns;
3125                 }
3126         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3127
3128         /* Keep irq disabled to prevent changes to the clock */
3129         local_irq_save(flags);
3130         tgt_tsc_khz = get_cpu_tsc_khz();
3131         if (unlikely(tgt_tsc_khz == 0)) {
3132                 local_irq_restore(flags);
3133                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3134                 return 1;
3135         }
3136         if (!use_master_clock) {
3137                 host_tsc = rdtsc();
3138                 kernel_ns = get_kvmclock_base_ns();
3139         }
3140
3141         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3142
3143         /*
3144          * We may have to catch up the TSC to match elapsed wall clock
3145          * time for two reasons, even if kvmclock is used.
3146          *   1) CPU could have been running below the maximum TSC rate
3147          *   2) Broken TSC compensation resets the base at each VCPU
3148          *      entry to avoid unknown leaps of TSC even when running
3149          *      again on the same CPU.  This may cause apparent elapsed
3150          *      time to disappear, and the guest to stand still or run
3151          *      very slowly.
3152          */
3153         if (vcpu->tsc_catchup) {
3154                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3155                 if (tsc > tsc_timestamp) {
3156                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3157                         tsc_timestamp = tsc;
3158                 }
3159         }
3160
3161         local_irq_restore(flags);
3162
3163         /* With all the info we got, fill in the values */
3164
3165         if (kvm_caps.has_tsc_control)
3166                 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3167                                             v->arch.l1_tsc_scaling_ratio);
3168
3169         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3170                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3171                                    &vcpu->hv_clock.tsc_shift,
3172                                    &vcpu->hv_clock.tsc_to_system_mul);
3173                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3174                 kvm_xen_update_tsc_info(v);
3175         }
3176
3177         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3178         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3179         vcpu->last_guest_tsc = tsc_timestamp;
3180
3181         /* If the host uses TSC clocksource, then it is stable */
3182         pvclock_flags = 0;
3183         if (use_master_clock)
3184                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3185
3186         vcpu->hv_clock.flags = pvclock_flags;
3187
3188         if (vcpu->pv_time.active)
3189                 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3190         if (vcpu->xen.vcpu_info_cache.active)
3191                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3192                                         offsetof(struct compat_vcpu_info, time));
3193         if (vcpu->xen.vcpu_time_info_cache.active)
3194                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3195         kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3196         return 0;
3197 }
3198
3199 /*
3200  * kvmclock updates which are isolated to a given vcpu, such as
3201  * vcpu->cpu migration, should not allow system_timestamp from
3202  * the rest of the vcpus to remain static. Otherwise ntp frequency
3203  * correction applies to one vcpu's system_timestamp but not
3204  * the others.
3205  *
3206  * So in those cases, request a kvmclock update for all vcpus.
3207  * We need to rate-limit these requests though, as they can
3208  * considerably slow guests that have a large number of vcpus.
3209  * The time for a remote vcpu to update its kvmclock is bound
3210  * by the delay we use to rate-limit the updates.
3211  */
3212
3213 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3214
3215 static void kvmclock_update_fn(struct work_struct *work)
3216 {
3217         unsigned long i;
3218         struct delayed_work *dwork = to_delayed_work(work);
3219         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3220                                            kvmclock_update_work);
3221         struct kvm *kvm = container_of(ka, struct kvm, arch);
3222         struct kvm_vcpu *vcpu;
3223
3224         kvm_for_each_vcpu(i, vcpu, kvm) {
3225                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3226                 kvm_vcpu_kick(vcpu);
3227         }
3228 }
3229
3230 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3231 {
3232         struct kvm *kvm = v->kvm;
3233
3234         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3235         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3236                                         KVMCLOCK_UPDATE_DELAY);
3237 }
3238
3239 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3240
3241 static void kvmclock_sync_fn(struct work_struct *work)
3242 {
3243         struct delayed_work *dwork = to_delayed_work(work);
3244         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3245                                            kvmclock_sync_work);
3246         struct kvm *kvm = container_of(ka, struct kvm, arch);
3247
3248         if (!kvmclock_periodic_sync)
3249                 return;
3250
3251         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3252         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3253                                         KVMCLOCK_SYNC_PERIOD);
3254 }
3255
3256 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3257 static bool is_mci_control_msr(u32 msr)
3258 {
3259         return (msr & 3) == 0;
3260 }
3261 static bool is_mci_status_msr(u32 msr)
3262 {
3263         return (msr & 3) == 1;
3264 }
3265
3266 /*
3267  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3268  */
3269 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3270 {
3271         /* McStatusWrEn enabled? */
3272         if (guest_cpuid_is_amd_or_hygon(vcpu))
3273                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3274
3275         return false;
3276 }
3277
3278 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3279 {
3280         u64 mcg_cap = vcpu->arch.mcg_cap;
3281         unsigned bank_num = mcg_cap & 0xff;
3282         u32 msr = msr_info->index;
3283         u64 data = msr_info->data;
3284         u32 offset, last_msr;
3285
3286         switch (msr) {
3287         case MSR_IA32_MCG_STATUS:
3288                 vcpu->arch.mcg_status = data;
3289                 break;
3290         case MSR_IA32_MCG_CTL:
3291                 if (!(mcg_cap & MCG_CTL_P) &&
3292                     (data || !msr_info->host_initiated))
3293                         return 1;
3294                 if (data != 0 && data != ~(u64)0)
3295                         return 1;
3296                 vcpu->arch.mcg_ctl = data;
3297                 break;
3298         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3299                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3300                 if (msr > last_msr)
3301                         return 1;
3302
3303                 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3304                         return 1;
3305                 /* An attempt to write a 1 to a reserved bit raises #GP */
3306                 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3307                         return 1;
3308                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3309                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
3310                 vcpu->arch.mci_ctl2_banks[offset] = data;
3311                 break;
3312         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3313                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3314                 if (msr > last_msr)
3315                         return 1;
3316
3317                 /*
3318                  * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3319                  * values are architecturally undefined.  But, some Linux
3320                  * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3321                  * issue on AMD K8s, allow bit 10 to be clear when setting all
3322                  * other bits in order to avoid an uncaught #GP in the guest.
3323                  *
3324                  * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3325                  * single-bit ECC data errors.
3326                  */
3327                 if (is_mci_control_msr(msr) &&
3328                     data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3329                         return 1;
3330
3331                 /*
3332                  * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3333                  * AMD-based CPUs allow non-zero values, but if and only if
3334                  * HWCR[McStatusWrEn] is set.
3335                  */
3336                 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3337                     data != 0 && !can_set_mci_status(vcpu))
3338                         return 1;
3339
3340                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3341                                             last_msr + 1 - MSR_IA32_MC0_CTL);
3342                 vcpu->arch.mce_banks[offset] = data;
3343                 break;
3344         default:
3345                 return 1;
3346         }
3347         return 0;
3348 }
3349
3350 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3351 {
3352         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3353
3354         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3355 }
3356
3357 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3358 {
3359         gpa_t gpa = data & ~0x3f;
3360
3361         /* Bits 4:5 are reserved, Should be zero */
3362         if (data & 0x30)
3363                 return 1;
3364
3365         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3366             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3367                 return 1;
3368
3369         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3370             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3371                 return 1;
3372
3373         if (!lapic_in_kernel(vcpu))
3374                 return data ? 1 : 0;
3375
3376         vcpu->arch.apf.msr_en_val = data;
3377
3378         if (!kvm_pv_async_pf_enabled(vcpu)) {
3379                 kvm_clear_async_pf_completion_queue(vcpu);
3380                 kvm_async_pf_hash_reset(vcpu);
3381                 return 0;
3382         }
3383
3384         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3385                                         sizeof(u64)))
3386                 return 1;
3387
3388         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3389         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3390
3391         kvm_async_pf_wakeup_all(vcpu);
3392
3393         return 0;
3394 }
3395
3396 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3397 {
3398         /* Bits 8-63 are reserved */
3399         if (data >> 8)
3400                 return 1;
3401
3402         if (!lapic_in_kernel(vcpu))
3403                 return 1;
3404
3405         vcpu->arch.apf.msr_int_val = data;
3406
3407         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3408
3409         return 0;
3410 }
3411
3412 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3413 {
3414         kvm_gpc_deactivate(&vcpu->arch.pv_time);
3415         vcpu->arch.time = 0;
3416 }
3417
3418 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3419 {
3420         ++vcpu->stat.tlb_flush;
3421         static_call(kvm_x86_flush_tlb_all)(vcpu);
3422
3423         /* Flushing all ASIDs flushes the current ASID... */
3424         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3425 }
3426
3427 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3428 {
3429         ++vcpu->stat.tlb_flush;
3430
3431         if (!tdp_enabled) {
3432                 /*
3433                  * A TLB flush on behalf of the guest is equivalent to
3434                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3435                  * a forced sync of the shadow page tables.  Ensure all the
3436                  * roots are synced and the guest TLB in hardware is clean.
3437                  */
3438                 kvm_mmu_sync_roots(vcpu);
3439                 kvm_mmu_sync_prev_roots(vcpu);
3440         }
3441
3442         static_call(kvm_x86_flush_tlb_guest)(vcpu);
3443
3444         /*
3445          * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3446          * grained flushing.
3447          */
3448         kvm_hv_vcpu_purge_flush_tlb(vcpu);
3449 }
3450
3451
3452 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3453 {
3454         ++vcpu->stat.tlb_flush;
3455         static_call(kvm_x86_flush_tlb_current)(vcpu);
3456 }
3457
3458 /*
3459  * Service "local" TLB flush requests, which are specific to the current MMU
3460  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3461  * TLB flushes that are targeted at an MMU context also need to be serviced
3462  * prior before nested VM-Enter/VM-Exit.
3463  */
3464 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3465 {
3466         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3467                 kvm_vcpu_flush_tlb_current(vcpu);
3468
3469         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3470                 kvm_vcpu_flush_tlb_guest(vcpu);
3471 }
3472 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3473
3474 static void record_steal_time(struct kvm_vcpu *vcpu)
3475 {
3476         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3477         struct kvm_steal_time __user *st;
3478         struct kvm_memslots *slots;
3479         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3480         u64 steal;
3481         u32 version;
3482
3483         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3484                 kvm_xen_runstate_set_running(vcpu);
3485                 return;
3486         }
3487
3488         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3489                 return;
3490
3491         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3492                 return;
3493
3494         slots = kvm_memslots(vcpu->kvm);
3495
3496         if (unlikely(slots->generation != ghc->generation ||
3497                      gpa != ghc->gpa ||
3498                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3499                 /* We rely on the fact that it fits in a single page. */
3500                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3501
3502                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3503                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3504                         return;
3505         }
3506
3507         st = (struct kvm_steal_time __user *)ghc->hva;
3508         /*
3509          * Doing a TLB flush here, on the guest's behalf, can avoid
3510          * expensive IPIs.
3511          */
3512         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3513                 u8 st_preempted = 0;
3514                 int err = -EFAULT;
3515
3516                 if (!user_access_begin(st, sizeof(*st)))
3517                         return;
3518
3519                 asm volatile("1: xchgb %0, %2\n"
3520                              "xor %1, %1\n"
3521                              "2:\n"
3522                              _ASM_EXTABLE_UA(1b, 2b)
3523                              : "+q" (st_preempted),
3524                                "+&r" (err),
3525                                "+m" (st->preempted));
3526                 if (err)
3527                         goto out;
3528
3529                 user_access_end();
3530
3531                 vcpu->arch.st.preempted = 0;
3532
3533                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3534                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3535                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3536                         kvm_vcpu_flush_tlb_guest(vcpu);
3537
3538                 if (!user_access_begin(st, sizeof(*st)))
3539                         goto dirty;
3540         } else {
3541                 if (!user_access_begin(st, sizeof(*st)))
3542                         return;
3543
3544                 unsafe_put_user(0, &st->preempted, out);
3545                 vcpu->arch.st.preempted = 0;
3546         }
3547
3548         unsafe_get_user(version, &st->version, out);
3549         if (version & 1)
3550                 version += 1;  /* first time write, random junk */
3551
3552         version += 1;
3553         unsafe_put_user(version, &st->version, out);
3554
3555         smp_wmb();
3556
3557         unsafe_get_user(steal, &st->steal, out);
3558         steal += current->sched_info.run_delay -
3559                 vcpu->arch.st.last_steal;
3560         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3561         unsafe_put_user(steal, &st->steal, out);
3562
3563         version += 1;
3564         unsafe_put_user(version, &st->version, out);
3565
3566  out:
3567         user_access_end();
3568  dirty:
3569         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3570 }
3571
3572 static bool kvm_is_msr_to_save(u32 msr_index)
3573 {
3574         unsigned int i;
3575
3576         for (i = 0; i < num_msrs_to_save; i++) {
3577                 if (msrs_to_save[i] == msr_index)
3578                         return true;
3579         }
3580
3581         return false;
3582 }
3583
3584 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3585 {
3586         u32 msr = msr_info->index;
3587         u64 data = msr_info->data;
3588
3589         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3590                 return kvm_xen_write_hypercall_page(vcpu, data);
3591
3592         switch (msr) {
3593         case MSR_AMD64_NB_CFG:
3594         case MSR_IA32_UCODE_WRITE:
3595         case MSR_VM_HSAVE_PA:
3596         case MSR_AMD64_PATCH_LOADER:
3597         case MSR_AMD64_BU_CFG2:
3598         case MSR_AMD64_DC_CFG:
3599         case MSR_F15H_EX_CFG:
3600                 break;
3601
3602         case MSR_IA32_UCODE_REV:
3603                 if (msr_info->host_initiated)
3604                         vcpu->arch.microcode_version = data;
3605                 break;
3606         case MSR_IA32_ARCH_CAPABILITIES:
3607                 if (!msr_info->host_initiated)
3608                         return 1;
3609                 vcpu->arch.arch_capabilities = data;
3610                 break;
3611         case MSR_IA32_PERF_CAPABILITIES:
3612                 if (!msr_info->host_initiated)
3613                         return 1;
3614                 if (data & ~kvm_caps.supported_perf_cap)
3615                         return 1;
3616
3617                 vcpu->arch.perf_capabilities = data;
3618                 kvm_pmu_refresh(vcpu);
3619                 return 0;
3620         case MSR_EFER:
3621                 return set_efer(vcpu, msr_info);
3622         case MSR_K7_HWCR:
3623                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3624                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3625                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3626
3627                 /* Handle McStatusWrEn */
3628                 if (data == BIT_ULL(18)) {
3629                         vcpu->arch.msr_hwcr = data;
3630                 } else if (data != 0) {
3631                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3632                         return 1;
3633                 }
3634                 break;
3635         case MSR_FAM10H_MMIO_CONF_BASE:
3636                 if (data != 0) {
3637                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3638                         return 1;
3639                 }
3640                 break;
3641         case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3642         case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3643                 return kvm_mtrr_set_msr(vcpu, msr, data);
3644         case MSR_IA32_APICBASE:
3645                 return kvm_set_apic_base(vcpu, msr_info);
3646         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3647                 return kvm_x2apic_msr_write(vcpu, msr, data);
3648         case MSR_IA32_TSC_DEADLINE:
3649                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3650                 break;
3651         case MSR_IA32_TSC_ADJUST:
3652                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3653                         if (!msr_info->host_initiated) {
3654                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3655                                 adjust_tsc_offset_guest(vcpu, adj);
3656                                 /* Before back to guest, tsc_timestamp must be adjusted
3657                                  * as well, otherwise guest's percpu pvclock time could jump.
3658                                  */
3659                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3660                         }
3661                         vcpu->arch.ia32_tsc_adjust_msr = data;
3662                 }
3663                 break;
3664         case MSR_IA32_MISC_ENABLE: {
3665                 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3666
3667                 if (!msr_info->host_initiated) {
3668                         /* RO bits */
3669                         if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3670                                 return 1;
3671
3672                         /* R bits, i.e. writes are ignored, but don't fault. */
3673                         data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3674                         data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3675                 }
3676
3677                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3678                     ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3679                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3680                                 return 1;
3681                         vcpu->arch.ia32_misc_enable_msr = data;
3682                         kvm_update_cpuid_runtime(vcpu);
3683                 } else {
3684                         vcpu->arch.ia32_misc_enable_msr = data;
3685                 }
3686                 break;
3687         }
3688         case MSR_IA32_SMBASE:
3689                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3690                         return 1;
3691                 vcpu->arch.smbase = data;
3692                 break;
3693         case MSR_IA32_POWER_CTL:
3694                 vcpu->arch.msr_ia32_power_ctl = data;
3695                 break;
3696         case MSR_IA32_TSC:
3697                 if (msr_info->host_initiated) {
3698                         kvm_synchronize_tsc(vcpu, data);
3699                 } else {
3700                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3701                         adjust_tsc_offset_guest(vcpu, adj);
3702                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3703                 }
3704                 break;
3705         case MSR_IA32_XSS:
3706                 if (!msr_info->host_initiated &&
3707                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3708                         return 1;
3709                 /*
3710                  * KVM supports exposing PT to the guest, but does not support
3711                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3712                  * XSAVES/XRSTORS to save/restore PT MSRs.
3713                  */
3714                 if (data & ~kvm_caps.supported_xss)
3715                         return 1;
3716                 vcpu->arch.ia32_xss = data;
3717                 kvm_update_cpuid_runtime(vcpu);
3718                 break;
3719         case MSR_SMI_COUNT:
3720                 if (!msr_info->host_initiated)
3721                         return 1;
3722                 vcpu->arch.smi_count = data;
3723                 break;
3724         case MSR_KVM_WALL_CLOCK_NEW:
3725                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3726                         return 1;
3727
3728                 vcpu->kvm->arch.wall_clock = data;
3729                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3730                 break;
3731         case MSR_KVM_WALL_CLOCK:
3732                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3733                         return 1;
3734
3735                 vcpu->kvm->arch.wall_clock = data;
3736                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3737                 break;
3738         case MSR_KVM_SYSTEM_TIME_NEW:
3739                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3740                         return 1;
3741
3742                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3743                 break;
3744         case MSR_KVM_SYSTEM_TIME:
3745                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3746                         return 1;
3747
3748                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3749                 break;
3750         case MSR_KVM_ASYNC_PF_EN:
3751                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3752                         return 1;
3753
3754                 if (kvm_pv_enable_async_pf(vcpu, data))
3755                         return 1;
3756                 break;
3757         case MSR_KVM_ASYNC_PF_INT:
3758                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3759                         return 1;
3760
3761                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3762                         return 1;
3763                 break;
3764         case MSR_KVM_ASYNC_PF_ACK:
3765                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3766                         return 1;
3767                 if (data & 0x1) {
3768                         vcpu->arch.apf.pageready_pending = false;
3769                         kvm_check_async_pf_completion(vcpu);
3770                 }
3771                 break;
3772         case MSR_KVM_STEAL_TIME:
3773                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3774                         return 1;
3775
3776                 if (unlikely(!sched_info_on()))
3777                         return 1;
3778
3779                 if (data & KVM_STEAL_RESERVED_MASK)
3780                         return 1;
3781
3782                 vcpu->arch.st.msr_val = data;
3783
3784                 if (!(data & KVM_MSR_ENABLED))
3785                         break;
3786
3787                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3788
3789                 break;
3790         case MSR_KVM_PV_EOI_EN:
3791                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3792                         return 1;
3793
3794                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3795                         return 1;
3796                 break;
3797
3798         case MSR_KVM_POLL_CONTROL:
3799                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3800                         return 1;
3801
3802                 /* only enable bit supported */
3803                 if (data & (-1ULL << 1))
3804                         return 1;
3805
3806                 vcpu->arch.msr_kvm_poll_control = data;
3807                 break;
3808
3809         case MSR_IA32_MCG_CTL:
3810         case MSR_IA32_MCG_STATUS:
3811         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3812         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3813                 return set_msr_mce(vcpu, msr_info);
3814
3815         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3816         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3817         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3818         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3819                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3820                         return kvm_pmu_set_msr(vcpu, msr_info);
3821
3822                 if (data)
3823                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3824                 break;
3825         case MSR_K7_CLK_CTL:
3826                 /*
3827                  * Ignore all writes to this no longer documented MSR.
3828                  * Writes are only relevant for old K7 processors,
3829                  * all pre-dating SVM, but a recommended workaround from
3830                  * AMD for these chips. It is possible to specify the
3831                  * affected processor models on the command line, hence
3832                  * the need to ignore the workaround.
3833                  */
3834                 break;
3835         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3836         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3837         case HV_X64_MSR_SYNDBG_OPTIONS:
3838         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3839         case HV_X64_MSR_CRASH_CTL:
3840         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3841         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3842         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3843         case HV_X64_MSR_TSC_EMULATION_STATUS:
3844         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3845                 return kvm_hv_set_msr_common(vcpu, msr, data,
3846                                              msr_info->host_initiated);
3847         case MSR_IA32_BBL_CR_CTL3:
3848                 /* Drop writes to this legacy MSR -- see rdmsr
3849                  * counterpart for further detail.
3850                  */
3851                 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3852                 break;
3853         case MSR_AMD64_OSVW_ID_LENGTH:
3854                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3855                         return 1;
3856                 vcpu->arch.osvw.length = data;
3857                 break;
3858         case MSR_AMD64_OSVW_STATUS:
3859                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3860                         return 1;
3861                 vcpu->arch.osvw.status = data;
3862                 break;
3863         case MSR_PLATFORM_INFO:
3864                 if (!msr_info->host_initiated ||
3865                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3866                      cpuid_fault_enabled(vcpu)))
3867                         return 1;
3868                 vcpu->arch.msr_platform_info = data;
3869                 break;
3870         case MSR_MISC_FEATURES_ENABLES:
3871                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3872                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3873                      !supports_cpuid_fault(vcpu)))
3874                         return 1;
3875                 vcpu->arch.msr_misc_features_enables = data;
3876                 break;
3877 #ifdef CONFIG_X86_64
3878         case MSR_IA32_XFD:
3879                 if (!msr_info->host_initiated &&
3880                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3881                         return 1;
3882
3883                 if (data & ~kvm_guest_supported_xfd(vcpu))
3884                         return 1;
3885
3886                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3887                 break;
3888         case MSR_IA32_XFD_ERR:
3889                 if (!msr_info->host_initiated &&
3890                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3891                         return 1;
3892
3893                 if (data & ~kvm_guest_supported_xfd(vcpu))
3894                         return 1;
3895
3896                 vcpu->arch.guest_fpu.xfd_err = data;
3897                 break;
3898 #endif
3899         default:
3900                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3901                         return kvm_pmu_set_msr(vcpu, msr_info);
3902
3903                 /*
3904                  * Userspace is allowed to write '0' to MSRs that KVM reports
3905                  * as to-be-saved, even if an MSRs isn't fully supported.
3906                  */
3907                 if (msr_info->host_initiated && !data &&
3908                     kvm_is_msr_to_save(msr))
3909                         break;
3910
3911                 return KVM_MSR_RET_INVALID;
3912         }
3913         return 0;
3914 }
3915 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3916
3917 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3918 {
3919         u64 data;
3920         u64 mcg_cap = vcpu->arch.mcg_cap;
3921         unsigned bank_num = mcg_cap & 0xff;
3922         u32 offset, last_msr;
3923
3924         switch (msr) {
3925         case MSR_IA32_P5_MC_ADDR:
3926         case MSR_IA32_P5_MC_TYPE:
3927                 data = 0;
3928                 break;
3929         case MSR_IA32_MCG_CAP:
3930                 data = vcpu->arch.mcg_cap;
3931                 break;
3932         case MSR_IA32_MCG_CTL:
3933                 if (!(mcg_cap & MCG_CTL_P) && !host)
3934                         return 1;
3935                 data = vcpu->arch.mcg_ctl;
3936                 break;
3937         case MSR_IA32_MCG_STATUS:
3938                 data = vcpu->arch.mcg_status;
3939                 break;
3940         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3941                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3942                 if (msr > last_msr)
3943                         return 1;
3944
3945                 if (!(mcg_cap & MCG_CMCI_P) && !host)
3946                         return 1;
3947                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3948                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
3949                 data = vcpu->arch.mci_ctl2_banks[offset];
3950                 break;
3951         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3952                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3953                 if (msr > last_msr)
3954                         return 1;
3955
3956                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3957                                             last_msr + 1 - MSR_IA32_MC0_CTL);
3958                 data = vcpu->arch.mce_banks[offset];
3959                 break;
3960         default:
3961                 return 1;
3962         }
3963         *pdata = data;
3964         return 0;
3965 }
3966
3967 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3968 {
3969         switch (msr_info->index) {
3970         case MSR_IA32_PLATFORM_ID:
3971         case MSR_IA32_EBL_CR_POWERON:
3972         case MSR_IA32_LASTBRANCHFROMIP:
3973         case MSR_IA32_LASTBRANCHTOIP:
3974         case MSR_IA32_LASTINTFROMIP:
3975         case MSR_IA32_LASTINTTOIP:
3976         case MSR_AMD64_SYSCFG:
3977         case MSR_K8_TSEG_ADDR:
3978         case MSR_K8_TSEG_MASK:
3979         case MSR_VM_HSAVE_PA:
3980         case MSR_K8_INT_PENDING_MSG:
3981         case MSR_AMD64_NB_CFG:
3982         case MSR_FAM10H_MMIO_CONF_BASE:
3983         case MSR_AMD64_BU_CFG2:
3984         case MSR_IA32_PERF_CTL:
3985         case MSR_AMD64_DC_CFG:
3986         case MSR_F15H_EX_CFG:
3987         /*
3988          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3989          * limit) MSRs. Just return 0, as we do not want to expose the host
3990          * data here. Do not conditionalize this on CPUID, as KVM does not do
3991          * so for existing CPU-specific MSRs.
3992          */
3993         case MSR_RAPL_POWER_UNIT:
3994         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3995         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3996         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3997         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3998                 msr_info->data = 0;
3999                 break;
4000         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4001         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4002         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4003         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4004                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4005                         return kvm_pmu_get_msr(vcpu, msr_info);
4006                 msr_info->data = 0;
4007                 break;
4008         case MSR_IA32_UCODE_REV:
4009                 msr_info->data = vcpu->arch.microcode_version;
4010                 break;
4011         case MSR_IA32_ARCH_CAPABILITIES:
4012                 if (!msr_info->host_initiated &&
4013                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4014                         return 1;
4015                 msr_info->data = vcpu->arch.arch_capabilities;
4016                 break;
4017         case MSR_IA32_PERF_CAPABILITIES:
4018                 if (!msr_info->host_initiated &&
4019                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4020                         return 1;
4021                 msr_info->data = vcpu->arch.perf_capabilities;
4022                 break;
4023         case MSR_IA32_POWER_CTL:
4024                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4025                 break;
4026         case MSR_IA32_TSC: {
4027                 /*
4028                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4029                  * even when not intercepted. AMD manual doesn't explicitly
4030                  * state this but appears to behave the same.
4031                  *
4032                  * On userspace reads and writes, however, we unconditionally
4033                  * return L1's TSC value to ensure backwards-compatible
4034                  * behavior for migration.
4035                  */
4036                 u64 offset, ratio;
4037
4038                 if (msr_info->host_initiated) {
4039                         offset = vcpu->arch.l1_tsc_offset;
4040                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
4041                 } else {
4042                         offset = vcpu->arch.tsc_offset;
4043                         ratio = vcpu->arch.tsc_scaling_ratio;
4044                 }
4045
4046                 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4047                 break;
4048         }
4049         case MSR_MTRRcap:
4050         case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4051         case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4052                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4053         case 0xcd: /* fsb frequency */
4054                 msr_info->data = 3;
4055                 break;
4056                 /*
4057                  * MSR_EBC_FREQUENCY_ID
4058                  * Conservative value valid for even the basic CPU models.
4059                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4060                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4061                  * and 266MHz for model 3, or 4. Set Core Clock
4062                  * Frequency to System Bus Frequency Ratio to 1 (bits
4063                  * 31:24) even though these are only valid for CPU
4064                  * models > 2, however guests may end up dividing or
4065                  * multiplying by zero otherwise.
4066                  */
4067         case MSR_EBC_FREQUENCY_ID:
4068                 msr_info->data = 1 << 24;
4069                 break;
4070         case MSR_IA32_APICBASE:
4071                 msr_info->data = kvm_get_apic_base(vcpu);
4072                 break;
4073         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4074                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4075         case MSR_IA32_TSC_DEADLINE:
4076                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4077                 break;
4078         case MSR_IA32_TSC_ADJUST:
4079                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4080                 break;
4081         case MSR_IA32_MISC_ENABLE:
4082                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4083                 break;
4084         case MSR_IA32_SMBASE:
4085                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4086                         return 1;
4087                 msr_info->data = vcpu->arch.smbase;
4088                 break;
4089         case MSR_SMI_COUNT:
4090                 msr_info->data = vcpu->arch.smi_count;
4091                 break;
4092         case MSR_IA32_PERF_STATUS:
4093                 /* TSC increment by tick */
4094                 msr_info->data = 1000ULL;
4095                 /* CPU multiplier */
4096                 msr_info->data |= (((uint64_t)4ULL) << 40);
4097                 break;
4098         case MSR_EFER:
4099                 msr_info->data = vcpu->arch.efer;
4100                 break;
4101         case MSR_KVM_WALL_CLOCK:
4102                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4103                         return 1;
4104
4105                 msr_info->data = vcpu->kvm->arch.wall_clock;
4106                 break;
4107         case MSR_KVM_WALL_CLOCK_NEW:
4108                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4109                         return 1;
4110
4111                 msr_info->data = vcpu->kvm->arch.wall_clock;
4112                 break;
4113         case MSR_KVM_SYSTEM_TIME:
4114                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4115                         return 1;
4116
4117                 msr_info->data = vcpu->arch.time;
4118                 break;
4119         case MSR_KVM_SYSTEM_TIME_NEW:
4120                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4121                         return 1;
4122
4123                 msr_info->data = vcpu->arch.time;
4124                 break;
4125         case MSR_KVM_ASYNC_PF_EN:
4126                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4127                         return 1;
4128
4129                 msr_info->data = vcpu->arch.apf.msr_en_val;
4130                 break;
4131         case MSR_KVM_ASYNC_PF_INT:
4132                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4133                         return 1;
4134
4135                 msr_info->data = vcpu->arch.apf.msr_int_val;
4136                 break;
4137         case MSR_KVM_ASYNC_PF_ACK:
4138                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4139                         return 1;
4140
4141                 msr_info->data = 0;
4142                 break;
4143         case MSR_KVM_STEAL_TIME:
4144                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4145                         return 1;
4146
4147                 msr_info->data = vcpu->arch.st.msr_val;
4148                 break;
4149         case MSR_KVM_PV_EOI_EN:
4150                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4151                         return 1;
4152
4153                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4154                 break;
4155         case MSR_KVM_POLL_CONTROL:
4156                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4157                         return 1;
4158
4159                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4160                 break;
4161         case MSR_IA32_P5_MC_ADDR:
4162         case MSR_IA32_P5_MC_TYPE:
4163         case MSR_IA32_MCG_CAP:
4164         case MSR_IA32_MCG_CTL:
4165         case MSR_IA32_MCG_STATUS:
4166         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4167         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4168                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4169                                    msr_info->host_initiated);
4170         case MSR_IA32_XSS:
4171                 if (!msr_info->host_initiated &&
4172                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4173                         return 1;
4174                 msr_info->data = vcpu->arch.ia32_xss;
4175                 break;
4176         case MSR_K7_CLK_CTL:
4177                 /*
4178                  * Provide expected ramp-up count for K7. All other
4179                  * are set to zero, indicating minimum divisors for
4180                  * every field.
4181                  *
4182                  * This prevents guest kernels on AMD host with CPU
4183                  * type 6, model 8 and higher from exploding due to
4184                  * the rdmsr failing.
4185                  */
4186                 msr_info->data = 0x20000000;
4187                 break;
4188         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4189         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4190         case HV_X64_MSR_SYNDBG_OPTIONS:
4191         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4192         case HV_X64_MSR_CRASH_CTL:
4193         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4194         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4195         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4196         case HV_X64_MSR_TSC_EMULATION_STATUS:
4197         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4198                 return kvm_hv_get_msr_common(vcpu,
4199                                              msr_info->index, &msr_info->data,
4200                                              msr_info->host_initiated);
4201         case MSR_IA32_BBL_CR_CTL3:
4202                 /* This legacy MSR exists but isn't fully documented in current
4203                  * silicon.  It is however accessed by winxp in very narrow
4204                  * scenarios where it sets bit #19, itself documented as
4205                  * a "reserved" bit.  Best effort attempt to source coherent
4206                  * read data here should the balance of the register be
4207                  * interpreted by the guest:
4208                  *
4209                  * L2 cache control register 3: 64GB range, 256KB size,
4210                  * enabled, latency 0x1, configured
4211                  */
4212                 msr_info->data = 0xbe702111;
4213                 break;
4214         case MSR_AMD64_OSVW_ID_LENGTH:
4215                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4216                         return 1;
4217                 msr_info->data = vcpu->arch.osvw.length;
4218                 break;
4219         case MSR_AMD64_OSVW_STATUS:
4220                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4221                         return 1;
4222                 msr_info->data = vcpu->arch.osvw.status;
4223                 break;
4224         case MSR_PLATFORM_INFO:
4225                 if (!msr_info->host_initiated &&
4226                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4227                         return 1;
4228                 msr_info->data = vcpu->arch.msr_platform_info;
4229                 break;
4230         case MSR_MISC_FEATURES_ENABLES:
4231                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4232                 break;
4233         case MSR_K7_HWCR:
4234                 msr_info->data = vcpu->arch.msr_hwcr;
4235                 break;
4236 #ifdef CONFIG_X86_64
4237         case MSR_IA32_XFD:
4238                 if (!msr_info->host_initiated &&
4239                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4240                         return 1;
4241
4242                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4243                 break;
4244         case MSR_IA32_XFD_ERR:
4245                 if (!msr_info->host_initiated &&
4246                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4247                         return 1;
4248
4249                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4250                 break;
4251 #endif
4252         default:
4253                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4254                         return kvm_pmu_get_msr(vcpu, msr_info);
4255
4256                 /*
4257                  * Userspace is allowed to read MSRs that KVM reports as
4258                  * to-be-saved, even if an MSR isn't fully supported.
4259                  */
4260                 if (msr_info->host_initiated &&
4261                     kvm_is_msr_to_save(msr_info->index)) {
4262                         msr_info->data = 0;
4263                         break;
4264                 }
4265
4266                 return KVM_MSR_RET_INVALID;
4267         }
4268         return 0;
4269 }
4270 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4271
4272 /*
4273  * Read or write a bunch of msrs. All parameters are kernel addresses.
4274  *
4275  * @return number of msrs set successfully.
4276  */
4277 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4278                     struct kvm_msr_entry *entries,
4279                     int (*do_msr)(struct kvm_vcpu *vcpu,
4280                                   unsigned index, u64 *data))
4281 {
4282         int i;
4283
4284         for (i = 0; i < msrs->nmsrs; ++i)
4285                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4286                         break;
4287
4288         return i;
4289 }
4290
4291 /*
4292  * Read or write a bunch of msrs. Parameters are user addresses.
4293  *
4294  * @return number of msrs set successfully.
4295  */
4296 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4297                   int (*do_msr)(struct kvm_vcpu *vcpu,
4298                                 unsigned index, u64 *data),
4299                   int writeback)
4300 {
4301         struct kvm_msrs msrs;
4302         struct kvm_msr_entry *entries;
4303         unsigned size;
4304         int r;
4305
4306         r = -EFAULT;
4307         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4308                 goto out;
4309
4310         r = -E2BIG;
4311         if (msrs.nmsrs >= MAX_IO_MSRS)
4312                 goto out;
4313
4314         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4315         entries = memdup_user(user_msrs->entries, size);
4316         if (IS_ERR(entries)) {
4317                 r = PTR_ERR(entries);
4318                 goto out;
4319         }
4320
4321         r = __msr_io(vcpu, &msrs, entries, do_msr);
4322
4323         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4324                 r = -EFAULT;
4325
4326         kfree(entries);
4327 out:
4328         return r;
4329 }
4330
4331 static inline bool kvm_can_mwait_in_guest(void)
4332 {
4333         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4334                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4335                 boot_cpu_has(X86_FEATURE_ARAT);
4336 }
4337
4338 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4339                                             struct kvm_cpuid2 __user *cpuid_arg)
4340 {
4341         struct kvm_cpuid2 cpuid;
4342         int r;
4343
4344         r = -EFAULT;
4345         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4346                 return r;
4347
4348         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4349         if (r)
4350                 return r;
4351
4352         r = -EFAULT;
4353         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4354                 return r;
4355
4356         return 0;
4357 }
4358
4359 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4360 {
4361         int r = 0;
4362
4363         switch (ext) {
4364         case KVM_CAP_IRQCHIP:
4365         case KVM_CAP_HLT:
4366         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4367         case KVM_CAP_SET_TSS_ADDR:
4368         case KVM_CAP_EXT_CPUID:
4369         case KVM_CAP_EXT_EMUL_CPUID:
4370         case KVM_CAP_CLOCKSOURCE:
4371         case KVM_CAP_PIT:
4372         case KVM_CAP_NOP_IO_DELAY:
4373         case KVM_CAP_MP_STATE:
4374         case KVM_CAP_SYNC_MMU:
4375         case KVM_CAP_USER_NMI:
4376         case KVM_CAP_REINJECT_CONTROL:
4377         case KVM_CAP_IRQ_INJECT_STATUS:
4378         case KVM_CAP_IOEVENTFD:
4379         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4380         case KVM_CAP_PIT2:
4381         case KVM_CAP_PIT_STATE2:
4382         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4383         case KVM_CAP_VCPU_EVENTS:
4384         case KVM_CAP_HYPERV:
4385         case KVM_CAP_HYPERV_VAPIC:
4386         case KVM_CAP_HYPERV_SPIN:
4387         case KVM_CAP_HYPERV_SYNIC:
4388         case KVM_CAP_HYPERV_SYNIC2:
4389         case KVM_CAP_HYPERV_VP_INDEX:
4390         case KVM_CAP_HYPERV_EVENTFD:
4391         case KVM_CAP_HYPERV_TLBFLUSH:
4392         case KVM_CAP_HYPERV_SEND_IPI:
4393         case KVM_CAP_HYPERV_CPUID:
4394         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4395         case KVM_CAP_SYS_HYPERV_CPUID:
4396         case KVM_CAP_PCI_SEGMENT:
4397         case KVM_CAP_DEBUGREGS:
4398         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4399         case KVM_CAP_XSAVE:
4400         case KVM_CAP_ASYNC_PF:
4401         case KVM_CAP_ASYNC_PF_INT:
4402         case KVM_CAP_GET_TSC_KHZ:
4403         case KVM_CAP_KVMCLOCK_CTRL:
4404         case KVM_CAP_READONLY_MEM:
4405         case KVM_CAP_HYPERV_TIME:
4406         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4407         case KVM_CAP_TSC_DEADLINE_TIMER:
4408         case KVM_CAP_DISABLE_QUIRKS:
4409         case KVM_CAP_SET_BOOT_CPU_ID:
4410         case KVM_CAP_SPLIT_IRQCHIP:
4411         case KVM_CAP_IMMEDIATE_EXIT:
4412         case KVM_CAP_PMU_EVENT_FILTER:
4413         case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4414         case KVM_CAP_GET_MSR_FEATURES:
4415         case KVM_CAP_MSR_PLATFORM_INFO:
4416         case KVM_CAP_EXCEPTION_PAYLOAD:
4417         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4418         case KVM_CAP_SET_GUEST_DEBUG:
4419         case KVM_CAP_LAST_CPU:
4420         case KVM_CAP_X86_USER_SPACE_MSR:
4421         case KVM_CAP_X86_MSR_FILTER:
4422         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4423 #ifdef CONFIG_X86_SGX_KVM
4424         case KVM_CAP_SGX_ATTRIBUTE:
4425 #endif
4426         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4427         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4428         case KVM_CAP_SREGS2:
4429         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4430         case KVM_CAP_VCPU_ATTRIBUTES:
4431         case KVM_CAP_SYS_ATTRIBUTES:
4432         case KVM_CAP_VAPIC:
4433         case KVM_CAP_ENABLE_CAP:
4434         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4435                 r = 1;
4436                 break;
4437         case KVM_CAP_EXIT_HYPERCALL:
4438                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4439                 break;
4440         case KVM_CAP_SET_GUEST_DEBUG2:
4441                 return KVM_GUESTDBG_VALID_MASK;
4442 #ifdef CONFIG_KVM_XEN
4443         case KVM_CAP_XEN_HVM:
4444                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4445                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4446                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4447                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4448                     KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4449                 if (sched_info_on())
4450                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4451                              KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4452                 break;
4453 #endif
4454         case KVM_CAP_SYNC_REGS:
4455                 r = KVM_SYNC_X86_VALID_FIELDS;
4456                 break;
4457         case KVM_CAP_ADJUST_CLOCK:
4458                 r = KVM_CLOCK_VALID_FLAGS;
4459                 break;
4460         case KVM_CAP_X86_DISABLE_EXITS:
4461                 r = KVM_X86_DISABLE_EXITS_PAUSE;
4462
4463                 if (!mitigate_smt_rsb) {
4464                         r |= KVM_X86_DISABLE_EXITS_HLT |
4465                              KVM_X86_DISABLE_EXITS_CSTATE;
4466
4467                         if (kvm_can_mwait_in_guest())
4468                                 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4469                 }
4470                 break;
4471         case KVM_CAP_X86_SMM:
4472                 if (!IS_ENABLED(CONFIG_KVM_SMM))
4473                         break;
4474
4475                 /* SMBASE is usually relocated above 1M on modern chipsets,
4476                  * and SMM handlers might indeed rely on 4G segment limits,
4477                  * so do not report SMM to be available if real mode is
4478                  * emulated via vm86 mode.  Still, do not go to great lengths
4479                  * to avoid userspace's usage of the feature, because it is a
4480                  * fringe case that is not enabled except via specific settings
4481                  * of the module parameters.
4482                  */
4483                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4484                 break;
4485         case KVM_CAP_NR_VCPUS:
4486                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4487                 break;
4488         case KVM_CAP_MAX_VCPUS:
4489                 r = KVM_MAX_VCPUS;
4490                 break;
4491         case KVM_CAP_MAX_VCPU_ID:
4492                 r = KVM_MAX_VCPU_IDS;
4493                 break;
4494         case KVM_CAP_PV_MMU:    /* obsolete */
4495                 r = 0;
4496                 break;
4497         case KVM_CAP_MCE:
4498                 r = KVM_MAX_MCE_BANKS;
4499                 break;
4500         case KVM_CAP_XCRS:
4501                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4502                 break;
4503         case KVM_CAP_TSC_CONTROL:
4504         case KVM_CAP_VM_TSC_CONTROL:
4505                 r = kvm_caps.has_tsc_control;
4506                 break;
4507         case KVM_CAP_X2APIC_API:
4508                 r = KVM_X2APIC_API_VALID_FLAGS;
4509                 break;
4510         case KVM_CAP_NESTED_STATE:
4511                 r = kvm_x86_ops.nested_ops->get_state ?
4512                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4513                 break;
4514         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4515                 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4516                 break;
4517         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4518                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4519                 break;
4520         case KVM_CAP_SMALLER_MAXPHYADDR:
4521                 r = (int) allow_smaller_maxphyaddr;
4522                 break;
4523         case KVM_CAP_STEAL_TIME:
4524                 r = sched_info_on();
4525                 break;
4526         case KVM_CAP_X86_BUS_LOCK_EXIT:
4527                 if (kvm_caps.has_bus_lock_exit)
4528                         r = KVM_BUS_LOCK_DETECTION_OFF |
4529                             KVM_BUS_LOCK_DETECTION_EXIT;
4530                 else
4531                         r = 0;
4532                 break;
4533         case KVM_CAP_XSAVE2: {
4534                 u64 guest_perm = xstate_get_guest_group_perm();
4535
4536                 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4537                 if (r < sizeof(struct kvm_xsave))
4538                         r = sizeof(struct kvm_xsave);
4539                 break;
4540         }
4541         case KVM_CAP_PMU_CAPABILITY:
4542                 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4543                 break;
4544         case KVM_CAP_DISABLE_QUIRKS2:
4545                 r = KVM_X86_VALID_QUIRKS;
4546                 break;
4547         case KVM_CAP_X86_NOTIFY_VMEXIT:
4548                 r = kvm_caps.has_notify_vmexit;
4549                 break;
4550         default:
4551                 break;
4552         }
4553         return r;
4554 }
4555
4556 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4557 {
4558         void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4559
4560         if ((u64)(unsigned long)uaddr != attr->addr)
4561                 return ERR_PTR_USR(-EFAULT);
4562         return uaddr;
4563 }
4564
4565 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4566 {
4567         u64 __user *uaddr = kvm_get_attr_addr(attr);
4568
4569         if (attr->group)
4570                 return -ENXIO;
4571
4572         if (IS_ERR(uaddr))
4573                 return PTR_ERR(uaddr);
4574
4575         switch (attr->attr) {
4576         case KVM_X86_XCOMP_GUEST_SUPP:
4577                 if (put_user(kvm_caps.supported_xcr0, uaddr))
4578                         return -EFAULT;
4579                 return 0;
4580         default:
4581                 return -ENXIO;
4582                 break;
4583         }
4584 }
4585
4586 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4587 {
4588         if (attr->group)
4589                 return -ENXIO;
4590
4591         switch (attr->attr) {
4592         case KVM_X86_XCOMP_GUEST_SUPP:
4593                 return 0;
4594         default:
4595                 return -ENXIO;
4596         }
4597 }
4598
4599 long kvm_arch_dev_ioctl(struct file *filp,
4600                         unsigned int ioctl, unsigned long arg)
4601 {
4602         void __user *argp = (void __user *)arg;
4603         long r;
4604
4605         switch (ioctl) {
4606         case KVM_GET_MSR_INDEX_LIST: {
4607                 struct kvm_msr_list __user *user_msr_list = argp;
4608                 struct kvm_msr_list msr_list;
4609                 unsigned n;
4610
4611                 r = -EFAULT;
4612                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4613                         goto out;
4614                 n = msr_list.nmsrs;
4615                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4616                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4617                         goto out;
4618                 r = -E2BIG;
4619                 if (n < msr_list.nmsrs)
4620                         goto out;
4621                 r = -EFAULT;
4622                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4623                                  num_msrs_to_save * sizeof(u32)))
4624                         goto out;
4625                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4626                                  &emulated_msrs,
4627                                  num_emulated_msrs * sizeof(u32)))
4628                         goto out;
4629                 r = 0;
4630                 break;
4631         }
4632         case KVM_GET_SUPPORTED_CPUID:
4633         case KVM_GET_EMULATED_CPUID: {
4634                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4635                 struct kvm_cpuid2 cpuid;
4636
4637                 r = -EFAULT;
4638                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4639                         goto out;
4640
4641                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4642                                             ioctl);
4643                 if (r)
4644                         goto out;
4645
4646                 r = -EFAULT;
4647                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4648                         goto out;
4649                 r = 0;
4650                 break;
4651         }
4652         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4653                 r = -EFAULT;
4654                 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4655                                  sizeof(kvm_caps.supported_mce_cap)))
4656                         goto out;
4657                 r = 0;
4658                 break;
4659         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4660                 struct kvm_msr_list __user *user_msr_list = argp;
4661                 struct kvm_msr_list msr_list;
4662                 unsigned int n;
4663
4664                 r = -EFAULT;
4665                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4666                         goto out;
4667                 n = msr_list.nmsrs;
4668                 msr_list.nmsrs = num_msr_based_features;
4669                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4670                         goto out;
4671                 r = -E2BIG;
4672                 if (n < msr_list.nmsrs)
4673                         goto out;
4674                 r = -EFAULT;
4675                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4676                                  num_msr_based_features * sizeof(u32)))
4677                         goto out;
4678                 r = 0;
4679                 break;
4680         }
4681         case KVM_GET_MSRS:
4682                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4683                 break;
4684         case KVM_GET_SUPPORTED_HV_CPUID:
4685                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4686                 break;
4687         case KVM_GET_DEVICE_ATTR: {
4688                 struct kvm_device_attr attr;
4689                 r = -EFAULT;
4690                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4691                         break;
4692                 r = kvm_x86_dev_get_attr(&attr);
4693                 break;
4694         }
4695         case KVM_HAS_DEVICE_ATTR: {
4696                 struct kvm_device_attr attr;
4697                 r = -EFAULT;
4698                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4699                         break;
4700                 r = kvm_x86_dev_has_attr(&attr);
4701                 break;
4702         }
4703         default:
4704                 r = -EINVAL;
4705                 break;
4706         }
4707 out:
4708         return r;
4709 }
4710
4711 static void wbinvd_ipi(void *garbage)
4712 {
4713         wbinvd();
4714 }
4715
4716 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4717 {
4718         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4719 }
4720
4721 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4722 {
4723         /* Address WBINVD may be executed by guest */
4724         if (need_emulate_wbinvd(vcpu)) {
4725                 if (static_call(kvm_x86_has_wbinvd_exit)())
4726                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4727                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4728                         smp_call_function_single(vcpu->cpu,
4729                                         wbinvd_ipi, NULL, 1);
4730         }
4731
4732         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4733
4734         /* Save host pkru register if supported */
4735         vcpu->arch.host_pkru = read_pkru();
4736
4737         /* Apply any externally detected TSC adjustments (due to suspend) */
4738         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4739                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4740                 vcpu->arch.tsc_offset_adjustment = 0;
4741                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4742         }
4743
4744         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4745                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4746                                 rdtsc() - vcpu->arch.last_host_tsc;
4747                 if (tsc_delta < 0)
4748                         mark_tsc_unstable("KVM discovered backwards TSC");
4749
4750                 if (kvm_check_tsc_unstable()) {
4751                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4752                                                 vcpu->arch.last_guest_tsc);
4753                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4754                         vcpu->arch.tsc_catchup = 1;
4755                 }
4756
4757                 if (kvm_lapic_hv_timer_in_use(vcpu))
4758                         kvm_lapic_restart_hv_timer(vcpu);
4759
4760                 /*
4761                  * On a host with synchronized TSC, there is no need to update
4762                  * kvmclock on vcpu->cpu migration
4763                  */
4764                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4765                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4766                 if (vcpu->cpu != cpu)
4767                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4768                 vcpu->cpu = cpu;
4769         }
4770
4771         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4772 }
4773
4774 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4775 {
4776         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4777         struct kvm_steal_time __user *st;
4778         struct kvm_memslots *slots;
4779         static const u8 preempted = KVM_VCPU_PREEMPTED;
4780         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4781
4782         /*
4783          * The vCPU can be marked preempted if and only if the VM-Exit was on
4784          * an instruction boundary and will not trigger guest emulation of any
4785          * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4786          * when this is true, for example allowing the vCPU to be marked
4787          * preempted if and only if the VM-Exit was due to a host interrupt.
4788          */
4789         if (!vcpu->arch.at_instruction_boundary) {
4790                 vcpu->stat.preemption_other++;
4791                 return;
4792         }
4793
4794         vcpu->stat.preemption_reported++;
4795         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4796                 return;
4797
4798         if (vcpu->arch.st.preempted)
4799                 return;
4800
4801         /* This happens on process exit */
4802         if (unlikely(current->mm != vcpu->kvm->mm))
4803                 return;
4804
4805         slots = kvm_memslots(vcpu->kvm);
4806
4807         if (unlikely(slots->generation != ghc->generation ||
4808                      gpa != ghc->gpa ||
4809                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4810                 return;
4811
4812         st = (struct kvm_steal_time __user *)ghc->hva;
4813         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4814
4815         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4816                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4817
4818         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4819 }
4820
4821 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4822 {
4823         int idx;
4824
4825         if (vcpu->preempted) {
4826                 if (!vcpu->arch.guest_state_protected)
4827                         vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4828
4829                 /*
4830                  * Take the srcu lock as memslots will be accessed to check the gfn
4831                  * cache generation against the memslots generation.
4832                  */
4833                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4834                 if (kvm_xen_msr_enabled(vcpu->kvm))
4835                         kvm_xen_runstate_set_preempted(vcpu);
4836                 else
4837                         kvm_steal_time_set_preempted(vcpu);
4838                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4839         }
4840
4841         static_call(kvm_x86_vcpu_put)(vcpu);
4842         vcpu->arch.last_host_tsc = rdtsc();
4843 }
4844
4845 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4846                                     struct kvm_lapic_state *s)
4847 {
4848         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4849
4850         return kvm_apic_get_state(vcpu, s);
4851 }
4852
4853 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4854                                     struct kvm_lapic_state *s)
4855 {
4856         int r;
4857
4858         r = kvm_apic_set_state(vcpu, s);
4859         if (r)
4860                 return r;
4861         update_cr8_intercept(vcpu);
4862
4863         return 0;
4864 }
4865
4866 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4867 {
4868         /*
4869          * We can accept userspace's request for interrupt injection
4870          * as long as we have a place to store the interrupt number.
4871          * The actual injection will happen when the CPU is able to
4872          * deliver the interrupt.
4873          */
4874         if (kvm_cpu_has_extint(vcpu))
4875                 return false;
4876
4877         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4878         return (!lapic_in_kernel(vcpu) ||
4879                 kvm_apic_accept_pic_intr(vcpu));
4880 }
4881
4882 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4883 {
4884         /*
4885          * Do not cause an interrupt window exit if an exception
4886          * is pending or an event needs reinjection; userspace
4887          * might want to inject the interrupt manually using KVM_SET_REGS
4888          * or KVM_SET_SREGS.  For that to work, we must be at an
4889          * instruction boundary and with no events half-injected.
4890          */
4891         return (kvm_arch_interrupt_allowed(vcpu) &&
4892                 kvm_cpu_accept_dm_intr(vcpu) &&
4893                 !kvm_event_needs_reinjection(vcpu) &&
4894                 !kvm_is_exception_pending(vcpu));
4895 }
4896
4897 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4898                                     struct kvm_interrupt *irq)
4899 {
4900         if (irq->irq >= KVM_NR_INTERRUPTS)
4901                 return -EINVAL;
4902
4903         if (!irqchip_in_kernel(vcpu->kvm)) {
4904                 kvm_queue_interrupt(vcpu, irq->irq, false);
4905                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4906                 return 0;
4907         }
4908
4909         /*
4910          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4911          * fail for in-kernel 8259.
4912          */
4913         if (pic_in_kernel(vcpu->kvm))
4914                 return -ENXIO;
4915
4916         if (vcpu->arch.pending_external_vector != -1)
4917                 return -EEXIST;
4918
4919         vcpu->arch.pending_external_vector = irq->irq;
4920         kvm_make_request(KVM_REQ_EVENT, vcpu);
4921         return 0;
4922 }
4923
4924 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4925 {
4926         kvm_inject_nmi(vcpu);
4927
4928         return 0;
4929 }
4930
4931 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4932                                            struct kvm_tpr_access_ctl *tac)
4933 {
4934         if (tac->flags)
4935                 return -EINVAL;
4936         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4937         return 0;
4938 }
4939
4940 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4941                                         u64 mcg_cap)
4942 {
4943         int r;
4944         unsigned bank_num = mcg_cap & 0xff, bank;
4945
4946         r = -EINVAL;
4947         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4948                 goto out;
4949         if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4950                 goto out;
4951         r = 0;
4952         vcpu->arch.mcg_cap = mcg_cap;
4953         /* Init IA32_MCG_CTL to all 1s */
4954         if (mcg_cap & MCG_CTL_P)
4955                 vcpu->arch.mcg_ctl = ~(u64)0;
4956         /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4957         for (bank = 0; bank < bank_num; bank++) {
4958                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4959                 if (mcg_cap & MCG_CMCI_P)
4960                         vcpu->arch.mci_ctl2_banks[bank] = 0;
4961         }
4962
4963         kvm_apic_after_set_mcg_cap(vcpu);
4964
4965         static_call(kvm_x86_setup_mce)(vcpu);
4966 out:
4967         return r;
4968 }
4969
4970 /*
4971  * Validate this is an UCNA (uncorrectable no action) error by checking the
4972  * MCG_STATUS and MCi_STATUS registers:
4973  * - none of the bits for Machine Check Exceptions are set
4974  * - both the VAL (valid) and UC (uncorrectable) bits are set
4975  * MCI_STATUS_PCC - Processor Context Corrupted
4976  * MCI_STATUS_S - Signaled as a Machine Check Exception
4977  * MCI_STATUS_AR - Software recoverable Action Required
4978  */
4979 static bool is_ucna(struct kvm_x86_mce *mce)
4980 {
4981         return  !mce->mcg_status &&
4982                 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4983                 (mce->status & MCI_STATUS_VAL) &&
4984                 (mce->status & MCI_STATUS_UC);
4985 }
4986
4987 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4988 {
4989         u64 mcg_cap = vcpu->arch.mcg_cap;
4990
4991         banks[1] = mce->status;
4992         banks[2] = mce->addr;
4993         banks[3] = mce->misc;
4994         vcpu->arch.mcg_status = mce->mcg_status;
4995
4996         if (!(mcg_cap & MCG_CMCI_P) ||
4997             !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4998                 return 0;
4999
5000         if (lapic_in_kernel(vcpu))
5001                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5002
5003         return 0;
5004 }
5005
5006 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5007                                       struct kvm_x86_mce *mce)
5008 {
5009         u64 mcg_cap = vcpu->arch.mcg_cap;
5010         unsigned bank_num = mcg_cap & 0xff;
5011         u64 *banks = vcpu->arch.mce_banks;
5012
5013         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5014                 return -EINVAL;
5015
5016         banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5017
5018         if (is_ucna(mce))
5019                 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5020
5021         /*
5022          * if IA32_MCG_CTL is not all 1s, the uncorrected error
5023          * reporting is disabled
5024          */
5025         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5026             vcpu->arch.mcg_ctl != ~(u64)0)
5027                 return 0;
5028         /*
5029          * if IA32_MCi_CTL is not all 1s, the uncorrected error
5030          * reporting is disabled for the bank
5031          */
5032         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5033                 return 0;
5034         if (mce->status & MCI_STATUS_UC) {
5035                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5036                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
5037                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5038                         return 0;
5039                 }
5040                 if (banks[1] & MCI_STATUS_VAL)
5041                         mce->status |= MCI_STATUS_OVER;
5042                 banks[2] = mce->addr;
5043                 banks[3] = mce->misc;
5044                 vcpu->arch.mcg_status = mce->mcg_status;
5045                 banks[1] = mce->status;
5046                 kvm_queue_exception(vcpu, MC_VECTOR);
5047         } else if (!(banks[1] & MCI_STATUS_VAL)
5048                    || !(banks[1] & MCI_STATUS_UC)) {
5049                 if (banks[1] & MCI_STATUS_VAL)
5050                         mce->status |= MCI_STATUS_OVER;
5051                 banks[2] = mce->addr;
5052                 banks[3] = mce->misc;
5053                 banks[1] = mce->status;
5054         } else
5055                 banks[1] |= MCI_STATUS_OVER;
5056         return 0;
5057 }
5058
5059 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5060                                                struct kvm_vcpu_events *events)
5061 {
5062         struct kvm_queued_exception *ex;
5063
5064         process_nmi(vcpu);
5065
5066 #ifdef CONFIG_KVM_SMM
5067         if (kvm_check_request(KVM_REQ_SMI, vcpu))
5068                 process_smi(vcpu);
5069 #endif
5070
5071         /*
5072          * KVM's ABI only allows for one exception to be migrated.  Luckily,
5073          * the only time there can be two queued exceptions is if there's a
5074          * non-exiting _injected_ exception, and a pending exiting exception.
5075          * In that case, ignore the VM-Exiting exception as it's an extension
5076          * of the injected exception.
5077          */
5078         if (vcpu->arch.exception_vmexit.pending &&
5079             !vcpu->arch.exception.pending &&
5080             !vcpu->arch.exception.injected)
5081                 ex = &vcpu->arch.exception_vmexit;
5082         else
5083                 ex = &vcpu->arch.exception;
5084
5085         /*
5086          * In guest mode, payload delivery should be deferred if the exception
5087          * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5088          * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5089          * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5090          * propagate the payload and so it cannot be safely deferred.  Deliver
5091          * the payload if the capability hasn't been requested.
5092          */
5093         if (!vcpu->kvm->arch.exception_payload_enabled &&
5094             ex->pending && ex->has_payload)
5095                 kvm_deliver_exception_payload(vcpu, ex);
5096
5097         memset(events, 0, sizeof(*events));
5098
5099         /*
5100          * The API doesn't provide the instruction length for software
5101          * exceptions, so don't report them. As long as the guest RIP
5102          * isn't advanced, we should expect to encounter the exception
5103          * again.
5104          */
5105         if (!kvm_exception_is_soft(ex->vector)) {
5106                 events->exception.injected = ex->injected;
5107                 events->exception.pending = ex->pending;
5108                 /*
5109                  * For ABI compatibility, deliberately conflate
5110                  * pending and injected exceptions when
5111                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5112                  */
5113                 if (!vcpu->kvm->arch.exception_payload_enabled)
5114                         events->exception.injected |= ex->pending;
5115         }
5116         events->exception.nr = ex->vector;
5117         events->exception.has_error_code = ex->has_error_code;
5118         events->exception.error_code = ex->error_code;
5119         events->exception_has_payload = ex->has_payload;
5120         events->exception_payload = ex->payload;
5121
5122         events->interrupt.injected =
5123                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5124         events->interrupt.nr = vcpu->arch.interrupt.nr;
5125         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5126
5127         events->nmi.injected = vcpu->arch.nmi_injected;
5128         events->nmi.pending = vcpu->arch.nmi_pending;
5129         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5130
5131         /* events->sipi_vector is never valid when reporting to user space */
5132
5133 #ifdef CONFIG_KVM_SMM
5134         events->smi.smm = is_smm(vcpu);
5135         events->smi.pending = vcpu->arch.smi_pending;
5136         events->smi.smm_inside_nmi =
5137                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5138 #endif
5139         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5140
5141         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5142                          | KVM_VCPUEVENT_VALID_SHADOW
5143                          | KVM_VCPUEVENT_VALID_SMM);
5144         if (vcpu->kvm->arch.exception_payload_enabled)
5145                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5146         if (vcpu->kvm->arch.triple_fault_event) {
5147                 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5148                 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5149         }
5150 }
5151
5152 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5153                                               struct kvm_vcpu_events *events)
5154 {
5155         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5156                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5157                               | KVM_VCPUEVENT_VALID_SHADOW
5158                               | KVM_VCPUEVENT_VALID_SMM
5159                               | KVM_VCPUEVENT_VALID_PAYLOAD
5160                               | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5161                 return -EINVAL;
5162
5163         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5164                 if (!vcpu->kvm->arch.exception_payload_enabled)
5165                         return -EINVAL;
5166                 if (events->exception.pending)
5167                         events->exception.injected = 0;
5168                 else
5169                         events->exception_has_payload = 0;
5170         } else {
5171                 events->exception.pending = 0;
5172                 events->exception_has_payload = 0;
5173         }
5174
5175         if ((events->exception.injected || events->exception.pending) &&
5176             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5177                 return -EINVAL;
5178
5179         /* INITs are latched while in SMM */
5180         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5181             (events->smi.smm || events->smi.pending) &&
5182             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5183                 return -EINVAL;
5184
5185         process_nmi(vcpu);
5186
5187         /*
5188          * Flag that userspace is stuffing an exception, the next KVM_RUN will
5189          * morph the exception to a VM-Exit if appropriate.  Do this only for
5190          * pending exceptions, already-injected exceptions are not subject to
5191          * intercpetion.  Note, userspace that conflates pending and injected
5192          * is hosed, and will incorrectly convert an injected exception into a
5193          * pending exception, which in turn may cause a spurious VM-Exit.
5194          */
5195         vcpu->arch.exception_from_userspace = events->exception.pending;
5196
5197         vcpu->arch.exception_vmexit.pending = false;
5198
5199         vcpu->arch.exception.injected = events->exception.injected;
5200         vcpu->arch.exception.pending = events->exception.pending;
5201         vcpu->arch.exception.vector = events->exception.nr;
5202         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5203         vcpu->arch.exception.error_code = events->exception.error_code;
5204         vcpu->arch.exception.has_payload = events->exception_has_payload;
5205         vcpu->arch.exception.payload = events->exception_payload;
5206
5207         vcpu->arch.interrupt.injected = events->interrupt.injected;
5208         vcpu->arch.interrupt.nr = events->interrupt.nr;
5209         vcpu->arch.interrupt.soft = events->interrupt.soft;
5210         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5211                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5212                                                 events->interrupt.shadow);
5213
5214         vcpu->arch.nmi_injected = events->nmi.injected;
5215         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5216                 vcpu->arch.nmi_pending = 0;
5217                 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5218                 kvm_make_request(KVM_REQ_NMI, vcpu);
5219         }
5220         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5221
5222         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5223             lapic_in_kernel(vcpu))
5224                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5225
5226         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5227 #ifdef CONFIG_KVM_SMM
5228                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5229                         kvm_leave_nested(vcpu);
5230                         kvm_smm_changed(vcpu, events->smi.smm);
5231                 }
5232
5233                 vcpu->arch.smi_pending = events->smi.pending;
5234
5235                 if (events->smi.smm) {
5236                         if (events->smi.smm_inside_nmi)
5237                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5238                         else
5239                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5240                 }
5241
5242 #else
5243                 if (events->smi.smm || events->smi.pending ||
5244                     events->smi.smm_inside_nmi)
5245                         return -EINVAL;
5246 #endif
5247
5248                 if (lapic_in_kernel(vcpu)) {
5249                         if (events->smi.latched_init)
5250                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5251                         else
5252                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5253                 }
5254         }
5255
5256         if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5257                 if (!vcpu->kvm->arch.triple_fault_event)
5258                         return -EINVAL;
5259                 if (events->triple_fault.pending)
5260                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5261                 else
5262                         kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5263         }
5264
5265         kvm_make_request(KVM_REQ_EVENT, vcpu);
5266
5267         return 0;
5268 }
5269
5270 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5271                                              struct kvm_debugregs *dbgregs)
5272 {
5273         unsigned long val;
5274
5275         memset(dbgregs, 0, sizeof(*dbgregs));
5276         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5277         kvm_get_dr(vcpu, 6, &val);
5278         dbgregs->dr6 = val;
5279         dbgregs->dr7 = vcpu->arch.dr7;
5280 }
5281
5282 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5283                                             struct kvm_debugregs *dbgregs)
5284 {
5285         if (dbgregs->flags)
5286                 return -EINVAL;
5287
5288         if (!kvm_dr6_valid(dbgregs->dr6))
5289                 return -EINVAL;
5290         if (!kvm_dr7_valid(dbgregs->dr7))
5291                 return -EINVAL;
5292
5293         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5294         kvm_update_dr0123(vcpu);
5295         vcpu->arch.dr6 = dbgregs->dr6;
5296         vcpu->arch.dr7 = dbgregs->dr7;
5297         kvm_update_dr7(vcpu);
5298
5299         return 0;
5300 }
5301
5302 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5303                                          struct kvm_xsave *guest_xsave)
5304 {
5305         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5306                 return;
5307
5308         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5309                                        guest_xsave->region,
5310                                        sizeof(guest_xsave->region),
5311                                        vcpu->arch.pkru);
5312 }
5313
5314 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5315                                           u8 *state, unsigned int size)
5316 {
5317         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5318                 return;
5319
5320         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5321                                        state, size, vcpu->arch.pkru);
5322 }
5323
5324 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5325                                         struct kvm_xsave *guest_xsave)
5326 {
5327         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5328                 return 0;
5329
5330         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5331                                               guest_xsave->region,
5332                                               kvm_caps.supported_xcr0,
5333                                               &vcpu->arch.pkru);
5334 }
5335
5336 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5337                                         struct kvm_xcrs *guest_xcrs)
5338 {
5339         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5340                 guest_xcrs->nr_xcrs = 0;
5341                 return;
5342         }
5343
5344         guest_xcrs->nr_xcrs = 1;
5345         guest_xcrs->flags = 0;
5346         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5347         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5348 }
5349
5350 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5351                                        struct kvm_xcrs *guest_xcrs)
5352 {
5353         int i, r = 0;
5354
5355         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5356                 return -EINVAL;
5357
5358         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5359                 return -EINVAL;
5360
5361         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5362                 /* Only support XCR0 currently */
5363                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5364                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5365                                 guest_xcrs->xcrs[i].value);
5366                         break;
5367                 }
5368         if (r)
5369                 r = -EINVAL;
5370         return r;
5371 }
5372
5373 /*
5374  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5375  * stopped by the hypervisor.  This function will be called from the host only.
5376  * EINVAL is returned when the host attempts to set the flag for a guest that
5377  * does not support pv clocks.
5378  */
5379 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5380 {
5381         if (!vcpu->arch.pv_time.active)
5382                 return -EINVAL;
5383         vcpu->arch.pvclock_set_guest_stopped_request = true;
5384         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5385         return 0;
5386 }
5387
5388 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5389                                  struct kvm_device_attr *attr)
5390 {
5391         int r;
5392
5393         switch (attr->attr) {
5394         case KVM_VCPU_TSC_OFFSET:
5395                 r = 0;
5396                 break;
5397         default:
5398                 r = -ENXIO;
5399         }
5400
5401         return r;
5402 }
5403
5404 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5405                                  struct kvm_device_attr *attr)
5406 {
5407         u64 __user *uaddr = kvm_get_attr_addr(attr);
5408         int r;
5409
5410         if (IS_ERR(uaddr))
5411                 return PTR_ERR(uaddr);
5412
5413         switch (attr->attr) {
5414         case KVM_VCPU_TSC_OFFSET:
5415                 r = -EFAULT;
5416                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5417                         break;
5418                 r = 0;
5419                 break;
5420         default:
5421                 r = -ENXIO;
5422         }
5423
5424         return r;
5425 }
5426
5427 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5428                                  struct kvm_device_attr *attr)
5429 {
5430         u64 __user *uaddr = kvm_get_attr_addr(attr);
5431         struct kvm *kvm = vcpu->kvm;
5432         int r;
5433
5434         if (IS_ERR(uaddr))
5435                 return PTR_ERR(uaddr);
5436
5437         switch (attr->attr) {
5438         case KVM_VCPU_TSC_OFFSET: {
5439                 u64 offset, tsc, ns;
5440                 unsigned long flags;
5441                 bool matched;
5442
5443                 r = -EFAULT;
5444                 if (get_user(offset, uaddr))
5445                         break;
5446
5447                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5448
5449                 matched = (vcpu->arch.virtual_tsc_khz &&
5450                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5451                            kvm->arch.last_tsc_offset == offset);
5452
5453                 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5454                 ns = get_kvmclock_base_ns();
5455
5456                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5457                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5458
5459                 r = 0;
5460                 break;
5461         }
5462         default:
5463                 r = -ENXIO;
5464         }
5465
5466         return r;
5467 }
5468
5469 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5470                                       unsigned int ioctl,
5471                                       void __user *argp)
5472 {
5473         struct kvm_device_attr attr;
5474         int r;
5475
5476         if (copy_from_user(&attr, argp, sizeof(attr)))
5477                 return -EFAULT;
5478
5479         if (attr.group != KVM_VCPU_TSC_CTRL)
5480                 return -ENXIO;
5481
5482         switch (ioctl) {
5483         case KVM_HAS_DEVICE_ATTR:
5484                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5485                 break;
5486         case KVM_GET_DEVICE_ATTR:
5487                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5488                 break;
5489         case KVM_SET_DEVICE_ATTR:
5490                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5491                 break;
5492         }
5493
5494         return r;
5495 }
5496
5497 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5498                                      struct kvm_enable_cap *cap)
5499 {
5500         int r;
5501         uint16_t vmcs_version;
5502         void __user *user_ptr;
5503
5504         if (cap->flags)
5505                 return -EINVAL;
5506
5507         switch (cap->cap) {
5508         case KVM_CAP_HYPERV_SYNIC2:
5509                 if (cap->args[0])
5510                         return -EINVAL;
5511                 fallthrough;
5512
5513         case KVM_CAP_HYPERV_SYNIC:
5514                 if (!irqchip_in_kernel(vcpu->kvm))
5515                         return -EINVAL;
5516                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5517                                              KVM_CAP_HYPERV_SYNIC2);
5518         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5519                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5520                         return -ENOTTY;
5521                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5522                 if (!r) {
5523                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
5524                         if (copy_to_user(user_ptr, &vmcs_version,
5525                                          sizeof(vmcs_version)))
5526                                 r = -EFAULT;
5527                 }
5528                 return r;
5529         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5530                 if (!kvm_x86_ops.enable_l2_tlb_flush)
5531                         return -ENOTTY;
5532
5533                 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5534
5535         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5536                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5537
5538         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5539                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5540                 if (vcpu->arch.pv_cpuid.enforce)
5541                         kvm_update_pv_runtime(vcpu);
5542
5543                 return 0;
5544         default:
5545                 return -EINVAL;
5546         }
5547 }
5548
5549 long kvm_arch_vcpu_ioctl(struct file *filp,
5550                          unsigned int ioctl, unsigned long arg)
5551 {
5552         struct kvm_vcpu *vcpu = filp->private_data;
5553         void __user *argp = (void __user *)arg;
5554         int r;
5555         union {
5556                 struct kvm_sregs2 *sregs2;
5557                 struct kvm_lapic_state *lapic;
5558                 struct kvm_xsave *xsave;
5559                 struct kvm_xcrs *xcrs;
5560                 void *buffer;
5561         } u;
5562
5563         vcpu_load(vcpu);
5564
5565         u.buffer = NULL;
5566         switch (ioctl) {
5567         case KVM_GET_LAPIC: {
5568                 r = -EINVAL;
5569                 if (!lapic_in_kernel(vcpu))
5570                         goto out;
5571                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5572                                 GFP_KERNEL_ACCOUNT);
5573
5574                 r = -ENOMEM;
5575                 if (!u.lapic)
5576                         goto out;
5577                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5578                 if (r)
5579                         goto out;
5580                 r = -EFAULT;
5581                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5582                         goto out;
5583                 r = 0;
5584                 break;
5585         }
5586         case KVM_SET_LAPIC: {
5587                 r = -EINVAL;
5588                 if (!lapic_in_kernel(vcpu))
5589                         goto out;
5590                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5591                 if (IS_ERR(u.lapic)) {
5592                         r = PTR_ERR(u.lapic);
5593                         goto out_nofree;
5594                 }
5595
5596                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5597                 break;
5598         }
5599         case KVM_INTERRUPT: {
5600                 struct kvm_interrupt irq;
5601
5602                 r = -EFAULT;
5603                 if (copy_from_user(&irq, argp, sizeof(irq)))
5604                         goto out;
5605                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5606                 break;
5607         }
5608         case KVM_NMI: {
5609                 r = kvm_vcpu_ioctl_nmi(vcpu);
5610                 break;
5611         }
5612         case KVM_SMI: {
5613                 r = kvm_inject_smi(vcpu);
5614                 break;
5615         }
5616         case KVM_SET_CPUID: {
5617                 struct kvm_cpuid __user *cpuid_arg = argp;
5618                 struct kvm_cpuid cpuid;
5619
5620                 r = -EFAULT;
5621                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5622                         goto out;
5623                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5624                 break;
5625         }
5626         case KVM_SET_CPUID2: {
5627                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5628                 struct kvm_cpuid2 cpuid;
5629
5630                 r = -EFAULT;
5631                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5632                         goto out;
5633                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5634                                               cpuid_arg->entries);
5635                 break;
5636         }
5637         case KVM_GET_CPUID2: {
5638                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5639                 struct kvm_cpuid2 cpuid;
5640
5641                 r = -EFAULT;
5642                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5643                         goto out;
5644                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5645                                               cpuid_arg->entries);
5646                 if (r)
5647                         goto out;
5648                 r = -EFAULT;
5649                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5650                         goto out;
5651                 r = 0;
5652                 break;
5653         }
5654         case KVM_GET_MSRS: {
5655                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5656                 r = msr_io(vcpu, argp, do_get_msr, 1);
5657                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5658                 break;
5659         }
5660         case KVM_SET_MSRS: {
5661                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5662                 r = msr_io(vcpu, argp, do_set_msr, 0);
5663                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5664                 break;
5665         }
5666         case KVM_TPR_ACCESS_REPORTING: {
5667                 struct kvm_tpr_access_ctl tac;
5668
5669                 r = -EFAULT;
5670                 if (copy_from_user(&tac, argp, sizeof(tac)))
5671                         goto out;
5672                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5673                 if (r)
5674                         goto out;
5675                 r = -EFAULT;
5676                 if (copy_to_user(argp, &tac, sizeof(tac)))
5677                         goto out;
5678                 r = 0;
5679                 break;
5680         };
5681         case KVM_SET_VAPIC_ADDR: {
5682                 struct kvm_vapic_addr va;
5683                 int idx;
5684
5685                 r = -EINVAL;
5686                 if (!lapic_in_kernel(vcpu))
5687                         goto out;
5688                 r = -EFAULT;
5689                 if (copy_from_user(&va, argp, sizeof(va)))
5690                         goto out;
5691                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5692                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5693                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5694                 break;
5695         }
5696         case KVM_X86_SETUP_MCE: {
5697                 u64 mcg_cap;
5698
5699                 r = -EFAULT;
5700                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5701                         goto out;
5702                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5703                 break;
5704         }
5705         case KVM_X86_SET_MCE: {
5706                 struct kvm_x86_mce mce;
5707
5708                 r = -EFAULT;
5709                 if (copy_from_user(&mce, argp, sizeof(mce)))
5710                         goto out;
5711                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5712                 break;
5713         }
5714         case KVM_GET_VCPU_EVENTS: {
5715                 struct kvm_vcpu_events events;
5716
5717                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5718
5719                 r = -EFAULT;
5720                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5721                         break;
5722                 r = 0;
5723                 break;
5724         }
5725         case KVM_SET_VCPU_EVENTS: {
5726                 struct kvm_vcpu_events events;
5727
5728                 r = -EFAULT;
5729                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5730                         break;
5731
5732                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5733                 break;
5734         }
5735         case KVM_GET_DEBUGREGS: {
5736                 struct kvm_debugregs dbgregs;
5737
5738                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5739
5740                 r = -EFAULT;
5741                 if (copy_to_user(argp, &dbgregs,
5742                                  sizeof(struct kvm_debugregs)))
5743                         break;
5744                 r = 0;
5745                 break;
5746         }
5747         case KVM_SET_DEBUGREGS: {
5748                 struct kvm_debugregs dbgregs;
5749
5750                 r = -EFAULT;
5751                 if (copy_from_user(&dbgregs, argp,
5752                                    sizeof(struct kvm_debugregs)))
5753                         break;
5754
5755                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5756                 break;
5757         }
5758         case KVM_GET_XSAVE: {
5759                 r = -EINVAL;
5760                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5761                         break;
5762
5763                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5764                 r = -ENOMEM;
5765                 if (!u.xsave)
5766                         break;
5767
5768                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5769
5770                 r = -EFAULT;
5771                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5772                         break;
5773                 r = 0;
5774                 break;
5775         }
5776         case KVM_SET_XSAVE: {
5777                 int size = vcpu->arch.guest_fpu.uabi_size;
5778
5779                 u.xsave = memdup_user(argp, size);
5780                 if (IS_ERR(u.xsave)) {
5781                         r = PTR_ERR(u.xsave);
5782                         goto out_nofree;
5783                 }
5784
5785                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5786                 break;
5787         }
5788
5789         case KVM_GET_XSAVE2: {
5790                 int size = vcpu->arch.guest_fpu.uabi_size;
5791
5792                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5793                 r = -ENOMEM;
5794                 if (!u.xsave)
5795                         break;
5796
5797                 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5798
5799                 r = -EFAULT;
5800                 if (copy_to_user(argp, u.xsave, size))
5801                         break;
5802
5803                 r = 0;
5804                 break;
5805         }
5806
5807         case KVM_GET_XCRS: {
5808                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5809                 r = -ENOMEM;
5810                 if (!u.xcrs)
5811                         break;
5812
5813                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5814
5815                 r = -EFAULT;
5816                 if (copy_to_user(argp, u.xcrs,
5817                                  sizeof(struct kvm_xcrs)))
5818                         break;
5819                 r = 0;
5820                 break;
5821         }
5822         case KVM_SET_XCRS: {
5823                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5824                 if (IS_ERR(u.xcrs)) {
5825                         r = PTR_ERR(u.xcrs);
5826                         goto out_nofree;
5827                 }
5828
5829                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5830                 break;
5831         }
5832         case KVM_SET_TSC_KHZ: {
5833                 u32 user_tsc_khz;
5834
5835                 r = -EINVAL;
5836                 user_tsc_khz = (u32)arg;
5837
5838                 if (kvm_caps.has_tsc_control &&
5839                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5840                         goto out;
5841
5842                 if (user_tsc_khz == 0)
5843                         user_tsc_khz = tsc_khz;
5844
5845                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5846                         r = 0;
5847
5848                 goto out;
5849         }
5850         case KVM_GET_TSC_KHZ: {
5851                 r = vcpu->arch.virtual_tsc_khz;
5852                 goto out;
5853         }
5854         case KVM_KVMCLOCK_CTRL: {
5855                 r = kvm_set_guest_paused(vcpu);
5856                 goto out;
5857         }
5858         case KVM_ENABLE_CAP: {
5859                 struct kvm_enable_cap cap;
5860
5861                 r = -EFAULT;
5862                 if (copy_from_user(&cap, argp, sizeof(cap)))
5863                         goto out;
5864                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5865                 break;
5866         }
5867         case KVM_GET_NESTED_STATE: {
5868                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5869                 u32 user_data_size;
5870
5871                 r = -EINVAL;
5872                 if (!kvm_x86_ops.nested_ops->get_state)
5873                         break;
5874
5875                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5876                 r = -EFAULT;
5877                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5878                         break;
5879
5880                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5881                                                      user_data_size);
5882                 if (r < 0)
5883                         break;
5884
5885                 if (r > user_data_size) {
5886                         if (put_user(r, &user_kvm_nested_state->size))
5887                                 r = -EFAULT;
5888                         else
5889                                 r = -E2BIG;
5890                         break;
5891                 }
5892
5893                 r = 0;
5894                 break;
5895         }
5896         case KVM_SET_NESTED_STATE: {
5897                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5898                 struct kvm_nested_state kvm_state;
5899                 int idx;
5900
5901                 r = -EINVAL;
5902                 if (!kvm_x86_ops.nested_ops->set_state)
5903                         break;
5904
5905                 r = -EFAULT;
5906                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5907                         break;
5908
5909                 r = -EINVAL;
5910                 if (kvm_state.size < sizeof(kvm_state))
5911                         break;
5912
5913                 if (kvm_state.flags &
5914                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5915                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5916                       | KVM_STATE_NESTED_GIF_SET))
5917                         break;
5918
5919                 /* nested_run_pending implies guest_mode.  */
5920                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5921                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5922                         break;
5923
5924                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5925                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5926                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5927                 break;
5928         }
5929         case KVM_GET_SUPPORTED_HV_CPUID:
5930                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5931                 break;
5932 #ifdef CONFIG_KVM_XEN
5933         case KVM_XEN_VCPU_GET_ATTR: {
5934                 struct kvm_xen_vcpu_attr xva;
5935
5936                 r = -EFAULT;
5937                 if (copy_from_user(&xva, argp, sizeof(xva)))
5938                         goto out;
5939                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5940                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5941                         r = -EFAULT;
5942                 break;
5943         }
5944         case KVM_XEN_VCPU_SET_ATTR: {
5945                 struct kvm_xen_vcpu_attr xva;
5946
5947                 r = -EFAULT;
5948                 if (copy_from_user(&xva, argp, sizeof(xva)))
5949                         goto out;
5950                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5951                 break;
5952         }
5953 #endif
5954         case KVM_GET_SREGS2: {
5955                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5956                 r = -ENOMEM;
5957                 if (!u.sregs2)
5958                         goto out;
5959                 __get_sregs2(vcpu, u.sregs2);
5960                 r = -EFAULT;
5961                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5962                         goto out;
5963                 r = 0;
5964                 break;
5965         }
5966         case KVM_SET_SREGS2: {
5967                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5968                 if (IS_ERR(u.sregs2)) {
5969                         r = PTR_ERR(u.sregs2);
5970                         u.sregs2 = NULL;
5971                         goto out;
5972                 }
5973                 r = __set_sregs2(vcpu, u.sregs2);
5974                 break;
5975         }
5976         case KVM_HAS_DEVICE_ATTR:
5977         case KVM_GET_DEVICE_ATTR:
5978         case KVM_SET_DEVICE_ATTR:
5979                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5980                 break;
5981         default:
5982                 r = -EINVAL;
5983         }
5984 out:
5985         kfree(u.buffer);
5986 out_nofree:
5987         vcpu_put(vcpu);
5988         return r;
5989 }
5990
5991 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5992 {
5993         return VM_FAULT_SIGBUS;
5994 }
5995
5996 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5997 {
5998         int ret;
5999
6000         if (addr > (unsigned int)(-3 * PAGE_SIZE))
6001                 return -EINVAL;
6002         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6003         return ret;
6004 }
6005
6006 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6007                                               u64 ident_addr)
6008 {
6009         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6010 }
6011
6012 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6013                                          unsigned long kvm_nr_mmu_pages)
6014 {
6015         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6016                 return -EINVAL;
6017
6018         mutex_lock(&kvm->slots_lock);
6019
6020         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6021         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6022
6023         mutex_unlock(&kvm->slots_lock);
6024         return 0;
6025 }
6026
6027 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6028 {
6029         struct kvm_pic *pic = kvm->arch.vpic;
6030         int r;
6031
6032         r = 0;
6033         switch (chip->chip_id) {
6034         case KVM_IRQCHIP_PIC_MASTER:
6035                 memcpy(&chip->chip.pic, &pic->pics[0],
6036                         sizeof(struct kvm_pic_state));
6037                 break;
6038         case KVM_IRQCHIP_PIC_SLAVE:
6039                 memcpy(&chip->chip.pic, &pic->pics[1],
6040                         sizeof(struct kvm_pic_state));
6041                 break;
6042         case KVM_IRQCHIP_IOAPIC:
6043                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6044                 break;
6045         default:
6046                 r = -EINVAL;
6047                 break;
6048         }
6049         return r;
6050 }
6051
6052 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6053 {
6054         struct kvm_pic *pic = kvm->arch.vpic;
6055         int r;
6056
6057         r = 0;
6058         switch (chip->chip_id) {
6059         case KVM_IRQCHIP_PIC_MASTER:
6060                 spin_lock(&pic->lock);
6061                 memcpy(&pic->pics[0], &chip->chip.pic,
6062                         sizeof(struct kvm_pic_state));
6063                 spin_unlock(&pic->lock);
6064                 break;
6065         case KVM_IRQCHIP_PIC_SLAVE:
6066                 spin_lock(&pic->lock);
6067                 memcpy(&pic->pics[1], &chip->chip.pic,
6068                         sizeof(struct kvm_pic_state));
6069                 spin_unlock(&pic->lock);
6070                 break;
6071         case KVM_IRQCHIP_IOAPIC:
6072                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6073                 break;
6074         default:
6075                 r = -EINVAL;
6076                 break;
6077         }
6078         kvm_pic_update_irq(pic);
6079         return r;
6080 }
6081
6082 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6083 {
6084         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6085
6086         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6087
6088         mutex_lock(&kps->lock);
6089         memcpy(ps, &kps->channels, sizeof(*ps));
6090         mutex_unlock(&kps->lock);
6091         return 0;
6092 }
6093
6094 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6095 {
6096         int i;
6097         struct kvm_pit *pit = kvm->arch.vpit;
6098
6099         mutex_lock(&pit->pit_state.lock);
6100         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6101         for (i = 0; i < 3; i++)
6102                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6103         mutex_unlock(&pit->pit_state.lock);
6104         return 0;
6105 }
6106
6107 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6108 {
6109         mutex_lock(&kvm->arch.vpit->pit_state.lock);
6110         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6111                 sizeof(ps->channels));
6112         ps->flags = kvm->arch.vpit->pit_state.flags;
6113         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6114         memset(&ps->reserved, 0, sizeof(ps->reserved));
6115         return 0;
6116 }
6117
6118 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6119 {
6120         int start = 0;
6121         int i;
6122         u32 prev_legacy, cur_legacy;
6123         struct kvm_pit *pit = kvm->arch.vpit;
6124
6125         mutex_lock(&pit->pit_state.lock);
6126         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6127         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6128         if (!prev_legacy && cur_legacy)
6129                 start = 1;
6130         memcpy(&pit->pit_state.channels, &ps->channels,
6131                sizeof(pit->pit_state.channels));
6132         pit->pit_state.flags = ps->flags;
6133         for (i = 0; i < 3; i++)
6134                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6135                                    start && i == 0);
6136         mutex_unlock(&pit->pit_state.lock);
6137         return 0;
6138 }
6139
6140 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6141                                  struct kvm_reinject_control *control)
6142 {
6143         struct kvm_pit *pit = kvm->arch.vpit;
6144
6145         /* pit->pit_state.lock was overloaded to prevent userspace from getting
6146          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6147          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6148          */
6149         mutex_lock(&pit->pit_state.lock);
6150         kvm_pit_set_reinject(pit, control->pit_reinject);
6151         mutex_unlock(&pit->pit_state.lock);
6152
6153         return 0;
6154 }
6155
6156 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6157 {
6158
6159         /*
6160          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6161          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6162          * on all VM-Exits, thus we only need to kick running vCPUs to force a
6163          * VM-Exit.
6164          */
6165         struct kvm_vcpu *vcpu;
6166         unsigned long i;
6167
6168         kvm_for_each_vcpu(i, vcpu, kvm)
6169                 kvm_vcpu_kick(vcpu);
6170 }
6171
6172 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6173                         bool line_status)
6174 {
6175         if (!irqchip_in_kernel(kvm))
6176                 return -ENXIO;
6177
6178         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6179                                         irq_event->irq, irq_event->level,
6180                                         line_status);
6181         return 0;
6182 }
6183
6184 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6185                             struct kvm_enable_cap *cap)
6186 {
6187         int r;
6188
6189         if (cap->flags)
6190                 return -EINVAL;
6191
6192         switch (cap->cap) {
6193         case KVM_CAP_DISABLE_QUIRKS2:
6194                 r = -EINVAL;
6195                 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6196                         break;
6197                 fallthrough;
6198         case KVM_CAP_DISABLE_QUIRKS:
6199                 kvm->arch.disabled_quirks = cap->args[0];
6200                 r = 0;
6201                 break;
6202         case KVM_CAP_SPLIT_IRQCHIP: {
6203                 mutex_lock(&kvm->lock);
6204                 r = -EINVAL;
6205                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6206                         goto split_irqchip_unlock;
6207                 r = -EEXIST;
6208                 if (irqchip_in_kernel(kvm))
6209                         goto split_irqchip_unlock;
6210                 if (kvm->created_vcpus)
6211                         goto split_irqchip_unlock;
6212                 r = kvm_setup_empty_irq_routing(kvm);
6213                 if (r)
6214                         goto split_irqchip_unlock;
6215                 /* Pairs with irqchip_in_kernel. */
6216                 smp_wmb();
6217                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6218                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6219                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6220                 r = 0;
6221 split_irqchip_unlock:
6222                 mutex_unlock(&kvm->lock);
6223                 break;
6224         }
6225         case KVM_CAP_X2APIC_API:
6226                 r = -EINVAL;
6227                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6228                         break;
6229
6230                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6231                         kvm->arch.x2apic_format = true;
6232                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6233                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
6234
6235                 r = 0;
6236                 break;
6237         case KVM_CAP_X86_DISABLE_EXITS:
6238                 r = -EINVAL;
6239                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6240                         break;
6241
6242                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6243                         kvm->arch.pause_in_guest = true;
6244
6245 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6246                     "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6247
6248                 if (!mitigate_smt_rsb) {
6249                         if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6250                             (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6251                                 pr_warn_once(SMT_RSB_MSG);
6252
6253                         if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6254                             kvm_can_mwait_in_guest())
6255                                 kvm->arch.mwait_in_guest = true;
6256                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6257                                 kvm->arch.hlt_in_guest = true;
6258                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6259                                 kvm->arch.cstate_in_guest = true;
6260                 }
6261
6262                 r = 0;
6263                 break;
6264         case KVM_CAP_MSR_PLATFORM_INFO:
6265                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6266                 r = 0;
6267                 break;
6268         case KVM_CAP_EXCEPTION_PAYLOAD:
6269                 kvm->arch.exception_payload_enabled = cap->args[0];
6270                 r = 0;
6271                 break;
6272         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6273                 kvm->arch.triple_fault_event = cap->args[0];
6274                 r = 0;
6275                 break;
6276         case KVM_CAP_X86_USER_SPACE_MSR:
6277                 r = -EINVAL;
6278                 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6279                         break;
6280                 kvm->arch.user_space_msr_mask = cap->args[0];
6281                 r = 0;
6282                 break;
6283         case KVM_CAP_X86_BUS_LOCK_EXIT:
6284                 r = -EINVAL;
6285                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6286                         break;
6287
6288                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6289                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6290                         break;
6291
6292                 if (kvm_caps.has_bus_lock_exit &&
6293                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6294                         kvm->arch.bus_lock_detection_enabled = true;
6295                 r = 0;
6296                 break;
6297 #ifdef CONFIG_X86_SGX_KVM
6298         case KVM_CAP_SGX_ATTRIBUTE: {
6299                 unsigned long allowed_attributes = 0;
6300
6301                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6302                 if (r)
6303                         break;
6304
6305                 /* KVM only supports the PROVISIONKEY privileged attribute. */
6306                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6307                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6308                         kvm->arch.sgx_provisioning_allowed = true;
6309                 else
6310                         r = -EINVAL;
6311                 break;
6312         }
6313 #endif
6314         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6315                 r = -EINVAL;
6316                 if (!kvm_x86_ops.vm_copy_enc_context_from)
6317                         break;
6318
6319                 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6320                 break;
6321         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6322                 r = -EINVAL;
6323                 if (!kvm_x86_ops.vm_move_enc_context_from)
6324                         break;
6325
6326                 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6327                 break;
6328         case KVM_CAP_EXIT_HYPERCALL:
6329                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6330                         r = -EINVAL;
6331                         break;
6332                 }
6333                 kvm->arch.hypercall_exit_enabled = cap->args[0];
6334                 r = 0;
6335                 break;
6336         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6337                 r = -EINVAL;
6338                 if (cap->args[0] & ~1)
6339                         break;
6340                 kvm->arch.exit_on_emulation_error = cap->args[0];
6341                 r = 0;
6342                 break;
6343         case KVM_CAP_PMU_CAPABILITY:
6344                 r = -EINVAL;
6345                 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6346                         break;
6347
6348                 mutex_lock(&kvm->lock);
6349                 if (!kvm->created_vcpus) {
6350                         kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6351                         r = 0;
6352                 }
6353                 mutex_unlock(&kvm->lock);
6354                 break;
6355         case KVM_CAP_MAX_VCPU_ID:
6356                 r = -EINVAL;
6357                 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6358                         break;
6359
6360                 mutex_lock(&kvm->lock);
6361                 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6362                         r = 0;
6363                 } else if (!kvm->arch.max_vcpu_ids) {
6364                         kvm->arch.max_vcpu_ids = cap->args[0];
6365                         r = 0;
6366                 }
6367                 mutex_unlock(&kvm->lock);
6368                 break;
6369         case KVM_CAP_X86_NOTIFY_VMEXIT:
6370                 r = -EINVAL;
6371                 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6372                         break;
6373                 if (!kvm_caps.has_notify_vmexit)
6374                         break;
6375                 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6376                         break;
6377                 mutex_lock(&kvm->lock);
6378                 if (!kvm->created_vcpus) {
6379                         kvm->arch.notify_window = cap->args[0] >> 32;
6380                         kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6381                         r = 0;
6382                 }
6383                 mutex_unlock(&kvm->lock);
6384                 break;
6385         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6386                 r = -EINVAL;
6387
6388                 /*
6389                  * Since the risk of disabling NX hugepages is a guest crashing
6390                  * the system, ensure the userspace process has permission to
6391                  * reboot the system.
6392                  *
6393                  * Note that unlike the reboot() syscall, the process must have
6394                  * this capability in the root namespace because exposing
6395                  * /dev/kvm into a container does not limit the scope of the
6396                  * iTLB multihit bug to that container. In other words,
6397                  * this must use capable(), not ns_capable().
6398                  */
6399                 if (!capable(CAP_SYS_BOOT)) {
6400                         r = -EPERM;
6401                         break;
6402                 }
6403
6404                 if (cap->args[0])
6405                         break;
6406
6407                 mutex_lock(&kvm->lock);
6408                 if (!kvm->created_vcpus) {
6409                         kvm->arch.disable_nx_huge_pages = true;
6410                         r = 0;
6411                 }
6412                 mutex_unlock(&kvm->lock);
6413                 break;
6414         default:
6415                 r = -EINVAL;
6416                 break;
6417         }
6418         return r;
6419 }
6420
6421 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6422 {
6423         struct kvm_x86_msr_filter *msr_filter;
6424
6425         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6426         if (!msr_filter)
6427                 return NULL;
6428
6429         msr_filter->default_allow = default_allow;
6430         return msr_filter;
6431 }
6432
6433 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6434 {
6435         u32 i;
6436
6437         if (!msr_filter)
6438                 return;
6439
6440         for (i = 0; i < msr_filter->count; i++)
6441                 kfree(msr_filter->ranges[i].bitmap);
6442
6443         kfree(msr_filter);
6444 }
6445
6446 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6447                               struct kvm_msr_filter_range *user_range)
6448 {
6449         unsigned long *bitmap = NULL;
6450         size_t bitmap_size;
6451
6452         if (!user_range->nmsrs)
6453                 return 0;
6454
6455         if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6456                 return -EINVAL;
6457
6458         if (!user_range->flags)
6459                 return -EINVAL;
6460
6461         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6462         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6463                 return -EINVAL;
6464
6465         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6466         if (IS_ERR(bitmap))
6467                 return PTR_ERR(bitmap);
6468
6469         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6470                 .flags = user_range->flags,
6471                 .base = user_range->base,
6472                 .nmsrs = user_range->nmsrs,
6473                 .bitmap = bitmap,
6474         };
6475
6476         msr_filter->count++;
6477         return 0;
6478 }
6479
6480 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6481                                        struct kvm_msr_filter *filter)
6482 {
6483         struct kvm_x86_msr_filter *new_filter, *old_filter;
6484         bool default_allow;
6485         bool empty = true;
6486         int r;
6487         u32 i;
6488
6489         if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6490                 return -EINVAL;
6491
6492         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6493                 empty &= !filter->ranges[i].nmsrs;
6494
6495         default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6496         if (empty && !default_allow)
6497                 return -EINVAL;
6498
6499         new_filter = kvm_alloc_msr_filter(default_allow);
6500         if (!new_filter)
6501                 return -ENOMEM;
6502
6503         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6504                 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6505                 if (r) {
6506                         kvm_free_msr_filter(new_filter);
6507                         return r;
6508                 }
6509         }
6510
6511         mutex_lock(&kvm->lock);
6512         old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6513                                          mutex_is_locked(&kvm->lock));
6514         mutex_unlock(&kvm->lock);
6515         synchronize_srcu(&kvm->srcu);
6516
6517         kvm_free_msr_filter(old_filter);
6518
6519         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6520
6521         return 0;
6522 }
6523
6524 #ifdef CONFIG_KVM_COMPAT
6525 /* for KVM_X86_SET_MSR_FILTER */
6526 struct kvm_msr_filter_range_compat {
6527         __u32 flags;
6528         __u32 nmsrs;
6529         __u32 base;
6530         __u32 bitmap;
6531 };
6532
6533 struct kvm_msr_filter_compat {
6534         __u32 flags;
6535         struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6536 };
6537
6538 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6539
6540 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6541                               unsigned long arg)
6542 {
6543         void __user *argp = (void __user *)arg;
6544         struct kvm *kvm = filp->private_data;
6545         long r = -ENOTTY;
6546
6547         switch (ioctl) {
6548         case KVM_X86_SET_MSR_FILTER_COMPAT: {
6549                 struct kvm_msr_filter __user *user_msr_filter = argp;
6550                 struct kvm_msr_filter_compat filter_compat;
6551                 struct kvm_msr_filter filter;
6552                 int i;
6553
6554                 if (copy_from_user(&filter_compat, user_msr_filter,
6555                                    sizeof(filter_compat)))
6556                         return -EFAULT;
6557
6558                 filter.flags = filter_compat.flags;
6559                 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6560                         struct kvm_msr_filter_range_compat *cr;
6561
6562                         cr = &filter_compat.ranges[i];
6563                         filter.ranges[i] = (struct kvm_msr_filter_range) {
6564                                 .flags = cr->flags,
6565                                 .nmsrs = cr->nmsrs,
6566                                 .base = cr->base,
6567                                 .bitmap = (__u8 *)(ulong)cr->bitmap,
6568                         };
6569                 }
6570
6571                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6572                 break;
6573         }
6574         }
6575
6576         return r;
6577 }
6578 #endif
6579
6580 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6581 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6582 {
6583         struct kvm_vcpu *vcpu;
6584         unsigned long i;
6585         int ret = 0;
6586
6587         mutex_lock(&kvm->lock);
6588         kvm_for_each_vcpu(i, vcpu, kvm) {
6589                 if (!vcpu->arch.pv_time.active)
6590                         continue;
6591
6592                 ret = kvm_set_guest_paused(vcpu);
6593                 if (ret) {
6594                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6595                                 vcpu->vcpu_id, ret);
6596                         break;
6597                 }
6598         }
6599         mutex_unlock(&kvm->lock);
6600
6601         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6602 }
6603
6604 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6605 {
6606         switch (state) {
6607         case PM_HIBERNATION_PREPARE:
6608         case PM_SUSPEND_PREPARE:
6609                 return kvm_arch_suspend_notifier(kvm);
6610         }
6611
6612         return NOTIFY_DONE;
6613 }
6614 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6615
6616 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6617 {
6618         struct kvm_clock_data data = { 0 };
6619
6620         get_kvmclock(kvm, &data);
6621         if (copy_to_user(argp, &data, sizeof(data)))
6622                 return -EFAULT;
6623
6624         return 0;
6625 }
6626
6627 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6628 {
6629         struct kvm_arch *ka = &kvm->arch;
6630         struct kvm_clock_data data;
6631         u64 now_raw_ns;
6632
6633         if (copy_from_user(&data, argp, sizeof(data)))
6634                 return -EFAULT;
6635
6636         /*
6637          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6638          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6639          */
6640         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6641                 return -EINVAL;
6642
6643         kvm_hv_request_tsc_page_update(kvm);
6644         kvm_start_pvclock_update(kvm);
6645         pvclock_update_vm_gtod_copy(kvm);
6646
6647         /*
6648          * This pairs with kvm_guest_time_update(): when masterclock is
6649          * in use, we use master_kernel_ns + kvmclock_offset to set
6650          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6651          * is slightly ahead) here we risk going negative on unsigned
6652          * 'system_time' when 'data.clock' is very small.
6653          */
6654         if (data.flags & KVM_CLOCK_REALTIME) {
6655                 u64 now_real_ns = ktime_get_real_ns();
6656
6657                 /*
6658                  * Avoid stepping the kvmclock backwards.
6659                  */
6660                 if (now_real_ns > data.realtime)
6661                         data.clock += now_real_ns - data.realtime;
6662         }
6663
6664         if (ka->use_master_clock)
6665                 now_raw_ns = ka->master_kernel_ns;
6666         else
6667                 now_raw_ns = get_kvmclock_base_ns();
6668         ka->kvmclock_offset = data.clock - now_raw_ns;
6669         kvm_end_pvclock_update(kvm);
6670         return 0;
6671 }
6672
6673 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6674 {
6675         struct kvm *kvm = filp->private_data;
6676         void __user *argp = (void __user *)arg;
6677         int r = -ENOTTY;
6678         /*
6679          * This union makes it completely explicit to gcc-3.x
6680          * that these two variables' stack usage should be
6681          * combined, not added together.
6682          */
6683         union {
6684                 struct kvm_pit_state ps;
6685                 struct kvm_pit_state2 ps2;
6686                 struct kvm_pit_config pit_config;
6687         } u;
6688
6689         switch (ioctl) {
6690         case KVM_SET_TSS_ADDR:
6691                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6692                 break;
6693         case KVM_SET_IDENTITY_MAP_ADDR: {
6694                 u64 ident_addr;
6695
6696                 mutex_lock(&kvm->lock);
6697                 r = -EINVAL;
6698                 if (kvm->created_vcpus)
6699                         goto set_identity_unlock;
6700                 r = -EFAULT;
6701                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6702                         goto set_identity_unlock;
6703                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6704 set_identity_unlock:
6705                 mutex_unlock(&kvm->lock);
6706                 break;
6707         }
6708         case KVM_SET_NR_MMU_PAGES:
6709                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6710                 break;
6711         case KVM_CREATE_IRQCHIP: {
6712                 mutex_lock(&kvm->lock);
6713
6714                 r = -EEXIST;
6715                 if (irqchip_in_kernel(kvm))
6716                         goto create_irqchip_unlock;
6717
6718                 r = -EINVAL;
6719                 if (kvm->created_vcpus)
6720                         goto create_irqchip_unlock;
6721
6722                 r = kvm_pic_init(kvm);
6723                 if (r)
6724                         goto create_irqchip_unlock;
6725
6726                 r = kvm_ioapic_init(kvm);
6727                 if (r) {
6728                         kvm_pic_destroy(kvm);
6729                         goto create_irqchip_unlock;
6730                 }
6731
6732                 r = kvm_setup_default_irq_routing(kvm);
6733                 if (r) {
6734                         kvm_ioapic_destroy(kvm);
6735                         kvm_pic_destroy(kvm);
6736                         goto create_irqchip_unlock;
6737                 }
6738                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6739                 smp_wmb();
6740                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6741                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6742         create_irqchip_unlock:
6743                 mutex_unlock(&kvm->lock);
6744                 break;
6745         }
6746         case KVM_CREATE_PIT:
6747                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6748                 goto create_pit;
6749         case KVM_CREATE_PIT2:
6750                 r = -EFAULT;
6751                 if (copy_from_user(&u.pit_config, argp,
6752                                    sizeof(struct kvm_pit_config)))
6753                         goto out;
6754         create_pit:
6755                 mutex_lock(&kvm->lock);
6756                 r = -EEXIST;
6757                 if (kvm->arch.vpit)
6758                         goto create_pit_unlock;
6759                 r = -ENOMEM;
6760                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6761                 if (kvm->arch.vpit)
6762                         r = 0;
6763         create_pit_unlock:
6764                 mutex_unlock(&kvm->lock);
6765                 break;
6766         case KVM_GET_IRQCHIP: {
6767                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6768                 struct kvm_irqchip *chip;
6769
6770                 chip = memdup_user(argp, sizeof(*chip));
6771                 if (IS_ERR(chip)) {
6772                         r = PTR_ERR(chip);
6773                         goto out;
6774                 }
6775
6776                 r = -ENXIO;
6777                 if (!irqchip_kernel(kvm))
6778                         goto get_irqchip_out;
6779                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6780                 if (r)
6781                         goto get_irqchip_out;
6782                 r = -EFAULT;
6783                 if (copy_to_user(argp, chip, sizeof(*chip)))
6784                         goto get_irqchip_out;
6785                 r = 0;
6786         get_irqchip_out:
6787                 kfree(chip);
6788                 break;
6789         }
6790         case KVM_SET_IRQCHIP: {
6791                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6792                 struct kvm_irqchip *chip;
6793
6794                 chip = memdup_user(argp, sizeof(*chip));
6795                 if (IS_ERR(chip)) {
6796                         r = PTR_ERR(chip);
6797                         goto out;
6798                 }
6799
6800                 r = -ENXIO;
6801                 if (!irqchip_kernel(kvm))
6802                         goto set_irqchip_out;
6803                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6804         set_irqchip_out:
6805                 kfree(chip);
6806                 break;
6807         }
6808         case KVM_GET_PIT: {
6809                 r = -EFAULT;
6810                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6811                         goto out;
6812                 r = -ENXIO;
6813                 if (!kvm->arch.vpit)
6814                         goto out;
6815                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6816                 if (r)
6817                         goto out;
6818                 r = -EFAULT;
6819                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6820                         goto out;
6821                 r = 0;
6822                 break;
6823         }
6824         case KVM_SET_PIT: {
6825                 r = -EFAULT;
6826                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6827                         goto out;
6828                 mutex_lock(&kvm->lock);
6829                 r = -ENXIO;
6830                 if (!kvm->arch.vpit)
6831                         goto set_pit_out;
6832                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6833 set_pit_out:
6834                 mutex_unlock(&kvm->lock);
6835                 break;
6836         }
6837         case KVM_GET_PIT2: {
6838                 r = -ENXIO;
6839                 if (!kvm->arch.vpit)
6840                         goto out;
6841                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6842                 if (r)
6843                         goto out;
6844                 r = -EFAULT;
6845                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6846                         goto out;
6847                 r = 0;
6848                 break;
6849         }
6850         case KVM_SET_PIT2: {
6851                 r = -EFAULT;
6852                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6853                         goto out;
6854                 mutex_lock(&kvm->lock);
6855                 r = -ENXIO;
6856                 if (!kvm->arch.vpit)
6857                         goto set_pit2_out;
6858                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6859 set_pit2_out:
6860                 mutex_unlock(&kvm->lock);
6861                 break;
6862         }
6863         case KVM_REINJECT_CONTROL: {
6864                 struct kvm_reinject_control control;
6865                 r =  -EFAULT;
6866                 if (copy_from_user(&control, argp, sizeof(control)))
6867                         goto out;
6868                 r = -ENXIO;
6869                 if (!kvm->arch.vpit)
6870                         goto out;
6871                 r = kvm_vm_ioctl_reinject(kvm, &control);
6872                 break;
6873         }
6874         case KVM_SET_BOOT_CPU_ID:
6875                 r = 0;
6876                 mutex_lock(&kvm->lock);
6877                 if (kvm->created_vcpus)
6878                         r = -EBUSY;
6879                 else
6880                         kvm->arch.bsp_vcpu_id = arg;
6881                 mutex_unlock(&kvm->lock);
6882                 break;
6883 #ifdef CONFIG_KVM_XEN
6884         case KVM_XEN_HVM_CONFIG: {
6885                 struct kvm_xen_hvm_config xhc;
6886                 r = -EFAULT;
6887                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6888                         goto out;
6889                 r = kvm_xen_hvm_config(kvm, &xhc);
6890                 break;
6891         }
6892         case KVM_XEN_HVM_GET_ATTR: {
6893                 struct kvm_xen_hvm_attr xha;
6894
6895                 r = -EFAULT;
6896                 if (copy_from_user(&xha, argp, sizeof(xha)))
6897                         goto out;
6898                 r = kvm_xen_hvm_get_attr(kvm, &xha);
6899                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6900                         r = -EFAULT;
6901                 break;
6902         }
6903         case KVM_XEN_HVM_SET_ATTR: {
6904                 struct kvm_xen_hvm_attr xha;
6905
6906                 r = -EFAULT;
6907                 if (copy_from_user(&xha, argp, sizeof(xha)))
6908                         goto out;
6909                 r = kvm_xen_hvm_set_attr(kvm, &xha);
6910                 break;
6911         }
6912         case KVM_XEN_HVM_EVTCHN_SEND: {
6913                 struct kvm_irq_routing_xen_evtchn uxe;
6914
6915                 r = -EFAULT;
6916                 if (copy_from_user(&uxe, argp, sizeof(uxe)))
6917                         goto out;
6918                 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6919                 break;
6920         }
6921 #endif
6922         case KVM_SET_CLOCK:
6923                 r = kvm_vm_ioctl_set_clock(kvm, argp);
6924                 break;
6925         case KVM_GET_CLOCK:
6926                 r = kvm_vm_ioctl_get_clock(kvm, argp);
6927                 break;
6928         case KVM_SET_TSC_KHZ: {
6929                 u32 user_tsc_khz;
6930
6931                 r = -EINVAL;
6932                 user_tsc_khz = (u32)arg;
6933
6934                 if (kvm_caps.has_tsc_control &&
6935                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6936                         goto out;
6937
6938                 if (user_tsc_khz == 0)
6939                         user_tsc_khz = tsc_khz;
6940
6941                 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6942                 r = 0;
6943
6944                 goto out;
6945         }
6946         case KVM_GET_TSC_KHZ: {
6947                 r = READ_ONCE(kvm->arch.default_tsc_khz);
6948                 goto out;
6949         }
6950         case KVM_MEMORY_ENCRYPT_OP: {
6951                 r = -ENOTTY;
6952                 if (!kvm_x86_ops.mem_enc_ioctl)
6953                         goto out;
6954
6955                 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6956                 break;
6957         }
6958         case KVM_MEMORY_ENCRYPT_REG_REGION: {
6959                 struct kvm_enc_region region;
6960
6961                 r = -EFAULT;
6962                 if (copy_from_user(&region, argp, sizeof(region)))
6963                         goto out;
6964
6965                 r = -ENOTTY;
6966                 if (!kvm_x86_ops.mem_enc_register_region)
6967                         goto out;
6968
6969                 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6970                 break;
6971         }
6972         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6973                 struct kvm_enc_region region;
6974
6975                 r = -EFAULT;
6976                 if (copy_from_user(&region, argp, sizeof(region)))
6977                         goto out;
6978
6979                 r = -ENOTTY;
6980                 if (!kvm_x86_ops.mem_enc_unregister_region)
6981                         goto out;
6982
6983                 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6984                 break;
6985         }
6986         case KVM_HYPERV_EVENTFD: {
6987                 struct kvm_hyperv_eventfd hvevfd;
6988
6989                 r = -EFAULT;
6990                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6991                         goto out;
6992                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6993                 break;
6994         }
6995         case KVM_SET_PMU_EVENT_FILTER:
6996                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6997                 break;
6998         case KVM_X86_SET_MSR_FILTER: {
6999                 struct kvm_msr_filter __user *user_msr_filter = argp;
7000                 struct kvm_msr_filter filter;
7001
7002                 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7003                         return -EFAULT;
7004
7005                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7006                 break;
7007         }
7008         default:
7009                 r = -ENOTTY;
7010         }
7011 out:
7012         return r;
7013 }
7014
7015 static void kvm_probe_msr_to_save(u32 msr_index)
7016 {
7017         u32 dummy[2];
7018
7019         if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7020                 return;
7021
7022         /*
7023          * Even MSRs that are valid in the host may not be exposed to guests in
7024          * some cases.
7025          */
7026         switch (msr_index) {
7027         case MSR_IA32_BNDCFGS:
7028                 if (!kvm_mpx_supported())
7029                         return;
7030                 break;
7031         case MSR_TSC_AUX:
7032                 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7033                     !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7034                         return;
7035                 break;
7036         case MSR_IA32_UMWAIT_CONTROL:
7037                 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7038                         return;
7039                 break;
7040         case MSR_IA32_RTIT_CTL:
7041         case MSR_IA32_RTIT_STATUS:
7042                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7043                         return;
7044                 break;
7045         case MSR_IA32_RTIT_CR3_MATCH:
7046                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7047                     !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7048                         return;
7049                 break;
7050         case MSR_IA32_RTIT_OUTPUT_BASE:
7051         case MSR_IA32_RTIT_OUTPUT_MASK:
7052                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7053                     (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7054                      !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7055                         return;
7056                 break;
7057         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7058                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7059                     (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7060                      intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7061                         return;
7062                 break;
7063         case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7064                 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7065                     kvm_pmu_cap.num_counters_gp)
7066                         return;
7067                 break;
7068         case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7069                 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7070                     kvm_pmu_cap.num_counters_gp)
7071                         return;
7072                 break;
7073         case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7074                 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7075                     kvm_pmu_cap.num_counters_fixed)
7076                         return;
7077                 break;
7078         case MSR_IA32_XFD:
7079         case MSR_IA32_XFD_ERR:
7080                 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7081                         return;
7082                 break;
7083         default:
7084                 break;
7085         }
7086
7087         msrs_to_save[num_msrs_to_save++] = msr_index;
7088 }
7089
7090 static void kvm_init_msr_list(void)
7091 {
7092         unsigned i;
7093
7094         BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7095                          "Please update the fixed PMCs in msrs_to_save_pmu[]");
7096
7097         num_msrs_to_save = 0;
7098         num_emulated_msrs = 0;
7099         num_msr_based_features = 0;
7100
7101         for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7102                 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7103
7104         if (enable_pmu) {
7105                 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7106                         kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7107         }
7108
7109         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7110                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7111                         continue;
7112
7113                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7114         }
7115
7116         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
7117                 struct kvm_msr_entry msr;
7118
7119                 msr.index = msr_based_features_all[i];
7120                 if (kvm_get_msr_feature(&msr))
7121                         continue;
7122
7123                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
7124         }
7125 }
7126
7127 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7128                            const void *v)
7129 {
7130         int handled = 0;
7131         int n;
7132
7133         do {
7134                 n = min(len, 8);
7135                 if (!(lapic_in_kernel(vcpu) &&
7136                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7137                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7138                         break;
7139                 handled += n;
7140                 addr += n;
7141                 len -= n;
7142                 v += n;
7143         } while (len);
7144
7145         return handled;
7146 }
7147
7148 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7149 {
7150         int handled = 0;
7151         int n;
7152
7153         do {
7154                 n = min(len, 8);
7155                 if (!(lapic_in_kernel(vcpu) &&
7156                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7157                                          addr, n, v))
7158                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7159                         break;
7160                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7161                 handled += n;
7162                 addr += n;
7163                 len -= n;
7164                 v += n;
7165         } while (len);
7166
7167         return handled;
7168 }
7169
7170 void kvm_set_segment(struct kvm_vcpu *vcpu,
7171                      struct kvm_segment *var, int seg)
7172 {
7173         static_call(kvm_x86_set_segment)(vcpu, var, seg);
7174 }
7175
7176 void kvm_get_segment(struct kvm_vcpu *vcpu,
7177                      struct kvm_segment *var, int seg)
7178 {
7179         static_call(kvm_x86_get_segment)(vcpu, var, seg);
7180 }
7181
7182 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7183                            struct x86_exception *exception)
7184 {
7185         struct kvm_mmu *mmu = vcpu->arch.mmu;
7186         gpa_t t_gpa;
7187
7188         BUG_ON(!mmu_is_nested(vcpu));
7189
7190         /* NPT walks are always user-walks */
7191         access |= PFERR_USER_MASK;
7192         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7193
7194         return t_gpa;
7195 }
7196
7197 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7198                               struct x86_exception *exception)
7199 {
7200         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7201
7202         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7203         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7204 }
7205 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7206
7207 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7208                                struct x86_exception *exception)
7209 {
7210         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7211
7212         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7213         access |= PFERR_WRITE_MASK;
7214         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7215 }
7216 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7217
7218 /* uses this to access any guest's mapped memory without checking CPL */
7219 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7220                                 struct x86_exception *exception)
7221 {
7222         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7223
7224         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7225 }
7226
7227 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7228                                       struct kvm_vcpu *vcpu, u64 access,
7229                                       struct x86_exception *exception)
7230 {
7231         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7232         void *data = val;
7233         int r = X86EMUL_CONTINUE;
7234
7235         while (bytes) {
7236                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7237                 unsigned offset = addr & (PAGE_SIZE-1);
7238                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7239                 int ret;
7240
7241                 if (gpa == INVALID_GPA)
7242                         return X86EMUL_PROPAGATE_FAULT;
7243                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7244                                                offset, toread);
7245                 if (ret < 0) {
7246                         r = X86EMUL_IO_NEEDED;
7247                         goto out;
7248                 }
7249
7250                 bytes -= toread;
7251                 data += toread;
7252                 addr += toread;
7253         }
7254 out:
7255         return r;
7256 }
7257
7258 /* used for instruction fetching */
7259 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7260                                 gva_t addr, void *val, unsigned int bytes,
7261                                 struct x86_exception *exception)
7262 {
7263         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7264         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7265         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7266         unsigned offset;
7267         int ret;
7268
7269         /* Inline kvm_read_guest_virt_helper for speed.  */
7270         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7271                                     exception);
7272         if (unlikely(gpa == INVALID_GPA))
7273                 return X86EMUL_PROPAGATE_FAULT;
7274
7275         offset = addr & (PAGE_SIZE-1);
7276         if (WARN_ON(offset + bytes > PAGE_SIZE))
7277                 bytes = (unsigned)PAGE_SIZE - offset;
7278         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7279                                        offset, bytes);
7280         if (unlikely(ret < 0))
7281                 return X86EMUL_IO_NEEDED;
7282
7283         return X86EMUL_CONTINUE;
7284 }
7285
7286 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7287                                gva_t addr, void *val, unsigned int bytes,
7288                                struct x86_exception *exception)
7289 {
7290         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7291
7292         /*
7293          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7294          * is returned, but our callers are not ready for that and they blindly
7295          * call kvm_inject_page_fault.  Ensure that they at least do not leak
7296          * uninitialized kernel stack memory into cr2 and error code.
7297          */
7298         memset(exception, 0, sizeof(*exception));
7299         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7300                                           exception);
7301 }
7302 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7303
7304 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7305                              gva_t addr, void *val, unsigned int bytes,
7306                              struct x86_exception *exception, bool system)
7307 {
7308         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7309         u64 access = 0;
7310
7311         if (system)
7312                 access |= PFERR_IMPLICIT_ACCESS;
7313         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7314                 access |= PFERR_USER_MASK;
7315
7316         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7317 }
7318
7319 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7320                                       struct kvm_vcpu *vcpu, u64 access,
7321                                       struct x86_exception *exception)
7322 {
7323         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7324         void *data = val;
7325         int r = X86EMUL_CONTINUE;
7326
7327         while (bytes) {
7328                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7329                 unsigned offset = addr & (PAGE_SIZE-1);
7330                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7331                 int ret;
7332
7333                 if (gpa == INVALID_GPA)
7334                         return X86EMUL_PROPAGATE_FAULT;
7335                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7336                 if (ret < 0) {
7337                         r = X86EMUL_IO_NEEDED;
7338                         goto out;
7339                 }
7340
7341                 bytes -= towrite;
7342                 data += towrite;
7343                 addr += towrite;
7344         }
7345 out:
7346         return r;
7347 }
7348
7349 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7350                               unsigned int bytes, struct x86_exception *exception,
7351                               bool system)
7352 {
7353         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7354         u64 access = PFERR_WRITE_MASK;
7355
7356         if (system)
7357                 access |= PFERR_IMPLICIT_ACCESS;
7358         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7359                 access |= PFERR_USER_MASK;
7360
7361         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7362                                            access, exception);
7363 }
7364
7365 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7366                                 unsigned int bytes, struct x86_exception *exception)
7367 {
7368         /* kvm_write_guest_virt_system can pull in tons of pages. */
7369         vcpu->arch.l1tf_flush_l1d = true;
7370
7371         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7372                                            PFERR_WRITE_MASK, exception);
7373 }
7374 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7375
7376 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7377                                 void *insn, int insn_len)
7378 {
7379         return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7380                                                             insn, insn_len);
7381 }
7382
7383 int handle_ud(struct kvm_vcpu *vcpu)
7384 {
7385         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7386         int fep_flags = READ_ONCE(force_emulation_prefix);
7387         int emul_type = EMULTYPE_TRAP_UD;
7388         char sig[5]; /* ud2; .ascii "kvm" */
7389         struct x86_exception e;
7390
7391         if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7392                 return 1;
7393
7394         if (fep_flags &&
7395             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7396                                 sig, sizeof(sig), &e) == 0 &&
7397             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7398                 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7399                         kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7400                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7401                 emul_type = EMULTYPE_TRAP_UD_FORCED;
7402         }
7403
7404         return kvm_emulate_instruction(vcpu, emul_type);
7405 }
7406 EXPORT_SYMBOL_GPL(handle_ud);
7407
7408 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7409                             gpa_t gpa, bool write)
7410 {
7411         /* For APIC access vmexit */
7412         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7413                 return 1;
7414
7415         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7416                 trace_vcpu_match_mmio(gva, gpa, write, true);
7417                 return 1;
7418         }
7419
7420         return 0;
7421 }
7422
7423 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7424                                 gpa_t *gpa, struct x86_exception *exception,
7425                                 bool write)
7426 {
7427         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7428         u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7429                 | (write ? PFERR_WRITE_MASK : 0);
7430
7431         /*
7432          * currently PKRU is only applied to ept enabled guest so
7433          * there is no pkey in EPT page table for L1 guest or EPT
7434          * shadow page table for L2 guest.
7435          */
7436         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7437             !permission_fault(vcpu, vcpu->arch.walk_mmu,
7438                               vcpu->arch.mmio_access, 0, access))) {
7439                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7440                                         (gva & (PAGE_SIZE - 1));
7441                 trace_vcpu_match_mmio(gva, *gpa, write, false);
7442                 return 1;
7443         }
7444
7445         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7446
7447         if (*gpa == INVALID_GPA)
7448                 return -1;
7449
7450         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7451 }
7452
7453 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7454                         const void *val, int bytes)
7455 {
7456         int ret;
7457
7458         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7459         if (ret < 0)
7460                 return 0;
7461         kvm_page_track_write(vcpu, gpa, val, bytes);
7462         return 1;
7463 }
7464
7465 struct read_write_emulator_ops {
7466         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7467                                   int bytes);
7468         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7469                                   void *val, int bytes);
7470         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7471                                int bytes, void *val);
7472         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7473                                     void *val, int bytes);
7474         bool write;
7475 };
7476
7477 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7478 {
7479         if (vcpu->mmio_read_completed) {
7480                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7481                                vcpu->mmio_fragments[0].gpa, val);
7482                 vcpu->mmio_read_completed = 0;
7483                 return 1;
7484         }
7485
7486         return 0;
7487 }
7488
7489 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7490                         void *val, int bytes)
7491 {
7492         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7493 }
7494
7495 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7496                          void *val, int bytes)
7497 {
7498         return emulator_write_phys(vcpu, gpa, val, bytes);
7499 }
7500
7501 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7502 {
7503         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7504         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7505 }
7506
7507 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7508                           void *val, int bytes)
7509 {
7510         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7511         return X86EMUL_IO_NEEDED;
7512 }
7513
7514 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7515                            void *val, int bytes)
7516 {
7517         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7518
7519         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7520         return X86EMUL_CONTINUE;
7521 }
7522
7523 static const struct read_write_emulator_ops read_emultor = {
7524         .read_write_prepare = read_prepare,
7525         .read_write_emulate = read_emulate,
7526         .read_write_mmio = vcpu_mmio_read,
7527         .read_write_exit_mmio = read_exit_mmio,
7528 };
7529
7530 static const struct read_write_emulator_ops write_emultor = {
7531         .read_write_emulate = write_emulate,
7532         .read_write_mmio = write_mmio,
7533         .read_write_exit_mmio = write_exit_mmio,
7534         .write = true,
7535 };
7536
7537 static int emulator_read_write_onepage(unsigned long addr, void *val,
7538                                        unsigned int bytes,
7539                                        struct x86_exception *exception,
7540                                        struct kvm_vcpu *vcpu,
7541                                        const struct read_write_emulator_ops *ops)
7542 {
7543         gpa_t gpa;
7544         int handled, ret;
7545         bool write = ops->write;
7546         struct kvm_mmio_fragment *frag;
7547         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7548
7549         /*
7550          * If the exit was due to a NPF we may already have a GPA.
7551          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7552          * Note, this cannot be used on string operations since string
7553          * operation using rep will only have the initial GPA from the NPF
7554          * occurred.
7555          */
7556         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7557             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7558                 gpa = ctxt->gpa_val;
7559                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7560         } else {
7561                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7562                 if (ret < 0)
7563                         return X86EMUL_PROPAGATE_FAULT;
7564         }
7565
7566         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7567                 return X86EMUL_CONTINUE;
7568
7569         /*
7570          * Is this MMIO handled locally?
7571          */
7572         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7573         if (handled == bytes)
7574                 return X86EMUL_CONTINUE;
7575
7576         gpa += handled;
7577         bytes -= handled;
7578         val += handled;
7579
7580         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7581         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7582         frag->gpa = gpa;
7583         frag->data = val;
7584         frag->len = bytes;
7585         return X86EMUL_CONTINUE;
7586 }
7587
7588 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7589                         unsigned long addr,
7590                         void *val, unsigned int bytes,
7591                         struct x86_exception *exception,
7592                         const struct read_write_emulator_ops *ops)
7593 {
7594         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7595         gpa_t gpa;
7596         int rc;
7597
7598         if (ops->read_write_prepare &&
7599                   ops->read_write_prepare(vcpu, val, bytes))
7600                 return X86EMUL_CONTINUE;
7601
7602         vcpu->mmio_nr_fragments = 0;
7603
7604         /* Crossing a page boundary? */
7605         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7606                 int now;
7607
7608                 now = -addr & ~PAGE_MASK;
7609                 rc = emulator_read_write_onepage(addr, val, now, exception,
7610                                                  vcpu, ops);
7611
7612                 if (rc != X86EMUL_CONTINUE)
7613                         return rc;
7614                 addr += now;
7615                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7616                         addr = (u32)addr;
7617                 val += now;
7618                 bytes -= now;
7619         }
7620
7621         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7622                                          vcpu, ops);
7623         if (rc != X86EMUL_CONTINUE)
7624                 return rc;
7625
7626         if (!vcpu->mmio_nr_fragments)
7627                 return rc;
7628
7629         gpa = vcpu->mmio_fragments[0].gpa;
7630
7631         vcpu->mmio_needed = 1;
7632         vcpu->mmio_cur_fragment = 0;
7633
7634         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7635         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7636         vcpu->run->exit_reason = KVM_EXIT_MMIO;
7637         vcpu->run->mmio.phys_addr = gpa;
7638
7639         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7640 }
7641
7642 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7643                                   unsigned long addr,
7644                                   void *val,
7645                                   unsigned int bytes,
7646                                   struct x86_exception *exception)
7647 {
7648         return emulator_read_write(ctxt, addr, val, bytes,
7649                                    exception, &read_emultor);
7650 }
7651
7652 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7653                             unsigned long addr,
7654                             const void *val,
7655                             unsigned int bytes,
7656                             struct x86_exception *exception)
7657 {
7658         return emulator_read_write(ctxt, addr, (void *)val, bytes,
7659                                    exception, &write_emultor);
7660 }
7661
7662 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7663         (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7664
7665 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7666                                      unsigned long addr,
7667                                      const void *old,
7668                                      const void *new,
7669                                      unsigned int bytes,
7670                                      struct x86_exception *exception)
7671 {
7672         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7673         u64 page_line_mask;
7674         unsigned long hva;
7675         gpa_t gpa;
7676         int r;
7677
7678         /* guests cmpxchg8b have to be emulated atomically */
7679         if (bytes > 8 || (bytes & (bytes - 1)))
7680                 goto emul_write;
7681
7682         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7683
7684         if (gpa == INVALID_GPA ||
7685             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7686                 goto emul_write;
7687
7688         /*
7689          * Emulate the atomic as a straight write to avoid #AC if SLD is
7690          * enabled in the host and the access splits a cache line.
7691          */
7692         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7693                 page_line_mask = ~(cache_line_size() - 1);
7694         else
7695                 page_line_mask = PAGE_MASK;
7696
7697         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7698                 goto emul_write;
7699
7700         hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7701         if (kvm_is_error_hva(hva))
7702                 goto emul_write;
7703
7704         hva += offset_in_page(gpa);
7705
7706         switch (bytes) {
7707         case 1:
7708                 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7709                 break;
7710         case 2:
7711                 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7712                 break;
7713         case 4:
7714                 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7715                 break;
7716         case 8:
7717                 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7718                 break;
7719         default:
7720                 BUG();
7721         }
7722
7723         if (r < 0)
7724                 return X86EMUL_UNHANDLEABLE;
7725         if (r)
7726                 return X86EMUL_CMPXCHG_FAILED;
7727
7728         kvm_page_track_write(vcpu, gpa, new, bytes);
7729
7730         return X86EMUL_CONTINUE;
7731
7732 emul_write:
7733         pr_warn_once("emulating exchange as write\n");
7734
7735         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7736 }
7737
7738 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7739                                unsigned short port, void *data,
7740                                unsigned int count, bool in)
7741 {
7742         unsigned i;
7743         int r;
7744
7745         WARN_ON_ONCE(vcpu->arch.pio.count);
7746         for (i = 0; i < count; i++) {
7747                 if (in)
7748                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7749                 else
7750                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7751
7752                 if (r) {
7753                         if (i == 0)
7754                                 goto userspace_io;
7755
7756                         /*
7757                          * Userspace must have unregistered the device while PIO
7758                          * was running.  Drop writes / read as 0.
7759                          */
7760                         if (in)
7761                                 memset(data, 0, size * (count - i));
7762                         break;
7763                 }
7764
7765                 data += size;
7766         }
7767         return 1;
7768
7769 userspace_io:
7770         vcpu->arch.pio.port = port;
7771         vcpu->arch.pio.in = in;
7772         vcpu->arch.pio.count = count;
7773         vcpu->arch.pio.size = size;
7774
7775         if (in)
7776                 memset(vcpu->arch.pio_data, 0, size * count);
7777         else
7778                 memcpy(vcpu->arch.pio_data, data, size * count);
7779
7780         vcpu->run->exit_reason = KVM_EXIT_IO;
7781         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7782         vcpu->run->io.size = size;
7783         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7784         vcpu->run->io.count = count;
7785         vcpu->run->io.port = port;
7786         return 0;
7787 }
7788
7789 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7790                            unsigned short port, void *val, unsigned int count)
7791 {
7792         int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7793         if (r)
7794                 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7795
7796         return r;
7797 }
7798
7799 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7800 {
7801         int size = vcpu->arch.pio.size;
7802         unsigned int count = vcpu->arch.pio.count;
7803         memcpy(val, vcpu->arch.pio_data, size * count);
7804         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7805         vcpu->arch.pio.count = 0;
7806 }
7807
7808 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7809                                     int size, unsigned short port, void *val,
7810                                     unsigned int count)
7811 {
7812         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7813         if (vcpu->arch.pio.count) {
7814                 /*
7815                  * Complete a previous iteration that required userspace I/O.
7816                  * Note, @count isn't guaranteed to match pio.count as userspace
7817                  * can modify ECX before rerunning the vCPU.  Ignore any such
7818                  * shenanigans as KVM doesn't support modifying the rep count,
7819                  * and the emulator ensures @count doesn't overflow the buffer.
7820                  */
7821                 complete_emulator_pio_in(vcpu, val);
7822                 return 1;
7823         }
7824
7825         return emulator_pio_in(vcpu, size, port, val, count);
7826 }
7827
7828 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7829                             unsigned short port, const void *val,
7830                             unsigned int count)
7831 {
7832         trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7833         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7834 }
7835
7836 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7837                                      int size, unsigned short port,
7838                                      const void *val, unsigned int count)
7839 {
7840         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7841 }
7842
7843 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7844 {
7845         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7846 }
7847
7848 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7849 {
7850         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7851 }
7852
7853 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7854 {
7855         if (!need_emulate_wbinvd(vcpu))
7856                 return X86EMUL_CONTINUE;
7857
7858         if (static_call(kvm_x86_has_wbinvd_exit)()) {
7859                 int cpu = get_cpu();
7860
7861                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7862                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7863                                 wbinvd_ipi, NULL, 1);
7864                 put_cpu();
7865                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7866         } else
7867                 wbinvd();
7868         return X86EMUL_CONTINUE;
7869 }
7870
7871 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7872 {
7873         kvm_emulate_wbinvd_noskip(vcpu);
7874         return kvm_skip_emulated_instruction(vcpu);
7875 }
7876 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7877
7878
7879
7880 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7881 {
7882         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7883 }
7884
7885 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7886                             unsigned long *dest)
7887 {
7888         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7889 }
7890
7891 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7892                            unsigned long value)
7893 {
7894
7895         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7896 }
7897
7898 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7899 {
7900         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7901 }
7902
7903 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7904 {
7905         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7906         unsigned long value;
7907
7908         switch (cr) {
7909         case 0:
7910                 value = kvm_read_cr0(vcpu);
7911                 break;
7912         case 2:
7913                 value = vcpu->arch.cr2;
7914                 break;
7915         case 3:
7916                 value = kvm_read_cr3(vcpu);
7917                 break;
7918         case 4:
7919                 value = kvm_read_cr4(vcpu);
7920                 break;
7921         case 8:
7922                 value = kvm_get_cr8(vcpu);
7923                 break;
7924         default:
7925                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7926                 return 0;
7927         }
7928
7929         return value;
7930 }
7931
7932 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7933 {
7934         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7935         int res = 0;
7936
7937         switch (cr) {
7938         case 0:
7939                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7940                 break;
7941         case 2:
7942                 vcpu->arch.cr2 = val;
7943                 break;
7944         case 3:
7945                 res = kvm_set_cr3(vcpu, val);
7946                 break;
7947         case 4:
7948                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7949                 break;
7950         case 8:
7951                 res = kvm_set_cr8(vcpu, val);
7952                 break;
7953         default:
7954                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7955                 res = -1;
7956         }
7957
7958         return res;
7959 }
7960
7961 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7962 {
7963         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7964 }
7965
7966 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7967 {
7968         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7969 }
7970
7971 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7972 {
7973         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7974 }
7975
7976 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7977 {
7978         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7979 }
7980
7981 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7982 {
7983         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7984 }
7985
7986 static unsigned long emulator_get_cached_segment_base(
7987         struct x86_emulate_ctxt *ctxt, int seg)
7988 {
7989         return get_segment_base(emul_to_vcpu(ctxt), seg);
7990 }
7991
7992 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7993                                  struct desc_struct *desc, u32 *base3,
7994                                  int seg)
7995 {
7996         struct kvm_segment var;
7997
7998         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7999         *selector = var.selector;
8000
8001         if (var.unusable) {
8002                 memset(desc, 0, sizeof(*desc));
8003                 if (base3)
8004                         *base3 = 0;
8005                 return false;
8006         }
8007
8008         if (var.g)
8009                 var.limit >>= 12;
8010         set_desc_limit(desc, var.limit);
8011         set_desc_base(desc, (unsigned long)var.base);
8012 #ifdef CONFIG_X86_64
8013         if (base3)
8014                 *base3 = var.base >> 32;
8015 #endif
8016         desc->type = var.type;
8017         desc->s = var.s;
8018         desc->dpl = var.dpl;
8019         desc->p = var.present;
8020         desc->avl = var.avl;
8021         desc->l = var.l;
8022         desc->d = var.db;
8023         desc->g = var.g;
8024
8025         return true;
8026 }
8027
8028 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8029                                  struct desc_struct *desc, u32 base3,
8030                                  int seg)
8031 {
8032         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8033         struct kvm_segment var;
8034
8035         var.selector = selector;
8036         var.base = get_desc_base(desc);
8037 #ifdef CONFIG_X86_64
8038         var.base |= ((u64)base3) << 32;
8039 #endif
8040         var.limit = get_desc_limit(desc);
8041         if (desc->g)
8042                 var.limit = (var.limit << 12) | 0xfff;
8043         var.type = desc->type;
8044         var.dpl = desc->dpl;
8045         var.db = desc->d;
8046         var.s = desc->s;
8047         var.l = desc->l;
8048         var.g = desc->g;
8049         var.avl = desc->avl;
8050         var.present = desc->p;
8051         var.unusable = !var.present;
8052         var.padding = 0;
8053
8054         kvm_set_segment(vcpu, &var, seg);
8055         return;
8056 }
8057
8058 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8059                                         u32 msr_index, u64 *pdata)
8060 {
8061         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8062         int r;
8063
8064         r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8065         if (r < 0)
8066                 return X86EMUL_UNHANDLEABLE;
8067
8068         if (r) {
8069                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8070                                        complete_emulated_rdmsr, r))
8071                         return X86EMUL_IO_NEEDED;
8072
8073                 trace_kvm_msr_read_ex(msr_index);
8074                 return X86EMUL_PROPAGATE_FAULT;
8075         }
8076
8077         trace_kvm_msr_read(msr_index, *pdata);
8078         return X86EMUL_CONTINUE;
8079 }
8080
8081 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8082                                         u32 msr_index, u64 data)
8083 {
8084         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8085         int r;
8086
8087         r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8088         if (r < 0)
8089                 return X86EMUL_UNHANDLEABLE;
8090
8091         if (r) {
8092                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8093                                        complete_emulated_msr_access, r))
8094                         return X86EMUL_IO_NEEDED;
8095
8096                 trace_kvm_msr_write_ex(msr_index, data);
8097                 return X86EMUL_PROPAGATE_FAULT;
8098         }
8099
8100         trace_kvm_msr_write(msr_index, data);
8101         return X86EMUL_CONTINUE;
8102 }
8103
8104 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8105                             u32 msr_index, u64 *pdata)
8106 {
8107         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8108 }
8109
8110 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8111                               u32 pmc)
8112 {
8113         if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8114                 return 0;
8115         return -EINVAL;
8116 }
8117
8118 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8119                              u32 pmc, u64 *pdata)
8120 {
8121         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8122 }
8123
8124 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8125 {
8126         emul_to_vcpu(ctxt)->arch.halt_request = 1;
8127 }
8128
8129 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8130                               struct x86_instruction_info *info,
8131                               enum x86_intercept_stage stage)
8132 {
8133         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8134                                             &ctxt->exception);
8135 }
8136
8137 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8138                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8139                               bool exact_only)
8140 {
8141         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8142 }
8143
8144 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8145 {
8146         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8147 }
8148
8149 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8150 {
8151         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8152 }
8153
8154 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8155 {
8156         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8157 }
8158
8159 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8160 {
8161         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8162 }
8163
8164 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8165 {
8166         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8167 }
8168
8169 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8170 {
8171         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8172 }
8173
8174 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8175 {
8176         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8177 }
8178
8179 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8180 {
8181         return is_smm(emul_to_vcpu(ctxt));
8182 }
8183
8184 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8185 {
8186         return is_guest_mode(emul_to_vcpu(ctxt));
8187 }
8188
8189 #ifndef CONFIG_KVM_SMM
8190 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8191 {
8192         WARN_ON_ONCE(1);
8193         return X86EMUL_UNHANDLEABLE;
8194 }
8195 #endif
8196
8197 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8198 {
8199         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8200 }
8201
8202 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8203 {
8204         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8205 }
8206
8207 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8208 {
8209         struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8210
8211         if (!kvm->vm_bugged)
8212                 kvm_vm_bugged(kvm);
8213 }
8214
8215 static const struct x86_emulate_ops emulate_ops = {
8216         .vm_bugged           = emulator_vm_bugged,
8217         .read_gpr            = emulator_read_gpr,
8218         .write_gpr           = emulator_write_gpr,
8219         .read_std            = emulator_read_std,
8220         .write_std           = emulator_write_std,
8221         .fetch               = kvm_fetch_guest_virt,
8222         .read_emulated       = emulator_read_emulated,
8223         .write_emulated      = emulator_write_emulated,
8224         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
8225         .invlpg              = emulator_invlpg,
8226         .pio_in_emulated     = emulator_pio_in_emulated,
8227         .pio_out_emulated    = emulator_pio_out_emulated,
8228         .get_segment         = emulator_get_segment,
8229         .set_segment         = emulator_set_segment,
8230         .get_cached_segment_base = emulator_get_cached_segment_base,
8231         .get_gdt             = emulator_get_gdt,
8232         .get_idt             = emulator_get_idt,
8233         .set_gdt             = emulator_set_gdt,
8234         .set_idt             = emulator_set_idt,
8235         .get_cr              = emulator_get_cr,
8236         .set_cr              = emulator_set_cr,
8237         .cpl                 = emulator_get_cpl,
8238         .get_dr              = emulator_get_dr,
8239         .set_dr              = emulator_set_dr,
8240         .set_msr_with_filter = emulator_set_msr_with_filter,
8241         .get_msr_with_filter = emulator_get_msr_with_filter,
8242         .get_msr             = emulator_get_msr,
8243         .check_pmc           = emulator_check_pmc,
8244         .read_pmc            = emulator_read_pmc,
8245         .halt                = emulator_halt,
8246         .wbinvd              = emulator_wbinvd,
8247         .fix_hypercall       = emulator_fix_hypercall,
8248         .intercept           = emulator_intercept,
8249         .get_cpuid           = emulator_get_cpuid,
8250         .guest_has_long_mode = emulator_guest_has_long_mode,
8251         .guest_has_movbe     = emulator_guest_has_movbe,
8252         .guest_has_fxsr      = emulator_guest_has_fxsr,
8253         .guest_has_rdpid     = emulator_guest_has_rdpid,
8254         .set_nmi_mask        = emulator_set_nmi_mask,
8255         .is_smm              = emulator_is_smm,
8256         .is_guest_mode       = emulator_is_guest_mode,
8257         .leave_smm           = emulator_leave_smm,
8258         .triple_fault        = emulator_triple_fault,
8259         .set_xcr             = emulator_set_xcr,
8260 };
8261
8262 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8263 {
8264         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8265         /*
8266          * an sti; sti; sequence only disable interrupts for the first
8267          * instruction. So, if the last instruction, be it emulated or
8268          * not, left the system with the INT_STI flag enabled, it
8269          * means that the last instruction is an sti. We should not
8270          * leave the flag on in this case. The same goes for mov ss
8271          */
8272         if (int_shadow & mask)
8273                 mask = 0;
8274         if (unlikely(int_shadow || mask)) {
8275                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8276                 if (!mask)
8277                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8278         }
8279 }
8280
8281 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8282 {
8283         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8284
8285         if (ctxt->exception.vector == PF_VECTOR)
8286                 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8287         else if (ctxt->exception.error_code_valid)
8288                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8289                                       ctxt->exception.error_code);
8290         else
8291                 kvm_queue_exception(vcpu, ctxt->exception.vector);
8292 }
8293
8294 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8295 {
8296         struct x86_emulate_ctxt *ctxt;
8297
8298         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8299         if (!ctxt) {
8300                 pr_err("failed to allocate vcpu's emulator\n");
8301                 return NULL;
8302         }
8303
8304         ctxt->vcpu = vcpu;
8305         ctxt->ops = &emulate_ops;
8306         vcpu->arch.emulate_ctxt = ctxt;
8307
8308         return ctxt;
8309 }
8310
8311 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8312 {
8313         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8314         int cs_db, cs_l;
8315
8316         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8317
8318         ctxt->gpa_available = false;
8319         ctxt->eflags = kvm_get_rflags(vcpu);
8320         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8321
8322         ctxt->eip = kvm_rip_read(vcpu);
8323         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
8324                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
8325                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
8326                      cs_db                              ? X86EMUL_MODE_PROT32 :
8327                                                           X86EMUL_MODE_PROT16;
8328         ctxt->interruptibility = 0;
8329         ctxt->have_exception = false;
8330         ctxt->exception.vector = -1;
8331         ctxt->perm_ok = false;
8332
8333         init_decode_cache(ctxt);
8334         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8335 }
8336
8337 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8338 {
8339         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8340         int ret;
8341
8342         init_emulate_ctxt(vcpu);
8343
8344         ctxt->op_bytes = 2;
8345         ctxt->ad_bytes = 2;
8346         ctxt->_eip = ctxt->eip + inc_eip;
8347         ret = emulate_int_real(ctxt, irq);
8348
8349         if (ret != X86EMUL_CONTINUE) {
8350                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8351         } else {
8352                 ctxt->eip = ctxt->_eip;
8353                 kvm_rip_write(vcpu, ctxt->eip);
8354                 kvm_set_rflags(vcpu, ctxt->eflags);
8355         }
8356 }
8357 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8358
8359 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8360                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
8361 {
8362         struct kvm_run *run = vcpu->run;
8363         u64 info[5];
8364         u8 info_start;
8365
8366         /*
8367          * Zero the whole array used to retrieve the exit info, as casting to
8368          * u32 for select entries will leave some chunks uninitialized.
8369          */
8370         memset(&info, 0, sizeof(info));
8371
8372         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8373                                            &info[2], (u32 *)&info[3],
8374                                            (u32 *)&info[4]);
8375
8376         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8377         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8378
8379         /*
8380          * There's currently space for 13 entries, but 5 are used for the exit
8381          * reason and info.  Restrict to 4 to reduce the maintenance burden
8382          * when expanding kvm_run.emulation_failure in the future.
8383          */
8384         if (WARN_ON_ONCE(ndata > 4))
8385                 ndata = 4;
8386
8387         /* Always include the flags as a 'data' entry. */
8388         info_start = 1;
8389         run->emulation_failure.flags = 0;
8390
8391         if (insn_size) {
8392                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8393                               sizeof(run->emulation_failure.insn_bytes) != 16));
8394                 info_start += 2;
8395                 run->emulation_failure.flags |=
8396                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8397                 run->emulation_failure.insn_size = insn_size;
8398                 memset(run->emulation_failure.insn_bytes, 0x90,
8399                        sizeof(run->emulation_failure.insn_bytes));
8400                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8401         }
8402
8403         memcpy(&run->internal.data[info_start], info, sizeof(info));
8404         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8405                ndata * sizeof(data[0]));
8406
8407         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8408 }
8409
8410 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8411 {
8412         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8413
8414         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8415                                        ctxt->fetch.end - ctxt->fetch.data);
8416 }
8417
8418 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8419                                           u8 ndata)
8420 {
8421         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8422 }
8423 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8424
8425 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8426 {
8427         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8428 }
8429 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8430
8431 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8432 {
8433         struct kvm *kvm = vcpu->kvm;
8434
8435         ++vcpu->stat.insn_emulation_fail;
8436         trace_kvm_emulate_insn_failed(vcpu);
8437
8438         if (emulation_type & EMULTYPE_VMWARE_GP) {
8439                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8440                 return 1;
8441         }
8442
8443         if (kvm->arch.exit_on_emulation_error ||
8444             (emulation_type & EMULTYPE_SKIP)) {
8445                 prepare_emulation_ctxt_failure_exit(vcpu);
8446                 return 0;
8447         }
8448
8449         kvm_queue_exception(vcpu, UD_VECTOR);
8450
8451         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8452                 prepare_emulation_ctxt_failure_exit(vcpu);
8453                 return 0;
8454         }
8455
8456         return 1;
8457 }
8458
8459 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8460                                   int emulation_type)
8461 {
8462         gpa_t gpa = cr2_or_gpa;
8463         kvm_pfn_t pfn;
8464
8465         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8466                 return false;
8467
8468         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8469             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8470                 return false;
8471
8472         if (!vcpu->arch.mmu->root_role.direct) {
8473                 /*
8474                  * Write permission should be allowed since only
8475                  * write access need to be emulated.
8476                  */
8477                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8478
8479                 /*
8480                  * If the mapping is invalid in guest, let cpu retry
8481                  * it to generate fault.
8482                  */
8483                 if (gpa == INVALID_GPA)
8484                         return true;
8485         }
8486
8487         /*
8488          * Do not retry the unhandleable instruction if it faults on the
8489          * readonly host memory, otherwise it will goto a infinite loop:
8490          * retry instruction -> write #PF -> emulation fail -> retry
8491          * instruction -> ...
8492          */
8493         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8494
8495         /*
8496          * If the instruction failed on the error pfn, it can not be fixed,
8497          * report the error to userspace.
8498          */
8499         if (is_error_noslot_pfn(pfn))
8500                 return false;
8501
8502         kvm_release_pfn_clean(pfn);
8503
8504         /* The instructions are well-emulated on direct mmu. */
8505         if (vcpu->arch.mmu->root_role.direct) {
8506                 unsigned int indirect_shadow_pages;
8507
8508                 write_lock(&vcpu->kvm->mmu_lock);
8509                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8510                 write_unlock(&vcpu->kvm->mmu_lock);
8511
8512                 if (indirect_shadow_pages)
8513                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8514
8515                 return true;
8516         }
8517
8518         /*
8519          * if emulation was due to access to shadowed page table
8520          * and it failed try to unshadow page and re-enter the
8521          * guest to let CPU execute the instruction.
8522          */
8523         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8524
8525         /*
8526          * If the access faults on its page table, it can not
8527          * be fixed by unprotecting shadow page and it should
8528          * be reported to userspace.
8529          */
8530         return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8531 }
8532
8533 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8534                               gpa_t cr2_or_gpa,  int emulation_type)
8535 {
8536         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8537         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8538
8539         last_retry_eip = vcpu->arch.last_retry_eip;
8540         last_retry_addr = vcpu->arch.last_retry_addr;
8541
8542         /*
8543          * If the emulation is caused by #PF and it is non-page_table
8544          * writing instruction, it means the VM-EXIT is caused by shadow
8545          * page protected, we can zap the shadow page and retry this
8546          * instruction directly.
8547          *
8548          * Note: if the guest uses a non-page-table modifying instruction
8549          * on the PDE that points to the instruction, then we will unmap
8550          * the instruction and go to an infinite loop. So, we cache the
8551          * last retried eip and the last fault address, if we meet the eip
8552          * and the address again, we can break out of the potential infinite
8553          * loop.
8554          */
8555         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8556
8557         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8558                 return false;
8559
8560         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8561             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8562                 return false;
8563
8564         if (x86_page_table_writing_insn(ctxt))
8565                 return false;
8566
8567         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8568                 return false;
8569
8570         vcpu->arch.last_retry_eip = ctxt->eip;
8571         vcpu->arch.last_retry_addr = cr2_or_gpa;
8572
8573         if (!vcpu->arch.mmu->root_role.direct)
8574                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8575
8576         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8577
8578         return true;
8579 }
8580
8581 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8582 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8583
8584 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8585                                 unsigned long *db)
8586 {
8587         u32 dr6 = 0;
8588         int i;
8589         u32 enable, rwlen;
8590
8591         enable = dr7;
8592         rwlen = dr7 >> 16;
8593         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8594                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8595                         dr6 |= (1 << i);
8596         return dr6;
8597 }
8598
8599 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8600 {
8601         struct kvm_run *kvm_run = vcpu->run;
8602
8603         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8604                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8605                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8606                 kvm_run->debug.arch.exception = DB_VECTOR;
8607                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8608                 return 0;
8609         }
8610         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8611         return 1;
8612 }
8613
8614 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8615 {
8616         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8617         int r;
8618
8619         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8620         if (unlikely(!r))
8621                 return 0;
8622
8623         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8624
8625         /*
8626          * rflags is the old, "raw" value of the flags.  The new value has
8627          * not been saved yet.
8628          *
8629          * This is correct even for TF set by the guest, because "the
8630          * processor will not generate this exception after the instruction
8631          * that sets the TF flag".
8632          */
8633         if (unlikely(rflags & X86_EFLAGS_TF))
8634                 r = kvm_vcpu_do_singlestep(vcpu);
8635         return r;
8636 }
8637 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8638
8639 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8640 {
8641         u32 shadow;
8642
8643         if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8644                 return true;
8645
8646         /*
8647          * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8648          * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8649          * to avoid the relatively expensive CPUID lookup.
8650          */
8651         shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8652         return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8653                guest_cpuid_is_intel(vcpu);
8654 }
8655
8656 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8657                                            int emulation_type, int *r)
8658 {
8659         WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8660
8661         /*
8662          * Do not check for code breakpoints if hardware has already done the
8663          * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8664          * the instruction has passed all exception checks, and all intercepted
8665          * exceptions that trigger emulation have lower priority than code
8666          * breakpoints, i.e. the fact that the intercepted exception occurred
8667          * means any code breakpoints have already been serviced.
8668          *
8669          * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8670          * hardware has checked the RIP of the magic prefix, but not the RIP of
8671          * the instruction being emulated.  The intent of forced emulation is
8672          * to behave as if KVM intercepted the instruction without an exception
8673          * and without a prefix.
8674          */
8675         if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8676                               EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8677                 return false;
8678
8679         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8680             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8681                 struct kvm_run *kvm_run = vcpu->run;
8682                 unsigned long eip = kvm_get_linear_rip(vcpu);
8683                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8684                                            vcpu->arch.guest_debug_dr7,
8685                                            vcpu->arch.eff_db);
8686
8687                 if (dr6 != 0) {
8688                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8689                         kvm_run->debug.arch.pc = eip;
8690                         kvm_run->debug.arch.exception = DB_VECTOR;
8691                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
8692                         *r = 0;
8693                         return true;
8694                 }
8695         }
8696
8697         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8698             !kvm_is_code_breakpoint_inhibited(vcpu)) {
8699                 unsigned long eip = kvm_get_linear_rip(vcpu);
8700                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8701                                            vcpu->arch.dr7,
8702                                            vcpu->arch.db);
8703
8704                 if (dr6 != 0) {
8705                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8706                         *r = 1;
8707                         return true;
8708                 }
8709         }
8710
8711         return false;
8712 }
8713
8714 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8715 {
8716         switch (ctxt->opcode_len) {
8717         case 1:
8718                 switch (ctxt->b) {
8719                 case 0xe4:      /* IN */
8720                 case 0xe5:
8721                 case 0xec:
8722                 case 0xed:
8723                 case 0xe6:      /* OUT */
8724                 case 0xe7:
8725                 case 0xee:
8726                 case 0xef:
8727                 case 0x6c:      /* INS */
8728                 case 0x6d:
8729                 case 0x6e:      /* OUTS */
8730                 case 0x6f:
8731                         return true;
8732                 }
8733                 break;
8734         case 2:
8735                 switch (ctxt->b) {
8736                 case 0x33:      /* RDPMC */
8737                         return true;
8738                 }
8739                 break;
8740         }
8741
8742         return false;
8743 }
8744
8745 /*
8746  * Decode an instruction for emulation.  The caller is responsible for handling
8747  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8748  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8749  * code breakpoints have higher priority and thus have already been done by
8750  * hardware.
8751  *
8752  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8753  *     response to a machine check.
8754  */
8755 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8756                                     void *insn, int insn_len)
8757 {
8758         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8759         int r;
8760
8761         init_emulate_ctxt(vcpu);
8762
8763         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8764
8765         trace_kvm_emulate_insn_start(vcpu);
8766         ++vcpu->stat.insn_emulation;
8767
8768         return r;
8769 }
8770 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8771
8772 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8773                             int emulation_type, void *insn, int insn_len)
8774 {
8775         int r;
8776         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8777         bool writeback = true;
8778
8779         if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8780                 return 1;
8781
8782         vcpu->arch.l1tf_flush_l1d = true;
8783
8784         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8785                 kvm_clear_exception_queue(vcpu);
8786
8787                 /*
8788                  * Return immediately if RIP hits a code breakpoint, such #DBs
8789                  * are fault-like and are higher priority than any faults on
8790                  * the code fetch itself.
8791                  */
8792                 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8793                         return r;
8794
8795                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8796                                                     insn, insn_len);
8797                 if (r != EMULATION_OK)  {
8798                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
8799                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8800                                 kvm_queue_exception(vcpu, UD_VECTOR);
8801                                 return 1;
8802                         }
8803                         if (reexecute_instruction(vcpu, cr2_or_gpa,
8804                                                   emulation_type))
8805                                 return 1;
8806
8807                         if (ctxt->have_exception &&
8808                             !(emulation_type & EMULTYPE_SKIP)) {
8809                                 /*
8810                                  * #UD should result in just EMULATION_FAILED, and trap-like
8811                                  * exception should not be encountered during decode.
8812                                  */
8813                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8814                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8815                                 inject_emulated_exception(vcpu);
8816                                 return 1;
8817                         }
8818                         return handle_emulation_failure(vcpu, emulation_type);
8819                 }
8820         }
8821
8822         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8823             !is_vmware_backdoor_opcode(ctxt)) {
8824                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8825                 return 1;
8826         }
8827
8828         /*
8829          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8830          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8831          * The caller is responsible for updating interruptibility state and
8832          * injecting single-step #DBs.
8833          */
8834         if (emulation_type & EMULTYPE_SKIP) {
8835                 if (ctxt->mode != X86EMUL_MODE_PROT64)
8836                         ctxt->eip = (u32)ctxt->_eip;
8837                 else
8838                         ctxt->eip = ctxt->_eip;
8839
8840                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8841                         r = 1;
8842                         goto writeback;
8843                 }
8844
8845                 kvm_rip_write(vcpu, ctxt->eip);
8846                 if (ctxt->eflags & X86_EFLAGS_RF)
8847                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8848                 return 1;
8849         }
8850
8851         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8852                 return 1;
8853
8854         /* this is needed for vmware backdoor interface to work since it
8855            changes registers values  during IO operation */
8856         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8857                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8858                 emulator_invalidate_register_cache(ctxt);
8859         }
8860
8861 restart:
8862         if (emulation_type & EMULTYPE_PF) {
8863                 /* Save the faulting GPA (cr2) in the address field */
8864                 ctxt->exception.address = cr2_or_gpa;
8865
8866                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8867                 if (vcpu->arch.mmu->root_role.direct) {
8868                         ctxt->gpa_available = true;
8869                         ctxt->gpa_val = cr2_or_gpa;
8870                 }
8871         } else {
8872                 /* Sanitize the address out of an abundance of paranoia. */
8873                 ctxt->exception.address = 0;
8874         }
8875
8876         r = x86_emulate_insn(ctxt);
8877
8878         if (r == EMULATION_INTERCEPTED)
8879                 return 1;
8880
8881         if (r == EMULATION_FAILED) {
8882                 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
8883                         return 1;
8884
8885                 return handle_emulation_failure(vcpu, emulation_type);
8886         }
8887
8888         if (ctxt->have_exception) {
8889                 r = 1;
8890                 inject_emulated_exception(vcpu);
8891         } else if (vcpu->arch.pio.count) {
8892                 if (!vcpu->arch.pio.in) {
8893                         /* FIXME: return into emulator if single-stepping.  */
8894                         vcpu->arch.pio.count = 0;
8895                 } else {
8896                         writeback = false;
8897                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
8898                 }
8899                 r = 0;
8900         } else if (vcpu->mmio_needed) {
8901                 ++vcpu->stat.mmio_exits;
8902
8903                 if (!vcpu->mmio_is_write)
8904                         writeback = false;
8905                 r = 0;
8906                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8907         } else if (vcpu->arch.complete_userspace_io) {
8908                 writeback = false;
8909                 r = 0;
8910         } else if (r == EMULATION_RESTART)
8911                 goto restart;
8912         else
8913                 r = 1;
8914
8915 writeback:
8916         if (writeback) {
8917                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8918                 toggle_interruptibility(vcpu, ctxt->interruptibility);
8919                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8920
8921                 /*
8922                  * Note, EXCPT_DB is assumed to be fault-like as the emulator
8923                  * only supports code breakpoints and general detect #DB, both
8924                  * of which are fault-like.
8925                  */
8926                 if (!ctxt->have_exception ||
8927                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8928                         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8929                         if (ctxt->is_branch)
8930                                 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8931                         kvm_rip_write(vcpu, ctxt->eip);
8932                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8933                                 r = kvm_vcpu_do_singlestep(vcpu);
8934                         static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8935                         __kvm_set_rflags(vcpu, ctxt->eflags);
8936                 }
8937
8938                 /*
8939                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8940                  * do nothing, and it will be requested again as soon as
8941                  * the shadow expires.  But we still need to check here,
8942                  * because POPF has no interrupt shadow.
8943                  */
8944                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8945                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8946         } else
8947                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8948
8949         return r;
8950 }
8951
8952 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8953 {
8954         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8955 }
8956 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8957
8958 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8959                                         void *insn, int insn_len)
8960 {
8961         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8962 }
8963 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8964
8965 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8966 {
8967         vcpu->arch.pio.count = 0;
8968         return 1;
8969 }
8970
8971 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8972 {
8973         vcpu->arch.pio.count = 0;
8974
8975         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8976                 return 1;
8977
8978         return kvm_skip_emulated_instruction(vcpu);
8979 }
8980
8981 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8982                             unsigned short port)
8983 {
8984         unsigned long val = kvm_rax_read(vcpu);
8985         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8986
8987         if (ret)
8988                 return ret;
8989
8990         /*
8991          * Workaround userspace that relies on old KVM behavior of %rip being
8992          * incremented prior to exiting to userspace to handle "OUT 0x7e".
8993          */
8994         if (port == 0x7e &&
8995             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8996                 vcpu->arch.complete_userspace_io =
8997                         complete_fast_pio_out_port_0x7e;
8998                 kvm_skip_emulated_instruction(vcpu);
8999         } else {
9000                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9001                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9002         }
9003         return 0;
9004 }
9005
9006 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9007 {
9008         unsigned long val;
9009
9010         /* We should only ever be called with arch.pio.count equal to 1 */
9011         BUG_ON(vcpu->arch.pio.count != 1);
9012
9013         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9014                 vcpu->arch.pio.count = 0;
9015                 return 1;
9016         }
9017
9018         /* For size less than 4 we merge, else we zero extend */
9019         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9020
9021         complete_emulator_pio_in(vcpu, &val);
9022         kvm_rax_write(vcpu, val);
9023
9024         return kvm_skip_emulated_instruction(vcpu);
9025 }
9026
9027 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9028                            unsigned short port)
9029 {
9030         unsigned long val;
9031         int ret;
9032
9033         /* For size less than 4 we merge, else we zero extend */
9034         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9035
9036         ret = emulator_pio_in(vcpu, size, port, &val, 1);
9037         if (ret) {
9038                 kvm_rax_write(vcpu, val);
9039                 return ret;
9040         }
9041
9042         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9043         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9044
9045         return 0;
9046 }
9047
9048 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9049 {
9050         int ret;
9051
9052         if (in)
9053                 ret = kvm_fast_pio_in(vcpu, size, port);
9054         else
9055                 ret = kvm_fast_pio_out(vcpu, size, port);
9056         return ret && kvm_skip_emulated_instruction(vcpu);
9057 }
9058 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9059
9060 static int kvmclock_cpu_down_prep(unsigned int cpu)
9061 {
9062         __this_cpu_write(cpu_tsc_khz, 0);
9063         return 0;
9064 }
9065
9066 static void tsc_khz_changed(void *data)
9067 {
9068         struct cpufreq_freqs *freq = data;
9069         unsigned long khz = 0;
9070
9071         WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9072
9073         if (data)
9074                 khz = freq->new;
9075         else
9076                 khz = cpufreq_quick_get(raw_smp_processor_id());
9077         if (!khz)
9078                 khz = tsc_khz;
9079         __this_cpu_write(cpu_tsc_khz, khz);
9080 }
9081
9082 #ifdef CONFIG_X86_64
9083 static void kvm_hyperv_tsc_notifier(void)
9084 {
9085         struct kvm *kvm;
9086         int cpu;
9087
9088         mutex_lock(&kvm_lock);
9089         list_for_each_entry(kvm, &vm_list, vm_list)
9090                 kvm_make_mclock_inprogress_request(kvm);
9091
9092         /* no guest entries from this point */
9093         hyperv_stop_tsc_emulation();
9094
9095         /* TSC frequency always matches when on Hyper-V */
9096         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9097                 for_each_present_cpu(cpu)
9098                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9099         }
9100         kvm_caps.max_guest_tsc_khz = tsc_khz;
9101
9102         list_for_each_entry(kvm, &vm_list, vm_list) {
9103                 __kvm_start_pvclock_update(kvm);
9104                 pvclock_update_vm_gtod_copy(kvm);
9105                 kvm_end_pvclock_update(kvm);
9106         }
9107
9108         mutex_unlock(&kvm_lock);
9109 }
9110 #endif
9111
9112 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9113 {
9114         struct kvm *kvm;
9115         struct kvm_vcpu *vcpu;
9116         int send_ipi = 0;
9117         unsigned long i;
9118
9119         /*
9120          * We allow guests to temporarily run on slowing clocks,
9121          * provided we notify them after, or to run on accelerating
9122          * clocks, provided we notify them before.  Thus time never
9123          * goes backwards.
9124          *
9125          * However, we have a problem.  We can't atomically update
9126          * the frequency of a given CPU from this function; it is
9127          * merely a notifier, which can be called from any CPU.
9128          * Changing the TSC frequency at arbitrary points in time
9129          * requires a recomputation of local variables related to
9130          * the TSC for each VCPU.  We must flag these local variables
9131          * to be updated and be sure the update takes place with the
9132          * new frequency before any guests proceed.
9133          *
9134          * Unfortunately, the combination of hotplug CPU and frequency
9135          * change creates an intractable locking scenario; the order
9136          * of when these callouts happen is undefined with respect to
9137          * CPU hotplug, and they can race with each other.  As such,
9138          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9139          * undefined; you can actually have a CPU frequency change take
9140          * place in between the computation of X and the setting of the
9141          * variable.  To protect against this problem, all updates of
9142          * the per_cpu tsc_khz variable are done in an interrupt
9143          * protected IPI, and all callers wishing to update the value
9144          * must wait for a synchronous IPI to complete (which is trivial
9145          * if the caller is on the CPU already).  This establishes the
9146          * necessary total order on variable updates.
9147          *
9148          * Note that because a guest time update may take place
9149          * anytime after the setting of the VCPU's request bit, the
9150          * correct TSC value must be set before the request.  However,
9151          * to ensure the update actually makes it to any guest which
9152          * starts running in hardware virtualization between the set
9153          * and the acquisition of the spinlock, we must also ping the
9154          * CPU after setting the request bit.
9155          *
9156          */
9157
9158         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9159
9160         mutex_lock(&kvm_lock);
9161         list_for_each_entry(kvm, &vm_list, vm_list) {
9162                 kvm_for_each_vcpu(i, vcpu, kvm) {
9163                         if (vcpu->cpu != cpu)
9164                                 continue;
9165                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9166                         if (vcpu->cpu != raw_smp_processor_id())
9167                                 send_ipi = 1;
9168                 }
9169         }
9170         mutex_unlock(&kvm_lock);
9171
9172         if (freq->old < freq->new && send_ipi) {
9173                 /*
9174                  * We upscale the frequency.  Must make the guest
9175                  * doesn't see old kvmclock values while running with
9176                  * the new frequency, otherwise we risk the guest sees
9177                  * time go backwards.
9178                  *
9179                  * In case we update the frequency for another cpu
9180                  * (which might be in guest context) send an interrupt
9181                  * to kick the cpu out of guest context.  Next time
9182                  * guest context is entered kvmclock will be updated,
9183                  * so the guest will not see stale values.
9184                  */
9185                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9186         }
9187 }
9188
9189 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9190                                      void *data)
9191 {
9192         struct cpufreq_freqs *freq = data;
9193         int cpu;
9194
9195         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9196                 return 0;
9197         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9198                 return 0;
9199
9200         for_each_cpu(cpu, freq->policy->cpus)
9201                 __kvmclock_cpufreq_notifier(freq, cpu);
9202
9203         return 0;
9204 }
9205
9206 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9207         .notifier_call  = kvmclock_cpufreq_notifier
9208 };
9209
9210 static int kvmclock_cpu_online(unsigned int cpu)
9211 {
9212         tsc_khz_changed(NULL);
9213         return 0;
9214 }
9215
9216 static void kvm_timer_init(void)
9217 {
9218         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9219                 max_tsc_khz = tsc_khz;
9220
9221                 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9222                         struct cpufreq_policy *policy;
9223                         int cpu;
9224
9225                         cpu = get_cpu();
9226                         policy = cpufreq_cpu_get(cpu);
9227                         if (policy) {
9228                                 if (policy->cpuinfo.max_freq)
9229                                         max_tsc_khz = policy->cpuinfo.max_freq;
9230                                 cpufreq_cpu_put(policy);
9231                         }
9232                         put_cpu();
9233                 }
9234                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9235                                           CPUFREQ_TRANSITION_NOTIFIER);
9236
9237                 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9238                                   kvmclock_cpu_online, kvmclock_cpu_down_prep);
9239         }
9240 }
9241
9242 #ifdef CONFIG_X86_64
9243 static void pvclock_gtod_update_fn(struct work_struct *work)
9244 {
9245         struct kvm *kvm;
9246         struct kvm_vcpu *vcpu;
9247         unsigned long i;
9248
9249         mutex_lock(&kvm_lock);
9250         list_for_each_entry(kvm, &vm_list, vm_list)
9251                 kvm_for_each_vcpu(i, vcpu, kvm)
9252                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9253         atomic_set(&kvm_guest_has_master_clock, 0);
9254         mutex_unlock(&kvm_lock);
9255 }
9256
9257 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9258
9259 /*
9260  * Indirection to move queue_work() out of the tk_core.seq write held
9261  * region to prevent possible deadlocks against time accessors which
9262  * are invoked with work related locks held.
9263  */
9264 static void pvclock_irq_work_fn(struct irq_work *w)
9265 {
9266         queue_work(system_long_wq, &pvclock_gtod_work);
9267 }
9268
9269 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9270
9271 /*
9272  * Notification about pvclock gtod data update.
9273  */
9274 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9275                                void *priv)
9276 {
9277         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9278         struct timekeeper *tk = priv;
9279
9280         update_pvclock_gtod(tk);
9281
9282         /*
9283          * Disable master clock if host does not trust, or does not use,
9284          * TSC based clocksource. Delegate queue_work() to irq_work as
9285          * this is invoked with tk_core.seq write held.
9286          */
9287         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9288             atomic_read(&kvm_guest_has_master_clock) != 0)
9289                 irq_work_queue(&pvclock_irq_work);
9290         return 0;
9291 }
9292
9293 static struct notifier_block pvclock_gtod_notifier = {
9294         .notifier_call = pvclock_gtod_notify,
9295 };
9296 #endif
9297
9298 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9299 {
9300         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9301
9302 #define __KVM_X86_OP(func) \
9303         static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9304 #define KVM_X86_OP(func) \
9305         WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9306 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9307 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9308         static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9309                                            (void *)__static_call_return0);
9310 #include <asm/kvm-x86-ops.h>
9311 #undef __KVM_X86_OP
9312
9313         kvm_pmu_ops_update(ops->pmu_ops);
9314 }
9315
9316 static int kvm_x86_check_processor_compatibility(void)
9317 {
9318         int cpu = smp_processor_id();
9319         struct cpuinfo_x86 *c = &cpu_data(cpu);
9320
9321         /*
9322          * Compatibility checks are done when loading KVM and when enabling
9323          * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9324          * compatible, i.e. KVM should never perform a compatibility check on
9325          * an offline CPU.
9326          */
9327         WARN_ON(!cpu_online(cpu));
9328
9329         if (__cr4_reserved_bits(cpu_has, c) !=
9330             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9331                 return -EIO;
9332
9333         return static_call(kvm_x86_check_processor_compatibility)();
9334 }
9335
9336 static void kvm_x86_check_cpu_compat(void *ret)
9337 {
9338         *(int *)ret = kvm_x86_check_processor_compatibility();
9339 }
9340
9341 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9342 {
9343         u64 host_pat;
9344         int r, cpu;
9345
9346         if (kvm_x86_ops.hardware_enable) {
9347                 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9348                 return -EEXIST;
9349         }
9350
9351         /*
9352          * KVM explicitly assumes that the guest has an FPU and
9353          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9354          * vCPU's FPU state as a fxregs_state struct.
9355          */
9356         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9357                 pr_err("inadequate fpu\n");
9358                 return -EOPNOTSUPP;
9359         }
9360
9361         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9362                 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9363                 return -EOPNOTSUPP;
9364         }
9365
9366         /*
9367          * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9368          * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9369          * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9370          * with an exception.  PAT[0] is set to WB on RESET and also by the
9371          * kernel, i.e. failure indicates a kernel bug or broken firmware.
9372          */
9373         if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9374             (host_pat & GENMASK(2, 0)) != 6) {
9375                 pr_err("host PAT[0] is not WB\n");
9376                 return -EIO;
9377         }
9378
9379         x86_emulator_cache = kvm_alloc_emulator_cache();
9380         if (!x86_emulator_cache) {
9381                 pr_err("failed to allocate cache for x86 emulator\n");
9382                 return -ENOMEM;
9383         }
9384
9385         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9386         if (!user_return_msrs) {
9387                 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9388                 r = -ENOMEM;
9389                 goto out_free_x86_emulator_cache;
9390         }
9391         kvm_nr_uret_msrs = 0;
9392
9393         r = kvm_mmu_vendor_module_init();
9394         if (r)
9395                 goto out_free_percpu;
9396
9397         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9398                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9399                 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9400         }
9401
9402         rdmsrl_safe(MSR_EFER, &host_efer);
9403
9404         if (boot_cpu_has(X86_FEATURE_XSAVES))
9405                 rdmsrl(MSR_IA32_XSS, host_xss);
9406
9407         kvm_init_pmu_capability(ops->pmu_ops);
9408
9409         r = ops->hardware_setup();
9410         if (r != 0)
9411                 goto out_mmu_exit;
9412
9413         kvm_ops_update(ops);
9414
9415         for_each_online_cpu(cpu) {
9416                 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9417                 if (r < 0)
9418                         goto out_unwind_ops;
9419         }
9420
9421         /*
9422          * Point of no return!  DO NOT add error paths below this point unless
9423          * absolutely necessary, as most operations from this point forward
9424          * require unwinding.
9425          */
9426         kvm_timer_init();
9427
9428         if (pi_inject_timer == -1)
9429                 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9430 #ifdef CONFIG_X86_64
9431         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9432
9433         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9434                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9435 #endif
9436
9437         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9438
9439         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9440                 kvm_caps.supported_xss = 0;
9441
9442 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9443         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9444 #undef __kvm_cpu_cap_has
9445
9446         if (kvm_caps.has_tsc_control) {
9447                 /*
9448                  * Make sure the user can only configure tsc_khz values that
9449                  * fit into a signed integer.
9450                  * A min value is not calculated because it will always
9451                  * be 1 on all machines.
9452                  */
9453                 u64 max = min(0x7fffffffULL,
9454                               __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9455                 kvm_caps.max_guest_tsc_khz = max;
9456         }
9457         kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9458         kvm_init_msr_list();
9459         return 0;
9460
9461 out_unwind_ops:
9462         kvm_x86_ops.hardware_enable = NULL;
9463         static_call(kvm_x86_hardware_unsetup)();
9464 out_mmu_exit:
9465         kvm_mmu_vendor_module_exit();
9466 out_free_percpu:
9467         free_percpu(user_return_msrs);
9468 out_free_x86_emulator_cache:
9469         kmem_cache_destroy(x86_emulator_cache);
9470         return r;
9471 }
9472
9473 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9474 {
9475         int r;
9476
9477         mutex_lock(&vendor_module_lock);
9478         r = __kvm_x86_vendor_init(ops);
9479         mutex_unlock(&vendor_module_lock);
9480
9481         return r;
9482 }
9483 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9484
9485 void kvm_x86_vendor_exit(void)
9486 {
9487         kvm_unregister_perf_callbacks();
9488
9489 #ifdef CONFIG_X86_64
9490         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9491                 clear_hv_tscchange_cb();
9492 #endif
9493         kvm_lapic_exit();
9494
9495         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9496                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9497                                             CPUFREQ_TRANSITION_NOTIFIER);
9498                 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9499         }
9500 #ifdef CONFIG_X86_64
9501         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9502         irq_work_sync(&pvclock_irq_work);
9503         cancel_work_sync(&pvclock_gtod_work);
9504 #endif
9505         static_call(kvm_x86_hardware_unsetup)();
9506         kvm_mmu_vendor_module_exit();
9507         free_percpu(user_return_msrs);
9508         kmem_cache_destroy(x86_emulator_cache);
9509 #ifdef CONFIG_KVM_XEN
9510         static_key_deferred_flush(&kvm_xen_enabled);
9511         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9512 #endif
9513         mutex_lock(&vendor_module_lock);
9514         kvm_x86_ops.hardware_enable = NULL;
9515         mutex_unlock(&vendor_module_lock);
9516 }
9517 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9518
9519 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9520 {
9521         /*
9522          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9523          * local APIC is in-kernel, the run loop will detect the non-runnable
9524          * state and halt the vCPU.  Exit to userspace if the local APIC is
9525          * managed by userspace, in which case userspace is responsible for
9526          * handling wake events.
9527          */
9528         ++vcpu->stat.halt_exits;
9529         if (lapic_in_kernel(vcpu)) {
9530                 vcpu->arch.mp_state = state;
9531                 return 1;
9532         } else {
9533                 vcpu->run->exit_reason = reason;
9534                 return 0;
9535         }
9536 }
9537
9538 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9539 {
9540         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9541 }
9542 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9543
9544 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9545 {
9546         int ret = kvm_skip_emulated_instruction(vcpu);
9547         /*
9548          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9549          * KVM_EXIT_DEBUG here.
9550          */
9551         return kvm_emulate_halt_noskip(vcpu) && ret;
9552 }
9553 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9554
9555 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9556 {
9557         int ret = kvm_skip_emulated_instruction(vcpu);
9558
9559         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9560                                         KVM_EXIT_AP_RESET_HOLD) && ret;
9561 }
9562 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9563
9564 #ifdef CONFIG_X86_64
9565 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9566                                 unsigned long clock_type)
9567 {
9568         struct kvm_clock_pairing clock_pairing;
9569         struct timespec64 ts;
9570         u64 cycle;
9571         int ret;
9572
9573         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9574                 return -KVM_EOPNOTSUPP;
9575
9576         /*
9577          * When tsc is in permanent catchup mode guests won't be able to use
9578          * pvclock_read_retry loop to get consistent view of pvclock
9579          */
9580         if (vcpu->arch.tsc_always_catchup)
9581                 return -KVM_EOPNOTSUPP;
9582
9583         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9584                 return -KVM_EOPNOTSUPP;
9585
9586         clock_pairing.sec = ts.tv_sec;
9587         clock_pairing.nsec = ts.tv_nsec;
9588         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9589         clock_pairing.flags = 0;
9590         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9591
9592         ret = 0;
9593         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9594                             sizeof(struct kvm_clock_pairing)))
9595                 ret = -KVM_EFAULT;
9596
9597         return ret;
9598 }
9599 #endif
9600
9601 /*
9602  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9603  *
9604  * @apicid - apicid of vcpu to be kicked.
9605  */
9606 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9607 {
9608         /*
9609          * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9610          * common code, e.g. for tracing. Defer initialization to the compiler.
9611          */
9612         struct kvm_lapic_irq lapic_irq = {
9613                 .delivery_mode = APIC_DM_REMRD,
9614                 .dest_mode = APIC_DEST_PHYSICAL,
9615                 .shorthand = APIC_DEST_NOSHORT,
9616                 .dest_id = apicid,
9617         };
9618
9619         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9620 }
9621
9622 bool kvm_apicv_activated(struct kvm *kvm)
9623 {
9624         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9625 }
9626 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9627
9628 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9629 {
9630         ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9631         ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9632
9633         return (vm_reasons | vcpu_reasons) == 0;
9634 }
9635 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9636
9637 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9638                                        enum kvm_apicv_inhibit reason, bool set)
9639 {
9640         if (set)
9641                 __set_bit(reason, inhibits);
9642         else
9643                 __clear_bit(reason, inhibits);
9644
9645         trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9646 }
9647
9648 static void kvm_apicv_init(struct kvm *kvm)
9649 {
9650         unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9651
9652         init_rwsem(&kvm->arch.apicv_update_lock);
9653
9654         set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9655
9656         if (!enable_apicv)
9657                 set_or_clear_apicv_inhibit(inhibits,
9658                                            APICV_INHIBIT_REASON_DISABLE, true);
9659 }
9660
9661 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9662 {
9663         struct kvm_vcpu *target = NULL;
9664         struct kvm_apic_map *map;
9665
9666         vcpu->stat.directed_yield_attempted++;
9667
9668         if (single_task_running())
9669                 goto no_yield;
9670
9671         rcu_read_lock();
9672         map = rcu_dereference(vcpu->kvm->arch.apic_map);
9673
9674         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9675                 target = map->phys_map[dest_id]->vcpu;
9676
9677         rcu_read_unlock();
9678
9679         if (!target || !READ_ONCE(target->ready))
9680                 goto no_yield;
9681
9682         /* Ignore requests to yield to self */
9683         if (vcpu == target)
9684                 goto no_yield;
9685
9686         if (kvm_vcpu_yield_to(target) <= 0)
9687                 goto no_yield;
9688
9689         vcpu->stat.directed_yield_successful++;
9690
9691 no_yield:
9692         return;
9693 }
9694
9695 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9696 {
9697         u64 ret = vcpu->run->hypercall.ret;
9698
9699         if (!is_64_bit_mode(vcpu))
9700                 ret = (u32)ret;
9701         kvm_rax_write(vcpu, ret);
9702         ++vcpu->stat.hypercalls;
9703         return kvm_skip_emulated_instruction(vcpu);
9704 }
9705
9706 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9707 {
9708         unsigned long nr, a0, a1, a2, a3, ret;
9709         int op_64_bit;
9710
9711         if (kvm_xen_hypercall_enabled(vcpu->kvm))
9712                 return kvm_xen_hypercall(vcpu);
9713
9714         if (kvm_hv_hypercall_enabled(vcpu))
9715                 return kvm_hv_hypercall(vcpu);
9716
9717         nr = kvm_rax_read(vcpu);
9718         a0 = kvm_rbx_read(vcpu);
9719         a1 = kvm_rcx_read(vcpu);
9720         a2 = kvm_rdx_read(vcpu);
9721         a3 = kvm_rsi_read(vcpu);
9722
9723         trace_kvm_hypercall(nr, a0, a1, a2, a3);
9724
9725         op_64_bit = is_64_bit_hypercall(vcpu);
9726         if (!op_64_bit) {
9727                 nr &= 0xFFFFFFFF;
9728                 a0 &= 0xFFFFFFFF;
9729                 a1 &= 0xFFFFFFFF;
9730                 a2 &= 0xFFFFFFFF;
9731                 a3 &= 0xFFFFFFFF;
9732         }
9733
9734         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9735                 ret = -KVM_EPERM;
9736                 goto out;
9737         }
9738
9739         ret = -KVM_ENOSYS;
9740
9741         switch (nr) {
9742         case KVM_HC_VAPIC_POLL_IRQ:
9743                 ret = 0;
9744                 break;
9745         case KVM_HC_KICK_CPU:
9746                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9747                         break;
9748
9749                 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9750                 kvm_sched_yield(vcpu, a1);
9751                 ret = 0;
9752                 break;
9753 #ifdef CONFIG_X86_64
9754         case KVM_HC_CLOCK_PAIRING:
9755                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9756                 break;
9757 #endif
9758         case KVM_HC_SEND_IPI:
9759                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9760                         break;
9761
9762                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9763                 break;
9764         case KVM_HC_SCHED_YIELD:
9765                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9766                         break;
9767
9768                 kvm_sched_yield(vcpu, a0);
9769                 ret = 0;
9770                 break;
9771         case KVM_HC_MAP_GPA_RANGE: {
9772                 u64 gpa = a0, npages = a1, attrs = a2;
9773
9774                 ret = -KVM_ENOSYS;
9775                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9776                         break;
9777
9778                 if (!PAGE_ALIGNED(gpa) || !npages ||
9779                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9780                         ret = -KVM_EINVAL;
9781                         break;
9782                 }
9783
9784                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9785                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9786                 vcpu->run->hypercall.args[0]  = gpa;
9787                 vcpu->run->hypercall.args[1]  = npages;
9788                 vcpu->run->hypercall.args[2]  = attrs;
9789                 vcpu->run->hypercall.longmode = op_64_bit;
9790                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9791                 return 0;
9792         }
9793         default:
9794                 ret = -KVM_ENOSYS;
9795                 break;
9796         }
9797 out:
9798         if (!op_64_bit)
9799                 ret = (u32)ret;
9800         kvm_rax_write(vcpu, ret);
9801
9802         ++vcpu->stat.hypercalls;
9803         return kvm_skip_emulated_instruction(vcpu);
9804 }
9805 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9806
9807 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9808 {
9809         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9810         char instruction[3];
9811         unsigned long rip = kvm_rip_read(vcpu);
9812
9813         /*
9814          * If the quirk is disabled, synthesize a #UD and let the guest pick up
9815          * the pieces.
9816          */
9817         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9818                 ctxt->exception.error_code_valid = false;
9819                 ctxt->exception.vector = UD_VECTOR;
9820                 ctxt->have_exception = true;
9821                 return X86EMUL_PROPAGATE_FAULT;
9822         }
9823
9824         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9825
9826         return emulator_write_emulated(ctxt, rip, instruction, 3,
9827                 &ctxt->exception);
9828 }
9829
9830 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9831 {
9832         return vcpu->run->request_interrupt_window &&
9833                 likely(!pic_in_kernel(vcpu->kvm));
9834 }
9835
9836 /* Called within kvm->srcu read side.  */
9837 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9838 {
9839         struct kvm_run *kvm_run = vcpu->run;
9840
9841         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9842         kvm_run->cr8 = kvm_get_cr8(vcpu);
9843         kvm_run->apic_base = kvm_get_apic_base(vcpu);
9844
9845         kvm_run->ready_for_interrupt_injection =
9846                 pic_in_kernel(vcpu->kvm) ||
9847                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9848
9849         if (is_smm(vcpu))
9850                 kvm_run->flags |= KVM_RUN_X86_SMM;
9851 }
9852
9853 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9854 {
9855         int max_irr, tpr;
9856
9857         if (!kvm_x86_ops.update_cr8_intercept)
9858                 return;
9859
9860         if (!lapic_in_kernel(vcpu))
9861                 return;
9862
9863         if (vcpu->arch.apic->apicv_active)
9864                 return;
9865
9866         if (!vcpu->arch.apic->vapic_addr)
9867                 max_irr = kvm_lapic_find_highest_irr(vcpu);
9868         else
9869                 max_irr = -1;
9870
9871         if (max_irr != -1)
9872                 max_irr >>= 4;
9873
9874         tpr = kvm_lapic_get_cr8(vcpu);
9875
9876         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9877 }
9878
9879
9880 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9881 {
9882         if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9883                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9884                 return 1;
9885         }
9886
9887         return kvm_x86_ops.nested_ops->check_events(vcpu);
9888 }
9889
9890 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9891 {
9892         trace_kvm_inj_exception(vcpu->arch.exception.vector,
9893                                 vcpu->arch.exception.has_error_code,
9894                                 vcpu->arch.exception.error_code,
9895                                 vcpu->arch.exception.injected);
9896
9897         if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9898                 vcpu->arch.exception.error_code = false;
9899         static_call(kvm_x86_inject_exception)(vcpu);
9900 }
9901
9902 /*
9903  * Check for any event (interrupt or exception) that is ready to be injected,
9904  * and if there is at least one event, inject the event with the highest
9905  * priority.  This handles both "pending" events, i.e. events that have never
9906  * been injected into the guest, and "injected" events, i.e. events that were
9907  * injected as part of a previous VM-Enter, but weren't successfully delivered
9908  * and need to be re-injected.
9909  *
9910  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
9911  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
9912  * be able to inject exceptions in the "middle" of an instruction, and so must
9913  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
9914  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
9915  * boundaries is necessary and correct.
9916  *
9917  * For simplicity, KVM uses a single path to inject all events (except events
9918  * that are injected directly from L1 to L2) and doesn't explicitly track
9919  * instruction boundaries for asynchronous events.  However, because VM-Exits
9920  * that can occur during instruction execution typically result in KVM skipping
9921  * the instruction or injecting an exception, e.g. instruction and exception
9922  * intercepts, and because pending exceptions have higher priority than pending
9923  * interrupts, KVM still honors instruction boundaries in most scenarios.
9924  *
9925  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
9926  * the instruction or inject an exception, then KVM can incorrecty inject a new
9927  * asynchrounous event if the event became pending after the CPU fetched the
9928  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
9929  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
9930  * injected on the restarted instruction instead of being deferred until the
9931  * instruction completes.
9932  *
9933  * In practice, this virtualization hole is unlikely to be observed by the
9934  * guest, and even less likely to cause functional problems.  To detect the
9935  * hole, the guest would have to trigger an event on a side effect of an early
9936  * phase of instruction execution, e.g. on the instruction fetch from memory.
9937  * And for it to be a functional problem, the guest would need to depend on the
9938  * ordering between that side effect, the instruction completing, _and_ the
9939  * delivery of the asynchronous event.
9940  */
9941 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
9942                                        bool *req_immediate_exit)
9943 {
9944         bool can_inject;
9945         int r;
9946
9947         /*
9948          * Process nested events first, as nested VM-Exit supercedes event
9949          * re-injection.  If there's an event queued for re-injection, it will
9950          * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
9951          */
9952         if (is_guest_mode(vcpu))
9953                 r = kvm_check_nested_events(vcpu);
9954         else
9955                 r = 0;
9956
9957         /*
9958          * Re-inject exceptions and events *especially* if immediate entry+exit
9959          * to/from L2 is needed, as any event that has already been injected
9960          * into L2 needs to complete its lifecycle before injecting a new event.
9961          *
9962          * Don't re-inject an NMI or interrupt if there is a pending exception.
9963          * This collision arises if an exception occurred while vectoring the
9964          * injected event, KVM intercepted said exception, and KVM ultimately
9965          * determined the fault belongs to the guest and queues the exception
9966          * for injection back into the guest.
9967          *
9968          * "Injected" interrupts can also collide with pending exceptions if
9969          * userspace ignores the "ready for injection" flag and blindly queues
9970          * an interrupt.  In that case, prioritizing the exception is correct,
9971          * as the exception "occurred" before the exit to userspace.  Trap-like
9972          * exceptions, e.g. most #DBs, have higher priority than interrupts.
9973          * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
9974          * priority, they're only generated (pended) during instruction
9975          * execution, and interrupts are recognized at instruction boundaries.
9976          * Thus a pending fault-like exception means the fault occurred on the
9977          * *previous* instruction and must be serviced prior to recognizing any
9978          * new events in order to fully complete the previous instruction.
9979          */
9980         if (vcpu->arch.exception.injected)
9981                 kvm_inject_exception(vcpu);
9982         else if (kvm_is_exception_pending(vcpu))
9983                 ; /* see above */
9984         else if (vcpu->arch.nmi_injected)
9985                 static_call(kvm_x86_inject_nmi)(vcpu);
9986         else if (vcpu->arch.interrupt.injected)
9987                 static_call(kvm_x86_inject_irq)(vcpu, true);
9988
9989         /*
9990          * Exceptions that morph to VM-Exits are handled above, and pending
9991          * exceptions on top of injected exceptions that do not VM-Exit should
9992          * either morph to #DF or, sadly, override the injected exception.
9993          */
9994         WARN_ON_ONCE(vcpu->arch.exception.injected &&
9995                      vcpu->arch.exception.pending);
9996
9997         /*
9998          * Bail if immediate entry+exit to/from the guest is needed to complete
9999          * nested VM-Enter or event re-injection so that a different pending
10000          * event can be serviced (or if KVM needs to exit to userspace).
10001          *
10002          * Otherwise, continue processing events even if VM-Exit occurred.  The
10003          * VM-Exit will have cleared exceptions that were meant for L2, but
10004          * there may now be events that can be injected into L1.
10005          */
10006         if (r < 0)
10007                 goto out;
10008
10009         /*
10010          * A pending exception VM-Exit should either result in nested VM-Exit
10011          * or force an immediate re-entry and exit to/from L2, and exception
10012          * VM-Exits cannot be injected (flag should _never_ be set).
10013          */
10014         WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10015                      vcpu->arch.exception_vmexit.pending);
10016
10017         /*
10018          * New events, other than exceptions, cannot be injected if KVM needs
10019          * to re-inject a previous event.  See above comments on re-injecting
10020          * for why pending exceptions get priority.
10021          */
10022         can_inject = !kvm_event_needs_reinjection(vcpu);
10023
10024         if (vcpu->arch.exception.pending) {
10025                 /*
10026                  * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10027                  * value pushed on the stack.  Trap-like exception and all #DBs
10028                  * leave RF as-is (KVM follows Intel's behavior in this regard;
10029                  * AMD states that code breakpoint #DBs excplitly clear RF=0).
10030                  *
10031                  * Note, most versions of Intel's SDM and AMD's APM incorrectly
10032                  * describe the behavior of General Detect #DBs, which are
10033                  * fault-like.  They do _not_ set RF, a la code breakpoints.
10034                  */
10035                 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10036                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10037                                              X86_EFLAGS_RF);
10038
10039                 if (vcpu->arch.exception.vector == DB_VECTOR) {
10040                         kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10041                         if (vcpu->arch.dr7 & DR7_GD) {
10042                                 vcpu->arch.dr7 &= ~DR7_GD;
10043                                 kvm_update_dr7(vcpu);
10044                         }
10045                 }
10046
10047                 kvm_inject_exception(vcpu);
10048
10049                 vcpu->arch.exception.pending = false;
10050                 vcpu->arch.exception.injected = true;
10051
10052                 can_inject = false;
10053         }
10054
10055         /* Don't inject interrupts if the user asked to avoid doing so */
10056         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10057                 return 0;
10058
10059         /*
10060          * Finally, inject interrupt events.  If an event cannot be injected
10061          * due to architectural conditions (e.g. IF=0) a window-open exit
10062          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10063          * and can architecturally be injected, but we cannot do it right now:
10064          * an interrupt could have arrived just now and we have to inject it
10065          * as a vmexit, or there could already an event in the queue, which is
10066          * indicated by can_inject.  In that case we request an immediate exit
10067          * in order to make progress and get back here for another iteration.
10068          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10069          */
10070 #ifdef CONFIG_KVM_SMM
10071         if (vcpu->arch.smi_pending) {
10072                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10073                 if (r < 0)
10074                         goto out;
10075                 if (r) {
10076                         vcpu->arch.smi_pending = false;
10077                         ++vcpu->arch.smi_count;
10078                         enter_smm(vcpu);
10079                         can_inject = false;
10080                 } else
10081                         static_call(kvm_x86_enable_smi_window)(vcpu);
10082         }
10083 #endif
10084
10085         if (vcpu->arch.nmi_pending) {
10086                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10087                 if (r < 0)
10088                         goto out;
10089                 if (r) {
10090                         --vcpu->arch.nmi_pending;
10091                         vcpu->arch.nmi_injected = true;
10092                         static_call(kvm_x86_inject_nmi)(vcpu);
10093                         can_inject = false;
10094                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10095                 }
10096                 if (vcpu->arch.nmi_pending)
10097                         static_call(kvm_x86_enable_nmi_window)(vcpu);
10098         }
10099
10100         if (kvm_cpu_has_injectable_intr(vcpu)) {
10101                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10102                 if (r < 0)
10103                         goto out;
10104                 if (r) {
10105                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
10106                         static_call(kvm_x86_inject_irq)(vcpu, false);
10107                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10108                 }
10109                 if (kvm_cpu_has_injectable_intr(vcpu))
10110                         static_call(kvm_x86_enable_irq_window)(vcpu);
10111         }
10112
10113         if (is_guest_mode(vcpu) &&
10114             kvm_x86_ops.nested_ops->has_events &&
10115             kvm_x86_ops.nested_ops->has_events(vcpu))
10116                 *req_immediate_exit = true;
10117
10118         /*
10119          * KVM must never queue a new exception while injecting an event; KVM
10120          * is done emulating and should only propagate the to-be-injected event
10121          * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10122          * infinite loop as KVM will bail from VM-Enter to inject the pending
10123          * exception and start the cycle all over.
10124          *
10125          * Exempt triple faults as they have special handling and won't put the
10126          * vCPU into an infinite loop.  Triple fault can be queued when running
10127          * VMX without unrestricted guest, as that requires KVM to emulate Real
10128          * Mode events (see kvm_inject_realmode_interrupt()).
10129          */
10130         WARN_ON_ONCE(vcpu->arch.exception.pending ||
10131                      vcpu->arch.exception_vmexit.pending);
10132         return 0;
10133
10134 out:
10135         if (r == -EBUSY) {
10136                 *req_immediate_exit = true;
10137                 r = 0;
10138         }
10139         return r;
10140 }
10141
10142 static void process_nmi(struct kvm_vcpu *vcpu)
10143 {
10144         unsigned int limit;
10145
10146         /*
10147          * x86 is limited to one NMI pending, but because KVM can't react to
10148          * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10149          * scheduled out, KVM needs to play nice with two queued NMIs showing
10150          * up at the same time.  To handle this scenario, allow two NMIs to be
10151          * (temporarily) pending so long as NMIs are not blocked and KVM is not
10152          * waiting for a previous NMI injection to complete (which effectively
10153          * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10154          * will request an NMI window to handle the second NMI.
10155          */
10156         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10157                 limit = 1;
10158         else
10159                 limit = 2;
10160
10161         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10162         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10163
10164         if (vcpu->arch.nmi_pending)
10165                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10166 }
10167
10168 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10169                                        unsigned long *vcpu_bitmap)
10170 {
10171         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10172 }
10173
10174 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10175 {
10176         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10177 }
10178
10179 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10180 {
10181         struct kvm_lapic *apic = vcpu->arch.apic;
10182         bool activate;
10183
10184         if (!lapic_in_kernel(vcpu))
10185                 return;
10186
10187         down_read(&vcpu->kvm->arch.apicv_update_lock);
10188         preempt_disable();
10189
10190         /* Do not activate APICV when APIC is disabled */
10191         activate = kvm_vcpu_apicv_activated(vcpu) &&
10192                    (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10193
10194         if (apic->apicv_active == activate)
10195                 goto out;
10196
10197         apic->apicv_active = activate;
10198         kvm_apic_update_apicv(vcpu);
10199         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10200
10201         /*
10202          * When APICv gets disabled, we may still have injected interrupts
10203          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10204          * still active when the interrupt got accepted. Make sure
10205          * kvm_check_and_inject_events() is called to check for that.
10206          */
10207         if (!apic->apicv_active)
10208                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10209
10210 out:
10211         preempt_enable();
10212         up_read(&vcpu->kvm->arch.apicv_update_lock);
10213 }
10214 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10215
10216 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10217 {
10218         if (!lapic_in_kernel(vcpu))
10219                 return;
10220
10221         /*
10222          * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10223          * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10224          * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10225          * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10226          * this case so that KVM can the AVIC doorbell to inject interrupts to
10227          * running vCPUs, but KVM must not create SPTEs for the APIC base as
10228          * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10229          * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10230          * access page is sticky.
10231          */
10232         if (apic_x2apic_mode(vcpu->arch.apic) &&
10233             kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10234                 kvm_inhibit_apic_access_page(vcpu);
10235
10236         __kvm_vcpu_update_apicv(vcpu);
10237 }
10238
10239 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10240                                       enum kvm_apicv_inhibit reason, bool set)
10241 {
10242         unsigned long old, new;
10243
10244         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10245
10246         if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10247                 return;
10248
10249         old = new = kvm->arch.apicv_inhibit_reasons;
10250
10251         set_or_clear_apicv_inhibit(&new, reason, set);
10252
10253         if (!!old != !!new) {
10254                 /*
10255                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10256                  * false positives in the sanity check WARN in svm_vcpu_run().
10257                  * This task will wait for all vCPUs to ack the kick IRQ before
10258                  * updating apicv_inhibit_reasons, and all other vCPUs will
10259                  * block on acquiring apicv_update_lock so that vCPUs can't
10260                  * redo svm_vcpu_run() without seeing the new inhibit state.
10261                  *
10262                  * Note, holding apicv_update_lock and taking it in the read
10263                  * side (handling the request) also prevents other vCPUs from
10264                  * servicing the request with a stale apicv_inhibit_reasons.
10265                  */
10266                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10267                 kvm->arch.apicv_inhibit_reasons = new;
10268                 if (new) {
10269                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10270                         int idx = srcu_read_lock(&kvm->srcu);
10271
10272                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
10273                         srcu_read_unlock(&kvm->srcu, idx);
10274                 }
10275         } else {
10276                 kvm->arch.apicv_inhibit_reasons = new;
10277         }
10278 }
10279
10280 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10281                                     enum kvm_apicv_inhibit reason, bool set)
10282 {
10283         if (!enable_apicv)
10284                 return;
10285
10286         down_write(&kvm->arch.apicv_update_lock);
10287         __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10288         up_write(&kvm->arch.apicv_update_lock);
10289 }
10290 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10291
10292 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10293 {
10294         if (!kvm_apic_present(vcpu))
10295                 return;
10296
10297         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10298
10299         if (irqchip_split(vcpu->kvm))
10300                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10301         else {
10302                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10303                 if (ioapic_in_kernel(vcpu->kvm))
10304                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10305         }
10306
10307         if (is_guest_mode(vcpu))
10308                 vcpu->arch.load_eoi_exitmap_pending = true;
10309         else
10310                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10311 }
10312
10313 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10314 {
10315         u64 eoi_exit_bitmap[4];
10316
10317         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10318                 return;
10319
10320         if (to_hv_vcpu(vcpu)) {
10321                 bitmap_or((ulong *)eoi_exit_bitmap,
10322                           vcpu->arch.ioapic_handled_vectors,
10323                           to_hv_synic(vcpu)->vec_bitmap, 256);
10324                 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10325                 return;
10326         }
10327
10328         static_call_cond(kvm_x86_load_eoi_exitmap)(
10329                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10330 }
10331
10332 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10333                                             unsigned long start, unsigned long end)
10334 {
10335         unsigned long apic_address;
10336
10337         /*
10338          * The physical address of apic access page is stored in the VMCS.
10339          * Update it when it becomes invalid.
10340          */
10341         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10342         if (start <= apic_address && apic_address < end)
10343                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10344 }
10345
10346 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10347 {
10348         static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10349 }
10350
10351 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10352 {
10353         if (!lapic_in_kernel(vcpu))
10354                 return;
10355
10356         static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10357 }
10358
10359 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10360 {
10361         smp_send_reschedule(vcpu->cpu);
10362 }
10363 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10364
10365 /*
10366  * Called within kvm->srcu read side.
10367  * Returns 1 to let vcpu_run() continue the guest execution loop without
10368  * exiting to the userspace.  Otherwise, the value will be returned to the
10369  * userspace.
10370  */
10371 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10372 {
10373         int r;
10374         bool req_int_win =
10375                 dm_request_for_irq_injection(vcpu) &&
10376                 kvm_cpu_accept_dm_intr(vcpu);
10377         fastpath_t exit_fastpath;
10378
10379         bool req_immediate_exit = false;
10380
10381         if (kvm_request_pending(vcpu)) {
10382                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10383                         r = -EIO;
10384                         goto out;
10385                 }
10386
10387                 if (kvm_dirty_ring_check_request(vcpu)) {
10388                         r = 0;
10389                         goto out;
10390                 }
10391
10392                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10393                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10394                                 r = 0;
10395                                 goto out;
10396                         }
10397                 }
10398                 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10399                         kvm_mmu_free_obsolete_roots(vcpu);
10400                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10401                         __kvm_migrate_timers(vcpu);
10402                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10403                         kvm_update_masterclock(vcpu->kvm);
10404                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10405                         kvm_gen_kvmclock_update(vcpu);
10406                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10407                         r = kvm_guest_time_update(vcpu);
10408                         if (unlikely(r))
10409                                 goto out;
10410                 }
10411                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10412                         kvm_mmu_sync_roots(vcpu);
10413                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10414                         kvm_mmu_load_pgd(vcpu);
10415
10416                 /*
10417                  * Note, the order matters here, as flushing "all" TLB entries
10418                  * also flushes the "current" TLB entries, i.e. servicing the
10419                  * flush "all" will clear any request to flush "current".
10420                  */
10421                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10422                         kvm_vcpu_flush_tlb_all(vcpu);
10423
10424                 kvm_service_local_tlb_flush_requests(vcpu);
10425
10426                 /*
10427                  * Fall back to a "full" guest flush if Hyper-V's precise
10428                  * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10429                  * the flushes are considered "remote" and not "local" because
10430                  * the requests can be initiated from other vCPUs.
10431                  */
10432                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10433                     kvm_hv_vcpu_flush_tlb(vcpu))
10434                         kvm_vcpu_flush_tlb_guest(vcpu);
10435
10436                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10437                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10438                         r = 0;
10439                         goto out;
10440                 }
10441                 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10442                         if (is_guest_mode(vcpu))
10443                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10444
10445                         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10446                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10447                                 vcpu->mmio_needed = 0;
10448                                 r = 0;
10449                                 goto out;
10450                         }
10451                 }
10452                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10453                         /* Page is swapped out. Do synthetic halt */
10454                         vcpu->arch.apf.halted = true;
10455                         r = 1;
10456                         goto out;
10457                 }
10458                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10459                         record_steal_time(vcpu);
10460 #ifdef CONFIG_KVM_SMM
10461                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10462                         process_smi(vcpu);
10463 #endif
10464                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10465                         process_nmi(vcpu);
10466                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10467                         kvm_pmu_handle_event(vcpu);
10468                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10469                         kvm_pmu_deliver_pmi(vcpu);
10470                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10471                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10472                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
10473                                      vcpu->arch.ioapic_handled_vectors)) {
10474                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10475                                 vcpu->run->eoi.vector =
10476                                                 vcpu->arch.pending_ioapic_eoi;
10477                                 r = 0;
10478                                 goto out;
10479                         }
10480                 }
10481                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10482                         vcpu_scan_ioapic(vcpu);
10483                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10484                         vcpu_load_eoi_exitmap(vcpu);
10485                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10486                         kvm_vcpu_reload_apic_access_page(vcpu);
10487                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10488                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10489                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10490                         vcpu->run->system_event.ndata = 0;
10491                         r = 0;
10492                         goto out;
10493                 }
10494                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10495                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10496                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10497                         vcpu->run->system_event.ndata = 0;
10498                         r = 0;
10499                         goto out;
10500                 }
10501                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10502                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10503
10504                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10505                         vcpu->run->hyperv = hv_vcpu->exit;
10506                         r = 0;
10507                         goto out;
10508                 }
10509
10510                 /*
10511                  * KVM_REQ_HV_STIMER has to be processed after
10512                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10513                  * depend on the guest clock being up-to-date
10514                  */
10515                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10516                         kvm_hv_process_stimers(vcpu);
10517                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10518                         kvm_vcpu_update_apicv(vcpu);
10519                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10520                         kvm_check_async_pf_completion(vcpu);
10521                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10522                         static_call(kvm_x86_msr_filter_changed)(vcpu);
10523
10524                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10525                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10526         }
10527
10528         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10529             kvm_xen_has_interrupt(vcpu)) {
10530                 ++vcpu->stat.req_event;
10531                 r = kvm_apic_accept_events(vcpu);
10532                 if (r < 0) {
10533                         r = 0;
10534                         goto out;
10535                 }
10536                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10537                         r = 1;
10538                         goto out;
10539                 }
10540
10541                 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10542                 if (r < 0) {
10543                         r = 0;
10544                         goto out;
10545                 }
10546                 if (req_int_win)
10547                         static_call(kvm_x86_enable_irq_window)(vcpu);
10548
10549                 if (kvm_lapic_enabled(vcpu)) {
10550                         update_cr8_intercept(vcpu);
10551                         kvm_lapic_sync_to_vapic(vcpu);
10552                 }
10553         }
10554
10555         r = kvm_mmu_reload(vcpu);
10556         if (unlikely(r)) {
10557                 goto cancel_injection;
10558         }
10559
10560         preempt_disable();
10561
10562         static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10563
10564         /*
10565          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10566          * IPI are then delayed after guest entry, which ensures that they
10567          * result in virtual interrupt delivery.
10568          */
10569         local_irq_disable();
10570
10571         /* Store vcpu->apicv_active before vcpu->mode.  */
10572         smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10573
10574         kvm_vcpu_srcu_read_unlock(vcpu);
10575
10576         /*
10577          * 1) We should set ->mode before checking ->requests.  Please see
10578          * the comment in kvm_vcpu_exiting_guest_mode().
10579          *
10580          * 2) For APICv, we should set ->mode before checking PID.ON. This
10581          * pairs with the memory barrier implicit in pi_test_and_set_on
10582          * (see vmx_deliver_posted_interrupt).
10583          *
10584          * 3) This also orders the write to mode from any reads to the page
10585          * tables done while the VCPU is running.  Please see the comment
10586          * in kvm_flush_remote_tlbs.
10587          */
10588         smp_mb__after_srcu_read_unlock();
10589
10590         /*
10591          * Process pending posted interrupts to handle the case where the
10592          * notification IRQ arrived in the host, or was never sent (because the
10593          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10594          * status, KVM doesn't update assigned devices when APICv is inhibited,
10595          * i.e. they can post interrupts even if APICv is temporarily disabled.
10596          */
10597         if (kvm_lapic_enabled(vcpu))
10598                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10599
10600         if (kvm_vcpu_exit_request(vcpu)) {
10601                 vcpu->mode = OUTSIDE_GUEST_MODE;
10602                 smp_wmb();
10603                 local_irq_enable();
10604                 preempt_enable();
10605                 kvm_vcpu_srcu_read_lock(vcpu);
10606                 r = 1;
10607                 goto cancel_injection;
10608         }
10609
10610         if (req_immediate_exit) {
10611                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10612                 static_call(kvm_x86_request_immediate_exit)(vcpu);
10613         }
10614
10615         fpregs_assert_state_consistent();
10616         if (test_thread_flag(TIF_NEED_FPU_LOAD))
10617                 switch_fpu_return();
10618
10619         if (vcpu->arch.guest_fpu.xfd_err)
10620                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10621
10622         if (unlikely(vcpu->arch.switch_db_regs)) {
10623                 set_debugreg(0, 7);
10624                 set_debugreg(vcpu->arch.eff_db[0], 0);
10625                 set_debugreg(vcpu->arch.eff_db[1], 1);
10626                 set_debugreg(vcpu->arch.eff_db[2], 2);
10627                 set_debugreg(vcpu->arch.eff_db[3], 3);
10628         } else if (unlikely(hw_breakpoint_active())) {
10629                 set_debugreg(0, 7);
10630         }
10631
10632         guest_timing_enter_irqoff();
10633
10634         for (;;) {
10635                 /*
10636                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10637                  * update must kick and wait for all vCPUs before toggling the
10638                  * per-VM state, and responsing vCPUs must wait for the update
10639                  * to complete before servicing KVM_REQ_APICV_UPDATE.
10640                  */
10641                 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10642                              (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10643
10644                 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10645                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10646                         break;
10647
10648                 if (kvm_lapic_enabled(vcpu))
10649                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10650
10651                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10652                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10653                         break;
10654                 }
10655         }
10656
10657         /*
10658          * Do this here before restoring debug registers on the host.  And
10659          * since we do this before handling the vmexit, a DR access vmexit
10660          * can (a) read the correct value of the debug registers, (b) set
10661          * KVM_DEBUGREG_WONT_EXIT again.
10662          */
10663         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10664                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10665                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10666                 kvm_update_dr0123(vcpu);
10667                 kvm_update_dr7(vcpu);
10668         }
10669
10670         /*
10671          * If the guest has used debug registers, at least dr7
10672          * will be disabled while returning to the host.
10673          * If we don't have active breakpoints in the host, we don't
10674          * care about the messed up debug address registers. But if
10675          * we have some of them active, restore the old state.
10676          */
10677         if (hw_breakpoint_active())
10678                 hw_breakpoint_restore();
10679
10680         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10681         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10682
10683         vcpu->mode = OUTSIDE_GUEST_MODE;
10684         smp_wmb();
10685
10686         /*
10687          * Sync xfd before calling handle_exit_irqoff() which may
10688          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10689          * in #NM irqoff handler).
10690          */
10691         if (vcpu->arch.xfd_no_write_intercept)
10692                 fpu_sync_guest_vmexit_xfd_state();
10693
10694         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10695
10696         if (vcpu->arch.guest_fpu.xfd_err)
10697                 wrmsrl(MSR_IA32_XFD_ERR, 0);
10698
10699         /*
10700          * Consume any pending interrupts, including the possible source of
10701          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10702          * An instruction is required after local_irq_enable() to fully unblock
10703          * interrupts on processors that implement an interrupt shadow, the
10704          * stat.exits increment will do nicely.
10705          */
10706         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10707         local_irq_enable();
10708         ++vcpu->stat.exits;
10709         local_irq_disable();
10710         kvm_after_interrupt(vcpu);
10711
10712         /*
10713          * Wait until after servicing IRQs to account guest time so that any
10714          * ticks that occurred while running the guest are properly accounted
10715          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10716          * of accounting via context tracking, but the loss of accuracy is
10717          * acceptable for all known use cases.
10718          */
10719         guest_timing_exit_irqoff();
10720
10721         local_irq_enable();
10722         preempt_enable();
10723
10724         kvm_vcpu_srcu_read_lock(vcpu);
10725
10726         /*
10727          * Profile KVM exit RIPs:
10728          */
10729         if (unlikely(prof_on == KVM_PROFILING)) {
10730                 unsigned long rip = kvm_rip_read(vcpu);
10731                 profile_hit(KVM_PROFILING, (void *)rip);
10732         }
10733
10734         if (unlikely(vcpu->arch.tsc_always_catchup))
10735                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10736
10737         if (vcpu->arch.apic_attention)
10738                 kvm_lapic_sync_from_vapic(vcpu);
10739
10740         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10741         return r;
10742
10743 cancel_injection:
10744         if (req_immediate_exit)
10745                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10746         static_call(kvm_x86_cancel_injection)(vcpu);
10747         if (unlikely(vcpu->arch.apic_attention))
10748                 kvm_lapic_sync_from_vapic(vcpu);
10749 out:
10750         return r;
10751 }
10752
10753 /* Called within kvm->srcu read side.  */
10754 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10755 {
10756         bool hv_timer;
10757
10758         if (!kvm_arch_vcpu_runnable(vcpu)) {
10759                 /*
10760                  * Switch to the software timer before halt-polling/blocking as
10761                  * the guest's timer may be a break event for the vCPU, and the
10762                  * hypervisor timer runs only when the CPU is in guest mode.
10763                  * Switch before halt-polling so that KVM recognizes an expired
10764                  * timer before blocking.
10765                  */
10766                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10767                 if (hv_timer)
10768                         kvm_lapic_switch_to_sw_timer(vcpu);
10769
10770                 kvm_vcpu_srcu_read_unlock(vcpu);
10771                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10772                         kvm_vcpu_halt(vcpu);
10773                 else
10774                         kvm_vcpu_block(vcpu);
10775                 kvm_vcpu_srcu_read_lock(vcpu);
10776
10777                 if (hv_timer)
10778                         kvm_lapic_switch_to_hv_timer(vcpu);
10779
10780                 /*
10781                  * If the vCPU is not runnable, a signal or another host event
10782                  * of some kind is pending; service it without changing the
10783                  * vCPU's activity state.
10784                  */
10785                 if (!kvm_arch_vcpu_runnable(vcpu))
10786                         return 1;
10787         }
10788
10789         /*
10790          * Evaluate nested events before exiting the halted state.  This allows
10791          * the halt state to be recorded properly in the VMCS12's activity
10792          * state field (AMD does not have a similar field and a VM-Exit always
10793          * causes a spurious wakeup from HLT).
10794          */
10795         if (is_guest_mode(vcpu)) {
10796                 if (kvm_check_nested_events(vcpu) < 0)
10797                         return 0;
10798         }
10799
10800         if (kvm_apic_accept_events(vcpu) < 0)
10801                 return 0;
10802         switch(vcpu->arch.mp_state) {
10803         case KVM_MP_STATE_HALTED:
10804         case KVM_MP_STATE_AP_RESET_HOLD:
10805                 vcpu->arch.pv.pv_unhalted = false;
10806                 vcpu->arch.mp_state =
10807                         KVM_MP_STATE_RUNNABLE;
10808                 fallthrough;
10809         case KVM_MP_STATE_RUNNABLE:
10810                 vcpu->arch.apf.halted = false;
10811                 break;
10812         case KVM_MP_STATE_INIT_RECEIVED:
10813                 break;
10814         default:
10815                 WARN_ON_ONCE(1);
10816                 break;
10817         }
10818         return 1;
10819 }
10820
10821 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10822 {
10823         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10824                 !vcpu->arch.apf.halted);
10825 }
10826
10827 /* Called within kvm->srcu read side.  */
10828 static int vcpu_run(struct kvm_vcpu *vcpu)
10829 {
10830         int r;
10831
10832         vcpu->arch.l1tf_flush_l1d = true;
10833
10834         for (;;) {
10835                 /*
10836                  * If another guest vCPU requests a PV TLB flush in the middle
10837                  * of instruction emulation, the rest of the emulation could
10838                  * use a stale page translation. Assume that any code after
10839                  * this point can start executing an instruction.
10840                  */
10841                 vcpu->arch.at_instruction_boundary = false;
10842                 if (kvm_vcpu_running(vcpu)) {
10843                         r = vcpu_enter_guest(vcpu);
10844                 } else {
10845                         r = vcpu_block(vcpu);
10846                 }
10847
10848                 if (r <= 0)
10849                         break;
10850
10851                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10852                 if (kvm_xen_has_pending_events(vcpu))
10853                         kvm_xen_inject_pending_events(vcpu);
10854
10855                 if (kvm_cpu_has_pending_timer(vcpu))
10856                         kvm_inject_pending_timer_irqs(vcpu);
10857
10858                 if (dm_request_for_irq_injection(vcpu) &&
10859                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10860                         r = 0;
10861                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10862                         ++vcpu->stat.request_irq_exits;
10863                         break;
10864                 }
10865
10866                 if (__xfer_to_guest_mode_work_pending()) {
10867                         kvm_vcpu_srcu_read_unlock(vcpu);
10868                         r = xfer_to_guest_mode_handle_work(vcpu);
10869                         kvm_vcpu_srcu_read_lock(vcpu);
10870                         if (r)
10871                                 return r;
10872                 }
10873         }
10874
10875         return r;
10876 }
10877
10878 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10879 {
10880         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10881 }
10882
10883 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10884 {
10885         BUG_ON(!vcpu->arch.pio.count);
10886
10887         return complete_emulated_io(vcpu);
10888 }
10889
10890 /*
10891  * Implements the following, as a state machine:
10892  *
10893  * read:
10894  *   for each fragment
10895  *     for each mmio piece in the fragment
10896  *       write gpa, len
10897  *       exit
10898  *       copy data
10899  *   execute insn
10900  *
10901  * write:
10902  *   for each fragment
10903  *     for each mmio piece in the fragment
10904  *       write gpa, len
10905  *       copy data
10906  *       exit
10907  */
10908 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10909 {
10910         struct kvm_run *run = vcpu->run;
10911         struct kvm_mmio_fragment *frag;
10912         unsigned len;
10913
10914         BUG_ON(!vcpu->mmio_needed);
10915
10916         /* Complete previous fragment */
10917         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10918         len = min(8u, frag->len);
10919         if (!vcpu->mmio_is_write)
10920                 memcpy(frag->data, run->mmio.data, len);
10921
10922         if (frag->len <= 8) {
10923                 /* Switch to the next fragment. */
10924                 frag++;
10925                 vcpu->mmio_cur_fragment++;
10926         } else {
10927                 /* Go forward to the next mmio piece. */
10928                 frag->data += len;
10929                 frag->gpa += len;
10930                 frag->len -= len;
10931         }
10932
10933         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10934                 vcpu->mmio_needed = 0;
10935
10936                 /* FIXME: return into emulator if single-stepping.  */
10937                 if (vcpu->mmio_is_write)
10938                         return 1;
10939                 vcpu->mmio_read_completed = 1;
10940                 return complete_emulated_io(vcpu);
10941         }
10942
10943         run->exit_reason = KVM_EXIT_MMIO;
10944         run->mmio.phys_addr = frag->gpa;
10945         if (vcpu->mmio_is_write)
10946                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10947         run->mmio.len = min(8u, frag->len);
10948         run->mmio.is_write = vcpu->mmio_is_write;
10949         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10950         return 0;
10951 }
10952
10953 /* Swap (qemu) user FPU context for the guest FPU context. */
10954 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10955 {
10956         /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10957         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10958         trace_kvm_fpu(1);
10959 }
10960
10961 /* When vcpu_run ends, restore user space FPU context. */
10962 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10963 {
10964         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10965         ++vcpu->stat.fpu_reload;
10966         trace_kvm_fpu(0);
10967 }
10968
10969 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10970 {
10971         struct kvm_queued_exception *ex = &vcpu->arch.exception;
10972         struct kvm_run *kvm_run = vcpu->run;
10973         int r;
10974
10975         vcpu_load(vcpu);
10976         kvm_sigset_activate(vcpu);
10977         kvm_run->flags = 0;
10978         kvm_load_guest_fpu(vcpu);
10979
10980         kvm_vcpu_srcu_read_lock(vcpu);
10981         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10982                 if (kvm_run->immediate_exit) {
10983                         r = -EINTR;
10984                         goto out;
10985                 }
10986                 /*
10987                  * It should be impossible for the hypervisor timer to be in
10988                  * use before KVM has ever run the vCPU.
10989                  */
10990                 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10991
10992                 kvm_vcpu_srcu_read_unlock(vcpu);
10993                 kvm_vcpu_block(vcpu);
10994                 kvm_vcpu_srcu_read_lock(vcpu);
10995
10996                 if (kvm_apic_accept_events(vcpu) < 0) {
10997                         r = 0;
10998                         goto out;
10999                 }
11000                 r = -EAGAIN;
11001                 if (signal_pending(current)) {
11002                         r = -EINTR;
11003                         kvm_run->exit_reason = KVM_EXIT_INTR;
11004                         ++vcpu->stat.signal_exits;
11005                 }
11006                 goto out;
11007         }
11008
11009         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11010             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11011                 r = -EINVAL;
11012                 goto out;
11013         }
11014
11015         if (kvm_run->kvm_dirty_regs) {
11016                 r = sync_regs(vcpu);
11017                 if (r != 0)
11018                         goto out;
11019         }
11020
11021         /* re-sync apic's tpr */
11022         if (!lapic_in_kernel(vcpu)) {
11023                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11024                         r = -EINVAL;
11025                         goto out;
11026                 }
11027         }
11028
11029         /*
11030          * If userspace set a pending exception and L2 is active, convert it to
11031          * a pending VM-Exit if L1 wants to intercept the exception.
11032          */
11033         if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11034             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11035                                                         ex->error_code)) {
11036                 kvm_queue_exception_vmexit(vcpu, ex->vector,
11037                                            ex->has_error_code, ex->error_code,
11038                                            ex->has_payload, ex->payload);
11039                 ex->injected = false;
11040                 ex->pending = false;
11041         }
11042         vcpu->arch.exception_from_userspace = false;
11043
11044         if (unlikely(vcpu->arch.complete_userspace_io)) {
11045                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11046                 vcpu->arch.complete_userspace_io = NULL;
11047                 r = cui(vcpu);
11048                 if (r <= 0)
11049                         goto out;
11050         } else {
11051                 WARN_ON_ONCE(vcpu->arch.pio.count);
11052                 WARN_ON_ONCE(vcpu->mmio_needed);
11053         }
11054
11055         if (kvm_run->immediate_exit) {
11056                 r = -EINTR;
11057                 goto out;
11058         }
11059
11060         r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11061         if (r <= 0)
11062                 goto out;
11063
11064         r = vcpu_run(vcpu);
11065
11066 out:
11067         kvm_put_guest_fpu(vcpu);
11068         if (kvm_run->kvm_valid_regs)
11069                 store_regs(vcpu);
11070         post_kvm_run_save(vcpu);
11071         kvm_vcpu_srcu_read_unlock(vcpu);
11072
11073         kvm_sigset_deactivate(vcpu);
11074         vcpu_put(vcpu);
11075         return r;
11076 }
11077
11078 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11079 {
11080         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11081                 /*
11082                  * We are here if userspace calls get_regs() in the middle of
11083                  * instruction emulation. Registers state needs to be copied
11084                  * back from emulation context to vcpu. Userspace shouldn't do
11085                  * that usually, but some bad designed PV devices (vmware
11086                  * backdoor interface) need this to work
11087                  */
11088                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11089                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11090         }
11091         regs->rax = kvm_rax_read(vcpu);
11092         regs->rbx = kvm_rbx_read(vcpu);
11093         regs->rcx = kvm_rcx_read(vcpu);
11094         regs->rdx = kvm_rdx_read(vcpu);
11095         regs->rsi = kvm_rsi_read(vcpu);
11096         regs->rdi = kvm_rdi_read(vcpu);
11097         regs->rsp = kvm_rsp_read(vcpu);
11098         regs->rbp = kvm_rbp_read(vcpu);
11099 #ifdef CONFIG_X86_64
11100         regs->r8 = kvm_r8_read(vcpu);
11101         regs->r9 = kvm_r9_read(vcpu);
11102         regs->r10 = kvm_r10_read(vcpu);
11103         regs->r11 = kvm_r11_read(vcpu);
11104         regs->r12 = kvm_r12_read(vcpu);
11105         regs->r13 = kvm_r13_read(vcpu);
11106         regs->r14 = kvm_r14_read(vcpu);
11107         regs->r15 = kvm_r15_read(vcpu);
11108 #endif
11109
11110         regs->rip = kvm_rip_read(vcpu);
11111         regs->rflags = kvm_get_rflags(vcpu);
11112 }
11113
11114 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11115 {
11116         vcpu_load(vcpu);
11117         __get_regs(vcpu, regs);
11118         vcpu_put(vcpu);
11119         return 0;
11120 }
11121
11122 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11123 {
11124         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11125         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11126
11127         kvm_rax_write(vcpu, regs->rax);
11128         kvm_rbx_write(vcpu, regs->rbx);
11129         kvm_rcx_write(vcpu, regs->rcx);
11130         kvm_rdx_write(vcpu, regs->rdx);
11131         kvm_rsi_write(vcpu, regs->rsi);
11132         kvm_rdi_write(vcpu, regs->rdi);
11133         kvm_rsp_write(vcpu, regs->rsp);
11134         kvm_rbp_write(vcpu, regs->rbp);
11135 #ifdef CONFIG_X86_64
11136         kvm_r8_write(vcpu, regs->r8);
11137         kvm_r9_write(vcpu, regs->r9);
11138         kvm_r10_write(vcpu, regs->r10);
11139         kvm_r11_write(vcpu, regs->r11);
11140         kvm_r12_write(vcpu, regs->r12);
11141         kvm_r13_write(vcpu, regs->r13);
11142         kvm_r14_write(vcpu, regs->r14);
11143         kvm_r15_write(vcpu, regs->r15);
11144 #endif
11145
11146         kvm_rip_write(vcpu, regs->rip);
11147         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11148
11149         vcpu->arch.exception.pending = false;
11150         vcpu->arch.exception_vmexit.pending = false;
11151
11152         kvm_make_request(KVM_REQ_EVENT, vcpu);
11153 }
11154
11155 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11156 {
11157         vcpu_load(vcpu);
11158         __set_regs(vcpu, regs);
11159         vcpu_put(vcpu);
11160         return 0;
11161 }
11162
11163 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11164 {
11165         struct desc_ptr dt;
11166
11167         if (vcpu->arch.guest_state_protected)
11168                 goto skip_protected_regs;
11169
11170         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11171         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11172         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11173         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11174         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11175         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11176
11177         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11178         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11179
11180         static_call(kvm_x86_get_idt)(vcpu, &dt);
11181         sregs->idt.limit = dt.size;
11182         sregs->idt.base = dt.address;
11183         static_call(kvm_x86_get_gdt)(vcpu, &dt);
11184         sregs->gdt.limit = dt.size;
11185         sregs->gdt.base = dt.address;
11186
11187         sregs->cr2 = vcpu->arch.cr2;
11188         sregs->cr3 = kvm_read_cr3(vcpu);
11189
11190 skip_protected_regs:
11191         sregs->cr0 = kvm_read_cr0(vcpu);
11192         sregs->cr4 = kvm_read_cr4(vcpu);
11193         sregs->cr8 = kvm_get_cr8(vcpu);
11194         sregs->efer = vcpu->arch.efer;
11195         sregs->apic_base = kvm_get_apic_base(vcpu);
11196 }
11197
11198 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11199 {
11200         __get_sregs_common(vcpu, sregs);
11201
11202         if (vcpu->arch.guest_state_protected)
11203                 return;
11204
11205         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11206                 set_bit(vcpu->arch.interrupt.nr,
11207                         (unsigned long *)sregs->interrupt_bitmap);
11208 }
11209
11210 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11211 {
11212         int i;
11213
11214         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11215
11216         if (vcpu->arch.guest_state_protected)
11217                 return;
11218
11219         if (is_pae_paging(vcpu)) {
11220                 for (i = 0 ; i < 4 ; i++)
11221                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11222                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11223         }
11224 }
11225
11226 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11227                                   struct kvm_sregs *sregs)
11228 {
11229         vcpu_load(vcpu);
11230         __get_sregs(vcpu, sregs);
11231         vcpu_put(vcpu);
11232         return 0;
11233 }
11234
11235 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11236                                     struct kvm_mp_state *mp_state)
11237 {
11238         int r;
11239
11240         vcpu_load(vcpu);
11241         if (kvm_mpx_supported())
11242                 kvm_load_guest_fpu(vcpu);
11243
11244         r = kvm_apic_accept_events(vcpu);
11245         if (r < 0)
11246                 goto out;
11247         r = 0;
11248
11249         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11250              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11251             vcpu->arch.pv.pv_unhalted)
11252                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11253         else
11254                 mp_state->mp_state = vcpu->arch.mp_state;
11255
11256 out:
11257         if (kvm_mpx_supported())
11258                 kvm_put_guest_fpu(vcpu);
11259         vcpu_put(vcpu);
11260         return r;
11261 }
11262
11263 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11264                                     struct kvm_mp_state *mp_state)
11265 {
11266         int ret = -EINVAL;
11267
11268         vcpu_load(vcpu);
11269
11270         switch (mp_state->mp_state) {
11271         case KVM_MP_STATE_UNINITIALIZED:
11272         case KVM_MP_STATE_HALTED:
11273         case KVM_MP_STATE_AP_RESET_HOLD:
11274         case KVM_MP_STATE_INIT_RECEIVED:
11275         case KVM_MP_STATE_SIPI_RECEIVED:
11276                 if (!lapic_in_kernel(vcpu))
11277                         goto out;
11278                 break;
11279
11280         case KVM_MP_STATE_RUNNABLE:
11281                 break;
11282
11283         default:
11284                 goto out;
11285         }
11286
11287         /*
11288          * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11289          * forcing the guest into INIT/SIPI if those events are supposed to be
11290          * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11291          * if an SMI is pending as well.
11292          */
11293         if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11294             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11295              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11296                 goto out;
11297
11298         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11299                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11300                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11301         } else
11302                 vcpu->arch.mp_state = mp_state->mp_state;
11303         kvm_make_request(KVM_REQ_EVENT, vcpu);
11304
11305         ret = 0;
11306 out:
11307         vcpu_put(vcpu);
11308         return ret;
11309 }
11310
11311 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11312                     int reason, bool has_error_code, u32 error_code)
11313 {
11314         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11315         int ret;
11316
11317         init_emulate_ctxt(vcpu);
11318
11319         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11320                                    has_error_code, error_code);
11321         if (ret) {
11322                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11323                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11324                 vcpu->run->internal.ndata = 0;
11325                 return 0;
11326         }
11327
11328         kvm_rip_write(vcpu, ctxt->eip);
11329         kvm_set_rflags(vcpu, ctxt->eflags);
11330         return 1;
11331 }
11332 EXPORT_SYMBOL_GPL(kvm_task_switch);
11333
11334 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11335 {
11336         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11337                 /*
11338                  * When EFER.LME and CR0.PG are set, the processor is in
11339                  * 64-bit mode (though maybe in a 32-bit code segment).
11340                  * CR4.PAE and EFER.LMA must be set.
11341                  */
11342                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11343                         return false;
11344                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11345                         return false;
11346         } else {
11347                 /*
11348                  * Not in 64-bit mode: EFER.LMA is clear and the code
11349                  * segment cannot be 64-bit.
11350                  */
11351                 if (sregs->efer & EFER_LMA || sregs->cs.l)
11352                         return false;
11353         }
11354
11355         return kvm_is_valid_cr4(vcpu, sregs->cr4);
11356 }
11357
11358 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11359                 int *mmu_reset_needed, bool update_pdptrs)
11360 {
11361         struct msr_data apic_base_msr;
11362         int idx;
11363         struct desc_ptr dt;
11364
11365         if (!kvm_is_valid_sregs(vcpu, sregs))
11366                 return -EINVAL;
11367
11368         apic_base_msr.data = sregs->apic_base;
11369         apic_base_msr.host_initiated = true;
11370         if (kvm_set_apic_base(vcpu, &apic_base_msr))
11371                 return -EINVAL;
11372
11373         if (vcpu->arch.guest_state_protected)
11374                 return 0;
11375
11376         dt.size = sregs->idt.limit;
11377         dt.address = sregs->idt.base;
11378         static_call(kvm_x86_set_idt)(vcpu, &dt);
11379         dt.size = sregs->gdt.limit;
11380         dt.address = sregs->gdt.base;
11381         static_call(kvm_x86_set_gdt)(vcpu, &dt);
11382
11383         vcpu->arch.cr2 = sregs->cr2;
11384         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11385         vcpu->arch.cr3 = sregs->cr3;
11386         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11387         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11388
11389         kvm_set_cr8(vcpu, sregs->cr8);
11390
11391         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11392         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11393
11394         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11395         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11396         vcpu->arch.cr0 = sregs->cr0;
11397
11398         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11399         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11400
11401         if (update_pdptrs) {
11402                 idx = srcu_read_lock(&vcpu->kvm->srcu);
11403                 if (is_pae_paging(vcpu)) {
11404                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11405                         *mmu_reset_needed = 1;
11406                 }
11407                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11408         }
11409
11410         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11411         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11412         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11413         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11414         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11415         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11416
11417         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11418         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11419
11420         update_cr8_intercept(vcpu);
11421
11422         /* Older userspace won't unhalt the vcpu on reset. */
11423         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11424             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11425             !is_protmode(vcpu))
11426                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11427
11428         return 0;
11429 }
11430
11431 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11432 {
11433         int pending_vec, max_bits;
11434         int mmu_reset_needed = 0;
11435         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11436
11437         if (ret)
11438                 return ret;
11439
11440         if (mmu_reset_needed)
11441                 kvm_mmu_reset_context(vcpu);
11442
11443         max_bits = KVM_NR_INTERRUPTS;
11444         pending_vec = find_first_bit(
11445                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11446
11447         if (pending_vec < max_bits) {
11448                 kvm_queue_interrupt(vcpu, pending_vec, false);
11449                 pr_debug("Set back pending irq %d\n", pending_vec);
11450                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11451         }
11452         return 0;
11453 }
11454
11455 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11456 {
11457         int mmu_reset_needed = 0;
11458         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11459         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11460                 !(sregs2->efer & EFER_LMA);
11461         int i, ret;
11462
11463         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11464                 return -EINVAL;
11465
11466         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11467                 return -EINVAL;
11468
11469         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11470                                  &mmu_reset_needed, !valid_pdptrs);
11471         if (ret)
11472                 return ret;
11473
11474         if (valid_pdptrs) {
11475                 for (i = 0; i < 4 ; i++)
11476                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11477
11478                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11479                 mmu_reset_needed = 1;
11480                 vcpu->arch.pdptrs_from_userspace = true;
11481         }
11482         if (mmu_reset_needed)
11483                 kvm_mmu_reset_context(vcpu);
11484         return 0;
11485 }
11486
11487 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11488                                   struct kvm_sregs *sregs)
11489 {
11490         int ret;
11491
11492         vcpu_load(vcpu);
11493         ret = __set_sregs(vcpu, sregs);
11494         vcpu_put(vcpu);
11495         return ret;
11496 }
11497
11498 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11499 {
11500         bool set = false;
11501         struct kvm_vcpu *vcpu;
11502         unsigned long i;
11503
11504         if (!enable_apicv)
11505                 return;
11506
11507         down_write(&kvm->arch.apicv_update_lock);
11508
11509         kvm_for_each_vcpu(i, vcpu, kvm) {
11510                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11511                         set = true;
11512                         break;
11513                 }
11514         }
11515         __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11516         up_write(&kvm->arch.apicv_update_lock);
11517 }
11518
11519 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11520                                         struct kvm_guest_debug *dbg)
11521 {
11522         unsigned long rflags;
11523         int i, r;
11524
11525         if (vcpu->arch.guest_state_protected)
11526                 return -EINVAL;
11527
11528         vcpu_load(vcpu);
11529
11530         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11531                 r = -EBUSY;
11532                 if (kvm_is_exception_pending(vcpu))
11533                         goto out;
11534                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11535                         kvm_queue_exception(vcpu, DB_VECTOR);
11536                 else
11537                         kvm_queue_exception(vcpu, BP_VECTOR);
11538         }
11539
11540         /*
11541          * Read rflags as long as potentially injected trace flags are still
11542          * filtered out.
11543          */
11544         rflags = kvm_get_rflags(vcpu);
11545
11546         vcpu->guest_debug = dbg->control;
11547         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11548                 vcpu->guest_debug = 0;
11549
11550         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11551                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11552                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11553                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11554         } else {
11555                 for (i = 0; i < KVM_NR_DB_REGS; i++)
11556                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11557         }
11558         kvm_update_dr7(vcpu);
11559
11560         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11561                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11562
11563         /*
11564          * Trigger an rflags update that will inject or remove the trace
11565          * flags.
11566          */
11567         kvm_set_rflags(vcpu, rflags);
11568
11569         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11570
11571         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11572
11573         r = 0;
11574
11575 out:
11576         vcpu_put(vcpu);
11577         return r;
11578 }
11579
11580 /*
11581  * Translate a guest virtual address to a guest physical address.
11582  */
11583 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11584                                     struct kvm_translation *tr)
11585 {
11586         unsigned long vaddr = tr->linear_address;
11587         gpa_t gpa;
11588         int idx;
11589
11590         vcpu_load(vcpu);
11591
11592         idx = srcu_read_lock(&vcpu->kvm->srcu);
11593         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11594         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11595         tr->physical_address = gpa;
11596         tr->valid = gpa != INVALID_GPA;
11597         tr->writeable = 1;
11598         tr->usermode = 0;
11599
11600         vcpu_put(vcpu);
11601         return 0;
11602 }
11603
11604 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11605 {
11606         struct fxregs_state *fxsave;
11607
11608         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11609                 return 0;
11610
11611         vcpu_load(vcpu);
11612
11613         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11614         memcpy(fpu->fpr, fxsave->st_space, 128);
11615         fpu->fcw = fxsave->cwd;
11616         fpu->fsw = fxsave->swd;
11617         fpu->ftwx = fxsave->twd;
11618         fpu->last_opcode = fxsave->fop;
11619         fpu->last_ip = fxsave->rip;
11620         fpu->last_dp = fxsave->rdp;
11621         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11622
11623         vcpu_put(vcpu);
11624         return 0;
11625 }
11626
11627 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11628 {
11629         struct fxregs_state *fxsave;
11630
11631         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11632                 return 0;
11633
11634         vcpu_load(vcpu);
11635
11636         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11637
11638         memcpy(fxsave->st_space, fpu->fpr, 128);
11639         fxsave->cwd = fpu->fcw;
11640         fxsave->swd = fpu->fsw;
11641         fxsave->twd = fpu->ftwx;
11642         fxsave->fop = fpu->last_opcode;
11643         fxsave->rip = fpu->last_ip;
11644         fxsave->rdp = fpu->last_dp;
11645         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11646
11647         vcpu_put(vcpu);
11648         return 0;
11649 }
11650
11651 static void store_regs(struct kvm_vcpu *vcpu)
11652 {
11653         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11654
11655         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11656                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11657
11658         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11659                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11660
11661         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11662                 kvm_vcpu_ioctl_x86_get_vcpu_events(
11663                                 vcpu, &vcpu->run->s.regs.events);
11664 }
11665
11666 static int sync_regs(struct kvm_vcpu *vcpu)
11667 {
11668         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11669                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11670                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11671         }
11672         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11673                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11674                         return -EINVAL;
11675                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11676         }
11677         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11678                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11679                                 vcpu, &vcpu->run->s.regs.events))
11680                         return -EINVAL;
11681                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11682         }
11683
11684         return 0;
11685 }
11686
11687 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11688 {
11689         if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11690                 pr_warn_once("SMP vm created on host with unstable TSC; "
11691                              "guest TSC will not be reliable\n");
11692
11693         if (!kvm->arch.max_vcpu_ids)
11694                 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11695
11696         if (id >= kvm->arch.max_vcpu_ids)
11697                 return -EINVAL;
11698
11699         return static_call(kvm_x86_vcpu_precreate)(kvm);
11700 }
11701
11702 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11703 {
11704         struct page *page;
11705         int r;
11706
11707         vcpu->arch.last_vmentry_cpu = -1;
11708         vcpu->arch.regs_avail = ~0;
11709         vcpu->arch.regs_dirty = ~0;
11710
11711         kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11712
11713         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11714                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11715         else
11716                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11717
11718         r = kvm_mmu_create(vcpu);
11719         if (r < 0)
11720                 return r;
11721
11722         if (irqchip_in_kernel(vcpu->kvm)) {
11723                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11724                 if (r < 0)
11725                         goto fail_mmu_destroy;
11726
11727                 /*
11728                  * Defer evaluating inhibits until the vCPU is first run, as
11729                  * this vCPU will not get notified of any changes until this
11730                  * vCPU is visible to other vCPUs (marked online and added to
11731                  * the set of vCPUs).  Opportunistically mark APICv active as
11732                  * VMX in particularly is highly unlikely to have inhibits.
11733                  * Ignore the current per-VM APICv state so that vCPU creation
11734                  * is guaranteed to run with a deterministic value, the request
11735                  * will ensure the vCPU gets the correct state before VM-Entry.
11736                  */
11737                 if (enable_apicv) {
11738                         vcpu->arch.apic->apicv_active = true;
11739                         kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11740                 }
11741         } else
11742                 static_branch_inc(&kvm_has_noapic_vcpu);
11743
11744         r = -ENOMEM;
11745
11746         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11747         if (!page)
11748                 goto fail_free_lapic;
11749         vcpu->arch.pio_data = page_address(page);
11750
11751         vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11752                                        GFP_KERNEL_ACCOUNT);
11753         vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11754                                             GFP_KERNEL_ACCOUNT);
11755         if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11756                 goto fail_free_mce_banks;
11757         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11758
11759         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11760                                 GFP_KERNEL_ACCOUNT))
11761                 goto fail_free_mce_banks;
11762
11763         if (!alloc_emulate_ctxt(vcpu))
11764                 goto free_wbinvd_dirty_mask;
11765
11766         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11767                 pr_err("failed to allocate vcpu's fpu\n");
11768                 goto free_emulate_ctxt;
11769         }
11770
11771         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11772         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11773
11774         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11775
11776         kvm_async_pf_hash_reset(vcpu);
11777
11778         vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11779         kvm_pmu_init(vcpu);
11780
11781         vcpu->arch.pending_external_vector = -1;
11782         vcpu->arch.preempted_in_kernel = false;
11783
11784 #if IS_ENABLED(CONFIG_HYPERV)
11785         vcpu->arch.hv_root_tdp = INVALID_PAGE;
11786 #endif
11787
11788         r = static_call(kvm_x86_vcpu_create)(vcpu);
11789         if (r)
11790                 goto free_guest_fpu;
11791
11792         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11793         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11794         kvm_xen_init_vcpu(vcpu);
11795         kvm_vcpu_mtrr_init(vcpu);
11796         vcpu_load(vcpu);
11797         kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11798         kvm_vcpu_reset(vcpu, false);
11799         kvm_init_mmu(vcpu);
11800         vcpu_put(vcpu);
11801         return 0;
11802
11803 free_guest_fpu:
11804         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11805 free_emulate_ctxt:
11806         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11807 free_wbinvd_dirty_mask:
11808         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11809 fail_free_mce_banks:
11810         kfree(vcpu->arch.mce_banks);
11811         kfree(vcpu->arch.mci_ctl2_banks);
11812         free_page((unsigned long)vcpu->arch.pio_data);
11813 fail_free_lapic:
11814         kvm_free_lapic(vcpu);
11815 fail_mmu_destroy:
11816         kvm_mmu_destroy(vcpu);
11817         return r;
11818 }
11819
11820 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11821 {
11822         struct kvm *kvm = vcpu->kvm;
11823
11824         if (mutex_lock_killable(&vcpu->mutex))
11825                 return;
11826         vcpu_load(vcpu);
11827         kvm_synchronize_tsc(vcpu, 0);
11828         vcpu_put(vcpu);
11829
11830         /* poll control enabled by default */
11831         vcpu->arch.msr_kvm_poll_control = 1;
11832
11833         mutex_unlock(&vcpu->mutex);
11834
11835         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11836                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11837                                                 KVMCLOCK_SYNC_PERIOD);
11838 }
11839
11840 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11841 {
11842         int idx;
11843
11844         kvmclock_reset(vcpu);
11845
11846         static_call(kvm_x86_vcpu_free)(vcpu);
11847
11848         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11849         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11850         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11851
11852         kvm_xen_destroy_vcpu(vcpu);
11853         kvm_hv_vcpu_uninit(vcpu);
11854         kvm_pmu_destroy(vcpu);
11855         kfree(vcpu->arch.mce_banks);
11856         kfree(vcpu->arch.mci_ctl2_banks);
11857         kvm_free_lapic(vcpu);
11858         idx = srcu_read_lock(&vcpu->kvm->srcu);
11859         kvm_mmu_destroy(vcpu);
11860         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11861         free_page((unsigned long)vcpu->arch.pio_data);
11862         kvfree(vcpu->arch.cpuid_entries);
11863         if (!lapic_in_kernel(vcpu))
11864                 static_branch_dec(&kvm_has_noapic_vcpu);
11865 }
11866
11867 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11868 {
11869         struct kvm_cpuid_entry2 *cpuid_0x1;
11870         unsigned long old_cr0 = kvm_read_cr0(vcpu);
11871         unsigned long new_cr0;
11872
11873         /*
11874          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11875          * to handle side effects.  RESET emulation hits those flows and relies
11876          * on emulated/virtualized registers, including those that are loaded
11877          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11878          * to detect improper or missing initialization.
11879          */
11880         WARN_ON_ONCE(!init_event &&
11881                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11882
11883         /*
11884          * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
11885          * possible to INIT the vCPU while L2 is active.  Force the vCPU back
11886          * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
11887          * bits), i.e. virtualization is disabled.
11888          */
11889         if (is_guest_mode(vcpu))
11890                 kvm_leave_nested(vcpu);
11891
11892         kvm_lapic_reset(vcpu, init_event);
11893
11894         WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
11895         vcpu->arch.hflags = 0;
11896
11897         vcpu->arch.smi_pending = 0;
11898         vcpu->arch.smi_count = 0;
11899         atomic_set(&vcpu->arch.nmi_queued, 0);
11900         vcpu->arch.nmi_pending = 0;
11901         vcpu->arch.nmi_injected = false;
11902         kvm_clear_interrupt_queue(vcpu);
11903         kvm_clear_exception_queue(vcpu);
11904
11905         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11906         kvm_update_dr0123(vcpu);
11907         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11908         vcpu->arch.dr7 = DR7_FIXED_1;
11909         kvm_update_dr7(vcpu);
11910
11911         vcpu->arch.cr2 = 0;
11912
11913         kvm_make_request(KVM_REQ_EVENT, vcpu);
11914         vcpu->arch.apf.msr_en_val = 0;
11915         vcpu->arch.apf.msr_int_val = 0;
11916         vcpu->arch.st.msr_val = 0;
11917
11918         kvmclock_reset(vcpu);
11919
11920         kvm_clear_async_pf_completion_queue(vcpu);
11921         kvm_async_pf_hash_reset(vcpu);
11922         vcpu->arch.apf.halted = false;
11923
11924         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11925                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11926
11927                 /*
11928                  * All paths that lead to INIT are required to load the guest's
11929                  * FPU state (because most paths are buried in KVM_RUN).
11930                  */
11931                 if (init_event)
11932                         kvm_put_guest_fpu(vcpu);
11933
11934                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11935                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11936
11937                 if (init_event)
11938                         kvm_load_guest_fpu(vcpu);
11939         }
11940
11941         if (!init_event) {
11942                 kvm_pmu_reset(vcpu);
11943                 vcpu->arch.smbase = 0x30000;
11944
11945                 vcpu->arch.msr_misc_features_enables = 0;
11946                 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
11947                                                   MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
11948
11949                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11950                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11951         }
11952
11953         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11954         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11955         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11956
11957         /*
11958          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11959          * if no CPUID match is found.  Note, it's impossible to get a match at
11960          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11961          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11962          * on RESET.  But, go through the motions in case that's ever remedied.
11963          */
11964         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
11965         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11966
11967         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11968
11969         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11970         kvm_rip_write(vcpu, 0xfff0);
11971
11972         vcpu->arch.cr3 = 0;
11973         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11974
11975         /*
11976          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11977          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11978          * (or qualify) that with a footnote stating that CD/NW are preserved.
11979          */
11980         new_cr0 = X86_CR0_ET;
11981         if (init_event)
11982                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11983         else
11984                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11985
11986         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11987         static_call(kvm_x86_set_cr4)(vcpu, 0);
11988         static_call(kvm_x86_set_efer)(vcpu, 0);
11989         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11990
11991         /*
11992          * On the standard CR0/CR4/EFER modification paths, there are several
11993          * complex conditions determining whether the MMU has to be reset and/or
11994          * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11995          * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11996          * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11997          * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11998          */
11999         if (old_cr0 & X86_CR0_PG) {
12000                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12001                 kvm_mmu_reset_context(vcpu);
12002         }
12003
12004         /*
12005          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12006          * APM states the TLBs are untouched by INIT, but it also states that
12007          * the TLBs are flushed on "External initialization of the processor."
12008          * Flush the guest TLB regardless of vendor, there is no meaningful
12009          * benefit in relying on the guest to flush the TLB immediately after
12010          * INIT.  A spurious TLB flush is benign and likely negligible from a
12011          * performance perspective.
12012          */
12013         if (init_event)
12014                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12015 }
12016 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12017
12018 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12019 {
12020         struct kvm_segment cs;
12021
12022         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12023         cs.selector = vector << 8;
12024         cs.base = vector << 12;
12025         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12026         kvm_rip_write(vcpu, 0);
12027 }
12028 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12029
12030 int kvm_arch_hardware_enable(void)
12031 {
12032         struct kvm *kvm;
12033         struct kvm_vcpu *vcpu;
12034         unsigned long i;
12035         int ret;
12036         u64 local_tsc;
12037         u64 max_tsc = 0;
12038         bool stable, backwards_tsc = false;
12039
12040         kvm_user_return_msr_cpu_online();
12041
12042         ret = kvm_x86_check_processor_compatibility();
12043         if (ret)
12044                 return ret;
12045
12046         ret = static_call(kvm_x86_hardware_enable)();
12047         if (ret != 0)
12048                 return ret;
12049
12050         local_tsc = rdtsc();
12051         stable = !kvm_check_tsc_unstable();
12052         list_for_each_entry(kvm, &vm_list, vm_list) {
12053                 kvm_for_each_vcpu(i, vcpu, kvm) {
12054                         if (!stable && vcpu->cpu == smp_processor_id())
12055                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12056                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12057                                 backwards_tsc = true;
12058                                 if (vcpu->arch.last_host_tsc > max_tsc)
12059                                         max_tsc = vcpu->arch.last_host_tsc;
12060                         }
12061                 }
12062         }
12063
12064         /*
12065          * Sometimes, even reliable TSCs go backwards.  This happens on
12066          * platforms that reset TSC during suspend or hibernate actions, but
12067          * maintain synchronization.  We must compensate.  Fortunately, we can
12068          * detect that condition here, which happens early in CPU bringup,
12069          * before any KVM threads can be running.  Unfortunately, we can't
12070          * bring the TSCs fully up to date with real time, as we aren't yet far
12071          * enough into CPU bringup that we know how much real time has actually
12072          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12073          * variables that haven't been updated yet.
12074          *
12075          * So we simply find the maximum observed TSC above, then record the
12076          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12077          * the adjustment will be applied.  Note that we accumulate
12078          * adjustments, in case multiple suspend cycles happen before some VCPU
12079          * gets a chance to run again.  In the event that no KVM threads get a
12080          * chance to run, we will miss the entire elapsed period, as we'll have
12081          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12082          * loose cycle time.  This isn't too big a deal, since the loss will be
12083          * uniform across all VCPUs (not to mention the scenario is extremely
12084          * unlikely). It is possible that a second hibernate recovery happens
12085          * much faster than a first, causing the observed TSC here to be
12086          * smaller; this would require additional padding adjustment, which is
12087          * why we set last_host_tsc to the local tsc observed here.
12088          *
12089          * N.B. - this code below runs only on platforms with reliable TSC,
12090          * as that is the only way backwards_tsc is set above.  Also note
12091          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12092          * have the same delta_cyc adjustment applied if backwards_tsc
12093          * is detected.  Note further, this adjustment is only done once,
12094          * as we reset last_host_tsc on all VCPUs to stop this from being
12095          * called multiple times (one for each physical CPU bringup).
12096          *
12097          * Platforms with unreliable TSCs don't have to deal with this, they
12098          * will be compensated by the logic in vcpu_load, which sets the TSC to
12099          * catchup mode.  This will catchup all VCPUs to real time, but cannot
12100          * guarantee that they stay in perfect synchronization.
12101          */
12102         if (backwards_tsc) {
12103                 u64 delta_cyc = max_tsc - local_tsc;
12104                 list_for_each_entry(kvm, &vm_list, vm_list) {
12105                         kvm->arch.backwards_tsc_observed = true;
12106                         kvm_for_each_vcpu(i, vcpu, kvm) {
12107                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12108                                 vcpu->arch.last_host_tsc = local_tsc;
12109                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12110                         }
12111
12112                         /*
12113                          * We have to disable TSC offset matching.. if you were
12114                          * booting a VM while issuing an S4 host suspend....
12115                          * you may have some problem.  Solving this issue is
12116                          * left as an exercise to the reader.
12117                          */
12118                         kvm->arch.last_tsc_nsec = 0;
12119                         kvm->arch.last_tsc_write = 0;
12120                 }
12121
12122         }
12123         return 0;
12124 }
12125
12126 void kvm_arch_hardware_disable(void)
12127 {
12128         static_call(kvm_x86_hardware_disable)();
12129         drop_user_return_notifiers();
12130 }
12131
12132 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12133 {
12134         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12135 }
12136
12137 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12138 {
12139         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12140 }
12141
12142 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12143 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12144
12145 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12146 {
12147         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12148
12149         vcpu->arch.l1tf_flush_l1d = true;
12150         if (pmu->version && unlikely(pmu->event_count)) {
12151                 pmu->need_cleanup = true;
12152                 kvm_make_request(KVM_REQ_PMU, vcpu);
12153         }
12154         static_call(kvm_x86_sched_in)(vcpu, cpu);
12155 }
12156
12157 void kvm_arch_free_vm(struct kvm *kvm)
12158 {
12159         kfree(to_kvm_hv(kvm)->hv_pa_pg);
12160         __kvm_arch_free_vm(kvm);
12161 }
12162
12163
12164 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12165 {
12166         int ret;
12167         unsigned long flags;
12168
12169         if (type)
12170                 return -EINVAL;
12171
12172         ret = kvm_page_track_init(kvm);
12173         if (ret)
12174                 goto out;
12175
12176         ret = kvm_mmu_init_vm(kvm);
12177         if (ret)
12178                 goto out_page_track;
12179
12180         ret = static_call(kvm_x86_vm_init)(kvm);
12181         if (ret)
12182                 goto out_uninit_mmu;
12183
12184         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12185         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12186         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12187
12188         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12189         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12190         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12191         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12192                 &kvm->arch.irq_sources_bitmap);
12193
12194         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12195         mutex_init(&kvm->arch.apic_map_lock);
12196         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12197         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12198
12199         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12200         pvclock_update_vm_gtod_copy(kvm);
12201         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12202
12203         kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12204         kvm->arch.guest_can_read_msr_platform_info = true;
12205         kvm->arch.enable_pmu = enable_pmu;
12206
12207 #if IS_ENABLED(CONFIG_HYPERV)
12208         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12209         kvm->arch.hv_root_tdp = INVALID_PAGE;
12210 #endif
12211
12212         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12213         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12214
12215         kvm_apicv_init(kvm);
12216         kvm_hv_init_vm(kvm);
12217         kvm_xen_init_vm(kvm);
12218
12219         return 0;
12220
12221 out_uninit_mmu:
12222         kvm_mmu_uninit_vm(kvm);
12223 out_page_track:
12224         kvm_page_track_cleanup(kvm);
12225 out:
12226         return ret;
12227 }
12228
12229 int kvm_arch_post_init_vm(struct kvm *kvm)
12230 {
12231         return kvm_mmu_post_init_vm(kvm);
12232 }
12233
12234 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12235 {
12236         vcpu_load(vcpu);
12237         kvm_mmu_unload(vcpu);
12238         vcpu_put(vcpu);
12239 }
12240
12241 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12242 {
12243         unsigned long i;
12244         struct kvm_vcpu *vcpu;
12245
12246         kvm_for_each_vcpu(i, vcpu, kvm) {
12247                 kvm_clear_async_pf_completion_queue(vcpu);
12248                 kvm_unload_vcpu_mmu(vcpu);
12249         }
12250 }
12251
12252 void kvm_arch_sync_events(struct kvm *kvm)
12253 {
12254         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12255         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12256         kvm_free_pit(kvm);
12257 }
12258
12259 /**
12260  * __x86_set_memory_region: Setup KVM internal memory slot
12261  *
12262  * @kvm: the kvm pointer to the VM.
12263  * @id: the slot ID to setup.
12264  * @gpa: the GPA to install the slot (unused when @size == 0).
12265  * @size: the size of the slot. Set to zero to uninstall a slot.
12266  *
12267  * This function helps to setup a KVM internal memory slot.  Specify
12268  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12269  * slot.  The return code can be one of the following:
12270  *
12271  *   HVA:           on success (uninstall will return a bogus HVA)
12272  *   -errno:        on error
12273  *
12274  * The caller should always use IS_ERR() to check the return value
12275  * before use.  Note, the KVM internal memory slots are guaranteed to
12276  * remain valid and unchanged until the VM is destroyed, i.e., the
12277  * GPA->HVA translation will not change.  However, the HVA is a user
12278  * address, i.e. its accessibility is not guaranteed, and must be
12279  * accessed via __copy_{to,from}_user().
12280  */
12281 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12282                                       u32 size)
12283 {
12284         int i, r;
12285         unsigned long hva, old_npages;
12286         struct kvm_memslots *slots = kvm_memslots(kvm);
12287         struct kvm_memory_slot *slot;
12288
12289         /* Called with kvm->slots_lock held.  */
12290         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12291                 return ERR_PTR_USR(-EINVAL);
12292
12293         slot = id_to_memslot(slots, id);
12294         if (size) {
12295                 if (slot && slot->npages)
12296                         return ERR_PTR_USR(-EEXIST);
12297
12298                 /*
12299                  * MAP_SHARED to prevent internal slot pages from being moved
12300                  * by fork()/COW.
12301                  */
12302                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12303                               MAP_SHARED | MAP_ANONYMOUS, 0);
12304                 if (IS_ERR_VALUE(hva))
12305                         return (void __user *)hva;
12306         } else {
12307                 if (!slot || !slot->npages)
12308                         return NULL;
12309
12310                 old_npages = slot->npages;
12311                 hva = slot->userspace_addr;
12312         }
12313
12314         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12315                 struct kvm_userspace_memory_region m;
12316
12317                 m.slot = id | (i << 16);
12318                 m.flags = 0;
12319                 m.guest_phys_addr = gpa;
12320                 m.userspace_addr = hva;
12321                 m.memory_size = size;
12322                 r = __kvm_set_memory_region(kvm, &m);
12323                 if (r < 0)
12324                         return ERR_PTR_USR(r);
12325         }
12326
12327         if (!size)
12328                 vm_munmap(hva, old_npages * PAGE_SIZE);
12329
12330         return (void __user *)hva;
12331 }
12332 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12333
12334 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12335 {
12336         kvm_mmu_pre_destroy_vm(kvm);
12337 }
12338
12339 void kvm_arch_destroy_vm(struct kvm *kvm)
12340 {
12341         if (current->mm == kvm->mm) {
12342                 /*
12343                  * Free memory regions allocated on behalf of userspace,
12344                  * unless the memory map has changed due to process exit
12345                  * or fd copying.
12346                  */
12347                 mutex_lock(&kvm->slots_lock);
12348                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12349                                         0, 0);
12350                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12351                                         0, 0);
12352                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12353                 mutex_unlock(&kvm->slots_lock);
12354         }
12355         kvm_unload_vcpu_mmus(kvm);
12356         static_call_cond(kvm_x86_vm_destroy)(kvm);
12357         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12358         kvm_pic_destroy(kvm);
12359         kvm_ioapic_destroy(kvm);
12360         kvm_destroy_vcpus(kvm);
12361         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12362         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12363         kvm_mmu_uninit_vm(kvm);
12364         kvm_page_track_cleanup(kvm);
12365         kvm_xen_destroy_vm(kvm);
12366         kvm_hv_destroy_vm(kvm);
12367 }
12368
12369 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12370 {
12371         int i;
12372
12373         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12374                 kvfree(slot->arch.rmap[i]);
12375                 slot->arch.rmap[i] = NULL;
12376         }
12377 }
12378
12379 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12380 {
12381         int i;
12382
12383         memslot_rmap_free(slot);
12384
12385         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12386                 kvfree(slot->arch.lpage_info[i - 1]);
12387                 slot->arch.lpage_info[i - 1] = NULL;
12388         }
12389
12390         kvm_page_track_free_memslot(slot);
12391 }
12392
12393 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12394 {
12395         const int sz = sizeof(*slot->arch.rmap[0]);
12396         int i;
12397
12398         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12399                 int level = i + 1;
12400                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12401
12402                 if (slot->arch.rmap[i])
12403                         continue;
12404
12405                 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12406                 if (!slot->arch.rmap[i]) {
12407                         memslot_rmap_free(slot);
12408                         return -ENOMEM;
12409                 }
12410         }
12411
12412         return 0;
12413 }
12414
12415 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12416                                       struct kvm_memory_slot *slot)
12417 {
12418         unsigned long npages = slot->npages;
12419         int i, r;
12420
12421         /*
12422          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12423          * old arrays will be freed by __kvm_set_memory_region() if installing
12424          * the new memslot is successful.
12425          */
12426         memset(&slot->arch, 0, sizeof(slot->arch));
12427
12428         if (kvm_memslots_have_rmaps(kvm)) {
12429                 r = memslot_rmap_alloc(slot, npages);
12430                 if (r)
12431                         return r;
12432         }
12433
12434         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12435                 struct kvm_lpage_info *linfo;
12436                 unsigned long ugfn;
12437                 int lpages;
12438                 int level = i + 1;
12439
12440                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12441
12442                 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12443                 if (!linfo)
12444                         goto out_free;
12445
12446                 slot->arch.lpage_info[i - 1] = linfo;
12447
12448                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12449                         linfo[0].disallow_lpage = 1;
12450                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12451                         linfo[lpages - 1].disallow_lpage = 1;
12452                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12453                 /*
12454                  * If the gfn and userspace address are not aligned wrt each
12455                  * other, disable large page support for this slot.
12456                  */
12457                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12458                         unsigned long j;
12459
12460                         for (j = 0; j < lpages; ++j)
12461                                 linfo[j].disallow_lpage = 1;
12462                 }
12463         }
12464
12465         if (kvm_page_track_create_memslot(kvm, slot, npages))
12466                 goto out_free;
12467
12468         return 0;
12469
12470 out_free:
12471         memslot_rmap_free(slot);
12472
12473         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12474                 kvfree(slot->arch.lpage_info[i - 1]);
12475                 slot->arch.lpage_info[i - 1] = NULL;
12476         }
12477         return -ENOMEM;
12478 }
12479
12480 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12481 {
12482         struct kvm_vcpu *vcpu;
12483         unsigned long i;
12484
12485         /*
12486          * memslots->generation has been incremented.
12487          * mmio generation may have reached its maximum value.
12488          */
12489         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12490
12491         /* Force re-initialization of steal_time cache */
12492         kvm_for_each_vcpu(i, vcpu, kvm)
12493                 kvm_vcpu_kick(vcpu);
12494 }
12495
12496 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12497                                    const struct kvm_memory_slot *old,
12498                                    struct kvm_memory_slot *new,
12499                                    enum kvm_mr_change change)
12500 {
12501         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12502                 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12503                         return -EINVAL;
12504
12505                 return kvm_alloc_memslot_metadata(kvm, new);
12506         }
12507
12508         if (change == KVM_MR_FLAGS_ONLY)
12509                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12510         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12511                 return -EIO;
12512
12513         return 0;
12514 }
12515
12516
12517 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12518 {
12519         int nr_slots;
12520
12521         if (!kvm_x86_ops.cpu_dirty_log_size)
12522                 return;
12523
12524         nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12525         if ((enable && nr_slots == 1) || !nr_slots)
12526                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12527 }
12528
12529 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12530                                      struct kvm_memory_slot *old,
12531                                      const struct kvm_memory_slot *new,
12532                                      enum kvm_mr_change change)
12533 {
12534         u32 old_flags = old ? old->flags : 0;
12535         u32 new_flags = new ? new->flags : 0;
12536         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12537
12538         /*
12539          * Update CPU dirty logging if dirty logging is being toggled.  This
12540          * applies to all operations.
12541          */
12542         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12543                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12544
12545         /*
12546          * Nothing more to do for RO slots (which can't be dirtied and can't be
12547          * made writable) or CREATE/MOVE/DELETE of a slot.
12548          *
12549          * For a memslot with dirty logging disabled:
12550          * CREATE:      No dirty mappings will already exist.
12551          * MOVE/DELETE: The old mappings will already have been cleaned up by
12552          *              kvm_arch_flush_shadow_memslot()
12553          *
12554          * For a memslot with dirty logging enabled:
12555          * CREATE:      No shadow pages exist, thus nothing to write-protect
12556          *              and no dirty bits to clear.
12557          * MOVE/DELETE: The old mappings will already have been cleaned up by
12558          *              kvm_arch_flush_shadow_memslot().
12559          */
12560         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12561                 return;
12562
12563         /*
12564          * READONLY and non-flags changes were filtered out above, and the only
12565          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12566          * logging isn't being toggled on or off.
12567          */
12568         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12569                 return;
12570
12571         if (!log_dirty_pages) {
12572                 /*
12573                  * Dirty logging tracks sptes in 4k granularity, meaning that
12574                  * large sptes have to be split.  If live migration succeeds,
12575                  * the guest in the source machine will be destroyed and large
12576                  * sptes will be created in the destination.  However, if the
12577                  * guest continues to run in the source machine (for example if
12578                  * live migration fails), small sptes will remain around and
12579                  * cause bad performance.
12580                  *
12581                  * Scan sptes if dirty logging has been stopped, dropping those
12582                  * which can be collapsed into a single large-page spte.  Later
12583                  * page faults will create the large-page sptes.
12584                  */
12585                 kvm_mmu_zap_collapsible_sptes(kvm, new);
12586         } else {
12587                 /*
12588                  * Initially-all-set does not require write protecting any page,
12589                  * because they're all assumed to be dirty.
12590                  */
12591                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12592                         return;
12593
12594                 if (READ_ONCE(eager_page_split))
12595                         kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12596
12597                 if (kvm_x86_ops.cpu_dirty_log_size) {
12598                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12599                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12600                 } else {
12601                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12602                 }
12603
12604                 /*
12605                  * Unconditionally flush the TLBs after enabling dirty logging.
12606                  * A flush is almost always going to be necessary (see below),
12607                  * and unconditionally flushing allows the helpers to omit
12608                  * the subtly complex checks when removing write access.
12609                  *
12610                  * Do the flush outside of mmu_lock to reduce the amount of
12611                  * time mmu_lock is held.  Flushing after dropping mmu_lock is
12612                  * safe as KVM only needs to guarantee the slot is fully
12613                  * write-protected before returning to userspace, i.e. before
12614                  * userspace can consume the dirty status.
12615                  *
12616                  * Flushing outside of mmu_lock requires KVM to be careful when
12617                  * making decisions based on writable status of an SPTE, e.g. a
12618                  * !writable SPTE doesn't guarantee a CPU can't perform writes.
12619                  *
12620                  * Specifically, KVM also write-protects guest page tables to
12621                  * monitor changes when using shadow paging, and must guarantee
12622                  * no CPUs can write to those page before mmu_lock is dropped.
12623                  * Because CPUs may have stale TLB entries at this point, a
12624                  * !writable SPTE doesn't guarantee CPUs can't perform writes.
12625                  *
12626                  * KVM also allows making SPTES writable outside of mmu_lock,
12627                  * e.g. to allow dirty logging without taking mmu_lock.
12628                  *
12629                  * To handle these scenarios, KVM uses a separate software-only
12630                  * bit (MMU-writable) to track if a SPTE is !writable due to
12631                  * a guest page table being write-protected (KVM clears the
12632                  * MMU-writable flag when write-protecting for shadow paging).
12633                  *
12634                  * The use of MMU-writable is also the primary motivation for
12635                  * the unconditional flush.  Because KVM must guarantee that a
12636                  * CPU doesn't contain stale, writable TLB entries for a
12637                  * !MMU-writable SPTE, KVM must flush if it encounters any
12638                  * MMU-writable SPTE regardless of whether the actual hardware
12639                  * writable bit was set.  I.e. KVM is almost guaranteed to need
12640                  * to flush, while unconditionally flushing allows the "remove
12641                  * write access" helpers to ignore MMU-writable entirely.
12642                  *
12643                  * See is_writable_pte() for more details (the case involving
12644                  * access-tracked SPTEs is particularly relevant).
12645                  */
12646                 kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12647         }
12648 }
12649
12650 void kvm_arch_commit_memory_region(struct kvm *kvm,
12651                                 struct kvm_memory_slot *old,
12652                                 const struct kvm_memory_slot *new,
12653                                 enum kvm_mr_change change)
12654 {
12655         if (!kvm->arch.n_requested_mmu_pages &&
12656             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12657                 unsigned long nr_mmu_pages;
12658
12659                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12660                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12661                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12662         }
12663
12664         kvm_mmu_slot_apply_flags(kvm, old, new, change);
12665
12666         /* Free the arrays associated with the old memslot. */
12667         if (change == KVM_MR_MOVE)
12668                 kvm_arch_free_memslot(kvm, old);
12669 }
12670
12671 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12672 {
12673         kvm_mmu_zap_all(kvm);
12674 }
12675
12676 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12677                                    struct kvm_memory_slot *slot)
12678 {
12679         kvm_page_track_flush_slot(kvm, slot);
12680 }
12681
12682 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12683 {
12684         return (is_guest_mode(vcpu) &&
12685                 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12686 }
12687
12688 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12689 {
12690         if (!list_empty_careful(&vcpu->async_pf.done))
12691                 return true;
12692
12693         if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12694             kvm_apic_init_sipi_allowed(vcpu))
12695                 return true;
12696
12697         if (vcpu->arch.pv.pv_unhalted)
12698                 return true;
12699
12700         if (kvm_is_exception_pending(vcpu))
12701                 return true;
12702
12703         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12704             (vcpu->arch.nmi_pending &&
12705              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12706                 return true;
12707
12708 #ifdef CONFIG_KVM_SMM
12709         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12710             (vcpu->arch.smi_pending &&
12711              static_call(kvm_x86_smi_allowed)(vcpu, false)))
12712                 return true;
12713 #endif
12714
12715         if (kvm_arch_interrupt_allowed(vcpu) &&
12716             (kvm_cpu_has_interrupt(vcpu) ||
12717             kvm_guest_apic_has_interrupt(vcpu)))
12718                 return true;
12719
12720         if (kvm_hv_has_stimer_pending(vcpu))
12721                 return true;
12722
12723         if (is_guest_mode(vcpu) &&
12724             kvm_x86_ops.nested_ops->has_events &&
12725             kvm_x86_ops.nested_ops->has_events(vcpu))
12726                 return true;
12727
12728         if (kvm_xen_has_pending_events(vcpu))
12729                 return true;
12730
12731         return false;
12732 }
12733
12734 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12735 {
12736         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12737 }
12738
12739 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12740 {
12741         if (kvm_vcpu_apicv_active(vcpu) &&
12742             static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12743                 return true;
12744
12745         return false;
12746 }
12747
12748 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12749 {
12750         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12751                 return true;
12752
12753         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12754 #ifdef CONFIG_KVM_SMM
12755                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12756 #endif
12757                  kvm_test_request(KVM_REQ_EVENT, vcpu))
12758                 return true;
12759
12760         return kvm_arch_dy_has_pending_interrupt(vcpu);
12761 }
12762
12763 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12764 {
12765         if (vcpu->arch.guest_state_protected)
12766                 return true;
12767
12768         return vcpu->arch.preempted_in_kernel;
12769 }
12770
12771 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12772 {
12773         return kvm_rip_read(vcpu);
12774 }
12775
12776 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12777 {
12778         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12779 }
12780
12781 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12782 {
12783         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12784 }
12785
12786 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12787 {
12788         /* Can't read the RIP when guest state is protected, just return 0 */
12789         if (vcpu->arch.guest_state_protected)
12790                 return 0;
12791
12792         if (is_64_bit_mode(vcpu))
12793                 return kvm_rip_read(vcpu);
12794         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12795                      kvm_rip_read(vcpu));
12796 }
12797 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12798
12799 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12800 {
12801         return kvm_get_linear_rip(vcpu) == linear_rip;
12802 }
12803 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12804
12805 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12806 {
12807         unsigned long rflags;
12808
12809         rflags = static_call(kvm_x86_get_rflags)(vcpu);
12810         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12811                 rflags &= ~X86_EFLAGS_TF;
12812         return rflags;
12813 }
12814 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12815
12816 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12817 {
12818         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12819             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12820                 rflags |= X86_EFLAGS_TF;
12821         static_call(kvm_x86_set_rflags)(vcpu, rflags);
12822 }
12823
12824 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12825 {
12826         __kvm_set_rflags(vcpu, rflags);
12827         kvm_make_request(KVM_REQ_EVENT, vcpu);
12828 }
12829 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12830
12831 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12832 {
12833         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12834
12835         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12836 }
12837
12838 static inline u32 kvm_async_pf_next_probe(u32 key)
12839 {
12840         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12841 }
12842
12843 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12844 {
12845         u32 key = kvm_async_pf_hash_fn(gfn);
12846
12847         while (vcpu->arch.apf.gfns[key] != ~0)
12848                 key = kvm_async_pf_next_probe(key);
12849
12850         vcpu->arch.apf.gfns[key] = gfn;
12851 }
12852
12853 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12854 {
12855         int i;
12856         u32 key = kvm_async_pf_hash_fn(gfn);
12857
12858         for (i = 0; i < ASYNC_PF_PER_VCPU &&
12859                      (vcpu->arch.apf.gfns[key] != gfn &&
12860                       vcpu->arch.apf.gfns[key] != ~0); i++)
12861                 key = kvm_async_pf_next_probe(key);
12862
12863         return key;
12864 }
12865
12866 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12867 {
12868         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12869 }
12870
12871 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12872 {
12873         u32 i, j, k;
12874
12875         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12876
12877         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12878                 return;
12879
12880         while (true) {
12881                 vcpu->arch.apf.gfns[i] = ~0;
12882                 do {
12883                         j = kvm_async_pf_next_probe(j);
12884                         if (vcpu->arch.apf.gfns[j] == ~0)
12885                                 return;
12886                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12887                         /*
12888                          * k lies cyclically in ]i,j]
12889                          * |    i.k.j |
12890                          * |....j i.k.| or  |.k..j i...|
12891                          */
12892                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12893                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12894                 i = j;
12895         }
12896 }
12897
12898 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12899 {
12900         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12901
12902         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12903                                       sizeof(reason));
12904 }
12905
12906 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12907 {
12908         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12909
12910         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12911                                              &token, offset, sizeof(token));
12912 }
12913
12914 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12915 {
12916         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12917         u32 val;
12918
12919         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12920                                          &val, offset, sizeof(val)))
12921                 return false;
12922
12923         return !val;
12924 }
12925
12926 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12927 {
12928
12929         if (!kvm_pv_async_pf_enabled(vcpu))
12930                 return false;
12931
12932         if (vcpu->arch.apf.send_user_only &&
12933             static_call(kvm_x86_get_cpl)(vcpu) == 0)
12934                 return false;
12935
12936         if (is_guest_mode(vcpu)) {
12937                 /*
12938                  * L1 needs to opt into the special #PF vmexits that are
12939                  * used to deliver async page faults.
12940                  */
12941                 return vcpu->arch.apf.delivery_as_pf_vmexit;
12942         } else {
12943                 /*
12944                  * Play it safe in case the guest temporarily disables paging.
12945                  * The real mode IDT in particular is unlikely to have a #PF
12946                  * exception setup.
12947                  */
12948                 return is_paging(vcpu);
12949         }
12950 }
12951
12952 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12953 {
12954         if (unlikely(!lapic_in_kernel(vcpu) ||
12955                      kvm_event_needs_reinjection(vcpu) ||
12956                      kvm_is_exception_pending(vcpu)))
12957                 return false;
12958
12959         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12960                 return false;
12961
12962         /*
12963          * If interrupts are off we cannot even use an artificial
12964          * halt state.
12965          */
12966         return kvm_arch_interrupt_allowed(vcpu);
12967 }
12968
12969 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12970                                      struct kvm_async_pf *work)
12971 {
12972         struct x86_exception fault;
12973
12974         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12975         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12976
12977         if (kvm_can_deliver_async_pf(vcpu) &&
12978             !apf_put_user_notpresent(vcpu)) {
12979                 fault.vector = PF_VECTOR;
12980                 fault.error_code_valid = true;
12981                 fault.error_code = 0;
12982                 fault.nested_page_fault = false;
12983                 fault.address = work->arch.token;
12984                 fault.async_page_fault = true;
12985                 kvm_inject_page_fault(vcpu, &fault);
12986                 return true;
12987         } else {
12988                 /*
12989                  * It is not possible to deliver a paravirtualized asynchronous
12990                  * page fault, but putting the guest in an artificial halt state
12991                  * can be beneficial nevertheless: if an interrupt arrives, we
12992                  * can deliver it timely and perhaps the guest will schedule
12993                  * another process.  When the instruction that triggered a page
12994                  * fault is retried, hopefully the page will be ready in the host.
12995                  */
12996                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12997                 return false;
12998         }
12999 }
13000
13001 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13002                                  struct kvm_async_pf *work)
13003 {
13004         struct kvm_lapic_irq irq = {
13005                 .delivery_mode = APIC_DM_FIXED,
13006                 .vector = vcpu->arch.apf.vec
13007         };
13008
13009         if (work->wakeup_all)
13010                 work->arch.token = ~0; /* broadcast wakeup */
13011         else
13012                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13013         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13014
13015         if ((work->wakeup_all || work->notpresent_injected) &&
13016             kvm_pv_async_pf_enabled(vcpu) &&
13017             !apf_put_user_ready(vcpu, work->arch.token)) {
13018                 vcpu->arch.apf.pageready_pending = true;
13019                 kvm_apic_set_irq(vcpu, &irq, NULL);
13020         }
13021
13022         vcpu->arch.apf.halted = false;
13023         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13024 }
13025
13026 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13027 {
13028         kvm_make_request(KVM_REQ_APF_READY, vcpu);
13029         if (!vcpu->arch.apf.pageready_pending)
13030                 kvm_vcpu_kick(vcpu);
13031 }
13032
13033 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13034 {
13035         if (!kvm_pv_async_pf_enabled(vcpu))
13036                 return true;
13037         else
13038                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13039 }
13040
13041 void kvm_arch_start_assignment(struct kvm *kvm)
13042 {
13043         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13044                 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13045 }
13046 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13047
13048 void kvm_arch_end_assignment(struct kvm *kvm)
13049 {
13050         atomic_dec(&kvm->arch.assigned_device_count);
13051 }
13052 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13053
13054 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13055 {
13056         return arch_atomic_read(&kvm->arch.assigned_device_count);
13057 }
13058 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13059
13060 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13061 {
13062         atomic_inc(&kvm->arch.noncoherent_dma_count);
13063 }
13064 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13065
13066 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13067 {
13068         atomic_dec(&kvm->arch.noncoherent_dma_count);
13069 }
13070 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13071
13072 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13073 {
13074         return atomic_read(&kvm->arch.noncoherent_dma_count);
13075 }
13076 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13077
13078 bool kvm_arch_has_irq_bypass(void)
13079 {
13080         return true;
13081 }
13082
13083 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13084                                       struct irq_bypass_producer *prod)
13085 {
13086         struct kvm_kernel_irqfd *irqfd =
13087                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13088         int ret;
13089
13090         irqfd->producer = prod;
13091         kvm_arch_start_assignment(irqfd->kvm);
13092         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13093                                          prod->irq, irqfd->gsi, 1);
13094
13095         if (ret)
13096                 kvm_arch_end_assignment(irqfd->kvm);
13097
13098         return ret;
13099 }
13100
13101 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13102                                       struct irq_bypass_producer *prod)
13103 {
13104         int ret;
13105         struct kvm_kernel_irqfd *irqfd =
13106                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13107
13108         WARN_ON(irqfd->producer != prod);
13109         irqfd->producer = NULL;
13110
13111         /*
13112          * When producer of consumer is unregistered, we change back to
13113          * remapped mode, so we can re-use the current implementation
13114          * when the irq is masked/disabled or the consumer side (KVM
13115          * int this case doesn't want to receive the interrupts.
13116         */
13117         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13118         if (ret)
13119                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13120                        " fails: %d\n", irqfd->consumer.token, ret);
13121
13122         kvm_arch_end_assignment(irqfd->kvm);
13123 }
13124
13125 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13126                                    uint32_t guest_irq, bool set)
13127 {
13128         return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13129 }
13130
13131 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13132                                   struct kvm_kernel_irq_routing_entry *new)
13133 {
13134         if (new->type != KVM_IRQ_ROUTING_MSI)
13135                 return true;
13136
13137         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13138 }
13139
13140 bool kvm_vector_hashing_enabled(void)
13141 {
13142         return vector_hashing;
13143 }
13144
13145 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13146 {
13147         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13148 }
13149 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13150
13151
13152 int kvm_spec_ctrl_test_value(u64 value)
13153 {
13154         /*
13155          * test that setting IA32_SPEC_CTRL to given value
13156          * is allowed by the host processor
13157          */
13158
13159         u64 saved_value;
13160         unsigned long flags;
13161         int ret = 0;
13162
13163         local_irq_save(flags);
13164
13165         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13166                 ret = 1;
13167         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13168                 ret = 1;
13169         else
13170                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13171
13172         local_irq_restore(flags);
13173
13174         return ret;
13175 }
13176 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13177
13178 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13179 {
13180         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13181         struct x86_exception fault;
13182         u64 access = error_code &
13183                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13184
13185         if (!(error_code & PFERR_PRESENT_MASK) ||
13186             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13187                 /*
13188                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13189                  * tables probably do not match the TLB.  Just proceed
13190                  * with the error code that the processor gave.
13191                  */
13192                 fault.vector = PF_VECTOR;
13193                 fault.error_code_valid = true;
13194                 fault.error_code = error_code;
13195                 fault.nested_page_fault = false;
13196                 fault.address = gva;
13197                 fault.async_page_fault = false;
13198         }
13199         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13200 }
13201 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13202
13203 /*
13204  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13205  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13206  * indicates whether exit to userspace is needed.
13207  */
13208 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13209                               struct x86_exception *e)
13210 {
13211         if (r == X86EMUL_PROPAGATE_FAULT) {
13212                 if (KVM_BUG_ON(!e, vcpu->kvm))
13213                         return -EIO;
13214
13215                 kvm_inject_emulated_page_fault(vcpu, e);
13216                 return 1;
13217         }
13218
13219         /*
13220          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13221          * while handling a VMX instruction KVM could've handled the request
13222          * correctly by exiting to userspace and performing I/O but there
13223          * doesn't seem to be a real use-case behind such requests, just return
13224          * KVM_EXIT_INTERNAL_ERROR for now.
13225          */
13226         kvm_prepare_emulation_failure_exit(vcpu);
13227
13228         return 0;
13229 }
13230 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13231
13232 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13233 {
13234         bool pcid_enabled;
13235         struct x86_exception e;
13236         struct {
13237                 u64 pcid;
13238                 u64 gla;
13239         } operand;
13240         int r;
13241
13242         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13243         if (r != X86EMUL_CONTINUE)
13244                 return kvm_handle_memory_failure(vcpu, r, &e);
13245
13246         if (operand.pcid >> 12 != 0) {
13247                 kvm_inject_gp(vcpu, 0);
13248                 return 1;
13249         }
13250
13251         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13252
13253         switch (type) {
13254         case INVPCID_TYPE_INDIV_ADDR:
13255                 if ((!pcid_enabled && (operand.pcid != 0)) ||
13256                     is_noncanonical_address(operand.gla, vcpu)) {
13257                         kvm_inject_gp(vcpu, 0);
13258                         return 1;
13259                 }
13260                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13261                 return kvm_skip_emulated_instruction(vcpu);
13262
13263         case INVPCID_TYPE_SINGLE_CTXT:
13264                 if (!pcid_enabled && (operand.pcid != 0)) {
13265                         kvm_inject_gp(vcpu, 0);
13266                         return 1;
13267                 }
13268
13269                 kvm_invalidate_pcid(vcpu, operand.pcid);
13270                 return kvm_skip_emulated_instruction(vcpu);
13271
13272         case INVPCID_TYPE_ALL_NON_GLOBAL:
13273                 /*
13274                  * Currently, KVM doesn't mark global entries in the shadow
13275                  * page tables, so a non-global flush just degenerates to a
13276                  * global flush. If needed, we could optimize this later by
13277                  * keeping track of global entries in shadow page tables.
13278                  */
13279
13280                 fallthrough;
13281         case INVPCID_TYPE_ALL_INCL_GLOBAL:
13282                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13283                 return kvm_skip_emulated_instruction(vcpu);
13284
13285         default:
13286                 kvm_inject_gp(vcpu, 0);
13287                 return 1;
13288         }
13289 }
13290 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13291
13292 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13293 {
13294         struct kvm_run *run = vcpu->run;
13295         struct kvm_mmio_fragment *frag;
13296         unsigned int len;
13297
13298         BUG_ON(!vcpu->mmio_needed);
13299
13300         /* Complete previous fragment */
13301         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13302         len = min(8u, frag->len);
13303         if (!vcpu->mmio_is_write)
13304                 memcpy(frag->data, run->mmio.data, len);
13305
13306         if (frag->len <= 8) {
13307                 /* Switch to the next fragment. */
13308                 frag++;
13309                 vcpu->mmio_cur_fragment++;
13310         } else {
13311                 /* Go forward to the next mmio piece. */
13312                 frag->data += len;
13313                 frag->gpa += len;
13314                 frag->len -= len;
13315         }
13316
13317         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13318                 vcpu->mmio_needed = 0;
13319
13320                 // VMG change, at this point, we're always done
13321                 // RIP has already been advanced
13322                 return 1;
13323         }
13324
13325         // More MMIO is needed
13326         run->mmio.phys_addr = frag->gpa;
13327         run->mmio.len = min(8u, frag->len);
13328         run->mmio.is_write = vcpu->mmio_is_write;
13329         if (run->mmio.is_write)
13330                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13331         run->exit_reason = KVM_EXIT_MMIO;
13332
13333         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13334
13335         return 0;
13336 }
13337
13338 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13339                           void *data)
13340 {
13341         int handled;
13342         struct kvm_mmio_fragment *frag;
13343
13344         if (!data)
13345                 return -EINVAL;
13346
13347         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13348         if (handled == bytes)
13349                 return 1;
13350
13351         bytes -= handled;
13352         gpa += handled;
13353         data += handled;
13354
13355         /*TODO: Check if need to increment number of frags */
13356         frag = vcpu->mmio_fragments;
13357         vcpu->mmio_nr_fragments = 1;
13358         frag->len = bytes;
13359         frag->gpa = gpa;
13360         frag->data = data;
13361
13362         vcpu->mmio_needed = 1;
13363         vcpu->mmio_cur_fragment = 0;
13364
13365         vcpu->run->mmio.phys_addr = gpa;
13366         vcpu->run->mmio.len = min(8u, frag->len);
13367         vcpu->run->mmio.is_write = 1;
13368         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13369         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13370
13371         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13372
13373         return 0;
13374 }
13375 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13376
13377 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13378                          void *data)
13379 {
13380         int handled;
13381         struct kvm_mmio_fragment *frag;
13382
13383         if (!data)
13384                 return -EINVAL;
13385
13386         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13387         if (handled == bytes)
13388                 return 1;
13389
13390         bytes -= handled;
13391         gpa += handled;
13392         data += handled;
13393
13394         /*TODO: Check if need to increment number of frags */
13395         frag = vcpu->mmio_fragments;
13396         vcpu->mmio_nr_fragments = 1;
13397         frag->len = bytes;
13398         frag->gpa = gpa;
13399         frag->data = data;
13400
13401         vcpu->mmio_needed = 1;
13402         vcpu->mmio_cur_fragment = 0;
13403
13404         vcpu->run->mmio.phys_addr = gpa;
13405         vcpu->run->mmio.len = min(8u, frag->len);
13406         vcpu->run->mmio.is_write = 0;
13407         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13408
13409         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13410
13411         return 0;
13412 }
13413 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13414
13415 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13416 {
13417         vcpu->arch.sev_pio_count -= count;
13418         vcpu->arch.sev_pio_data += count * size;
13419 }
13420
13421 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13422                            unsigned int port);
13423
13424 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13425 {
13426         int size = vcpu->arch.pio.size;
13427         int port = vcpu->arch.pio.port;
13428
13429         vcpu->arch.pio.count = 0;
13430         if (vcpu->arch.sev_pio_count)
13431                 return kvm_sev_es_outs(vcpu, size, port);
13432         return 1;
13433 }
13434
13435 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13436                            unsigned int port)
13437 {
13438         for (;;) {
13439                 unsigned int count =
13440                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13441                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13442
13443                 /* memcpy done already by emulator_pio_out.  */
13444                 advance_sev_es_emulated_pio(vcpu, count, size);
13445                 if (!ret)
13446                         break;
13447
13448                 /* Emulation done by the kernel.  */
13449                 if (!vcpu->arch.sev_pio_count)
13450                         return 1;
13451         }
13452
13453         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13454         return 0;
13455 }
13456
13457 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13458                           unsigned int port);
13459
13460 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13461 {
13462         unsigned count = vcpu->arch.pio.count;
13463         int size = vcpu->arch.pio.size;
13464         int port = vcpu->arch.pio.port;
13465
13466         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13467         advance_sev_es_emulated_pio(vcpu, count, size);
13468         if (vcpu->arch.sev_pio_count)
13469                 return kvm_sev_es_ins(vcpu, size, port);
13470         return 1;
13471 }
13472
13473 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13474                           unsigned int port)
13475 {
13476         for (;;) {
13477                 unsigned int count =
13478                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13479                 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13480                         break;
13481
13482                 /* Emulation done by the kernel.  */
13483                 advance_sev_es_emulated_pio(vcpu, count, size);
13484                 if (!vcpu->arch.sev_pio_count)
13485                         return 1;
13486         }
13487
13488         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13489         return 0;
13490 }
13491
13492 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13493                          unsigned int port, void *data,  unsigned int count,
13494                          int in)
13495 {
13496         vcpu->arch.sev_pio_data = data;
13497         vcpu->arch.sev_pio_count = count;
13498         return in ? kvm_sev_es_ins(vcpu, size, port)
13499                   : kvm_sev_es_outs(vcpu, size, port);
13500 }
13501 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13502
13503 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13504 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13505 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13506 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13507 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13508 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13509 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13510 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13511 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13512 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13513 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13514 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13515 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13516 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13517 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13518 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13519 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13520 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13521 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13522 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13523 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13524 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13525 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13526 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13527 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13528 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13529 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13530 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13531 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13532
13533 static int __init kvm_x86_init(void)
13534 {
13535         kvm_mmu_x86_module_init();
13536         mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13537         return 0;
13538 }
13539 module_init(kvm_x86_init);
13540
13541 static void __exit kvm_x86_exit(void)
13542 {
13543         /*
13544          * If module_init() is implemented, module_exit() must also be
13545          * implemented to allow module unload.
13546          */
13547 }
13548 module_exit(kvm_x86_exit);