51ecd381793b4f281563779b97a04e5063572fdf
[linux-2.6-block.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 500;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 0;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141
142 static bool __read_mostly vector_hashing = true;
143 module_param(vector_hashing, bool, S_IRUGO);
144
145 bool __read_mostly enable_vmware_backdoor = false;
146 module_param(enable_vmware_backdoor, bool, S_IRUGO);
147 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
148
149 static bool __read_mostly force_emulation_prefix = false;
150 module_param(force_emulation_prefix, bool, S_IRUGO);
151
152 #define KVM_NR_SHARED_MSRS 16
153
154 struct kvm_shared_msrs_global {
155         int nr;
156         u32 msrs[KVM_NR_SHARED_MSRS];
157 };
158
159 struct kvm_shared_msrs {
160         struct user_return_notifier urn;
161         bool registered;
162         struct kvm_shared_msr_values {
163                 u64 host;
164                 u64 curr;
165         } values[KVM_NR_SHARED_MSRS];
166 };
167
168 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
169 static struct kvm_shared_msrs __percpu *shared_msrs;
170
171 struct kvm_stats_debugfs_item debugfs_entries[] = {
172         { "pf_fixed", VCPU_STAT(pf_fixed) },
173         { "pf_guest", VCPU_STAT(pf_guest) },
174         { "tlb_flush", VCPU_STAT(tlb_flush) },
175         { "invlpg", VCPU_STAT(invlpg) },
176         { "exits", VCPU_STAT(exits) },
177         { "io_exits", VCPU_STAT(io_exits) },
178         { "mmio_exits", VCPU_STAT(mmio_exits) },
179         { "signal_exits", VCPU_STAT(signal_exits) },
180         { "irq_window", VCPU_STAT(irq_window_exits) },
181         { "nmi_window", VCPU_STAT(nmi_window_exits) },
182         { "halt_exits", VCPU_STAT(halt_exits) },
183         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
184         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
185         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
186         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
187         { "hypercalls", VCPU_STAT(hypercalls) },
188         { "request_irq", VCPU_STAT(request_irq_exits) },
189         { "irq_exits", VCPU_STAT(irq_exits) },
190         { "host_state_reload", VCPU_STAT(host_state_reload) },
191         { "fpu_reload", VCPU_STAT(fpu_reload) },
192         { "insn_emulation", VCPU_STAT(insn_emulation) },
193         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
194         { "irq_injections", VCPU_STAT(irq_injections) },
195         { "nmi_injections", VCPU_STAT(nmi_injections) },
196         { "req_event", VCPU_STAT(req_event) },
197         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
198         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
199         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
200         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
201         { "mmu_flooded", VM_STAT(mmu_flooded) },
202         { "mmu_recycled", VM_STAT(mmu_recycled) },
203         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
204         { "mmu_unsync", VM_STAT(mmu_unsync) },
205         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
206         { "largepages", VM_STAT(lpages) },
207         { "max_mmu_page_hash_collisions",
208                 VM_STAT(max_mmu_page_hash_collisions) },
209         { NULL }
210 };
211
212 u64 __read_mostly host_xcr0;
213
214 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
215
216 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
217 {
218         int i;
219         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
220                 vcpu->arch.apf.gfns[i] = ~0;
221 }
222
223 static void kvm_on_user_return(struct user_return_notifier *urn)
224 {
225         unsigned slot;
226         struct kvm_shared_msrs *locals
227                 = container_of(urn, struct kvm_shared_msrs, urn);
228         struct kvm_shared_msr_values *values;
229         unsigned long flags;
230
231         /*
232          * Disabling irqs at this point since the following code could be
233          * interrupted and executed through kvm_arch_hardware_disable()
234          */
235         local_irq_save(flags);
236         if (locals->registered) {
237                 locals->registered = false;
238                 user_return_notifier_unregister(urn);
239         }
240         local_irq_restore(flags);
241         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
242                 values = &locals->values[slot];
243                 if (values->host != values->curr) {
244                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
245                         values->curr = values->host;
246                 }
247         }
248 }
249
250 static void shared_msr_update(unsigned slot, u32 msr)
251 {
252         u64 value;
253         unsigned int cpu = smp_processor_id();
254         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
255
256         /* only read, and nobody should modify it at this time,
257          * so don't need lock */
258         if (slot >= shared_msrs_global.nr) {
259                 printk(KERN_ERR "kvm: invalid MSR slot!");
260                 return;
261         }
262         rdmsrl_safe(msr, &value);
263         smsr->values[slot].host = value;
264         smsr->values[slot].curr = value;
265 }
266
267 void kvm_define_shared_msr(unsigned slot, u32 msr)
268 {
269         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
270         shared_msrs_global.msrs[slot] = msr;
271         if (slot >= shared_msrs_global.nr)
272                 shared_msrs_global.nr = slot + 1;
273 }
274 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
275
276 static void kvm_shared_msr_cpu_online(void)
277 {
278         unsigned i;
279
280         for (i = 0; i < shared_msrs_global.nr; ++i)
281                 shared_msr_update(i, shared_msrs_global.msrs[i]);
282 }
283
284 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
285 {
286         unsigned int cpu = smp_processor_id();
287         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
288         int err;
289
290         if (((value ^ smsr->values[slot].curr) & mask) == 0)
291                 return 0;
292         smsr->values[slot].curr = value;
293         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
294         if (err)
295                 return 1;
296
297         if (!smsr->registered) {
298                 smsr->urn.on_user_return = kvm_on_user_return;
299                 user_return_notifier_register(&smsr->urn);
300                 smsr->registered = true;
301         }
302         return 0;
303 }
304 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
305
306 static void drop_user_return_notifiers(void)
307 {
308         unsigned int cpu = smp_processor_id();
309         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
310
311         if (smsr->registered)
312                 kvm_on_user_return(&smsr->urn);
313 }
314
315 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
316 {
317         return vcpu->arch.apic_base;
318 }
319 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
320
321 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
322 {
323         u64 old_state = vcpu->arch.apic_base &
324                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
325         u64 new_state = msr_info->data &
326                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
327         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
328                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
329
330         if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
331                 return 1;
332         if (!msr_info->host_initiated &&
333             ((new_state == MSR_IA32_APICBASE_ENABLE &&
334               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
335              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
336               old_state == 0)))
337                 return 1;
338
339         kvm_lapic_set_base(vcpu, msr_info->data);
340         return 0;
341 }
342 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
343
344 asmlinkage __visible void kvm_spurious_fault(void)
345 {
346         /* Fault while not rebooting.  We want the trace. */
347         BUG();
348 }
349 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
350
351 #define EXCPT_BENIGN            0
352 #define EXCPT_CONTRIBUTORY      1
353 #define EXCPT_PF                2
354
355 static int exception_class(int vector)
356 {
357         switch (vector) {
358         case PF_VECTOR:
359                 return EXCPT_PF;
360         case DE_VECTOR:
361         case TS_VECTOR:
362         case NP_VECTOR:
363         case SS_VECTOR:
364         case GP_VECTOR:
365                 return EXCPT_CONTRIBUTORY;
366         default:
367                 break;
368         }
369         return EXCPT_BENIGN;
370 }
371
372 #define EXCPT_FAULT             0
373 #define EXCPT_TRAP              1
374 #define EXCPT_ABORT             2
375 #define EXCPT_INTERRUPT         3
376
377 static int exception_type(int vector)
378 {
379         unsigned int mask;
380
381         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
382                 return EXCPT_INTERRUPT;
383
384         mask = 1 << vector;
385
386         /* #DB is trap, as instruction watchpoints are handled elsewhere */
387         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
388                 return EXCPT_TRAP;
389
390         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
391                 return EXCPT_ABORT;
392
393         /* Reserved exceptions will result in fault */
394         return EXCPT_FAULT;
395 }
396
397 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
398                 unsigned nr, bool has_error, u32 error_code,
399                 bool reinject)
400 {
401         u32 prev_nr;
402         int class1, class2;
403
404         kvm_make_request(KVM_REQ_EVENT, vcpu);
405
406         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
407         queue:
408                 if (has_error && !is_protmode(vcpu))
409                         has_error = false;
410                 if (reinject) {
411                         /*
412                          * On vmentry, vcpu->arch.exception.pending is only
413                          * true if an event injection was blocked by
414                          * nested_run_pending.  In that case, however,
415                          * vcpu_enter_guest requests an immediate exit,
416                          * and the guest shouldn't proceed far enough to
417                          * need reinjection.
418                          */
419                         WARN_ON_ONCE(vcpu->arch.exception.pending);
420                         vcpu->arch.exception.injected = true;
421                 } else {
422                         vcpu->arch.exception.pending = true;
423                         vcpu->arch.exception.injected = false;
424                 }
425                 vcpu->arch.exception.has_error_code = has_error;
426                 vcpu->arch.exception.nr = nr;
427                 vcpu->arch.exception.error_code = error_code;
428                 return;
429         }
430
431         /* to check exception */
432         prev_nr = vcpu->arch.exception.nr;
433         if (prev_nr == DF_VECTOR) {
434                 /* triple fault -> shutdown */
435                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
436                 return;
437         }
438         class1 = exception_class(prev_nr);
439         class2 = exception_class(nr);
440         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
441                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
442                 /*
443                  * Generate double fault per SDM Table 5-5.  Set
444                  * exception.pending = true so that the double fault
445                  * can trigger a nested vmexit.
446                  */
447                 vcpu->arch.exception.pending = true;
448                 vcpu->arch.exception.injected = false;
449                 vcpu->arch.exception.has_error_code = true;
450                 vcpu->arch.exception.nr = DF_VECTOR;
451                 vcpu->arch.exception.error_code = 0;
452         } else
453                 /* replace previous exception with a new one in a hope
454                    that instruction re-execution will regenerate lost
455                    exception */
456                 goto queue;
457 }
458
459 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
460 {
461         kvm_multiple_exception(vcpu, nr, false, 0, false);
462 }
463 EXPORT_SYMBOL_GPL(kvm_queue_exception);
464
465 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
466 {
467         kvm_multiple_exception(vcpu, nr, false, 0, true);
468 }
469 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
470
471 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
472 {
473         if (err)
474                 kvm_inject_gp(vcpu, 0);
475         else
476                 return kvm_skip_emulated_instruction(vcpu);
477
478         return 1;
479 }
480 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
481
482 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
483 {
484         ++vcpu->stat.pf_guest;
485         vcpu->arch.exception.nested_apf =
486                 is_guest_mode(vcpu) && fault->async_page_fault;
487         if (vcpu->arch.exception.nested_apf)
488                 vcpu->arch.apf.nested_apf_token = fault->address;
489         else
490                 vcpu->arch.cr2 = fault->address;
491         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
492 }
493 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
494
495 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
496 {
497         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
498                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
499         else
500                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
501
502         return fault->nested_page_fault;
503 }
504
505 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
506 {
507         atomic_inc(&vcpu->arch.nmi_queued);
508         kvm_make_request(KVM_REQ_NMI, vcpu);
509 }
510 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
511
512 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
513 {
514         kvm_multiple_exception(vcpu, nr, true, error_code, false);
515 }
516 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
517
518 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
519 {
520         kvm_multiple_exception(vcpu, nr, true, error_code, true);
521 }
522 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
523
524 /*
525  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
526  * a #GP and return false.
527  */
528 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
529 {
530         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
531                 return true;
532         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
533         return false;
534 }
535 EXPORT_SYMBOL_GPL(kvm_require_cpl);
536
537 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
538 {
539         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
540                 return true;
541
542         kvm_queue_exception(vcpu, UD_VECTOR);
543         return false;
544 }
545 EXPORT_SYMBOL_GPL(kvm_require_dr);
546
547 /*
548  * This function will be used to read from the physical memory of the currently
549  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
550  * can read from guest physical or from the guest's guest physical memory.
551  */
552 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
553                             gfn_t ngfn, void *data, int offset, int len,
554                             u32 access)
555 {
556         struct x86_exception exception;
557         gfn_t real_gfn;
558         gpa_t ngpa;
559
560         ngpa     = gfn_to_gpa(ngfn);
561         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
562         if (real_gfn == UNMAPPED_GVA)
563                 return -EFAULT;
564
565         real_gfn = gpa_to_gfn(real_gfn);
566
567         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
568 }
569 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
570
571 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
572                                void *data, int offset, int len, u32 access)
573 {
574         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
575                                        data, offset, len, access);
576 }
577
578 /*
579  * Load the pae pdptrs.  Return true is they are all valid.
580  */
581 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
582 {
583         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
584         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
585         int i;
586         int ret;
587         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
588
589         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
590                                       offset * sizeof(u64), sizeof(pdpte),
591                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
592         if (ret < 0) {
593                 ret = 0;
594                 goto out;
595         }
596         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
597                 if ((pdpte[i] & PT_PRESENT_MASK) &&
598                     (pdpte[i] &
599                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
600                         ret = 0;
601                         goto out;
602                 }
603         }
604         ret = 1;
605
606         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
607         __set_bit(VCPU_EXREG_PDPTR,
608                   (unsigned long *)&vcpu->arch.regs_avail);
609         __set_bit(VCPU_EXREG_PDPTR,
610                   (unsigned long *)&vcpu->arch.regs_dirty);
611 out:
612
613         return ret;
614 }
615 EXPORT_SYMBOL_GPL(load_pdptrs);
616
617 bool pdptrs_changed(struct kvm_vcpu *vcpu)
618 {
619         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
620         bool changed = true;
621         int offset;
622         gfn_t gfn;
623         int r;
624
625         if (is_long_mode(vcpu) || !is_pae(vcpu))
626                 return false;
627
628         if (!test_bit(VCPU_EXREG_PDPTR,
629                       (unsigned long *)&vcpu->arch.regs_avail))
630                 return true;
631
632         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
633         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
634         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
635                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
636         if (r < 0)
637                 goto out;
638         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
639 out:
640
641         return changed;
642 }
643 EXPORT_SYMBOL_GPL(pdptrs_changed);
644
645 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
646 {
647         unsigned long old_cr0 = kvm_read_cr0(vcpu);
648         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
649
650         cr0 |= X86_CR0_ET;
651
652 #ifdef CONFIG_X86_64
653         if (cr0 & 0xffffffff00000000UL)
654                 return 1;
655 #endif
656
657         cr0 &= ~CR0_RESERVED_BITS;
658
659         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
660                 return 1;
661
662         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
663                 return 1;
664
665         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
666 #ifdef CONFIG_X86_64
667                 if ((vcpu->arch.efer & EFER_LME)) {
668                         int cs_db, cs_l;
669
670                         if (!is_pae(vcpu))
671                                 return 1;
672                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
673                         if (cs_l)
674                                 return 1;
675                 } else
676 #endif
677                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
678                                                  kvm_read_cr3(vcpu)))
679                         return 1;
680         }
681
682         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
683                 return 1;
684
685         kvm_x86_ops->set_cr0(vcpu, cr0);
686
687         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
688                 kvm_clear_async_pf_completion_queue(vcpu);
689                 kvm_async_pf_hash_reset(vcpu);
690         }
691
692         if ((cr0 ^ old_cr0) & update_bits)
693                 kvm_mmu_reset_context(vcpu);
694
695         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
696             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
697             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
698                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
699
700         return 0;
701 }
702 EXPORT_SYMBOL_GPL(kvm_set_cr0);
703
704 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
705 {
706         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
707 }
708 EXPORT_SYMBOL_GPL(kvm_lmsw);
709
710 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
711 {
712         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
713                         !vcpu->guest_xcr0_loaded) {
714                 /* kvm_set_xcr() also depends on this */
715                 if (vcpu->arch.xcr0 != host_xcr0)
716                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
717                 vcpu->guest_xcr0_loaded = 1;
718         }
719 }
720
721 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
722 {
723         if (vcpu->guest_xcr0_loaded) {
724                 if (vcpu->arch.xcr0 != host_xcr0)
725                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
726                 vcpu->guest_xcr0_loaded = 0;
727         }
728 }
729
730 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
731 {
732         u64 xcr0 = xcr;
733         u64 old_xcr0 = vcpu->arch.xcr0;
734         u64 valid_bits;
735
736         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
737         if (index != XCR_XFEATURE_ENABLED_MASK)
738                 return 1;
739         if (!(xcr0 & XFEATURE_MASK_FP))
740                 return 1;
741         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
742                 return 1;
743
744         /*
745          * Do not allow the guest to set bits that we do not support
746          * saving.  However, xcr0 bit 0 is always set, even if the
747          * emulated CPU does not support XSAVE (see fx_init).
748          */
749         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
750         if (xcr0 & ~valid_bits)
751                 return 1;
752
753         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
754             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
755                 return 1;
756
757         if (xcr0 & XFEATURE_MASK_AVX512) {
758                 if (!(xcr0 & XFEATURE_MASK_YMM))
759                         return 1;
760                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
761                         return 1;
762         }
763         vcpu->arch.xcr0 = xcr0;
764
765         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
766                 kvm_update_cpuid(vcpu);
767         return 0;
768 }
769
770 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
771 {
772         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
773             __kvm_set_xcr(vcpu, index, xcr)) {
774                 kvm_inject_gp(vcpu, 0);
775                 return 1;
776         }
777         return 0;
778 }
779 EXPORT_SYMBOL_GPL(kvm_set_xcr);
780
781 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
782 {
783         unsigned long old_cr4 = kvm_read_cr4(vcpu);
784         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
785                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
786
787         if (cr4 & CR4_RESERVED_BITS)
788                 return 1;
789
790         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
791                 return 1;
792
793         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
794                 return 1;
795
796         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
797                 return 1;
798
799         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
800                 return 1;
801
802         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
803                 return 1;
804
805         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
806                 return 1;
807
808         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
809                 return 1;
810
811         if (is_long_mode(vcpu)) {
812                 if (!(cr4 & X86_CR4_PAE))
813                         return 1;
814         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
815                    && ((cr4 ^ old_cr4) & pdptr_bits)
816                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
817                                    kvm_read_cr3(vcpu)))
818                 return 1;
819
820         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
821                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
822                         return 1;
823
824                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
825                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
826                         return 1;
827         }
828
829         if (kvm_x86_ops->set_cr4(vcpu, cr4))
830                 return 1;
831
832         if (((cr4 ^ old_cr4) & pdptr_bits) ||
833             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
834                 kvm_mmu_reset_context(vcpu);
835
836         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
837                 kvm_update_cpuid(vcpu);
838
839         return 0;
840 }
841 EXPORT_SYMBOL_GPL(kvm_set_cr4);
842
843 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
844 {
845 #ifdef CONFIG_X86_64
846         cr3 &= ~CR3_PCID_INVD;
847 #endif
848
849         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
850                 kvm_mmu_sync_roots(vcpu);
851                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
852                 return 0;
853         }
854
855         if (is_long_mode(vcpu) &&
856             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
857                 return 1;
858         else if (is_pae(vcpu) && is_paging(vcpu) &&
859                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
860                 return 1;
861
862         vcpu->arch.cr3 = cr3;
863         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
864         kvm_mmu_new_cr3(vcpu);
865         return 0;
866 }
867 EXPORT_SYMBOL_GPL(kvm_set_cr3);
868
869 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
870 {
871         if (cr8 & CR8_RESERVED_BITS)
872                 return 1;
873         if (lapic_in_kernel(vcpu))
874                 kvm_lapic_set_tpr(vcpu, cr8);
875         else
876                 vcpu->arch.cr8 = cr8;
877         return 0;
878 }
879 EXPORT_SYMBOL_GPL(kvm_set_cr8);
880
881 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
882 {
883         if (lapic_in_kernel(vcpu))
884                 return kvm_lapic_get_cr8(vcpu);
885         else
886                 return vcpu->arch.cr8;
887 }
888 EXPORT_SYMBOL_GPL(kvm_get_cr8);
889
890 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
891 {
892         int i;
893
894         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
895                 for (i = 0; i < KVM_NR_DB_REGS; i++)
896                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
897                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
898         }
899 }
900
901 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
902 {
903         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
904                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
905 }
906
907 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
908 {
909         unsigned long dr7;
910
911         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
912                 dr7 = vcpu->arch.guest_debug_dr7;
913         else
914                 dr7 = vcpu->arch.dr7;
915         kvm_x86_ops->set_dr7(vcpu, dr7);
916         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
917         if (dr7 & DR7_BP_EN_MASK)
918                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
919 }
920
921 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
922 {
923         u64 fixed = DR6_FIXED_1;
924
925         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
926                 fixed |= DR6_RTM;
927         return fixed;
928 }
929
930 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
931 {
932         switch (dr) {
933         case 0 ... 3:
934                 vcpu->arch.db[dr] = val;
935                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
936                         vcpu->arch.eff_db[dr] = val;
937                 break;
938         case 4:
939                 /* fall through */
940         case 6:
941                 if (val & 0xffffffff00000000ULL)
942                         return -1; /* #GP */
943                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
944                 kvm_update_dr6(vcpu);
945                 break;
946         case 5:
947                 /* fall through */
948         default: /* 7 */
949                 if (val & 0xffffffff00000000ULL)
950                         return -1; /* #GP */
951                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
952                 kvm_update_dr7(vcpu);
953                 break;
954         }
955
956         return 0;
957 }
958
959 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
960 {
961         if (__kvm_set_dr(vcpu, dr, val)) {
962                 kvm_inject_gp(vcpu, 0);
963                 return 1;
964         }
965         return 0;
966 }
967 EXPORT_SYMBOL_GPL(kvm_set_dr);
968
969 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
970 {
971         switch (dr) {
972         case 0 ... 3:
973                 *val = vcpu->arch.db[dr];
974                 break;
975         case 4:
976                 /* fall through */
977         case 6:
978                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
979                         *val = vcpu->arch.dr6;
980                 else
981                         *val = kvm_x86_ops->get_dr6(vcpu);
982                 break;
983         case 5:
984                 /* fall through */
985         default: /* 7 */
986                 *val = vcpu->arch.dr7;
987                 break;
988         }
989         return 0;
990 }
991 EXPORT_SYMBOL_GPL(kvm_get_dr);
992
993 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
994 {
995         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
996         u64 data;
997         int err;
998
999         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1000         if (err)
1001                 return err;
1002         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1003         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1004         return err;
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1007
1008 /*
1009  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1010  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1011  *
1012  * This list is modified at module load time to reflect the
1013  * capabilities of the host cpu. This capabilities test skips MSRs that are
1014  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1015  * may depend on host virtualization features rather than host cpu features.
1016  */
1017
1018 static u32 msrs_to_save[] = {
1019         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1020         MSR_STAR,
1021 #ifdef CONFIG_X86_64
1022         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1023 #endif
1024         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1025         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1026         MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1027 };
1028
1029 static unsigned num_msrs_to_save;
1030
1031 static u32 emulated_msrs[] = {
1032         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1033         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1034         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1035         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1036         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1037         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1038         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1039         HV_X64_MSR_RESET,
1040         HV_X64_MSR_VP_INDEX,
1041         HV_X64_MSR_VP_RUNTIME,
1042         HV_X64_MSR_SCONTROL,
1043         HV_X64_MSR_STIMER0_CONFIG,
1044         HV_X64_MSR_VP_ASSIST_PAGE,
1045         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1046         HV_X64_MSR_TSC_EMULATION_STATUS,
1047
1048         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1049         MSR_KVM_PV_EOI_EN,
1050
1051         MSR_IA32_TSC_ADJUST,
1052         MSR_IA32_TSCDEADLINE,
1053         MSR_IA32_MISC_ENABLE,
1054         MSR_IA32_MCG_STATUS,
1055         MSR_IA32_MCG_CTL,
1056         MSR_IA32_MCG_EXT_CTL,
1057         MSR_IA32_SMBASE,
1058         MSR_SMI_COUNT,
1059         MSR_PLATFORM_INFO,
1060         MSR_MISC_FEATURES_ENABLES,
1061 };
1062
1063 static unsigned num_emulated_msrs;
1064
1065 /*
1066  * List of msr numbers which are used to expose MSR-based features that
1067  * can be used by a hypervisor to validate requested CPU features.
1068  */
1069 static u32 msr_based_features[] = {
1070         MSR_IA32_VMX_BASIC,
1071         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1072         MSR_IA32_VMX_PINBASED_CTLS,
1073         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1074         MSR_IA32_VMX_PROCBASED_CTLS,
1075         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1076         MSR_IA32_VMX_EXIT_CTLS,
1077         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1078         MSR_IA32_VMX_ENTRY_CTLS,
1079         MSR_IA32_VMX_MISC,
1080         MSR_IA32_VMX_CR0_FIXED0,
1081         MSR_IA32_VMX_CR0_FIXED1,
1082         MSR_IA32_VMX_CR4_FIXED0,
1083         MSR_IA32_VMX_CR4_FIXED1,
1084         MSR_IA32_VMX_VMCS_ENUM,
1085         MSR_IA32_VMX_PROCBASED_CTLS2,
1086         MSR_IA32_VMX_EPT_VPID_CAP,
1087         MSR_IA32_VMX_VMFUNC,
1088
1089         MSR_F10H_DECFG,
1090         MSR_IA32_UCODE_REV,
1091 };
1092
1093 static unsigned int num_msr_based_features;
1094
1095 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1096 {
1097         switch (msr->index) {
1098         case MSR_IA32_UCODE_REV:
1099                 rdmsrl(msr->index, msr->data);
1100                 break;
1101         default:
1102                 if (kvm_x86_ops->get_msr_feature(msr))
1103                         return 1;
1104         }
1105         return 0;
1106 }
1107
1108 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1109 {
1110         struct kvm_msr_entry msr;
1111         int r;
1112
1113         msr.index = index;
1114         r = kvm_get_msr_feature(&msr);
1115         if (r)
1116                 return r;
1117
1118         *data = msr.data;
1119
1120         return 0;
1121 }
1122
1123 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1124 {
1125         if (efer & efer_reserved_bits)
1126                 return false;
1127
1128         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1129                         return false;
1130
1131         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1132                         return false;
1133
1134         return true;
1135 }
1136 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1137
1138 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1139 {
1140         u64 old_efer = vcpu->arch.efer;
1141
1142         if (!kvm_valid_efer(vcpu, efer))
1143                 return 1;
1144
1145         if (is_paging(vcpu)
1146             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1147                 return 1;
1148
1149         efer &= ~EFER_LMA;
1150         efer |= vcpu->arch.efer & EFER_LMA;
1151
1152         kvm_x86_ops->set_efer(vcpu, efer);
1153
1154         /* Update reserved bits */
1155         if ((efer ^ old_efer) & EFER_NX)
1156                 kvm_mmu_reset_context(vcpu);
1157
1158         return 0;
1159 }
1160
1161 void kvm_enable_efer_bits(u64 mask)
1162 {
1163        efer_reserved_bits &= ~mask;
1164 }
1165 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1166
1167 /*
1168  * Writes msr value into into the appropriate "register".
1169  * Returns 0 on success, non-0 otherwise.
1170  * Assumes vcpu_load() was already called.
1171  */
1172 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1173 {
1174         switch (msr->index) {
1175         case MSR_FS_BASE:
1176         case MSR_GS_BASE:
1177         case MSR_KERNEL_GS_BASE:
1178         case MSR_CSTAR:
1179         case MSR_LSTAR:
1180                 if (is_noncanonical_address(msr->data, vcpu))
1181                         return 1;
1182                 break;
1183         case MSR_IA32_SYSENTER_EIP:
1184         case MSR_IA32_SYSENTER_ESP:
1185                 /*
1186                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1187                  * non-canonical address is written on Intel but not on
1188                  * AMD (which ignores the top 32-bits, because it does
1189                  * not implement 64-bit SYSENTER).
1190                  *
1191                  * 64-bit code should hence be able to write a non-canonical
1192                  * value on AMD.  Making the address canonical ensures that
1193                  * vmentry does not fail on Intel after writing a non-canonical
1194                  * value, and that something deterministic happens if the guest
1195                  * invokes 64-bit SYSENTER.
1196                  */
1197                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1198         }
1199         return kvm_x86_ops->set_msr(vcpu, msr);
1200 }
1201 EXPORT_SYMBOL_GPL(kvm_set_msr);
1202
1203 /*
1204  * Adapt set_msr() to msr_io()'s calling convention
1205  */
1206 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1207 {
1208         struct msr_data msr;
1209         int r;
1210
1211         msr.index = index;
1212         msr.host_initiated = true;
1213         r = kvm_get_msr(vcpu, &msr);
1214         if (r)
1215                 return r;
1216
1217         *data = msr.data;
1218         return 0;
1219 }
1220
1221 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1222 {
1223         struct msr_data msr;
1224
1225         msr.data = *data;
1226         msr.index = index;
1227         msr.host_initiated = true;
1228         return kvm_set_msr(vcpu, &msr);
1229 }
1230
1231 #ifdef CONFIG_X86_64
1232 struct pvclock_gtod_data {
1233         seqcount_t      seq;
1234
1235         struct { /* extract of a clocksource struct */
1236                 int vclock_mode;
1237                 u64     cycle_last;
1238                 u64     mask;
1239                 u32     mult;
1240                 u32     shift;
1241         } clock;
1242
1243         u64             boot_ns;
1244         u64             nsec_base;
1245         u64             wall_time_sec;
1246 };
1247
1248 static struct pvclock_gtod_data pvclock_gtod_data;
1249
1250 static void update_pvclock_gtod(struct timekeeper *tk)
1251 {
1252         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1253         u64 boot_ns;
1254
1255         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1256
1257         write_seqcount_begin(&vdata->seq);
1258
1259         /* copy pvclock gtod data */
1260         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1261         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1262         vdata->clock.mask               = tk->tkr_mono.mask;
1263         vdata->clock.mult               = tk->tkr_mono.mult;
1264         vdata->clock.shift              = tk->tkr_mono.shift;
1265
1266         vdata->boot_ns                  = boot_ns;
1267         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1268
1269         vdata->wall_time_sec            = tk->xtime_sec;
1270
1271         write_seqcount_end(&vdata->seq);
1272 }
1273 #endif
1274
1275 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1276 {
1277         /*
1278          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1279          * vcpu_enter_guest.  This function is only called from
1280          * the physical CPU that is running vcpu.
1281          */
1282         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1283 }
1284
1285 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1286 {
1287         int version;
1288         int r;
1289         struct pvclock_wall_clock wc;
1290         struct timespec64 boot;
1291
1292         if (!wall_clock)
1293                 return;
1294
1295         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1296         if (r)
1297                 return;
1298
1299         if (version & 1)
1300                 ++version;  /* first time write, random junk */
1301
1302         ++version;
1303
1304         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1305                 return;
1306
1307         /*
1308          * The guest calculates current wall clock time by adding
1309          * system time (updated by kvm_guest_time_update below) to the
1310          * wall clock specified here.  guest system time equals host
1311          * system time for us, thus we must fill in host boot time here.
1312          */
1313         getboottime64(&boot);
1314
1315         if (kvm->arch.kvmclock_offset) {
1316                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1317                 boot = timespec64_sub(boot, ts);
1318         }
1319         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1320         wc.nsec = boot.tv_nsec;
1321         wc.version = version;
1322
1323         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1324
1325         version++;
1326         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1327 }
1328
1329 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1330 {
1331         do_shl32_div32(dividend, divisor);
1332         return dividend;
1333 }
1334
1335 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1336                                s8 *pshift, u32 *pmultiplier)
1337 {
1338         uint64_t scaled64;
1339         int32_t  shift = 0;
1340         uint64_t tps64;
1341         uint32_t tps32;
1342
1343         tps64 = base_hz;
1344         scaled64 = scaled_hz;
1345         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1346                 tps64 >>= 1;
1347                 shift--;
1348         }
1349
1350         tps32 = (uint32_t)tps64;
1351         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1352                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1353                         scaled64 >>= 1;
1354                 else
1355                         tps32 <<= 1;
1356                 shift++;
1357         }
1358
1359         *pshift = shift;
1360         *pmultiplier = div_frac(scaled64, tps32);
1361
1362         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1363                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1364 }
1365
1366 #ifdef CONFIG_X86_64
1367 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1368 #endif
1369
1370 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1371 static unsigned long max_tsc_khz;
1372
1373 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1374 {
1375         u64 v = (u64)khz * (1000000 + ppm);
1376         do_div(v, 1000000);
1377         return v;
1378 }
1379
1380 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1381 {
1382         u64 ratio;
1383
1384         /* Guest TSC same frequency as host TSC? */
1385         if (!scale) {
1386                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1387                 return 0;
1388         }
1389
1390         /* TSC scaling supported? */
1391         if (!kvm_has_tsc_control) {
1392                 if (user_tsc_khz > tsc_khz) {
1393                         vcpu->arch.tsc_catchup = 1;
1394                         vcpu->arch.tsc_always_catchup = 1;
1395                         return 0;
1396                 } else {
1397                         WARN(1, "user requested TSC rate below hardware speed\n");
1398                         return -1;
1399                 }
1400         }
1401
1402         /* TSC scaling required  - calculate ratio */
1403         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1404                                 user_tsc_khz, tsc_khz);
1405
1406         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1407                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1408                           user_tsc_khz);
1409                 return -1;
1410         }
1411
1412         vcpu->arch.tsc_scaling_ratio = ratio;
1413         return 0;
1414 }
1415
1416 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1417 {
1418         u32 thresh_lo, thresh_hi;
1419         int use_scaling = 0;
1420
1421         /* tsc_khz can be zero if TSC calibration fails */
1422         if (user_tsc_khz == 0) {
1423                 /* set tsc_scaling_ratio to a safe value */
1424                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1425                 return -1;
1426         }
1427
1428         /* Compute a scale to convert nanoseconds in TSC cycles */
1429         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1430                            &vcpu->arch.virtual_tsc_shift,
1431                            &vcpu->arch.virtual_tsc_mult);
1432         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1433
1434         /*
1435          * Compute the variation in TSC rate which is acceptable
1436          * within the range of tolerance and decide if the
1437          * rate being applied is within that bounds of the hardware
1438          * rate.  If so, no scaling or compensation need be done.
1439          */
1440         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1441         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1442         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1443                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1444                 use_scaling = 1;
1445         }
1446         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1447 }
1448
1449 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1450 {
1451         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1452                                       vcpu->arch.virtual_tsc_mult,
1453                                       vcpu->arch.virtual_tsc_shift);
1454         tsc += vcpu->arch.this_tsc_write;
1455         return tsc;
1456 }
1457
1458 static inline int gtod_is_based_on_tsc(int mode)
1459 {
1460         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1461 }
1462
1463 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1464 {
1465 #ifdef CONFIG_X86_64
1466         bool vcpus_matched;
1467         struct kvm_arch *ka = &vcpu->kvm->arch;
1468         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1469
1470         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1471                          atomic_read(&vcpu->kvm->online_vcpus));
1472
1473         /*
1474          * Once the masterclock is enabled, always perform request in
1475          * order to update it.
1476          *
1477          * In order to enable masterclock, the host clocksource must be TSC
1478          * and the vcpus need to have matched TSCs.  When that happens,
1479          * perform request to enable masterclock.
1480          */
1481         if (ka->use_master_clock ||
1482             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1483                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1484
1485         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1486                             atomic_read(&vcpu->kvm->online_vcpus),
1487                             ka->use_master_clock, gtod->clock.vclock_mode);
1488 #endif
1489 }
1490
1491 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1492 {
1493         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1494         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1495 }
1496
1497 /*
1498  * Multiply tsc by a fixed point number represented by ratio.
1499  *
1500  * The most significant 64-N bits (mult) of ratio represent the
1501  * integral part of the fixed point number; the remaining N bits
1502  * (frac) represent the fractional part, ie. ratio represents a fixed
1503  * point number (mult + frac * 2^(-N)).
1504  *
1505  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1506  */
1507 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1508 {
1509         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1510 }
1511
1512 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1513 {
1514         u64 _tsc = tsc;
1515         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1516
1517         if (ratio != kvm_default_tsc_scaling_ratio)
1518                 _tsc = __scale_tsc(ratio, tsc);
1519
1520         return _tsc;
1521 }
1522 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1523
1524 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1525 {
1526         u64 tsc;
1527
1528         tsc = kvm_scale_tsc(vcpu, rdtsc());
1529
1530         return target_tsc - tsc;
1531 }
1532
1533 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1534 {
1535         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1536
1537         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1538 }
1539 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1540
1541 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1542 {
1543         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1544         vcpu->arch.tsc_offset = offset;
1545 }
1546
1547 static inline bool kvm_check_tsc_unstable(void)
1548 {
1549 #ifdef CONFIG_X86_64
1550         /*
1551          * TSC is marked unstable when we're running on Hyper-V,
1552          * 'TSC page' clocksource is good.
1553          */
1554         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1555                 return false;
1556 #endif
1557         return check_tsc_unstable();
1558 }
1559
1560 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1561 {
1562         struct kvm *kvm = vcpu->kvm;
1563         u64 offset, ns, elapsed;
1564         unsigned long flags;
1565         bool matched;
1566         bool already_matched;
1567         u64 data = msr->data;
1568         bool synchronizing = false;
1569
1570         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1571         offset = kvm_compute_tsc_offset(vcpu, data);
1572         ns = ktime_get_boot_ns();
1573         elapsed = ns - kvm->arch.last_tsc_nsec;
1574
1575         if (vcpu->arch.virtual_tsc_khz) {
1576                 if (data == 0 && msr->host_initiated) {
1577                         /*
1578                          * detection of vcpu initialization -- need to sync
1579                          * with other vCPUs. This particularly helps to keep
1580                          * kvm_clock stable after CPU hotplug
1581                          */
1582                         synchronizing = true;
1583                 } else {
1584                         u64 tsc_exp = kvm->arch.last_tsc_write +
1585                                                 nsec_to_cycles(vcpu, elapsed);
1586                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1587                         /*
1588                          * Special case: TSC write with a small delta (1 second)
1589                          * of virtual cycle time against real time is
1590                          * interpreted as an attempt to synchronize the CPU.
1591                          */
1592                         synchronizing = data < tsc_exp + tsc_hz &&
1593                                         data + tsc_hz > tsc_exp;
1594                 }
1595         }
1596
1597         /*
1598          * For a reliable TSC, we can match TSC offsets, and for an unstable
1599          * TSC, we add elapsed time in this computation.  We could let the
1600          * compensation code attempt to catch up if we fall behind, but
1601          * it's better to try to match offsets from the beginning.
1602          */
1603         if (synchronizing &&
1604             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1605                 if (!kvm_check_tsc_unstable()) {
1606                         offset = kvm->arch.cur_tsc_offset;
1607                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1608                 } else {
1609                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1610                         data += delta;
1611                         offset = kvm_compute_tsc_offset(vcpu, data);
1612                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1613                 }
1614                 matched = true;
1615                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1616         } else {
1617                 /*
1618                  * We split periods of matched TSC writes into generations.
1619                  * For each generation, we track the original measured
1620                  * nanosecond time, offset, and write, so if TSCs are in
1621                  * sync, we can match exact offset, and if not, we can match
1622                  * exact software computation in compute_guest_tsc()
1623                  *
1624                  * These values are tracked in kvm->arch.cur_xxx variables.
1625                  */
1626                 kvm->arch.cur_tsc_generation++;
1627                 kvm->arch.cur_tsc_nsec = ns;
1628                 kvm->arch.cur_tsc_write = data;
1629                 kvm->arch.cur_tsc_offset = offset;
1630                 matched = false;
1631                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1632                          kvm->arch.cur_tsc_generation, data);
1633         }
1634
1635         /*
1636          * We also track th most recent recorded KHZ, write and time to
1637          * allow the matching interval to be extended at each write.
1638          */
1639         kvm->arch.last_tsc_nsec = ns;
1640         kvm->arch.last_tsc_write = data;
1641         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1642
1643         vcpu->arch.last_guest_tsc = data;
1644
1645         /* Keep track of which generation this VCPU has synchronized to */
1646         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1647         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1648         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1649
1650         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1651                 update_ia32_tsc_adjust_msr(vcpu, offset);
1652
1653         kvm_vcpu_write_tsc_offset(vcpu, offset);
1654         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1655
1656         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1657         if (!matched) {
1658                 kvm->arch.nr_vcpus_matched_tsc = 0;
1659         } else if (!already_matched) {
1660                 kvm->arch.nr_vcpus_matched_tsc++;
1661         }
1662
1663         kvm_track_tsc_matching(vcpu);
1664         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1665 }
1666
1667 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1668
1669 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1670                                            s64 adjustment)
1671 {
1672         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1673 }
1674
1675 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1676 {
1677         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1678                 WARN_ON(adjustment < 0);
1679         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1680         adjust_tsc_offset_guest(vcpu, adjustment);
1681 }
1682
1683 #ifdef CONFIG_X86_64
1684
1685 static u64 read_tsc(void)
1686 {
1687         u64 ret = (u64)rdtsc_ordered();
1688         u64 last = pvclock_gtod_data.clock.cycle_last;
1689
1690         if (likely(ret >= last))
1691                 return ret;
1692
1693         /*
1694          * GCC likes to generate cmov here, but this branch is extremely
1695          * predictable (it's just a function of time and the likely is
1696          * very likely) and there's a data dependence, so force GCC
1697          * to generate a branch instead.  I don't barrier() because
1698          * we don't actually need a barrier, and if this function
1699          * ever gets inlined it will generate worse code.
1700          */
1701         asm volatile ("");
1702         return last;
1703 }
1704
1705 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1706 {
1707         long v;
1708         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1709         u64 tsc_pg_val;
1710
1711         switch (gtod->clock.vclock_mode) {
1712         case VCLOCK_HVCLOCK:
1713                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1714                                                   tsc_timestamp);
1715                 if (tsc_pg_val != U64_MAX) {
1716                         /* TSC page valid */
1717                         *mode = VCLOCK_HVCLOCK;
1718                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1719                                 gtod->clock.mask;
1720                 } else {
1721                         /* TSC page invalid */
1722                         *mode = VCLOCK_NONE;
1723                 }
1724                 break;
1725         case VCLOCK_TSC:
1726                 *mode = VCLOCK_TSC;
1727                 *tsc_timestamp = read_tsc();
1728                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1729                         gtod->clock.mask;
1730                 break;
1731         default:
1732                 *mode = VCLOCK_NONE;
1733         }
1734
1735         if (*mode == VCLOCK_NONE)
1736                 *tsc_timestamp = v = 0;
1737
1738         return v * gtod->clock.mult;
1739 }
1740
1741 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1742 {
1743         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1744         unsigned long seq;
1745         int mode;
1746         u64 ns;
1747
1748         do {
1749                 seq = read_seqcount_begin(&gtod->seq);
1750                 ns = gtod->nsec_base;
1751                 ns += vgettsc(tsc_timestamp, &mode);
1752                 ns >>= gtod->clock.shift;
1753                 ns += gtod->boot_ns;
1754         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1755         *t = ns;
1756
1757         return mode;
1758 }
1759
1760 static int do_realtime(struct timespec *ts, u64 *tsc_timestamp)
1761 {
1762         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1763         unsigned long seq;
1764         int mode;
1765         u64 ns;
1766
1767         do {
1768                 seq = read_seqcount_begin(&gtod->seq);
1769                 ts->tv_sec = gtod->wall_time_sec;
1770                 ns = gtod->nsec_base;
1771                 ns += vgettsc(tsc_timestamp, &mode);
1772                 ns >>= gtod->clock.shift;
1773         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1774
1775         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1776         ts->tv_nsec = ns;
1777
1778         return mode;
1779 }
1780
1781 /* returns true if host is using TSC based clocksource */
1782 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1783 {
1784         /* checked again under seqlock below */
1785         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1786                 return false;
1787
1788         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1789                                                       tsc_timestamp));
1790 }
1791
1792 /* returns true if host is using TSC based clocksource */
1793 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1794                                            u64 *tsc_timestamp)
1795 {
1796         /* checked again under seqlock below */
1797         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1798                 return false;
1799
1800         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1801 }
1802 #endif
1803
1804 /*
1805  *
1806  * Assuming a stable TSC across physical CPUS, and a stable TSC
1807  * across virtual CPUs, the following condition is possible.
1808  * Each numbered line represents an event visible to both
1809  * CPUs at the next numbered event.
1810  *
1811  * "timespecX" represents host monotonic time. "tscX" represents
1812  * RDTSC value.
1813  *
1814  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1815  *
1816  * 1.  read timespec0,tsc0
1817  * 2.                                   | timespec1 = timespec0 + N
1818  *                                      | tsc1 = tsc0 + M
1819  * 3. transition to guest               | transition to guest
1820  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1821  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1822  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1823  *
1824  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1825  *
1826  *      - ret0 < ret1
1827  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1828  *              ...
1829  *      - 0 < N - M => M < N
1830  *
1831  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1832  * always the case (the difference between two distinct xtime instances
1833  * might be smaller then the difference between corresponding TSC reads,
1834  * when updating guest vcpus pvclock areas).
1835  *
1836  * To avoid that problem, do not allow visibility of distinct
1837  * system_timestamp/tsc_timestamp values simultaneously: use a master
1838  * copy of host monotonic time values. Update that master copy
1839  * in lockstep.
1840  *
1841  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1842  *
1843  */
1844
1845 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1846 {
1847 #ifdef CONFIG_X86_64
1848         struct kvm_arch *ka = &kvm->arch;
1849         int vclock_mode;
1850         bool host_tsc_clocksource, vcpus_matched;
1851
1852         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1853                         atomic_read(&kvm->online_vcpus));
1854
1855         /*
1856          * If the host uses TSC clock, then passthrough TSC as stable
1857          * to the guest.
1858          */
1859         host_tsc_clocksource = kvm_get_time_and_clockread(
1860                                         &ka->master_kernel_ns,
1861                                         &ka->master_cycle_now);
1862
1863         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1864                                 && !ka->backwards_tsc_observed
1865                                 && !ka->boot_vcpu_runs_old_kvmclock;
1866
1867         if (ka->use_master_clock)
1868                 atomic_set(&kvm_guest_has_master_clock, 1);
1869
1870         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1871         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1872                                         vcpus_matched);
1873 #endif
1874 }
1875
1876 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1877 {
1878         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1879 }
1880
1881 static void kvm_gen_update_masterclock(struct kvm *kvm)
1882 {
1883 #ifdef CONFIG_X86_64
1884         int i;
1885         struct kvm_vcpu *vcpu;
1886         struct kvm_arch *ka = &kvm->arch;
1887
1888         spin_lock(&ka->pvclock_gtod_sync_lock);
1889         kvm_make_mclock_inprogress_request(kvm);
1890         /* no guest entries from this point */
1891         pvclock_update_vm_gtod_copy(kvm);
1892
1893         kvm_for_each_vcpu(i, vcpu, kvm)
1894                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1895
1896         /* guest entries allowed */
1897         kvm_for_each_vcpu(i, vcpu, kvm)
1898                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1899
1900         spin_unlock(&ka->pvclock_gtod_sync_lock);
1901 #endif
1902 }
1903
1904 u64 get_kvmclock_ns(struct kvm *kvm)
1905 {
1906         struct kvm_arch *ka = &kvm->arch;
1907         struct pvclock_vcpu_time_info hv_clock;
1908         u64 ret;
1909
1910         spin_lock(&ka->pvclock_gtod_sync_lock);
1911         if (!ka->use_master_clock) {
1912                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1913                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1914         }
1915
1916         hv_clock.tsc_timestamp = ka->master_cycle_now;
1917         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1918         spin_unlock(&ka->pvclock_gtod_sync_lock);
1919
1920         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1921         get_cpu();
1922
1923         if (__this_cpu_read(cpu_tsc_khz)) {
1924                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1925                                    &hv_clock.tsc_shift,
1926                                    &hv_clock.tsc_to_system_mul);
1927                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1928         } else
1929                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1930
1931         put_cpu();
1932
1933         return ret;
1934 }
1935
1936 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1937 {
1938         struct kvm_vcpu_arch *vcpu = &v->arch;
1939         struct pvclock_vcpu_time_info guest_hv_clock;
1940
1941         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1942                 &guest_hv_clock, sizeof(guest_hv_clock))))
1943                 return;
1944
1945         /* This VCPU is paused, but it's legal for a guest to read another
1946          * VCPU's kvmclock, so we really have to follow the specification where
1947          * it says that version is odd if data is being modified, and even after
1948          * it is consistent.
1949          *
1950          * Version field updates must be kept separate.  This is because
1951          * kvm_write_guest_cached might use a "rep movs" instruction, and
1952          * writes within a string instruction are weakly ordered.  So there
1953          * are three writes overall.
1954          *
1955          * As a small optimization, only write the version field in the first
1956          * and third write.  The vcpu->pv_time cache is still valid, because the
1957          * version field is the first in the struct.
1958          */
1959         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1960
1961         if (guest_hv_clock.version & 1)
1962                 ++guest_hv_clock.version;  /* first time write, random junk */
1963
1964         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1965         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1966                                 &vcpu->hv_clock,
1967                                 sizeof(vcpu->hv_clock.version));
1968
1969         smp_wmb();
1970
1971         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1972         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1973
1974         if (vcpu->pvclock_set_guest_stopped_request) {
1975                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1976                 vcpu->pvclock_set_guest_stopped_request = false;
1977         }
1978
1979         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1980
1981         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1982                                 &vcpu->hv_clock,
1983                                 sizeof(vcpu->hv_clock));
1984
1985         smp_wmb();
1986
1987         vcpu->hv_clock.version++;
1988         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1989                                 &vcpu->hv_clock,
1990                                 sizeof(vcpu->hv_clock.version));
1991 }
1992
1993 static int kvm_guest_time_update(struct kvm_vcpu *v)
1994 {
1995         unsigned long flags, tgt_tsc_khz;
1996         struct kvm_vcpu_arch *vcpu = &v->arch;
1997         struct kvm_arch *ka = &v->kvm->arch;
1998         s64 kernel_ns;
1999         u64 tsc_timestamp, host_tsc;
2000         u8 pvclock_flags;
2001         bool use_master_clock;
2002
2003         kernel_ns = 0;
2004         host_tsc = 0;
2005
2006         /*
2007          * If the host uses TSC clock, then passthrough TSC as stable
2008          * to the guest.
2009          */
2010         spin_lock(&ka->pvclock_gtod_sync_lock);
2011         use_master_clock = ka->use_master_clock;
2012         if (use_master_clock) {
2013                 host_tsc = ka->master_cycle_now;
2014                 kernel_ns = ka->master_kernel_ns;
2015         }
2016         spin_unlock(&ka->pvclock_gtod_sync_lock);
2017
2018         /* Keep irq disabled to prevent changes to the clock */
2019         local_irq_save(flags);
2020         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2021         if (unlikely(tgt_tsc_khz == 0)) {
2022                 local_irq_restore(flags);
2023                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2024                 return 1;
2025         }
2026         if (!use_master_clock) {
2027                 host_tsc = rdtsc();
2028                 kernel_ns = ktime_get_boot_ns();
2029         }
2030
2031         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2032
2033         /*
2034          * We may have to catch up the TSC to match elapsed wall clock
2035          * time for two reasons, even if kvmclock is used.
2036          *   1) CPU could have been running below the maximum TSC rate
2037          *   2) Broken TSC compensation resets the base at each VCPU
2038          *      entry to avoid unknown leaps of TSC even when running
2039          *      again on the same CPU.  This may cause apparent elapsed
2040          *      time to disappear, and the guest to stand still or run
2041          *      very slowly.
2042          */
2043         if (vcpu->tsc_catchup) {
2044                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2045                 if (tsc > tsc_timestamp) {
2046                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2047                         tsc_timestamp = tsc;
2048                 }
2049         }
2050
2051         local_irq_restore(flags);
2052
2053         /* With all the info we got, fill in the values */
2054
2055         if (kvm_has_tsc_control)
2056                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2057
2058         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2059                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2060                                    &vcpu->hv_clock.tsc_shift,
2061                                    &vcpu->hv_clock.tsc_to_system_mul);
2062                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2063         }
2064
2065         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2066         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2067         vcpu->last_guest_tsc = tsc_timestamp;
2068
2069         /* If the host uses TSC clocksource, then it is stable */
2070         pvclock_flags = 0;
2071         if (use_master_clock)
2072                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2073
2074         vcpu->hv_clock.flags = pvclock_flags;
2075
2076         if (vcpu->pv_time_enabled)
2077                 kvm_setup_pvclock_page(v);
2078         if (v == kvm_get_vcpu(v->kvm, 0))
2079                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2080         return 0;
2081 }
2082
2083 /*
2084  * kvmclock updates which are isolated to a given vcpu, such as
2085  * vcpu->cpu migration, should not allow system_timestamp from
2086  * the rest of the vcpus to remain static. Otherwise ntp frequency
2087  * correction applies to one vcpu's system_timestamp but not
2088  * the others.
2089  *
2090  * So in those cases, request a kvmclock update for all vcpus.
2091  * We need to rate-limit these requests though, as they can
2092  * considerably slow guests that have a large number of vcpus.
2093  * The time for a remote vcpu to update its kvmclock is bound
2094  * by the delay we use to rate-limit the updates.
2095  */
2096
2097 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2098
2099 static void kvmclock_update_fn(struct work_struct *work)
2100 {
2101         int i;
2102         struct delayed_work *dwork = to_delayed_work(work);
2103         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2104                                            kvmclock_update_work);
2105         struct kvm *kvm = container_of(ka, struct kvm, arch);
2106         struct kvm_vcpu *vcpu;
2107
2108         kvm_for_each_vcpu(i, vcpu, kvm) {
2109                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2110                 kvm_vcpu_kick(vcpu);
2111         }
2112 }
2113
2114 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2115 {
2116         struct kvm *kvm = v->kvm;
2117
2118         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2119         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2120                                         KVMCLOCK_UPDATE_DELAY);
2121 }
2122
2123 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2124
2125 static void kvmclock_sync_fn(struct work_struct *work)
2126 {
2127         struct delayed_work *dwork = to_delayed_work(work);
2128         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2129                                            kvmclock_sync_work);
2130         struct kvm *kvm = container_of(ka, struct kvm, arch);
2131
2132         if (!kvmclock_periodic_sync)
2133                 return;
2134
2135         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2136         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2137                                         KVMCLOCK_SYNC_PERIOD);
2138 }
2139
2140 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2141 {
2142         u64 mcg_cap = vcpu->arch.mcg_cap;
2143         unsigned bank_num = mcg_cap & 0xff;
2144         u32 msr = msr_info->index;
2145         u64 data = msr_info->data;
2146
2147         switch (msr) {
2148         case MSR_IA32_MCG_STATUS:
2149                 vcpu->arch.mcg_status = data;
2150                 break;
2151         case MSR_IA32_MCG_CTL:
2152                 if (!(mcg_cap & MCG_CTL_P))
2153                         return 1;
2154                 if (data != 0 && data != ~(u64)0)
2155                         return -1;
2156                 vcpu->arch.mcg_ctl = data;
2157                 break;
2158         default:
2159                 if (msr >= MSR_IA32_MC0_CTL &&
2160                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2161                         u32 offset = msr - MSR_IA32_MC0_CTL;
2162                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2163                          * some Linux kernels though clear bit 10 in bank 4 to
2164                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2165                          * this to avoid an uncatched #GP in the guest
2166                          */
2167                         if ((offset & 0x3) == 0 &&
2168                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2169                                 return -1;
2170                         if (!msr_info->host_initiated &&
2171                                 (offset & 0x3) == 1 && data != 0)
2172                                 return -1;
2173                         vcpu->arch.mce_banks[offset] = data;
2174                         break;
2175                 }
2176                 return 1;
2177         }
2178         return 0;
2179 }
2180
2181 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2182 {
2183         struct kvm *kvm = vcpu->kvm;
2184         int lm = is_long_mode(vcpu);
2185         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2186                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2187         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2188                 : kvm->arch.xen_hvm_config.blob_size_32;
2189         u32 page_num = data & ~PAGE_MASK;
2190         u64 page_addr = data & PAGE_MASK;
2191         u8 *page;
2192         int r;
2193
2194         r = -E2BIG;
2195         if (page_num >= blob_size)
2196                 goto out;
2197         r = -ENOMEM;
2198         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2199         if (IS_ERR(page)) {
2200                 r = PTR_ERR(page);
2201                 goto out;
2202         }
2203         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2204                 goto out_free;
2205         r = 0;
2206 out_free:
2207         kfree(page);
2208 out:
2209         return r;
2210 }
2211
2212 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2213 {
2214         gpa_t gpa = data & ~0x3f;
2215
2216         /* Bits 3:5 are reserved, Should be zero */
2217         if (data & 0x38)
2218                 return 1;
2219
2220         vcpu->arch.apf.msr_val = data;
2221
2222         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2223                 kvm_clear_async_pf_completion_queue(vcpu);
2224                 kvm_async_pf_hash_reset(vcpu);
2225                 return 0;
2226         }
2227
2228         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2229                                         sizeof(u32)))
2230                 return 1;
2231
2232         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2233         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2234         kvm_async_pf_wakeup_all(vcpu);
2235         return 0;
2236 }
2237
2238 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2239 {
2240         vcpu->arch.pv_time_enabled = false;
2241 }
2242
2243 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2244 {
2245         ++vcpu->stat.tlb_flush;
2246         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2247 }
2248
2249 static void record_steal_time(struct kvm_vcpu *vcpu)
2250 {
2251         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2252                 return;
2253
2254         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2255                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2256                 return;
2257
2258         /*
2259          * Doing a TLB flush here, on the guest's behalf, can avoid
2260          * expensive IPIs.
2261          */
2262         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2263                 kvm_vcpu_flush_tlb(vcpu, false);
2264
2265         if (vcpu->arch.st.steal.version & 1)
2266                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2267
2268         vcpu->arch.st.steal.version += 1;
2269
2270         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2271                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2272
2273         smp_wmb();
2274
2275         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2276                 vcpu->arch.st.last_steal;
2277         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2278
2279         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2280                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2281
2282         smp_wmb();
2283
2284         vcpu->arch.st.steal.version += 1;
2285
2286         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2287                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2288 }
2289
2290 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2291 {
2292         bool pr = false;
2293         u32 msr = msr_info->index;
2294         u64 data = msr_info->data;
2295
2296         switch (msr) {
2297         case MSR_AMD64_NB_CFG:
2298         case MSR_IA32_UCODE_WRITE:
2299         case MSR_VM_HSAVE_PA:
2300         case MSR_AMD64_PATCH_LOADER:
2301         case MSR_AMD64_BU_CFG2:
2302         case MSR_AMD64_DC_CFG:
2303                 break;
2304
2305         case MSR_IA32_UCODE_REV:
2306                 if (msr_info->host_initiated)
2307                         vcpu->arch.microcode_version = data;
2308                 break;
2309         case MSR_EFER:
2310                 return set_efer(vcpu, data);
2311         case MSR_K7_HWCR:
2312                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2313                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2314                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2315                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2316                 if (data != 0) {
2317                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2318                                     data);
2319                         return 1;
2320                 }
2321                 break;
2322         case MSR_FAM10H_MMIO_CONF_BASE:
2323                 if (data != 0) {
2324                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2325                                     "0x%llx\n", data);
2326                         return 1;
2327                 }
2328                 break;
2329         case MSR_IA32_DEBUGCTLMSR:
2330                 if (!data) {
2331                         /* We support the non-activated case already */
2332                         break;
2333                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2334                         /* Values other than LBR and BTF are vendor-specific,
2335                            thus reserved and should throw a #GP */
2336                         return 1;
2337                 }
2338                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2339                             __func__, data);
2340                 break;
2341         case 0x200 ... 0x2ff:
2342                 return kvm_mtrr_set_msr(vcpu, msr, data);
2343         case MSR_IA32_APICBASE:
2344                 return kvm_set_apic_base(vcpu, msr_info);
2345         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2346                 return kvm_x2apic_msr_write(vcpu, msr, data);
2347         case MSR_IA32_TSCDEADLINE:
2348                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2349                 break;
2350         case MSR_IA32_TSC_ADJUST:
2351                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2352                         if (!msr_info->host_initiated) {
2353                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2354                                 adjust_tsc_offset_guest(vcpu, adj);
2355                         }
2356                         vcpu->arch.ia32_tsc_adjust_msr = data;
2357                 }
2358                 break;
2359         case MSR_IA32_MISC_ENABLE:
2360                 vcpu->arch.ia32_misc_enable_msr = data;
2361                 break;
2362         case MSR_IA32_SMBASE:
2363                 if (!msr_info->host_initiated)
2364                         return 1;
2365                 vcpu->arch.smbase = data;
2366                 break;
2367         case MSR_IA32_TSC:
2368                 kvm_write_tsc(vcpu, msr_info);
2369                 break;
2370         case MSR_SMI_COUNT:
2371                 if (!msr_info->host_initiated)
2372                         return 1;
2373                 vcpu->arch.smi_count = data;
2374                 break;
2375         case MSR_KVM_WALL_CLOCK_NEW:
2376         case MSR_KVM_WALL_CLOCK:
2377                 vcpu->kvm->arch.wall_clock = data;
2378                 kvm_write_wall_clock(vcpu->kvm, data);
2379                 break;
2380         case MSR_KVM_SYSTEM_TIME_NEW:
2381         case MSR_KVM_SYSTEM_TIME: {
2382                 struct kvm_arch *ka = &vcpu->kvm->arch;
2383
2384                 kvmclock_reset(vcpu);
2385
2386                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2387                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2388
2389                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2390                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2391
2392                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2393                 }
2394
2395                 vcpu->arch.time = data;
2396                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2397
2398                 /* we verify if the enable bit is set... */
2399                 if (!(data & 1))
2400                         break;
2401
2402                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2403                      &vcpu->arch.pv_time, data & ~1ULL,
2404                      sizeof(struct pvclock_vcpu_time_info)))
2405                         vcpu->arch.pv_time_enabled = false;
2406                 else
2407                         vcpu->arch.pv_time_enabled = true;
2408
2409                 break;
2410         }
2411         case MSR_KVM_ASYNC_PF_EN:
2412                 if (kvm_pv_enable_async_pf(vcpu, data))
2413                         return 1;
2414                 break;
2415         case MSR_KVM_STEAL_TIME:
2416
2417                 if (unlikely(!sched_info_on()))
2418                         return 1;
2419
2420                 if (data & KVM_STEAL_RESERVED_MASK)
2421                         return 1;
2422
2423                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2424                                                 data & KVM_STEAL_VALID_BITS,
2425                                                 sizeof(struct kvm_steal_time)))
2426                         return 1;
2427
2428                 vcpu->arch.st.msr_val = data;
2429
2430                 if (!(data & KVM_MSR_ENABLED))
2431                         break;
2432
2433                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2434
2435                 break;
2436         case MSR_KVM_PV_EOI_EN:
2437                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2438                         return 1;
2439                 break;
2440
2441         case MSR_IA32_MCG_CTL:
2442         case MSR_IA32_MCG_STATUS:
2443         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2444                 return set_msr_mce(vcpu, msr_info);
2445
2446         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2447         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2448                 pr = true; /* fall through */
2449         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2450         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2451                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2452                         return kvm_pmu_set_msr(vcpu, msr_info);
2453
2454                 if (pr || data != 0)
2455                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2456                                     "0x%x data 0x%llx\n", msr, data);
2457                 break;
2458         case MSR_K7_CLK_CTL:
2459                 /*
2460                  * Ignore all writes to this no longer documented MSR.
2461                  * Writes are only relevant for old K7 processors,
2462                  * all pre-dating SVM, but a recommended workaround from
2463                  * AMD for these chips. It is possible to specify the
2464                  * affected processor models on the command line, hence
2465                  * the need to ignore the workaround.
2466                  */
2467                 break;
2468         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2469         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2470         case HV_X64_MSR_CRASH_CTL:
2471         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2472         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2473         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2474         case HV_X64_MSR_TSC_EMULATION_STATUS:
2475                 return kvm_hv_set_msr_common(vcpu, msr, data,
2476                                              msr_info->host_initiated);
2477         case MSR_IA32_BBL_CR_CTL3:
2478                 /* Drop writes to this legacy MSR -- see rdmsr
2479                  * counterpart for further detail.
2480                  */
2481                 if (report_ignored_msrs)
2482                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2483                                 msr, data);
2484                 break;
2485         case MSR_AMD64_OSVW_ID_LENGTH:
2486                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2487                         return 1;
2488                 vcpu->arch.osvw.length = data;
2489                 break;
2490         case MSR_AMD64_OSVW_STATUS:
2491                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2492                         return 1;
2493                 vcpu->arch.osvw.status = data;
2494                 break;
2495         case MSR_PLATFORM_INFO:
2496                 if (!msr_info->host_initiated ||
2497                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2498                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2499                      cpuid_fault_enabled(vcpu)))
2500                         return 1;
2501                 vcpu->arch.msr_platform_info = data;
2502                 break;
2503         case MSR_MISC_FEATURES_ENABLES:
2504                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2505                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2506                      !supports_cpuid_fault(vcpu)))
2507                         return 1;
2508                 vcpu->arch.msr_misc_features_enables = data;
2509                 break;
2510         default:
2511                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2512                         return xen_hvm_config(vcpu, data);
2513                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2514                         return kvm_pmu_set_msr(vcpu, msr_info);
2515                 if (!ignore_msrs) {
2516                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2517                                     msr, data);
2518                         return 1;
2519                 } else {
2520                         if (report_ignored_msrs)
2521                                 vcpu_unimpl(vcpu,
2522                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2523                                         msr, data);
2524                         break;
2525                 }
2526         }
2527         return 0;
2528 }
2529 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2530
2531
2532 /*
2533  * Reads an msr value (of 'msr_index') into 'pdata'.
2534  * Returns 0 on success, non-0 otherwise.
2535  * Assumes vcpu_load() was already called.
2536  */
2537 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2538 {
2539         return kvm_x86_ops->get_msr(vcpu, msr);
2540 }
2541 EXPORT_SYMBOL_GPL(kvm_get_msr);
2542
2543 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2544 {
2545         u64 data;
2546         u64 mcg_cap = vcpu->arch.mcg_cap;
2547         unsigned bank_num = mcg_cap & 0xff;
2548
2549         switch (msr) {
2550         case MSR_IA32_P5_MC_ADDR:
2551         case MSR_IA32_P5_MC_TYPE:
2552                 data = 0;
2553                 break;
2554         case MSR_IA32_MCG_CAP:
2555                 data = vcpu->arch.mcg_cap;
2556                 break;
2557         case MSR_IA32_MCG_CTL:
2558                 if (!(mcg_cap & MCG_CTL_P))
2559                         return 1;
2560                 data = vcpu->arch.mcg_ctl;
2561                 break;
2562         case MSR_IA32_MCG_STATUS:
2563                 data = vcpu->arch.mcg_status;
2564                 break;
2565         default:
2566                 if (msr >= MSR_IA32_MC0_CTL &&
2567                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2568                         u32 offset = msr - MSR_IA32_MC0_CTL;
2569                         data = vcpu->arch.mce_banks[offset];
2570                         break;
2571                 }
2572                 return 1;
2573         }
2574         *pdata = data;
2575         return 0;
2576 }
2577
2578 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2579 {
2580         switch (msr_info->index) {
2581         case MSR_IA32_PLATFORM_ID:
2582         case MSR_IA32_EBL_CR_POWERON:
2583         case MSR_IA32_DEBUGCTLMSR:
2584         case MSR_IA32_LASTBRANCHFROMIP:
2585         case MSR_IA32_LASTBRANCHTOIP:
2586         case MSR_IA32_LASTINTFROMIP:
2587         case MSR_IA32_LASTINTTOIP:
2588         case MSR_K8_SYSCFG:
2589         case MSR_K8_TSEG_ADDR:
2590         case MSR_K8_TSEG_MASK:
2591         case MSR_K7_HWCR:
2592         case MSR_VM_HSAVE_PA:
2593         case MSR_K8_INT_PENDING_MSG:
2594         case MSR_AMD64_NB_CFG:
2595         case MSR_FAM10H_MMIO_CONF_BASE:
2596         case MSR_AMD64_BU_CFG2:
2597         case MSR_IA32_PERF_CTL:
2598         case MSR_AMD64_DC_CFG:
2599                 msr_info->data = 0;
2600                 break;
2601         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2602         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2603         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2604         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2605         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2606                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2607                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2608                 msr_info->data = 0;
2609                 break;
2610         case MSR_IA32_UCODE_REV:
2611                 msr_info->data = vcpu->arch.microcode_version;
2612                 break;
2613         case MSR_IA32_TSC:
2614                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2615                 break;
2616         case MSR_MTRRcap:
2617         case 0x200 ... 0x2ff:
2618                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2619         case 0xcd: /* fsb frequency */
2620                 msr_info->data = 3;
2621                 break;
2622                 /*
2623                  * MSR_EBC_FREQUENCY_ID
2624                  * Conservative value valid for even the basic CPU models.
2625                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2626                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2627                  * and 266MHz for model 3, or 4. Set Core Clock
2628                  * Frequency to System Bus Frequency Ratio to 1 (bits
2629                  * 31:24) even though these are only valid for CPU
2630                  * models > 2, however guests may end up dividing or
2631                  * multiplying by zero otherwise.
2632                  */
2633         case MSR_EBC_FREQUENCY_ID:
2634                 msr_info->data = 1 << 24;
2635                 break;
2636         case MSR_IA32_APICBASE:
2637                 msr_info->data = kvm_get_apic_base(vcpu);
2638                 break;
2639         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2640                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2641                 break;
2642         case MSR_IA32_TSCDEADLINE:
2643                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2644                 break;
2645         case MSR_IA32_TSC_ADJUST:
2646                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2647                 break;
2648         case MSR_IA32_MISC_ENABLE:
2649                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2650                 break;
2651         case MSR_IA32_SMBASE:
2652                 if (!msr_info->host_initiated)
2653                         return 1;
2654                 msr_info->data = vcpu->arch.smbase;
2655                 break;
2656         case MSR_SMI_COUNT:
2657                 msr_info->data = vcpu->arch.smi_count;
2658                 break;
2659         case MSR_IA32_PERF_STATUS:
2660                 /* TSC increment by tick */
2661                 msr_info->data = 1000ULL;
2662                 /* CPU multiplier */
2663                 msr_info->data |= (((uint64_t)4ULL) << 40);
2664                 break;
2665         case MSR_EFER:
2666                 msr_info->data = vcpu->arch.efer;
2667                 break;
2668         case MSR_KVM_WALL_CLOCK:
2669         case MSR_KVM_WALL_CLOCK_NEW:
2670                 msr_info->data = vcpu->kvm->arch.wall_clock;
2671                 break;
2672         case MSR_KVM_SYSTEM_TIME:
2673         case MSR_KVM_SYSTEM_TIME_NEW:
2674                 msr_info->data = vcpu->arch.time;
2675                 break;
2676         case MSR_KVM_ASYNC_PF_EN:
2677                 msr_info->data = vcpu->arch.apf.msr_val;
2678                 break;
2679         case MSR_KVM_STEAL_TIME:
2680                 msr_info->data = vcpu->arch.st.msr_val;
2681                 break;
2682         case MSR_KVM_PV_EOI_EN:
2683                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2684                 break;
2685         case MSR_IA32_P5_MC_ADDR:
2686         case MSR_IA32_P5_MC_TYPE:
2687         case MSR_IA32_MCG_CAP:
2688         case MSR_IA32_MCG_CTL:
2689         case MSR_IA32_MCG_STATUS:
2690         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2691                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2692         case MSR_K7_CLK_CTL:
2693                 /*
2694                  * Provide expected ramp-up count for K7. All other
2695                  * are set to zero, indicating minimum divisors for
2696                  * every field.
2697                  *
2698                  * This prevents guest kernels on AMD host with CPU
2699                  * type 6, model 8 and higher from exploding due to
2700                  * the rdmsr failing.
2701                  */
2702                 msr_info->data = 0x20000000;
2703                 break;
2704         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2705         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2706         case HV_X64_MSR_CRASH_CTL:
2707         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2708         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2709         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2710         case HV_X64_MSR_TSC_EMULATION_STATUS:
2711                 return kvm_hv_get_msr_common(vcpu,
2712                                              msr_info->index, &msr_info->data);
2713                 break;
2714         case MSR_IA32_BBL_CR_CTL3:
2715                 /* This legacy MSR exists but isn't fully documented in current
2716                  * silicon.  It is however accessed by winxp in very narrow
2717                  * scenarios where it sets bit #19, itself documented as
2718                  * a "reserved" bit.  Best effort attempt to source coherent
2719                  * read data here should the balance of the register be
2720                  * interpreted by the guest:
2721                  *
2722                  * L2 cache control register 3: 64GB range, 256KB size,
2723                  * enabled, latency 0x1, configured
2724                  */
2725                 msr_info->data = 0xbe702111;
2726                 break;
2727         case MSR_AMD64_OSVW_ID_LENGTH:
2728                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2729                         return 1;
2730                 msr_info->data = vcpu->arch.osvw.length;
2731                 break;
2732         case MSR_AMD64_OSVW_STATUS:
2733                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2734                         return 1;
2735                 msr_info->data = vcpu->arch.osvw.status;
2736                 break;
2737         case MSR_PLATFORM_INFO:
2738                 msr_info->data = vcpu->arch.msr_platform_info;
2739                 break;
2740         case MSR_MISC_FEATURES_ENABLES:
2741                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2742                 break;
2743         default:
2744                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2745                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2746                 if (!ignore_msrs) {
2747                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2748                                                msr_info->index);
2749                         return 1;
2750                 } else {
2751                         if (report_ignored_msrs)
2752                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2753                                         msr_info->index);
2754                         msr_info->data = 0;
2755                 }
2756                 break;
2757         }
2758         return 0;
2759 }
2760 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2761
2762 /*
2763  * Read or write a bunch of msrs. All parameters are kernel addresses.
2764  *
2765  * @return number of msrs set successfully.
2766  */
2767 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2768                     struct kvm_msr_entry *entries,
2769                     int (*do_msr)(struct kvm_vcpu *vcpu,
2770                                   unsigned index, u64 *data))
2771 {
2772         int i;
2773
2774         for (i = 0; i < msrs->nmsrs; ++i)
2775                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2776                         break;
2777
2778         return i;
2779 }
2780
2781 /*
2782  * Read or write a bunch of msrs. Parameters are user addresses.
2783  *
2784  * @return number of msrs set successfully.
2785  */
2786 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2787                   int (*do_msr)(struct kvm_vcpu *vcpu,
2788                                 unsigned index, u64 *data),
2789                   int writeback)
2790 {
2791         struct kvm_msrs msrs;
2792         struct kvm_msr_entry *entries;
2793         int r, n;
2794         unsigned size;
2795
2796         r = -EFAULT;
2797         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2798                 goto out;
2799
2800         r = -E2BIG;
2801         if (msrs.nmsrs >= MAX_IO_MSRS)
2802                 goto out;
2803
2804         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2805         entries = memdup_user(user_msrs->entries, size);
2806         if (IS_ERR(entries)) {
2807                 r = PTR_ERR(entries);
2808                 goto out;
2809         }
2810
2811         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2812         if (r < 0)
2813                 goto out_free;
2814
2815         r = -EFAULT;
2816         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2817                 goto out_free;
2818
2819         r = n;
2820
2821 out_free:
2822         kfree(entries);
2823 out:
2824         return r;
2825 }
2826
2827 static inline bool kvm_can_mwait_in_guest(void)
2828 {
2829         return boot_cpu_has(X86_FEATURE_MWAIT) &&
2830                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2831                 boot_cpu_has(X86_FEATURE_ARAT);
2832 }
2833
2834 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2835 {
2836         int r = 0;
2837
2838         switch (ext) {
2839         case KVM_CAP_IRQCHIP:
2840         case KVM_CAP_HLT:
2841         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2842         case KVM_CAP_SET_TSS_ADDR:
2843         case KVM_CAP_EXT_CPUID:
2844         case KVM_CAP_EXT_EMUL_CPUID:
2845         case KVM_CAP_CLOCKSOURCE:
2846         case KVM_CAP_PIT:
2847         case KVM_CAP_NOP_IO_DELAY:
2848         case KVM_CAP_MP_STATE:
2849         case KVM_CAP_SYNC_MMU:
2850         case KVM_CAP_USER_NMI:
2851         case KVM_CAP_REINJECT_CONTROL:
2852         case KVM_CAP_IRQ_INJECT_STATUS:
2853         case KVM_CAP_IOEVENTFD:
2854         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2855         case KVM_CAP_PIT2:
2856         case KVM_CAP_PIT_STATE2:
2857         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2858         case KVM_CAP_XEN_HVM:
2859         case KVM_CAP_VCPU_EVENTS:
2860         case KVM_CAP_HYPERV:
2861         case KVM_CAP_HYPERV_VAPIC:
2862         case KVM_CAP_HYPERV_SPIN:
2863         case KVM_CAP_HYPERV_SYNIC:
2864         case KVM_CAP_HYPERV_SYNIC2:
2865         case KVM_CAP_HYPERV_VP_INDEX:
2866         case KVM_CAP_HYPERV_EVENTFD:
2867         case KVM_CAP_PCI_SEGMENT:
2868         case KVM_CAP_DEBUGREGS:
2869         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2870         case KVM_CAP_XSAVE:
2871         case KVM_CAP_ASYNC_PF:
2872         case KVM_CAP_GET_TSC_KHZ:
2873         case KVM_CAP_KVMCLOCK_CTRL:
2874         case KVM_CAP_READONLY_MEM:
2875         case KVM_CAP_HYPERV_TIME:
2876         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2877         case KVM_CAP_TSC_DEADLINE_TIMER:
2878         case KVM_CAP_ENABLE_CAP_VM:
2879         case KVM_CAP_DISABLE_QUIRKS:
2880         case KVM_CAP_SET_BOOT_CPU_ID:
2881         case KVM_CAP_SPLIT_IRQCHIP:
2882         case KVM_CAP_IMMEDIATE_EXIT:
2883         case KVM_CAP_GET_MSR_FEATURES:
2884                 r = 1;
2885                 break;
2886         case KVM_CAP_SYNC_REGS:
2887                 r = KVM_SYNC_X86_VALID_FIELDS;
2888                 break;
2889         case KVM_CAP_ADJUST_CLOCK:
2890                 r = KVM_CLOCK_TSC_STABLE;
2891                 break;
2892         case KVM_CAP_X86_DISABLE_EXITS:
2893                 r |=  KVM_X86_DISABLE_EXITS_HTL | KVM_X86_DISABLE_EXITS_PAUSE;
2894                 if(kvm_can_mwait_in_guest())
2895                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
2896                 break;
2897         case KVM_CAP_X86_SMM:
2898                 /* SMBASE is usually relocated above 1M on modern chipsets,
2899                  * and SMM handlers might indeed rely on 4G segment limits,
2900                  * so do not report SMM to be available if real mode is
2901                  * emulated via vm86 mode.  Still, do not go to great lengths
2902                  * to avoid userspace's usage of the feature, because it is a
2903                  * fringe case that is not enabled except via specific settings
2904                  * of the module parameters.
2905                  */
2906                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2907                 break;
2908         case KVM_CAP_VAPIC:
2909                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2910                 break;
2911         case KVM_CAP_NR_VCPUS:
2912                 r = KVM_SOFT_MAX_VCPUS;
2913                 break;
2914         case KVM_CAP_MAX_VCPUS:
2915                 r = KVM_MAX_VCPUS;
2916                 break;
2917         case KVM_CAP_NR_MEMSLOTS:
2918                 r = KVM_USER_MEM_SLOTS;
2919                 break;
2920         case KVM_CAP_PV_MMU:    /* obsolete */
2921                 r = 0;
2922                 break;
2923         case KVM_CAP_MCE:
2924                 r = KVM_MAX_MCE_BANKS;
2925                 break;
2926         case KVM_CAP_XCRS:
2927                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2928                 break;
2929         case KVM_CAP_TSC_CONTROL:
2930                 r = kvm_has_tsc_control;
2931                 break;
2932         case KVM_CAP_X2APIC_API:
2933                 r = KVM_X2APIC_API_VALID_FLAGS;
2934                 break;
2935         default:
2936                 break;
2937         }
2938         return r;
2939
2940 }
2941
2942 long kvm_arch_dev_ioctl(struct file *filp,
2943                         unsigned int ioctl, unsigned long arg)
2944 {
2945         void __user *argp = (void __user *)arg;
2946         long r;
2947
2948         switch (ioctl) {
2949         case KVM_GET_MSR_INDEX_LIST: {
2950                 struct kvm_msr_list __user *user_msr_list = argp;
2951                 struct kvm_msr_list msr_list;
2952                 unsigned n;
2953
2954                 r = -EFAULT;
2955                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2956                         goto out;
2957                 n = msr_list.nmsrs;
2958                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2959                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2960                         goto out;
2961                 r = -E2BIG;
2962                 if (n < msr_list.nmsrs)
2963                         goto out;
2964                 r = -EFAULT;
2965                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2966                                  num_msrs_to_save * sizeof(u32)))
2967                         goto out;
2968                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2969                                  &emulated_msrs,
2970                                  num_emulated_msrs * sizeof(u32)))
2971                         goto out;
2972                 r = 0;
2973                 break;
2974         }
2975         case KVM_GET_SUPPORTED_CPUID:
2976         case KVM_GET_EMULATED_CPUID: {
2977                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2978                 struct kvm_cpuid2 cpuid;
2979
2980                 r = -EFAULT;
2981                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2982                         goto out;
2983
2984                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2985                                             ioctl);
2986                 if (r)
2987                         goto out;
2988
2989                 r = -EFAULT;
2990                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2991                         goto out;
2992                 r = 0;
2993                 break;
2994         }
2995         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2996                 r = -EFAULT;
2997                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2998                                  sizeof(kvm_mce_cap_supported)))
2999                         goto out;
3000                 r = 0;
3001                 break;
3002         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3003                 struct kvm_msr_list __user *user_msr_list = argp;
3004                 struct kvm_msr_list msr_list;
3005                 unsigned int n;
3006
3007                 r = -EFAULT;
3008                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3009                         goto out;
3010                 n = msr_list.nmsrs;
3011                 msr_list.nmsrs = num_msr_based_features;
3012                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3013                         goto out;
3014                 r = -E2BIG;
3015                 if (n < msr_list.nmsrs)
3016                         goto out;
3017                 r = -EFAULT;
3018                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3019                                  num_msr_based_features * sizeof(u32)))
3020                         goto out;
3021                 r = 0;
3022                 break;
3023         }
3024         case KVM_GET_MSRS:
3025                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3026                 break;
3027         }
3028         default:
3029                 r = -EINVAL;
3030         }
3031 out:
3032         return r;
3033 }
3034
3035 static void wbinvd_ipi(void *garbage)
3036 {
3037         wbinvd();
3038 }
3039
3040 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3041 {
3042         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3043 }
3044
3045 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3046 {
3047         /* Address WBINVD may be executed by guest */
3048         if (need_emulate_wbinvd(vcpu)) {
3049                 if (kvm_x86_ops->has_wbinvd_exit())
3050                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3051                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3052                         smp_call_function_single(vcpu->cpu,
3053                                         wbinvd_ipi, NULL, 1);
3054         }
3055
3056         kvm_x86_ops->vcpu_load(vcpu, cpu);
3057
3058         /* Apply any externally detected TSC adjustments (due to suspend) */
3059         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3060                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3061                 vcpu->arch.tsc_offset_adjustment = 0;
3062                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3063         }
3064
3065         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3066                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3067                                 rdtsc() - vcpu->arch.last_host_tsc;
3068                 if (tsc_delta < 0)
3069                         mark_tsc_unstable("KVM discovered backwards TSC");
3070
3071                 if (kvm_check_tsc_unstable()) {
3072                         u64 offset = kvm_compute_tsc_offset(vcpu,
3073                                                 vcpu->arch.last_guest_tsc);
3074                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3075                         vcpu->arch.tsc_catchup = 1;
3076                 }
3077
3078                 if (kvm_lapic_hv_timer_in_use(vcpu))
3079                         kvm_lapic_restart_hv_timer(vcpu);
3080
3081                 /*
3082                  * On a host with synchronized TSC, there is no need to update
3083                  * kvmclock on vcpu->cpu migration
3084                  */
3085                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3086                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3087                 if (vcpu->cpu != cpu)
3088                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3089                 vcpu->cpu = cpu;
3090         }
3091
3092         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3093 }
3094
3095 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3096 {
3097         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3098                 return;
3099
3100         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3101
3102         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3103                         &vcpu->arch.st.steal.preempted,
3104                         offsetof(struct kvm_steal_time, preempted),
3105                         sizeof(vcpu->arch.st.steal.preempted));
3106 }
3107
3108 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3109 {
3110         int idx;
3111
3112         if (vcpu->preempted)
3113                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3114
3115         /*
3116          * Disable page faults because we're in atomic context here.
3117          * kvm_write_guest_offset_cached() would call might_fault()
3118          * that relies on pagefault_disable() to tell if there's a
3119          * bug. NOTE: the write to guest memory may not go through if
3120          * during postcopy live migration or if there's heavy guest
3121          * paging.
3122          */
3123         pagefault_disable();
3124         /*
3125          * kvm_memslots() will be called by
3126          * kvm_write_guest_offset_cached() so take the srcu lock.
3127          */
3128         idx = srcu_read_lock(&vcpu->kvm->srcu);
3129         kvm_steal_time_set_preempted(vcpu);
3130         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3131         pagefault_enable();
3132         kvm_x86_ops->vcpu_put(vcpu);
3133         vcpu->arch.last_host_tsc = rdtsc();
3134         /*
3135          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3136          * on every vmexit, but if not, we might have a stale dr6 from the
3137          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3138          */
3139         set_debugreg(0, 6);
3140 }
3141
3142 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3143                                     struct kvm_lapic_state *s)
3144 {
3145         if (vcpu->arch.apicv_active)
3146                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3147
3148         return kvm_apic_get_state(vcpu, s);
3149 }
3150
3151 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3152                                     struct kvm_lapic_state *s)
3153 {
3154         int r;
3155
3156         r = kvm_apic_set_state(vcpu, s);
3157         if (r)
3158                 return r;
3159         update_cr8_intercept(vcpu);
3160
3161         return 0;
3162 }
3163
3164 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3165 {
3166         return (!lapic_in_kernel(vcpu) ||
3167                 kvm_apic_accept_pic_intr(vcpu));
3168 }
3169
3170 /*
3171  * if userspace requested an interrupt window, check that the
3172  * interrupt window is open.
3173  *
3174  * No need to exit to userspace if we already have an interrupt queued.
3175  */
3176 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3177 {
3178         return kvm_arch_interrupt_allowed(vcpu) &&
3179                 !kvm_cpu_has_interrupt(vcpu) &&
3180                 !kvm_event_needs_reinjection(vcpu) &&
3181                 kvm_cpu_accept_dm_intr(vcpu);
3182 }
3183
3184 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3185                                     struct kvm_interrupt *irq)
3186 {
3187         if (irq->irq >= KVM_NR_INTERRUPTS)
3188                 return -EINVAL;
3189
3190         if (!irqchip_in_kernel(vcpu->kvm)) {
3191                 kvm_queue_interrupt(vcpu, irq->irq, false);
3192                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3193                 return 0;
3194         }
3195
3196         /*
3197          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3198          * fail for in-kernel 8259.
3199          */
3200         if (pic_in_kernel(vcpu->kvm))
3201                 return -ENXIO;
3202
3203         if (vcpu->arch.pending_external_vector != -1)
3204                 return -EEXIST;
3205
3206         vcpu->arch.pending_external_vector = irq->irq;
3207         kvm_make_request(KVM_REQ_EVENT, vcpu);
3208         return 0;
3209 }
3210
3211 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3212 {
3213         kvm_inject_nmi(vcpu);
3214
3215         return 0;
3216 }
3217
3218 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3219 {
3220         kvm_make_request(KVM_REQ_SMI, vcpu);
3221
3222         return 0;
3223 }
3224
3225 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3226                                            struct kvm_tpr_access_ctl *tac)
3227 {
3228         if (tac->flags)
3229                 return -EINVAL;
3230         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3231         return 0;
3232 }
3233
3234 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3235                                         u64 mcg_cap)
3236 {
3237         int r;
3238         unsigned bank_num = mcg_cap & 0xff, bank;
3239
3240         r = -EINVAL;
3241         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3242                 goto out;
3243         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3244                 goto out;
3245         r = 0;
3246         vcpu->arch.mcg_cap = mcg_cap;
3247         /* Init IA32_MCG_CTL to all 1s */
3248         if (mcg_cap & MCG_CTL_P)
3249                 vcpu->arch.mcg_ctl = ~(u64)0;
3250         /* Init IA32_MCi_CTL to all 1s */
3251         for (bank = 0; bank < bank_num; bank++)
3252                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3253
3254         if (kvm_x86_ops->setup_mce)
3255                 kvm_x86_ops->setup_mce(vcpu);
3256 out:
3257         return r;
3258 }
3259
3260 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3261                                       struct kvm_x86_mce *mce)
3262 {
3263         u64 mcg_cap = vcpu->arch.mcg_cap;
3264         unsigned bank_num = mcg_cap & 0xff;
3265         u64 *banks = vcpu->arch.mce_banks;
3266
3267         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3268                 return -EINVAL;
3269         /*
3270          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3271          * reporting is disabled
3272          */
3273         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3274             vcpu->arch.mcg_ctl != ~(u64)0)
3275                 return 0;
3276         banks += 4 * mce->bank;
3277         /*
3278          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3279          * reporting is disabled for the bank
3280          */
3281         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3282                 return 0;
3283         if (mce->status & MCI_STATUS_UC) {
3284                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3285                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3286                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3287                         return 0;
3288                 }
3289                 if (banks[1] & MCI_STATUS_VAL)
3290                         mce->status |= MCI_STATUS_OVER;
3291                 banks[2] = mce->addr;
3292                 banks[3] = mce->misc;
3293                 vcpu->arch.mcg_status = mce->mcg_status;
3294                 banks[1] = mce->status;
3295                 kvm_queue_exception(vcpu, MC_VECTOR);
3296         } else if (!(banks[1] & MCI_STATUS_VAL)
3297                    || !(banks[1] & MCI_STATUS_UC)) {
3298                 if (banks[1] & MCI_STATUS_VAL)
3299                         mce->status |= MCI_STATUS_OVER;
3300                 banks[2] = mce->addr;
3301                 banks[3] = mce->misc;
3302                 banks[1] = mce->status;
3303         } else
3304                 banks[1] |= MCI_STATUS_OVER;
3305         return 0;
3306 }
3307
3308 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3309                                                struct kvm_vcpu_events *events)
3310 {
3311         process_nmi(vcpu);
3312         /*
3313          * FIXME: pass injected and pending separately.  This is only
3314          * needed for nested virtualization, whose state cannot be
3315          * migrated yet.  For now we can combine them.
3316          */
3317         events->exception.injected =
3318                 (vcpu->arch.exception.pending ||
3319                  vcpu->arch.exception.injected) &&
3320                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3321         events->exception.nr = vcpu->arch.exception.nr;
3322         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3323         events->exception.pad = 0;
3324         events->exception.error_code = vcpu->arch.exception.error_code;
3325
3326         events->interrupt.injected =
3327                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3328         events->interrupt.nr = vcpu->arch.interrupt.nr;
3329         events->interrupt.soft = 0;
3330         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3331
3332         events->nmi.injected = vcpu->arch.nmi_injected;
3333         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3334         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3335         events->nmi.pad = 0;
3336
3337         events->sipi_vector = 0; /* never valid when reporting to user space */
3338
3339         events->smi.smm = is_smm(vcpu);
3340         events->smi.pending = vcpu->arch.smi_pending;
3341         events->smi.smm_inside_nmi =
3342                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3343         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3344
3345         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3346                          | KVM_VCPUEVENT_VALID_SHADOW
3347                          | KVM_VCPUEVENT_VALID_SMM);
3348         memset(&events->reserved, 0, sizeof(events->reserved));
3349 }
3350
3351 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3352
3353 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3354                                               struct kvm_vcpu_events *events)
3355 {
3356         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3357                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3358                               | KVM_VCPUEVENT_VALID_SHADOW
3359                               | KVM_VCPUEVENT_VALID_SMM))
3360                 return -EINVAL;
3361
3362         if (events->exception.injected &&
3363             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3364              is_guest_mode(vcpu)))
3365                 return -EINVAL;
3366
3367         /* INITs are latched while in SMM */
3368         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3369             (events->smi.smm || events->smi.pending) &&
3370             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3371                 return -EINVAL;
3372
3373         process_nmi(vcpu);
3374         vcpu->arch.exception.injected = false;
3375         vcpu->arch.exception.pending = events->exception.injected;
3376         vcpu->arch.exception.nr = events->exception.nr;
3377         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3378         vcpu->arch.exception.error_code = events->exception.error_code;
3379
3380         vcpu->arch.interrupt.injected = events->interrupt.injected;
3381         vcpu->arch.interrupt.nr = events->interrupt.nr;
3382         vcpu->arch.interrupt.soft = events->interrupt.soft;
3383         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3384                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3385                                                   events->interrupt.shadow);
3386
3387         vcpu->arch.nmi_injected = events->nmi.injected;
3388         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3389                 vcpu->arch.nmi_pending = events->nmi.pending;
3390         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3391
3392         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3393             lapic_in_kernel(vcpu))
3394                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3395
3396         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3397                 u32 hflags = vcpu->arch.hflags;
3398                 if (events->smi.smm)
3399                         hflags |= HF_SMM_MASK;
3400                 else
3401                         hflags &= ~HF_SMM_MASK;
3402                 kvm_set_hflags(vcpu, hflags);
3403
3404                 vcpu->arch.smi_pending = events->smi.pending;
3405
3406                 if (events->smi.smm) {
3407                         if (events->smi.smm_inside_nmi)
3408                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3409                         else
3410                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3411                         if (lapic_in_kernel(vcpu)) {
3412                                 if (events->smi.latched_init)
3413                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3414                                 else
3415                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3416                         }
3417                 }
3418         }
3419
3420         kvm_make_request(KVM_REQ_EVENT, vcpu);
3421
3422         return 0;
3423 }
3424
3425 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3426                                              struct kvm_debugregs *dbgregs)
3427 {
3428         unsigned long val;
3429
3430         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3431         kvm_get_dr(vcpu, 6, &val);
3432         dbgregs->dr6 = val;
3433         dbgregs->dr7 = vcpu->arch.dr7;
3434         dbgregs->flags = 0;
3435         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3436 }
3437
3438 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3439                                             struct kvm_debugregs *dbgregs)
3440 {
3441         if (dbgregs->flags)
3442                 return -EINVAL;
3443
3444         if (dbgregs->dr6 & ~0xffffffffull)
3445                 return -EINVAL;
3446         if (dbgregs->dr7 & ~0xffffffffull)
3447                 return -EINVAL;
3448
3449         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3450         kvm_update_dr0123(vcpu);
3451         vcpu->arch.dr6 = dbgregs->dr6;
3452         kvm_update_dr6(vcpu);
3453         vcpu->arch.dr7 = dbgregs->dr7;
3454         kvm_update_dr7(vcpu);
3455
3456         return 0;
3457 }
3458
3459 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3460
3461 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3462 {
3463         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3464         u64 xstate_bv = xsave->header.xfeatures;
3465         u64 valid;
3466
3467         /*
3468          * Copy legacy XSAVE area, to avoid complications with CPUID
3469          * leaves 0 and 1 in the loop below.
3470          */
3471         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3472
3473         /* Set XSTATE_BV */
3474         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3475         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3476
3477         /*
3478          * Copy each region from the possibly compacted offset to the
3479          * non-compacted offset.
3480          */
3481         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3482         while (valid) {
3483                 u64 feature = valid & -valid;
3484                 int index = fls64(feature) - 1;
3485                 void *src = get_xsave_addr(xsave, feature);
3486
3487                 if (src) {
3488                         u32 size, offset, ecx, edx;
3489                         cpuid_count(XSTATE_CPUID, index,
3490                                     &size, &offset, &ecx, &edx);
3491                         if (feature == XFEATURE_MASK_PKRU)
3492                                 memcpy(dest + offset, &vcpu->arch.pkru,
3493                                        sizeof(vcpu->arch.pkru));
3494                         else
3495                                 memcpy(dest + offset, src, size);
3496
3497                 }
3498
3499                 valid -= feature;
3500         }
3501 }
3502
3503 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3504 {
3505         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3506         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3507         u64 valid;
3508
3509         /*
3510          * Copy legacy XSAVE area, to avoid complications with CPUID
3511          * leaves 0 and 1 in the loop below.
3512          */
3513         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3514
3515         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3516         xsave->header.xfeatures = xstate_bv;
3517         if (boot_cpu_has(X86_FEATURE_XSAVES))
3518                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3519
3520         /*
3521          * Copy each region from the non-compacted offset to the
3522          * possibly compacted offset.
3523          */
3524         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3525         while (valid) {
3526                 u64 feature = valid & -valid;
3527                 int index = fls64(feature) - 1;
3528                 void *dest = get_xsave_addr(xsave, feature);
3529
3530                 if (dest) {
3531                         u32 size, offset, ecx, edx;
3532                         cpuid_count(XSTATE_CPUID, index,
3533                                     &size, &offset, &ecx, &edx);
3534                         if (feature == XFEATURE_MASK_PKRU)
3535                                 memcpy(&vcpu->arch.pkru, src + offset,
3536                                        sizeof(vcpu->arch.pkru));
3537                         else
3538                                 memcpy(dest, src + offset, size);
3539                 }
3540
3541                 valid -= feature;
3542         }
3543 }
3544
3545 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3546                                          struct kvm_xsave *guest_xsave)
3547 {
3548         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3549                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3550                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3551         } else {
3552                 memcpy(guest_xsave->region,
3553                         &vcpu->arch.guest_fpu.state.fxsave,
3554                         sizeof(struct fxregs_state));
3555                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3556                         XFEATURE_MASK_FPSSE;
3557         }
3558 }
3559
3560 #define XSAVE_MXCSR_OFFSET 24
3561
3562 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3563                                         struct kvm_xsave *guest_xsave)
3564 {
3565         u64 xstate_bv =
3566                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3567         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3568
3569         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3570                 /*
3571                  * Here we allow setting states that are not present in
3572                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3573                  * with old userspace.
3574                  */
3575                 if (xstate_bv & ~kvm_supported_xcr0() ||
3576                         mxcsr & ~mxcsr_feature_mask)
3577                         return -EINVAL;
3578                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3579         } else {
3580                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3581                         mxcsr & ~mxcsr_feature_mask)
3582                         return -EINVAL;
3583                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3584                         guest_xsave->region, sizeof(struct fxregs_state));
3585         }
3586         return 0;
3587 }
3588
3589 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3590                                         struct kvm_xcrs *guest_xcrs)
3591 {
3592         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3593                 guest_xcrs->nr_xcrs = 0;
3594                 return;
3595         }
3596
3597         guest_xcrs->nr_xcrs = 1;
3598         guest_xcrs->flags = 0;
3599         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3600         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3601 }
3602
3603 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3604                                        struct kvm_xcrs *guest_xcrs)
3605 {
3606         int i, r = 0;
3607
3608         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3609                 return -EINVAL;
3610
3611         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3612                 return -EINVAL;
3613
3614         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3615                 /* Only support XCR0 currently */
3616                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3617                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3618                                 guest_xcrs->xcrs[i].value);
3619                         break;
3620                 }
3621         if (r)
3622                 r = -EINVAL;
3623         return r;
3624 }
3625
3626 /*
3627  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3628  * stopped by the hypervisor.  This function will be called from the host only.
3629  * EINVAL is returned when the host attempts to set the flag for a guest that
3630  * does not support pv clocks.
3631  */
3632 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3633 {
3634         if (!vcpu->arch.pv_time_enabled)
3635                 return -EINVAL;
3636         vcpu->arch.pvclock_set_guest_stopped_request = true;
3637         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3638         return 0;
3639 }
3640
3641 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3642                                      struct kvm_enable_cap *cap)
3643 {
3644         if (cap->flags)
3645                 return -EINVAL;
3646
3647         switch (cap->cap) {
3648         case KVM_CAP_HYPERV_SYNIC2:
3649                 if (cap->args[0])
3650                         return -EINVAL;
3651         case KVM_CAP_HYPERV_SYNIC:
3652                 if (!irqchip_in_kernel(vcpu->kvm))
3653                         return -EINVAL;
3654                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3655                                              KVM_CAP_HYPERV_SYNIC2);
3656         default:
3657                 return -EINVAL;
3658         }
3659 }
3660
3661 long kvm_arch_vcpu_ioctl(struct file *filp,
3662                          unsigned int ioctl, unsigned long arg)
3663 {
3664         struct kvm_vcpu *vcpu = filp->private_data;
3665         void __user *argp = (void __user *)arg;
3666         int r;
3667         union {
3668                 struct kvm_lapic_state *lapic;
3669                 struct kvm_xsave *xsave;
3670                 struct kvm_xcrs *xcrs;
3671                 void *buffer;
3672         } u;
3673
3674         vcpu_load(vcpu);
3675
3676         u.buffer = NULL;
3677         switch (ioctl) {
3678         case KVM_GET_LAPIC: {
3679                 r = -EINVAL;
3680                 if (!lapic_in_kernel(vcpu))
3681                         goto out;
3682                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3683
3684                 r = -ENOMEM;
3685                 if (!u.lapic)
3686                         goto out;
3687                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3688                 if (r)
3689                         goto out;
3690                 r = -EFAULT;
3691                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3692                         goto out;
3693                 r = 0;
3694                 break;
3695         }
3696         case KVM_SET_LAPIC: {
3697                 r = -EINVAL;
3698                 if (!lapic_in_kernel(vcpu))
3699                         goto out;
3700                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3701                 if (IS_ERR(u.lapic)) {
3702                         r = PTR_ERR(u.lapic);
3703                         goto out_nofree;
3704                 }
3705
3706                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3707                 break;
3708         }
3709         case KVM_INTERRUPT: {
3710                 struct kvm_interrupt irq;
3711
3712                 r = -EFAULT;
3713                 if (copy_from_user(&irq, argp, sizeof irq))
3714                         goto out;
3715                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3716                 break;
3717         }
3718         case KVM_NMI: {
3719                 r = kvm_vcpu_ioctl_nmi(vcpu);
3720                 break;
3721         }
3722         case KVM_SMI: {
3723                 r = kvm_vcpu_ioctl_smi(vcpu);
3724                 break;
3725         }
3726         case KVM_SET_CPUID: {
3727                 struct kvm_cpuid __user *cpuid_arg = argp;
3728                 struct kvm_cpuid cpuid;
3729
3730                 r = -EFAULT;
3731                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3732                         goto out;
3733                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3734                 break;
3735         }
3736         case KVM_SET_CPUID2: {
3737                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3738                 struct kvm_cpuid2 cpuid;
3739
3740                 r = -EFAULT;
3741                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3742                         goto out;
3743                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3744                                               cpuid_arg->entries);
3745                 break;
3746         }
3747         case KVM_GET_CPUID2: {
3748                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3749                 struct kvm_cpuid2 cpuid;
3750
3751                 r = -EFAULT;
3752                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3753                         goto out;
3754                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3755                                               cpuid_arg->entries);
3756                 if (r)
3757                         goto out;
3758                 r = -EFAULT;
3759                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3760                         goto out;
3761                 r = 0;
3762                 break;
3763         }
3764         case KVM_GET_MSRS: {
3765                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3766                 r = msr_io(vcpu, argp, do_get_msr, 1);
3767                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3768                 break;
3769         }
3770         case KVM_SET_MSRS: {
3771                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3772                 r = msr_io(vcpu, argp, do_set_msr, 0);
3773                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3774                 break;
3775         }
3776         case KVM_TPR_ACCESS_REPORTING: {
3777                 struct kvm_tpr_access_ctl tac;
3778
3779                 r = -EFAULT;
3780                 if (copy_from_user(&tac, argp, sizeof tac))
3781                         goto out;
3782                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3783                 if (r)
3784                         goto out;
3785                 r = -EFAULT;
3786                 if (copy_to_user(argp, &tac, sizeof tac))
3787                         goto out;
3788                 r = 0;
3789                 break;
3790         };
3791         case KVM_SET_VAPIC_ADDR: {
3792                 struct kvm_vapic_addr va;
3793                 int idx;
3794
3795                 r = -EINVAL;
3796                 if (!lapic_in_kernel(vcpu))
3797                         goto out;
3798                 r = -EFAULT;
3799                 if (copy_from_user(&va, argp, sizeof va))
3800                         goto out;
3801                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3802                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3803                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3804                 break;
3805         }
3806         case KVM_X86_SETUP_MCE: {
3807                 u64 mcg_cap;
3808
3809                 r = -EFAULT;
3810                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3811                         goto out;
3812                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3813                 break;
3814         }
3815         case KVM_X86_SET_MCE: {
3816                 struct kvm_x86_mce mce;
3817
3818                 r = -EFAULT;
3819                 if (copy_from_user(&mce, argp, sizeof mce))
3820                         goto out;
3821                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3822                 break;
3823         }
3824         case KVM_GET_VCPU_EVENTS: {
3825                 struct kvm_vcpu_events events;
3826
3827                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3828
3829                 r = -EFAULT;
3830                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3831                         break;
3832                 r = 0;
3833                 break;
3834         }
3835         case KVM_SET_VCPU_EVENTS: {
3836                 struct kvm_vcpu_events events;
3837
3838                 r = -EFAULT;
3839                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3840                         break;
3841
3842                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3843                 break;
3844         }
3845         case KVM_GET_DEBUGREGS: {
3846                 struct kvm_debugregs dbgregs;
3847
3848                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3849
3850                 r = -EFAULT;
3851                 if (copy_to_user(argp, &dbgregs,
3852                                  sizeof(struct kvm_debugregs)))
3853                         break;
3854                 r = 0;
3855                 break;
3856         }
3857         case KVM_SET_DEBUGREGS: {
3858                 struct kvm_debugregs dbgregs;
3859
3860                 r = -EFAULT;
3861                 if (copy_from_user(&dbgregs, argp,
3862                                    sizeof(struct kvm_debugregs)))
3863                         break;
3864
3865                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3866                 break;
3867         }
3868         case KVM_GET_XSAVE: {
3869                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3870                 r = -ENOMEM;
3871                 if (!u.xsave)
3872                         break;
3873
3874                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3875
3876                 r = -EFAULT;
3877                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3878                         break;
3879                 r = 0;
3880                 break;
3881         }
3882         case KVM_SET_XSAVE: {
3883                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3884                 if (IS_ERR(u.xsave)) {
3885                         r = PTR_ERR(u.xsave);
3886                         goto out_nofree;
3887                 }
3888
3889                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3890                 break;
3891         }
3892         case KVM_GET_XCRS: {
3893                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3894                 r = -ENOMEM;
3895                 if (!u.xcrs)
3896                         break;
3897
3898                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3899
3900                 r = -EFAULT;
3901                 if (copy_to_user(argp, u.xcrs,
3902                                  sizeof(struct kvm_xcrs)))
3903                         break;
3904                 r = 0;
3905                 break;
3906         }
3907         case KVM_SET_XCRS: {
3908                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3909                 if (IS_ERR(u.xcrs)) {
3910                         r = PTR_ERR(u.xcrs);
3911                         goto out_nofree;
3912                 }
3913
3914                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3915                 break;
3916         }
3917         case KVM_SET_TSC_KHZ: {
3918                 u32 user_tsc_khz;
3919
3920                 r = -EINVAL;
3921                 user_tsc_khz = (u32)arg;
3922
3923                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3924                         goto out;
3925
3926                 if (user_tsc_khz == 0)
3927                         user_tsc_khz = tsc_khz;
3928
3929                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3930                         r = 0;
3931
3932                 goto out;
3933         }
3934         case KVM_GET_TSC_KHZ: {
3935                 r = vcpu->arch.virtual_tsc_khz;
3936                 goto out;
3937         }
3938         case KVM_KVMCLOCK_CTRL: {
3939                 r = kvm_set_guest_paused(vcpu);
3940                 goto out;
3941         }
3942         case KVM_ENABLE_CAP: {
3943                 struct kvm_enable_cap cap;
3944
3945                 r = -EFAULT;
3946                 if (copy_from_user(&cap, argp, sizeof(cap)))
3947                         goto out;
3948                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3949                 break;
3950         }
3951         default:
3952                 r = -EINVAL;
3953         }
3954 out:
3955         kfree(u.buffer);
3956 out_nofree:
3957         vcpu_put(vcpu);
3958         return r;
3959 }
3960
3961 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3962 {
3963         return VM_FAULT_SIGBUS;
3964 }
3965
3966 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3967 {
3968         int ret;
3969
3970         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3971                 return -EINVAL;
3972         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3973         return ret;
3974 }
3975
3976 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3977                                               u64 ident_addr)
3978 {
3979         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
3980 }
3981
3982 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3983                                           u32 kvm_nr_mmu_pages)
3984 {
3985         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3986                 return -EINVAL;
3987
3988         mutex_lock(&kvm->slots_lock);
3989
3990         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3991         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3992
3993         mutex_unlock(&kvm->slots_lock);
3994         return 0;
3995 }
3996
3997 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3998 {
3999         return kvm->arch.n_max_mmu_pages;
4000 }
4001
4002 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4003 {
4004         struct kvm_pic *pic = kvm->arch.vpic;
4005         int r;
4006
4007         r = 0;
4008         switch (chip->chip_id) {
4009         case KVM_IRQCHIP_PIC_MASTER:
4010                 memcpy(&chip->chip.pic, &pic->pics[0],
4011                         sizeof(struct kvm_pic_state));
4012                 break;
4013         case KVM_IRQCHIP_PIC_SLAVE:
4014                 memcpy(&chip->chip.pic, &pic->pics[1],
4015                         sizeof(struct kvm_pic_state));
4016                 break;
4017         case KVM_IRQCHIP_IOAPIC:
4018                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4019                 break;
4020         default:
4021                 r = -EINVAL;
4022                 break;
4023         }
4024         return r;
4025 }
4026
4027 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4028 {
4029         struct kvm_pic *pic = kvm->arch.vpic;
4030         int r;
4031
4032         r = 0;
4033         switch (chip->chip_id) {
4034         case KVM_IRQCHIP_PIC_MASTER:
4035                 spin_lock(&pic->lock);
4036                 memcpy(&pic->pics[0], &chip->chip.pic,
4037                         sizeof(struct kvm_pic_state));
4038                 spin_unlock(&pic->lock);
4039                 break;
4040         case KVM_IRQCHIP_PIC_SLAVE:
4041                 spin_lock(&pic->lock);
4042                 memcpy(&pic->pics[1], &chip->chip.pic,
4043                         sizeof(struct kvm_pic_state));
4044                 spin_unlock(&pic->lock);
4045                 break;
4046         case KVM_IRQCHIP_IOAPIC:
4047                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4048                 break;
4049         default:
4050                 r = -EINVAL;
4051                 break;
4052         }
4053         kvm_pic_update_irq(pic);
4054         return r;
4055 }
4056
4057 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4058 {
4059         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4060
4061         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4062
4063         mutex_lock(&kps->lock);
4064         memcpy(ps, &kps->channels, sizeof(*ps));
4065         mutex_unlock(&kps->lock);
4066         return 0;
4067 }
4068
4069 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4070 {
4071         int i;
4072         struct kvm_pit *pit = kvm->arch.vpit;
4073
4074         mutex_lock(&pit->pit_state.lock);
4075         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4076         for (i = 0; i < 3; i++)
4077                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4078         mutex_unlock(&pit->pit_state.lock);
4079         return 0;
4080 }
4081
4082 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4083 {
4084         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4085         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4086                 sizeof(ps->channels));
4087         ps->flags = kvm->arch.vpit->pit_state.flags;
4088         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4089         memset(&ps->reserved, 0, sizeof(ps->reserved));
4090         return 0;
4091 }
4092
4093 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4094 {
4095         int start = 0;
4096         int i;
4097         u32 prev_legacy, cur_legacy;
4098         struct kvm_pit *pit = kvm->arch.vpit;
4099
4100         mutex_lock(&pit->pit_state.lock);
4101         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4102         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4103         if (!prev_legacy && cur_legacy)
4104                 start = 1;
4105         memcpy(&pit->pit_state.channels, &ps->channels,
4106                sizeof(pit->pit_state.channels));
4107         pit->pit_state.flags = ps->flags;
4108         for (i = 0; i < 3; i++)
4109                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4110                                    start && i == 0);
4111         mutex_unlock(&pit->pit_state.lock);
4112         return 0;
4113 }
4114
4115 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4116                                  struct kvm_reinject_control *control)
4117 {
4118         struct kvm_pit *pit = kvm->arch.vpit;
4119
4120         if (!pit)
4121                 return -ENXIO;
4122
4123         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4124          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4125          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4126          */
4127         mutex_lock(&pit->pit_state.lock);
4128         kvm_pit_set_reinject(pit, control->pit_reinject);
4129         mutex_unlock(&pit->pit_state.lock);
4130
4131         return 0;
4132 }
4133
4134 /**
4135  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4136  * @kvm: kvm instance
4137  * @log: slot id and address to which we copy the log
4138  *
4139  * Steps 1-4 below provide general overview of dirty page logging. See
4140  * kvm_get_dirty_log_protect() function description for additional details.
4141  *
4142  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4143  * always flush the TLB (step 4) even if previous step failed  and the dirty
4144  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4145  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4146  * writes will be marked dirty for next log read.
4147  *
4148  *   1. Take a snapshot of the bit and clear it if needed.
4149  *   2. Write protect the corresponding page.
4150  *   3. Copy the snapshot to the userspace.
4151  *   4. Flush TLB's if needed.
4152  */
4153 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4154 {
4155         bool is_dirty = false;
4156         int r;
4157
4158         mutex_lock(&kvm->slots_lock);
4159
4160         /*
4161          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4162          */
4163         if (kvm_x86_ops->flush_log_dirty)
4164                 kvm_x86_ops->flush_log_dirty(kvm);
4165
4166         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4167
4168         /*
4169          * All the TLBs can be flushed out of mmu lock, see the comments in
4170          * kvm_mmu_slot_remove_write_access().
4171          */
4172         lockdep_assert_held(&kvm->slots_lock);
4173         if (is_dirty)
4174                 kvm_flush_remote_tlbs(kvm);
4175
4176         mutex_unlock(&kvm->slots_lock);
4177         return r;
4178 }
4179
4180 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4181                         bool line_status)
4182 {
4183         if (!irqchip_in_kernel(kvm))
4184                 return -ENXIO;
4185
4186         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4187                                         irq_event->irq, irq_event->level,
4188                                         line_status);
4189         return 0;
4190 }
4191
4192 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4193                                    struct kvm_enable_cap *cap)
4194 {
4195         int r;
4196
4197         if (cap->flags)
4198                 return -EINVAL;
4199
4200         switch (cap->cap) {
4201         case KVM_CAP_DISABLE_QUIRKS:
4202                 kvm->arch.disabled_quirks = cap->args[0];
4203                 r = 0;
4204                 break;
4205         case KVM_CAP_SPLIT_IRQCHIP: {
4206                 mutex_lock(&kvm->lock);
4207                 r = -EINVAL;
4208                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4209                         goto split_irqchip_unlock;
4210                 r = -EEXIST;
4211                 if (irqchip_in_kernel(kvm))
4212                         goto split_irqchip_unlock;
4213                 if (kvm->created_vcpus)
4214                         goto split_irqchip_unlock;
4215                 r = kvm_setup_empty_irq_routing(kvm);
4216                 if (r)
4217                         goto split_irqchip_unlock;
4218                 /* Pairs with irqchip_in_kernel. */
4219                 smp_wmb();
4220                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4221                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4222                 r = 0;
4223 split_irqchip_unlock:
4224                 mutex_unlock(&kvm->lock);
4225                 break;
4226         }
4227         case KVM_CAP_X2APIC_API:
4228                 r = -EINVAL;
4229                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4230                         break;
4231
4232                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4233                         kvm->arch.x2apic_format = true;
4234                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4235                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4236
4237                 r = 0;
4238                 break;
4239         case KVM_CAP_X86_DISABLE_EXITS:
4240                 r = -EINVAL;
4241                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4242                         break;
4243
4244                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4245                         kvm_can_mwait_in_guest())
4246                         kvm->arch.mwait_in_guest = true;
4247                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HTL)
4248                         kvm->arch.hlt_in_guest = true;
4249                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4250                         kvm->arch.pause_in_guest = true;
4251                 r = 0;
4252                 break;
4253         default:
4254                 r = -EINVAL;
4255                 break;
4256         }
4257         return r;
4258 }
4259
4260 long kvm_arch_vm_ioctl(struct file *filp,
4261                        unsigned int ioctl, unsigned long arg)
4262 {
4263         struct kvm *kvm = filp->private_data;
4264         void __user *argp = (void __user *)arg;
4265         int r = -ENOTTY;
4266         /*
4267          * This union makes it completely explicit to gcc-3.x
4268          * that these two variables' stack usage should be
4269          * combined, not added together.
4270          */
4271         union {
4272                 struct kvm_pit_state ps;
4273                 struct kvm_pit_state2 ps2;
4274                 struct kvm_pit_config pit_config;
4275         } u;
4276
4277         switch (ioctl) {
4278         case KVM_SET_TSS_ADDR:
4279                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4280                 break;
4281         case KVM_SET_IDENTITY_MAP_ADDR: {
4282                 u64 ident_addr;
4283
4284                 mutex_lock(&kvm->lock);
4285                 r = -EINVAL;
4286                 if (kvm->created_vcpus)
4287                         goto set_identity_unlock;
4288                 r = -EFAULT;
4289                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4290                         goto set_identity_unlock;
4291                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4292 set_identity_unlock:
4293                 mutex_unlock(&kvm->lock);
4294                 break;
4295         }
4296         case KVM_SET_NR_MMU_PAGES:
4297                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4298                 break;
4299         case KVM_GET_NR_MMU_PAGES:
4300                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4301                 break;
4302         case KVM_CREATE_IRQCHIP: {
4303                 mutex_lock(&kvm->lock);
4304
4305                 r = -EEXIST;
4306                 if (irqchip_in_kernel(kvm))
4307                         goto create_irqchip_unlock;
4308
4309                 r = -EINVAL;
4310                 if (kvm->created_vcpus)
4311                         goto create_irqchip_unlock;
4312
4313                 r = kvm_pic_init(kvm);
4314                 if (r)
4315                         goto create_irqchip_unlock;
4316
4317                 r = kvm_ioapic_init(kvm);
4318                 if (r) {
4319                         kvm_pic_destroy(kvm);
4320                         goto create_irqchip_unlock;
4321                 }
4322
4323                 r = kvm_setup_default_irq_routing(kvm);
4324                 if (r) {
4325                         kvm_ioapic_destroy(kvm);
4326                         kvm_pic_destroy(kvm);
4327                         goto create_irqchip_unlock;
4328                 }
4329                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4330                 smp_wmb();
4331                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4332         create_irqchip_unlock:
4333                 mutex_unlock(&kvm->lock);
4334                 break;
4335         }
4336         case KVM_CREATE_PIT:
4337                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4338                 goto create_pit;
4339         case KVM_CREATE_PIT2:
4340                 r = -EFAULT;
4341                 if (copy_from_user(&u.pit_config, argp,
4342                                    sizeof(struct kvm_pit_config)))
4343                         goto out;
4344         create_pit:
4345                 mutex_lock(&kvm->lock);
4346                 r = -EEXIST;
4347                 if (kvm->arch.vpit)
4348                         goto create_pit_unlock;
4349                 r = -ENOMEM;
4350                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4351                 if (kvm->arch.vpit)
4352                         r = 0;
4353         create_pit_unlock:
4354                 mutex_unlock(&kvm->lock);
4355                 break;
4356         case KVM_GET_IRQCHIP: {
4357                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4358                 struct kvm_irqchip *chip;
4359
4360                 chip = memdup_user(argp, sizeof(*chip));
4361                 if (IS_ERR(chip)) {
4362                         r = PTR_ERR(chip);
4363                         goto out;
4364                 }
4365
4366                 r = -ENXIO;
4367                 if (!irqchip_kernel(kvm))
4368                         goto get_irqchip_out;
4369                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4370                 if (r)
4371                         goto get_irqchip_out;
4372                 r = -EFAULT;
4373                 if (copy_to_user(argp, chip, sizeof *chip))
4374                         goto get_irqchip_out;
4375                 r = 0;
4376         get_irqchip_out:
4377                 kfree(chip);
4378                 break;
4379         }
4380         case KVM_SET_IRQCHIP: {
4381                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4382                 struct kvm_irqchip *chip;
4383
4384                 chip = memdup_user(argp, sizeof(*chip));
4385                 if (IS_ERR(chip)) {
4386                         r = PTR_ERR(chip);
4387                         goto out;
4388                 }
4389
4390                 r = -ENXIO;
4391                 if (!irqchip_kernel(kvm))
4392                         goto set_irqchip_out;
4393                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4394                 if (r)
4395                         goto set_irqchip_out;
4396                 r = 0;
4397         set_irqchip_out:
4398                 kfree(chip);
4399                 break;
4400         }
4401         case KVM_GET_PIT: {
4402                 r = -EFAULT;
4403                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4404                         goto out;
4405                 r = -ENXIO;
4406                 if (!kvm->arch.vpit)
4407                         goto out;
4408                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4409                 if (r)
4410                         goto out;
4411                 r = -EFAULT;
4412                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4413                         goto out;
4414                 r = 0;
4415                 break;
4416         }
4417         case KVM_SET_PIT: {
4418                 r = -EFAULT;
4419                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4420                         goto out;
4421                 r = -ENXIO;
4422                 if (!kvm->arch.vpit)
4423                         goto out;
4424                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4425                 break;
4426         }
4427         case KVM_GET_PIT2: {
4428                 r = -ENXIO;
4429                 if (!kvm->arch.vpit)
4430                         goto out;
4431                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4432                 if (r)
4433                         goto out;
4434                 r = -EFAULT;
4435                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4436                         goto out;
4437                 r = 0;
4438                 break;
4439         }
4440         case KVM_SET_PIT2: {
4441                 r = -EFAULT;
4442                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4443                         goto out;
4444                 r = -ENXIO;
4445                 if (!kvm->arch.vpit)
4446                         goto out;
4447                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4448                 break;
4449         }
4450         case KVM_REINJECT_CONTROL: {
4451                 struct kvm_reinject_control control;
4452                 r =  -EFAULT;
4453                 if (copy_from_user(&control, argp, sizeof(control)))
4454                         goto out;
4455                 r = kvm_vm_ioctl_reinject(kvm, &control);
4456                 break;
4457         }
4458         case KVM_SET_BOOT_CPU_ID:
4459                 r = 0;
4460                 mutex_lock(&kvm->lock);
4461                 if (kvm->created_vcpus)
4462                         r = -EBUSY;
4463                 else
4464                         kvm->arch.bsp_vcpu_id = arg;
4465                 mutex_unlock(&kvm->lock);
4466                 break;
4467         case KVM_XEN_HVM_CONFIG: {
4468                 struct kvm_xen_hvm_config xhc;
4469                 r = -EFAULT;
4470                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4471                         goto out;
4472                 r = -EINVAL;
4473                 if (xhc.flags)
4474                         goto out;
4475                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4476                 r = 0;
4477                 break;
4478         }
4479         case KVM_SET_CLOCK: {
4480                 struct kvm_clock_data user_ns;
4481                 u64 now_ns;
4482
4483                 r = -EFAULT;
4484                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4485                         goto out;
4486
4487                 r = -EINVAL;
4488                 if (user_ns.flags)
4489                         goto out;
4490
4491                 r = 0;
4492                 /*
4493                  * TODO: userspace has to take care of races with VCPU_RUN, so
4494                  * kvm_gen_update_masterclock() can be cut down to locked
4495                  * pvclock_update_vm_gtod_copy().
4496                  */
4497                 kvm_gen_update_masterclock(kvm);
4498                 now_ns = get_kvmclock_ns(kvm);
4499                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4500                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4501                 break;
4502         }
4503         case KVM_GET_CLOCK: {
4504                 struct kvm_clock_data user_ns;
4505                 u64 now_ns;
4506
4507                 now_ns = get_kvmclock_ns(kvm);
4508                 user_ns.clock = now_ns;
4509                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4510                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4511
4512                 r = -EFAULT;
4513                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4514                         goto out;
4515                 r = 0;
4516                 break;
4517         }
4518         case KVM_ENABLE_CAP: {
4519                 struct kvm_enable_cap cap;
4520
4521                 r = -EFAULT;
4522                 if (copy_from_user(&cap, argp, sizeof(cap)))
4523                         goto out;
4524                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4525                 break;
4526         }
4527         case KVM_MEMORY_ENCRYPT_OP: {
4528                 r = -ENOTTY;
4529                 if (kvm_x86_ops->mem_enc_op)
4530                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4531                 break;
4532         }
4533         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4534                 struct kvm_enc_region region;
4535
4536                 r = -EFAULT;
4537                 if (copy_from_user(&region, argp, sizeof(region)))
4538                         goto out;
4539
4540                 r = -ENOTTY;
4541                 if (kvm_x86_ops->mem_enc_reg_region)
4542                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4543                 break;
4544         }
4545         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4546                 struct kvm_enc_region region;
4547
4548                 r = -EFAULT;
4549                 if (copy_from_user(&region, argp, sizeof(region)))
4550                         goto out;
4551
4552                 r = -ENOTTY;
4553                 if (kvm_x86_ops->mem_enc_unreg_region)
4554                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4555                 break;
4556         }
4557         case KVM_HYPERV_EVENTFD: {
4558                 struct kvm_hyperv_eventfd hvevfd;
4559
4560                 r = -EFAULT;
4561                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4562                         goto out;
4563                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4564                 break;
4565         }
4566         default:
4567                 r = -ENOTTY;
4568         }
4569 out:
4570         return r;
4571 }
4572
4573 static void kvm_init_msr_list(void)
4574 {
4575         u32 dummy[2];
4576         unsigned i, j;
4577
4578         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4579                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4580                         continue;
4581
4582                 /*
4583                  * Even MSRs that are valid in the host may not be exposed
4584                  * to the guests in some cases.
4585                  */
4586                 switch (msrs_to_save[i]) {
4587                 case MSR_IA32_BNDCFGS:
4588                         if (!kvm_x86_ops->mpx_supported())
4589                                 continue;
4590                         break;
4591                 case MSR_TSC_AUX:
4592                         if (!kvm_x86_ops->rdtscp_supported())
4593                                 continue;
4594                         break;
4595                 default:
4596                         break;
4597                 }
4598
4599                 if (j < i)
4600                         msrs_to_save[j] = msrs_to_save[i];
4601                 j++;
4602         }
4603         num_msrs_to_save = j;
4604
4605         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4606                 switch (emulated_msrs[i]) {
4607                 case MSR_IA32_SMBASE:
4608                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4609                                 continue;
4610                         break;
4611                 default:
4612                         break;
4613                 }
4614
4615                 if (j < i)
4616                         emulated_msrs[j] = emulated_msrs[i];
4617                 j++;
4618         }
4619         num_emulated_msrs = j;
4620
4621         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4622                 struct kvm_msr_entry msr;
4623
4624                 msr.index = msr_based_features[i];
4625                 if (kvm_get_msr_feature(&msr))
4626                         continue;
4627
4628                 if (j < i)
4629                         msr_based_features[j] = msr_based_features[i];
4630                 j++;
4631         }
4632         num_msr_based_features = j;
4633 }
4634
4635 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4636                            const void *v)
4637 {
4638         int handled = 0;
4639         int n;
4640
4641         do {
4642                 n = min(len, 8);
4643                 if (!(lapic_in_kernel(vcpu) &&
4644                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4645                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4646                         break;
4647                 handled += n;
4648                 addr += n;
4649                 len -= n;
4650                 v += n;
4651         } while (len);
4652
4653         return handled;
4654 }
4655
4656 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4657 {
4658         int handled = 0;
4659         int n;
4660
4661         do {
4662                 n = min(len, 8);
4663                 if (!(lapic_in_kernel(vcpu) &&
4664                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4665                                          addr, n, v))
4666                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4667                         break;
4668                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4669                 handled += n;
4670                 addr += n;
4671                 len -= n;
4672                 v += n;
4673         } while (len);
4674
4675         return handled;
4676 }
4677
4678 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4679                         struct kvm_segment *var, int seg)
4680 {
4681         kvm_x86_ops->set_segment(vcpu, var, seg);
4682 }
4683
4684 void kvm_get_segment(struct kvm_vcpu *vcpu,
4685                      struct kvm_segment *var, int seg)
4686 {
4687         kvm_x86_ops->get_segment(vcpu, var, seg);
4688 }
4689
4690 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4691                            struct x86_exception *exception)
4692 {
4693         gpa_t t_gpa;
4694
4695         BUG_ON(!mmu_is_nested(vcpu));
4696
4697         /* NPT walks are always user-walks */
4698         access |= PFERR_USER_MASK;
4699         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4700
4701         return t_gpa;
4702 }
4703
4704 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4705                               struct x86_exception *exception)
4706 {
4707         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4708         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4709 }
4710
4711  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4712                                 struct x86_exception *exception)
4713 {
4714         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4715         access |= PFERR_FETCH_MASK;
4716         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4717 }
4718
4719 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4720                                struct x86_exception *exception)
4721 {
4722         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4723         access |= PFERR_WRITE_MASK;
4724         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4725 }
4726
4727 /* uses this to access any guest's mapped memory without checking CPL */
4728 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4729                                 struct x86_exception *exception)
4730 {
4731         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4732 }
4733
4734 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4735                                       struct kvm_vcpu *vcpu, u32 access,
4736                                       struct x86_exception *exception)
4737 {
4738         void *data = val;
4739         int r = X86EMUL_CONTINUE;
4740
4741         while (bytes) {
4742                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4743                                                             exception);
4744                 unsigned offset = addr & (PAGE_SIZE-1);
4745                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4746                 int ret;
4747
4748                 if (gpa == UNMAPPED_GVA)
4749                         return X86EMUL_PROPAGATE_FAULT;
4750                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4751                                                offset, toread);
4752                 if (ret < 0) {
4753                         r = X86EMUL_IO_NEEDED;
4754                         goto out;
4755                 }
4756
4757                 bytes -= toread;
4758                 data += toread;
4759                 addr += toread;
4760         }
4761 out:
4762         return r;
4763 }
4764
4765 /* used for instruction fetching */
4766 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4767                                 gva_t addr, void *val, unsigned int bytes,
4768                                 struct x86_exception *exception)
4769 {
4770         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4771         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4772         unsigned offset;
4773         int ret;
4774
4775         /* Inline kvm_read_guest_virt_helper for speed.  */
4776         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4777                                                     exception);
4778         if (unlikely(gpa == UNMAPPED_GVA))
4779                 return X86EMUL_PROPAGATE_FAULT;
4780
4781         offset = addr & (PAGE_SIZE-1);
4782         if (WARN_ON(offset + bytes > PAGE_SIZE))
4783                 bytes = (unsigned)PAGE_SIZE - offset;
4784         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4785                                        offset, bytes);
4786         if (unlikely(ret < 0))
4787                 return X86EMUL_IO_NEEDED;
4788
4789         return X86EMUL_CONTINUE;
4790 }
4791
4792 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4793                                gva_t addr, void *val, unsigned int bytes,
4794                                struct x86_exception *exception)
4795 {
4796         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4797         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4798
4799         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4800                                           exception);
4801 }
4802 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4803
4804 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4805                                       gva_t addr, void *val, unsigned int bytes,
4806                                       struct x86_exception *exception)
4807 {
4808         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4809         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4810 }
4811
4812 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4813                 unsigned long addr, void *val, unsigned int bytes)
4814 {
4815         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4816         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4817
4818         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4819 }
4820
4821 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4822                                        gva_t addr, void *val,
4823                                        unsigned int bytes,
4824                                        struct x86_exception *exception)
4825 {
4826         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4827         void *data = val;
4828         int r = X86EMUL_CONTINUE;
4829
4830         while (bytes) {
4831                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4832                                                              PFERR_WRITE_MASK,
4833                                                              exception);
4834                 unsigned offset = addr & (PAGE_SIZE-1);
4835                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4836                 int ret;
4837
4838                 if (gpa == UNMAPPED_GVA)
4839                         return X86EMUL_PROPAGATE_FAULT;
4840                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4841                 if (ret < 0) {
4842                         r = X86EMUL_IO_NEEDED;
4843                         goto out;
4844                 }
4845
4846                 bytes -= towrite;
4847                 data += towrite;
4848                 addr += towrite;
4849         }
4850 out:
4851         return r;
4852 }
4853 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4854
4855 int handle_ud(struct kvm_vcpu *vcpu)
4856 {
4857         int emul_type = EMULTYPE_TRAP_UD;
4858         enum emulation_result er;
4859         char sig[5]; /* ud2; .ascii "kvm" */
4860         struct x86_exception e;
4861
4862         if (force_emulation_prefix &&
4863             kvm_read_guest_virt(&vcpu->arch.emulate_ctxt,
4864                                 kvm_get_linear_rip(vcpu), sig, sizeof(sig), &e) == 0 &&
4865             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
4866                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
4867                 emul_type = 0;
4868         }
4869
4870         er = emulate_instruction(vcpu, emul_type);
4871         if (er == EMULATE_USER_EXIT)
4872                 return 0;
4873         if (er != EMULATE_DONE)
4874                 kvm_queue_exception(vcpu, UD_VECTOR);
4875         return 1;
4876 }
4877 EXPORT_SYMBOL_GPL(handle_ud);
4878
4879 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4880                             gpa_t gpa, bool write)
4881 {
4882         /* For APIC access vmexit */
4883         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4884                 return 1;
4885
4886         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4887                 trace_vcpu_match_mmio(gva, gpa, write, true);
4888                 return 1;
4889         }
4890
4891         return 0;
4892 }
4893
4894 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4895                                 gpa_t *gpa, struct x86_exception *exception,
4896                                 bool write)
4897 {
4898         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4899                 | (write ? PFERR_WRITE_MASK : 0);
4900
4901         /*
4902          * currently PKRU is only applied to ept enabled guest so
4903          * there is no pkey in EPT page table for L1 guest or EPT
4904          * shadow page table for L2 guest.
4905          */
4906         if (vcpu_match_mmio_gva(vcpu, gva)
4907             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4908                                  vcpu->arch.access, 0, access)) {
4909                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4910                                         (gva & (PAGE_SIZE - 1));
4911                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4912                 return 1;
4913         }
4914
4915         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4916
4917         if (*gpa == UNMAPPED_GVA)
4918                 return -1;
4919
4920         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4921 }
4922
4923 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4924                         const void *val, int bytes)
4925 {
4926         int ret;
4927
4928         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4929         if (ret < 0)
4930                 return 0;
4931         kvm_page_track_write(vcpu, gpa, val, bytes);
4932         return 1;
4933 }
4934
4935 struct read_write_emulator_ops {
4936         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4937                                   int bytes);
4938         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4939                                   void *val, int bytes);
4940         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4941                                int bytes, void *val);
4942         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4943                                     void *val, int bytes);
4944         bool write;
4945 };
4946
4947 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4948 {
4949         if (vcpu->mmio_read_completed) {
4950                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4951                                vcpu->mmio_fragments[0].gpa, val);
4952                 vcpu->mmio_read_completed = 0;
4953                 return 1;
4954         }
4955
4956         return 0;
4957 }
4958
4959 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4960                         void *val, int bytes)
4961 {
4962         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4963 }
4964
4965 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4966                          void *val, int bytes)
4967 {
4968         return emulator_write_phys(vcpu, gpa, val, bytes);
4969 }
4970
4971 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4972 {
4973         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4974         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4975 }
4976
4977 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4978                           void *val, int bytes)
4979 {
4980         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4981         return X86EMUL_IO_NEEDED;
4982 }
4983
4984 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4985                            void *val, int bytes)
4986 {
4987         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4988
4989         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4990         return X86EMUL_CONTINUE;
4991 }
4992
4993 static const struct read_write_emulator_ops read_emultor = {
4994         .read_write_prepare = read_prepare,
4995         .read_write_emulate = read_emulate,
4996         .read_write_mmio = vcpu_mmio_read,
4997         .read_write_exit_mmio = read_exit_mmio,
4998 };
4999
5000 static const struct read_write_emulator_ops write_emultor = {
5001         .read_write_emulate = write_emulate,
5002         .read_write_mmio = write_mmio,
5003         .read_write_exit_mmio = write_exit_mmio,
5004         .write = true,
5005 };
5006
5007 static int emulator_read_write_onepage(unsigned long addr, void *val,
5008                                        unsigned int bytes,
5009                                        struct x86_exception *exception,
5010                                        struct kvm_vcpu *vcpu,
5011                                        const struct read_write_emulator_ops *ops)
5012 {
5013         gpa_t gpa;
5014         int handled, ret;
5015         bool write = ops->write;
5016         struct kvm_mmio_fragment *frag;
5017         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5018
5019         /*
5020          * If the exit was due to a NPF we may already have a GPA.
5021          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5022          * Note, this cannot be used on string operations since string
5023          * operation using rep will only have the initial GPA from the NPF
5024          * occurred.
5025          */
5026         if (vcpu->arch.gpa_available &&
5027             emulator_can_use_gpa(ctxt) &&
5028             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5029                 gpa = vcpu->arch.gpa_val;
5030                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5031         } else {
5032                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5033                 if (ret < 0)
5034                         return X86EMUL_PROPAGATE_FAULT;
5035         }
5036
5037         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5038                 return X86EMUL_CONTINUE;
5039
5040         /*
5041          * Is this MMIO handled locally?
5042          */
5043         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5044         if (handled == bytes)
5045                 return X86EMUL_CONTINUE;
5046
5047         gpa += handled;
5048         bytes -= handled;
5049         val += handled;
5050
5051         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5052         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5053         frag->gpa = gpa;
5054         frag->data = val;
5055         frag->len = bytes;
5056         return X86EMUL_CONTINUE;
5057 }
5058
5059 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5060                         unsigned long addr,
5061                         void *val, unsigned int bytes,
5062                         struct x86_exception *exception,
5063                         const struct read_write_emulator_ops *ops)
5064 {
5065         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5066         gpa_t gpa;
5067         int rc;
5068
5069         if (ops->read_write_prepare &&
5070                   ops->read_write_prepare(vcpu, val, bytes))
5071                 return X86EMUL_CONTINUE;
5072
5073         vcpu->mmio_nr_fragments = 0;
5074
5075         /* Crossing a page boundary? */
5076         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5077                 int now;
5078
5079                 now = -addr & ~PAGE_MASK;
5080                 rc = emulator_read_write_onepage(addr, val, now, exception,
5081                                                  vcpu, ops);
5082
5083                 if (rc != X86EMUL_CONTINUE)
5084                         return rc;
5085                 addr += now;
5086                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5087                         addr = (u32)addr;
5088                 val += now;
5089                 bytes -= now;
5090         }
5091
5092         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5093                                          vcpu, ops);
5094         if (rc != X86EMUL_CONTINUE)
5095                 return rc;
5096
5097         if (!vcpu->mmio_nr_fragments)
5098                 return rc;
5099
5100         gpa = vcpu->mmio_fragments[0].gpa;
5101
5102         vcpu->mmio_needed = 1;
5103         vcpu->mmio_cur_fragment = 0;
5104
5105         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5106         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5107         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5108         vcpu->run->mmio.phys_addr = gpa;
5109
5110         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5111 }
5112
5113 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5114                                   unsigned long addr,
5115                                   void *val,
5116                                   unsigned int bytes,
5117                                   struct x86_exception *exception)
5118 {
5119         return emulator_read_write(ctxt, addr, val, bytes,
5120                                    exception, &read_emultor);
5121 }
5122
5123 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5124                             unsigned long addr,
5125                             const void *val,
5126                             unsigned int bytes,
5127                             struct x86_exception *exception)
5128 {
5129         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5130                                    exception, &write_emultor);
5131 }
5132
5133 #define CMPXCHG_TYPE(t, ptr, old, new) \
5134         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5135
5136 #ifdef CONFIG_X86_64
5137 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5138 #else
5139 #  define CMPXCHG64(ptr, old, new) \
5140         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5141 #endif
5142
5143 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5144                                      unsigned long addr,
5145                                      const void *old,
5146                                      const void *new,
5147                                      unsigned int bytes,
5148                                      struct x86_exception *exception)
5149 {
5150         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5151         gpa_t gpa;
5152         struct page *page;
5153         char *kaddr;
5154         bool exchanged;
5155
5156         /* guests cmpxchg8b have to be emulated atomically */
5157         if (bytes > 8 || (bytes & (bytes - 1)))
5158                 goto emul_write;
5159
5160         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5161
5162         if (gpa == UNMAPPED_GVA ||
5163             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5164                 goto emul_write;
5165
5166         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5167                 goto emul_write;
5168
5169         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5170         if (is_error_page(page))
5171                 goto emul_write;
5172
5173         kaddr = kmap_atomic(page);
5174         kaddr += offset_in_page(gpa);
5175         switch (bytes) {
5176         case 1:
5177                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5178                 break;
5179         case 2:
5180                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5181                 break;
5182         case 4:
5183                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5184                 break;
5185         case 8:
5186                 exchanged = CMPXCHG64(kaddr, old, new);
5187                 break;
5188         default:
5189                 BUG();
5190         }
5191         kunmap_atomic(kaddr);
5192         kvm_release_page_dirty(page);
5193
5194         if (!exchanged)
5195                 return X86EMUL_CMPXCHG_FAILED;
5196
5197         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5198         kvm_page_track_write(vcpu, gpa, new, bytes);
5199
5200         return X86EMUL_CONTINUE;
5201
5202 emul_write:
5203         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5204
5205         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5206 }
5207
5208 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5209 {
5210         int r = 0, i;
5211
5212         for (i = 0; i < vcpu->arch.pio.count; i++) {
5213                 if (vcpu->arch.pio.in)
5214                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5215                                             vcpu->arch.pio.size, pd);
5216                 else
5217                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5218                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5219                                              pd);
5220                 if (r)
5221                         break;
5222                 pd += vcpu->arch.pio.size;
5223         }
5224         return r;
5225 }
5226
5227 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5228                                unsigned short port, void *val,
5229                                unsigned int count, bool in)
5230 {
5231         vcpu->arch.pio.port = port;
5232         vcpu->arch.pio.in = in;
5233         vcpu->arch.pio.count  = count;
5234         vcpu->arch.pio.size = size;
5235
5236         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5237                 vcpu->arch.pio.count = 0;
5238                 return 1;
5239         }
5240
5241         vcpu->run->exit_reason = KVM_EXIT_IO;
5242         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5243         vcpu->run->io.size = size;
5244         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5245         vcpu->run->io.count = count;
5246         vcpu->run->io.port = port;
5247
5248         return 0;
5249 }
5250
5251 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5252                                     int size, unsigned short port, void *val,
5253                                     unsigned int count)
5254 {
5255         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5256         int ret;
5257
5258         if (vcpu->arch.pio.count)
5259                 goto data_avail;
5260
5261         memset(vcpu->arch.pio_data, 0, size * count);
5262
5263         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5264         if (ret) {
5265 data_avail:
5266                 memcpy(val, vcpu->arch.pio_data, size * count);
5267                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5268                 vcpu->arch.pio.count = 0;
5269                 return 1;
5270         }
5271
5272         return 0;
5273 }
5274
5275 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5276                                      int size, unsigned short port,
5277                                      const void *val, unsigned int count)
5278 {
5279         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5280
5281         memcpy(vcpu->arch.pio_data, val, size * count);
5282         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5283         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5284 }
5285
5286 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5287 {
5288         return kvm_x86_ops->get_segment_base(vcpu, seg);
5289 }
5290
5291 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5292 {
5293         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5294 }
5295
5296 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5297 {
5298         if (!need_emulate_wbinvd(vcpu))
5299                 return X86EMUL_CONTINUE;
5300
5301         if (kvm_x86_ops->has_wbinvd_exit()) {
5302                 int cpu = get_cpu();
5303
5304                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5305                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5306                                 wbinvd_ipi, NULL, 1);
5307                 put_cpu();
5308                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5309         } else
5310                 wbinvd();
5311         return X86EMUL_CONTINUE;
5312 }
5313
5314 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5315 {
5316         kvm_emulate_wbinvd_noskip(vcpu);
5317         return kvm_skip_emulated_instruction(vcpu);
5318 }
5319 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5320
5321
5322
5323 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5324 {
5325         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5326 }
5327
5328 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5329                            unsigned long *dest)
5330 {
5331         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5332 }
5333
5334 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5335                            unsigned long value)
5336 {
5337
5338         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5339 }
5340
5341 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5342 {
5343         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5344 }
5345
5346 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5347 {
5348         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5349         unsigned long value;
5350
5351         switch (cr) {
5352         case 0:
5353                 value = kvm_read_cr0(vcpu);
5354                 break;
5355         case 2:
5356                 value = vcpu->arch.cr2;
5357                 break;
5358         case 3:
5359                 value = kvm_read_cr3(vcpu);
5360                 break;
5361         case 4:
5362                 value = kvm_read_cr4(vcpu);
5363                 break;
5364         case 8:
5365                 value = kvm_get_cr8(vcpu);
5366                 break;
5367         default:
5368                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5369                 return 0;
5370         }
5371
5372         return value;
5373 }
5374
5375 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5376 {
5377         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5378         int res = 0;
5379
5380         switch (cr) {
5381         case 0:
5382                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5383                 break;
5384         case 2:
5385                 vcpu->arch.cr2 = val;
5386                 break;
5387         case 3:
5388                 res = kvm_set_cr3(vcpu, val);
5389                 break;
5390         case 4:
5391                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5392                 break;
5393         case 8:
5394                 res = kvm_set_cr8(vcpu, val);
5395                 break;
5396         default:
5397                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5398                 res = -1;
5399         }
5400
5401         return res;
5402 }
5403
5404 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5405 {
5406         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5407 }
5408
5409 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5410 {
5411         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5412 }
5413
5414 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5415 {
5416         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5417 }
5418
5419 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5420 {
5421         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5422 }
5423
5424 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5425 {
5426         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5427 }
5428
5429 static unsigned long emulator_get_cached_segment_base(
5430         struct x86_emulate_ctxt *ctxt, int seg)
5431 {
5432         return get_segment_base(emul_to_vcpu(ctxt), seg);
5433 }
5434
5435 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5436                                  struct desc_struct *desc, u32 *base3,
5437                                  int seg)
5438 {
5439         struct kvm_segment var;
5440
5441         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5442         *selector = var.selector;
5443
5444         if (var.unusable) {
5445                 memset(desc, 0, sizeof(*desc));
5446                 if (base3)
5447                         *base3 = 0;
5448                 return false;
5449         }
5450
5451         if (var.g)
5452                 var.limit >>= 12;
5453         set_desc_limit(desc, var.limit);
5454         set_desc_base(desc, (unsigned long)var.base);
5455 #ifdef CONFIG_X86_64
5456         if (base3)
5457                 *base3 = var.base >> 32;
5458 #endif
5459         desc->type = var.type;
5460         desc->s = var.s;
5461         desc->dpl = var.dpl;
5462         desc->p = var.present;
5463         desc->avl = var.avl;
5464         desc->l = var.l;
5465         desc->d = var.db;
5466         desc->g = var.g;
5467
5468         return true;
5469 }
5470
5471 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5472                                  struct desc_struct *desc, u32 base3,
5473                                  int seg)
5474 {
5475         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5476         struct kvm_segment var;
5477
5478         var.selector = selector;
5479         var.base = get_desc_base(desc);
5480 #ifdef CONFIG_X86_64
5481         var.base |= ((u64)base3) << 32;
5482 #endif
5483         var.limit = get_desc_limit(desc);
5484         if (desc->g)
5485                 var.limit = (var.limit << 12) | 0xfff;
5486         var.type = desc->type;
5487         var.dpl = desc->dpl;
5488         var.db = desc->d;
5489         var.s = desc->s;
5490         var.l = desc->l;
5491         var.g = desc->g;
5492         var.avl = desc->avl;
5493         var.present = desc->p;
5494         var.unusable = !var.present;
5495         var.padding = 0;
5496
5497         kvm_set_segment(vcpu, &var, seg);
5498         return;
5499 }
5500
5501 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5502                             u32 msr_index, u64 *pdata)
5503 {
5504         struct msr_data msr;
5505         int r;
5506
5507         msr.index = msr_index;
5508         msr.host_initiated = false;
5509         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5510         if (r)
5511                 return r;
5512
5513         *pdata = msr.data;
5514         return 0;
5515 }
5516
5517 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5518                             u32 msr_index, u64 data)
5519 {
5520         struct msr_data msr;
5521
5522         msr.data = data;
5523         msr.index = msr_index;
5524         msr.host_initiated = false;
5525         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5526 }
5527
5528 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5529 {
5530         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5531
5532         return vcpu->arch.smbase;
5533 }
5534
5535 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5536 {
5537         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5538
5539         vcpu->arch.smbase = smbase;
5540 }
5541
5542 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5543                               u32 pmc)
5544 {
5545         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5546 }
5547
5548 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5549                              u32 pmc, u64 *pdata)
5550 {
5551         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5552 }
5553
5554 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5555 {
5556         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5557 }
5558
5559 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5560                               struct x86_instruction_info *info,
5561                               enum x86_intercept_stage stage)
5562 {
5563         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5564 }
5565
5566 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5567                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5568 {
5569         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5570 }
5571
5572 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5573 {
5574         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5575 }
5576
5577 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5578 {
5579         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5580 }
5581
5582 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5583 {
5584         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5585 }
5586
5587 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5588 {
5589         return emul_to_vcpu(ctxt)->arch.hflags;
5590 }
5591
5592 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5593 {
5594         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5595 }
5596
5597 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5598 {
5599         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5600 }
5601
5602 static const struct x86_emulate_ops emulate_ops = {
5603         .read_gpr            = emulator_read_gpr,
5604         .write_gpr           = emulator_write_gpr,
5605         .read_std            = kvm_read_guest_virt_system,
5606         .write_std           = kvm_write_guest_virt_system,
5607         .read_phys           = kvm_read_guest_phys_system,
5608         .fetch               = kvm_fetch_guest_virt,
5609         .read_emulated       = emulator_read_emulated,
5610         .write_emulated      = emulator_write_emulated,
5611         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5612         .invlpg              = emulator_invlpg,
5613         .pio_in_emulated     = emulator_pio_in_emulated,
5614         .pio_out_emulated    = emulator_pio_out_emulated,
5615         .get_segment         = emulator_get_segment,
5616         .set_segment         = emulator_set_segment,
5617         .get_cached_segment_base = emulator_get_cached_segment_base,
5618         .get_gdt             = emulator_get_gdt,
5619         .get_idt             = emulator_get_idt,
5620         .set_gdt             = emulator_set_gdt,
5621         .set_idt             = emulator_set_idt,
5622         .get_cr              = emulator_get_cr,
5623         .set_cr              = emulator_set_cr,
5624         .cpl                 = emulator_get_cpl,
5625         .get_dr              = emulator_get_dr,
5626         .set_dr              = emulator_set_dr,
5627         .get_smbase          = emulator_get_smbase,
5628         .set_smbase          = emulator_set_smbase,
5629         .set_msr             = emulator_set_msr,
5630         .get_msr             = emulator_get_msr,
5631         .check_pmc           = emulator_check_pmc,
5632         .read_pmc            = emulator_read_pmc,
5633         .halt                = emulator_halt,
5634         .wbinvd              = emulator_wbinvd,
5635         .fix_hypercall       = emulator_fix_hypercall,
5636         .intercept           = emulator_intercept,
5637         .get_cpuid           = emulator_get_cpuid,
5638         .set_nmi_mask        = emulator_set_nmi_mask,
5639         .get_hflags          = emulator_get_hflags,
5640         .set_hflags          = emulator_set_hflags,
5641         .pre_leave_smm       = emulator_pre_leave_smm,
5642 };
5643
5644 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5645 {
5646         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5647         /*
5648          * an sti; sti; sequence only disable interrupts for the first
5649          * instruction. So, if the last instruction, be it emulated or
5650          * not, left the system with the INT_STI flag enabled, it
5651          * means that the last instruction is an sti. We should not
5652          * leave the flag on in this case. The same goes for mov ss
5653          */
5654         if (int_shadow & mask)
5655                 mask = 0;
5656         if (unlikely(int_shadow || mask)) {
5657                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5658                 if (!mask)
5659                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5660         }
5661 }
5662
5663 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5664 {
5665         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5666         if (ctxt->exception.vector == PF_VECTOR)
5667                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5668
5669         if (ctxt->exception.error_code_valid)
5670                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5671                                       ctxt->exception.error_code);
5672         else
5673                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5674         return false;
5675 }
5676
5677 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5678 {
5679         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5680         int cs_db, cs_l;
5681
5682         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5683
5684         ctxt->eflags = kvm_get_rflags(vcpu);
5685         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5686
5687         ctxt->eip = kvm_rip_read(vcpu);
5688         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5689                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5690                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5691                      cs_db                              ? X86EMUL_MODE_PROT32 :
5692                                                           X86EMUL_MODE_PROT16;
5693         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5694         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5695         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5696
5697         init_decode_cache(ctxt);
5698         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5699 }
5700
5701 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5702 {
5703         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5704         int ret;
5705
5706         init_emulate_ctxt(vcpu);
5707
5708         ctxt->op_bytes = 2;
5709         ctxt->ad_bytes = 2;
5710         ctxt->_eip = ctxt->eip + inc_eip;
5711         ret = emulate_int_real(ctxt, irq);
5712
5713         if (ret != X86EMUL_CONTINUE)
5714                 return EMULATE_FAIL;
5715
5716         ctxt->eip = ctxt->_eip;
5717         kvm_rip_write(vcpu, ctxt->eip);
5718         kvm_set_rflags(vcpu, ctxt->eflags);
5719
5720         return EMULATE_DONE;
5721 }
5722 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5723
5724 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5725 {
5726         int r = EMULATE_DONE;
5727
5728         ++vcpu->stat.insn_emulation_fail;
5729         trace_kvm_emulate_insn_failed(vcpu);
5730
5731         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
5732                 return EMULATE_FAIL;
5733
5734         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5735                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5736                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5737                 vcpu->run->internal.ndata = 0;
5738                 r = EMULATE_USER_EXIT;
5739         }
5740
5741         kvm_queue_exception(vcpu, UD_VECTOR);
5742
5743         return r;
5744 }
5745
5746 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5747                                   bool write_fault_to_shadow_pgtable,
5748                                   int emulation_type)
5749 {
5750         gpa_t gpa = cr2;
5751         kvm_pfn_t pfn;
5752
5753         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5754                 return false;
5755
5756         if (!vcpu->arch.mmu.direct_map) {
5757                 /*
5758                  * Write permission should be allowed since only
5759                  * write access need to be emulated.
5760                  */
5761                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5762
5763                 /*
5764                  * If the mapping is invalid in guest, let cpu retry
5765                  * it to generate fault.
5766                  */
5767                 if (gpa == UNMAPPED_GVA)
5768                         return true;
5769         }
5770
5771         /*
5772          * Do not retry the unhandleable instruction if it faults on the
5773          * readonly host memory, otherwise it will goto a infinite loop:
5774          * retry instruction -> write #PF -> emulation fail -> retry
5775          * instruction -> ...
5776          */
5777         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5778
5779         /*
5780          * If the instruction failed on the error pfn, it can not be fixed,
5781          * report the error to userspace.
5782          */
5783         if (is_error_noslot_pfn(pfn))
5784                 return false;
5785
5786         kvm_release_pfn_clean(pfn);
5787
5788         /* The instructions are well-emulated on direct mmu. */
5789         if (vcpu->arch.mmu.direct_map) {
5790                 unsigned int indirect_shadow_pages;
5791
5792                 spin_lock(&vcpu->kvm->mmu_lock);
5793                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5794                 spin_unlock(&vcpu->kvm->mmu_lock);
5795
5796                 if (indirect_shadow_pages)
5797                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5798
5799                 return true;
5800         }
5801
5802         /*
5803          * if emulation was due to access to shadowed page table
5804          * and it failed try to unshadow page and re-enter the
5805          * guest to let CPU execute the instruction.
5806          */
5807         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5808
5809         /*
5810          * If the access faults on its page table, it can not
5811          * be fixed by unprotecting shadow page and it should
5812          * be reported to userspace.
5813          */
5814         return !write_fault_to_shadow_pgtable;
5815 }
5816
5817 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5818                               unsigned long cr2,  int emulation_type)
5819 {
5820         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5821         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5822
5823         last_retry_eip = vcpu->arch.last_retry_eip;
5824         last_retry_addr = vcpu->arch.last_retry_addr;
5825
5826         /*
5827          * If the emulation is caused by #PF and it is non-page_table
5828          * writing instruction, it means the VM-EXIT is caused by shadow
5829          * page protected, we can zap the shadow page and retry this
5830          * instruction directly.
5831          *
5832          * Note: if the guest uses a non-page-table modifying instruction
5833          * on the PDE that points to the instruction, then we will unmap
5834          * the instruction and go to an infinite loop. So, we cache the
5835          * last retried eip and the last fault address, if we meet the eip
5836          * and the address again, we can break out of the potential infinite
5837          * loop.
5838          */
5839         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5840
5841         if (!(emulation_type & EMULTYPE_RETRY))
5842                 return false;
5843
5844         if (x86_page_table_writing_insn(ctxt))
5845                 return false;
5846
5847         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5848                 return false;
5849
5850         vcpu->arch.last_retry_eip = ctxt->eip;
5851         vcpu->arch.last_retry_addr = cr2;
5852
5853         if (!vcpu->arch.mmu.direct_map)
5854                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5855
5856         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5857
5858         return true;
5859 }
5860
5861 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5862 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5863
5864 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5865 {
5866         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5867                 /* This is a good place to trace that we are exiting SMM.  */
5868                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5869
5870                 /* Process a latched INIT or SMI, if any.  */
5871                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5872         }
5873
5874         kvm_mmu_reset_context(vcpu);
5875 }
5876
5877 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5878 {
5879         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5880
5881         vcpu->arch.hflags = emul_flags;
5882
5883         if (changed & HF_SMM_MASK)
5884                 kvm_smm_changed(vcpu);
5885 }
5886
5887 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5888                                 unsigned long *db)
5889 {
5890         u32 dr6 = 0;
5891         int i;
5892         u32 enable, rwlen;
5893
5894         enable = dr7;
5895         rwlen = dr7 >> 16;
5896         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5897                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5898                         dr6 |= (1 << i);
5899         return dr6;
5900 }
5901
5902 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5903 {
5904         struct kvm_run *kvm_run = vcpu->run;
5905
5906         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5907                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5908                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5909                 kvm_run->debug.arch.exception = DB_VECTOR;
5910                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5911                 *r = EMULATE_USER_EXIT;
5912         } else {
5913                 /*
5914                  * "Certain debug exceptions may clear bit 0-3.  The
5915                  * remaining contents of the DR6 register are never
5916                  * cleared by the processor".
5917                  */
5918                 vcpu->arch.dr6 &= ~15;
5919                 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5920                 kvm_queue_exception(vcpu, DB_VECTOR);
5921         }
5922 }
5923
5924 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5925 {
5926         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5927         int r = EMULATE_DONE;
5928
5929         kvm_x86_ops->skip_emulated_instruction(vcpu);
5930
5931         /*
5932          * rflags is the old, "raw" value of the flags.  The new value has
5933          * not been saved yet.
5934          *
5935          * This is correct even for TF set by the guest, because "the
5936          * processor will not generate this exception after the instruction
5937          * that sets the TF flag".
5938          */
5939         if (unlikely(rflags & X86_EFLAGS_TF))
5940                 kvm_vcpu_do_singlestep(vcpu, &r);
5941         return r == EMULATE_DONE;
5942 }
5943 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5944
5945 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5946 {
5947         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5948             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5949                 struct kvm_run *kvm_run = vcpu->run;
5950                 unsigned long eip = kvm_get_linear_rip(vcpu);
5951                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5952                                            vcpu->arch.guest_debug_dr7,
5953                                            vcpu->arch.eff_db);
5954
5955                 if (dr6 != 0) {
5956                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5957                         kvm_run->debug.arch.pc = eip;
5958                         kvm_run->debug.arch.exception = DB_VECTOR;
5959                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5960                         *r = EMULATE_USER_EXIT;
5961                         return true;
5962                 }
5963         }
5964
5965         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5966             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5967                 unsigned long eip = kvm_get_linear_rip(vcpu);
5968                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5969                                            vcpu->arch.dr7,
5970                                            vcpu->arch.db);
5971
5972                 if (dr6 != 0) {
5973                         vcpu->arch.dr6 &= ~15;
5974                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5975                         kvm_queue_exception(vcpu, DB_VECTOR);
5976                         *r = EMULATE_DONE;
5977                         return true;
5978                 }
5979         }
5980
5981         return false;
5982 }
5983
5984 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
5985 {
5986         switch (ctxt->opcode_len) {
5987         case 1:
5988                 switch (ctxt->b) {
5989                 case 0xe4:      /* IN */
5990                 case 0xe5:
5991                 case 0xec:
5992                 case 0xed:
5993                 case 0xe6:      /* OUT */
5994                 case 0xe7:
5995                 case 0xee:
5996                 case 0xef:
5997                 case 0x6c:      /* INS */
5998                 case 0x6d:
5999                 case 0x6e:      /* OUTS */
6000                 case 0x6f:
6001                         return true;
6002                 }
6003                 break;
6004         case 2:
6005                 switch (ctxt->b) {
6006                 case 0x33:      /* RDPMC */
6007                         return true;
6008                 }
6009                 break;
6010         }
6011
6012         return false;
6013 }
6014
6015 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6016                             unsigned long cr2,
6017                             int emulation_type,
6018                             void *insn,
6019                             int insn_len)
6020 {
6021         int r;
6022         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6023         bool writeback = true;
6024         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6025
6026         /*
6027          * Clear write_fault_to_shadow_pgtable here to ensure it is
6028          * never reused.
6029          */
6030         vcpu->arch.write_fault_to_shadow_pgtable = false;
6031         kvm_clear_exception_queue(vcpu);
6032
6033         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6034                 init_emulate_ctxt(vcpu);
6035
6036                 /*
6037                  * We will reenter on the same instruction since
6038                  * we do not set complete_userspace_io.  This does not
6039                  * handle watchpoints yet, those would be handled in
6040                  * the emulate_ops.
6041                  */
6042                 if (!(emulation_type & EMULTYPE_SKIP) &&
6043                     kvm_vcpu_check_breakpoint(vcpu, &r))
6044                         return r;
6045
6046                 ctxt->interruptibility = 0;
6047                 ctxt->have_exception = false;
6048                 ctxt->exception.vector = -1;
6049                 ctxt->perm_ok = false;
6050
6051                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6052
6053                 r = x86_decode_insn(ctxt, insn, insn_len);
6054
6055                 trace_kvm_emulate_insn_start(vcpu);
6056                 ++vcpu->stat.insn_emulation;
6057                 if (r != EMULATION_OK)  {
6058                         if (emulation_type & EMULTYPE_TRAP_UD)
6059                                 return EMULATE_FAIL;
6060                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6061                                                 emulation_type))
6062                                 return EMULATE_DONE;
6063                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6064                                 return EMULATE_DONE;
6065                         if (emulation_type & EMULTYPE_SKIP)
6066                                 return EMULATE_FAIL;
6067                         return handle_emulation_failure(vcpu, emulation_type);
6068                 }
6069         }
6070
6071         if ((emulation_type & EMULTYPE_VMWARE) &&
6072             !is_vmware_backdoor_opcode(ctxt))
6073                 return EMULATE_FAIL;
6074
6075         if (emulation_type & EMULTYPE_SKIP) {
6076                 kvm_rip_write(vcpu, ctxt->_eip);
6077                 if (ctxt->eflags & X86_EFLAGS_RF)
6078                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6079                 return EMULATE_DONE;
6080         }
6081
6082         if (retry_instruction(ctxt, cr2, emulation_type))
6083                 return EMULATE_DONE;
6084
6085         /* this is needed for vmware backdoor interface to work since it
6086            changes registers values  during IO operation */
6087         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6088                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6089                 emulator_invalidate_register_cache(ctxt);
6090         }
6091
6092 restart:
6093         /* Save the faulting GPA (cr2) in the address field */
6094         ctxt->exception.address = cr2;
6095
6096         r = x86_emulate_insn(ctxt);
6097
6098         if (r == EMULATION_INTERCEPTED)
6099                 return EMULATE_DONE;
6100
6101         if (r == EMULATION_FAILED) {
6102                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6103                                         emulation_type))
6104                         return EMULATE_DONE;
6105
6106                 return handle_emulation_failure(vcpu, emulation_type);
6107         }
6108
6109         if (ctxt->have_exception) {
6110                 r = EMULATE_DONE;
6111                 if (inject_emulated_exception(vcpu))
6112                         return r;
6113         } else if (vcpu->arch.pio.count) {
6114                 if (!vcpu->arch.pio.in) {
6115                         /* FIXME: return into emulator if single-stepping.  */
6116                         vcpu->arch.pio.count = 0;
6117                 } else {
6118                         writeback = false;
6119                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6120                 }
6121                 r = EMULATE_USER_EXIT;
6122         } else if (vcpu->mmio_needed) {
6123                 if (!vcpu->mmio_is_write)
6124                         writeback = false;
6125                 r = EMULATE_USER_EXIT;
6126                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6127         } else if (r == EMULATION_RESTART)
6128                 goto restart;
6129         else
6130                 r = EMULATE_DONE;
6131
6132         if (writeback) {
6133                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6134                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6135                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6136                 kvm_rip_write(vcpu, ctxt->eip);
6137                 if (r == EMULATE_DONE &&
6138                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6139                         kvm_vcpu_do_singlestep(vcpu, &r);
6140                 if (!ctxt->have_exception ||
6141                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6142                         __kvm_set_rflags(vcpu, ctxt->eflags);
6143
6144                 /*
6145                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6146                  * do nothing, and it will be requested again as soon as
6147                  * the shadow expires.  But we still need to check here,
6148                  * because POPF has no interrupt shadow.
6149                  */
6150                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6151                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6152         } else
6153                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6154
6155         return r;
6156 }
6157 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6158
6159 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6160                             unsigned short port)
6161 {
6162         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6163         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6164                                             size, port, &val, 1);
6165         /* do not return to emulator after return from userspace */
6166         vcpu->arch.pio.count = 0;
6167         return ret;
6168 }
6169
6170 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6171 {
6172         unsigned long val;
6173
6174         /* We should only ever be called with arch.pio.count equal to 1 */
6175         BUG_ON(vcpu->arch.pio.count != 1);
6176
6177         /* For size less than 4 we merge, else we zero extend */
6178         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6179                                         : 0;
6180
6181         /*
6182          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6183          * the copy and tracing
6184          */
6185         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6186                                  vcpu->arch.pio.port, &val, 1);
6187         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6188
6189         return 1;
6190 }
6191
6192 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6193                            unsigned short port)
6194 {
6195         unsigned long val;
6196         int ret;
6197
6198         /* For size less than 4 we merge, else we zero extend */
6199         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6200
6201         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6202                                        &val, 1);
6203         if (ret) {
6204                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6205                 return ret;
6206         }
6207
6208         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6209
6210         return 0;
6211 }
6212
6213 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6214 {
6215         int ret = kvm_skip_emulated_instruction(vcpu);
6216
6217         /*
6218          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6219          * KVM_EXIT_DEBUG here.
6220          */
6221         if (in)
6222                 return kvm_fast_pio_in(vcpu, size, port) && ret;
6223         else
6224                 return kvm_fast_pio_out(vcpu, size, port) && ret;
6225 }
6226 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6227
6228 static int kvmclock_cpu_down_prep(unsigned int cpu)
6229 {
6230         __this_cpu_write(cpu_tsc_khz, 0);
6231         return 0;
6232 }
6233
6234 static void tsc_khz_changed(void *data)
6235 {
6236         struct cpufreq_freqs *freq = data;
6237         unsigned long khz = 0;
6238
6239         if (data)
6240                 khz = freq->new;
6241         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6242                 khz = cpufreq_quick_get(raw_smp_processor_id());
6243         if (!khz)
6244                 khz = tsc_khz;
6245         __this_cpu_write(cpu_tsc_khz, khz);
6246 }
6247
6248 #ifdef CONFIG_X86_64
6249 static void kvm_hyperv_tsc_notifier(void)
6250 {
6251         struct kvm *kvm;
6252         struct kvm_vcpu *vcpu;
6253         int cpu;
6254
6255         spin_lock(&kvm_lock);
6256         list_for_each_entry(kvm, &vm_list, vm_list)
6257                 kvm_make_mclock_inprogress_request(kvm);
6258
6259         hyperv_stop_tsc_emulation();
6260
6261         /* TSC frequency always matches when on Hyper-V */
6262         for_each_present_cpu(cpu)
6263                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6264         kvm_max_guest_tsc_khz = tsc_khz;
6265
6266         list_for_each_entry(kvm, &vm_list, vm_list) {
6267                 struct kvm_arch *ka = &kvm->arch;
6268
6269                 spin_lock(&ka->pvclock_gtod_sync_lock);
6270
6271                 pvclock_update_vm_gtod_copy(kvm);
6272
6273                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6274                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6275
6276                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6277                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6278
6279                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6280         }
6281         spin_unlock(&kvm_lock);
6282 }
6283 #endif
6284
6285 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6286                                      void *data)
6287 {
6288         struct cpufreq_freqs *freq = data;
6289         struct kvm *kvm;
6290         struct kvm_vcpu *vcpu;
6291         int i, send_ipi = 0;
6292
6293         /*
6294          * We allow guests to temporarily run on slowing clocks,
6295          * provided we notify them after, or to run on accelerating
6296          * clocks, provided we notify them before.  Thus time never
6297          * goes backwards.
6298          *
6299          * However, we have a problem.  We can't atomically update
6300          * the frequency of a given CPU from this function; it is
6301          * merely a notifier, which can be called from any CPU.
6302          * Changing the TSC frequency at arbitrary points in time
6303          * requires a recomputation of local variables related to
6304          * the TSC for each VCPU.  We must flag these local variables
6305          * to be updated and be sure the update takes place with the
6306          * new frequency before any guests proceed.
6307          *
6308          * Unfortunately, the combination of hotplug CPU and frequency
6309          * change creates an intractable locking scenario; the order
6310          * of when these callouts happen is undefined with respect to
6311          * CPU hotplug, and they can race with each other.  As such,
6312          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6313          * undefined; you can actually have a CPU frequency change take
6314          * place in between the computation of X and the setting of the
6315          * variable.  To protect against this problem, all updates of
6316          * the per_cpu tsc_khz variable are done in an interrupt
6317          * protected IPI, and all callers wishing to update the value
6318          * must wait for a synchronous IPI to complete (which is trivial
6319          * if the caller is on the CPU already).  This establishes the
6320          * necessary total order on variable updates.
6321          *
6322          * Note that because a guest time update may take place
6323          * anytime after the setting of the VCPU's request bit, the
6324          * correct TSC value must be set before the request.  However,
6325          * to ensure the update actually makes it to any guest which
6326          * starts running in hardware virtualization between the set
6327          * and the acquisition of the spinlock, we must also ping the
6328          * CPU after setting the request bit.
6329          *
6330          */
6331
6332         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6333                 return 0;
6334         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6335                 return 0;
6336
6337         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6338
6339         spin_lock(&kvm_lock);
6340         list_for_each_entry(kvm, &vm_list, vm_list) {
6341                 kvm_for_each_vcpu(i, vcpu, kvm) {
6342                         if (vcpu->cpu != freq->cpu)
6343                                 continue;
6344                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6345                         if (vcpu->cpu != smp_processor_id())
6346                                 send_ipi = 1;
6347                 }
6348         }
6349         spin_unlock(&kvm_lock);
6350
6351         if (freq->old < freq->new && send_ipi) {
6352                 /*
6353                  * We upscale the frequency.  Must make the guest
6354                  * doesn't see old kvmclock values while running with
6355                  * the new frequency, otherwise we risk the guest sees
6356                  * time go backwards.
6357                  *
6358                  * In case we update the frequency for another cpu
6359                  * (which might be in guest context) send an interrupt
6360                  * to kick the cpu out of guest context.  Next time
6361                  * guest context is entered kvmclock will be updated,
6362                  * so the guest will not see stale values.
6363                  */
6364                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6365         }
6366         return 0;
6367 }
6368
6369 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6370         .notifier_call  = kvmclock_cpufreq_notifier
6371 };
6372
6373 static int kvmclock_cpu_online(unsigned int cpu)
6374 {
6375         tsc_khz_changed(NULL);
6376         return 0;
6377 }
6378
6379 static void kvm_timer_init(void)
6380 {
6381         max_tsc_khz = tsc_khz;
6382
6383         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6384 #ifdef CONFIG_CPU_FREQ
6385                 struct cpufreq_policy policy;
6386                 int cpu;
6387
6388                 memset(&policy, 0, sizeof(policy));
6389                 cpu = get_cpu();
6390                 cpufreq_get_policy(&policy, cpu);
6391                 if (policy.cpuinfo.max_freq)
6392                         max_tsc_khz = policy.cpuinfo.max_freq;
6393                 put_cpu();
6394 #endif
6395                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6396                                           CPUFREQ_TRANSITION_NOTIFIER);
6397         }
6398         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6399
6400         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6401                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6402 }
6403
6404 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6405 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6406
6407 int kvm_is_in_guest(void)
6408 {
6409         return __this_cpu_read(current_vcpu) != NULL;
6410 }
6411
6412 static int kvm_is_user_mode(void)
6413 {
6414         int user_mode = 3;
6415
6416         if (__this_cpu_read(current_vcpu))
6417                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6418
6419         return user_mode != 0;
6420 }
6421
6422 static unsigned long kvm_get_guest_ip(void)
6423 {
6424         unsigned long ip = 0;
6425
6426         if (__this_cpu_read(current_vcpu))
6427                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6428
6429         return ip;
6430 }
6431
6432 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6433         .is_in_guest            = kvm_is_in_guest,
6434         .is_user_mode           = kvm_is_user_mode,
6435         .get_guest_ip           = kvm_get_guest_ip,
6436 };
6437
6438 static void kvm_set_mmio_spte_mask(void)
6439 {
6440         u64 mask;
6441         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6442
6443         /*
6444          * Set the reserved bits and the present bit of an paging-structure
6445          * entry to generate page fault with PFER.RSV = 1.
6446          */
6447          /* Mask the reserved physical address bits. */
6448         mask = rsvd_bits(maxphyaddr, 51);
6449
6450         /* Set the present bit. */
6451         mask |= 1ull;
6452
6453 #ifdef CONFIG_X86_64
6454         /*
6455          * If reserved bit is not supported, clear the present bit to disable
6456          * mmio page fault.
6457          */
6458         if (maxphyaddr == 52)
6459                 mask &= ~1ull;
6460 #endif
6461
6462         kvm_mmu_set_mmio_spte_mask(mask, mask);
6463 }
6464
6465 #ifdef CONFIG_X86_64
6466 static void pvclock_gtod_update_fn(struct work_struct *work)
6467 {
6468         struct kvm *kvm;
6469
6470         struct kvm_vcpu *vcpu;
6471         int i;
6472
6473         spin_lock(&kvm_lock);
6474         list_for_each_entry(kvm, &vm_list, vm_list)
6475                 kvm_for_each_vcpu(i, vcpu, kvm)
6476                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6477         atomic_set(&kvm_guest_has_master_clock, 0);
6478         spin_unlock(&kvm_lock);
6479 }
6480
6481 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6482
6483 /*
6484  * Notification about pvclock gtod data update.
6485  */
6486 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6487                                void *priv)
6488 {
6489         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6490         struct timekeeper *tk = priv;
6491
6492         update_pvclock_gtod(tk);
6493
6494         /* disable master clock if host does not trust, or does not
6495          * use, TSC based clocksource.
6496          */
6497         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6498             atomic_read(&kvm_guest_has_master_clock) != 0)
6499                 queue_work(system_long_wq, &pvclock_gtod_work);
6500
6501         return 0;
6502 }
6503
6504 static struct notifier_block pvclock_gtod_notifier = {
6505         .notifier_call = pvclock_gtod_notify,
6506 };
6507 #endif
6508
6509 int kvm_arch_init(void *opaque)
6510 {
6511         int r;
6512         struct kvm_x86_ops *ops = opaque;
6513
6514         if (kvm_x86_ops) {
6515                 printk(KERN_ERR "kvm: already loaded the other module\n");
6516                 r = -EEXIST;
6517                 goto out;
6518         }
6519
6520         if (!ops->cpu_has_kvm_support()) {
6521                 printk(KERN_ERR "kvm: no hardware support\n");
6522                 r = -EOPNOTSUPP;
6523                 goto out;
6524         }
6525         if (ops->disabled_by_bios()) {
6526                 printk(KERN_ERR "kvm: disabled by bios\n");
6527                 r = -EOPNOTSUPP;
6528                 goto out;
6529         }
6530
6531         r = -ENOMEM;
6532         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6533         if (!shared_msrs) {
6534                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6535                 goto out;
6536         }
6537
6538         r = kvm_mmu_module_init();
6539         if (r)
6540                 goto out_free_percpu;
6541
6542         kvm_set_mmio_spte_mask();
6543
6544         kvm_x86_ops = ops;
6545
6546         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6547                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6548                         PT_PRESENT_MASK, 0, sme_me_mask);
6549         kvm_timer_init();
6550
6551         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6552
6553         if (boot_cpu_has(X86_FEATURE_XSAVE))
6554                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6555
6556         kvm_lapic_init();
6557 #ifdef CONFIG_X86_64
6558         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6559
6560         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6561                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6562 #endif
6563
6564         return 0;
6565
6566 out_free_percpu:
6567         free_percpu(shared_msrs);
6568 out:
6569         return r;
6570 }
6571
6572 void kvm_arch_exit(void)
6573 {
6574 #ifdef CONFIG_X86_64
6575         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6576                 clear_hv_tscchange_cb();
6577 #endif
6578         kvm_lapic_exit();
6579         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6580
6581         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6582                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6583                                             CPUFREQ_TRANSITION_NOTIFIER);
6584         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6585 #ifdef CONFIG_X86_64
6586         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6587 #endif
6588         kvm_x86_ops = NULL;
6589         kvm_mmu_module_exit();
6590         free_percpu(shared_msrs);
6591 }
6592
6593 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6594 {
6595         ++vcpu->stat.halt_exits;
6596         if (lapic_in_kernel(vcpu)) {
6597                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6598                 return 1;
6599         } else {
6600                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6601                 return 0;
6602         }
6603 }
6604 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6605
6606 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6607 {
6608         int ret = kvm_skip_emulated_instruction(vcpu);
6609         /*
6610          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6611          * KVM_EXIT_DEBUG here.
6612          */
6613         return kvm_vcpu_halt(vcpu) && ret;
6614 }
6615 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6616
6617 #ifdef CONFIG_X86_64
6618 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6619                                 unsigned long clock_type)
6620 {
6621         struct kvm_clock_pairing clock_pairing;
6622         struct timespec ts;
6623         u64 cycle;
6624         int ret;
6625
6626         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6627                 return -KVM_EOPNOTSUPP;
6628
6629         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6630                 return -KVM_EOPNOTSUPP;
6631
6632         clock_pairing.sec = ts.tv_sec;
6633         clock_pairing.nsec = ts.tv_nsec;
6634         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6635         clock_pairing.flags = 0;
6636
6637         ret = 0;
6638         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6639                             sizeof(struct kvm_clock_pairing)))
6640                 ret = -KVM_EFAULT;
6641
6642         return ret;
6643 }
6644 #endif
6645
6646 /*
6647  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6648  *
6649  * @apicid - apicid of vcpu to be kicked.
6650  */
6651 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6652 {
6653         struct kvm_lapic_irq lapic_irq;
6654
6655         lapic_irq.shorthand = 0;
6656         lapic_irq.dest_mode = 0;
6657         lapic_irq.level = 0;
6658         lapic_irq.dest_id = apicid;
6659         lapic_irq.msi_redir_hint = false;
6660
6661         lapic_irq.delivery_mode = APIC_DM_REMRD;
6662         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6663 }
6664
6665 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6666 {
6667         vcpu->arch.apicv_active = false;
6668         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6669 }
6670
6671 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6672 {
6673         unsigned long nr, a0, a1, a2, a3, ret;
6674         int op_64_bit, r;
6675
6676         r = kvm_skip_emulated_instruction(vcpu);
6677
6678         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6679                 return kvm_hv_hypercall(vcpu);
6680
6681         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6682         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6683         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6684         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6685         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6686
6687         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6688
6689         op_64_bit = is_64_bit_mode(vcpu);
6690         if (!op_64_bit) {
6691                 nr &= 0xFFFFFFFF;
6692                 a0 &= 0xFFFFFFFF;
6693                 a1 &= 0xFFFFFFFF;
6694                 a2 &= 0xFFFFFFFF;
6695                 a3 &= 0xFFFFFFFF;
6696         }
6697
6698         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6699                 ret = -KVM_EPERM;
6700                 goto out;
6701         }
6702
6703         switch (nr) {
6704         case KVM_HC_VAPIC_POLL_IRQ:
6705                 ret = 0;
6706                 break;
6707         case KVM_HC_KICK_CPU:
6708                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6709                 ret = 0;
6710                 break;
6711 #ifdef CONFIG_X86_64
6712         case KVM_HC_CLOCK_PAIRING:
6713                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6714                 break;
6715 #endif
6716         default:
6717                 ret = -KVM_ENOSYS;
6718                 break;
6719         }
6720 out:
6721         if (!op_64_bit)
6722                 ret = (u32)ret;
6723         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6724         ++vcpu->stat.hypercalls;
6725         return r;
6726 }
6727 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6728
6729 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6730 {
6731         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6732         char instruction[3];
6733         unsigned long rip = kvm_rip_read(vcpu);
6734
6735         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6736
6737         return emulator_write_emulated(ctxt, rip, instruction, 3,
6738                 &ctxt->exception);
6739 }
6740
6741 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6742 {
6743         return vcpu->run->request_interrupt_window &&
6744                 likely(!pic_in_kernel(vcpu->kvm));
6745 }
6746
6747 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6748 {
6749         struct kvm_run *kvm_run = vcpu->run;
6750
6751         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6752         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6753         kvm_run->cr8 = kvm_get_cr8(vcpu);
6754         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6755         kvm_run->ready_for_interrupt_injection =
6756                 pic_in_kernel(vcpu->kvm) ||
6757                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6758 }
6759
6760 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6761 {
6762         int max_irr, tpr;
6763
6764         if (!kvm_x86_ops->update_cr8_intercept)
6765                 return;
6766
6767         if (!lapic_in_kernel(vcpu))
6768                 return;
6769
6770         if (vcpu->arch.apicv_active)
6771                 return;
6772
6773         if (!vcpu->arch.apic->vapic_addr)
6774                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6775         else
6776                 max_irr = -1;
6777
6778         if (max_irr != -1)
6779                 max_irr >>= 4;
6780
6781         tpr = kvm_lapic_get_cr8(vcpu);
6782
6783         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6784 }
6785
6786 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6787 {
6788         int r;
6789
6790         /* try to reinject previous events if any */
6791
6792         if (vcpu->arch.exception.injected)
6793                 kvm_x86_ops->queue_exception(vcpu);
6794         /*
6795          * Do not inject an NMI or interrupt if there is a pending
6796          * exception.  Exceptions and interrupts are recognized at
6797          * instruction boundaries, i.e. the start of an instruction.
6798          * Trap-like exceptions, e.g. #DB, have higher priority than
6799          * NMIs and interrupts, i.e. traps are recognized before an
6800          * NMI/interrupt that's pending on the same instruction.
6801          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
6802          * priority, but are only generated (pended) during instruction
6803          * execution, i.e. a pending fault-like exception means the
6804          * fault occurred on the *previous* instruction and must be
6805          * serviced prior to recognizing any new events in order to
6806          * fully complete the previous instruction.
6807          */
6808         else if (!vcpu->arch.exception.pending) {
6809                 if (vcpu->arch.nmi_injected)
6810                         kvm_x86_ops->set_nmi(vcpu);
6811                 else if (vcpu->arch.interrupt.injected)
6812                         kvm_x86_ops->set_irq(vcpu);
6813         }
6814
6815         /*
6816          * Call check_nested_events() even if we reinjected a previous event
6817          * in order for caller to determine if it should require immediate-exit
6818          * from L2 to L1 due to pending L1 events which require exit
6819          * from L2 to L1.
6820          */
6821         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6822                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6823                 if (r != 0)
6824                         return r;
6825         }
6826
6827         /* try to inject new event if pending */
6828         if (vcpu->arch.exception.pending) {
6829                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6830                                         vcpu->arch.exception.has_error_code,
6831                                         vcpu->arch.exception.error_code);
6832
6833                 WARN_ON_ONCE(vcpu->arch.exception.injected);
6834                 vcpu->arch.exception.pending = false;
6835                 vcpu->arch.exception.injected = true;
6836
6837                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6838                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6839                                              X86_EFLAGS_RF);
6840
6841                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6842                     (vcpu->arch.dr7 & DR7_GD)) {
6843                         vcpu->arch.dr7 &= ~DR7_GD;
6844                         kvm_update_dr7(vcpu);
6845                 }
6846
6847                 kvm_x86_ops->queue_exception(vcpu);
6848         }
6849
6850         /* Don't consider new event if we re-injected an event */
6851         if (kvm_event_needs_reinjection(vcpu))
6852                 return 0;
6853
6854         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
6855             kvm_x86_ops->smi_allowed(vcpu)) {
6856                 vcpu->arch.smi_pending = false;
6857                 ++vcpu->arch.smi_count;
6858                 enter_smm(vcpu);
6859         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6860                 --vcpu->arch.nmi_pending;
6861                 vcpu->arch.nmi_injected = true;
6862                 kvm_x86_ops->set_nmi(vcpu);
6863         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6864                 /*
6865                  * Because interrupts can be injected asynchronously, we are
6866                  * calling check_nested_events again here to avoid a race condition.
6867                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6868                  * proposal and current concerns.  Perhaps we should be setting
6869                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6870                  */
6871                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6872                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6873                         if (r != 0)
6874                                 return r;
6875                 }
6876                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6877                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6878                                             false);
6879                         kvm_x86_ops->set_irq(vcpu);
6880                 }
6881         }
6882
6883         return 0;
6884 }
6885
6886 static void process_nmi(struct kvm_vcpu *vcpu)
6887 {
6888         unsigned limit = 2;
6889
6890         /*
6891          * x86 is limited to one NMI running, and one NMI pending after it.
6892          * If an NMI is already in progress, limit further NMIs to just one.
6893          * Otherwise, allow two (and we'll inject the first one immediately).
6894          */
6895         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6896                 limit = 1;
6897
6898         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6899         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6900         kvm_make_request(KVM_REQ_EVENT, vcpu);
6901 }
6902
6903 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6904 {
6905         u32 flags = 0;
6906         flags |= seg->g       << 23;
6907         flags |= seg->db      << 22;
6908         flags |= seg->l       << 21;
6909         flags |= seg->avl     << 20;
6910         flags |= seg->present << 15;
6911         flags |= seg->dpl     << 13;
6912         flags |= seg->s       << 12;
6913         flags |= seg->type    << 8;
6914         return flags;
6915 }
6916
6917 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6918 {
6919         struct kvm_segment seg;
6920         int offset;
6921
6922         kvm_get_segment(vcpu, &seg, n);
6923         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6924
6925         if (n < 3)
6926                 offset = 0x7f84 + n * 12;
6927         else
6928                 offset = 0x7f2c + (n - 3) * 12;
6929
6930         put_smstate(u32, buf, offset + 8, seg.base);
6931         put_smstate(u32, buf, offset + 4, seg.limit);
6932         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6933 }
6934
6935 #ifdef CONFIG_X86_64
6936 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6937 {
6938         struct kvm_segment seg;
6939         int offset;
6940         u16 flags;
6941
6942         kvm_get_segment(vcpu, &seg, n);
6943         offset = 0x7e00 + n * 16;
6944
6945         flags = enter_smm_get_segment_flags(&seg) >> 8;
6946         put_smstate(u16, buf, offset, seg.selector);
6947         put_smstate(u16, buf, offset + 2, flags);
6948         put_smstate(u32, buf, offset + 4, seg.limit);
6949         put_smstate(u64, buf, offset + 8, seg.base);
6950 }
6951 #endif
6952
6953 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6954 {
6955         struct desc_ptr dt;
6956         struct kvm_segment seg;
6957         unsigned long val;
6958         int i;
6959
6960         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6961         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6962         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6963         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6964
6965         for (i = 0; i < 8; i++)
6966                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6967
6968         kvm_get_dr(vcpu, 6, &val);
6969         put_smstate(u32, buf, 0x7fcc, (u32)val);
6970         kvm_get_dr(vcpu, 7, &val);
6971         put_smstate(u32, buf, 0x7fc8, (u32)val);
6972
6973         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6974         put_smstate(u32, buf, 0x7fc4, seg.selector);
6975         put_smstate(u32, buf, 0x7f64, seg.base);
6976         put_smstate(u32, buf, 0x7f60, seg.limit);
6977         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6978
6979         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6980         put_smstate(u32, buf, 0x7fc0, seg.selector);
6981         put_smstate(u32, buf, 0x7f80, seg.base);
6982         put_smstate(u32, buf, 0x7f7c, seg.limit);
6983         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6984
6985         kvm_x86_ops->get_gdt(vcpu, &dt);
6986         put_smstate(u32, buf, 0x7f74, dt.address);
6987         put_smstate(u32, buf, 0x7f70, dt.size);
6988
6989         kvm_x86_ops->get_idt(vcpu, &dt);
6990         put_smstate(u32, buf, 0x7f58, dt.address);
6991         put_smstate(u32, buf, 0x7f54, dt.size);
6992
6993         for (i = 0; i < 6; i++)
6994                 enter_smm_save_seg_32(vcpu, buf, i);
6995
6996         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6997
6998         /* revision id */
6999         put_smstate(u32, buf, 0x7efc, 0x00020000);
7000         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7001 }
7002
7003 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7004 {
7005 #ifdef CONFIG_X86_64
7006         struct desc_ptr dt;
7007         struct kvm_segment seg;
7008         unsigned long val;
7009         int i;
7010
7011         for (i = 0; i < 16; i++)
7012                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7013
7014         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7015         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7016
7017         kvm_get_dr(vcpu, 6, &val);
7018         put_smstate(u64, buf, 0x7f68, val);
7019         kvm_get_dr(vcpu, 7, &val);
7020         put_smstate(u64, buf, 0x7f60, val);
7021
7022         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7023         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7024         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7025
7026         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7027
7028         /* revision id */
7029         put_smstate(u32, buf, 0x7efc, 0x00020064);
7030
7031         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7032
7033         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7034         put_smstate(u16, buf, 0x7e90, seg.selector);
7035         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7036         put_smstate(u32, buf, 0x7e94, seg.limit);
7037         put_smstate(u64, buf, 0x7e98, seg.base);
7038
7039         kvm_x86_ops->get_idt(vcpu, &dt);
7040         put_smstate(u32, buf, 0x7e84, dt.size);
7041         put_smstate(u64, buf, 0x7e88, dt.address);
7042
7043         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7044         put_smstate(u16, buf, 0x7e70, seg.selector);
7045         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7046         put_smstate(u32, buf, 0x7e74, seg.limit);
7047         put_smstate(u64, buf, 0x7e78, seg.base);
7048
7049         kvm_x86_ops->get_gdt(vcpu, &dt);
7050         put_smstate(u32, buf, 0x7e64, dt.size);
7051         put_smstate(u64, buf, 0x7e68, dt.address);
7052
7053         for (i = 0; i < 6; i++)
7054                 enter_smm_save_seg_64(vcpu, buf, i);
7055 #else
7056         WARN_ON_ONCE(1);
7057 #endif
7058 }
7059
7060 static void enter_smm(struct kvm_vcpu *vcpu)
7061 {
7062         struct kvm_segment cs, ds;
7063         struct desc_ptr dt;
7064         char buf[512];
7065         u32 cr0;
7066
7067         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7068         memset(buf, 0, 512);
7069         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7070                 enter_smm_save_state_64(vcpu, buf);
7071         else
7072                 enter_smm_save_state_32(vcpu, buf);
7073
7074         /*
7075          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7076          * vCPU state (e.g. leave guest mode) after we've saved the state into
7077          * the SMM state-save area.
7078          */
7079         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7080
7081         vcpu->arch.hflags |= HF_SMM_MASK;
7082         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7083
7084         if (kvm_x86_ops->get_nmi_mask(vcpu))
7085                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7086         else
7087                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7088
7089         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7090         kvm_rip_write(vcpu, 0x8000);
7091
7092         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7093         kvm_x86_ops->set_cr0(vcpu, cr0);
7094         vcpu->arch.cr0 = cr0;
7095
7096         kvm_x86_ops->set_cr4(vcpu, 0);
7097
7098         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7099         dt.address = dt.size = 0;
7100         kvm_x86_ops->set_idt(vcpu, &dt);
7101
7102         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7103
7104         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7105         cs.base = vcpu->arch.smbase;
7106
7107         ds.selector = 0;
7108         ds.base = 0;
7109
7110         cs.limit    = ds.limit = 0xffffffff;
7111         cs.type     = ds.type = 0x3;
7112         cs.dpl      = ds.dpl = 0;
7113         cs.db       = ds.db = 0;
7114         cs.s        = ds.s = 1;
7115         cs.l        = ds.l = 0;
7116         cs.g        = ds.g = 1;
7117         cs.avl      = ds.avl = 0;
7118         cs.present  = ds.present = 1;
7119         cs.unusable = ds.unusable = 0;
7120         cs.padding  = ds.padding = 0;
7121
7122         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7123         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7124         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7125         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7126         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7127         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7128
7129         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7130                 kvm_x86_ops->set_efer(vcpu, 0);
7131
7132         kvm_update_cpuid(vcpu);
7133         kvm_mmu_reset_context(vcpu);
7134 }
7135
7136 static void process_smi(struct kvm_vcpu *vcpu)
7137 {
7138         vcpu->arch.smi_pending = true;
7139         kvm_make_request(KVM_REQ_EVENT, vcpu);
7140 }
7141
7142 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7143 {
7144         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7145 }
7146
7147 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7148 {
7149         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7150                 return;
7151
7152         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7153
7154         if (irqchip_split(vcpu->kvm))
7155                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7156         else {
7157                 if (vcpu->arch.apicv_active)
7158                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7159                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7160         }
7161
7162         if (is_guest_mode(vcpu))
7163                 vcpu->arch.load_eoi_exitmap_pending = true;
7164         else
7165                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7166 }
7167
7168 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7169 {
7170         u64 eoi_exit_bitmap[4];
7171
7172         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7173                 return;
7174
7175         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7176                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7177         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7178 }
7179
7180 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7181                 unsigned long start, unsigned long end)
7182 {
7183         unsigned long apic_address;
7184
7185         /*
7186          * The physical address of apic access page is stored in the VMCS.
7187          * Update it when it becomes invalid.
7188          */
7189         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7190         if (start <= apic_address && apic_address < end)
7191                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7192 }
7193
7194 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7195 {
7196         struct page *page = NULL;
7197
7198         if (!lapic_in_kernel(vcpu))
7199                 return;
7200
7201         if (!kvm_x86_ops->set_apic_access_page_addr)
7202                 return;
7203
7204         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7205         if (is_error_page(page))
7206                 return;
7207         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7208
7209         /*
7210          * Do not pin apic access page in memory, the MMU notifier
7211          * will call us again if it is migrated or swapped out.
7212          */
7213         put_page(page);
7214 }
7215 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7216
7217 /*
7218  * Returns 1 to let vcpu_run() continue the guest execution loop without
7219  * exiting to the userspace.  Otherwise, the value will be returned to the
7220  * userspace.
7221  */
7222 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7223 {
7224         int r;
7225         bool req_int_win =
7226                 dm_request_for_irq_injection(vcpu) &&
7227                 kvm_cpu_accept_dm_intr(vcpu);
7228
7229         bool req_immediate_exit = false;
7230
7231         if (kvm_request_pending(vcpu)) {
7232                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7233                         kvm_mmu_unload(vcpu);
7234                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7235                         __kvm_migrate_timers(vcpu);
7236                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7237                         kvm_gen_update_masterclock(vcpu->kvm);
7238                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7239                         kvm_gen_kvmclock_update(vcpu);
7240                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7241                         r = kvm_guest_time_update(vcpu);
7242                         if (unlikely(r))
7243                                 goto out;
7244                 }
7245                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7246                         kvm_mmu_sync_roots(vcpu);
7247                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7248                         kvm_vcpu_flush_tlb(vcpu, true);
7249                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7250                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7251                         r = 0;
7252                         goto out;
7253                 }
7254                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7255                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7256                         vcpu->mmio_needed = 0;
7257                         r = 0;
7258                         goto out;
7259                 }
7260                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7261                         /* Page is swapped out. Do synthetic halt */
7262                         vcpu->arch.apf.halted = true;
7263                         r = 1;
7264                         goto out;
7265                 }
7266                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7267                         record_steal_time(vcpu);
7268                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7269                         process_smi(vcpu);
7270                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7271                         process_nmi(vcpu);
7272                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7273                         kvm_pmu_handle_event(vcpu);
7274                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7275                         kvm_pmu_deliver_pmi(vcpu);
7276                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7277                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7278                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7279                                      vcpu->arch.ioapic_handled_vectors)) {
7280                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7281                                 vcpu->run->eoi.vector =
7282                                                 vcpu->arch.pending_ioapic_eoi;
7283                                 r = 0;
7284                                 goto out;
7285                         }
7286                 }
7287                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7288                         vcpu_scan_ioapic(vcpu);
7289                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7290                         vcpu_load_eoi_exitmap(vcpu);
7291                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7292                         kvm_vcpu_reload_apic_access_page(vcpu);
7293                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7294                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7295                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7296                         r = 0;
7297                         goto out;
7298                 }
7299                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7300                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7301                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7302                         r = 0;
7303                         goto out;
7304                 }
7305                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7306                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7307                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7308                         r = 0;
7309                         goto out;
7310                 }
7311
7312                 /*
7313                  * KVM_REQ_HV_STIMER has to be processed after
7314                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7315                  * depend on the guest clock being up-to-date
7316                  */
7317                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7318                         kvm_hv_process_stimers(vcpu);
7319         }
7320
7321         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7322                 ++vcpu->stat.req_event;
7323                 kvm_apic_accept_events(vcpu);
7324                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7325                         r = 1;
7326                         goto out;
7327                 }
7328
7329                 if (inject_pending_event(vcpu, req_int_win) != 0)
7330                         req_immediate_exit = true;
7331                 else {
7332                         /* Enable SMI/NMI/IRQ window open exits if needed.
7333                          *
7334                          * SMIs have three cases:
7335                          * 1) They can be nested, and then there is nothing to
7336                          *    do here because RSM will cause a vmexit anyway.
7337                          * 2) There is an ISA-specific reason why SMI cannot be
7338                          *    injected, and the moment when this changes can be
7339                          *    intercepted.
7340                          * 3) Or the SMI can be pending because
7341                          *    inject_pending_event has completed the injection
7342                          *    of an IRQ or NMI from the previous vmexit, and
7343                          *    then we request an immediate exit to inject the
7344                          *    SMI.
7345                          */
7346                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7347                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7348                                         req_immediate_exit = true;
7349                         if (vcpu->arch.nmi_pending)
7350                                 kvm_x86_ops->enable_nmi_window(vcpu);
7351                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7352                                 kvm_x86_ops->enable_irq_window(vcpu);
7353                         WARN_ON(vcpu->arch.exception.pending);
7354                 }
7355
7356                 if (kvm_lapic_enabled(vcpu)) {
7357                         update_cr8_intercept(vcpu);
7358                         kvm_lapic_sync_to_vapic(vcpu);
7359                 }
7360         }
7361
7362         r = kvm_mmu_reload(vcpu);
7363         if (unlikely(r)) {
7364                 goto cancel_injection;
7365         }
7366
7367         preempt_disable();
7368
7369         kvm_x86_ops->prepare_guest_switch(vcpu);
7370
7371         /*
7372          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7373          * IPI are then delayed after guest entry, which ensures that they
7374          * result in virtual interrupt delivery.
7375          */
7376         local_irq_disable();
7377         vcpu->mode = IN_GUEST_MODE;
7378
7379         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7380
7381         /*
7382          * 1) We should set ->mode before checking ->requests.  Please see
7383          * the comment in kvm_vcpu_exiting_guest_mode().
7384          *
7385          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7386          * pairs with the memory barrier implicit in pi_test_and_set_on
7387          * (see vmx_deliver_posted_interrupt).
7388          *
7389          * 3) This also orders the write to mode from any reads to the page
7390          * tables done while the VCPU is running.  Please see the comment
7391          * in kvm_flush_remote_tlbs.
7392          */
7393         smp_mb__after_srcu_read_unlock();
7394
7395         /*
7396          * This handles the case where a posted interrupt was
7397          * notified with kvm_vcpu_kick.
7398          */
7399         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7400                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7401
7402         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7403             || need_resched() || signal_pending(current)) {
7404                 vcpu->mode = OUTSIDE_GUEST_MODE;
7405                 smp_wmb();
7406                 local_irq_enable();
7407                 preempt_enable();
7408                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7409                 r = 1;
7410                 goto cancel_injection;
7411         }
7412
7413         kvm_load_guest_xcr0(vcpu);
7414
7415         if (req_immediate_exit) {
7416                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7417                 smp_send_reschedule(vcpu->cpu);
7418         }
7419
7420         trace_kvm_entry(vcpu->vcpu_id);
7421         if (lapic_timer_advance_ns)
7422                 wait_lapic_expire(vcpu);
7423         guest_enter_irqoff();
7424
7425         if (unlikely(vcpu->arch.switch_db_regs)) {
7426                 set_debugreg(0, 7);
7427                 set_debugreg(vcpu->arch.eff_db[0], 0);
7428                 set_debugreg(vcpu->arch.eff_db[1], 1);
7429                 set_debugreg(vcpu->arch.eff_db[2], 2);
7430                 set_debugreg(vcpu->arch.eff_db[3], 3);
7431                 set_debugreg(vcpu->arch.dr6, 6);
7432                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7433         }
7434
7435         kvm_x86_ops->run(vcpu);
7436
7437         /*
7438          * Do this here before restoring debug registers on the host.  And
7439          * since we do this before handling the vmexit, a DR access vmexit
7440          * can (a) read the correct value of the debug registers, (b) set
7441          * KVM_DEBUGREG_WONT_EXIT again.
7442          */
7443         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7444                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7445                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7446                 kvm_update_dr0123(vcpu);
7447                 kvm_update_dr6(vcpu);
7448                 kvm_update_dr7(vcpu);
7449                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7450         }
7451
7452         /*
7453          * If the guest has used debug registers, at least dr7
7454          * will be disabled while returning to the host.
7455          * If we don't have active breakpoints in the host, we don't
7456          * care about the messed up debug address registers. But if
7457          * we have some of them active, restore the old state.
7458          */
7459         if (hw_breakpoint_active())
7460                 hw_breakpoint_restore();
7461
7462         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7463
7464         vcpu->mode = OUTSIDE_GUEST_MODE;
7465         smp_wmb();
7466
7467         kvm_put_guest_xcr0(vcpu);
7468
7469         kvm_before_interrupt(vcpu);
7470         kvm_x86_ops->handle_external_intr(vcpu);
7471         kvm_after_interrupt(vcpu);
7472
7473         ++vcpu->stat.exits;
7474
7475         guest_exit_irqoff();
7476
7477         local_irq_enable();
7478         preempt_enable();
7479
7480         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7481
7482         /*
7483          * Profile KVM exit RIPs:
7484          */
7485         if (unlikely(prof_on == KVM_PROFILING)) {
7486                 unsigned long rip = kvm_rip_read(vcpu);
7487                 profile_hit(KVM_PROFILING, (void *)rip);
7488         }
7489
7490         if (unlikely(vcpu->arch.tsc_always_catchup))
7491                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7492
7493         if (vcpu->arch.apic_attention)
7494                 kvm_lapic_sync_from_vapic(vcpu);
7495
7496         vcpu->arch.gpa_available = false;
7497         r = kvm_x86_ops->handle_exit(vcpu);
7498         return r;
7499
7500 cancel_injection:
7501         kvm_x86_ops->cancel_injection(vcpu);
7502         if (unlikely(vcpu->arch.apic_attention))
7503                 kvm_lapic_sync_from_vapic(vcpu);
7504 out:
7505         return r;
7506 }
7507
7508 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7509 {
7510         if (!kvm_arch_vcpu_runnable(vcpu) &&
7511             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7512                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7513                 kvm_vcpu_block(vcpu);
7514                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7515
7516                 if (kvm_x86_ops->post_block)
7517                         kvm_x86_ops->post_block(vcpu);
7518
7519                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7520                         return 1;
7521         }
7522
7523         kvm_apic_accept_events(vcpu);
7524         switch(vcpu->arch.mp_state) {
7525         case KVM_MP_STATE_HALTED:
7526                 vcpu->arch.pv.pv_unhalted = false;
7527                 vcpu->arch.mp_state =
7528                         KVM_MP_STATE_RUNNABLE;
7529         case KVM_MP_STATE_RUNNABLE:
7530                 vcpu->arch.apf.halted = false;
7531                 break;
7532         case KVM_MP_STATE_INIT_RECEIVED:
7533                 break;
7534         default:
7535                 return -EINTR;
7536                 break;
7537         }
7538         return 1;
7539 }
7540
7541 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7542 {
7543         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7544                 kvm_x86_ops->check_nested_events(vcpu, false);
7545
7546         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7547                 !vcpu->arch.apf.halted);
7548 }
7549
7550 static int vcpu_run(struct kvm_vcpu *vcpu)
7551 {
7552         int r;
7553         struct kvm *kvm = vcpu->kvm;
7554
7555         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7556
7557         for (;;) {
7558                 if (kvm_vcpu_running(vcpu)) {
7559                         r = vcpu_enter_guest(vcpu);
7560                 } else {
7561                         r = vcpu_block(kvm, vcpu);
7562                 }
7563
7564                 if (r <= 0)
7565                         break;
7566
7567                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7568                 if (kvm_cpu_has_pending_timer(vcpu))
7569                         kvm_inject_pending_timer_irqs(vcpu);
7570
7571                 if (dm_request_for_irq_injection(vcpu) &&
7572                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7573                         r = 0;
7574                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7575                         ++vcpu->stat.request_irq_exits;
7576                         break;
7577                 }
7578
7579                 kvm_check_async_pf_completion(vcpu);
7580
7581                 if (signal_pending(current)) {
7582                         r = -EINTR;
7583                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7584                         ++vcpu->stat.signal_exits;
7585                         break;
7586                 }
7587                 if (need_resched()) {
7588                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7589                         cond_resched();
7590                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7591                 }
7592         }
7593
7594         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7595
7596         return r;
7597 }
7598
7599 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7600 {
7601         int r;
7602         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7603         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7604         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7605         if (r != EMULATE_DONE)
7606                 return 0;
7607         return 1;
7608 }
7609
7610 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7611 {
7612         BUG_ON(!vcpu->arch.pio.count);
7613
7614         return complete_emulated_io(vcpu);
7615 }
7616
7617 /*
7618  * Implements the following, as a state machine:
7619  *
7620  * read:
7621  *   for each fragment
7622  *     for each mmio piece in the fragment
7623  *       write gpa, len
7624  *       exit
7625  *       copy data
7626  *   execute insn
7627  *
7628  * write:
7629  *   for each fragment
7630  *     for each mmio piece in the fragment
7631  *       write gpa, len
7632  *       copy data
7633  *       exit
7634  */
7635 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7636 {
7637         struct kvm_run *run = vcpu->run;
7638         struct kvm_mmio_fragment *frag;
7639         unsigned len;
7640
7641         BUG_ON(!vcpu->mmio_needed);
7642
7643         /* Complete previous fragment */
7644         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7645         len = min(8u, frag->len);
7646         if (!vcpu->mmio_is_write)
7647                 memcpy(frag->data, run->mmio.data, len);
7648
7649         if (frag->len <= 8) {
7650                 /* Switch to the next fragment. */
7651                 frag++;
7652                 vcpu->mmio_cur_fragment++;
7653         } else {
7654                 /* Go forward to the next mmio piece. */
7655                 frag->data += len;
7656                 frag->gpa += len;
7657                 frag->len -= len;
7658         }
7659
7660         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7661                 vcpu->mmio_needed = 0;
7662
7663                 /* FIXME: return into emulator if single-stepping.  */
7664                 if (vcpu->mmio_is_write)
7665                         return 1;
7666                 vcpu->mmio_read_completed = 1;
7667                 return complete_emulated_io(vcpu);
7668         }
7669
7670         run->exit_reason = KVM_EXIT_MMIO;
7671         run->mmio.phys_addr = frag->gpa;
7672         if (vcpu->mmio_is_write)
7673                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7674         run->mmio.len = min(8u, frag->len);
7675         run->mmio.is_write = vcpu->mmio_is_write;
7676         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7677         return 0;
7678 }
7679
7680 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7681 {
7682         int r;
7683
7684         vcpu_load(vcpu);
7685         kvm_sigset_activate(vcpu);
7686         kvm_load_guest_fpu(vcpu);
7687
7688         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7689                 if (kvm_run->immediate_exit) {
7690                         r = -EINTR;
7691                         goto out;
7692                 }
7693                 kvm_vcpu_block(vcpu);
7694                 kvm_apic_accept_events(vcpu);
7695                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7696                 r = -EAGAIN;
7697                 if (signal_pending(current)) {
7698                         r = -EINTR;
7699                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7700                         ++vcpu->stat.signal_exits;
7701                 }
7702                 goto out;
7703         }
7704
7705         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
7706                 r = -EINVAL;
7707                 goto out;
7708         }
7709
7710         if (vcpu->run->kvm_dirty_regs) {
7711                 r = sync_regs(vcpu);
7712                 if (r != 0)
7713                         goto out;
7714         }
7715
7716         /* re-sync apic's tpr */
7717         if (!lapic_in_kernel(vcpu)) {
7718                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7719                         r = -EINVAL;
7720                         goto out;
7721                 }
7722         }
7723
7724         if (unlikely(vcpu->arch.complete_userspace_io)) {
7725                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7726                 vcpu->arch.complete_userspace_io = NULL;
7727                 r = cui(vcpu);
7728                 if (r <= 0)
7729                         goto out;
7730         } else
7731                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7732
7733         if (kvm_run->immediate_exit)
7734                 r = -EINTR;
7735         else
7736                 r = vcpu_run(vcpu);
7737
7738 out:
7739         kvm_put_guest_fpu(vcpu);
7740         if (vcpu->run->kvm_valid_regs)
7741                 store_regs(vcpu);
7742         post_kvm_run_save(vcpu);
7743         kvm_sigset_deactivate(vcpu);
7744
7745         vcpu_put(vcpu);
7746         return r;
7747 }
7748
7749 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7750 {
7751         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7752                 /*
7753                  * We are here if userspace calls get_regs() in the middle of
7754                  * instruction emulation. Registers state needs to be copied
7755                  * back from emulation context to vcpu. Userspace shouldn't do
7756                  * that usually, but some bad designed PV devices (vmware
7757                  * backdoor interface) need this to work
7758                  */
7759                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7760                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7761         }
7762         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7763         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7764         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7765         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7766         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7767         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7768         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7769         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7770 #ifdef CONFIG_X86_64
7771         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7772         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7773         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7774         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7775         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7776         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7777         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7778         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7779 #endif
7780
7781         regs->rip = kvm_rip_read(vcpu);
7782         regs->rflags = kvm_get_rflags(vcpu);
7783 }
7784
7785 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7786 {
7787         vcpu_load(vcpu);
7788         __get_regs(vcpu, regs);
7789         vcpu_put(vcpu);
7790         return 0;
7791 }
7792
7793 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7794 {
7795         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7796         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7797
7798         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7799         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7800         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7801         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7802         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7803         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7804         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7805         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7806 #ifdef CONFIG_X86_64
7807         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7808         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7809         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7810         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7811         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7812         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7813         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7814         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7815 #endif
7816
7817         kvm_rip_write(vcpu, regs->rip);
7818         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7819
7820         vcpu->arch.exception.pending = false;
7821
7822         kvm_make_request(KVM_REQ_EVENT, vcpu);
7823 }
7824
7825 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7826 {
7827         vcpu_load(vcpu);
7828         __set_regs(vcpu, regs);
7829         vcpu_put(vcpu);
7830         return 0;
7831 }
7832
7833 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7834 {
7835         struct kvm_segment cs;
7836
7837         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7838         *db = cs.db;
7839         *l = cs.l;
7840 }
7841 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7842
7843 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7844 {
7845         struct desc_ptr dt;
7846
7847         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7848         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7849         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7850         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7851         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7852         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7853
7854         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7855         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7856
7857         kvm_x86_ops->get_idt(vcpu, &dt);
7858         sregs->idt.limit = dt.size;
7859         sregs->idt.base = dt.address;
7860         kvm_x86_ops->get_gdt(vcpu, &dt);
7861         sregs->gdt.limit = dt.size;
7862         sregs->gdt.base = dt.address;
7863
7864         sregs->cr0 = kvm_read_cr0(vcpu);
7865         sregs->cr2 = vcpu->arch.cr2;
7866         sregs->cr3 = kvm_read_cr3(vcpu);
7867         sregs->cr4 = kvm_read_cr4(vcpu);
7868         sregs->cr8 = kvm_get_cr8(vcpu);
7869         sregs->efer = vcpu->arch.efer;
7870         sregs->apic_base = kvm_get_apic_base(vcpu);
7871
7872         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7873
7874         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
7875                 set_bit(vcpu->arch.interrupt.nr,
7876                         (unsigned long *)sregs->interrupt_bitmap);
7877 }
7878
7879 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7880                                   struct kvm_sregs *sregs)
7881 {
7882         vcpu_load(vcpu);
7883         __get_sregs(vcpu, sregs);
7884         vcpu_put(vcpu);
7885         return 0;
7886 }
7887
7888 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7889                                     struct kvm_mp_state *mp_state)
7890 {
7891         vcpu_load(vcpu);
7892
7893         kvm_apic_accept_events(vcpu);
7894         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7895                                         vcpu->arch.pv.pv_unhalted)
7896                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7897         else
7898                 mp_state->mp_state = vcpu->arch.mp_state;
7899
7900         vcpu_put(vcpu);
7901         return 0;
7902 }
7903
7904 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7905                                     struct kvm_mp_state *mp_state)
7906 {
7907         int ret = -EINVAL;
7908
7909         vcpu_load(vcpu);
7910
7911         if (!lapic_in_kernel(vcpu) &&
7912             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7913                 goto out;
7914
7915         /* INITs are latched while in SMM */
7916         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7917             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7918              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7919                 goto out;
7920
7921         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7922                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7923                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7924         } else
7925                 vcpu->arch.mp_state = mp_state->mp_state;
7926         kvm_make_request(KVM_REQ_EVENT, vcpu);
7927
7928         ret = 0;
7929 out:
7930         vcpu_put(vcpu);
7931         return ret;
7932 }
7933
7934 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7935                     int reason, bool has_error_code, u32 error_code)
7936 {
7937         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7938         int ret;
7939
7940         init_emulate_ctxt(vcpu);
7941
7942         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7943                                    has_error_code, error_code);
7944
7945         if (ret)
7946                 return EMULATE_FAIL;
7947
7948         kvm_rip_write(vcpu, ctxt->eip);
7949         kvm_set_rflags(vcpu, ctxt->eflags);
7950         kvm_make_request(KVM_REQ_EVENT, vcpu);
7951         return EMULATE_DONE;
7952 }
7953 EXPORT_SYMBOL_GPL(kvm_task_switch);
7954
7955 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7956 {
7957         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7958                 /*
7959                  * When EFER.LME and CR0.PG are set, the processor is in
7960                  * 64-bit mode (though maybe in a 32-bit code segment).
7961                  * CR4.PAE and EFER.LMA must be set.
7962                  */
7963                 if (!(sregs->cr4 & X86_CR4_PAE)
7964                     || !(sregs->efer & EFER_LMA))
7965                         return -EINVAL;
7966         } else {
7967                 /*
7968                  * Not in 64-bit mode: EFER.LMA is clear and the code
7969                  * segment cannot be 64-bit.
7970                  */
7971                 if (sregs->efer & EFER_LMA || sregs->cs.l)
7972                         return -EINVAL;
7973         }
7974
7975         return 0;
7976 }
7977
7978 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7979 {
7980         struct msr_data apic_base_msr;
7981         int mmu_reset_needed = 0;
7982         int pending_vec, max_bits, idx;
7983         struct desc_ptr dt;
7984         int ret = -EINVAL;
7985
7986         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7987                         (sregs->cr4 & X86_CR4_OSXSAVE))
7988                 goto out;
7989
7990         if (kvm_valid_sregs(vcpu, sregs))
7991                 goto out;
7992
7993         apic_base_msr.data = sregs->apic_base;
7994         apic_base_msr.host_initiated = true;
7995         if (kvm_set_apic_base(vcpu, &apic_base_msr))
7996                 goto out;
7997
7998         dt.size = sregs->idt.limit;
7999         dt.address = sregs->idt.base;
8000         kvm_x86_ops->set_idt(vcpu, &dt);
8001         dt.size = sregs->gdt.limit;
8002         dt.address = sregs->gdt.base;
8003         kvm_x86_ops->set_gdt(vcpu, &dt);
8004
8005         vcpu->arch.cr2 = sregs->cr2;
8006         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8007         vcpu->arch.cr3 = sregs->cr3;
8008         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8009
8010         kvm_set_cr8(vcpu, sregs->cr8);
8011
8012         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8013         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8014
8015         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8016         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8017         vcpu->arch.cr0 = sregs->cr0;
8018
8019         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8020         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8021         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
8022                 kvm_update_cpuid(vcpu);
8023
8024         idx = srcu_read_lock(&vcpu->kvm->srcu);
8025         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
8026                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8027                 mmu_reset_needed = 1;
8028         }
8029         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8030
8031         if (mmu_reset_needed)
8032                 kvm_mmu_reset_context(vcpu);
8033
8034         max_bits = KVM_NR_INTERRUPTS;
8035         pending_vec = find_first_bit(
8036                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8037         if (pending_vec < max_bits) {
8038                 kvm_queue_interrupt(vcpu, pending_vec, false);
8039                 pr_debug("Set back pending irq %d\n", pending_vec);
8040         }
8041
8042         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8043         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8044         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8045         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8046         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8047         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8048
8049         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8050         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8051
8052         update_cr8_intercept(vcpu);
8053
8054         /* Older userspace won't unhalt the vcpu on reset. */
8055         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8056             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8057             !is_protmode(vcpu))
8058                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8059
8060         kvm_make_request(KVM_REQ_EVENT, vcpu);
8061
8062         ret = 0;
8063 out:
8064         return ret;
8065 }
8066
8067 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8068                                   struct kvm_sregs *sregs)
8069 {
8070         int ret;
8071
8072         vcpu_load(vcpu);
8073         ret = __set_sregs(vcpu, sregs);
8074         vcpu_put(vcpu);
8075         return ret;
8076 }
8077
8078 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8079                                         struct kvm_guest_debug *dbg)
8080 {
8081         unsigned long rflags;
8082         int i, r;
8083
8084         vcpu_load(vcpu);
8085
8086         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8087                 r = -EBUSY;
8088                 if (vcpu->arch.exception.pending)
8089                         goto out;
8090                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8091                         kvm_queue_exception(vcpu, DB_VECTOR);
8092                 else
8093                         kvm_queue_exception(vcpu, BP_VECTOR);
8094         }
8095
8096         /*
8097          * Read rflags as long as potentially injected trace flags are still
8098          * filtered out.
8099          */
8100         rflags = kvm_get_rflags(vcpu);
8101
8102         vcpu->guest_debug = dbg->control;
8103         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8104                 vcpu->guest_debug = 0;
8105
8106         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8107                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8108                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8109                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8110         } else {
8111                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8112                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8113         }
8114         kvm_update_dr7(vcpu);
8115
8116         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8117                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8118                         get_segment_base(vcpu, VCPU_SREG_CS);
8119
8120         /*
8121          * Trigger an rflags update that will inject or remove the trace
8122          * flags.
8123          */
8124         kvm_set_rflags(vcpu, rflags);
8125
8126         kvm_x86_ops->update_bp_intercept(vcpu);
8127
8128         r = 0;
8129
8130 out:
8131         vcpu_put(vcpu);
8132         return r;
8133 }
8134
8135 /*
8136  * Translate a guest virtual address to a guest physical address.
8137  */
8138 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8139                                     struct kvm_translation *tr)
8140 {
8141         unsigned long vaddr = tr->linear_address;
8142         gpa_t gpa;
8143         int idx;
8144
8145         vcpu_load(vcpu);
8146
8147         idx = srcu_read_lock(&vcpu->kvm->srcu);
8148         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8149         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8150         tr->physical_address = gpa;
8151         tr->valid = gpa != UNMAPPED_GVA;
8152         tr->writeable = 1;
8153         tr->usermode = 0;
8154
8155         vcpu_put(vcpu);
8156         return 0;
8157 }
8158
8159 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8160 {
8161         struct fxregs_state *fxsave;
8162
8163         vcpu_load(vcpu);
8164
8165         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8166         memcpy(fpu->fpr, fxsave->st_space, 128);
8167         fpu->fcw = fxsave->cwd;
8168         fpu->fsw = fxsave->swd;
8169         fpu->ftwx = fxsave->twd;
8170         fpu->last_opcode = fxsave->fop;
8171         fpu->last_ip = fxsave->rip;
8172         fpu->last_dp = fxsave->rdp;
8173         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8174
8175         vcpu_put(vcpu);
8176         return 0;
8177 }
8178
8179 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8180 {
8181         struct fxregs_state *fxsave;
8182
8183         vcpu_load(vcpu);
8184
8185         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8186
8187         memcpy(fxsave->st_space, fpu->fpr, 128);
8188         fxsave->cwd = fpu->fcw;
8189         fxsave->swd = fpu->fsw;
8190         fxsave->twd = fpu->ftwx;
8191         fxsave->fop = fpu->last_opcode;
8192         fxsave->rip = fpu->last_ip;
8193         fxsave->rdp = fpu->last_dp;
8194         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8195
8196         vcpu_put(vcpu);
8197         return 0;
8198 }
8199
8200 static void store_regs(struct kvm_vcpu *vcpu)
8201 {
8202         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8203
8204         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8205                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8206
8207         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8208                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8209
8210         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8211                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8212                                 vcpu, &vcpu->run->s.regs.events);
8213 }
8214
8215 static int sync_regs(struct kvm_vcpu *vcpu)
8216 {
8217         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8218                 return -EINVAL;
8219
8220         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8221                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8222                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8223         }
8224         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8225                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8226                         return -EINVAL;
8227                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8228         }
8229         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8230                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8231                                 vcpu, &vcpu->run->s.regs.events))
8232                         return -EINVAL;
8233                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8234         }
8235
8236         return 0;
8237 }
8238
8239 static void fx_init(struct kvm_vcpu *vcpu)
8240 {
8241         fpstate_init(&vcpu->arch.guest_fpu.state);
8242         if (boot_cpu_has(X86_FEATURE_XSAVES))
8243                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8244                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8245
8246         /*
8247          * Ensure guest xcr0 is valid for loading
8248          */
8249         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8250
8251         vcpu->arch.cr0 |= X86_CR0_ET;
8252 }
8253
8254 /* Swap (qemu) user FPU context for the guest FPU context. */
8255 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8256 {
8257         preempt_disable();
8258         copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
8259         /* PKRU is separately restored in kvm_x86_ops->run.  */
8260         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8261                                 ~XFEATURE_MASK_PKRU);
8262         preempt_enable();
8263         trace_kvm_fpu(1);
8264 }
8265
8266 /* When vcpu_run ends, restore user space FPU context. */
8267 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8268 {
8269         preempt_disable();
8270         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8271         copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8272         preempt_enable();
8273         ++vcpu->stat.fpu_reload;
8274         trace_kvm_fpu(0);
8275 }
8276
8277 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8278 {
8279         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8280
8281         kvmclock_reset(vcpu);
8282
8283         kvm_x86_ops->vcpu_free(vcpu);
8284         free_cpumask_var(wbinvd_dirty_mask);
8285 }
8286
8287 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8288                                                 unsigned int id)
8289 {
8290         struct kvm_vcpu *vcpu;
8291
8292         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8293                 printk_once(KERN_WARNING
8294                 "kvm: SMP vm created on host with unstable TSC; "
8295                 "guest TSC will not be reliable\n");
8296
8297         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8298
8299         return vcpu;
8300 }
8301
8302 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8303 {
8304         kvm_vcpu_mtrr_init(vcpu);
8305         vcpu_load(vcpu);
8306         kvm_vcpu_reset(vcpu, false);
8307         kvm_mmu_setup(vcpu);
8308         vcpu_put(vcpu);
8309         return 0;
8310 }
8311
8312 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8313 {
8314         struct msr_data msr;
8315         struct kvm *kvm = vcpu->kvm;
8316
8317         kvm_hv_vcpu_postcreate(vcpu);
8318
8319         if (mutex_lock_killable(&vcpu->mutex))
8320                 return;
8321         vcpu_load(vcpu);
8322         msr.data = 0x0;
8323         msr.index = MSR_IA32_TSC;
8324         msr.host_initiated = true;
8325         kvm_write_tsc(vcpu, &msr);
8326         vcpu_put(vcpu);
8327         mutex_unlock(&vcpu->mutex);
8328
8329         if (!kvmclock_periodic_sync)
8330                 return;
8331
8332         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8333                                         KVMCLOCK_SYNC_PERIOD);
8334 }
8335
8336 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8337 {
8338         vcpu->arch.apf.msr_val = 0;
8339
8340         vcpu_load(vcpu);
8341         kvm_mmu_unload(vcpu);
8342         vcpu_put(vcpu);
8343
8344         kvm_x86_ops->vcpu_free(vcpu);
8345 }
8346
8347 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8348 {
8349         kvm_lapic_reset(vcpu, init_event);
8350
8351         vcpu->arch.hflags = 0;
8352
8353         vcpu->arch.smi_pending = 0;
8354         vcpu->arch.smi_count = 0;
8355         atomic_set(&vcpu->arch.nmi_queued, 0);
8356         vcpu->arch.nmi_pending = 0;
8357         vcpu->arch.nmi_injected = false;
8358         kvm_clear_interrupt_queue(vcpu);
8359         kvm_clear_exception_queue(vcpu);
8360         vcpu->arch.exception.pending = false;
8361
8362         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8363         kvm_update_dr0123(vcpu);
8364         vcpu->arch.dr6 = DR6_INIT;
8365         kvm_update_dr6(vcpu);
8366         vcpu->arch.dr7 = DR7_FIXED_1;
8367         kvm_update_dr7(vcpu);
8368
8369         vcpu->arch.cr2 = 0;
8370
8371         kvm_make_request(KVM_REQ_EVENT, vcpu);
8372         vcpu->arch.apf.msr_val = 0;
8373         vcpu->arch.st.msr_val = 0;
8374
8375         kvmclock_reset(vcpu);
8376
8377         kvm_clear_async_pf_completion_queue(vcpu);
8378         kvm_async_pf_hash_reset(vcpu);
8379         vcpu->arch.apf.halted = false;
8380
8381         if (kvm_mpx_supported()) {
8382                 void *mpx_state_buffer;
8383
8384                 /*
8385                  * To avoid have the INIT path from kvm_apic_has_events() that be
8386                  * called with loaded FPU and does not let userspace fix the state.
8387                  */
8388                 if (init_event)
8389                         kvm_put_guest_fpu(vcpu);
8390                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8391                                         XFEATURE_MASK_BNDREGS);
8392                 if (mpx_state_buffer)
8393                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8394                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8395                                         XFEATURE_MASK_BNDCSR);
8396                 if (mpx_state_buffer)
8397                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8398                 if (init_event)
8399                         kvm_load_guest_fpu(vcpu);
8400         }
8401
8402         if (!init_event) {
8403                 kvm_pmu_reset(vcpu);
8404                 vcpu->arch.smbase = 0x30000;
8405
8406                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8407                 vcpu->arch.msr_misc_features_enables = 0;
8408
8409                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8410         }
8411
8412         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8413         vcpu->arch.regs_avail = ~0;
8414         vcpu->arch.regs_dirty = ~0;
8415
8416         vcpu->arch.ia32_xss = 0;
8417
8418         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8419 }
8420
8421 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8422 {
8423         struct kvm_segment cs;
8424
8425         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8426         cs.selector = vector << 8;
8427         cs.base = vector << 12;
8428         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8429         kvm_rip_write(vcpu, 0);
8430 }
8431
8432 int kvm_arch_hardware_enable(void)
8433 {
8434         struct kvm *kvm;
8435         struct kvm_vcpu *vcpu;
8436         int i;
8437         int ret;
8438         u64 local_tsc;
8439         u64 max_tsc = 0;
8440         bool stable, backwards_tsc = false;
8441
8442         kvm_shared_msr_cpu_online();
8443         ret = kvm_x86_ops->hardware_enable();
8444         if (ret != 0)
8445                 return ret;
8446
8447         local_tsc = rdtsc();
8448         stable = !kvm_check_tsc_unstable();
8449         list_for_each_entry(kvm, &vm_list, vm_list) {
8450                 kvm_for_each_vcpu(i, vcpu, kvm) {
8451                         if (!stable && vcpu->cpu == smp_processor_id())
8452                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8453                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8454                                 backwards_tsc = true;
8455                                 if (vcpu->arch.last_host_tsc > max_tsc)
8456                                         max_tsc = vcpu->arch.last_host_tsc;
8457                         }
8458                 }
8459         }
8460
8461         /*
8462          * Sometimes, even reliable TSCs go backwards.  This happens on
8463          * platforms that reset TSC during suspend or hibernate actions, but
8464          * maintain synchronization.  We must compensate.  Fortunately, we can
8465          * detect that condition here, which happens early in CPU bringup,
8466          * before any KVM threads can be running.  Unfortunately, we can't
8467          * bring the TSCs fully up to date with real time, as we aren't yet far
8468          * enough into CPU bringup that we know how much real time has actually
8469          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8470          * variables that haven't been updated yet.
8471          *
8472          * So we simply find the maximum observed TSC above, then record the
8473          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8474          * the adjustment will be applied.  Note that we accumulate
8475          * adjustments, in case multiple suspend cycles happen before some VCPU
8476          * gets a chance to run again.  In the event that no KVM threads get a
8477          * chance to run, we will miss the entire elapsed period, as we'll have
8478          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8479          * loose cycle time.  This isn't too big a deal, since the loss will be
8480          * uniform across all VCPUs (not to mention the scenario is extremely
8481          * unlikely). It is possible that a second hibernate recovery happens
8482          * much faster than a first, causing the observed TSC here to be
8483          * smaller; this would require additional padding adjustment, which is
8484          * why we set last_host_tsc to the local tsc observed here.
8485          *
8486          * N.B. - this code below runs only on platforms with reliable TSC,
8487          * as that is the only way backwards_tsc is set above.  Also note
8488          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8489          * have the same delta_cyc adjustment applied if backwards_tsc
8490          * is detected.  Note further, this adjustment is only done once,
8491          * as we reset last_host_tsc on all VCPUs to stop this from being
8492          * called multiple times (one for each physical CPU bringup).
8493          *
8494          * Platforms with unreliable TSCs don't have to deal with this, they
8495          * will be compensated by the logic in vcpu_load, which sets the TSC to
8496          * catchup mode.  This will catchup all VCPUs to real time, but cannot
8497          * guarantee that they stay in perfect synchronization.
8498          */
8499         if (backwards_tsc) {
8500                 u64 delta_cyc = max_tsc - local_tsc;
8501                 list_for_each_entry(kvm, &vm_list, vm_list) {
8502                         kvm->arch.backwards_tsc_observed = true;
8503                         kvm_for_each_vcpu(i, vcpu, kvm) {
8504                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8505                                 vcpu->arch.last_host_tsc = local_tsc;
8506                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8507                         }
8508
8509                         /*
8510                          * We have to disable TSC offset matching.. if you were
8511                          * booting a VM while issuing an S4 host suspend....
8512                          * you may have some problem.  Solving this issue is
8513                          * left as an exercise to the reader.
8514                          */
8515                         kvm->arch.last_tsc_nsec = 0;
8516                         kvm->arch.last_tsc_write = 0;
8517                 }
8518
8519         }
8520         return 0;
8521 }
8522
8523 void kvm_arch_hardware_disable(void)
8524 {
8525         kvm_x86_ops->hardware_disable();
8526         drop_user_return_notifiers();
8527 }
8528
8529 int kvm_arch_hardware_setup(void)
8530 {
8531         int r;
8532
8533         r = kvm_x86_ops->hardware_setup();
8534         if (r != 0)
8535                 return r;
8536
8537         if (kvm_has_tsc_control) {
8538                 /*
8539                  * Make sure the user can only configure tsc_khz values that
8540                  * fit into a signed integer.
8541                  * A min value is not calculated needed because it will always
8542                  * be 1 on all machines.
8543                  */
8544                 u64 max = min(0x7fffffffULL,
8545                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8546                 kvm_max_guest_tsc_khz = max;
8547
8548                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8549         }
8550
8551         kvm_init_msr_list();
8552         return 0;
8553 }
8554
8555 void kvm_arch_hardware_unsetup(void)
8556 {
8557         kvm_x86_ops->hardware_unsetup();
8558 }
8559
8560 void kvm_arch_check_processor_compat(void *rtn)
8561 {
8562         kvm_x86_ops->check_processor_compatibility(rtn);
8563 }
8564
8565 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8566 {
8567         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8568 }
8569 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8570
8571 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8572 {
8573         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8574 }
8575
8576 struct static_key kvm_no_apic_vcpu __read_mostly;
8577 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8578
8579 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8580 {
8581         struct page *page;
8582         int r;
8583
8584         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8585         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8586         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8587                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8588         else
8589                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8590
8591         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8592         if (!page) {
8593                 r = -ENOMEM;
8594                 goto fail;
8595         }
8596         vcpu->arch.pio_data = page_address(page);
8597
8598         kvm_set_tsc_khz(vcpu, max_tsc_khz);
8599
8600         r = kvm_mmu_create(vcpu);
8601         if (r < 0)
8602                 goto fail_free_pio_data;
8603
8604         if (irqchip_in_kernel(vcpu->kvm)) {
8605                 r = kvm_create_lapic(vcpu);
8606                 if (r < 0)
8607                         goto fail_mmu_destroy;
8608         } else
8609                 static_key_slow_inc(&kvm_no_apic_vcpu);
8610
8611         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8612                                        GFP_KERNEL);
8613         if (!vcpu->arch.mce_banks) {
8614                 r = -ENOMEM;
8615                 goto fail_free_lapic;
8616         }
8617         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8618
8619         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8620                 r = -ENOMEM;
8621                 goto fail_free_mce_banks;
8622         }
8623
8624         fx_init(vcpu);
8625
8626         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8627
8628         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8629
8630         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8631
8632         kvm_async_pf_hash_reset(vcpu);
8633         kvm_pmu_init(vcpu);
8634
8635         vcpu->arch.pending_external_vector = -1;
8636         vcpu->arch.preempted_in_kernel = false;
8637
8638         kvm_hv_vcpu_init(vcpu);
8639
8640         return 0;
8641
8642 fail_free_mce_banks:
8643         kfree(vcpu->arch.mce_banks);
8644 fail_free_lapic:
8645         kvm_free_lapic(vcpu);
8646 fail_mmu_destroy:
8647         kvm_mmu_destroy(vcpu);
8648 fail_free_pio_data:
8649         free_page((unsigned long)vcpu->arch.pio_data);
8650 fail:
8651         return r;
8652 }
8653
8654 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8655 {
8656         int idx;
8657
8658         kvm_hv_vcpu_uninit(vcpu);
8659         kvm_pmu_destroy(vcpu);
8660         kfree(vcpu->arch.mce_banks);
8661         kvm_free_lapic(vcpu);
8662         idx = srcu_read_lock(&vcpu->kvm->srcu);
8663         kvm_mmu_destroy(vcpu);
8664         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8665         free_page((unsigned long)vcpu->arch.pio_data);
8666         if (!lapic_in_kernel(vcpu))
8667                 static_key_slow_dec(&kvm_no_apic_vcpu);
8668 }
8669
8670 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8671 {
8672         kvm_x86_ops->sched_in(vcpu, cpu);
8673 }
8674
8675 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8676 {
8677         if (type)
8678                 return -EINVAL;
8679
8680         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8681         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8682         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8683         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8684         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8685
8686         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8687         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8688         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8689         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8690                 &kvm->arch.irq_sources_bitmap);
8691
8692         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8693         mutex_init(&kvm->arch.apic_map_lock);
8694         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8695
8696         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8697         pvclock_update_vm_gtod_copy(kvm);
8698
8699         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8700         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8701
8702         kvm_hv_init_vm(kvm);
8703         kvm_page_track_init(kvm);
8704         kvm_mmu_init_vm(kvm);
8705
8706         if (kvm_x86_ops->vm_init)
8707                 return kvm_x86_ops->vm_init(kvm);
8708
8709         return 0;
8710 }
8711
8712 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8713 {
8714         vcpu_load(vcpu);
8715         kvm_mmu_unload(vcpu);
8716         vcpu_put(vcpu);
8717 }
8718
8719 static void kvm_free_vcpus(struct kvm *kvm)
8720 {
8721         unsigned int i;
8722         struct kvm_vcpu *vcpu;
8723
8724         /*
8725          * Unpin any mmu pages first.
8726          */
8727         kvm_for_each_vcpu(i, vcpu, kvm) {
8728                 kvm_clear_async_pf_completion_queue(vcpu);
8729                 kvm_unload_vcpu_mmu(vcpu);
8730         }
8731         kvm_for_each_vcpu(i, vcpu, kvm)
8732                 kvm_arch_vcpu_free(vcpu);
8733
8734         mutex_lock(&kvm->lock);
8735         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8736                 kvm->vcpus[i] = NULL;
8737
8738         atomic_set(&kvm->online_vcpus, 0);
8739         mutex_unlock(&kvm->lock);
8740 }
8741
8742 void kvm_arch_sync_events(struct kvm *kvm)
8743 {
8744         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8745         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8746         kvm_free_pit(kvm);
8747 }
8748
8749 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8750 {
8751         int i, r;
8752         unsigned long hva;
8753         struct kvm_memslots *slots = kvm_memslots(kvm);
8754         struct kvm_memory_slot *slot, old;
8755
8756         /* Called with kvm->slots_lock held.  */
8757         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8758                 return -EINVAL;
8759
8760         slot = id_to_memslot(slots, id);
8761         if (size) {
8762                 if (slot->npages)
8763                         return -EEXIST;
8764
8765                 /*
8766                  * MAP_SHARED to prevent internal slot pages from being moved
8767                  * by fork()/COW.
8768                  */
8769                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8770                               MAP_SHARED | MAP_ANONYMOUS, 0);
8771                 if (IS_ERR((void *)hva))
8772                         return PTR_ERR((void *)hva);
8773         } else {
8774                 if (!slot->npages)
8775                         return 0;
8776
8777                 hva = 0;
8778         }
8779
8780         old = *slot;
8781         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8782                 struct kvm_userspace_memory_region m;
8783
8784                 m.slot = id | (i << 16);
8785                 m.flags = 0;
8786                 m.guest_phys_addr = gpa;
8787                 m.userspace_addr = hva;
8788                 m.memory_size = size;
8789                 r = __kvm_set_memory_region(kvm, &m);
8790                 if (r < 0)
8791                         return r;
8792         }
8793
8794         if (!size)
8795                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8796
8797         return 0;
8798 }
8799 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8800
8801 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8802 {
8803         int r;
8804
8805         mutex_lock(&kvm->slots_lock);
8806         r = __x86_set_memory_region(kvm, id, gpa, size);
8807         mutex_unlock(&kvm->slots_lock);
8808
8809         return r;
8810 }
8811 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8812
8813 void kvm_arch_destroy_vm(struct kvm *kvm)
8814 {
8815         if (current->mm == kvm->mm) {
8816                 /*
8817                  * Free memory regions allocated on behalf of userspace,
8818                  * unless the the memory map has changed due to process exit
8819                  * or fd copying.
8820                  */
8821                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8822                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8823                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8824         }
8825         if (kvm_x86_ops->vm_destroy)
8826                 kvm_x86_ops->vm_destroy(kvm);
8827         kvm_pic_destroy(kvm);
8828         kvm_ioapic_destroy(kvm);
8829         kvm_free_vcpus(kvm);
8830         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8831         kvm_mmu_uninit_vm(kvm);
8832         kvm_page_track_cleanup(kvm);
8833         kvm_hv_destroy_vm(kvm);
8834 }
8835
8836 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8837                            struct kvm_memory_slot *dont)
8838 {
8839         int i;
8840
8841         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8842                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8843                         kvfree(free->arch.rmap[i]);
8844                         free->arch.rmap[i] = NULL;
8845                 }
8846                 if (i == 0)
8847                         continue;
8848
8849                 if (!dont || free->arch.lpage_info[i - 1] !=
8850                              dont->arch.lpage_info[i - 1]) {
8851                         kvfree(free->arch.lpage_info[i - 1]);
8852                         free->arch.lpage_info[i - 1] = NULL;
8853                 }
8854         }
8855
8856         kvm_page_track_free_memslot(free, dont);
8857 }
8858
8859 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8860                             unsigned long npages)
8861 {
8862         int i;
8863
8864         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8865                 struct kvm_lpage_info *linfo;
8866                 unsigned long ugfn;
8867                 int lpages;
8868                 int level = i + 1;
8869
8870                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8871                                       slot->base_gfn, level) + 1;
8872
8873                 slot->arch.rmap[i] =
8874                         kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8875                 if (!slot->arch.rmap[i])
8876                         goto out_free;
8877                 if (i == 0)
8878                         continue;
8879
8880                 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8881                 if (!linfo)
8882                         goto out_free;
8883
8884                 slot->arch.lpage_info[i - 1] = linfo;
8885
8886                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8887                         linfo[0].disallow_lpage = 1;
8888                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8889                         linfo[lpages - 1].disallow_lpage = 1;
8890                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8891                 /*
8892                  * If the gfn and userspace address are not aligned wrt each
8893                  * other, or if explicitly asked to, disable large page
8894                  * support for this slot
8895                  */
8896                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8897                     !kvm_largepages_enabled()) {
8898                         unsigned long j;
8899
8900                         for (j = 0; j < lpages; ++j)
8901                                 linfo[j].disallow_lpage = 1;
8902                 }
8903         }
8904
8905         if (kvm_page_track_create_memslot(slot, npages))
8906                 goto out_free;
8907
8908         return 0;
8909
8910 out_free:
8911         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8912                 kvfree(slot->arch.rmap[i]);
8913                 slot->arch.rmap[i] = NULL;
8914                 if (i == 0)
8915                         continue;
8916
8917                 kvfree(slot->arch.lpage_info[i - 1]);
8918                 slot->arch.lpage_info[i - 1] = NULL;
8919         }
8920         return -ENOMEM;
8921 }
8922
8923 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8924 {
8925         /*
8926          * memslots->generation has been incremented.
8927          * mmio generation may have reached its maximum value.
8928          */
8929         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8930 }
8931
8932 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8933                                 struct kvm_memory_slot *memslot,
8934                                 const struct kvm_userspace_memory_region *mem,
8935                                 enum kvm_mr_change change)
8936 {
8937         return 0;
8938 }
8939
8940 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8941                                      struct kvm_memory_slot *new)
8942 {
8943         /* Still write protect RO slot */
8944         if (new->flags & KVM_MEM_READONLY) {
8945                 kvm_mmu_slot_remove_write_access(kvm, new);
8946                 return;
8947         }
8948
8949         /*
8950          * Call kvm_x86_ops dirty logging hooks when they are valid.
8951          *
8952          * kvm_x86_ops->slot_disable_log_dirty is called when:
8953          *
8954          *  - KVM_MR_CREATE with dirty logging is disabled
8955          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8956          *
8957          * The reason is, in case of PML, we need to set D-bit for any slots
8958          * with dirty logging disabled in order to eliminate unnecessary GPA
8959          * logging in PML buffer (and potential PML buffer full VMEXT). This
8960          * guarantees leaving PML enabled during guest's lifetime won't have
8961          * any additonal overhead from PML when guest is running with dirty
8962          * logging disabled for memory slots.
8963          *
8964          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8965          * to dirty logging mode.
8966          *
8967          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8968          *
8969          * In case of write protect:
8970          *
8971          * Write protect all pages for dirty logging.
8972          *
8973          * All the sptes including the large sptes which point to this
8974          * slot are set to readonly. We can not create any new large
8975          * spte on this slot until the end of the logging.
8976          *
8977          * See the comments in fast_page_fault().
8978          */
8979         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8980                 if (kvm_x86_ops->slot_enable_log_dirty)
8981                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8982                 else
8983                         kvm_mmu_slot_remove_write_access(kvm, new);
8984         } else {
8985                 if (kvm_x86_ops->slot_disable_log_dirty)
8986                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8987         }
8988 }
8989
8990 void kvm_arch_commit_memory_region(struct kvm *kvm,
8991                                 const struct kvm_userspace_memory_region *mem,
8992                                 const struct kvm_memory_slot *old,
8993                                 const struct kvm_memory_slot *new,
8994                                 enum kvm_mr_change change)
8995 {
8996         int nr_mmu_pages = 0;
8997
8998         if (!kvm->arch.n_requested_mmu_pages)
8999                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9000
9001         if (nr_mmu_pages)
9002                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9003
9004         /*
9005          * Dirty logging tracks sptes in 4k granularity, meaning that large
9006          * sptes have to be split.  If live migration is successful, the guest
9007          * in the source machine will be destroyed and large sptes will be
9008          * created in the destination. However, if the guest continues to run
9009          * in the source machine (for example if live migration fails), small
9010          * sptes will remain around and cause bad performance.
9011          *
9012          * Scan sptes if dirty logging has been stopped, dropping those
9013          * which can be collapsed into a single large-page spte.  Later
9014          * page faults will create the large-page sptes.
9015          */
9016         if ((change != KVM_MR_DELETE) &&
9017                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9018                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9019                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9020
9021         /*
9022          * Set up write protection and/or dirty logging for the new slot.
9023          *
9024          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9025          * been zapped so no dirty logging staff is needed for old slot. For
9026          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9027          * new and it's also covered when dealing with the new slot.
9028          *
9029          * FIXME: const-ify all uses of struct kvm_memory_slot.
9030          */
9031         if (change != KVM_MR_DELETE)
9032                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9033 }
9034
9035 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9036 {
9037         kvm_mmu_invalidate_zap_all_pages(kvm);
9038 }
9039
9040 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9041                                    struct kvm_memory_slot *slot)
9042 {
9043         kvm_page_track_flush_slot(kvm, slot);
9044 }
9045
9046 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9047 {
9048         if (!list_empty_careful(&vcpu->async_pf.done))
9049                 return true;
9050
9051         if (kvm_apic_has_events(vcpu))
9052                 return true;
9053
9054         if (vcpu->arch.pv.pv_unhalted)
9055                 return true;
9056
9057         if (vcpu->arch.exception.pending)
9058                 return true;
9059
9060         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9061             (vcpu->arch.nmi_pending &&
9062              kvm_x86_ops->nmi_allowed(vcpu)))
9063                 return true;
9064
9065         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9066             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9067                 return true;
9068
9069         if (kvm_arch_interrupt_allowed(vcpu) &&
9070             kvm_cpu_has_interrupt(vcpu))
9071                 return true;
9072
9073         if (kvm_hv_has_stimer_pending(vcpu))
9074                 return true;
9075
9076         return false;
9077 }
9078
9079 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9080 {
9081         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9082 }
9083
9084 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9085 {
9086         return vcpu->arch.preempted_in_kernel;
9087 }
9088
9089 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9090 {
9091         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9092 }
9093
9094 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9095 {
9096         return kvm_x86_ops->interrupt_allowed(vcpu);
9097 }
9098
9099 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9100 {
9101         if (is_64_bit_mode(vcpu))
9102                 return kvm_rip_read(vcpu);
9103         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9104                      kvm_rip_read(vcpu));
9105 }
9106 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9107
9108 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9109 {
9110         return kvm_get_linear_rip(vcpu) == linear_rip;
9111 }
9112 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9113
9114 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9115 {
9116         unsigned long rflags;
9117
9118         rflags = kvm_x86_ops->get_rflags(vcpu);
9119         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9120                 rflags &= ~X86_EFLAGS_TF;
9121         return rflags;
9122 }
9123 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9124
9125 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9126 {
9127         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9128             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9129                 rflags |= X86_EFLAGS_TF;
9130         kvm_x86_ops->set_rflags(vcpu, rflags);
9131 }
9132
9133 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9134 {
9135         __kvm_set_rflags(vcpu, rflags);
9136         kvm_make_request(KVM_REQ_EVENT, vcpu);
9137 }
9138 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9139
9140 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9141 {
9142         int r;
9143
9144         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
9145               work->wakeup_all)
9146                 return;
9147
9148         r = kvm_mmu_reload(vcpu);
9149         if (unlikely(r))
9150                 return;
9151
9152         if (!vcpu->arch.mmu.direct_map &&
9153               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
9154                 return;
9155
9156         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
9157 }
9158
9159 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9160 {
9161         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9162 }
9163
9164 static inline u32 kvm_async_pf_next_probe(u32 key)
9165 {
9166         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9167 }
9168
9169 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9170 {
9171         u32 key = kvm_async_pf_hash_fn(gfn);
9172
9173         while (vcpu->arch.apf.gfns[key] != ~0)
9174                 key = kvm_async_pf_next_probe(key);
9175
9176         vcpu->arch.apf.gfns[key] = gfn;
9177 }
9178
9179 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9180 {
9181         int i;
9182         u32 key = kvm_async_pf_hash_fn(gfn);
9183
9184         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9185                      (vcpu->arch.apf.gfns[key] != gfn &&
9186                       vcpu->arch.apf.gfns[key] != ~0); i++)
9187                 key = kvm_async_pf_next_probe(key);
9188
9189         return key;
9190 }
9191
9192 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9193 {
9194         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9195 }
9196
9197 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9198 {
9199         u32 i, j, k;
9200
9201         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9202         while (true) {
9203                 vcpu->arch.apf.gfns[i] = ~0;
9204                 do {
9205                         j = kvm_async_pf_next_probe(j);
9206                         if (vcpu->arch.apf.gfns[j] == ~0)
9207                                 return;
9208                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9209                         /*
9210                          * k lies cyclically in ]i,j]
9211                          * |    i.k.j |
9212                          * |....j i.k.| or  |.k..j i...|
9213                          */
9214                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9215                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9216                 i = j;
9217         }
9218 }
9219
9220 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9221 {
9222
9223         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9224                                       sizeof(val));
9225 }
9226
9227 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9228 {
9229
9230         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9231                                       sizeof(u32));
9232 }
9233
9234 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9235                                      struct kvm_async_pf *work)
9236 {
9237         struct x86_exception fault;
9238
9239         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9240         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9241
9242         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9243             (vcpu->arch.apf.send_user_only &&
9244              kvm_x86_ops->get_cpl(vcpu) == 0))
9245                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9246         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9247                 fault.vector = PF_VECTOR;
9248                 fault.error_code_valid = true;
9249                 fault.error_code = 0;
9250                 fault.nested_page_fault = false;
9251                 fault.address = work->arch.token;
9252                 fault.async_page_fault = true;
9253                 kvm_inject_page_fault(vcpu, &fault);
9254         }
9255 }
9256
9257 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9258                                  struct kvm_async_pf *work)
9259 {
9260         struct x86_exception fault;
9261         u32 val;
9262
9263         if (work->wakeup_all)
9264                 work->arch.token = ~0; /* broadcast wakeup */
9265         else
9266                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9267         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9268
9269         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9270             !apf_get_user(vcpu, &val)) {
9271                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9272                     vcpu->arch.exception.pending &&
9273                     vcpu->arch.exception.nr == PF_VECTOR &&
9274                     !apf_put_user(vcpu, 0)) {
9275                         vcpu->arch.exception.injected = false;
9276                         vcpu->arch.exception.pending = false;
9277                         vcpu->arch.exception.nr = 0;
9278                         vcpu->arch.exception.has_error_code = false;
9279                         vcpu->arch.exception.error_code = 0;
9280                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9281                         fault.vector = PF_VECTOR;
9282                         fault.error_code_valid = true;
9283                         fault.error_code = 0;
9284                         fault.nested_page_fault = false;
9285                         fault.address = work->arch.token;
9286                         fault.async_page_fault = true;
9287                         kvm_inject_page_fault(vcpu, &fault);
9288                 }
9289         }
9290         vcpu->arch.apf.halted = false;
9291         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9292 }
9293
9294 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9295 {
9296         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9297                 return true;
9298         else
9299                 return kvm_can_do_async_pf(vcpu);
9300 }
9301
9302 void kvm_arch_start_assignment(struct kvm *kvm)
9303 {
9304         atomic_inc(&kvm->arch.assigned_device_count);
9305 }
9306 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9307
9308 void kvm_arch_end_assignment(struct kvm *kvm)
9309 {
9310         atomic_dec(&kvm->arch.assigned_device_count);
9311 }
9312 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9313
9314 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9315 {
9316         return atomic_read(&kvm->arch.assigned_device_count);
9317 }
9318 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9319
9320 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9321 {
9322         atomic_inc(&kvm->arch.noncoherent_dma_count);
9323 }
9324 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9325
9326 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9327 {
9328         atomic_dec(&kvm->arch.noncoherent_dma_count);
9329 }
9330 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9331
9332 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9333 {
9334         return atomic_read(&kvm->arch.noncoherent_dma_count);
9335 }
9336 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9337
9338 bool kvm_arch_has_irq_bypass(void)
9339 {
9340         return kvm_x86_ops->update_pi_irte != NULL;
9341 }
9342
9343 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9344                                       struct irq_bypass_producer *prod)
9345 {
9346         struct kvm_kernel_irqfd *irqfd =
9347                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9348
9349         irqfd->producer = prod;
9350
9351         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9352                                            prod->irq, irqfd->gsi, 1);
9353 }
9354
9355 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9356                                       struct irq_bypass_producer *prod)
9357 {
9358         int ret;
9359         struct kvm_kernel_irqfd *irqfd =
9360                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9361
9362         WARN_ON(irqfd->producer != prod);
9363         irqfd->producer = NULL;
9364
9365         /*
9366          * When producer of consumer is unregistered, we change back to
9367          * remapped mode, so we can re-use the current implementation
9368          * when the irq is masked/disabled or the consumer side (KVM
9369          * int this case doesn't want to receive the interrupts.
9370         */
9371         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9372         if (ret)
9373                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9374                        " fails: %d\n", irqfd->consumer.token, ret);
9375 }
9376
9377 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9378                                    uint32_t guest_irq, bool set)
9379 {
9380         if (!kvm_x86_ops->update_pi_irte)
9381                 return -EINVAL;
9382
9383         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9384 }
9385
9386 bool kvm_vector_hashing_enabled(void)
9387 {
9388         return vector_hashing;
9389 }
9390 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9391
9392 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9393 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9394 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9395 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9396 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9397 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9398 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9399 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9400 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9401 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9402 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9403 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9404 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9405 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);