2ad8c97f58cc9f44ee9dfab4cf86cb2499983c0a
[linux-2.6-block.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/msr.h>
43 #include <asm/desc.h>
44 #include <asm/mtrr.h>
45 #include <asm/mce.h>
46
47 #define MAX_IO_MSRS 256
48 #define CR0_RESERVED_BITS                                               \
49         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
50                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
51                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
52 #define CR4_RESERVED_BITS                                               \
53         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
54                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
55                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
56                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
57
58 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
59
60 #define KVM_MAX_MCE_BANKS 32
61 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
62
63 /* EFER defaults:
64  * - enable syscall per default because its emulated by KVM
65  * - enable LME and LMA per default on 64 bit KVM
66  */
67 #ifdef CONFIG_X86_64
68 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
69 #else
70 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
71 #endif
72
73 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
74 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
75
76 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
77                                     struct kvm_cpuid_entry2 __user *entries);
78 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
79                                               u32 function, u32 index);
80
81 struct kvm_x86_ops *kvm_x86_ops;
82 EXPORT_SYMBOL_GPL(kvm_x86_ops);
83
84 struct kvm_stats_debugfs_item debugfs_entries[] = {
85         { "pf_fixed", VCPU_STAT(pf_fixed) },
86         { "pf_guest", VCPU_STAT(pf_guest) },
87         { "tlb_flush", VCPU_STAT(tlb_flush) },
88         { "invlpg", VCPU_STAT(invlpg) },
89         { "exits", VCPU_STAT(exits) },
90         { "io_exits", VCPU_STAT(io_exits) },
91         { "mmio_exits", VCPU_STAT(mmio_exits) },
92         { "signal_exits", VCPU_STAT(signal_exits) },
93         { "irq_window", VCPU_STAT(irq_window_exits) },
94         { "nmi_window", VCPU_STAT(nmi_window_exits) },
95         { "halt_exits", VCPU_STAT(halt_exits) },
96         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
97         { "hypercalls", VCPU_STAT(hypercalls) },
98         { "request_irq", VCPU_STAT(request_irq_exits) },
99         { "irq_exits", VCPU_STAT(irq_exits) },
100         { "host_state_reload", VCPU_STAT(host_state_reload) },
101         { "efer_reload", VCPU_STAT(efer_reload) },
102         { "fpu_reload", VCPU_STAT(fpu_reload) },
103         { "insn_emulation", VCPU_STAT(insn_emulation) },
104         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
105         { "irq_injections", VCPU_STAT(irq_injections) },
106         { "nmi_injections", VCPU_STAT(nmi_injections) },
107         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
108         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
109         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
110         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
111         { "mmu_flooded", VM_STAT(mmu_flooded) },
112         { "mmu_recycled", VM_STAT(mmu_recycled) },
113         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
114         { "mmu_unsync", VM_STAT(mmu_unsync) },
115         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
116         { "largepages", VM_STAT(lpages) },
117         { NULL }
118 };
119
120 unsigned long segment_base(u16 selector)
121 {
122         struct descriptor_table gdt;
123         struct desc_struct *d;
124         unsigned long table_base;
125         unsigned long v;
126
127         if (selector == 0)
128                 return 0;
129
130         asm("sgdt %0" : "=m"(gdt));
131         table_base = gdt.base;
132
133         if (selector & 4) {           /* from ldt */
134                 u16 ldt_selector;
135
136                 asm("sldt %0" : "=g"(ldt_selector));
137                 table_base = segment_base(ldt_selector);
138         }
139         d = (struct desc_struct *)(table_base + (selector & ~7));
140         v = d->base0 | ((unsigned long)d->base1 << 16) |
141                 ((unsigned long)d->base2 << 24);
142 #ifdef CONFIG_X86_64
143         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
144                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
145 #endif
146         return v;
147 }
148 EXPORT_SYMBOL_GPL(segment_base);
149
150 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
151 {
152         if (irqchip_in_kernel(vcpu->kvm))
153                 return vcpu->arch.apic_base;
154         else
155                 return vcpu->arch.apic_base;
156 }
157 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
158
159 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
160 {
161         /* TODO: reserve bits check */
162         if (irqchip_in_kernel(vcpu->kvm))
163                 kvm_lapic_set_base(vcpu, data);
164         else
165                 vcpu->arch.apic_base = data;
166 }
167 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
168
169 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
170 {
171         WARN_ON(vcpu->arch.exception.pending);
172         vcpu->arch.exception.pending = true;
173         vcpu->arch.exception.has_error_code = false;
174         vcpu->arch.exception.nr = nr;
175 }
176 EXPORT_SYMBOL_GPL(kvm_queue_exception);
177
178 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
179                            u32 error_code)
180 {
181         ++vcpu->stat.pf_guest;
182
183         if (vcpu->arch.exception.pending) {
184                 if (vcpu->arch.exception.nr == PF_VECTOR) {
185                         printk(KERN_DEBUG "kvm: inject_page_fault:"
186                                         " double fault 0x%lx\n", addr);
187                         vcpu->arch.exception.nr = DF_VECTOR;
188                         vcpu->arch.exception.error_code = 0;
189                 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
190                         /* triple fault -> shutdown */
191                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
192                 }
193                 return;
194         }
195         vcpu->arch.cr2 = addr;
196         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
197 }
198
199 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
200 {
201         vcpu->arch.nmi_pending = 1;
202 }
203 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
204
205 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
206 {
207         WARN_ON(vcpu->arch.exception.pending);
208         vcpu->arch.exception.pending = true;
209         vcpu->arch.exception.has_error_code = true;
210         vcpu->arch.exception.nr = nr;
211         vcpu->arch.exception.error_code = error_code;
212 }
213 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
214
215 static void __queue_exception(struct kvm_vcpu *vcpu)
216 {
217         kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
218                                      vcpu->arch.exception.has_error_code,
219                                      vcpu->arch.exception.error_code);
220 }
221
222 /*
223  * Load the pae pdptrs.  Return true is they are all valid.
224  */
225 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
226 {
227         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
228         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
229         int i;
230         int ret;
231         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
232
233         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
234                                   offset * sizeof(u64), sizeof(pdpte));
235         if (ret < 0) {
236                 ret = 0;
237                 goto out;
238         }
239         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
240                 if (is_present_pte(pdpte[i]) &&
241                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
242                         ret = 0;
243                         goto out;
244                 }
245         }
246         ret = 1;
247
248         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
249         __set_bit(VCPU_EXREG_PDPTR,
250                   (unsigned long *)&vcpu->arch.regs_avail);
251         __set_bit(VCPU_EXREG_PDPTR,
252                   (unsigned long *)&vcpu->arch.regs_dirty);
253 out:
254
255         return ret;
256 }
257 EXPORT_SYMBOL_GPL(load_pdptrs);
258
259 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
260 {
261         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
262         bool changed = true;
263         int r;
264
265         if (is_long_mode(vcpu) || !is_pae(vcpu))
266                 return false;
267
268         if (!test_bit(VCPU_EXREG_PDPTR,
269                       (unsigned long *)&vcpu->arch.regs_avail))
270                 return true;
271
272         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
273         if (r < 0)
274                 goto out;
275         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
276 out:
277
278         return changed;
279 }
280
281 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
282 {
283         if (cr0 & CR0_RESERVED_BITS) {
284                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
285                        cr0, vcpu->arch.cr0);
286                 kvm_inject_gp(vcpu, 0);
287                 return;
288         }
289
290         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
291                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
292                 kvm_inject_gp(vcpu, 0);
293                 return;
294         }
295
296         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
297                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
298                        "and a clear PE flag\n");
299                 kvm_inject_gp(vcpu, 0);
300                 return;
301         }
302
303         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
304 #ifdef CONFIG_X86_64
305                 if ((vcpu->arch.shadow_efer & EFER_LME)) {
306                         int cs_db, cs_l;
307
308                         if (!is_pae(vcpu)) {
309                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
310                                        "in long mode while PAE is disabled\n");
311                                 kvm_inject_gp(vcpu, 0);
312                                 return;
313                         }
314                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
315                         if (cs_l) {
316                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
317                                        "in long mode while CS.L == 1\n");
318                                 kvm_inject_gp(vcpu, 0);
319                                 return;
320
321                         }
322                 } else
323 #endif
324                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
325                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
326                                "reserved bits\n");
327                         kvm_inject_gp(vcpu, 0);
328                         return;
329                 }
330
331         }
332
333         kvm_x86_ops->set_cr0(vcpu, cr0);
334         vcpu->arch.cr0 = cr0;
335
336         kvm_mmu_reset_context(vcpu);
337         return;
338 }
339 EXPORT_SYMBOL_GPL(kvm_set_cr0);
340
341 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
342 {
343         kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
344         KVMTRACE_1D(LMSW, vcpu,
345                     (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
346                     handler);
347 }
348 EXPORT_SYMBOL_GPL(kvm_lmsw);
349
350 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
351 {
352         unsigned long old_cr4 = vcpu->arch.cr4;
353         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
354
355         if (cr4 & CR4_RESERVED_BITS) {
356                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
357                 kvm_inject_gp(vcpu, 0);
358                 return;
359         }
360
361         if (is_long_mode(vcpu)) {
362                 if (!(cr4 & X86_CR4_PAE)) {
363                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
364                                "in long mode\n");
365                         kvm_inject_gp(vcpu, 0);
366                         return;
367                 }
368         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
369                    && ((cr4 ^ old_cr4) & pdptr_bits)
370                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
371                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
372                 kvm_inject_gp(vcpu, 0);
373                 return;
374         }
375
376         if (cr4 & X86_CR4_VMXE) {
377                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
378                 kvm_inject_gp(vcpu, 0);
379                 return;
380         }
381         kvm_x86_ops->set_cr4(vcpu, cr4);
382         vcpu->arch.cr4 = cr4;
383         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
384         kvm_mmu_reset_context(vcpu);
385 }
386 EXPORT_SYMBOL_GPL(kvm_set_cr4);
387
388 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
389 {
390         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
391                 kvm_mmu_sync_roots(vcpu);
392                 kvm_mmu_flush_tlb(vcpu);
393                 return;
394         }
395
396         if (is_long_mode(vcpu)) {
397                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
398                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
399                         kvm_inject_gp(vcpu, 0);
400                         return;
401                 }
402         } else {
403                 if (is_pae(vcpu)) {
404                         if (cr3 & CR3_PAE_RESERVED_BITS) {
405                                 printk(KERN_DEBUG
406                                        "set_cr3: #GP, reserved bits\n");
407                                 kvm_inject_gp(vcpu, 0);
408                                 return;
409                         }
410                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
411                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
412                                        "reserved bits\n");
413                                 kvm_inject_gp(vcpu, 0);
414                                 return;
415                         }
416                 }
417                 /*
418                  * We don't check reserved bits in nonpae mode, because
419                  * this isn't enforced, and VMware depends on this.
420                  */
421         }
422
423         /*
424          * Does the new cr3 value map to physical memory? (Note, we
425          * catch an invalid cr3 even in real-mode, because it would
426          * cause trouble later on when we turn on paging anyway.)
427          *
428          * A real CPU would silently accept an invalid cr3 and would
429          * attempt to use it - with largely undefined (and often hard
430          * to debug) behavior on the guest side.
431          */
432         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
433                 kvm_inject_gp(vcpu, 0);
434         else {
435                 vcpu->arch.cr3 = cr3;
436                 vcpu->arch.mmu.new_cr3(vcpu);
437         }
438 }
439 EXPORT_SYMBOL_GPL(kvm_set_cr3);
440
441 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
442 {
443         if (cr8 & CR8_RESERVED_BITS) {
444                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
445                 kvm_inject_gp(vcpu, 0);
446                 return;
447         }
448         if (irqchip_in_kernel(vcpu->kvm))
449                 kvm_lapic_set_tpr(vcpu, cr8);
450         else
451                 vcpu->arch.cr8 = cr8;
452 }
453 EXPORT_SYMBOL_GPL(kvm_set_cr8);
454
455 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
456 {
457         if (irqchip_in_kernel(vcpu->kvm))
458                 return kvm_lapic_get_cr8(vcpu);
459         else
460                 return vcpu->arch.cr8;
461 }
462 EXPORT_SYMBOL_GPL(kvm_get_cr8);
463
464 static inline u32 bit(int bitno)
465 {
466         return 1 << (bitno & 31);
467 }
468
469 /*
470  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
471  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
472  *
473  * This list is modified at module load time to reflect the
474  * capabilities of the host cpu.
475  */
476 static u32 msrs_to_save[] = {
477         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
478         MSR_K6_STAR,
479 #ifdef CONFIG_X86_64
480         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
481 #endif
482         MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
483         MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
484 };
485
486 static unsigned num_msrs_to_save;
487
488 static u32 emulated_msrs[] = {
489         MSR_IA32_MISC_ENABLE,
490 };
491
492 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
493 {
494         if (efer & efer_reserved_bits) {
495                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
496                        efer);
497                 kvm_inject_gp(vcpu, 0);
498                 return;
499         }
500
501         if (is_paging(vcpu)
502             && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
503                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
504                 kvm_inject_gp(vcpu, 0);
505                 return;
506         }
507
508         if (efer & EFER_FFXSR) {
509                 struct kvm_cpuid_entry2 *feat;
510
511                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
512                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
513                         printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
514                         kvm_inject_gp(vcpu, 0);
515                         return;
516                 }
517         }
518
519         if (efer & EFER_SVME) {
520                 struct kvm_cpuid_entry2 *feat;
521
522                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
523                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
524                         printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
525                         kvm_inject_gp(vcpu, 0);
526                         return;
527                 }
528         }
529
530         kvm_x86_ops->set_efer(vcpu, efer);
531
532         efer &= ~EFER_LMA;
533         efer |= vcpu->arch.shadow_efer & EFER_LMA;
534
535         vcpu->arch.shadow_efer = efer;
536
537         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
538         kvm_mmu_reset_context(vcpu);
539 }
540
541 void kvm_enable_efer_bits(u64 mask)
542 {
543        efer_reserved_bits &= ~mask;
544 }
545 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
546
547
548 /*
549  * Writes msr value into into the appropriate "register".
550  * Returns 0 on success, non-0 otherwise.
551  * Assumes vcpu_load() was already called.
552  */
553 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
554 {
555         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
556 }
557
558 /*
559  * Adapt set_msr() to msr_io()'s calling convention
560  */
561 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
562 {
563         return kvm_set_msr(vcpu, index, *data);
564 }
565
566 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
567 {
568         static int version;
569         struct pvclock_wall_clock wc;
570         struct timespec now, sys, boot;
571
572         if (!wall_clock)
573                 return;
574
575         version++;
576
577         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
578
579         /*
580          * The guest calculates current wall clock time by adding
581          * system time (updated by kvm_write_guest_time below) to the
582          * wall clock specified here.  guest system time equals host
583          * system time for us, thus we must fill in host boot time here.
584          */
585         now = current_kernel_time();
586         ktime_get_ts(&sys);
587         boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
588
589         wc.sec = boot.tv_sec;
590         wc.nsec = boot.tv_nsec;
591         wc.version = version;
592
593         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
594
595         version++;
596         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
597 }
598
599 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
600 {
601         uint32_t quotient, remainder;
602
603         /* Don't try to replace with do_div(), this one calculates
604          * "(dividend << 32) / divisor" */
605         __asm__ ( "divl %4"
606                   : "=a" (quotient), "=d" (remainder)
607                   : "0" (0), "1" (dividend), "r" (divisor) );
608         return quotient;
609 }
610
611 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
612 {
613         uint64_t nsecs = 1000000000LL;
614         int32_t  shift = 0;
615         uint64_t tps64;
616         uint32_t tps32;
617
618         tps64 = tsc_khz * 1000LL;
619         while (tps64 > nsecs*2) {
620                 tps64 >>= 1;
621                 shift--;
622         }
623
624         tps32 = (uint32_t)tps64;
625         while (tps32 <= (uint32_t)nsecs) {
626                 tps32 <<= 1;
627                 shift++;
628         }
629
630         hv_clock->tsc_shift = shift;
631         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
632
633         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
634                  __func__, tsc_khz, hv_clock->tsc_shift,
635                  hv_clock->tsc_to_system_mul);
636 }
637
638 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
639
640 static void kvm_write_guest_time(struct kvm_vcpu *v)
641 {
642         struct timespec ts;
643         unsigned long flags;
644         struct kvm_vcpu_arch *vcpu = &v->arch;
645         void *shared_kaddr;
646         unsigned long this_tsc_khz;
647
648         if ((!vcpu->time_page))
649                 return;
650
651         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
652         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
653                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
654                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
655         }
656         put_cpu_var(cpu_tsc_khz);
657
658         /* Keep irq disabled to prevent changes to the clock */
659         local_irq_save(flags);
660         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
661         ktime_get_ts(&ts);
662         local_irq_restore(flags);
663
664         /* With all the info we got, fill in the values */
665
666         vcpu->hv_clock.system_time = ts.tv_nsec +
667                                      (NSEC_PER_SEC * (u64)ts.tv_sec);
668         /*
669          * The interface expects us to write an even number signaling that the
670          * update is finished. Since the guest won't see the intermediate
671          * state, we just increase by 2 at the end.
672          */
673         vcpu->hv_clock.version += 2;
674
675         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
676
677         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
678                sizeof(vcpu->hv_clock));
679
680         kunmap_atomic(shared_kaddr, KM_USER0);
681
682         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
683 }
684
685 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
686 {
687         struct kvm_vcpu_arch *vcpu = &v->arch;
688
689         if (!vcpu->time_page)
690                 return 0;
691         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
692         return 1;
693 }
694
695 static bool msr_mtrr_valid(unsigned msr)
696 {
697         switch (msr) {
698         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
699         case MSR_MTRRfix64K_00000:
700         case MSR_MTRRfix16K_80000:
701         case MSR_MTRRfix16K_A0000:
702         case MSR_MTRRfix4K_C0000:
703         case MSR_MTRRfix4K_C8000:
704         case MSR_MTRRfix4K_D0000:
705         case MSR_MTRRfix4K_D8000:
706         case MSR_MTRRfix4K_E0000:
707         case MSR_MTRRfix4K_E8000:
708         case MSR_MTRRfix4K_F0000:
709         case MSR_MTRRfix4K_F8000:
710         case MSR_MTRRdefType:
711         case MSR_IA32_CR_PAT:
712                 return true;
713         case 0x2f8:
714                 return true;
715         }
716         return false;
717 }
718
719 static bool valid_pat_type(unsigned t)
720 {
721         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
722 }
723
724 static bool valid_mtrr_type(unsigned t)
725 {
726         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
727 }
728
729 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
730 {
731         int i;
732
733         if (!msr_mtrr_valid(msr))
734                 return false;
735
736         if (msr == MSR_IA32_CR_PAT) {
737                 for (i = 0; i < 8; i++)
738                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
739                                 return false;
740                 return true;
741         } else if (msr == MSR_MTRRdefType) {
742                 if (data & ~0xcff)
743                         return false;
744                 return valid_mtrr_type(data & 0xff);
745         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
746                 for (i = 0; i < 8 ; i++)
747                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
748                                 return false;
749                 return true;
750         }
751
752         /* variable MTRRs */
753         return valid_mtrr_type(data & 0xff);
754 }
755
756 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
757 {
758         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
759
760         if (!mtrr_valid(vcpu, msr, data))
761                 return 1;
762
763         if (msr == MSR_MTRRdefType) {
764                 vcpu->arch.mtrr_state.def_type = data;
765                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
766         } else if (msr == MSR_MTRRfix64K_00000)
767                 p[0] = data;
768         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
769                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
770         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
771                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
772         else if (msr == MSR_IA32_CR_PAT)
773                 vcpu->arch.pat = data;
774         else {  /* Variable MTRRs */
775                 int idx, is_mtrr_mask;
776                 u64 *pt;
777
778                 idx = (msr - 0x200) / 2;
779                 is_mtrr_mask = msr - 0x200 - 2 * idx;
780                 if (!is_mtrr_mask)
781                         pt =
782                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
783                 else
784                         pt =
785                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
786                 *pt = data;
787         }
788
789         kvm_mmu_reset_context(vcpu);
790         return 0;
791 }
792
793 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
794 {
795         u64 mcg_cap = vcpu->arch.mcg_cap;
796         unsigned bank_num = mcg_cap & 0xff;
797
798         switch (msr) {
799         case MSR_IA32_MCG_STATUS:
800                 vcpu->arch.mcg_status = data;
801                 break;
802         case MSR_IA32_MCG_CTL:
803                 if (!(mcg_cap & MCG_CTL_P))
804                         return 1;
805                 if (data != 0 && data != ~(u64)0)
806                         return -1;
807                 vcpu->arch.mcg_ctl = data;
808                 break;
809         default:
810                 if (msr >= MSR_IA32_MC0_CTL &&
811                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
812                         u32 offset = msr - MSR_IA32_MC0_CTL;
813                         /* only 0 or all 1s can be written to IA32_MCi_CTL */
814                         if ((offset & 0x3) == 0 &&
815                             data != 0 && data != ~(u64)0)
816                                 return -1;
817                         vcpu->arch.mce_banks[offset] = data;
818                         break;
819                 }
820                 return 1;
821         }
822         return 0;
823 }
824
825 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
826 {
827         switch (msr) {
828         case MSR_EFER:
829                 set_efer(vcpu, data);
830                 break;
831         case MSR_IA32_DEBUGCTLMSR:
832                 if (!data) {
833                         /* We support the non-activated case already */
834                         break;
835                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
836                         /* Values other than LBR and BTF are vendor-specific,
837                            thus reserved and should throw a #GP */
838                         return 1;
839                 }
840                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
841                         __func__, data);
842                 break;
843         case MSR_IA32_UCODE_REV:
844         case MSR_IA32_UCODE_WRITE:
845         case MSR_VM_HSAVE_PA:
846                 break;
847         case 0x200 ... 0x2ff:
848                 return set_msr_mtrr(vcpu, msr, data);
849         case MSR_IA32_APICBASE:
850                 kvm_set_apic_base(vcpu, data);
851                 break;
852         case MSR_IA32_MISC_ENABLE:
853                 vcpu->arch.ia32_misc_enable_msr = data;
854                 break;
855         case MSR_KVM_WALL_CLOCK:
856                 vcpu->kvm->arch.wall_clock = data;
857                 kvm_write_wall_clock(vcpu->kvm, data);
858                 break;
859         case MSR_KVM_SYSTEM_TIME: {
860                 if (vcpu->arch.time_page) {
861                         kvm_release_page_dirty(vcpu->arch.time_page);
862                         vcpu->arch.time_page = NULL;
863                 }
864
865                 vcpu->arch.time = data;
866
867                 /* we verify if the enable bit is set... */
868                 if (!(data & 1))
869                         break;
870
871                 /* ...but clean it before doing the actual write */
872                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
873
874                 vcpu->arch.time_page =
875                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
876
877                 if (is_error_page(vcpu->arch.time_page)) {
878                         kvm_release_page_clean(vcpu->arch.time_page);
879                         vcpu->arch.time_page = NULL;
880                 }
881
882                 kvm_request_guest_time_update(vcpu);
883                 break;
884         }
885         case MSR_IA32_MCG_CTL:
886         case MSR_IA32_MCG_STATUS:
887         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
888                 return set_msr_mce(vcpu, msr, data);
889         default:
890                 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
891                 return 1;
892         }
893         return 0;
894 }
895 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
896
897
898 /*
899  * Reads an msr value (of 'msr_index') into 'pdata'.
900  * Returns 0 on success, non-0 otherwise.
901  * Assumes vcpu_load() was already called.
902  */
903 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
904 {
905         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
906 }
907
908 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
909 {
910         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
911
912         if (!msr_mtrr_valid(msr))
913                 return 1;
914
915         if (msr == MSR_MTRRdefType)
916                 *pdata = vcpu->arch.mtrr_state.def_type +
917                          (vcpu->arch.mtrr_state.enabled << 10);
918         else if (msr == MSR_MTRRfix64K_00000)
919                 *pdata = p[0];
920         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
921                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
922         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
923                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
924         else if (msr == MSR_IA32_CR_PAT)
925                 *pdata = vcpu->arch.pat;
926         else {  /* Variable MTRRs */
927                 int idx, is_mtrr_mask;
928                 u64 *pt;
929
930                 idx = (msr - 0x200) / 2;
931                 is_mtrr_mask = msr - 0x200 - 2 * idx;
932                 if (!is_mtrr_mask)
933                         pt =
934                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
935                 else
936                         pt =
937                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
938                 *pdata = *pt;
939         }
940
941         return 0;
942 }
943
944 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
945 {
946         u64 data;
947         u64 mcg_cap = vcpu->arch.mcg_cap;
948         unsigned bank_num = mcg_cap & 0xff;
949
950         switch (msr) {
951         case MSR_IA32_P5_MC_ADDR:
952         case MSR_IA32_P5_MC_TYPE:
953                 data = 0;
954                 break;
955         case MSR_IA32_MCG_CAP:
956                 data = vcpu->arch.mcg_cap;
957                 break;
958         case MSR_IA32_MCG_CTL:
959                 if (!(mcg_cap & MCG_CTL_P))
960                         return 1;
961                 data = vcpu->arch.mcg_ctl;
962                 break;
963         case MSR_IA32_MCG_STATUS:
964                 data = vcpu->arch.mcg_status;
965                 break;
966         default:
967                 if (msr >= MSR_IA32_MC0_CTL &&
968                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
969                         u32 offset = msr - MSR_IA32_MC0_CTL;
970                         data = vcpu->arch.mce_banks[offset];
971                         break;
972                 }
973                 return 1;
974         }
975         *pdata = data;
976         return 0;
977 }
978
979 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
980 {
981         u64 data;
982
983         switch (msr) {
984         case MSR_IA32_PLATFORM_ID:
985         case MSR_IA32_UCODE_REV:
986         case MSR_IA32_EBL_CR_POWERON:
987         case MSR_IA32_DEBUGCTLMSR:
988         case MSR_IA32_LASTBRANCHFROMIP:
989         case MSR_IA32_LASTBRANCHTOIP:
990         case MSR_IA32_LASTINTFROMIP:
991         case MSR_IA32_LASTINTTOIP:
992         case MSR_K8_SYSCFG:
993         case MSR_K7_HWCR:
994         case MSR_VM_HSAVE_PA:
995         case MSR_P6_EVNTSEL0:
996         case MSR_P6_EVNTSEL1:
997         case MSR_K7_EVNTSEL0:
998                 data = 0;
999                 break;
1000         case MSR_MTRRcap:
1001                 data = 0x500 | KVM_NR_VAR_MTRR;
1002                 break;
1003         case 0x200 ... 0x2ff:
1004                 return get_msr_mtrr(vcpu, msr, pdata);
1005         case 0xcd: /* fsb frequency */
1006                 data = 3;
1007                 break;
1008         case MSR_IA32_APICBASE:
1009                 data = kvm_get_apic_base(vcpu);
1010                 break;
1011         case MSR_IA32_MISC_ENABLE:
1012                 data = vcpu->arch.ia32_misc_enable_msr;
1013                 break;
1014         case MSR_IA32_PERF_STATUS:
1015                 /* TSC increment by tick */
1016                 data = 1000ULL;
1017                 /* CPU multiplier */
1018                 data |= (((uint64_t)4ULL) << 40);
1019                 break;
1020         case MSR_EFER:
1021                 data = vcpu->arch.shadow_efer;
1022                 break;
1023         case MSR_KVM_WALL_CLOCK:
1024                 data = vcpu->kvm->arch.wall_clock;
1025                 break;
1026         case MSR_KVM_SYSTEM_TIME:
1027                 data = vcpu->arch.time;
1028                 break;
1029         case MSR_IA32_P5_MC_ADDR:
1030         case MSR_IA32_P5_MC_TYPE:
1031         case MSR_IA32_MCG_CAP:
1032         case MSR_IA32_MCG_CTL:
1033         case MSR_IA32_MCG_STATUS:
1034         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1035                 return get_msr_mce(vcpu, msr, pdata);
1036         default:
1037                 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1038                 return 1;
1039         }
1040         *pdata = data;
1041         return 0;
1042 }
1043 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1044
1045 /*
1046  * Read or write a bunch of msrs. All parameters are kernel addresses.
1047  *
1048  * @return number of msrs set successfully.
1049  */
1050 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1051                     struct kvm_msr_entry *entries,
1052                     int (*do_msr)(struct kvm_vcpu *vcpu,
1053                                   unsigned index, u64 *data))
1054 {
1055         int i;
1056
1057         vcpu_load(vcpu);
1058
1059         down_read(&vcpu->kvm->slots_lock);
1060         for (i = 0; i < msrs->nmsrs; ++i)
1061                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1062                         break;
1063         up_read(&vcpu->kvm->slots_lock);
1064
1065         vcpu_put(vcpu);
1066
1067         return i;
1068 }
1069
1070 /*
1071  * Read or write a bunch of msrs. Parameters are user addresses.
1072  *
1073  * @return number of msrs set successfully.
1074  */
1075 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1076                   int (*do_msr)(struct kvm_vcpu *vcpu,
1077                                 unsigned index, u64 *data),
1078                   int writeback)
1079 {
1080         struct kvm_msrs msrs;
1081         struct kvm_msr_entry *entries;
1082         int r, n;
1083         unsigned size;
1084
1085         r = -EFAULT;
1086         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1087                 goto out;
1088
1089         r = -E2BIG;
1090         if (msrs.nmsrs >= MAX_IO_MSRS)
1091                 goto out;
1092
1093         r = -ENOMEM;
1094         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1095         entries = vmalloc(size);
1096         if (!entries)
1097                 goto out;
1098
1099         r = -EFAULT;
1100         if (copy_from_user(entries, user_msrs->entries, size))
1101                 goto out_free;
1102
1103         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1104         if (r < 0)
1105                 goto out_free;
1106
1107         r = -EFAULT;
1108         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1109                 goto out_free;
1110
1111         r = n;
1112
1113 out_free:
1114         vfree(entries);
1115 out:
1116         return r;
1117 }
1118
1119 int kvm_dev_ioctl_check_extension(long ext)
1120 {
1121         int r;
1122
1123         switch (ext) {
1124         case KVM_CAP_IRQCHIP:
1125         case KVM_CAP_HLT:
1126         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1127         case KVM_CAP_SET_TSS_ADDR:
1128         case KVM_CAP_EXT_CPUID:
1129         case KVM_CAP_CLOCKSOURCE:
1130         case KVM_CAP_PIT:
1131         case KVM_CAP_NOP_IO_DELAY:
1132         case KVM_CAP_MP_STATE:
1133         case KVM_CAP_SYNC_MMU:
1134         case KVM_CAP_REINJECT_CONTROL:
1135         case KVM_CAP_IRQ_INJECT_STATUS:
1136         case KVM_CAP_ASSIGN_DEV_IRQ:
1137         case KVM_CAP_IRQFD:
1138         case KVM_CAP_PIT2:
1139                 r = 1;
1140                 break;
1141         case KVM_CAP_COALESCED_MMIO:
1142                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1143                 break;
1144         case KVM_CAP_VAPIC:
1145                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1146                 break;
1147         case KVM_CAP_NR_VCPUS:
1148                 r = KVM_MAX_VCPUS;
1149                 break;
1150         case KVM_CAP_NR_MEMSLOTS:
1151                 r = KVM_MEMORY_SLOTS;
1152                 break;
1153         case KVM_CAP_PV_MMU:
1154                 r = !tdp_enabled;
1155                 break;
1156         case KVM_CAP_IOMMU:
1157                 r = iommu_found();
1158                 break;
1159         case KVM_CAP_MCE:
1160                 r = KVM_MAX_MCE_BANKS;
1161                 break;
1162         default:
1163                 r = 0;
1164                 break;
1165         }
1166         return r;
1167
1168 }
1169
1170 long kvm_arch_dev_ioctl(struct file *filp,
1171                         unsigned int ioctl, unsigned long arg)
1172 {
1173         void __user *argp = (void __user *)arg;
1174         long r;
1175
1176         switch (ioctl) {
1177         case KVM_GET_MSR_INDEX_LIST: {
1178                 struct kvm_msr_list __user *user_msr_list = argp;
1179                 struct kvm_msr_list msr_list;
1180                 unsigned n;
1181
1182                 r = -EFAULT;
1183                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1184                         goto out;
1185                 n = msr_list.nmsrs;
1186                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1187                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1188                         goto out;
1189                 r = -E2BIG;
1190                 if (n < msr_list.nmsrs)
1191                         goto out;
1192                 r = -EFAULT;
1193                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1194                                  num_msrs_to_save * sizeof(u32)))
1195                         goto out;
1196                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1197                                  &emulated_msrs,
1198                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1199                         goto out;
1200                 r = 0;
1201                 break;
1202         }
1203         case KVM_GET_SUPPORTED_CPUID: {
1204                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1205                 struct kvm_cpuid2 cpuid;
1206
1207                 r = -EFAULT;
1208                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1209                         goto out;
1210                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1211                                                       cpuid_arg->entries);
1212                 if (r)
1213                         goto out;
1214
1215                 r = -EFAULT;
1216                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1217                         goto out;
1218                 r = 0;
1219                 break;
1220         }
1221         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1222                 u64 mce_cap;
1223
1224                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1225                 r = -EFAULT;
1226                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1227                         goto out;
1228                 r = 0;
1229                 break;
1230         }
1231         default:
1232                 r = -EINVAL;
1233         }
1234 out:
1235         return r;
1236 }
1237
1238 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1239 {
1240         kvm_x86_ops->vcpu_load(vcpu, cpu);
1241         kvm_request_guest_time_update(vcpu);
1242 }
1243
1244 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1245 {
1246         kvm_x86_ops->vcpu_put(vcpu);
1247         kvm_put_guest_fpu(vcpu);
1248 }
1249
1250 static int is_efer_nx(void)
1251 {
1252         unsigned long long efer = 0;
1253
1254         rdmsrl_safe(MSR_EFER, &efer);
1255         return efer & EFER_NX;
1256 }
1257
1258 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1259 {
1260         int i;
1261         struct kvm_cpuid_entry2 *e, *entry;
1262
1263         entry = NULL;
1264         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1265                 e = &vcpu->arch.cpuid_entries[i];
1266                 if (e->function == 0x80000001) {
1267                         entry = e;
1268                         break;
1269                 }
1270         }
1271         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1272                 entry->edx &= ~(1 << 20);
1273                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1274         }
1275 }
1276
1277 /* when an old userspace process fills a new kernel module */
1278 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1279                                     struct kvm_cpuid *cpuid,
1280                                     struct kvm_cpuid_entry __user *entries)
1281 {
1282         int r, i;
1283         struct kvm_cpuid_entry *cpuid_entries;
1284
1285         r = -E2BIG;
1286         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1287                 goto out;
1288         r = -ENOMEM;
1289         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1290         if (!cpuid_entries)
1291                 goto out;
1292         r = -EFAULT;
1293         if (copy_from_user(cpuid_entries, entries,
1294                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1295                 goto out_free;
1296         for (i = 0; i < cpuid->nent; i++) {
1297                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1298                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1299                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1300                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1301                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1302                 vcpu->arch.cpuid_entries[i].index = 0;
1303                 vcpu->arch.cpuid_entries[i].flags = 0;
1304                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1305                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1306                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1307         }
1308         vcpu->arch.cpuid_nent = cpuid->nent;
1309         cpuid_fix_nx_cap(vcpu);
1310         r = 0;
1311
1312 out_free:
1313         vfree(cpuid_entries);
1314 out:
1315         return r;
1316 }
1317
1318 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1319                                      struct kvm_cpuid2 *cpuid,
1320                                      struct kvm_cpuid_entry2 __user *entries)
1321 {
1322         int r;
1323
1324         r = -E2BIG;
1325         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1326                 goto out;
1327         r = -EFAULT;
1328         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1329                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1330                 goto out;
1331         vcpu->arch.cpuid_nent = cpuid->nent;
1332         return 0;
1333
1334 out:
1335         return r;
1336 }
1337
1338 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1339                                      struct kvm_cpuid2 *cpuid,
1340                                      struct kvm_cpuid_entry2 __user *entries)
1341 {
1342         int r;
1343
1344         r = -E2BIG;
1345         if (cpuid->nent < vcpu->arch.cpuid_nent)
1346                 goto out;
1347         r = -EFAULT;
1348         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1349                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1350                 goto out;
1351         return 0;
1352
1353 out:
1354         cpuid->nent = vcpu->arch.cpuid_nent;
1355         return r;
1356 }
1357
1358 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1359                            u32 index)
1360 {
1361         entry->function = function;
1362         entry->index = index;
1363         cpuid_count(entry->function, entry->index,
1364                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1365         entry->flags = 0;
1366 }
1367
1368 #define F(x) bit(X86_FEATURE_##x)
1369
1370 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1371                          u32 index, int *nent, int maxnent)
1372 {
1373         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1374 #ifdef CONFIG_X86_64
1375         unsigned f_lm = F(LM);
1376 #else
1377         unsigned f_lm = 0;
1378 #endif
1379
1380         /* cpuid 1.edx */
1381         const u32 kvm_supported_word0_x86_features =
1382                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1383                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1384                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1385                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1386                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1387                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1388                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1389                 0 /* HTT, TM, Reserved, PBE */;
1390         /* cpuid 0x80000001.edx */
1391         const u32 kvm_supported_word1_x86_features =
1392                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1393                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1394                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1395                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1396                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1397                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1398                 F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1399                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1400         /* cpuid 1.ecx */
1401         const u32 kvm_supported_word4_x86_features =
1402                 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1403                 0 /* DS-CPL, VMX, SMX, EST */ |
1404                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1405                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1406                 0 /* Reserved, DCA */ | F(XMM4_1) |
1407                 F(XMM4_2) | 0 /* x2APIC */ | F(MOVBE) | F(POPCNT) |
1408                 0 /* Reserved, XSAVE, OSXSAVE */;
1409         /* cpuid 0x80000001.ecx */
1410         const u32 kvm_supported_word6_x86_features =
1411                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1412                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1413                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1414                 0 /* SKINIT */ | 0 /* WDT */;
1415
1416         /* all calls to cpuid_count() should be made on the same cpu */
1417         get_cpu();
1418         do_cpuid_1_ent(entry, function, index);
1419         ++*nent;
1420
1421         switch (function) {
1422         case 0:
1423                 entry->eax = min(entry->eax, (u32)0xb);
1424                 break;
1425         case 1:
1426                 entry->edx &= kvm_supported_word0_x86_features;
1427                 entry->ecx &= kvm_supported_word4_x86_features;
1428                 break;
1429         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1430          * may return different values. This forces us to get_cpu() before
1431          * issuing the first command, and also to emulate this annoying behavior
1432          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1433         case 2: {
1434                 int t, times = entry->eax & 0xff;
1435
1436                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1437                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1438                 for (t = 1; t < times && *nent < maxnent; ++t) {
1439                         do_cpuid_1_ent(&entry[t], function, 0);
1440                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1441                         ++*nent;
1442                 }
1443                 break;
1444         }
1445         /* function 4 and 0xb have additional index. */
1446         case 4: {
1447                 int i, cache_type;
1448
1449                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1450                 /* read more entries until cache_type is zero */
1451                 for (i = 1; *nent < maxnent; ++i) {
1452                         cache_type = entry[i - 1].eax & 0x1f;
1453                         if (!cache_type)
1454                                 break;
1455                         do_cpuid_1_ent(&entry[i], function, i);
1456                         entry[i].flags |=
1457                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1458                         ++*nent;
1459                 }
1460                 break;
1461         }
1462         case 0xb: {
1463                 int i, level_type;
1464
1465                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1466                 /* read more entries until level_type is zero */
1467                 for (i = 1; *nent < maxnent; ++i) {
1468                         level_type = entry[i - 1].ecx & 0xff00;
1469                         if (!level_type)
1470                                 break;
1471                         do_cpuid_1_ent(&entry[i], function, i);
1472                         entry[i].flags |=
1473                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1474                         ++*nent;
1475                 }
1476                 break;
1477         }
1478         case 0x80000000:
1479                 entry->eax = min(entry->eax, 0x8000001a);
1480                 break;
1481         case 0x80000001:
1482                 entry->edx &= kvm_supported_word1_x86_features;
1483                 entry->ecx &= kvm_supported_word6_x86_features;
1484                 break;
1485         }
1486         put_cpu();
1487 }
1488
1489 #undef F
1490
1491 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1492                                      struct kvm_cpuid_entry2 __user *entries)
1493 {
1494         struct kvm_cpuid_entry2 *cpuid_entries;
1495         int limit, nent = 0, r = -E2BIG;
1496         u32 func;
1497
1498         if (cpuid->nent < 1)
1499                 goto out;
1500         r = -ENOMEM;
1501         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1502         if (!cpuid_entries)
1503                 goto out;
1504
1505         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1506         limit = cpuid_entries[0].eax;
1507         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1508                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1509                              &nent, cpuid->nent);
1510         r = -E2BIG;
1511         if (nent >= cpuid->nent)
1512                 goto out_free;
1513
1514         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1515         limit = cpuid_entries[nent - 1].eax;
1516         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1517                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1518                              &nent, cpuid->nent);
1519         r = -E2BIG;
1520         if (nent >= cpuid->nent)
1521                 goto out_free;
1522
1523         r = -EFAULT;
1524         if (copy_to_user(entries, cpuid_entries,
1525                          nent * sizeof(struct kvm_cpuid_entry2)))
1526                 goto out_free;
1527         cpuid->nent = nent;
1528         r = 0;
1529
1530 out_free:
1531         vfree(cpuid_entries);
1532 out:
1533         return r;
1534 }
1535
1536 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1537                                     struct kvm_lapic_state *s)
1538 {
1539         vcpu_load(vcpu);
1540         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1541         vcpu_put(vcpu);
1542
1543         return 0;
1544 }
1545
1546 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1547                                     struct kvm_lapic_state *s)
1548 {
1549         vcpu_load(vcpu);
1550         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1551         kvm_apic_post_state_restore(vcpu);
1552         vcpu_put(vcpu);
1553
1554         return 0;
1555 }
1556
1557 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1558                                     struct kvm_interrupt *irq)
1559 {
1560         if (irq->irq < 0 || irq->irq >= 256)
1561                 return -EINVAL;
1562         if (irqchip_in_kernel(vcpu->kvm))
1563                 return -ENXIO;
1564         vcpu_load(vcpu);
1565
1566         kvm_queue_interrupt(vcpu, irq->irq, false);
1567
1568         vcpu_put(vcpu);
1569
1570         return 0;
1571 }
1572
1573 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1574 {
1575         vcpu_load(vcpu);
1576         kvm_inject_nmi(vcpu);
1577         vcpu_put(vcpu);
1578
1579         return 0;
1580 }
1581
1582 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1583                                            struct kvm_tpr_access_ctl *tac)
1584 {
1585         if (tac->flags)
1586                 return -EINVAL;
1587         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1588         return 0;
1589 }
1590
1591 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1592                                         u64 mcg_cap)
1593 {
1594         int r;
1595         unsigned bank_num = mcg_cap & 0xff, bank;
1596
1597         r = -EINVAL;
1598         if (!bank_num)
1599                 goto out;
1600         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1601                 goto out;
1602         r = 0;
1603         vcpu->arch.mcg_cap = mcg_cap;
1604         /* Init IA32_MCG_CTL to all 1s */
1605         if (mcg_cap & MCG_CTL_P)
1606                 vcpu->arch.mcg_ctl = ~(u64)0;
1607         /* Init IA32_MCi_CTL to all 1s */
1608         for (bank = 0; bank < bank_num; bank++)
1609                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1610 out:
1611         return r;
1612 }
1613
1614 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1615                                       struct kvm_x86_mce *mce)
1616 {
1617         u64 mcg_cap = vcpu->arch.mcg_cap;
1618         unsigned bank_num = mcg_cap & 0xff;
1619         u64 *banks = vcpu->arch.mce_banks;
1620
1621         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1622                 return -EINVAL;
1623         /*
1624          * if IA32_MCG_CTL is not all 1s, the uncorrected error
1625          * reporting is disabled
1626          */
1627         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1628             vcpu->arch.mcg_ctl != ~(u64)0)
1629                 return 0;
1630         banks += 4 * mce->bank;
1631         /*
1632          * if IA32_MCi_CTL is not all 1s, the uncorrected error
1633          * reporting is disabled for the bank
1634          */
1635         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1636                 return 0;
1637         if (mce->status & MCI_STATUS_UC) {
1638                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1639                     !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1640                         printk(KERN_DEBUG "kvm: set_mce: "
1641                                "injects mce exception while "
1642                                "previous one is in progress!\n");
1643                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1644                         return 0;
1645                 }
1646                 if (banks[1] & MCI_STATUS_VAL)
1647                         mce->status |= MCI_STATUS_OVER;
1648                 banks[2] = mce->addr;
1649                 banks[3] = mce->misc;
1650                 vcpu->arch.mcg_status = mce->mcg_status;
1651                 banks[1] = mce->status;
1652                 kvm_queue_exception(vcpu, MC_VECTOR);
1653         } else if (!(banks[1] & MCI_STATUS_VAL)
1654                    || !(banks[1] & MCI_STATUS_UC)) {
1655                 if (banks[1] & MCI_STATUS_VAL)
1656                         mce->status |= MCI_STATUS_OVER;
1657                 banks[2] = mce->addr;
1658                 banks[3] = mce->misc;
1659                 banks[1] = mce->status;
1660         } else
1661                 banks[1] |= MCI_STATUS_OVER;
1662         return 0;
1663 }
1664
1665 long kvm_arch_vcpu_ioctl(struct file *filp,
1666                          unsigned int ioctl, unsigned long arg)
1667 {
1668         struct kvm_vcpu *vcpu = filp->private_data;
1669         void __user *argp = (void __user *)arg;
1670         int r;
1671         struct kvm_lapic_state *lapic = NULL;
1672
1673         switch (ioctl) {
1674         case KVM_GET_LAPIC: {
1675                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1676
1677                 r = -ENOMEM;
1678                 if (!lapic)
1679                         goto out;
1680                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1681                 if (r)
1682                         goto out;
1683                 r = -EFAULT;
1684                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1685                         goto out;
1686                 r = 0;
1687                 break;
1688         }
1689         case KVM_SET_LAPIC: {
1690                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1691                 r = -ENOMEM;
1692                 if (!lapic)
1693                         goto out;
1694                 r = -EFAULT;
1695                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1696                         goto out;
1697                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1698                 if (r)
1699                         goto out;
1700                 r = 0;
1701                 break;
1702         }
1703         case KVM_INTERRUPT: {
1704                 struct kvm_interrupt irq;
1705
1706                 r = -EFAULT;
1707                 if (copy_from_user(&irq, argp, sizeof irq))
1708                         goto out;
1709                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1710                 if (r)
1711                         goto out;
1712                 r = 0;
1713                 break;
1714         }
1715         case KVM_NMI: {
1716                 r = kvm_vcpu_ioctl_nmi(vcpu);
1717                 if (r)
1718                         goto out;
1719                 r = 0;
1720                 break;
1721         }
1722         case KVM_SET_CPUID: {
1723                 struct kvm_cpuid __user *cpuid_arg = argp;
1724                 struct kvm_cpuid cpuid;
1725
1726                 r = -EFAULT;
1727                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1728                         goto out;
1729                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1730                 if (r)
1731                         goto out;
1732                 break;
1733         }
1734         case KVM_SET_CPUID2: {
1735                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1736                 struct kvm_cpuid2 cpuid;
1737
1738                 r = -EFAULT;
1739                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1740                         goto out;
1741                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1742                                               cpuid_arg->entries);
1743                 if (r)
1744                         goto out;
1745                 break;
1746         }
1747         case KVM_GET_CPUID2: {
1748                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1749                 struct kvm_cpuid2 cpuid;
1750
1751                 r = -EFAULT;
1752                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1753                         goto out;
1754                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1755                                               cpuid_arg->entries);
1756                 if (r)
1757                         goto out;
1758                 r = -EFAULT;
1759                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1760                         goto out;
1761                 r = 0;
1762                 break;
1763         }
1764         case KVM_GET_MSRS:
1765                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1766                 break;
1767         case KVM_SET_MSRS:
1768                 r = msr_io(vcpu, argp, do_set_msr, 0);
1769                 break;
1770         case KVM_TPR_ACCESS_REPORTING: {
1771                 struct kvm_tpr_access_ctl tac;
1772
1773                 r = -EFAULT;
1774                 if (copy_from_user(&tac, argp, sizeof tac))
1775                         goto out;
1776                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1777                 if (r)
1778                         goto out;
1779                 r = -EFAULT;
1780                 if (copy_to_user(argp, &tac, sizeof tac))
1781                         goto out;
1782                 r = 0;
1783                 break;
1784         };
1785         case KVM_SET_VAPIC_ADDR: {
1786                 struct kvm_vapic_addr va;
1787
1788                 r = -EINVAL;
1789                 if (!irqchip_in_kernel(vcpu->kvm))
1790                         goto out;
1791                 r = -EFAULT;
1792                 if (copy_from_user(&va, argp, sizeof va))
1793                         goto out;
1794                 r = 0;
1795                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1796                 break;
1797         }
1798         case KVM_X86_SETUP_MCE: {
1799                 u64 mcg_cap;
1800
1801                 r = -EFAULT;
1802                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
1803                         goto out;
1804                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
1805                 break;
1806         }
1807         case KVM_X86_SET_MCE: {
1808                 struct kvm_x86_mce mce;
1809
1810                 r = -EFAULT;
1811                 if (copy_from_user(&mce, argp, sizeof mce))
1812                         goto out;
1813                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
1814                 break;
1815         }
1816         default:
1817                 r = -EINVAL;
1818         }
1819 out:
1820         kfree(lapic);
1821         return r;
1822 }
1823
1824 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1825 {
1826         int ret;
1827
1828         if (addr > (unsigned int)(-3 * PAGE_SIZE))
1829                 return -1;
1830         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1831         return ret;
1832 }
1833
1834 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1835                                           u32 kvm_nr_mmu_pages)
1836 {
1837         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1838                 return -EINVAL;
1839
1840         down_write(&kvm->slots_lock);
1841         spin_lock(&kvm->mmu_lock);
1842
1843         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1844         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1845
1846         spin_unlock(&kvm->mmu_lock);
1847         up_write(&kvm->slots_lock);
1848         return 0;
1849 }
1850
1851 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1852 {
1853         return kvm->arch.n_alloc_mmu_pages;
1854 }
1855
1856 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1857 {
1858         int i;
1859         struct kvm_mem_alias *alias;
1860
1861         for (i = 0; i < kvm->arch.naliases; ++i) {
1862                 alias = &kvm->arch.aliases[i];
1863                 if (gfn >= alias->base_gfn
1864                     && gfn < alias->base_gfn + alias->npages)
1865                         return alias->target_gfn + gfn - alias->base_gfn;
1866         }
1867         return gfn;
1868 }
1869
1870 /*
1871  * Set a new alias region.  Aliases map a portion of physical memory into
1872  * another portion.  This is useful for memory windows, for example the PC
1873  * VGA region.
1874  */
1875 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1876                                          struct kvm_memory_alias *alias)
1877 {
1878         int r, n;
1879         struct kvm_mem_alias *p;
1880
1881         r = -EINVAL;
1882         /* General sanity checks */
1883         if (alias->memory_size & (PAGE_SIZE - 1))
1884                 goto out;
1885         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1886                 goto out;
1887         if (alias->slot >= KVM_ALIAS_SLOTS)
1888                 goto out;
1889         if (alias->guest_phys_addr + alias->memory_size
1890             < alias->guest_phys_addr)
1891                 goto out;
1892         if (alias->target_phys_addr + alias->memory_size
1893             < alias->target_phys_addr)
1894                 goto out;
1895
1896         down_write(&kvm->slots_lock);
1897         spin_lock(&kvm->mmu_lock);
1898
1899         p = &kvm->arch.aliases[alias->slot];
1900         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1901         p->npages = alias->memory_size >> PAGE_SHIFT;
1902         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1903
1904         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1905                 if (kvm->arch.aliases[n - 1].npages)
1906                         break;
1907         kvm->arch.naliases = n;
1908
1909         spin_unlock(&kvm->mmu_lock);
1910         kvm_mmu_zap_all(kvm);
1911
1912         up_write(&kvm->slots_lock);
1913
1914         return 0;
1915
1916 out:
1917         return r;
1918 }
1919
1920 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1921 {
1922         int r;
1923
1924         r = 0;
1925         switch (chip->chip_id) {
1926         case KVM_IRQCHIP_PIC_MASTER:
1927                 memcpy(&chip->chip.pic,
1928                         &pic_irqchip(kvm)->pics[0],
1929                         sizeof(struct kvm_pic_state));
1930                 break;
1931         case KVM_IRQCHIP_PIC_SLAVE:
1932                 memcpy(&chip->chip.pic,
1933                         &pic_irqchip(kvm)->pics[1],
1934                         sizeof(struct kvm_pic_state));
1935                 break;
1936         case KVM_IRQCHIP_IOAPIC:
1937                 memcpy(&chip->chip.ioapic,
1938                         ioapic_irqchip(kvm),
1939                         sizeof(struct kvm_ioapic_state));
1940                 break;
1941         default:
1942                 r = -EINVAL;
1943                 break;
1944         }
1945         return r;
1946 }
1947
1948 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1949 {
1950         int r;
1951
1952         r = 0;
1953         switch (chip->chip_id) {
1954         case KVM_IRQCHIP_PIC_MASTER:
1955                 memcpy(&pic_irqchip(kvm)->pics[0],
1956                         &chip->chip.pic,
1957                         sizeof(struct kvm_pic_state));
1958                 break;
1959         case KVM_IRQCHIP_PIC_SLAVE:
1960                 memcpy(&pic_irqchip(kvm)->pics[1],
1961                         &chip->chip.pic,
1962                         sizeof(struct kvm_pic_state));
1963                 break;
1964         case KVM_IRQCHIP_IOAPIC:
1965                 memcpy(ioapic_irqchip(kvm),
1966                         &chip->chip.ioapic,
1967                         sizeof(struct kvm_ioapic_state));
1968                 break;
1969         default:
1970                 r = -EINVAL;
1971                 break;
1972         }
1973         kvm_pic_update_irq(pic_irqchip(kvm));
1974         return r;
1975 }
1976
1977 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1978 {
1979         int r = 0;
1980
1981         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1982         return r;
1983 }
1984
1985 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1986 {
1987         int r = 0;
1988
1989         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1990         kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1991         return r;
1992 }
1993
1994 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
1995                                  struct kvm_reinject_control *control)
1996 {
1997         if (!kvm->arch.vpit)
1998                 return -ENXIO;
1999         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2000         return 0;
2001 }
2002
2003 /*
2004  * Get (and clear) the dirty memory log for a memory slot.
2005  */
2006 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2007                                       struct kvm_dirty_log *log)
2008 {
2009         int r;
2010         int n;
2011         struct kvm_memory_slot *memslot;
2012         int is_dirty = 0;
2013
2014         down_write(&kvm->slots_lock);
2015
2016         r = kvm_get_dirty_log(kvm, log, &is_dirty);
2017         if (r)
2018                 goto out;
2019
2020         /* If nothing is dirty, don't bother messing with page tables. */
2021         if (is_dirty) {
2022                 spin_lock(&kvm->mmu_lock);
2023                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2024                 spin_unlock(&kvm->mmu_lock);
2025                 kvm_flush_remote_tlbs(kvm);
2026                 memslot = &kvm->memslots[log->slot];
2027                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2028                 memset(memslot->dirty_bitmap, 0, n);
2029         }
2030         r = 0;
2031 out:
2032         up_write(&kvm->slots_lock);
2033         return r;
2034 }
2035
2036 long kvm_arch_vm_ioctl(struct file *filp,
2037                        unsigned int ioctl, unsigned long arg)
2038 {
2039         struct kvm *kvm = filp->private_data;
2040         void __user *argp = (void __user *)arg;
2041         int r = -EINVAL;
2042         /*
2043          * This union makes it completely explicit to gcc-3.x
2044          * that these two variables' stack usage should be
2045          * combined, not added together.
2046          */
2047         union {
2048                 struct kvm_pit_state ps;
2049                 struct kvm_memory_alias alias;
2050                 struct kvm_pit_config pit_config;
2051         } u;
2052
2053         switch (ioctl) {
2054         case KVM_SET_TSS_ADDR:
2055                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2056                 if (r < 0)
2057                         goto out;
2058                 break;
2059         case KVM_SET_MEMORY_REGION: {
2060                 struct kvm_memory_region kvm_mem;
2061                 struct kvm_userspace_memory_region kvm_userspace_mem;
2062
2063                 r = -EFAULT;
2064                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2065                         goto out;
2066                 kvm_userspace_mem.slot = kvm_mem.slot;
2067                 kvm_userspace_mem.flags = kvm_mem.flags;
2068                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2069                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2070                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2071                 if (r)
2072                         goto out;
2073                 break;
2074         }
2075         case KVM_SET_NR_MMU_PAGES:
2076                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2077                 if (r)
2078                         goto out;
2079                 break;
2080         case KVM_GET_NR_MMU_PAGES:
2081                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2082                 break;
2083         case KVM_SET_MEMORY_ALIAS:
2084                 r = -EFAULT;
2085                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2086                         goto out;
2087                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2088                 if (r)
2089                         goto out;
2090                 break;
2091         case KVM_CREATE_IRQCHIP:
2092                 r = -ENOMEM;
2093                 kvm->arch.vpic = kvm_create_pic(kvm);
2094                 if (kvm->arch.vpic) {
2095                         r = kvm_ioapic_init(kvm);
2096                         if (r) {
2097                                 kfree(kvm->arch.vpic);
2098                                 kvm->arch.vpic = NULL;
2099                                 goto out;
2100                         }
2101                 } else
2102                         goto out;
2103                 r = kvm_setup_default_irq_routing(kvm);
2104                 if (r) {
2105                         kfree(kvm->arch.vpic);
2106                         kfree(kvm->arch.vioapic);
2107                         goto out;
2108                 }
2109                 break;
2110         case KVM_CREATE_PIT:
2111                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2112                 goto create_pit;
2113         case KVM_CREATE_PIT2:
2114                 r = -EFAULT;
2115                 if (copy_from_user(&u.pit_config, argp,
2116                                    sizeof(struct kvm_pit_config)))
2117                         goto out;
2118         create_pit:
2119                 mutex_lock(&kvm->lock);
2120                 r = -EEXIST;
2121                 if (kvm->arch.vpit)
2122                         goto create_pit_unlock;
2123                 r = -ENOMEM;
2124                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2125                 if (kvm->arch.vpit)
2126                         r = 0;
2127         create_pit_unlock:
2128                 mutex_unlock(&kvm->lock);
2129                 break;
2130         case KVM_IRQ_LINE_STATUS:
2131         case KVM_IRQ_LINE: {
2132                 struct kvm_irq_level irq_event;
2133
2134                 r = -EFAULT;
2135                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2136                         goto out;
2137                 if (irqchip_in_kernel(kvm)) {
2138                         __s32 status;
2139                         mutex_lock(&kvm->lock);
2140                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2141                                         irq_event.irq, irq_event.level);
2142                         mutex_unlock(&kvm->lock);
2143                         if (ioctl == KVM_IRQ_LINE_STATUS) {
2144                                 irq_event.status = status;
2145                                 if (copy_to_user(argp, &irq_event,
2146                                                         sizeof irq_event))
2147                                         goto out;
2148                         }
2149                         r = 0;
2150                 }
2151                 break;
2152         }
2153         case KVM_GET_IRQCHIP: {
2154                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2155                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2156
2157                 r = -ENOMEM;
2158                 if (!chip)
2159                         goto out;
2160                 r = -EFAULT;
2161                 if (copy_from_user(chip, argp, sizeof *chip))
2162                         goto get_irqchip_out;
2163                 r = -ENXIO;
2164                 if (!irqchip_in_kernel(kvm))
2165                         goto get_irqchip_out;
2166                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2167                 if (r)
2168                         goto get_irqchip_out;
2169                 r = -EFAULT;
2170                 if (copy_to_user(argp, chip, sizeof *chip))
2171                         goto get_irqchip_out;
2172                 r = 0;
2173         get_irqchip_out:
2174                 kfree(chip);
2175                 if (r)
2176                         goto out;
2177                 break;
2178         }
2179         case KVM_SET_IRQCHIP: {
2180                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2181                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2182
2183                 r = -ENOMEM;
2184                 if (!chip)
2185                         goto out;
2186                 r = -EFAULT;
2187                 if (copy_from_user(chip, argp, sizeof *chip))
2188                         goto set_irqchip_out;
2189                 r = -ENXIO;
2190                 if (!irqchip_in_kernel(kvm))
2191                         goto set_irqchip_out;
2192                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2193                 if (r)
2194                         goto set_irqchip_out;
2195                 r = 0;
2196         set_irqchip_out:
2197                 kfree(chip);
2198                 if (r)
2199                         goto out;
2200                 break;
2201         }
2202         case KVM_GET_PIT: {
2203                 r = -EFAULT;
2204                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2205                         goto out;
2206                 r = -ENXIO;
2207                 if (!kvm->arch.vpit)
2208                         goto out;
2209                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2210                 if (r)
2211                         goto out;
2212                 r = -EFAULT;
2213                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2214                         goto out;
2215                 r = 0;
2216                 break;
2217         }
2218         case KVM_SET_PIT: {
2219                 r = -EFAULT;
2220                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2221                         goto out;
2222                 r = -ENXIO;
2223                 if (!kvm->arch.vpit)
2224                         goto out;
2225                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2226                 if (r)
2227                         goto out;
2228                 r = 0;
2229                 break;
2230         }
2231         case KVM_REINJECT_CONTROL: {
2232                 struct kvm_reinject_control control;
2233                 r =  -EFAULT;
2234                 if (copy_from_user(&control, argp, sizeof(control)))
2235                         goto out;
2236                 r = kvm_vm_ioctl_reinject(kvm, &control);
2237                 if (r)
2238                         goto out;
2239                 r = 0;
2240                 break;
2241         }
2242         default:
2243                 ;
2244         }
2245 out:
2246         return r;
2247 }
2248
2249 static void kvm_init_msr_list(void)
2250 {
2251         u32 dummy[2];
2252         unsigned i, j;
2253
2254         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2255                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2256                         continue;
2257                 if (j < i)
2258                         msrs_to_save[j] = msrs_to_save[i];
2259                 j++;
2260         }
2261         num_msrs_to_save = j;
2262 }
2263
2264 /*
2265  * Only apic need an MMIO device hook, so shortcut now..
2266  */
2267 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2268                                                 gpa_t addr, int len,
2269                                                 int is_write)
2270 {
2271         struct kvm_io_device *dev;
2272
2273         if (vcpu->arch.apic) {
2274                 dev = &vcpu->arch.apic->dev;
2275                 if (kvm_iodevice_in_range(dev, addr, len, is_write))
2276                         return dev;
2277         }
2278         return NULL;
2279 }
2280
2281
2282 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2283                                                 gpa_t addr, int len,
2284                                                 int is_write)
2285 {
2286         struct kvm_io_device *dev;
2287
2288         dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2289         if (dev == NULL)
2290                 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2291                                           is_write);
2292         return dev;
2293 }
2294
2295 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2296                                struct kvm_vcpu *vcpu)
2297 {
2298         void *data = val;
2299         int r = X86EMUL_CONTINUE;
2300
2301         while (bytes) {
2302                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2303                 unsigned offset = addr & (PAGE_SIZE-1);
2304                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2305                 int ret;
2306
2307                 if (gpa == UNMAPPED_GVA) {
2308                         r = X86EMUL_PROPAGATE_FAULT;
2309                         goto out;
2310                 }
2311                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2312                 if (ret < 0) {
2313                         r = X86EMUL_UNHANDLEABLE;
2314                         goto out;
2315                 }
2316
2317                 bytes -= toread;
2318                 data += toread;
2319                 addr += toread;
2320         }
2321 out:
2322         return r;
2323 }
2324
2325 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2326                                 struct kvm_vcpu *vcpu)
2327 {
2328         void *data = val;
2329         int r = X86EMUL_CONTINUE;
2330
2331         while (bytes) {
2332                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2333                 unsigned offset = addr & (PAGE_SIZE-1);
2334                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2335                 int ret;
2336
2337                 if (gpa == UNMAPPED_GVA) {
2338                         r = X86EMUL_PROPAGATE_FAULT;
2339                         goto out;
2340                 }
2341                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2342                 if (ret < 0) {
2343                         r = X86EMUL_UNHANDLEABLE;
2344                         goto out;
2345                 }
2346
2347                 bytes -= towrite;
2348                 data += towrite;
2349                 addr += towrite;
2350         }
2351 out:
2352         return r;
2353 }
2354
2355
2356 static int emulator_read_emulated(unsigned long addr,
2357                                   void *val,
2358                                   unsigned int bytes,
2359                                   struct kvm_vcpu *vcpu)
2360 {
2361         struct kvm_io_device *mmio_dev;
2362         gpa_t                 gpa;
2363
2364         if (vcpu->mmio_read_completed) {
2365                 memcpy(val, vcpu->mmio_data, bytes);
2366                 vcpu->mmio_read_completed = 0;
2367                 return X86EMUL_CONTINUE;
2368         }
2369
2370         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2371
2372         /* For APIC access vmexit */
2373         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2374                 goto mmio;
2375
2376         if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2377                                 == X86EMUL_CONTINUE)
2378                 return X86EMUL_CONTINUE;
2379         if (gpa == UNMAPPED_GVA)
2380                 return X86EMUL_PROPAGATE_FAULT;
2381
2382 mmio:
2383         /*
2384          * Is this MMIO handled locally?
2385          */
2386         mutex_lock(&vcpu->kvm->lock);
2387         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2388         if (mmio_dev) {
2389                 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2390                 mutex_unlock(&vcpu->kvm->lock);
2391                 return X86EMUL_CONTINUE;
2392         }
2393         mutex_unlock(&vcpu->kvm->lock);
2394
2395         vcpu->mmio_needed = 1;
2396         vcpu->mmio_phys_addr = gpa;
2397         vcpu->mmio_size = bytes;
2398         vcpu->mmio_is_write = 0;
2399
2400         return X86EMUL_UNHANDLEABLE;
2401 }
2402
2403 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2404                           const void *val, int bytes)
2405 {
2406         int ret;
2407
2408         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2409         if (ret < 0)
2410                 return 0;
2411         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2412         return 1;
2413 }
2414
2415 static int emulator_write_emulated_onepage(unsigned long addr,
2416                                            const void *val,
2417                                            unsigned int bytes,
2418                                            struct kvm_vcpu *vcpu)
2419 {
2420         struct kvm_io_device *mmio_dev;
2421         gpa_t                 gpa;
2422
2423         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2424
2425         if (gpa == UNMAPPED_GVA) {
2426                 kvm_inject_page_fault(vcpu, addr, 2);
2427                 return X86EMUL_PROPAGATE_FAULT;
2428         }
2429
2430         /* For APIC access vmexit */
2431         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2432                 goto mmio;
2433
2434         if (emulator_write_phys(vcpu, gpa, val, bytes))
2435                 return X86EMUL_CONTINUE;
2436
2437 mmio:
2438         /*
2439          * Is this MMIO handled locally?
2440          */
2441         mutex_lock(&vcpu->kvm->lock);
2442         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2443         if (mmio_dev) {
2444                 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2445                 mutex_unlock(&vcpu->kvm->lock);
2446                 return X86EMUL_CONTINUE;
2447         }
2448         mutex_unlock(&vcpu->kvm->lock);
2449
2450         vcpu->mmio_needed = 1;
2451         vcpu->mmio_phys_addr = gpa;
2452         vcpu->mmio_size = bytes;
2453         vcpu->mmio_is_write = 1;
2454         memcpy(vcpu->mmio_data, val, bytes);
2455
2456         return X86EMUL_CONTINUE;
2457 }
2458
2459 int emulator_write_emulated(unsigned long addr,
2460                                    const void *val,
2461                                    unsigned int bytes,
2462                                    struct kvm_vcpu *vcpu)
2463 {
2464         /* Crossing a page boundary? */
2465         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2466                 int rc, now;
2467
2468                 now = -addr & ~PAGE_MASK;
2469                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2470                 if (rc != X86EMUL_CONTINUE)
2471                         return rc;
2472                 addr += now;
2473                 val += now;
2474                 bytes -= now;
2475         }
2476         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2477 }
2478 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2479
2480 static int emulator_cmpxchg_emulated(unsigned long addr,
2481                                      const void *old,
2482                                      const void *new,
2483                                      unsigned int bytes,
2484                                      struct kvm_vcpu *vcpu)
2485 {
2486         static int reported;
2487
2488         if (!reported) {
2489                 reported = 1;
2490                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2491         }
2492 #ifndef CONFIG_X86_64
2493         /* guests cmpxchg8b have to be emulated atomically */
2494         if (bytes == 8) {
2495                 gpa_t gpa;
2496                 struct page *page;
2497                 char *kaddr;
2498                 u64 val;
2499
2500                 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2501
2502                 if (gpa == UNMAPPED_GVA ||
2503                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2504                         goto emul_write;
2505
2506                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2507                         goto emul_write;
2508
2509                 val = *(u64 *)new;
2510
2511                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2512
2513                 kaddr = kmap_atomic(page, KM_USER0);
2514                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2515                 kunmap_atomic(kaddr, KM_USER0);
2516                 kvm_release_page_dirty(page);
2517         }
2518 emul_write:
2519 #endif
2520
2521         return emulator_write_emulated(addr, new, bytes, vcpu);
2522 }
2523
2524 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2525 {
2526         return kvm_x86_ops->get_segment_base(vcpu, seg);
2527 }
2528
2529 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2530 {
2531         kvm_mmu_invlpg(vcpu, address);
2532         return X86EMUL_CONTINUE;
2533 }
2534
2535 int emulate_clts(struct kvm_vcpu *vcpu)
2536 {
2537         KVMTRACE_0D(CLTS, vcpu, handler);
2538         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2539         return X86EMUL_CONTINUE;
2540 }
2541
2542 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2543 {
2544         struct kvm_vcpu *vcpu = ctxt->vcpu;
2545
2546         switch (dr) {
2547         case 0 ... 3:
2548                 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2549                 return X86EMUL_CONTINUE;
2550         default:
2551                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2552                 return X86EMUL_UNHANDLEABLE;
2553         }
2554 }
2555
2556 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2557 {
2558         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2559         int exception;
2560
2561         kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2562         if (exception) {
2563                 /* FIXME: better handling */
2564                 return X86EMUL_UNHANDLEABLE;
2565         }
2566         return X86EMUL_CONTINUE;
2567 }
2568
2569 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2570 {
2571         u8 opcodes[4];
2572         unsigned long rip = kvm_rip_read(vcpu);
2573         unsigned long rip_linear;
2574
2575         if (!printk_ratelimit())
2576                 return;
2577
2578         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2579
2580         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2581
2582         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2583                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2584 }
2585 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2586
2587 static struct x86_emulate_ops emulate_ops = {
2588         .read_std            = kvm_read_guest_virt,
2589         .read_emulated       = emulator_read_emulated,
2590         .write_emulated      = emulator_write_emulated,
2591         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2592 };
2593
2594 static void cache_all_regs(struct kvm_vcpu *vcpu)
2595 {
2596         kvm_register_read(vcpu, VCPU_REGS_RAX);
2597         kvm_register_read(vcpu, VCPU_REGS_RSP);
2598         kvm_register_read(vcpu, VCPU_REGS_RIP);
2599         vcpu->arch.regs_dirty = ~0;
2600 }
2601
2602 int emulate_instruction(struct kvm_vcpu *vcpu,
2603                         struct kvm_run *run,
2604                         unsigned long cr2,
2605                         u16 error_code,
2606                         int emulation_type)
2607 {
2608         int r, shadow_mask;
2609         struct decode_cache *c;
2610
2611         kvm_clear_exception_queue(vcpu);
2612         vcpu->arch.mmio_fault_cr2 = cr2;
2613         /*
2614          * TODO: fix x86_emulate.c to use guest_read/write_register
2615          * instead of direct ->regs accesses, can save hundred cycles
2616          * on Intel for instructions that don't read/change RSP, for
2617          * for example.
2618          */
2619         cache_all_regs(vcpu);
2620
2621         vcpu->mmio_is_write = 0;
2622         vcpu->arch.pio.string = 0;
2623
2624         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2625                 int cs_db, cs_l;
2626                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2627
2628                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2629                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2630                 vcpu->arch.emulate_ctxt.mode =
2631                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2632                         ? X86EMUL_MODE_REAL : cs_l
2633                         ? X86EMUL_MODE_PROT64 : cs_db
2634                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2635
2636                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2637
2638                 /* Reject the instructions other than VMCALL/VMMCALL when
2639                  * try to emulate invalid opcode */
2640                 c = &vcpu->arch.emulate_ctxt.decode;
2641                 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2642                     (!(c->twobyte && c->b == 0x01 &&
2643                       (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2644                        c->modrm_mod == 3 && c->modrm_rm == 1)))
2645                         return EMULATE_FAIL;
2646
2647                 ++vcpu->stat.insn_emulation;
2648                 if (r)  {
2649                         ++vcpu->stat.insn_emulation_fail;
2650                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2651                                 return EMULATE_DONE;
2652                         return EMULATE_FAIL;
2653                 }
2654         }
2655
2656         if (emulation_type & EMULTYPE_SKIP) {
2657                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2658                 return EMULATE_DONE;
2659         }
2660
2661         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2662         shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2663
2664         if (r == 0)
2665                 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2666
2667         if (vcpu->arch.pio.string)
2668                 return EMULATE_DO_MMIO;
2669
2670         if ((r || vcpu->mmio_is_write) && run) {
2671                 run->exit_reason = KVM_EXIT_MMIO;
2672                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2673                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2674                 run->mmio.len = vcpu->mmio_size;
2675                 run->mmio.is_write = vcpu->mmio_is_write;
2676         }
2677
2678         if (r) {
2679                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2680                         return EMULATE_DONE;
2681                 if (!vcpu->mmio_needed) {
2682                         kvm_report_emulation_failure(vcpu, "mmio");
2683                         return EMULATE_FAIL;
2684                 }
2685                 return EMULATE_DO_MMIO;
2686         }
2687
2688         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2689
2690         if (vcpu->mmio_is_write) {
2691                 vcpu->mmio_needed = 0;
2692                 return EMULATE_DO_MMIO;
2693         }
2694
2695         return EMULATE_DONE;
2696 }
2697 EXPORT_SYMBOL_GPL(emulate_instruction);
2698
2699 static int pio_copy_data(struct kvm_vcpu *vcpu)
2700 {
2701         void *p = vcpu->arch.pio_data;
2702         gva_t q = vcpu->arch.pio.guest_gva;
2703         unsigned bytes;
2704         int ret;
2705
2706         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2707         if (vcpu->arch.pio.in)
2708                 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2709         else
2710                 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2711         return ret;
2712 }
2713
2714 int complete_pio(struct kvm_vcpu *vcpu)
2715 {
2716         struct kvm_pio_request *io = &vcpu->arch.pio;
2717         long delta;
2718         int r;
2719         unsigned long val;
2720
2721         if (!io->string) {
2722                 if (io->in) {
2723                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2724                         memcpy(&val, vcpu->arch.pio_data, io->size);
2725                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2726                 }
2727         } else {
2728                 if (io->in) {
2729                         r = pio_copy_data(vcpu);
2730                         if (r)
2731                                 return r;
2732                 }
2733
2734                 delta = 1;
2735                 if (io->rep) {
2736                         delta *= io->cur_count;
2737                         /*
2738                          * The size of the register should really depend on
2739                          * current address size.
2740                          */
2741                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2742                         val -= delta;
2743                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2744                 }
2745                 if (io->down)
2746                         delta = -delta;
2747                 delta *= io->size;
2748                 if (io->in) {
2749                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2750                         val += delta;
2751                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2752                 } else {
2753                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2754                         val += delta;
2755                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2756                 }
2757         }
2758
2759         io->count -= io->cur_count;
2760         io->cur_count = 0;
2761
2762         return 0;
2763 }
2764
2765 static void kernel_pio(struct kvm_io_device *pio_dev,
2766                        struct kvm_vcpu *vcpu,
2767                        void *pd)
2768 {
2769         /* TODO: String I/O for in kernel device */
2770
2771         mutex_lock(&vcpu->kvm->lock);
2772         if (vcpu->arch.pio.in)
2773                 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2774                                   vcpu->arch.pio.size,
2775                                   pd);
2776         else
2777                 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2778                                    vcpu->arch.pio.size,
2779                                    pd);
2780         mutex_unlock(&vcpu->kvm->lock);
2781 }
2782
2783 static void pio_string_write(struct kvm_io_device *pio_dev,
2784                              struct kvm_vcpu *vcpu)
2785 {
2786         struct kvm_pio_request *io = &vcpu->arch.pio;
2787         void *pd = vcpu->arch.pio_data;
2788         int i;
2789
2790         mutex_lock(&vcpu->kvm->lock);
2791         for (i = 0; i < io->cur_count; i++) {
2792                 kvm_iodevice_write(pio_dev, io->port,
2793                                    io->size,
2794                                    pd);
2795                 pd += io->size;
2796         }
2797         mutex_unlock(&vcpu->kvm->lock);
2798 }
2799
2800 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2801                                                gpa_t addr, int len,
2802                                                int is_write)
2803 {
2804         return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2805 }
2806
2807 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2808                   int size, unsigned port)
2809 {
2810         struct kvm_io_device *pio_dev;
2811         unsigned long val;
2812
2813         vcpu->run->exit_reason = KVM_EXIT_IO;
2814         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2815         vcpu->run->io.size = vcpu->arch.pio.size = size;
2816         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2817         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2818         vcpu->run->io.port = vcpu->arch.pio.port = port;
2819         vcpu->arch.pio.in = in;
2820         vcpu->arch.pio.string = 0;
2821         vcpu->arch.pio.down = 0;
2822         vcpu->arch.pio.rep = 0;
2823
2824         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2825                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2826                             handler);
2827         else
2828                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2829                             handler);
2830
2831         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2832         memcpy(vcpu->arch.pio_data, &val, 4);
2833
2834         pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2835         if (pio_dev) {
2836                 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2837                 complete_pio(vcpu);
2838                 return 1;
2839         }
2840         return 0;
2841 }
2842 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2843
2844 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2845                   int size, unsigned long count, int down,
2846                   gva_t address, int rep, unsigned port)
2847 {
2848         unsigned now, in_page;
2849         int ret = 0;
2850         struct kvm_io_device *pio_dev;
2851
2852         vcpu->run->exit_reason = KVM_EXIT_IO;
2853         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2854         vcpu->run->io.size = vcpu->arch.pio.size = size;
2855         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2856         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2857         vcpu->run->io.port = vcpu->arch.pio.port = port;
2858         vcpu->arch.pio.in = in;
2859         vcpu->arch.pio.string = 1;
2860         vcpu->arch.pio.down = down;
2861         vcpu->arch.pio.rep = rep;
2862
2863         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2864                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2865                             handler);
2866         else
2867                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2868                             handler);
2869
2870         if (!count) {
2871                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2872                 return 1;
2873         }
2874
2875         if (!down)
2876                 in_page = PAGE_SIZE - offset_in_page(address);
2877         else
2878                 in_page = offset_in_page(address) + size;
2879         now = min(count, (unsigned long)in_page / size);
2880         if (!now)
2881                 now = 1;
2882         if (down) {
2883                 /*
2884                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
2885                  */
2886                 pr_unimpl(vcpu, "guest string pio down\n");
2887                 kvm_inject_gp(vcpu, 0);
2888                 return 1;
2889         }
2890         vcpu->run->io.count = now;
2891         vcpu->arch.pio.cur_count = now;
2892
2893         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2894                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2895
2896         vcpu->arch.pio.guest_gva = address;
2897
2898         pio_dev = vcpu_find_pio_dev(vcpu, port,
2899                                     vcpu->arch.pio.cur_count,
2900                                     !vcpu->arch.pio.in);
2901         if (!vcpu->arch.pio.in) {
2902                 /* string PIO write */
2903                 ret = pio_copy_data(vcpu);
2904                 if (ret == X86EMUL_PROPAGATE_FAULT) {
2905                         kvm_inject_gp(vcpu, 0);
2906                         return 1;
2907                 }
2908                 if (ret == 0 && pio_dev) {
2909                         pio_string_write(pio_dev, vcpu);
2910                         complete_pio(vcpu);
2911                         if (vcpu->arch.pio.count == 0)
2912                                 ret = 1;
2913                 }
2914         } else if (pio_dev)
2915                 pr_unimpl(vcpu, "no string pio read support yet, "
2916                        "port %x size %d count %ld\n",
2917                         port, size, count);
2918
2919         return ret;
2920 }
2921 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2922
2923 static void bounce_off(void *info)
2924 {
2925         /* nothing */
2926 }
2927
2928 static unsigned int  ref_freq;
2929 static unsigned long tsc_khz_ref;
2930
2931 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
2932                                      void *data)
2933 {
2934         struct cpufreq_freqs *freq = data;
2935         struct kvm *kvm;
2936         struct kvm_vcpu *vcpu;
2937         int i, send_ipi = 0;
2938
2939         if (!ref_freq)
2940                 ref_freq = freq->old;
2941
2942         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
2943                 return 0;
2944         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
2945                 return 0;
2946         per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
2947
2948         spin_lock(&kvm_lock);
2949         list_for_each_entry(kvm, &vm_list, vm_list) {
2950                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2951                         vcpu = kvm->vcpus[i];
2952                         if (!vcpu)
2953                                 continue;
2954                         if (vcpu->cpu != freq->cpu)
2955                                 continue;
2956                         if (!kvm_request_guest_time_update(vcpu))
2957                                 continue;
2958                         if (vcpu->cpu != smp_processor_id())
2959                                 send_ipi++;
2960                 }
2961         }
2962         spin_unlock(&kvm_lock);
2963
2964         if (freq->old < freq->new && send_ipi) {
2965                 /*
2966                  * We upscale the frequency.  Must make the guest
2967                  * doesn't see old kvmclock values while running with
2968                  * the new frequency, otherwise we risk the guest sees
2969                  * time go backwards.
2970                  *
2971                  * In case we update the frequency for another cpu
2972                  * (which might be in guest context) send an interrupt
2973                  * to kick the cpu out of guest context.  Next time
2974                  * guest context is entered kvmclock will be updated,
2975                  * so the guest will not see stale values.
2976                  */
2977                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
2978         }
2979         return 0;
2980 }
2981
2982 static struct notifier_block kvmclock_cpufreq_notifier_block = {
2983         .notifier_call  = kvmclock_cpufreq_notifier
2984 };
2985
2986 int kvm_arch_init(void *opaque)
2987 {
2988         int r, cpu;
2989         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2990
2991         if (kvm_x86_ops) {
2992                 printk(KERN_ERR "kvm: already loaded the other module\n");
2993                 r = -EEXIST;
2994                 goto out;
2995         }
2996
2997         if (!ops->cpu_has_kvm_support()) {
2998                 printk(KERN_ERR "kvm: no hardware support\n");
2999                 r = -EOPNOTSUPP;
3000                 goto out;
3001         }
3002         if (ops->disabled_by_bios()) {
3003                 printk(KERN_ERR "kvm: disabled by bios\n");
3004                 r = -EOPNOTSUPP;
3005                 goto out;
3006         }
3007
3008         r = kvm_mmu_module_init();
3009         if (r)
3010                 goto out;
3011
3012         kvm_init_msr_list();
3013
3014         kvm_x86_ops = ops;
3015         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3016         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3017         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3018                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
3019
3020         for_each_possible_cpu(cpu)
3021                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3022         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3023                 tsc_khz_ref = tsc_khz;
3024                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3025                                           CPUFREQ_TRANSITION_NOTIFIER);
3026         }
3027
3028         return 0;
3029
3030 out:
3031         return r;
3032 }
3033
3034 void kvm_arch_exit(void)
3035 {
3036         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3037                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3038                                             CPUFREQ_TRANSITION_NOTIFIER);
3039         kvm_x86_ops = NULL;
3040         kvm_mmu_module_exit();
3041 }
3042
3043 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3044 {
3045         ++vcpu->stat.halt_exits;
3046         KVMTRACE_0D(HLT, vcpu, handler);
3047         if (irqchip_in_kernel(vcpu->kvm)) {
3048                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3049                 return 1;
3050         } else {
3051                 vcpu->run->exit_reason = KVM_EXIT_HLT;
3052                 return 0;
3053         }
3054 }
3055 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3056
3057 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3058                            unsigned long a1)
3059 {
3060         if (is_long_mode(vcpu))
3061                 return a0;
3062         else
3063                 return a0 | ((gpa_t)a1 << 32);
3064 }
3065
3066 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3067 {
3068         unsigned long nr, a0, a1, a2, a3, ret;
3069         int r = 1;
3070
3071         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3072         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3073         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3074         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3075         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3076
3077         KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
3078
3079         if (!is_long_mode(vcpu)) {
3080                 nr &= 0xFFFFFFFF;
3081                 a0 &= 0xFFFFFFFF;
3082                 a1 &= 0xFFFFFFFF;
3083                 a2 &= 0xFFFFFFFF;
3084                 a3 &= 0xFFFFFFFF;
3085         }
3086
3087         switch (nr) {
3088         case KVM_HC_VAPIC_POLL_IRQ:
3089                 ret = 0;
3090                 break;
3091         case KVM_HC_MMU_OP:
3092                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3093                 break;
3094         default:
3095                 ret = -KVM_ENOSYS;
3096                 break;
3097         }
3098         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3099         ++vcpu->stat.hypercalls;
3100         return r;
3101 }
3102 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3103
3104 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3105 {
3106         char instruction[3];
3107         int ret = 0;
3108         unsigned long rip = kvm_rip_read(vcpu);
3109
3110
3111         /*
3112          * Blow out the MMU to ensure that no other VCPU has an active mapping
3113          * to ensure that the updated hypercall appears atomically across all
3114          * VCPUs.
3115          */
3116         kvm_mmu_zap_all(vcpu->kvm);
3117
3118         kvm_x86_ops->patch_hypercall(vcpu, instruction);
3119         if (emulator_write_emulated(rip, instruction, 3, vcpu)
3120             != X86EMUL_CONTINUE)
3121                 ret = -EFAULT;
3122
3123         return ret;
3124 }
3125
3126 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3127 {
3128         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3129 }
3130
3131 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3132 {
3133         struct descriptor_table dt = { limit, base };
3134
3135         kvm_x86_ops->set_gdt(vcpu, &dt);
3136 }
3137
3138 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3139 {
3140         struct descriptor_table dt = { limit, base };
3141
3142         kvm_x86_ops->set_idt(vcpu, &dt);
3143 }
3144
3145 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3146                    unsigned long *rflags)
3147 {
3148         kvm_lmsw(vcpu, msw);
3149         *rflags = kvm_x86_ops->get_rflags(vcpu);
3150 }
3151
3152 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3153 {
3154         unsigned long value;
3155
3156         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3157         switch (cr) {
3158         case 0:
3159                 value = vcpu->arch.cr0;
3160                 break;
3161         case 2:
3162                 value = vcpu->arch.cr2;
3163                 break;
3164         case 3:
3165                 value = vcpu->arch.cr3;
3166                 break;
3167         case 4:
3168                 value = vcpu->arch.cr4;
3169                 break;
3170         case 8:
3171                 value = kvm_get_cr8(vcpu);
3172                 break;
3173         default:
3174                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3175                 return 0;
3176         }
3177         KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
3178                     (u32)((u64)value >> 32), handler);
3179
3180         return value;
3181 }
3182
3183 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3184                      unsigned long *rflags)
3185 {
3186         KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
3187                     (u32)((u64)val >> 32), handler);
3188
3189         switch (cr) {
3190         case 0:
3191                 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3192                 *rflags = kvm_x86_ops->get_rflags(vcpu);
3193                 break;
3194         case 2:
3195                 vcpu->arch.cr2 = val;
3196                 break;
3197         case 3:
3198                 kvm_set_cr3(vcpu, val);
3199                 break;
3200         case 4:
3201                 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3202                 break;
3203         case 8:
3204                 kvm_set_cr8(vcpu, val & 0xfUL);
3205                 break;
3206         default:
3207                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3208         }
3209 }
3210
3211 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3212 {
3213         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3214         int j, nent = vcpu->arch.cpuid_nent;
3215
3216         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3217         /* when no next entry is found, the current entry[i] is reselected */
3218         for (j = i + 1; ; j = (j + 1) % nent) {
3219                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3220                 if (ej->function == e->function) {
3221                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3222                         return j;
3223                 }
3224         }
3225         return 0; /* silence gcc, even though control never reaches here */
3226 }
3227
3228 /* find an entry with matching function, matching index (if needed), and that
3229  * should be read next (if it's stateful) */
3230 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3231         u32 function, u32 index)
3232 {
3233         if (e->function != function)
3234                 return 0;
3235         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3236                 return 0;
3237         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3238             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3239                 return 0;
3240         return 1;
3241 }
3242
3243 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3244                                               u32 function, u32 index)
3245 {
3246         int i;
3247         struct kvm_cpuid_entry2 *best = NULL;
3248
3249         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3250                 struct kvm_cpuid_entry2 *e;
3251
3252                 e = &vcpu->arch.cpuid_entries[i];
3253                 if (is_matching_cpuid_entry(e, function, index)) {
3254                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3255                                 move_to_next_stateful_cpuid_entry(vcpu, i);
3256                         best = e;
3257                         break;
3258                 }
3259                 /*
3260                  * Both basic or both extended?
3261                  */
3262                 if (((e->function ^ function) & 0x80000000) == 0)
3263                         if (!best || e->function > best->function)
3264                                 best = e;
3265         }
3266         return best;
3267 }
3268
3269 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3270 {
3271         struct kvm_cpuid_entry2 *best;
3272
3273         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3274         if (best)
3275                 return best->eax & 0xff;
3276         return 36;
3277 }
3278
3279 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3280 {
3281         u32 function, index;
3282         struct kvm_cpuid_entry2 *best;
3283
3284         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3285         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3286         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3287         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3288         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3289         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3290         best = kvm_find_cpuid_entry(vcpu, function, index);
3291         if (best) {
3292                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3293                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3294                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3295                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3296         }
3297         kvm_x86_ops->skip_emulated_instruction(vcpu);
3298         KVMTRACE_5D(CPUID, vcpu, function,
3299                     (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3300                     (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3301                     (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3302                     (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3303 }
3304 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3305
3306 /*
3307  * Check if userspace requested an interrupt window, and that the
3308  * interrupt window is open.
3309  *
3310  * No need to exit to userspace if we already have an interrupt queued.
3311  */
3312 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3313                                           struct kvm_run *kvm_run)
3314 {
3315         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3316                 kvm_run->request_interrupt_window &&
3317                 kvm_arch_interrupt_allowed(vcpu));
3318 }
3319
3320 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3321                               struct kvm_run *kvm_run)
3322 {
3323         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3324         kvm_run->cr8 = kvm_get_cr8(vcpu);
3325         kvm_run->apic_base = kvm_get_apic_base(vcpu);
3326         if (irqchip_in_kernel(vcpu->kvm))
3327                 kvm_run->ready_for_interrupt_injection = 1;
3328         else
3329                 kvm_run->ready_for_interrupt_injection =
3330                         kvm_arch_interrupt_allowed(vcpu) &&
3331                         !kvm_cpu_has_interrupt(vcpu) &&
3332                         !kvm_event_needs_reinjection(vcpu);
3333 }
3334
3335 static void vapic_enter(struct kvm_vcpu *vcpu)
3336 {
3337         struct kvm_lapic *apic = vcpu->arch.apic;
3338         struct page *page;
3339
3340         if (!apic || !apic->vapic_addr)
3341                 return;
3342
3343         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3344
3345         vcpu->arch.apic->vapic_page = page;
3346 }
3347
3348 static void vapic_exit(struct kvm_vcpu *vcpu)
3349 {
3350         struct kvm_lapic *apic = vcpu->arch.apic;
3351
3352         if (!apic || !apic->vapic_addr)
3353                 return;
3354
3355         down_read(&vcpu->kvm->slots_lock);
3356         kvm_release_page_dirty(apic->vapic_page);
3357         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3358         up_read(&vcpu->kvm->slots_lock);
3359 }
3360
3361 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3362 {
3363         int max_irr, tpr;
3364
3365         if (!kvm_x86_ops->update_cr8_intercept)
3366                 return;
3367
3368         if (!vcpu->arch.apic->vapic_addr)
3369                 max_irr = kvm_lapic_find_highest_irr(vcpu);
3370         else
3371                 max_irr = -1;
3372
3373         if (max_irr != -1)
3374                 max_irr >>= 4;
3375
3376         tpr = kvm_lapic_get_cr8(vcpu);
3377
3378         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3379 }
3380
3381 static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3382 {
3383         /* try to reinject previous events if any */
3384         if (vcpu->arch.nmi_injected) {
3385                 kvm_x86_ops->set_nmi(vcpu);
3386                 return;
3387         }
3388
3389         if (vcpu->arch.interrupt.pending) {
3390                 kvm_x86_ops->set_irq(vcpu);
3391                 return;
3392         }
3393
3394         /* try to inject new event if pending */
3395         if (vcpu->arch.nmi_pending) {
3396                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3397                         vcpu->arch.nmi_pending = false;
3398                         vcpu->arch.nmi_injected = true;
3399                         kvm_x86_ops->set_nmi(vcpu);
3400                 }
3401         } else if (kvm_cpu_has_interrupt(vcpu)) {
3402                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3403                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3404                                             false);
3405                         kvm_x86_ops->set_irq(vcpu);
3406                 }
3407         }
3408 }
3409
3410 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3411 {
3412         int r;
3413         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3414                 kvm_run->request_interrupt_window;
3415
3416         if (vcpu->requests)
3417                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3418                         kvm_mmu_unload(vcpu);
3419
3420         r = kvm_mmu_reload(vcpu);
3421         if (unlikely(r))
3422                 goto out;
3423
3424         if (vcpu->requests) {
3425                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3426                         __kvm_migrate_timers(vcpu);
3427                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3428                         kvm_write_guest_time(vcpu);
3429                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3430                         kvm_mmu_sync_roots(vcpu);
3431                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3432                         kvm_x86_ops->tlb_flush(vcpu);
3433                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3434                                        &vcpu->requests)) {
3435                         kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3436                         r = 0;
3437                         goto out;
3438                 }
3439                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3440                         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3441                         r = 0;
3442                         goto out;
3443                 }
3444         }
3445
3446         preempt_disable();
3447
3448         kvm_x86_ops->prepare_guest_switch(vcpu);
3449         kvm_load_guest_fpu(vcpu);
3450
3451         local_irq_disable();
3452
3453         clear_bit(KVM_REQ_KICK, &vcpu->requests);
3454         smp_mb__after_clear_bit();
3455
3456         if (vcpu->requests || need_resched() || signal_pending(current)) {
3457                 local_irq_enable();
3458                 preempt_enable();
3459                 r = 1;
3460                 goto out;
3461         }
3462
3463         if (vcpu->arch.exception.pending)
3464                 __queue_exception(vcpu);
3465         else
3466                 inject_pending_irq(vcpu, kvm_run);
3467
3468         /* enable NMI/IRQ window open exits if needed */
3469         if (vcpu->arch.nmi_pending)
3470                 kvm_x86_ops->enable_nmi_window(vcpu);
3471         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3472                 kvm_x86_ops->enable_irq_window(vcpu);
3473
3474         if (kvm_lapic_enabled(vcpu)) {
3475                 update_cr8_intercept(vcpu);
3476                 kvm_lapic_sync_to_vapic(vcpu);
3477         }
3478
3479         up_read(&vcpu->kvm->slots_lock);
3480
3481         kvm_guest_enter();
3482
3483         get_debugreg(vcpu->arch.host_dr6, 6);
3484         get_debugreg(vcpu->arch.host_dr7, 7);
3485         if (unlikely(vcpu->arch.switch_db_regs)) {
3486                 get_debugreg(vcpu->arch.host_db[0], 0);
3487                 get_debugreg(vcpu->arch.host_db[1], 1);
3488                 get_debugreg(vcpu->arch.host_db[2], 2);
3489                 get_debugreg(vcpu->arch.host_db[3], 3);
3490
3491                 set_debugreg(0, 7);
3492                 set_debugreg(vcpu->arch.eff_db[0], 0);
3493                 set_debugreg(vcpu->arch.eff_db[1], 1);
3494                 set_debugreg(vcpu->arch.eff_db[2], 2);
3495                 set_debugreg(vcpu->arch.eff_db[3], 3);
3496         }
3497
3498         KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3499         kvm_x86_ops->run(vcpu, kvm_run);
3500
3501         if (unlikely(vcpu->arch.switch_db_regs)) {
3502                 set_debugreg(0, 7);
3503                 set_debugreg(vcpu->arch.host_db[0], 0);
3504                 set_debugreg(vcpu->arch.host_db[1], 1);
3505                 set_debugreg(vcpu->arch.host_db[2], 2);
3506                 set_debugreg(vcpu->arch.host_db[3], 3);
3507         }
3508         set_debugreg(vcpu->arch.host_dr6, 6);
3509         set_debugreg(vcpu->arch.host_dr7, 7);
3510
3511         set_bit(KVM_REQ_KICK, &vcpu->requests);
3512         local_irq_enable();
3513
3514         ++vcpu->stat.exits;
3515
3516         /*
3517          * We must have an instruction between local_irq_enable() and
3518          * kvm_guest_exit(), so the timer interrupt isn't delayed by
3519          * the interrupt shadow.  The stat.exits increment will do nicely.
3520          * But we need to prevent reordering, hence this barrier():
3521          */
3522         barrier();
3523
3524         kvm_guest_exit();
3525
3526         preempt_enable();
3527
3528         down_read(&vcpu->kvm->slots_lock);
3529
3530         /*
3531          * Profile KVM exit RIPs:
3532          */
3533         if (unlikely(prof_on == KVM_PROFILING)) {
3534                 unsigned long rip = kvm_rip_read(vcpu);
3535                 profile_hit(KVM_PROFILING, (void *)rip);
3536         }
3537
3538
3539         kvm_lapic_sync_from_vapic(vcpu);
3540
3541         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3542 out:
3543         return r;
3544 }
3545
3546
3547 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3548 {
3549         int r;
3550
3551         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3552                 pr_debug("vcpu %d received sipi with vector # %x\n",
3553                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
3554                 kvm_lapic_reset(vcpu);
3555                 r = kvm_arch_vcpu_reset(vcpu);
3556                 if (r)
3557                         return r;
3558                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3559         }
3560
3561         down_read(&vcpu->kvm->slots_lock);
3562         vapic_enter(vcpu);
3563
3564         r = 1;
3565         while (r > 0) {
3566                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3567                         r = vcpu_enter_guest(vcpu, kvm_run);
3568                 else {
3569                         up_read(&vcpu->kvm->slots_lock);
3570                         kvm_vcpu_block(vcpu);
3571                         down_read(&vcpu->kvm->slots_lock);
3572                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3573                         {
3574                                 switch(vcpu->arch.mp_state) {
3575                                 case KVM_MP_STATE_HALTED:
3576                                         vcpu->arch.mp_state =
3577                                                 KVM_MP_STATE_RUNNABLE;
3578                                 case KVM_MP_STATE_RUNNABLE:
3579                                         break;
3580                                 case KVM_MP_STATE_SIPI_RECEIVED:
3581                                 default:
3582                                         r = -EINTR;
3583                                         break;
3584                                 }
3585                         }
3586                 }
3587
3588                 if (r <= 0)
3589                         break;
3590
3591                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3592                 if (kvm_cpu_has_pending_timer(vcpu))
3593                         kvm_inject_pending_timer_irqs(vcpu);
3594
3595                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3596                         r = -EINTR;
3597                         kvm_run->exit_reason = KVM_EXIT_INTR;
3598                         ++vcpu->stat.request_irq_exits;
3599                 }
3600                 if (signal_pending(current)) {
3601                         r = -EINTR;
3602                         kvm_run->exit_reason = KVM_EXIT_INTR;
3603                         ++vcpu->stat.signal_exits;
3604                 }
3605                 if (need_resched()) {
3606                         up_read(&vcpu->kvm->slots_lock);
3607                         kvm_resched(vcpu);
3608                         down_read(&vcpu->kvm->slots_lock);
3609                 }
3610         }
3611
3612         up_read(&vcpu->kvm->slots_lock);
3613         post_kvm_run_save(vcpu, kvm_run);
3614
3615         vapic_exit(vcpu);
3616
3617         return r;
3618 }
3619
3620 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3621 {
3622         int r;
3623         sigset_t sigsaved;
3624
3625         vcpu_load(vcpu);
3626
3627         if (vcpu->sigset_active)
3628                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3629
3630         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3631                 kvm_vcpu_block(vcpu);
3632                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3633                 r = -EAGAIN;
3634                 goto out;
3635         }
3636
3637         /* re-sync apic's tpr */
3638         if (!irqchip_in_kernel(vcpu->kvm))
3639                 kvm_set_cr8(vcpu, kvm_run->cr8);
3640
3641         if (vcpu->arch.pio.cur_count) {
3642                 r = complete_pio(vcpu);
3643                 if (r)
3644                         goto out;
3645         }
3646 #if CONFIG_HAS_IOMEM
3647         if (vcpu->mmio_needed) {
3648                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3649                 vcpu->mmio_read_completed = 1;
3650                 vcpu->mmio_needed = 0;
3651
3652                 down_read(&vcpu->kvm->slots_lock);
3653                 r = emulate_instruction(vcpu, kvm_run,
3654                                         vcpu->arch.mmio_fault_cr2, 0,
3655                                         EMULTYPE_NO_DECODE);
3656                 up_read(&vcpu->kvm->slots_lock);
3657                 if (r == EMULATE_DO_MMIO) {
3658                         /*
3659                          * Read-modify-write.  Back to userspace.
3660                          */
3661                         r = 0;
3662                         goto out;
3663                 }
3664         }
3665 #endif
3666         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3667                 kvm_register_write(vcpu, VCPU_REGS_RAX,
3668                                      kvm_run->hypercall.ret);
3669
3670         r = __vcpu_run(vcpu, kvm_run);
3671
3672 out:
3673         if (vcpu->sigset_active)
3674                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3675
3676         vcpu_put(vcpu);
3677         return r;
3678 }
3679
3680 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3681 {
3682         vcpu_load(vcpu);
3683
3684         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3685         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3686         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3687         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3688         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3689         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3690         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3691         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3692 #ifdef CONFIG_X86_64
3693         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3694         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3695         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3696         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3697         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3698         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3699         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3700         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3701 #endif
3702
3703         regs->rip = kvm_rip_read(vcpu);
3704         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3705
3706         /*
3707          * Don't leak debug flags in case they were set for guest debugging
3708          */
3709         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3710                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3711
3712         vcpu_put(vcpu);
3713
3714         return 0;
3715 }
3716
3717 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3718 {
3719         vcpu_load(vcpu);
3720
3721         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3722         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3723         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3724         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3725         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3726         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3727         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3728         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3729 #ifdef CONFIG_X86_64
3730         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3731         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3732         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3733         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3734         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3735         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3736         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3737         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3738
3739 #endif
3740
3741         kvm_rip_write(vcpu, regs->rip);
3742         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3743
3744
3745         vcpu->arch.exception.pending = false;
3746
3747         vcpu_put(vcpu);
3748
3749         return 0;
3750 }
3751
3752 void kvm_get_segment(struct kvm_vcpu *vcpu,
3753                      struct kvm_segment *var, int seg)
3754 {
3755         kvm_x86_ops->get_segment(vcpu, var, seg);
3756 }
3757
3758 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3759 {
3760         struct kvm_segment cs;
3761
3762         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3763         *db = cs.db;
3764         *l = cs.l;
3765 }
3766 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3767
3768 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3769                                   struct kvm_sregs *sregs)
3770 {
3771         struct descriptor_table dt;
3772
3773         vcpu_load(vcpu);
3774
3775         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3776         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3777         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3778         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3779         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3780         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3781
3782         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3783         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3784
3785         kvm_x86_ops->get_idt(vcpu, &dt);
3786         sregs->idt.limit = dt.limit;
3787         sregs->idt.base = dt.base;
3788         kvm_x86_ops->get_gdt(vcpu, &dt);
3789         sregs->gdt.limit = dt.limit;
3790         sregs->gdt.base = dt.base;
3791
3792         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3793         sregs->cr0 = vcpu->arch.cr0;
3794         sregs->cr2 = vcpu->arch.cr2;
3795         sregs->cr3 = vcpu->arch.cr3;
3796         sregs->cr4 = vcpu->arch.cr4;
3797         sregs->cr8 = kvm_get_cr8(vcpu);
3798         sregs->efer = vcpu->arch.shadow_efer;
3799         sregs->apic_base = kvm_get_apic_base(vcpu);
3800
3801         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3802
3803         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3804                 set_bit(vcpu->arch.interrupt.nr,
3805                         (unsigned long *)sregs->interrupt_bitmap);
3806
3807         vcpu_put(vcpu);
3808
3809         return 0;
3810 }
3811
3812 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3813                                     struct kvm_mp_state *mp_state)
3814 {
3815         vcpu_load(vcpu);
3816         mp_state->mp_state = vcpu->arch.mp_state;
3817         vcpu_put(vcpu);
3818         return 0;
3819 }
3820
3821 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3822                                     struct kvm_mp_state *mp_state)
3823 {
3824         vcpu_load(vcpu);
3825         vcpu->arch.mp_state = mp_state->mp_state;
3826         vcpu_put(vcpu);
3827         return 0;
3828 }
3829
3830 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3831                         struct kvm_segment *var, int seg)
3832 {
3833         kvm_x86_ops->set_segment(vcpu, var, seg);
3834 }
3835
3836 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3837                                    struct kvm_segment *kvm_desct)
3838 {
3839         kvm_desct->base = seg_desc->base0;
3840         kvm_desct->base |= seg_desc->base1 << 16;
3841         kvm_desct->base |= seg_desc->base2 << 24;
3842         kvm_desct->limit = seg_desc->limit0;
3843         kvm_desct->limit |= seg_desc->limit << 16;
3844         if (seg_desc->g) {
3845                 kvm_desct->limit <<= 12;
3846                 kvm_desct->limit |= 0xfff;
3847         }
3848         kvm_desct->selector = selector;
3849         kvm_desct->type = seg_desc->type;
3850         kvm_desct->present = seg_desc->p;
3851         kvm_desct->dpl = seg_desc->dpl;
3852         kvm_desct->db = seg_desc->d;
3853         kvm_desct->s = seg_desc->s;
3854         kvm_desct->l = seg_desc->l;
3855         kvm_desct->g = seg_desc->g;
3856         kvm_desct->avl = seg_desc->avl;
3857         if (!selector)
3858                 kvm_desct->unusable = 1;
3859         else
3860                 kvm_desct->unusable = 0;
3861         kvm_desct->padding = 0;
3862 }
3863
3864 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3865                                           u16 selector,
3866                                           struct descriptor_table *dtable)
3867 {
3868         if (selector & 1 << 2) {
3869                 struct kvm_segment kvm_seg;
3870
3871                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3872
3873                 if (kvm_seg.unusable)
3874                         dtable->limit = 0;
3875                 else
3876                         dtable->limit = kvm_seg.limit;
3877                 dtable->base = kvm_seg.base;
3878         }
3879         else
3880                 kvm_x86_ops->get_gdt(vcpu, dtable);
3881 }
3882
3883 /* allowed just for 8 bytes segments */
3884 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3885                                          struct desc_struct *seg_desc)
3886 {
3887         gpa_t gpa;
3888         struct descriptor_table dtable;
3889         u16 index = selector >> 3;
3890
3891         get_segment_descriptor_dtable(vcpu, selector, &dtable);
3892
3893         if (dtable.limit < index * 8 + 7) {
3894                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3895                 return 1;
3896         }
3897         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3898         gpa += index * 8;
3899         return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3900 }
3901
3902 /* allowed just for 8 bytes segments */
3903 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3904                                          struct desc_struct *seg_desc)
3905 {
3906         gpa_t gpa;
3907         struct descriptor_table dtable;
3908         u16 index = selector >> 3;
3909
3910         get_segment_descriptor_dtable(vcpu, selector, &dtable);
3911
3912         if (dtable.limit < index * 8 + 7)
3913                 return 1;
3914         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3915         gpa += index * 8;
3916         return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3917 }
3918
3919 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3920                              struct desc_struct *seg_desc)
3921 {
3922         u32 base_addr;
3923
3924         base_addr = seg_desc->base0;
3925         base_addr |= (seg_desc->base1 << 16);
3926         base_addr |= (seg_desc->base2 << 24);
3927
3928         return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3929 }
3930
3931 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3932 {
3933         struct kvm_segment kvm_seg;
3934
3935         kvm_get_segment(vcpu, &kvm_seg, seg);
3936         return kvm_seg.selector;
3937 }
3938
3939 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3940                                                 u16 selector,
3941                                                 struct kvm_segment *kvm_seg)
3942 {
3943         struct desc_struct seg_desc;
3944
3945         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3946                 return 1;
3947         seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3948         return 0;
3949 }
3950
3951 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3952 {
3953         struct kvm_segment segvar = {
3954                 .base = selector << 4,
3955                 .limit = 0xffff,
3956                 .selector = selector,
3957                 .type = 3,
3958                 .present = 1,
3959                 .dpl = 3,
3960                 .db = 0,
3961                 .s = 1,
3962                 .l = 0,
3963                 .g = 0,
3964                 .avl = 0,
3965                 .unusable = 0,
3966         };
3967         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3968         return 0;
3969 }
3970
3971 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3972                                 int type_bits, int seg)
3973 {
3974         struct kvm_segment kvm_seg;
3975
3976         if (!(vcpu->arch.cr0 & X86_CR0_PE))
3977                 return kvm_load_realmode_segment(vcpu, selector, seg);
3978         if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3979                 return 1;
3980         kvm_seg.type |= type_bits;
3981
3982         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3983             seg != VCPU_SREG_LDTR)
3984                 if (!kvm_seg.s)
3985                         kvm_seg.unusable = 1;
3986
3987         kvm_set_segment(vcpu, &kvm_seg, seg);
3988         return 0;
3989 }
3990
3991 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3992                                 struct tss_segment_32 *tss)
3993 {
3994         tss->cr3 = vcpu->arch.cr3;
3995         tss->eip = kvm_rip_read(vcpu);
3996         tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3997         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3998         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3999         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4000         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4001         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4002         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4003         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4004         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4005         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4006         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4007         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4008         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4009         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4010         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4011         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4012 }
4013
4014 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4015                                   struct tss_segment_32 *tss)
4016 {
4017         kvm_set_cr3(vcpu, tss->cr3);
4018
4019         kvm_rip_write(vcpu, tss->eip);
4020         kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
4021
4022         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4023         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4024         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4025         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4026         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4027         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4028         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4029         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4030
4031         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4032                 return 1;
4033
4034         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4035                 return 1;
4036
4037         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4038                 return 1;
4039
4040         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4041                 return 1;
4042
4043         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4044                 return 1;
4045
4046         if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4047                 return 1;
4048
4049         if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4050                 return 1;
4051         return 0;
4052 }
4053
4054 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4055                                 struct tss_segment_16 *tss)
4056 {
4057         tss->ip = kvm_rip_read(vcpu);
4058         tss->flag = kvm_x86_ops->get_rflags(vcpu);
4059         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4060         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4061         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4062         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4063         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4064         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4065         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4066         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4067
4068         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4069         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4070         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4071         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4072         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4073         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
4074 }
4075
4076 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4077                                  struct tss_segment_16 *tss)
4078 {
4079         kvm_rip_write(vcpu, tss->ip);
4080         kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
4081         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4082         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4083         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4084         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4085         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4086         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4087         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4088         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4089
4090         if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4091                 return 1;
4092
4093         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4094                 return 1;
4095
4096         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4097                 return 1;
4098
4099         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4100                 return 1;
4101
4102         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4103                 return 1;
4104         return 0;
4105 }
4106
4107 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4108                               u16 old_tss_sel, u32 old_tss_base,
4109                               struct desc_struct *nseg_desc)
4110 {
4111         struct tss_segment_16 tss_segment_16;
4112         int ret = 0;
4113
4114         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4115                            sizeof tss_segment_16))
4116                 goto out;
4117
4118         save_state_to_tss16(vcpu, &tss_segment_16);
4119
4120         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4121                             sizeof tss_segment_16))
4122                 goto out;
4123
4124         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4125                            &tss_segment_16, sizeof tss_segment_16))
4126                 goto out;
4127
4128         if (old_tss_sel != 0xffff) {
4129                 tss_segment_16.prev_task_link = old_tss_sel;
4130
4131                 if (kvm_write_guest(vcpu->kvm,
4132                                     get_tss_base_addr(vcpu, nseg_desc),
4133                                     &tss_segment_16.prev_task_link,
4134                                     sizeof tss_segment_16.prev_task_link))
4135                         goto out;
4136         }
4137
4138         if (load_state_from_tss16(vcpu, &tss_segment_16))
4139                 goto out;
4140
4141         ret = 1;
4142 out:
4143         return ret;
4144 }
4145
4146 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4147                        u16 old_tss_sel, u32 old_tss_base,
4148                        struct desc_struct *nseg_desc)
4149 {
4150         struct tss_segment_32 tss_segment_32;
4151         int ret = 0;
4152
4153         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4154                            sizeof tss_segment_32))
4155                 goto out;
4156
4157         save_state_to_tss32(vcpu, &tss_segment_32);
4158
4159         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4160                             sizeof tss_segment_32))
4161                 goto out;
4162
4163         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4164                            &tss_segment_32, sizeof tss_segment_32))
4165                 goto out;
4166
4167         if (old_tss_sel != 0xffff) {
4168                 tss_segment_32.prev_task_link = old_tss_sel;
4169
4170                 if (kvm_write_guest(vcpu->kvm,
4171                                     get_tss_base_addr(vcpu, nseg_desc),
4172                                     &tss_segment_32.prev_task_link,
4173                                     sizeof tss_segment_32.prev_task_link))
4174                         goto out;
4175         }
4176
4177         if (load_state_from_tss32(vcpu, &tss_segment_32))
4178                 goto out;
4179
4180         ret = 1;
4181 out:
4182         return ret;
4183 }
4184
4185 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4186 {
4187         struct kvm_segment tr_seg;
4188         struct desc_struct cseg_desc;
4189         struct desc_struct nseg_desc;
4190         int ret = 0;
4191         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4192         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4193
4194         old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4195
4196         /* FIXME: Handle errors. Failure to read either TSS or their
4197          * descriptors should generate a pagefault.
4198          */
4199         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4200                 goto out;
4201
4202         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4203                 goto out;
4204
4205         if (reason != TASK_SWITCH_IRET) {
4206                 int cpl;
4207
4208                 cpl = kvm_x86_ops->get_cpl(vcpu);
4209                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4210                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4211                         return 1;
4212                 }
4213         }
4214
4215         if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
4216                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4217                 return 1;
4218         }
4219
4220         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4221                 cseg_desc.type &= ~(1 << 1); //clear the B flag
4222                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4223         }
4224
4225         if (reason == TASK_SWITCH_IRET) {
4226                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4227                 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4228         }
4229
4230         /* set back link to prev task only if NT bit is set in eflags
4231            note that old_tss_sel is not used afetr this point */
4232         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4233                 old_tss_sel = 0xffff;
4234
4235         /* set back link to prev task only if NT bit is set in eflags
4236            note that old_tss_sel is not used afetr this point */
4237         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4238                 old_tss_sel = 0xffff;
4239
4240         if (nseg_desc.type & 8)
4241                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4242                                          old_tss_base, &nseg_desc);
4243         else
4244                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4245                                          old_tss_base, &nseg_desc);
4246
4247         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4248                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4249                 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4250         }
4251
4252         if (reason != TASK_SWITCH_IRET) {
4253                 nseg_desc.type |= (1 << 1);
4254                 save_guest_segment_descriptor(vcpu, tss_selector,
4255                                               &nseg_desc);
4256         }
4257
4258         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4259         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4260         tr_seg.type = 11;
4261         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4262 out:
4263         return ret;
4264 }
4265 EXPORT_SYMBOL_GPL(kvm_task_switch);
4266
4267 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4268                                   struct kvm_sregs *sregs)
4269 {
4270         int mmu_reset_needed = 0;
4271         int pending_vec, max_bits;
4272         struct descriptor_table dt;
4273
4274         vcpu_load(vcpu);
4275
4276         dt.limit = sregs->idt.limit;
4277         dt.base = sregs->idt.base;
4278         kvm_x86_ops->set_idt(vcpu, &dt);
4279         dt.limit = sregs->gdt.limit;
4280         dt.base = sregs->gdt.base;
4281         kvm_x86_ops->set_gdt(vcpu, &dt);
4282
4283         vcpu->arch.cr2 = sregs->cr2;
4284         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4285
4286         down_read(&vcpu->kvm->slots_lock);
4287         if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
4288                 vcpu->arch.cr3 = sregs->cr3;
4289         else
4290                 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
4291         up_read(&vcpu->kvm->slots_lock);
4292
4293         kvm_set_cr8(vcpu, sregs->cr8);
4294
4295         mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4296         kvm_x86_ops->set_efer(vcpu, sregs->efer);
4297         kvm_set_apic_base(vcpu, sregs->apic_base);
4298
4299         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4300
4301         mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4302         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4303         vcpu->arch.cr0 = sregs->cr0;
4304
4305         mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4306         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4307         if (!is_long_mode(vcpu) && is_pae(vcpu))
4308                 load_pdptrs(vcpu, vcpu->arch.cr3);
4309
4310         if (mmu_reset_needed)
4311                 kvm_mmu_reset_context(vcpu);
4312
4313         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4314         pending_vec = find_first_bit(
4315                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4316         if (pending_vec < max_bits) {
4317                 kvm_queue_interrupt(vcpu, pending_vec, false);
4318                 pr_debug("Set back pending irq %d\n", pending_vec);
4319                 if (irqchip_in_kernel(vcpu->kvm))
4320                         kvm_pic_clear_isr_ack(vcpu->kvm);
4321         }
4322
4323         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4324         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4325         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4326         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4327         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4328         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4329
4330         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4331         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4332
4333         /* Older userspace won't unhalt the vcpu on reset. */
4334         if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
4335             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4336             !(vcpu->arch.cr0 & X86_CR0_PE))
4337                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4338
4339         vcpu_put(vcpu);
4340
4341         return 0;
4342 }
4343
4344 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4345                                         struct kvm_guest_debug *dbg)
4346 {
4347         int i, r;
4348
4349         vcpu_load(vcpu);
4350
4351         if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4352             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4353                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4354                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4355                 vcpu->arch.switch_db_regs =
4356                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4357         } else {
4358                 for (i = 0; i < KVM_NR_DB_REGS; i++)
4359                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4360                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4361         }
4362
4363         r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4364
4365         if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4366                 kvm_queue_exception(vcpu, DB_VECTOR);
4367         else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4368                 kvm_queue_exception(vcpu, BP_VECTOR);
4369
4370         vcpu_put(vcpu);
4371
4372         return r;
4373 }
4374
4375 /*
4376  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
4377  * we have asm/x86/processor.h
4378  */
4379 struct fxsave {
4380         u16     cwd;
4381         u16     swd;
4382         u16     twd;
4383         u16     fop;
4384         u64     rip;
4385         u64     rdp;
4386         u32     mxcsr;
4387         u32     mxcsr_mask;
4388         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
4389 #ifdef CONFIG_X86_64
4390         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
4391 #else
4392         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
4393 #endif
4394 };
4395
4396 /*
4397  * Translate a guest virtual address to a guest physical address.
4398  */
4399 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4400                                     struct kvm_translation *tr)
4401 {
4402         unsigned long vaddr = tr->linear_address;
4403         gpa_t gpa;
4404
4405         vcpu_load(vcpu);
4406         down_read(&vcpu->kvm->slots_lock);
4407         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4408         up_read(&vcpu->kvm->slots_lock);
4409         tr->physical_address = gpa;
4410         tr->valid = gpa != UNMAPPED_GVA;
4411         tr->writeable = 1;
4412         tr->usermode = 0;
4413         vcpu_put(vcpu);
4414
4415         return 0;
4416 }
4417
4418 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4419 {
4420         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4421
4422         vcpu_load(vcpu);
4423
4424         memcpy(fpu->fpr, fxsave->st_space, 128);
4425         fpu->fcw = fxsave->cwd;
4426         fpu->fsw = fxsave->swd;
4427         fpu->ftwx = fxsave->twd;
4428         fpu->last_opcode = fxsave->fop;
4429         fpu->last_ip = fxsave->rip;
4430         fpu->last_dp = fxsave->rdp;
4431         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4432
4433         vcpu_put(vcpu);
4434
4435         return 0;
4436 }
4437
4438 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4439 {
4440         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4441
4442         vcpu_load(vcpu);
4443
4444         memcpy(fxsave->st_space, fpu->fpr, 128);
4445         fxsave->cwd = fpu->fcw;
4446         fxsave->swd = fpu->fsw;
4447         fxsave->twd = fpu->ftwx;
4448         fxsave->fop = fpu->last_opcode;
4449         fxsave->rip = fpu->last_ip;
4450         fxsave->rdp = fpu->last_dp;
4451         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4452
4453         vcpu_put(vcpu);
4454
4455         return 0;
4456 }
4457
4458 void fx_init(struct kvm_vcpu *vcpu)
4459 {
4460         unsigned after_mxcsr_mask;
4461
4462         /*
4463          * Touch the fpu the first time in non atomic context as if
4464          * this is the first fpu instruction the exception handler
4465          * will fire before the instruction returns and it'll have to
4466          * allocate ram with GFP_KERNEL.
4467          */
4468         if (!used_math())
4469                 kvm_fx_save(&vcpu->arch.host_fx_image);
4470
4471         /* Initialize guest FPU by resetting ours and saving into guest's */
4472         preempt_disable();
4473         kvm_fx_save(&vcpu->arch.host_fx_image);
4474         kvm_fx_finit();
4475         kvm_fx_save(&vcpu->arch.guest_fx_image);
4476         kvm_fx_restore(&vcpu->arch.host_fx_image);
4477         preempt_enable();
4478
4479         vcpu->arch.cr0 |= X86_CR0_ET;
4480         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4481         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4482         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4483                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4484 }
4485 EXPORT_SYMBOL_GPL(fx_init);
4486
4487 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4488 {
4489         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4490                 return;
4491
4492         vcpu->guest_fpu_loaded = 1;
4493         kvm_fx_save(&vcpu->arch.host_fx_image);
4494         kvm_fx_restore(&vcpu->arch.guest_fx_image);
4495 }
4496 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4497
4498 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4499 {
4500         if (!vcpu->guest_fpu_loaded)
4501                 return;
4502
4503         vcpu->guest_fpu_loaded = 0;
4504         kvm_fx_save(&vcpu->arch.guest_fx_image);
4505         kvm_fx_restore(&vcpu->arch.host_fx_image);
4506         ++vcpu->stat.fpu_reload;
4507 }
4508 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4509
4510 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4511 {
4512         if (vcpu->arch.time_page) {
4513                 kvm_release_page_dirty(vcpu->arch.time_page);
4514                 vcpu->arch.time_page = NULL;
4515         }
4516
4517         kvm_x86_ops->vcpu_free(vcpu);
4518 }
4519
4520 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4521                                                 unsigned int id)
4522 {
4523         return kvm_x86_ops->vcpu_create(kvm, id);
4524 }
4525
4526 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4527 {
4528         int r;
4529
4530         /* We do fxsave: this must be aligned. */
4531         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4532
4533         vcpu->arch.mtrr_state.have_fixed = 1;
4534         vcpu_load(vcpu);
4535         r = kvm_arch_vcpu_reset(vcpu);
4536         if (r == 0)
4537                 r = kvm_mmu_setup(vcpu);
4538         vcpu_put(vcpu);
4539         if (r < 0)
4540                 goto free_vcpu;
4541
4542         return 0;
4543 free_vcpu:
4544         kvm_x86_ops->vcpu_free(vcpu);
4545         return r;
4546 }
4547
4548 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4549 {
4550         vcpu_load(vcpu);
4551         kvm_mmu_unload(vcpu);
4552         vcpu_put(vcpu);
4553
4554         kvm_x86_ops->vcpu_free(vcpu);
4555 }
4556
4557 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4558 {
4559         vcpu->arch.nmi_pending = false;
4560         vcpu->arch.nmi_injected = false;
4561
4562         vcpu->arch.switch_db_regs = 0;
4563         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4564         vcpu->arch.dr6 = DR6_FIXED_1;
4565         vcpu->arch.dr7 = DR7_FIXED_1;
4566
4567         return kvm_x86_ops->vcpu_reset(vcpu);
4568 }
4569
4570 void kvm_arch_hardware_enable(void *garbage)
4571 {
4572         kvm_x86_ops->hardware_enable(garbage);
4573 }
4574
4575 void kvm_arch_hardware_disable(void *garbage)
4576 {
4577         kvm_x86_ops->hardware_disable(garbage);
4578 }
4579
4580 int kvm_arch_hardware_setup(void)
4581 {
4582         return kvm_x86_ops->hardware_setup();
4583 }
4584
4585 void kvm_arch_hardware_unsetup(void)
4586 {
4587         kvm_x86_ops->hardware_unsetup();
4588 }
4589
4590 void kvm_arch_check_processor_compat(void *rtn)
4591 {
4592         kvm_x86_ops->check_processor_compatibility(rtn);
4593 }
4594
4595 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4596 {
4597         struct page *page;
4598         struct kvm *kvm;
4599         int r;
4600
4601         BUG_ON(vcpu->kvm == NULL);
4602         kvm = vcpu->kvm;
4603
4604         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4605         if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4606                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4607         else
4608                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4609
4610         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4611         if (!page) {
4612                 r = -ENOMEM;
4613                 goto fail;
4614         }
4615         vcpu->arch.pio_data = page_address(page);
4616
4617         r = kvm_mmu_create(vcpu);
4618         if (r < 0)
4619                 goto fail_free_pio_data;
4620
4621         if (irqchip_in_kernel(kvm)) {
4622                 r = kvm_create_lapic(vcpu);
4623                 if (r < 0)
4624                         goto fail_mmu_destroy;
4625         }
4626
4627         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
4628                                        GFP_KERNEL);
4629         if (!vcpu->arch.mce_banks) {
4630                 r = -ENOMEM;
4631                 goto fail_mmu_destroy;
4632         }
4633         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
4634
4635         return 0;
4636
4637 fail_mmu_destroy:
4638         kvm_mmu_destroy(vcpu);
4639 fail_free_pio_data:
4640         free_page((unsigned long)vcpu->arch.pio_data);
4641 fail:
4642         return r;
4643 }
4644
4645 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4646 {
4647         kvm_free_lapic(vcpu);
4648         down_read(&vcpu->kvm->slots_lock);
4649         kvm_mmu_destroy(vcpu);
4650         up_read(&vcpu->kvm->slots_lock);
4651         free_page((unsigned long)vcpu->arch.pio_data);
4652 }
4653
4654 struct  kvm *kvm_arch_create_vm(void)
4655 {
4656         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4657
4658         if (!kvm)
4659                 return ERR_PTR(-ENOMEM);
4660
4661         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4662         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4663
4664         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4665         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4666
4667         rdtscll(kvm->arch.vm_init_tsc);
4668
4669         return kvm;
4670 }
4671
4672 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4673 {
4674         vcpu_load(vcpu);
4675         kvm_mmu_unload(vcpu);
4676         vcpu_put(vcpu);
4677 }
4678
4679 static void kvm_free_vcpus(struct kvm *kvm)
4680 {
4681         unsigned int i;
4682
4683         /*
4684          * Unpin any mmu pages first.
4685          */
4686         for (i = 0; i < KVM_MAX_VCPUS; ++i)
4687                 if (kvm->vcpus[i])
4688                         kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4689         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4690                 if (kvm->vcpus[i]) {
4691                         kvm_arch_vcpu_free(kvm->vcpus[i]);
4692                         kvm->vcpus[i] = NULL;
4693                 }
4694         }
4695
4696 }
4697
4698 void kvm_arch_sync_events(struct kvm *kvm)
4699 {
4700         kvm_free_all_assigned_devices(kvm);
4701 }
4702
4703 void kvm_arch_destroy_vm(struct kvm *kvm)
4704 {
4705         kvm_iommu_unmap_guest(kvm);
4706         kvm_free_pit(kvm);
4707         kfree(kvm->arch.vpic);
4708         kfree(kvm->arch.vioapic);
4709         kvm_free_vcpus(kvm);
4710         kvm_free_physmem(kvm);
4711         if (kvm->arch.apic_access_page)
4712                 put_page(kvm->arch.apic_access_page);
4713         if (kvm->arch.ept_identity_pagetable)
4714                 put_page(kvm->arch.ept_identity_pagetable);
4715         kfree(kvm);
4716 }
4717
4718 int kvm_arch_set_memory_region(struct kvm *kvm,
4719                                 struct kvm_userspace_memory_region *mem,
4720                                 struct kvm_memory_slot old,
4721                                 int user_alloc)
4722 {
4723         int npages = mem->memory_size >> PAGE_SHIFT;
4724         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4725
4726         /*To keep backward compatibility with older userspace,
4727          *x86 needs to hanlde !user_alloc case.
4728          */
4729         if (!user_alloc) {
4730                 if (npages && !old.rmap) {
4731                         unsigned long userspace_addr;
4732
4733                         down_write(&current->mm->mmap_sem);
4734                         userspace_addr = do_mmap(NULL, 0,
4735                                                  npages * PAGE_SIZE,
4736                                                  PROT_READ | PROT_WRITE,
4737                                                  MAP_PRIVATE | MAP_ANONYMOUS,
4738                                                  0);
4739                         up_write(&current->mm->mmap_sem);
4740
4741                         if (IS_ERR((void *)userspace_addr))
4742                                 return PTR_ERR((void *)userspace_addr);
4743
4744                         /* set userspace_addr atomically for kvm_hva_to_rmapp */
4745                         spin_lock(&kvm->mmu_lock);
4746                         memslot->userspace_addr = userspace_addr;
4747                         spin_unlock(&kvm->mmu_lock);
4748                 } else {
4749                         if (!old.user_alloc && old.rmap) {
4750                                 int ret;
4751
4752                                 down_write(&current->mm->mmap_sem);
4753                                 ret = do_munmap(current->mm, old.userspace_addr,
4754                                                 old.npages * PAGE_SIZE);
4755                                 up_write(&current->mm->mmap_sem);
4756                                 if (ret < 0)
4757                                         printk(KERN_WARNING
4758                                        "kvm_vm_ioctl_set_memory_region: "
4759                                        "failed to munmap memory\n");
4760                         }
4761                 }
4762         }
4763
4764         spin_lock(&kvm->mmu_lock);
4765         if (!kvm->arch.n_requested_mmu_pages) {
4766                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4767                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4768         }
4769
4770         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4771         spin_unlock(&kvm->mmu_lock);
4772         kvm_flush_remote_tlbs(kvm);
4773
4774         return 0;
4775 }
4776
4777 void kvm_arch_flush_shadow(struct kvm *kvm)
4778 {
4779         kvm_mmu_zap_all(kvm);
4780         kvm_reload_remote_mmus(kvm);
4781 }
4782
4783 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4784 {
4785         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4786                || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4787                || vcpu->arch.nmi_pending;
4788 }
4789
4790 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4791 {
4792         int me;
4793         int cpu = vcpu->cpu;
4794
4795         if (waitqueue_active(&vcpu->wq)) {
4796                 wake_up_interruptible(&vcpu->wq);
4797                 ++vcpu->stat.halt_wakeup;
4798         }
4799
4800         me = get_cpu();
4801         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4802                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4803                         smp_send_reschedule(cpu);
4804         put_cpu();
4805 }
4806
4807 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4808 {
4809         return kvm_x86_ops->interrupt_allowed(vcpu);
4810 }