KVM: VMX: add the __noclone attribute to vmx_vcpu_run
[linux-2.6-block.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
34
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
42
43 #include "trace.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static int __read_mostly bypass_guest_pf = 1;
51 module_param(bypass_guest_pf, bool, S_IRUGO);
52
53 static int __read_mostly enable_vpid = 1;
54 module_param_named(vpid, enable_vpid, bool, 0444);
55
56 static int __read_mostly flexpriority_enabled = 1;
57 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
58
59 static int __read_mostly enable_ept = 1;
60 module_param_named(ept, enable_ept, bool, S_IRUGO);
61
62 static int __read_mostly enable_unrestricted_guest = 1;
63 module_param_named(unrestricted_guest,
64                         enable_unrestricted_guest, bool, S_IRUGO);
65
66 static int __read_mostly emulate_invalid_guest_state = 0;
67 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
68
69 static int __read_mostly vmm_exclusive = 1;
70 module_param(vmm_exclusive, bool, S_IRUGO);
71
72 static int __read_mostly yield_on_hlt = 1;
73 module_param(yield_on_hlt, bool, S_IRUGO);
74
75 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST                           \
76         (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
77 #define KVM_GUEST_CR0_MASK                                              \
78         (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
79 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST                         \
80         (X86_CR0_WP | X86_CR0_NE)
81 #define KVM_VM_CR0_ALWAYS_ON                                            \
82         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
83 #define KVM_CR4_GUEST_OWNED_BITS                                      \
84         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
85          | X86_CR4_OSXMMEXCPT)
86
87 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
88 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
89
90 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
91
92 /*
93  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
94  * ple_gap:    upper bound on the amount of time between two successive
95  *             executions of PAUSE in a loop. Also indicate if ple enabled.
96  *             According to test, this time is usually smaller than 128 cycles.
97  * ple_window: upper bound on the amount of time a guest is allowed to execute
98  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
99  *             less than 2^12 cycles
100  * Time is measured based on a counter that runs at the same rate as the TSC,
101  * refer SDM volume 3b section 21.6.13 & 22.1.3.
102  */
103 #define KVM_VMX_DEFAULT_PLE_GAP    128
104 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
105 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
106 module_param(ple_gap, int, S_IRUGO);
107
108 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
109 module_param(ple_window, int, S_IRUGO);
110
111 #define NR_AUTOLOAD_MSRS 1
112
113 struct vmcs {
114         u32 revision_id;
115         u32 abort;
116         char data[0];
117 };
118
119 struct shared_msr_entry {
120         unsigned index;
121         u64 data;
122         u64 mask;
123 };
124
125 struct vcpu_vmx {
126         struct kvm_vcpu       vcpu;
127         struct list_head      local_vcpus_link;
128         unsigned long         host_rsp;
129         int                   launched;
130         u8                    fail;
131         u32                   exit_intr_info;
132         u32                   idt_vectoring_info;
133         struct shared_msr_entry *guest_msrs;
134         int                   nmsrs;
135         int                   save_nmsrs;
136 #ifdef CONFIG_X86_64
137         u64                   msr_host_kernel_gs_base;
138         u64                   msr_guest_kernel_gs_base;
139 #endif
140         struct vmcs          *vmcs;
141         struct msr_autoload {
142                 unsigned nr;
143                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
144                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
145         } msr_autoload;
146         struct {
147                 int           loaded;
148                 u16           fs_sel, gs_sel, ldt_sel;
149                 int           gs_ldt_reload_needed;
150                 int           fs_reload_needed;
151         } host_state;
152         struct {
153                 int vm86_active;
154                 ulong save_rflags;
155                 struct kvm_save_segment {
156                         u16 selector;
157                         unsigned long base;
158                         u32 limit;
159                         u32 ar;
160                 } tr, es, ds, fs, gs;
161         } rmode;
162         int vpid;
163         bool emulation_required;
164
165         /* Support for vnmi-less CPUs */
166         int soft_vnmi_blocked;
167         ktime_t entry_time;
168         s64 vnmi_blocked_time;
169         u32 exit_reason;
170
171         bool rdtscp_enabled;
172 };
173
174 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
175 {
176         return container_of(vcpu, struct vcpu_vmx, vcpu);
177 }
178
179 static int init_rmode(struct kvm *kvm);
180 static u64 construct_eptp(unsigned long root_hpa);
181 static void kvm_cpu_vmxon(u64 addr);
182 static void kvm_cpu_vmxoff(void);
183 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
184
185 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
186 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
187 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
188 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
189
190 static unsigned long *vmx_io_bitmap_a;
191 static unsigned long *vmx_io_bitmap_b;
192 static unsigned long *vmx_msr_bitmap_legacy;
193 static unsigned long *vmx_msr_bitmap_longmode;
194
195 static bool cpu_has_load_ia32_efer;
196
197 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
198 static DEFINE_SPINLOCK(vmx_vpid_lock);
199
200 static struct vmcs_config {
201         int size;
202         int order;
203         u32 revision_id;
204         u32 pin_based_exec_ctrl;
205         u32 cpu_based_exec_ctrl;
206         u32 cpu_based_2nd_exec_ctrl;
207         u32 vmexit_ctrl;
208         u32 vmentry_ctrl;
209 } vmcs_config;
210
211 static struct vmx_capability {
212         u32 ept;
213         u32 vpid;
214 } vmx_capability;
215
216 #define VMX_SEGMENT_FIELD(seg)                                  \
217         [VCPU_SREG_##seg] = {                                   \
218                 .selector = GUEST_##seg##_SELECTOR,             \
219                 .base = GUEST_##seg##_BASE,                     \
220                 .limit = GUEST_##seg##_LIMIT,                   \
221                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
222         }
223
224 static struct kvm_vmx_segment_field {
225         unsigned selector;
226         unsigned base;
227         unsigned limit;
228         unsigned ar_bytes;
229 } kvm_vmx_segment_fields[] = {
230         VMX_SEGMENT_FIELD(CS),
231         VMX_SEGMENT_FIELD(DS),
232         VMX_SEGMENT_FIELD(ES),
233         VMX_SEGMENT_FIELD(FS),
234         VMX_SEGMENT_FIELD(GS),
235         VMX_SEGMENT_FIELD(SS),
236         VMX_SEGMENT_FIELD(TR),
237         VMX_SEGMENT_FIELD(LDTR),
238 };
239
240 static u64 host_efer;
241
242 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
243
244 /*
245  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
246  * away by decrementing the array size.
247  */
248 static const u32 vmx_msr_index[] = {
249 #ifdef CONFIG_X86_64
250         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
251 #endif
252         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
253 };
254 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
255
256 static inline bool is_page_fault(u32 intr_info)
257 {
258         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
259                              INTR_INFO_VALID_MASK)) ==
260                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
261 }
262
263 static inline bool is_no_device(u32 intr_info)
264 {
265         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
266                              INTR_INFO_VALID_MASK)) ==
267                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
268 }
269
270 static inline bool is_invalid_opcode(u32 intr_info)
271 {
272         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
273                              INTR_INFO_VALID_MASK)) ==
274                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
275 }
276
277 static inline bool is_external_interrupt(u32 intr_info)
278 {
279         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
280                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
281 }
282
283 static inline bool is_machine_check(u32 intr_info)
284 {
285         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
286                              INTR_INFO_VALID_MASK)) ==
287                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
288 }
289
290 static inline bool cpu_has_vmx_msr_bitmap(void)
291 {
292         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
293 }
294
295 static inline bool cpu_has_vmx_tpr_shadow(void)
296 {
297         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
298 }
299
300 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
301 {
302         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
303 }
304
305 static inline bool cpu_has_secondary_exec_ctrls(void)
306 {
307         return vmcs_config.cpu_based_exec_ctrl &
308                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
309 }
310
311 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
312 {
313         return vmcs_config.cpu_based_2nd_exec_ctrl &
314                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
315 }
316
317 static inline bool cpu_has_vmx_flexpriority(void)
318 {
319         return cpu_has_vmx_tpr_shadow() &&
320                 cpu_has_vmx_virtualize_apic_accesses();
321 }
322
323 static inline bool cpu_has_vmx_ept_execute_only(void)
324 {
325         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
326 }
327
328 static inline bool cpu_has_vmx_eptp_uncacheable(void)
329 {
330         return vmx_capability.ept & VMX_EPTP_UC_BIT;
331 }
332
333 static inline bool cpu_has_vmx_eptp_writeback(void)
334 {
335         return vmx_capability.ept & VMX_EPTP_WB_BIT;
336 }
337
338 static inline bool cpu_has_vmx_ept_2m_page(void)
339 {
340         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
341 }
342
343 static inline bool cpu_has_vmx_ept_1g_page(void)
344 {
345         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
346 }
347
348 static inline bool cpu_has_vmx_ept_4levels(void)
349 {
350         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
351 }
352
353 static inline bool cpu_has_vmx_invept_individual_addr(void)
354 {
355         return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
356 }
357
358 static inline bool cpu_has_vmx_invept_context(void)
359 {
360         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
361 }
362
363 static inline bool cpu_has_vmx_invept_global(void)
364 {
365         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
366 }
367
368 static inline bool cpu_has_vmx_invvpid_single(void)
369 {
370         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
371 }
372
373 static inline bool cpu_has_vmx_invvpid_global(void)
374 {
375         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
376 }
377
378 static inline bool cpu_has_vmx_ept(void)
379 {
380         return vmcs_config.cpu_based_2nd_exec_ctrl &
381                 SECONDARY_EXEC_ENABLE_EPT;
382 }
383
384 static inline bool cpu_has_vmx_unrestricted_guest(void)
385 {
386         return vmcs_config.cpu_based_2nd_exec_ctrl &
387                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
388 }
389
390 static inline bool cpu_has_vmx_ple(void)
391 {
392         return vmcs_config.cpu_based_2nd_exec_ctrl &
393                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
394 }
395
396 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
397 {
398         return flexpriority_enabled && irqchip_in_kernel(kvm);
399 }
400
401 static inline bool cpu_has_vmx_vpid(void)
402 {
403         return vmcs_config.cpu_based_2nd_exec_ctrl &
404                 SECONDARY_EXEC_ENABLE_VPID;
405 }
406
407 static inline bool cpu_has_vmx_rdtscp(void)
408 {
409         return vmcs_config.cpu_based_2nd_exec_ctrl &
410                 SECONDARY_EXEC_RDTSCP;
411 }
412
413 static inline bool cpu_has_virtual_nmis(void)
414 {
415         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
416 }
417
418 static inline bool cpu_has_vmx_wbinvd_exit(void)
419 {
420         return vmcs_config.cpu_based_2nd_exec_ctrl &
421                 SECONDARY_EXEC_WBINVD_EXITING;
422 }
423
424 static inline bool report_flexpriority(void)
425 {
426         return flexpriority_enabled;
427 }
428
429 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
430 {
431         int i;
432
433         for (i = 0; i < vmx->nmsrs; ++i)
434                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
435                         return i;
436         return -1;
437 }
438
439 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
440 {
441     struct {
442         u64 vpid : 16;
443         u64 rsvd : 48;
444         u64 gva;
445     } operand = { vpid, 0, gva };
446
447     asm volatile (__ex(ASM_VMX_INVVPID)
448                   /* CF==1 or ZF==1 --> rc = -1 */
449                   "; ja 1f ; ud2 ; 1:"
450                   : : "a"(&operand), "c"(ext) : "cc", "memory");
451 }
452
453 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
454 {
455         struct {
456                 u64 eptp, gpa;
457         } operand = {eptp, gpa};
458
459         asm volatile (__ex(ASM_VMX_INVEPT)
460                         /* CF==1 or ZF==1 --> rc = -1 */
461                         "; ja 1f ; ud2 ; 1:\n"
462                         : : "a" (&operand), "c" (ext) : "cc", "memory");
463 }
464
465 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
466 {
467         int i;
468
469         i = __find_msr_index(vmx, msr);
470         if (i >= 0)
471                 return &vmx->guest_msrs[i];
472         return NULL;
473 }
474
475 static void vmcs_clear(struct vmcs *vmcs)
476 {
477         u64 phys_addr = __pa(vmcs);
478         u8 error;
479
480         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
481                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
482                       : "cc", "memory");
483         if (error)
484                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
485                        vmcs, phys_addr);
486 }
487
488 static void vmcs_load(struct vmcs *vmcs)
489 {
490         u64 phys_addr = __pa(vmcs);
491         u8 error;
492
493         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
494                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
495                         : "cc", "memory");
496         if (error)
497                 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
498                        vmcs, phys_addr);
499 }
500
501 static void __vcpu_clear(void *arg)
502 {
503         struct vcpu_vmx *vmx = arg;
504         int cpu = raw_smp_processor_id();
505
506         if (vmx->vcpu.cpu == cpu)
507                 vmcs_clear(vmx->vmcs);
508         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
509                 per_cpu(current_vmcs, cpu) = NULL;
510         list_del(&vmx->local_vcpus_link);
511         vmx->vcpu.cpu = -1;
512         vmx->launched = 0;
513 }
514
515 static void vcpu_clear(struct vcpu_vmx *vmx)
516 {
517         if (vmx->vcpu.cpu == -1)
518                 return;
519         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
520 }
521
522 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
523 {
524         if (vmx->vpid == 0)
525                 return;
526
527         if (cpu_has_vmx_invvpid_single())
528                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
529 }
530
531 static inline void vpid_sync_vcpu_global(void)
532 {
533         if (cpu_has_vmx_invvpid_global())
534                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
535 }
536
537 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
538 {
539         if (cpu_has_vmx_invvpid_single())
540                 vpid_sync_vcpu_single(vmx);
541         else
542                 vpid_sync_vcpu_global();
543 }
544
545 static inline void ept_sync_global(void)
546 {
547         if (cpu_has_vmx_invept_global())
548                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
549 }
550
551 static inline void ept_sync_context(u64 eptp)
552 {
553         if (enable_ept) {
554                 if (cpu_has_vmx_invept_context())
555                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
556                 else
557                         ept_sync_global();
558         }
559 }
560
561 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
562 {
563         if (enable_ept) {
564                 if (cpu_has_vmx_invept_individual_addr())
565                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
566                                         eptp, gpa);
567                 else
568                         ept_sync_context(eptp);
569         }
570 }
571
572 static unsigned long vmcs_readl(unsigned long field)
573 {
574         unsigned long value = 0;
575
576         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
577                       : "+a"(value) : "d"(field) : "cc");
578         return value;
579 }
580
581 static u16 vmcs_read16(unsigned long field)
582 {
583         return vmcs_readl(field);
584 }
585
586 static u32 vmcs_read32(unsigned long field)
587 {
588         return vmcs_readl(field);
589 }
590
591 static u64 vmcs_read64(unsigned long field)
592 {
593 #ifdef CONFIG_X86_64
594         return vmcs_readl(field);
595 #else
596         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
597 #endif
598 }
599
600 static noinline void vmwrite_error(unsigned long field, unsigned long value)
601 {
602         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
603                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
604         dump_stack();
605 }
606
607 static void vmcs_writel(unsigned long field, unsigned long value)
608 {
609         u8 error;
610
611         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
612                        : "=q"(error) : "a"(value), "d"(field) : "cc");
613         if (unlikely(error))
614                 vmwrite_error(field, value);
615 }
616
617 static void vmcs_write16(unsigned long field, u16 value)
618 {
619         vmcs_writel(field, value);
620 }
621
622 static void vmcs_write32(unsigned long field, u32 value)
623 {
624         vmcs_writel(field, value);
625 }
626
627 static void vmcs_write64(unsigned long field, u64 value)
628 {
629         vmcs_writel(field, value);
630 #ifndef CONFIG_X86_64
631         asm volatile ("");
632         vmcs_writel(field+1, value >> 32);
633 #endif
634 }
635
636 static void vmcs_clear_bits(unsigned long field, u32 mask)
637 {
638         vmcs_writel(field, vmcs_readl(field) & ~mask);
639 }
640
641 static void vmcs_set_bits(unsigned long field, u32 mask)
642 {
643         vmcs_writel(field, vmcs_readl(field) | mask);
644 }
645
646 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
647 {
648         u32 eb;
649
650         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
651              (1u << NM_VECTOR) | (1u << DB_VECTOR);
652         if ((vcpu->guest_debug &
653              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
654             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
655                 eb |= 1u << BP_VECTOR;
656         if (to_vmx(vcpu)->rmode.vm86_active)
657                 eb = ~0;
658         if (enable_ept)
659                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
660         if (vcpu->fpu_active)
661                 eb &= ~(1u << NM_VECTOR);
662         vmcs_write32(EXCEPTION_BITMAP, eb);
663 }
664
665 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
666 {
667         unsigned i;
668         struct msr_autoload *m = &vmx->msr_autoload;
669
670         if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
671                 vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
672                 vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
673                 return;
674         }
675
676         for (i = 0; i < m->nr; ++i)
677                 if (m->guest[i].index == msr)
678                         break;
679
680         if (i == m->nr)
681                 return;
682         --m->nr;
683         m->guest[i] = m->guest[m->nr];
684         m->host[i] = m->host[m->nr];
685         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
686         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
687 }
688
689 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
690                                   u64 guest_val, u64 host_val)
691 {
692         unsigned i;
693         struct msr_autoload *m = &vmx->msr_autoload;
694
695         if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
696                 vmcs_write64(GUEST_IA32_EFER, guest_val);
697                 vmcs_write64(HOST_IA32_EFER, host_val);
698                 vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
699                 vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
700                 return;
701         }
702
703         for (i = 0; i < m->nr; ++i)
704                 if (m->guest[i].index == msr)
705                         break;
706
707         if (i == m->nr) {
708                 ++m->nr;
709                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
710                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
711         }
712
713         m->guest[i].index = msr;
714         m->guest[i].value = guest_val;
715         m->host[i].index = msr;
716         m->host[i].value = host_val;
717 }
718
719 static void reload_tss(void)
720 {
721         /*
722          * VT restores TR but not its size.  Useless.
723          */
724         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
725         struct desc_struct *descs;
726
727         descs = (void *)gdt->address;
728         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
729         load_TR_desc();
730 }
731
732 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
733 {
734         u64 guest_efer;
735         u64 ignore_bits;
736
737         guest_efer = vmx->vcpu.arch.efer;
738
739         /*
740          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
741          * outside long mode
742          */
743         ignore_bits = EFER_NX | EFER_SCE;
744 #ifdef CONFIG_X86_64
745         ignore_bits |= EFER_LMA | EFER_LME;
746         /* SCE is meaningful only in long mode on Intel */
747         if (guest_efer & EFER_LMA)
748                 ignore_bits &= ~(u64)EFER_SCE;
749 #endif
750         guest_efer &= ~ignore_bits;
751         guest_efer |= host_efer & ignore_bits;
752         vmx->guest_msrs[efer_offset].data = guest_efer;
753         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
754
755         clear_atomic_switch_msr(vmx, MSR_EFER);
756         /* On ept, can't emulate nx, and must switch nx atomically */
757         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
758                 guest_efer = vmx->vcpu.arch.efer;
759                 if (!(guest_efer & EFER_LMA))
760                         guest_efer &= ~EFER_LME;
761                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
762                 return false;
763         }
764
765         return true;
766 }
767
768 static unsigned long segment_base(u16 selector)
769 {
770         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
771         struct desc_struct *d;
772         unsigned long table_base;
773         unsigned long v;
774
775         if (!(selector & ~3))
776                 return 0;
777
778         table_base = gdt->address;
779
780         if (selector & 4) {           /* from ldt */
781                 u16 ldt_selector = kvm_read_ldt();
782
783                 if (!(ldt_selector & ~3))
784                         return 0;
785
786                 table_base = segment_base(ldt_selector);
787         }
788         d = (struct desc_struct *)(table_base + (selector & ~7));
789         v = get_desc_base(d);
790 #ifdef CONFIG_X86_64
791        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
792                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
793 #endif
794         return v;
795 }
796
797 static inline unsigned long kvm_read_tr_base(void)
798 {
799         u16 tr;
800         asm("str %0" : "=g"(tr));
801         return segment_base(tr);
802 }
803
804 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
805 {
806         struct vcpu_vmx *vmx = to_vmx(vcpu);
807         int i;
808
809         if (vmx->host_state.loaded)
810                 return;
811
812         vmx->host_state.loaded = 1;
813         /*
814          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
815          * allow segment selectors with cpl > 0 or ti == 1.
816          */
817         vmx->host_state.ldt_sel = kvm_read_ldt();
818         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
819         savesegment(fs, vmx->host_state.fs_sel);
820         if (!(vmx->host_state.fs_sel & 7)) {
821                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
822                 vmx->host_state.fs_reload_needed = 0;
823         } else {
824                 vmcs_write16(HOST_FS_SELECTOR, 0);
825                 vmx->host_state.fs_reload_needed = 1;
826         }
827         savesegment(gs, vmx->host_state.gs_sel);
828         if (!(vmx->host_state.gs_sel & 7))
829                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
830         else {
831                 vmcs_write16(HOST_GS_SELECTOR, 0);
832                 vmx->host_state.gs_ldt_reload_needed = 1;
833         }
834
835 #ifdef CONFIG_X86_64
836         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
837         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
838 #else
839         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
840         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
841 #endif
842
843 #ifdef CONFIG_X86_64
844         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
845         if (is_long_mode(&vmx->vcpu))
846                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
847 #endif
848         for (i = 0; i < vmx->save_nmsrs; ++i)
849                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
850                                    vmx->guest_msrs[i].data,
851                                    vmx->guest_msrs[i].mask);
852 }
853
854 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
855 {
856         if (!vmx->host_state.loaded)
857                 return;
858
859         ++vmx->vcpu.stat.host_state_reload;
860         vmx->host_state.loaded = 0;
861 #ifdef CONFIG_X86_64
862         if (is_long_mode(&vmx->vcpu))
863                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
864 #endif
865         if (vmx->host_state.gs_ldt_reload_needed) {
866                 kvm_load_ldt(vmx->host_state.ldt_sel);
867 #ifdef CONFIG_X86_64
868                 load_gs_index(vmx->host_state.gs_sel);
869 #else
870                 loadsegment(gs, vmx->host_state.gs_sel);
871 #endif
872         }
873         if (vmx->host_state.fs_reload_needed)
874                 loadsegment(fs, vmx->host_state.fs_sel);
875         reload_tss();
876 #ifdef CONFIG_X86_64
877         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
878 #endif
879         if (current_thread_info()->status & TS_USEDFPU)
880                 clts();
881         load_gdt(&__get_cpu_var(host_gdt));
882 }
883
884 static void vmx_load_host_state(struct vcpu_vmx *vmx)
885 {
886         preempt_disable();
887         __vmx_load_host_state(vmx);
888         preempt_enable();
889 }
890
891 /*
892  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
893  * vcpu mutex is already taken.
894  */
895 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
896 {
897         struct vcpu_vmx *vmx = to_vmx(vcpu);
898         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
899
900         if (!vmm_exclusive)
901                 kvm_cpu_vmxon(phys_addr);
902         else if (vcpu->cpu != cpu)
903                 vcpu_clear(vmx);
904
905         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
906                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
907                 vmcs_load(vmx->vmcs);
908         }
909
910         if (vcpu->cpu != cpu) {
911                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
912                 unsigned long sysenter_esp;
913
914                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
915                 local_irq_disable();
916                 list_add(&vmx->local_vcpus_link,
917                          &per_cpu(vcpus_on_cpu, cpu));
918                 local_irq_enable();
919
920                 /*
921                  * Linux uses per-cpu TSS and GDT, so set these when switching
922                  * processors.
923                  */
924                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
925                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
926
927                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
928                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
929         }
930 }
931
932 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
933 {
934         __vmx_load_host_state(to_vmx(vcpu));
935         if (!vmm_exclusive) {
936                 __vcpu_clear(to_vmx(vcpu));
937                 kvm_cpu_vmxoff();
938         }
939 }
940
941 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
942 {
943         ulong cr0;
944
945         if (vcpu->fpu_active)
946                 return;
947         vcpu->fpu_active = 1;
948         cr0 = vmcs_readl(GUEST_CR0);
949         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
950         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
951         vmcs_writel(GUEST_CR0, cr0);
952         update_exception_bitmap(vcpu);
953         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
954         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
955 }
956
957 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
958
959 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
960 {
961         vmx_decache_cr0_guest_bits(vcpu);
962         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
963         update_exception_bitmap(vcpu);
964         vcpu->arch.cr0_guest_owned_bits = 0;
965         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
966         vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
967 }
968
969 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
970 {
971         unsigned long rflags, save_rflags;
972
973         rflags = vmcs_readl(GUEST_RFLAGS);
974         if (to_vmx(vcpu)->rmode.vm86_active) {
975                 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
976                 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
977                 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
978         }
979         return rflags;
980 }
981
982 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
983 {
984         if (to_vmx(vcpu)->rmode.vm86_active) {
985                 to_vmx(vcpu)->rmode.save_rflags = rflags;
986                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
987         }
988         vmcs_writel(GUEST_RFLAGS, rflags);
989 }
990
991 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
992 {
993         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
994         int ret = 0;
995
996         if (interruptibility & GUEST_INTR_STATE_STI)
997                 ret |= KVM_X86_SHADOW_INT_STI;
998         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
999                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1000
1001         return ret & mask;
1002 }
1003
1004 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1005 {
1006         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1007         u32 interruptibility = interruptibility_old;
1008
1009         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1010
1011         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1012                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1013         else if (mask & KVM_X86_SHADOW_INT_STI)
1014                 interruptibility |= GUEST_INTR_STATE_STI;
1015
1016         if ((interruptibility != interruptibility_old))
1017                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1018 }
1019
1020 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1021 {
1022         unsigned long rip;
1023
1024         rip = kvm_rip_read(vcpu);
1025         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1026         kvm_rip_write(vcpu, rip);
1027
1028         /* skipping an emulated instruction also counts */
1029         vmx_set_interrupt_shadow(vcpu, 0);
1030 }
1031
1032 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1033 {
1034         /* Ensure that we clear the HLT state in the VMCS.  We don't need to
1035          * explicitly skip the instruction because if the HLT state is set, then
1036          * the instruction is already executing and RIP has already been
1037          * advanced. */
1038         if (!yield_on_hlt &&
1039             vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1040                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1041 }
1042
1043 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1044                                 bool has_error_code, u32 error_code,
1045                                 bool reinject)
1046 {
1047         struct vcpu_vmx *vmx = to_vmx(vcpu);
1048         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1049
1050         if (has_error_code) {
1051                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1052                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1053         }
1054
1055         if (vmx->rmode.vm86_active) {
1056                 if (kvm_inject_realmode_interrupt(vcpu, nr) != EMULATE_DONE)
1057                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1058                 return;
1059         }
1060
1061         if (kvm_exception_is_soft(nr)) {
1062                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1063                              vmx->vcpu.arch.event_exit_inst_len);
1064                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1065         } else
1066                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1067
1068         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1069         vmx_clear_hlt(vcpu);
1070 }
1071
1072 static bool vmx_rdtscp_supported(void)
1073 {
1074         return cpu_has_vmx_rdtscp();
1075 }
1076
1077 /*
1078  * Swap MSR entry in host/guest MSR entry array.
1079  */
1080 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1081 {
1082         struct shared_msr_entry tmp;
1083
1084         tmp = vmx->guest_msrs[to];
1085         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1086         vmx->guest_msrs[from] = tmp;
1087 }
1088
1089 /*
1090  * Set up the vmcs to automatically save and restore system
1091  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1092  * mode, as fiddling with msrs is very expensive.
1093  */
1094 static void setup_msrs(struct vcpu_vmx *vmx)
1095 {
1096         int save_nmsrs, index;
1097         unsigned long *msr_bitmap;
1098
1099         vmx_load_host_state(vmx);
1100         save_nmsrs = 0;
1101 #ifdef CONFIG_X86_64
1102         if (is_long_mode(&vmx->vcpu)) {
1103                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1104                 if (index >= 0)
1105                         move_msr_up(vmx, index, save_nmsrs++);
1106                 index = __find_msr_index(vmx, MSR_LSTAR);
1107                 if (index >= 0)
1108                         move_msr_up(vmx, index, save_nmsrs++);
1109                 index = __find_msr_index(vmx, MSR_CSTAR);
1110                 if (index >= 0)
1111                         move_msr_up(vmx, index, save_nmsrs++);
1112                 index = __find_msr_index(vmx, MSR_TSC_AUX);
1113                 if (index >= 0 && vmx->rdtscp_enabled)
1114                         move_msr_up(vmx, index, save_nmsrs++);
1115                 /*
1116                  * MSR_STAR is only needed on long mode guests, and only
1117                  * if efer.sce is enabled.
1118                  */
1119                 index = __find_msr_index(vmx, MSR_STAR);
1120                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1121                         move_msr_up(vmx, index, save_nmsrs++);
1122         }
1123 #endif
1124         index = __find_msr_index(vmx, MSR_EFER);
1125         if (index >= 0 && update_transition_efer(vmx, index))
1126                 move_msr_up(vmx, index, save_nmsrs++);
1127
1128         vmx->save_nmsrs = save_nmsrs;
1129
1130         if (cpu_has_vmx_msr_bitmap()) {
1131                 if (is_long_mode(&vmx->vcpu))
1132                         msr_bitmap = vmx_msr_bitmap_longmode;
1133                 else
1134                         msr_bitmap = vmx_msr_bitmap_legacy;
1135
1136                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1137         }
1138 }
1139
1140 /*
1141  * reads and returns guest's timestamp counter "register"
1142  * guest_tsc = host_tsc + tsc_offset    -- 21.3
1143  */
1144 static u64 guest_read_tsc(void)
1145 {
1146         u64 host_tsc, tsc_offset;
1147
1148         rdtscll(host_tsc);
1149         tsc_offset = vmcs_read64(TSC_OFFSET);
1150         return host_tsc + tsc_offset;
1151 }
1152
1153 /*
1154  * writes 'offset' into guest's timestamp counter offset register
1155  */
1156 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1157 {
1158         vmcs_write64(TSC_OFFSET, offset);
1159 }
1160
1161 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1162 {
1163         u64 offset = vmcs_read64(TSC_OFFSET);
1164         vmcs_write64(TSC_OFFSET, offset + adjustment);
1165 }
1166
1167 /*
1168  * Reads an msr value (of 'msr_index') into 'pdata'.
1169  * Returns 0 on success, non-0 otherwise.
1170  * Assumes vcpu_load() was already called.
1171  */
1172 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1173 {
1174         u64 data;
1175         struct shared_msr_entry *msr;
1176
1177         if (!pdata) {
1178                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1179                 return -EINVAL;
1180         }
1181
1182         switch (msr_index) {
1183 #ifdef CONFIG_X86_64
1184         case MSR_FS_BASE:
1185                 data = vmcs_readl(GUEST_FS_BASE);
1186                 break;
1187         case MSR_GS_BASE:
1188                 data = vmcs_readl(GUEST_GS_BASE);
1189                 break;
1190         case MSR_KERNEL_GS_BASE:
1191                 vmx_load_host_state(to_vmx(vcpu));
1192                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1193                 break;
1194 #endif
1195         case MSR_EFER:
1196                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1197         case MSR_IA32_TSC:
1198                 data = guest_read_tsc();
1199                 break;
1200         case MSR_IA32_SYSENTER_CS:
1201                 data = vmcs_read32(GUEST_SYSENTER_CS);
1202                 break;
1203         case MSR_IA32_SYSENTER_EIP:
1204                 data = vmcs_readl(GUEST_SYSENTER_EIP);
1205                 break;
1206         case MSR_IA32_SYSENTER_ESP:
1207                 data = vmcs_readl(GUEST_SYSENTER_ESP);
1208                 break;
1209         case MSR_TSC_AUX:
1210                 if (!to_vmx(vcpu)->rdtscp_enabled)
1211                         return 1;
1212                 /* Otherwise falls through */
1213         default:
1214                 vmx_load_host_state(to_vmx(vcpu));
1215                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1216                 if (msr) {
1217                         vmx_load_host_state(to_vmx(vcpu));
1218                         data = msr->data;
1219                         break;
1220                 }
1221                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1222         }
1223
1224         *pdata = data;
1225         return 0;
1226 }
1227
1228 /*
1229  * Writes msr value into into the appropriate "register".
1230  * Returns 0 on success, non-0 otherwise.
1231  * Assumes vcpu_load() was already called.
1232  */
1233 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1234 {
1235         struct vcpu_vmx *vmx = to_vmx(vcpu);
1236         struct shared_msr_entry *msr;
1237         int ret = 0;
1238
1239         switch (msr_index) {
1240         case MSR_EFER:
1241                 vmx_load_host_state(vmx);
1242                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1243                 break;
1244 #ifdef CONFIG_X86_64
1245         case MSR_FS_BASE:
1246                 vmcs_writel(GUEST_FS_BASE, data);
1247                 break;
1248         case MSR_GS_BASE:
1249                 vmcs_writel(GUEST_GS_BASE, data);
1250                 break;
1251         case MSR_KERNEL_GS_BASE:
1252                 vmx_load_host_state(vmx);
1253                 vmx->msr_guest_kernel_gs_base = data;
1254                 break;
1255 #endif
1256         case MSR_IA32_SYSENTER_CS:
1257                 vmcs_write32(GUEST_SYSENTER_CS, data);
1258                 break;
1259         case MSR_IA32_SYSENTER_EIP:
1260                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1261                 break;
1262         case MSR_IA32_SYSENTER_ESP:
1263                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1264                 break;
1265         case MSR_IA32_TSC:
1266                 kvm_write_tsc(vcpu, data);
1267                 break;
1268         case MSR_IA32_CR_PAT:
1269                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1270                         vmcs_write64(GUEST_IA32_PAT, data);
1271                         vcpu->arch.pat = data;
1272                         break;
1273                 }
1274                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1275                 break;
1276         case MSR_TSC_AUX:
1277                 if (!vmx->rdtscp_enabled)
1278                         return 1;
1279                 /* Check reserved bit, higher 32 bits should be zero */
1280                 if ((data >> 32) != 0)
1281                         return 1;
1282                 /* Otherwise falls through */
1283         default:
1284                 msr = find_msr_entry(vmx, msr_index);
1285                 if (msr) {
1286                         vmx_load_host_state(vmx);
1287                         msr->data = data;
1288                         break;
1289                 }
1290                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1291         }
1292
1293         return ret;
1294 }
1295
1296 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1297 {
1298         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1299         switch (reg) {
1300         case VCPU_REGS_RSP:
1301                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1302                 break;
1303         case VCPU_REGS_RIP:
1304                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1305                 break;
1306         case VCPU_EXREG_PDPTR:
1307                 if (enable_ept)
1308                         ept_save_pdptrs(vcpu);
1309                 break;
1310         default:
1311                 break;
1312         }
1313 }
1314
1315 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1316 {
1317         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1318                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1319         else
1320                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1321
1322         update_exception_bitmap(vcpu);
1323 }
1324
1325 static __init int cpu_has_kvm_support(void)
1326 {
1327         return cpu_has_vmx();
1328 }
1329
1330 static __init int vmx_disabled_by_bios(void)
1331 {
1332         u64 msr;
1333
1334         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1335         if (msr & FEATURE_CONTROL_LOCKED) {
1336                 /* launched w/ TXT and VMX disabled */
1337                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1338                         && tboot_enabled())
1339                         return 1;
1340                 /* launched w/o TXT and VMX only enabled w/ TXT */
1341                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1342                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1343                         && !tboot_enabled()) {
1344                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
1345                                 "activate TXT before enabling KVM\n");
1346                         return 1;
1347                 }
1348                 /* launched w/o TXT and VMX disabled */
1349                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1350                         && !tboot_enabled())
1351                         return 1;
1352         }
1353
1354         return 0;
1355 }
1356
1357 static void kvm_cpu_vmxon(u64 addr)
1358 {
1359         asm volatile (ASM_VMX_VMXON_RAX
1360                         : : "a"(&addr), "m"(addr)
1361                         : "memory", "cc");
1362 }
1363
1364 static int hardware_enable(void *garbage)
1365 {
1366         int cpu = raw_smp_processor_id();
1367         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1368         u64 old, test_bits;
1369
1370         if (read_cr4() & X86_CR4_VMXE)
1371                 return -EBUSY;
1372
1373         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1374         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1375
1376         test_bits = FEATURE_CONTROL_LOCKED;
1377         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1378         if (tboot_enabled())
1379                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
1380
1381         if ((old & test_bits) != test_bits) {
1382                 /* enable and lock */
1383                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
1384         }
1385         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1386
1387         if (vmm_exclusive) {
1388                 kvm_cpu_vmxon(phys_addr);
1389                 ept_sync_global();
1390         }
1391
1392         store_gdt(&__get_cpu_var(host_gdt));
1393
1394         return 0;
1395 }
1396
1397 static void vmclear_local_vcpus(void)
1398 {
1399         int cpu = raw_smp_processor_id();
1400         struct vcpu_vmx *vmx, *n;
1401
1402         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1403                                  local_vcpus_link)
1404                 __vcpu_clear(vmx);
1405 }
1406
1407
1408 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1409  * tricks.
1410  */
1411 static void kvm_cpu_vmxoff(void)
1412 {
1413         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1414 }
1415
1416 static void hardware_disable(void *garbage)
1417 {
1418         if (vmm_exclusive) {
1419                 vmclear_local_vcpus();
1420                 kvm_cpu_vmxoff();
1421         }
1422         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1423 }
1424
1425 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1426                                       u32 msr, u32 *result)
1427 {
1428         u32 vmx_msr_low, vmx_msr_high;
1429         u32 ctl = ctl_min | ctl_opt;
1430
1431         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1432
1433         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1434         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1435
1436         /* Ensure minimum (required) set of control bits are supported. */
1437         if (ctl_min & ~ctl)
1438                 return -EIO;
1439
1440         *result = ctl;
1441         return 0;
1442 }
1443
1444 static __init bool allow_1_setting(u32 msr, u32 ctl)
1445 {
1446         u32 vmx_msr_low, vmx_msr_high;
1447
1448         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1449         return vmx_msr_high & ctl;
1450 }
1451
1452 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1453 {
1454         u32 vmx_msr_low, vmx_msr_high;
1455         u32 min, opt, min2, opt2;
1456         u32 _pin_based_exec_control = 0;
1457         u32 _cpu_based_exec_control = 0;
1458         u32 _cpu_based_2nd_exec_control = 0;
1459         u32 _vmexit_control = 0;
1460         u32 _vmentry_control = 0;
1461
1462         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1463         opt = PIN_BASED_VIRTUAL_NMIS;
1464         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1465                                 &_pin_based_exec_control) < 0)
1466                 return -EIO;
1467
1468         min =
1469 #ifdef CONFIG_X86_64
1470               CPU_BASED_CR8_LOAD_EXITING |
1471               CPU_BASED_CR8_STORE_EXITING |
1472 #endif
1473               CPU_BASED_CR3_LOAD_EXITING |
1474               CPU_BASED_CR3_STORE_EXITING |
1475               CPU_BASED_USE_IO_BITMAPS |
1476               CPU_BASED_MOV_DR_EXITING |
1477               CPU_BASED_USE_TSC_OFFSETING |
1478               CPU_BASED_MWAIT_EXITING |
1479               CPU_BASED_MONITOR_EXITING |
1480               CPU_BASED_INVLPG_EXITING;
1481
1482         if (yield_on_hlt)
1483                 min |= CPU_BASED_HLT_EXITING;
1484
1485         opt = CPU_BASED_TPR_SHADOW |
1486               CPU_BASED_USE_MSR_BITMAPS |
1487               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1488         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1489                                 &_cpu_based_exec_control) < 0)
1490                 return -EIO;
1491 #ifdef CONFIG_X86_64
1492         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1493                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1494                                            ~CPU_BASED_CR8_STORE_EXITING;
1495 #endif
1496         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1497                 min2 = 0;
1498                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1499                         SECONDARY_EXEC_WBINVD_EXITING |
1500                         SECONDARY_EXEC_ENABLE_VPID |
1501                         SECONDARY_EXEC_ENABLE_EPT |
1502                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
1503                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1504                         SECONDARY_EXEC_RDTSCP;
1505                 if (adjust_vmx_controls(min2, opt2,
1506                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1507                                         &_cpu_based_2nd_exec_control) < 0)
1508                         return -EIO;
1509         }
1510 #ifndef CONFIG_X86_64
1511         if (!(_cpu_based_2nd_exec_control &
1512                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1513                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1514 #endif
1515         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1516                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1517                    enabled */
1518                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1519                                              CPU_BASED_CR3_STORE_EXITING |
1520                                              CPU_BASED_INVLPG_EXITING);
1521                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1522                       vmx_capability.ept, vmx_capability.vpid);
1523         }
1524
1525         min = 0;
1526 #ifdef CONFIG_X86_64
1527         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1528 #endif
1529         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1530         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1531                                 &_vmexit_control) < 0)
1532                 return -EIO;
1533
1534         min = 0;
1535         opt = VM_ENTRY_LOAD_IA32_PAT;
1536         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1537                                 &_vmentry_control) < 0)
1538                 return -EIO;
1539
1540         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1541
1542         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1543         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1544                 return -EIO;
1545
1546 #ifdef CONFIG_X86_64
1547         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1548         if (vmx_msr_high & (1u<<16))
1549                 return -EIO;
1550 #endif
1551
1552         /* Require Write-Back (WB) memory type for VMCS accesses. */
1553         if (((vmx_msr_high >> 18) & 15) != 6)
1554                 return -EIO;
1555
1556         vmcs_conf->size = vmx_msr_high & 0x1fff;
1557         vmcs_conf->order = get_order(vmcs_config.size);
1558         vmcs_conf->revision_id = vmx_msr_low;
1559
1560         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1561         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1562         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1563         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1564         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1565
1566         cpu_has_load_ia32_efer =
1567                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
1568                                 VM_ENTRY_LOAD_IA32_EFER)
1569                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
1570                                    VM_EXIT_LOAD_IA32_EFER);
1571
1572         return 0;
1573 }
1574
1575 static struct vmcs *alloc_vmcs_cpu(int cpu)
1576 {
1577         int node = cpu_to_node(cpu);
1578         struct page *pages;
1579         struct vmcs *vmcs;
1580
1581         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1582         if (!pages)
1583                 return NULL;
1584         vmcs = page_address(pages);
1585         memset(vmcs, 0, vmcs_config.size);
1586         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1587         return vmcs;
1588 }
1589
1590 static struct vmcs *alloc_vmcs(void)
1591 {
1592         return alloc_vmcs_cpu(raw_smp_processor_id());
1593 }
1594
1595 static void free_vmcs(struct vmcs *vmcs)
1596 {
1597         free_pages((unsigned long)vmcs, vmcs_config.order);
1598 }
1599
1600 static void free_kvm_area(void)
1601 {
1602         int cpu;
1603
1604         for_each_possible_cpu(cpu) {
1605                 free_vmcs(per_cpu(vmxarea, cpu));
1606                 per_cpu(vmxarea, cpu) = NULL;
1607         }
1608 }
1609
1610 static __init int alloc_kvm_area(void)
1611 {
1612         int cpu;
1613
1614         for_each_possible_cpu(cpu) {
1615                 struct vmcs *vmcs;
1616
1617                 vmcs = alloc_vmcs_cpu(cpu);
1618                 if (!vmcs) {
1619                         free_kvm_area();
1620                         return -ENOMEM;
1621                 }
1622
1623                 per_cpu(vmxarea, cpu) = vmcs;
1624         }
1625         return 0;
1626 }
1627
1628 static __init int hardware_setup(void)
1629 {
1630         if (setup_vmcs_config(&vmcs_config) < 0)
1631                 return -EIO;
1632
1633         if (boot_cpu_has(X86_FEATURE_NX))
1634                 kvm_enable_efer_bits(EFER_NX);
1635
1636         if (!cpu_has_vmx_vpid())
1637                 enable_vpid = 0;
1638
1639         if (!cpu_has_vmx_ept() ||
1640             !cpu_has_vmx_ept_4levels()) {
1641                 enable_ept = 0;
1642                 enable_unrestricted_guest = 0;
1643         }
1644
1645         if (!cpu_has_vmx_unrestricted_guest())
1646                 enable_unrestricted_guest = 0;
1647
1648         if (!cpu_has_vmx_flexpriority())
1649                 flexpriority_enabled = 0;
1650
1651         if (!cpu_has_vmx_tpr_shadow())
1652                 kvm_x86_ops->update_cr8_intercept = NULL;
1653
1654         if (enable_ept && !cpu_has_vmx_ept_2m_page())
1655                 kvm_disable_largepages();
1656
1657         if (!cpu_has_vmx_ple())
1658                 ple_gap = 0;
1659
1660         return alloc_kvm_area();
1661 }
1662
1663 static __exit void hardware_unsetup(void)
1664 {
1665         free_kvm_area();
1666 }
1667
1668 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1669 {
1670         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1671
1672         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1673                 vmcs_write16(sf->selector, save->selector);
1674                 vmcs_writel(sf->base, save->base);
1675                 vmcs_write32(sf->limit, save->limit);
1676                 vmcs_write32(sf->ar_bytes, save->ar);
1677         } else {
1678                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1679                         << AR_DPL_SHIFT;
1680                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1681         }
1682 }
1683
1684 static void enter_pmode(struct kvm_vcpu *vcpu)
1685 {
1686         unsigned long flags;
1687         struct vcpu_vmx *vmx = to_vmx(vcpu);
1688
1689         vmx->emulation_required = 1;
1690         vmx->rmode.vm86_active = 0;
1691
1692         vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
1693         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1694         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1695         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1696
1697         flags = vmcs_readl(GUEST_RFLAGS);
1698         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1699         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1700         vmcs_writel(GUEST_RFLAGS, flags);
1701
1702         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1703                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1704
1705         update_exception_bitmap(vcpu);
1706
1707         if (emulate_invalid_guest_state)
1708                 return;
1709
1710         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1711         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1712         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1713         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1714
1715         vmcs_write16(GUEST_SS_SELECTOR, 0);
1716         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1717
1718         vmcs_write16(GUEST_CS_SELECTOR,
1719                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1720         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1721 }
1722
1723 static gva_t rmode_tss_base(struct kvm *kvm)
1724 {
1725         if (!kvm->arch.tss_addr) {
1726                 struct kvm_memslots *slots;
1727                 gfn_t base_gfn;
1728
1729                 slots = kvm_memslots(kvm);
1730                 base_gfn = slots->memslots[0].base_gfn +
1731                                  kvm->memslots->memslots[0].npages - 3;
1732                 return base_gfn << PAGE_SHIFT;
1733         }
1734         return kvm->arch.tss_addr;
1735 }
1736
1737 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1738 {
1739         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1740
1741         save->selector = vmcs_read16(sf->selector);
1742         save->base = vmcs_readl(sf->base);
1743         save->limit = vmcs_read32(sf->limit);
1744         save->ar = vmcs_read32(sf->ar_bytes);
1745         vmcs_write16(sf->selector, save->base >> 4);
1746         vmcs_write32(sf->base, save->base & 0xffff0);
1747         vmcs_write32(sf->limit, 0xffff);
1748         vmcs_write32(sf->ar_bytes, 0xf3);
1749         if (save->base & 0xf)
1750                 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
1751                             " aligned when entering protected mode (seg=%d)",
1752                             seg);
1753 }
1754
1755 static void enter_rmode(struct kvm_vcpu *vcpu)
1756 {
1757         unsigned long flags;
1758         struct vcpu_vmx *vmx = to_vmx(vcpu);
1759
1760         if (enable_unrestricted_guest)
1761                 return;
1762
1763         vmx->emulation_required = 1;
1764         vmx->rmode.vm86_active = 1;
1765
1766         vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
1767         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1768         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1769
1770         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1771         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1772
1773         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1774         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1775
1776         flags = vmcs_readl(GUEST_RFLAGS);
1777         vmx->rmode.save_rflags = flags;
1778
1779         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1780
1781         vmcs_writel(GUEST_RFLAGS, flags);
1782         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1783         update_exception_bitmap(vcpu);
1784
1785         if (emulate_invalid_guest_state)
1786                 goto continue_rmode;
1787
1788         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1789         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1790         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1791
1792         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1793         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1794         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1795                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1796         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1797
1798         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1799         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1800         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1801         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1802
1803 continue_rmode:
1804         kvm_mmu_reset_context(vcpu);
1805         init_rmode(vcpu->kvm);
1806 }
1807
1808 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1809 {
1810         struct vcpu_vmx *vmx = to_vmx(vcpu);
1811         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1812
1813         if (!msr)
1814                 return;
1815
1816         /*
1817          * Force kernel_gs_base reloading before EFER changes, as control
1818          * of this msr depends on is_long_mode().
1819          */
1820         vmx_load_host_state(to_vmx(vcpu));
1821         vcpu->arch.efer = efer;
1822         if (efer & EFER_LMA) {
1823                 vmcs_write32(VM_ENTRY_CONTROLS,
1824                              vmcs_read32(VM_ENTRY_CONTROLS) |
1825                              VM_ENTRY_IA32E_MODE);
1826                 msr->data = efer;
1827         } else {
1828                 vmcs_write32(VM_ENTRY_CONTROLS,
1829                              vmcs_read32(VM_ENTRY_CONTROLS) &
1830                              ~VM_ENTRY_IA32E_MODE);
1831
1832                 msr->data = efer & ~EFER_LME;
1833         }
1834         setup_msrs(vmx);
1835 }
1836
1837 #ifdef CONFIG_X86_64
1838
1839 static void enter_lmode(struct kvm_vcpu *vcpu)
1840 {
1841         u32 guest_tr_ar;
1842
1843         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1844         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1845                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1846                        __func__);
1847                 vmcs_write32(GUEST_TR_AR_BYTES,
1848                              (guest_tr_ar & ~AR_TYPE_MASK)
1849                              | AR_TYPE_BUSY_64_TSS);
1850         }
1851         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
1852 }
1853
1854 static void exit_lmode(struct kvm_vcpu *vcpu)
1855 {
1856         vmcs_write32(VM_ENTRY_CONTROLS,
1857                      vmcs_read32(VM_ENTRY_CONTROLS)
1858                      & ~VM_ENTRY_IA32E_MODE);
1859         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
1860 }
1861
1862 #endif
1863
1864 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1865 {
1866         vpid_sync_context(to_vmx(vcpu));
1867         if (enable_ept) {
1868                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1869                         return;
1870                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1871         }
1872 }
1873
1874 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1875 {
1876         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
1877
1878         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
1879         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
1880 }
1881
1882 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
1883 {
1884         if (enable_ept && is_paging(vcpu))
1885                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
1886         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
1887 }
1888
1889 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1890 {
1891         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1892
1893         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1894         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1895 }
1896
1897 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1898 {
1899         if (!test_bit(VCPU_EXREG_PDPTR,
1900                       (unsigned long *)&vcpu->arch.regs_dirty))
1901                 return;
1902
1903         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1904                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
1905                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
1906                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
1907                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1908         }
1909 }
1910
1911 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1912 {
1913         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1914                 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1915                 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1916                 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1917                 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1918         }
1919
1920         __set_bit(VCPU_EXREG_PDPTR,
1921                   (unsigned long *)&vcpu->arch.regs_avail);
1922         __set_bit(VCPU_EXREG_PDPTR,
1923                   (unsigned long *)&vcpu->arch.regs_dirty);
1924 }
1925
1926 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1927
1928 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1929                                         unsigned long cr0,
1930                                         struct kvm_vcpu *vcpu)
1931 {
1932         vmx_decache_cr3(vcpu);
1933         if (!(cr0 & X86_CR0_PG)) {
1934                 /* From paging/starting to nonpaging */
1935                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1936                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1937                              (CPU_BASED_CR3_LOAD_EXITING |
1938                               CPU_BASED_CR3_STORE_EXITING));
1939                 vcpu->arch.cr0 = cr0;
1940                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1941         } else if (!is_paging(vcpu)) {
1942                 /* From nonpaging to paging */
1943                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1944                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1945                              ~(CPU_BASED_CR3_LOAD_EXITING |
1946                                CPU_BASED_CR3_STORE_EXITING));
1947                 vcpu->arch.cr0 = cr0;
1948                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1949         }
1950
1951         if (!(cr0 & X86_CR0_WP))
1952                 *hw_cr0 &= ~X86_CR0_WP;
1953 }
1954
1955 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1956 {
1957         struct vcpu_vmx *vmx = to_vmx(vcpu);
1958         unsigned long hw_cr0;
1959
1960         if (enable_unrestricted_guest)
1961                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1962                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1963         else
1964                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1965
1966         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1967                 enter_pmode(vcpu);
1968
1969         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1970                 enter_rmode(vcpu);
1971
1972 #ifdef CONFIG_X86_64
1973         if (vcpu->arch.efer & EFER_LME) {
1974                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1975                         enter_lmode(vcpu);
1976                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1977                         exit_lmode(vcpu);
1978         }
1979 #endif
1980
1981         if (enable_ept)
1982                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1983
1984         if (!vcpu->fpu_active)
1985                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
1986
1987         vmcs_writel(CR0_READ_SHADOW, cr0);
1988         vmcs_writel(GUEST_CR0, hw_cr0);
1989         vcpu->arch.cr0 = cr0;
1990 }
1991
1992 static u64 construct_eptp(unsigned long root_hpa)
1993 {
1994         u64 eptp;
1995
1996         /* TODO write the value reading from MSR */
1997         eptp = VMX_EPT_DEFAULT_MT |
1998                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1999         eptp |= (root_hpa & PAGE_MASK);
2000
2001         return eptp;
2002 }
2003
2004 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2005 {
2006         unsigned long guest_cr3;
2007         u64 eptp;
2008
2009         guest_cr3 = cr3;
2010         if (enable_ept) {
2011                 eptp = construct_eptp(cr3);
2012                 vmcs_write64(EPT_POINTER, eptp);
2013                 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
2014                         vcpu->kvm->arch.ept_identity_map_addr;
2015                 ept_load_pdptrs(vcpu);
2016         }
2017
2018         vmx_flush_tlb(vcpu);
2019         vmcs_writel(GUEST_CR3, guest_cr3);
2020 }
2021
2022 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2023 {
2024         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
2025                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2026
2027         vcpu->arch.cr4 = cr4;
2028         if (enable_ept) {
2029                 if (!is_paging(vcpu)) {
2030                         hw_cr4 &= ~X86_CR4_PAE;
2031                         hw_cr4 |= X86_CR4_PSE;
2032                 } else if (!(cr4 & X86_CR4_PAE)) {
2033                         hw_cr4 &= ~X86_CR4_PAE;
2034                 }
2035         }
2036
2037         vmcs_writel(CR4_READ_SHADOW, cr4);
2038         vmcs_writel(GUEST_CR4, hw_cr4);
2039 }
2040
2041 static void vmx_get_segment(struct kvm_vcpu *vcpu,
2042                             struct kvm_segment *var, int seg)
2043 {
2044         struct vcpu_vmx *vmx = to_vmx(vcpu);
2045         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2046         struct kvm_save_segment *save;
2047         u32 ar;
2048
2049         if (vmx->rmode.vm86_active
2050             && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
2051                 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
2052                 || seg == VCPU_SREG_GS)
2053             && !emulate_invalid_guest_state) {
2054                 switch (seg) {
2055                 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
2056                 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
2057                 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
2058                 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
2059                 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
2060                 default: BUG();
2061                 }
2062                 var->selector = save->selector;
2063                 var->base = save->base;
2064                 var->limit = save->limit;
2065                 ar = save->ar;
2066                 if (seg == VCPU_SREG_TR
2067                     || var->selector == vmcs_read16(sf->selector))
2068                         goto use_saved_rmode_seg;
2069         }
2070         var->base = vmcs_readl(sf->base);
2071         var->limit = vmcs_read32(sf->limit);
2072         var->selector = vmcs_read16(sf->selector);
2073         ar = vmcs_read32(sf->ar_bytes);
2074 use_saved_rmode_seg:
2075         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2076                 ar = 0;
2077         var->type = ar & 15;
2078         var->s = (ar >> 4) & 1;
2079         var->dpl = (ar >> 5) & 3;
2080         var->present = (ar >> 7) & 1;
2081         var->avl = (ar >> 12) & 1;
2082         var->l = (ar >> 13) & 1;
2083         var->db = (ar >> 14) & 1;
2084         var->g = (ar >> 15) & 1;
2085         var->unusable = (ar >> 16) & 1;
2086 }
2087
2088 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2089 {
2090         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2091         struct kvm_segment s;
2092
2093         if (to_vmx(vcpu)->rmode.vm86_active) {
2094                 vmx_get_segment(vcpu, &s, seg);
2095                 return s.base;
2096         }
2097         return vmcs_readl(sf->base);
2098 }
2099
2100 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2101 {
2102         if (!is_protmode(vcpu))
2103                 return 0;
2104
2105         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
2106                 return 3;
2107
2108         return vmcs_read16(GUEST_CS_SELECTOR) & 3;
2109 }
2110
2111 static u32 vmx_segment_access_rights(struct kvm_segment *var)
2112 {
2113         u32 ar;
2114
2115         if (var->unusable)
2116                 ar = 1 << 16;
2117         else {
2118                 ar = var->type & 15;
2119                 ar |= (var->s & 1) << 4;
2120                 ar |= (var->dpl & 3) << 5;
2121                 ar |= (var->present & 1) << 7;
2122                 ar |= (var->avl & 1) << 12;
2123                 ar |= (var->l & 1) << 13;
2124                 ar |= (var->db & 1) << 14;
2125                 ar |= (var->g & 1) << 15;
2126         }
2127         if (ar == 0) /* a 0 value means unusable */
2128                 ar = AR_UNUSABLE_MASK;
2129
2130         return ar;
2131 }
2132
2133 static void vmx_set_segment(struct kvm_vcpu *vcpu,
2134                             struct kvm_segment *var, int seg)
2135 {
2136         struct vcpu_vmx *vmx = to_vmx(vcpu);
2137         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2138         u32 ar;
2139
2140         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
2141                 vmx->rmode.tr.selector = var->selector;
2142                 vmx->rmode.tr.base = var->base;
2143                 vmx->rmode.tr.limit = var->limit;
2144                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
2145                 return;
2146         }
2147         vmcs_writel(sf->base, var->base);
2148         vmcs_write32(sf->limit, var->limit);
2149         vmcs_write16(sf->selector, var->selector);
2150         if (vmx->rmode.vm86_active && var->s) {
2151                 /*
2152                  * Hack real-mode segments into vm86 compatibility.
2153                  */
2154                 if (var->base == 0xffff0000 && var->selector == 0xf000)
2155                         vmcs_writel(sf->base, 0xf0000);
2156                 ar = 0xf3;
2157         } else
2158                 ar = vmx_segment_access_rights(var);
2159
2160         /*
2161          *   Fix the "Accessed" bit in AR field of segment registers for older
2162          * qemu binaries.
2163          *   IA32 arch specifies that at the time of processor reset the
2164          * "Accessed" bit in the AR field of segment registers is 1. And qemu
2165          * is setting it to 0 in the usedland code. This causes invalid guest
2166          * state vmexit when "unrestricted guest" mode is turned on.
2167          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
2168          * tree. Newer qemu binaries with that qemu fix would not need this
2169          * kvm hack.
2170          */
2171         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
2172                 ar |= 0x1; /* Accessed */
2173
2174         vmcs_write32(sf->ar_bytes, ar);
2175 }
2176
2177 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2178 {
2179         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
2180
2181         *db = (ar >> 14) & 1;
2182         *l = (ar >> 13) & 1;
2183 }
2184
2185 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2186 {
2187         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
2188         dt->address = vmcs_readl(GUEST_IDTR_BASE);
2189 }
2190
2191 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2192 {
2193         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
2194         vmcs_writel(GUEST_IDTR_BASE, dt->address);
2195 }
2196
2197 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2198 {
2199         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
2200         dt->address = vmcs_readl(GUEST_GDTR_BASE);
2201 }
2202
2203 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2204 {
2205         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
2206         vmcs_writel(GUEST_GDTR_BASE, dt->address);
2207 }
2208
2209 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
2210 {
2211         struct kvm_segment var;
2212         u32 ar;
2213
2214         vmx_get_segment(vcpu, &var, seg);
2215         ar = vmx_segment_access_rights(&var);
2216
2217         if (var.base != (var.selector << 4))
2218                 return false;
2219         if (var.limit != 0xffff)
2220                 return false;
2221         if (ar != 0xf3)
2222                 return false;
2223
2224         return true;
2225 }
2226
2227 static bool code_segment_valid(struct kvm_vcpu *vcpu)
2228 {
2229         struct kvm_segment cs;
2230         unsigned int cs_rpl;
2231
2232         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2233         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
2234
2235         if (cs.unusable)
2236                 return false;
2237         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
2238                 return false;
2239         if (!cs.s)
2240                 return false;
2241         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
2242                 if (cs.dpl > cs_rpl)
2243                         return false;
2244         } else {
2245                 if (cs.dpl != cs_rpl)
2246                         return false;
2247         }
2248         if (!cs.present)
2249                 return false;
2250
2251         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2252         return true;
2253 }
2254
2255 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2256 {
2257         struct kvm_segment ss;
2258         unsigned int ss_rpl;
2259
2260         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2261         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2262
2263         if (ss.unusable)
2264                 return true;
2265         if (ss.type != 3 && ss.type != 7)
2266                 return false;
2267         if (!ss.s)
2268                 return false;
2269         if (ss.dpl != ss_rpl) /* DPL != RPL */
2270                 return false;
2271         if (!ss.present)
2272                 return false;
2273
2274         return true;
2275 }
2276
2277 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2278 {
2279         struct kvm_segment var;
2280         unsigned int rpl;
2281
2282         vmx_get_segment(vcpu, &var, seg);
2283         rpl = var.selector & SELECTOR_RPL_MASK;
2284
2285         if (var.unusable)
2286                 return true;
2287         if (!var.s)
2288                 return false;
2289         if (!var.present)
2290                 return false;
2291         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2292                 if (var.dpl < rpl) /* DPL < RPL */
2293                         return false;
2294         }
2295
2296         /* TODO: Add other members to kvm_segment_field to allow checking for other access
2297          * rights flags
2298          */
2299         return true;
2300 }
2301
2302 static bool tr_valid(struct kvm_vcpu *vcpu)
2303 {
2304         struct kvm_segment tr;
2305
2306         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2307
2308         if (tr.unusable)
2309                 return false;
2310         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
2311                 return false;
2312         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2313                 return false;
2314         if (!tr.present)
2315                 return false;
2316
2317         return true;
2318 }
2319
2320 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2321 {
2322         struct kvm_segment ldtr;
2323
2324         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2325
2326         if (ldtr.unusable)
2327                 return true;
2328         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2329                 return false;
2330         if (ldtr.type != 2)
2331                 return false;
2332         if (!ldtr.present)
2333                 return false;
2334
2335         return true;
2336 }
2337
2338 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2339 {
2340         struct kvm_segment cs, ss;
2341
2342         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2343         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2344
2345         return ((cs.selector & SELECTOR_RPL_MASK) ==
2346                  (ss.selector & SELECTOR_RPL_MASK));
2347 }
2348
2349 /*
2350  * Check if guest state is valid. Returns true if valid, false if
2351  * not.
2352  * We assume that registers are always usable
2353  */
2354 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2355 {
2356         /* real mode guest state checks */
2357         if (!is_protmode(vcpu)) {
2358                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2359                         return false;
2360                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2361                         return false;
2362                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2363                         return false;
2364                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2365                         return false;
2366                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2367                         return false;
2368                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2369                         return false;
2370         } else {
2371         /* protected mode guest state checks */
2372                 if (!cs_ss_rpl_check(vcpu))
2373                         return false;
2374                 if (!code_segment_valid(vcpu))
2375                         return false;
2376                 if (!stack_segment_valid(vcpu))
2377                         return false;
2378                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2379                         return false;
2380                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2381                         return false;
2382                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2383                         return false;
2384                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2385                         return false;
2386                 if (!tr_valid(vcpu))
2387                         return false;
2388                 if (!ldtr_valid(vcpu))
2389                         return false;
2390         }
2391         /* TODO:
2392          * - Add checks on RIP
2393          * - Add checks on RFLAGS
2394          */
2395
2396         return true;
2397 }
2398
2399 static int init_rmode_tss(struct kvm *kvm)
2400 {
2401         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2402         u16 data = 0;
2403         int ret = 0;
2404         int r;
2405
2406         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2407         if (r < 0)
2408                 goto out;
2409         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2410         r = kvm_write_guest_page(kvm, fn++, &data,
2411                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2412         if (r < 0)
2413                 goto out;
2414         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2415         if (r < 0)
2416                 goto out;
2417         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2418         if (r < 0)
2419                 goto out;
2420         data = ~0;
2421         r = kvm_write_guest_page(kvm, fn, &data,
2422                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2423                                  sizeof(u8));
2424         if (r < 0)
2425                 goto out;
2426
2427         ret = 1;
2428 out:
2429         return ret;
2430 }
2431
2432 static int init_rmode_identity_map(struct kvm *kvm)
2433 {
2434         int i, r, ret;
2435         pfn_t identity_map_pfn;
2436         u32 tmp;
2437
2438         if (!enable_ept)
2439                 return 1;
2440         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2441                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2442                         "haven't been allocated!\n");
2443                 return 0;
2444         }
2445         if (likely(kvm->arch.ept_identity_pagetable_done))
2446                 return 1;
2447         ret = 0;
2448         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2449         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2450         if (r < 0)
2451                 goto out;
2452         /* Set up identity-mapping pagetable for EPT in real mode */
2453         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2454                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2455                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2456                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2457                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2458                 if (r < 0)
2459                         goto out;
2460         }
2461         kvm->arch.ept_identity_pagetable_done = true;
2462         ret = 1;
2463 out:
2464         return ret;
2465 }
2466
2467 static void seg_setup(int seg)
2468 {
2469         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2470         unsigned int ar;
2471
2472         vmcs_write16(sf->selector, 0);
2473         vmcs_writel(sf->base, 0);
2474         vmcs_write32(sf->limit, 0xffff);
2475         if (enable_unrestricted_guest) {
2476                 ar = 0x93;
2477                 if (seg == VCPU_SREG_CS)
2478                         ar |= 0x08; /* code segment */
2479         } else
2480                 ar = 0xf3;
2481
2482         vmcs_write32(sf->ar_bytes, ar);
2483 }
2484
2485 static int alloc_apic_access_page(struct kvm *kvm)
2486 {
2487         struct kvm_userspace_memory_region kvm_userspace_mem;
2488         int r = 0;
2489
2490         mutex_lock(&kvm->slots_lock);
2491         if (kvm->arch.apic_access_page)
2492                 goto out;
2493         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2494         kvm_userspace_mem.flags = 0;
2495         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2496         kvm_userspace_mem.memory_size = PAGE_SIZE;
2497         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2498         if (r)
2499                 goto out;
2500
2501         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2502 out:
2503         mutex_unlock(&kvm->slots_lock);
2504         return r;
2505 }
2506
2507 static int alloc_identity_pagetable(struct kvm *kvm)
2508 {
2509         struct kvm_userspace_memory_region kvm_userspace_mem;
2510         int r = 0;
2511
2512         mutex_lock(&kvm->slots_lock);
2513         if (kvm->arch.ept_identity_pagetable)
2514                 goto out;
2515         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2516         kvm_userspace_mem.flags = 0;
2517         kvm_userspace_mem.guest_phys_addr =
2518                 kvm->arch.ept_identity_map_addr;
2519         kvm_userspace_mem.memory_size = PAGE_SIZE;
2520         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2521         if (r)
2522                 goto out;
2523
2524         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2525                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2526 out:
2527         mutex_unlock(&kvm->slots_lock);
2528         return r;
2529 }
2530
2531 static void allocate_vpid(struct vcpu_vmx *vmx)
2532 {
2533         int vpid;
2534
2535         vmx->vpid = 0;
2536         if (!enable_vpid)
2537                 return;
2538         spin_lock(&vmx_vpid_lock);
2539         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2540         if (vpid < VMX_NR_VPIDS) {
2541                 vmx->vpid = vpid;
2542                 __set_bit(vpid, vmx_vpid_bitmap);
2543         }
2544         spin_unlock(&vmx_vpid_lock);
2545 }
2546
2547 static void free_vpid(struct vcpu_vmx *vmx)
2548 {
2549         if (!enable_vpid)
2550                 return;
2551         spin_lock(&vmx_vpid_lock);
2552         if (vmx->vpid != 0)
2553                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2554         spin_unlock(&vmx_vpid_lock);
2555 }
2556
2557 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2558 {
2559         int f = sizeof(unsigned long);
2560
2561         if (!cpu_has_vmx_msr_bitmap())
2562                 return;
2563
2564         /*
2565          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2566          * have the write-low and read-high bitmap offsets the wrong way round.
2567          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2568          */
2569         if (msr <= 0x1fff) {
2570                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2571                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2572         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2573                 msr &= 0x1fff;
2574                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2575                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2576         }
2577 }
2578
2579 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2580 {
2581         if (!longmode_only)
2582                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2583         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2584 }
2585
2586 /*
2587  * Sets up the vmcs for emulated real mode.
2588  */
2589 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2590 {
2591         u32 host_sysenter_cs, msr_low, msr_high;
2592         u32 junk;
2593         u64 host_pat;
2594         unsigned long a;
2595         struct desc_ptr dt;
2596         int i;
2597         unsigned long kvm_vmx_return;
2598         u32 exec_control;
2599
2600         /* I/O */
2601         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2602         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2603
2604         if (cpu_has_vmx_msr_bitmap())
2605                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2606
2607         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2608
2609         /* Control */
2610         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2611                 vmcs_config.pin_based_exec_ctrl);
2612
2613         exec_control = vmcs_config.cpu_based_exec_ctrl;
2614         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2615                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2616 #ifdef CONFIG_X86_64
2617                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2618                                 CPU_BASED_CR8_LOAD_EXITING;
2619 #endif
2620         }
2621         if (!enable_ept)
2622                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2623                                 CPU_BASED_CR3_LOAD_EXITING  |
2624                                 CPU_BASED_INVLPG_EXITING;
2625         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2626
2627         if (cpu_has_secondary_exec_ctrls()) {
2628                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2629                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2630                         exec_control &=
2631                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2632                 if (vmx->vpid == 0)
2633                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2634                 if (!enable_ept) {
2635                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2636                         enable_unrestricted_guest = 0;
2637                 }
2638                 if (!enable_unrestricted_guest)
2639                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2640                 if (!ple_gap)
2641                         exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2642                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2643         }
2644
2645         if (ple_gap) {
2646                 vmcs_write32(PLE_GAP, ple_gap);
2647                 vmcs_write32(PLE_WINDOW, ple_window);
2648         }
2649
2650         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2651         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2652         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2653
2654         vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS);  /* 22.2.3 */
2655         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2656         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2657
2658         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2659         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2660         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2661         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
2662         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
2663         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2664 #ifdef CONFIG_X86_64
2665         rdmsrl(MSR_FS_BASE, a);
2666         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2667         rdmsrl(MSR_GS_BASE, a);
2668         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2669 #else
2670         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2671         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2672 #endif
2673
2674         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2675
2676         native_store_idt(&dt);
2677         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
2678
2679         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2680         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2681         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2682         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2683         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2684         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2685         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
2686
2687         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2688         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2689         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2690         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2691         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2692         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2693
2694         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2695                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2696                 host_pat = msr_low | ((u64) msr_high << 32);
2697                 vmcs_write64(HOST_IA32_PAT, host_pat);
2698         }
2699         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2700                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2701                 host_pat = msr_low | ((u64) msr_high << 32);
2702                 /* Write the default value follow host pat */
2703                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2704                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2705                 vmx->vcpu.arch.pat = host_pat;
2706         }
2707
2708         for (i = 0; i < NR_VMX_MSR; ++i) {
2709                 u32 index = vmx_msr_index[i];
2710                 u32 data_low, data_high;
2711                 int j = vmx->nmsrs;
2712
2713                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2714                         continue;
2715                 if (wrmsr_safe(index, data_low, data_high) < 0)
2716                         continue;
2717                 vmx->guest_msrs[j].index = i;
2718                 vmx->guest_msrs[j].data = 0;
2719                 vmx->guest_msrs[j].mask = -1ull;
2720                 ++vmx->nmsrs;
2721         }
2722
2723         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2724
2725         /* 22.2.1, 20.8.1 */
2726         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2727
2728         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2729         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2730         if (enable_ept)
2731                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2732         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2733
2734         kvm_write_tsc(&vmx->vcpu, 0);
2735
2736         return 0;
2737 }
2738
2739 static int init_rmode(struct kvm *kvm)
2740 {
2741         int idx, ret = 0;
2742
2743         idx = srcu_read_lock(&kvm->srcu);
2744         if (!init_rmode_tss(kvm))
2745                 goto exit;
2746         if (!init_rmode_identity_map(kvm))
2747                 goto exit;
2748
2749         ret = 1;
2750 exit:
2751         srcu_read_unlock(&kvm->srcu, idx);
2752         return ret;
2753 }
2754
2755 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2756 {
2757         struct vcpu_vmx *vmx = to_vmx(vcpu);
2758         u64 msr;
2759         int ret;
2760
2761         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2762         if (!init_rmode(vmx->vcpu.kvm)) {
2763                 ret = -ENOMEM;
2764                 goto out;
2765         }
2766
2767         vmx->rmode.vm86_active = 0;
2768
2769         vmx->soft_vnmi_blocked = 0;
2770
2771         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2772         kvm_set_cr8(&vmx->vcpu, 0);
2773         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2774         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2775                 msr |= MSR_IA32_APICBASE_BSP;
2776         kvm_set_apic_base(&vmx->vcpu, msr);
2777
2778         ret = fx_init(&vmx->vcpu);
2779         if (ret != 0)
2780                 goto out;
2781
2782         seg_setup(VCPU_SREG_CS);
2783         /*
2784          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2785          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2786          */
2787         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2788                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2789                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2790         } else {
2791                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2792                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2793         }
2794
2795         seg_setup(VCPU_SREG_DS);
2796         seg_setup(VCPU_SREG_ES);
2797         seg_setup(VCPU_SREG_FS);
2798         seg_setup(VCPU_SREG_GS);
2799         seg_setup(VCPU_SREG_SS);
2800
2801         vmcs_write16(GUEST_TR_SELECTOR, 0);
2802         vmcs_writel(GUEST_TR_BASE, 0);
2803         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2804         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2805
2806         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2807         vmcs_writel(GUEST_LDTR_BASE, 0);
2808         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2809         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2810
2811         vmcs_write32(GUEST_SYSENTER_CS, 0);
2812         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2813         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2814
2815         vmcs_writel(GUEST_RFLAGS, 0x02);
2816         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2817                 kvm_rip_write(vcpu, 0xfff0);
2818         else
2819                 kvm_rip_write(vcpu, 0);
2820         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2821
2822         vmcs_writel(GUEST_DR7, 0x400);
2823
2824         vmcs_writel(GUEST_GDTR_BASE, 0);
2825         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2826
2827         vmcs_writel(GUEST_IDTR_BASE, 0);
2828         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2829
2830         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
2831         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2832         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2833
2834         /* Special registers */
2835         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2836
2837         setup_msrs(vmx);
2838
2839         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2840
2841         if (cpu_has_vmx_tpr_shadow()) {
2842                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2843                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2844                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2845                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2846                 vmcs_write32(TPR_THRESHOLD, 0);
2847         }
2848
2849         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2850                 vmcs_write64(APIC_ACCESS_ADDR,
2851                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2852
2853         if (vmx->vpid != 0)
2854                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2855
2856         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2857         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
2858         vmx_set_cr4(&vmx->vcpu, 0);
2859         vmx_set_efer(&vmx->vcpu, 0);
2860         vmx_fpu_activate(&vmx->vcpu);
2861         update_exception_bitmap(&vmx->vcpu);
2862
2863         vpid_sync_context(vmx);
2864
2865         ret = 0;
2866
2867         /* HACK: Don't enable emulation on guest boot/reset */
2868         vmx->emulation_required = 0;
2869
2870 out:
2871         return ret;
2872 }
2873
2874 static void enable_irq_window(struct kvm_vcpu *vcpu)
2875 {
2876         u32 cpu_based_vm_exec_control;
2877
2878         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2879         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2880         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2881 }
2882
2883 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2884 {
2885         u32 cpu_based_vm_exec_control;
2886
2887         if (!cpu_has_virtual_nmis()) {
2888                 enable_irq_window(vcpu);
2889                 return;
2890         }
2891
2892         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
2893                 enable_irq_window(vcpu);
2894                 return;
2895         }
2896         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2897         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2898         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2899 }
2900
2901 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2902 {
2903         struct vcpu_vmx *vmx = to_vmx(vcpu);
2904         uint32_t intr;
2905         int irq = vcpu->arch.interrupt.nr;
2906
2907         trace_kvm_inj_virq(irq);
2908
2909         ++vcpu->stat.irq_injections;
2910         if (vmx->rmode.vm86_active) {
2911                 if (kvm_inject_realmode_interrupt(vcpu, irq) != EMULATE_DONE)
2912                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2913                 return;
2914         }
2915         intr = irq | INTR_INFO_VALID_MASK;
2916         if (vcpu->arch.interrupt.soft) {
2917                 intr |= INTR_TYPE_SOFT_INTR;
2918                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2919                              vmx->vcpu.arch.event_exit_inst_len);
2920         } else
2921                 intr |= INTR_TYPE_EXT_INTR;
2922         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2923         vmx_clear_hlt(vcpu);
2924 }
2925
2926 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2927 {
2928         struct vcpu_vmx *vmx = to_vmx(vcpu);
2929
2930         if (!cpu_has_virtual_nmis()) {
2931                 /*
2932                  * Tracking the NMI-blocked state in software is built upon
2933                  * finding the next open IRQ window. This, in turn, depends on
2934                  * well-behaving guests: They have to keep IRQs disabled at
2935                  * least as long as the NMI handler runs. Otherwise we may
2936                  * cause NMI nesting, maybe breaking the guest. But as this is
2937                  * highly unlikely, we can live with the residual risk.
2938                  */
2939                 vmx->soft_vnmi_blocked = 1;
2940                 vmx->vnmi_blocked_time = 0;
2941         }
2942
2943         ++vcpu->stat.nmi_injections;
2944         if (vmx->rmode.vm86_active) {
2945                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR) != EMULATE_DONE)
2946                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2947                 return;
2948         }
2949         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2950                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2951         vmx_clear_hlt(vcpu);
2952 }
2953
2954 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2955 {
2956         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2957                 return 0;
2958
2959         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2960                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
2961                    | GUEST_INTR_STATE_NMI));
2962 }
2963
2964 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2965 {
2966         if (!cpu_has_virtual_nmis())
2967                 return to_vmx(vcpu)->soft_vnmi_blocked;
2968         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
2969 }
2970
2971 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2972 {
2973         struct vcpu_vmx *vmx = to_vmx(vcpu);
2974
2975         if (!cpu_has_virtual_nmis()) {
2976                 if (vmx->soft_vnmi_blocked != masked) {
2977                         vmx->soft_vnmi_blocked = masked;
2978                         vmx->vnmi_blocked_time = 0;
2979                 }
2980         } else {
2981                 if (masked)
2982                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2983                                       GUEST_INTR_STATE_NMI);
2984                 else
2985                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2986                                         GUEST_INTR_STATE_NMI);
2987         }
2988 }
2989
2990 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2991 {
2992         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2993                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2994                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2995 }
2996
2997 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2998 {
2999         int ret;
3000         struct kvm_userspace_memory_region tss_mem = {
3001                 .slot = TSS_PRIVATE_MEMSLOT,
3002                 .guest_phys_addr = addr,
3003                 .memory_size = PAGE_SIZE * 3,
3004                 .flags = 0,
3005         };
3006
3007         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
3008         if (ret)
3009                 return ret;
3010         kvm->arch.tss_addr = addr;
3011         return 0;
3012 }
3013
3014 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
3015                                   int vec, u32 err_code)
3016 {
3017         /*
3018          * Instruction with address size override prefix opcode 0x67
3019          * Cause the #SS fault with 0 error code in VM86 mode.
3020          */
3021         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
3022                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
3023                         return 1;
3024         /*
3025          * Forward all other exceptions that are valid in real mode.
3026          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
3027          *        the required debugging infrastructure rework.
3028          */
3029         switch (vec) {
3030         case DB_VECTOR:
3031                 if (vcpu->guest_debug &
3032                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
3033                         return 0;
3034                 kvm_queue_exception(vcpu, vec);
3035                 return 1;
3036         case BP_VECTOR:
3037                 /*
3038                  * Update instruction length as we may reinject the exception
3039                  * from user space while in guest debugging mode.
3040                  */
3041                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
3042                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3043                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
3044                         return 0;
3045                 /* fall through */
3046         case DE_VECTOR:
3047         case OF_VECTOR:
3048         case BR_VECTOR:
3049         case UD_VECTOR:
3050         case DF_VECTOR:
3051         case SS_VECTOR:
3052         case GP_VECTOR:
3053         case MF_VECTOR:
3054                 kvm_queue_exception(vcpu, vec);
3055                 return 1;
3056         }
3057         return 0;
3058 }
3059
3060 /*
3061  * Trigger machine check on the host. We assume all the MSRs are already set up
3062  * by the CPU and that we still run on the same CPU as the MCE occurred on.
3063  * We pass a fake environment to the machine check handler because we want
3064  * the guest to be always treated like user space, no matter what context
3065  * it used internally.
3066  */
3067 static void kvm_machine_check(void)
3068 {
3069 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
3070         struct pt_regs regs = {
3071                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
3072                 .flags = X86_EFLAGS_IF,
3073         };
3074
3075         do_machine_check(&regs, 0);
3076 #endif
3077 }
3078
3079 static int handle_machine_check(struct kvm_vcpu *vcpu)
3080 {
3081         /* already handled by vcpu_run */
3082         return 1;
3083 }
3084
3085 static int handle_exception(struct kvm_vcpu *vcpu)
3086 {
3087         struct vcpu_vmx *vmx = to_vmx(vcpu);
3088         struct kvm_run *kvm_run = vcpu->run;
3089         u32 intr_info, ex_no, error_code;
3090         unsigned long cr2, rip, dr6;
3091         u32 vect_info;
3092         enum emulation_result er;
3093
3094         vect_info = vmx->idt_vectoring_info;
3095         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3096
3097         if (is_machine_check(intr_info))
3098                 return handle_machine_check(vcpu);
3099
3100         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
3101             !is_page_fault(intr_info)) {
3102                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3103                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3104                 vcpu->run->internal.ndata = 2;
3105                 vcpu->run->internal.data[0] = vect_info;
3106                 vcpu->run->internal.data[1] = intr_info;
3107                 return 0;
3108         }
3109
3110         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
3111                 return 1;  /* already handled by vmx_vcpu_run() */
3112
3113         if (is_no_device(intr_info)) {
3114                 vmx_fpu_activate(vcpu);
3115                 return 1;
3116         }
3117
3118         if (is_invalid_opcode(intr_info)) {
3119                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
3120                 if (er != EMULATE_DONE)
3121                         kvm_queue_exception(vcpu, UD_VECTOR);
3122                 return 1;
3123         }
3124
3125         error_code = 0;
3126         rip = kvm_rip_read(vcpu);
3127         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
3128                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3129         if (is_page_fault(intr_info)) {
3130                 /* EPT won't cause page fault directly */
3131                 if (enable_ept)
3132                         BUG();
3133                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
3134                 trace_kvm_page_fault(cr2, error_code);
3135
3136                 if (kvm_event_needs_reinjection(vcpu))
3137                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
3138                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
3139         }
3140
3141         if (vmx->rmode.vm86_active &&
3142             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
3143                                                                 error_code)) {
3144                 if (vcpu->arch.halt_request) {
3145                         vcpu->arch.halt_request = 0;
3146                         return kvm_emulate_halt(vcpu);
3147                 }
3148                 return 1;
3149         }
3150
3151         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
3152         switch (ex_no) {
3153         case DB_VECTOR:
3154                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
3155                 if (!(vcpu->guest_debug &
3156                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
3157                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
3158                         kvm_queue_exception(vcpu, DB_VECTOR);
3159                         return 1;
3160                 }
3161                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
3162                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
3163                 /* fall through */
3164         case BP_VECTOR:
3165                 /*
3166                  * Update instruction length as we may reinject #BP from
3167                  * user space while in guest debugging mode. Reading it for
3168                  * #DB as well causes no harm, it is not used in that case.
3169                  */
3170                 vmx->vcpu.arch.event_exit_inst_len =
3171                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3172                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
3173                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
3174                 kvm_run->debug.arch.exception = ex_no;
3175                 break;
3176         default:
3177                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
3178                 kvm_run->ex.exception = ex_no;
3179                 kvm_run->ex.error_code = error_code;
3180                 break;
3181         }
3182         return 0;
3183 }
3184
3185 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
3186 {
3187         ++vcpu->stat.irq_exits;
3188         return 1;
3189 }
3190
3191 static int handle_triple_fault(struct kvm_vcpu *vcpu)
3192 {
3193         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3194         return 0;
3195 }
3196
3197 static int handle_io(struct kvm_vcpu *vcpu)
3198 {
3199         unsigned long exit_qualification;
3200         int size, in, string;
3201         unsigned port;
3202
3203         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3204         string = (exit_qualification & 16) != 0;
3205         in = (exit_qualification & 8) != 0;
3206
3207         ++vcpu->stat.io_exits;
3208
3209         if (string || in)
3210                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3211
3212         port = exit_qualification >> 16;
3213         size = (exit_qualification & 7) + 1;
3214         skip_emulated_instruction(vcpu);
3215
3216         return kvm_fast_pio_out(vcpu, size, port);
3217 }
3218
3219 static void
3220 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3221 {
3222         /*
3223          * Patch in the VMCALL instruction:
3224          */
3225         hypercall[0] = 0x0f;
3226         hypercall[1] = 0x01;
3227         hypercall[2] = 0xc1;
3228 }
3229
3230 static int handle_cr(struct kvm_vcpu *vcpu)
3231 {
3232         unsigned long exit_qualification, val;
3233         int cr;
3234         int reg;
3235         int err;
3236
3237         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3238         cr = exit_qualification & 15;
3239         reg = (exit_qualification >> 8) & 15;
3240         switch ((exit_qualification >> 4) & 3) {
3241         case 0: /* mov to cr */
3242                 val = kvm_register_read(vcpu, reg);
3243                 trace_kvm_cr_write(cr, val);
3244                 switch (cr) {
3245                 case 0:
3246                         err = kvm_set_cr0(vcpu, val);
3247                         kvm_complete_insn_gp(vcpu, err);
3248                         return 1;
3249                 case 3:
3250                         err = kvm_set_cr3(vcpu, val);
3251                         kvm_complete_insn_gp(vcpu, err);
3252                         return 1;
3253                 case 4:
3254                         err = kvm_set_cr4(vcpu, val);
3255                         kvm_complete_insn_gp(vcpu, err);
3256                         return 1;
3257                 case 8: {
3258                                 u8 cr8_prev = kvm_get_cr8(vcpu);
3259                                 u8 cr8 = kvm_register_read(vcpu, reg);
3260                                 err = kvm_set_cr8(vcpu, cr8);
3261                                 kvm_complete_insn_gp(vcpu, err);
3262                                 if (irqchip_in_kernel(vcpu->kvm))
3263                                         return 1;
3264                                 if (cr8_prev <= cr8)
3265                                         return 1;
3266                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3267                                 return 0;
3268                         }
3269                 };
3270                 break;
3271         case 2: /* clts */
3272                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3273                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3274                 skip_emulated_instruction(vcpu);
3275                 vmx_fpu_activate(vcpu);
3276                 return 1;
3277         case 1: /*mov from cr*/
3278                 switch (cr) {
3279                 case 3:
3280                         val = kvm_read_cr3(vcpu);
3281                         kvm_register_write(vcpu, reg, val);
3282                         trace_kvm_cr_read(cr, val);
3283                         skip_emulated_instruction(vcpu);
3284                         return 1;
3285                 case 8:
3286                         val = kvm_get_cr8(vcpu);
3287                         kvm_register_write(vcpu, reg, val);
3288                         trace_kvm_cr_read(cr, val);
3289                         skip_emulated_instruction(vcpu);
3290                         return 1;
3291                 }
3292                 break;
3293         case 3: /* lmsw */
3294                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3295                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3296                 kvm_lmsw(vcpu, val);
3297
3298                 skip_emulated_instruction(vcpu);
3299                 return 1;
3300         default:
3301                 break;
3302         }
3303         vcpu->run->exit_reason = 0;
3304         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3305                (int)(exit_qualification >> 4) & 3, cr);
3306         return 0;
3307 }
3308
3309 static int handle_dr(struct kvm_vcpu *vcpu)
3310 {
3311         unsigned long exit_qualification;
3312         int dr, reg;
3313
3314         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3315         if (!kvm_require_cpl(vcpu, 0))
3316                 return 1;
3317         dr = vmcs_readl(GUEST_DR7);
3318         if (dr & DR7_GD) {
3319                 /*
3320                  * As the vm-exit takes precedence over the debug trap, we
3321                  * need to emulate the latter, either for the host or the
3322                  * guest debugging itself.
3323                  */
3324                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3325                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3326                         vcpu->run->debug.arch.dr7 = dr;
3327                         vcpu->run->debug.arch.pc =
3328                                 vmcs_readl(GUEST_CS_BASE) +
3329                                 vmcs_readl(GUEST_RIP);
3330                         vcpu->run->debug.arch.exception = DB_VECTOR;
3331                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3332                         return 0;
3333                 } else {
3334                         vcpu->arch.dr7 &= ~DR7_GD;
3335                         vcpu->arch.dr6 |= DR6_BD;
3336                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3337                         kvm_queue_exception(vcpu, DB_VECTOR);
3338                         return 1;
3339                 }
3340         }
3341
3342         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3343         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3344         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3345         if (exit_qualification & TYPE_MOV_FROM_DR) {
3346                 unsigned long val;
3347                 if (!kvm_get_dr(vcpu, dr, &val))
3348                         kvm_register_write(vcpu, reg, val);
3349         } else
3350                 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
3351         skip_emulated_instruction(vcpu);
3352         return 1;
3353 }
3354
3355 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
3356 {
3357         vmcs_writel(GUEST_DR7, val);
3358 }
3359
3360 static int handle_cpuid(struct kvm_vcpu *vcpu)
3361 {
3362         kvm_emulate_cpuid(vcpu);
3363         return 1;
3364 }
3365
3366 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3367 {
3368         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3369         u64 data;
3370
3371         if (vmx_get_msr(vcpu, ecx, &data)) {
3372                 trace_kvm_msr_read_ex(ecx);
3373                 kvm_inject_gp(vcpu, 0);
3374                 return 1;
3375         }
3376
3377         trace_kvm_msr_read(ecx, data);
3378
3379         /* FIXME: handling of bits 32:63 of rax, rdx */
3380         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3381         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3382         skip_emulated_instruction(vcpu);
3383         return 1;
3384 }
3385
3386 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3387 {
3388         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3389         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3390                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3391
3392         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3393                 trace_kvm_msr_write_ex(ecx, data);
3394                 kvm_inject_gp(vcpu, 0);
3395                 return 1;
3396         }
3397
3398         trace_kvm_msr_write(ecx, data);
3399         skip_emulated_instruction(vcpu);
3400         return 1;
3401 }
3402
3403 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3404 {
3405         kvm_make_request(KVM_REQ_EVENT, vcpu);
3406         return 1;
3407 }
3408
3409 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3410 {
3411         u32 cpu_based_vm_exec_control;
3412
3413         /* clear pending irq */
3414         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3415         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3416         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3417
3418         kvm_make_request(KVM_REQ_EVENT, vcpu);
3419
3420         ++vcpu->stat.irq_window_exits;
3421
3422         /*
3423          * If the user space waits to inject interrupts, exit as soon as
3424          * possible
3425          */
3426         if (!irqchip_in_kernel(vcpu->kvm) &&
3427             vcpu->run->request_interrupt_window &&
3428             !kvm_cpu_has_interrupt(vcpu)) {
3429                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3430                 return 0;
3431         }
3432         return 1;
3433 }
3434
3435 static int handle_halt(struct kvm_vcpu *vcpu)
3436 {
3437         skip_emulated_instruction(vcpu);
3438         return kvm_emulate_halt(vcpu);
3439 }
3440
3441 static int handle_vmcall(struct kvm_vcpu *vcpu)
3442 {
3443         skip_emulated_instruction(vcpu);
3444         kvm_emulate_hypercall(vcpu);
3445         return 1;
3446 }
3447
3448 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3449 {
3450         kvm_queue_exception(vcpu, UD_VECTOR);
3451         return 1;
3452 }
3453
3454 static int handle_invd(struct kvm_vcpu *vcpu)
3455 {
3456         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3457 }
3458
3459 static int handle_invlpg(struct kvm_vcpu *vcpu)
3460 {
3461         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3462
3463         kvm_mmu_invlpg(vcpu, exit_qualification);
3464         skip_emulated_instruction(vcpu);
3465         return 1;
3466 }
3467
3468 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3469 {
3470         skip_emulated_instruction(vcpu);
3471         kvm_emulate_wbinvd(vcpu);
3472         return 1;
3473 }
3474
3475 static int handle_xsetbv(struct kvm_vcpu *vcpu)
3476 {
3477         u64 new_bv = kvm_read_edx_eax(vcpu);
3478         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3479
3480         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
3481                 skip_emulated_instruction(vcpu);
3482         return 1;
3483 }
3484
3485 static int handle_apic_access(struct kvm_vcpu *vcpu)
3486 {
3487         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3488 }
3489
3490 static int handle_task_switch(struct kvm_vcpu *vcpu)
3491 {
3492         struct vcpu_vmx *vmx = to_vmx(vcpu);
3493         unsigned long exit_qualification;
3494         bool has_error_code = false;
3495         u32 error_code = 0;
3496         u16 tss_selector;
3497         int reason, type, idt_v;
3498
3499         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3500         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3501
3502         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3503
3504         reason = (u32)exit_qualification >> 30;
3505         if (reason == TASK_SWITCH_GATE && idt_v) {
3506                 switch (type) {
3507                 case INTR_TYPE_NMI_INTR:
3508                         vcpu->arch.nmi_injected = false;
3509                         if (cpu_has_virtual_nmis())
3510                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3511                                               GUEST_INTR_STATE_NMI);
3512                         break;
3513                 case INTR_TYPE_EXT_INTR:
3514                 case INTR_TYPE_SOFT_INTR:
3515                         kvm_clear_interrupt_queue(vcpu);
3516                         break;
3517                 case INTR_TYPE_HARD_EXCEPTION:
3518                         if (vmx->idt_vectoring_info &
3519                             VECTORING_INFO_DELIVER_CODE_MASK) {
3520                                 has_error_code = true;
3521                                 error_code =
3522                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
3523                         }
3524                         /* fall through */
3525                 case INTR_TYPE_SOFT_EXCEPTION:
3526                         kvm_clear_exception_queue(vcpu);
3527                         break;
3528                 default:
3529                         break;
3530                 }
3531         }
3532         tss_selector = exit_qualification;
3533
3534         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3535                        type != INTR_TYPE_EXT_INTR &&
3536                        type != INTR_TYPE_NMI_INTR))
3537                 skip_emulated_instruction(vcpu);
3538
3539         if (kvm_task_switch(vcpu, tss_selector, reason,
3540                                 has_error_code, error_code) == EMULATE_FAIL) {
3541                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3542                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3543                 vcpu->run->internal.ndata = 0;
3544                 return 0;
3545         }
3546
3547         /* clear all local breakpoint enable flags */
3548         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3549
3550         /*
3551          * TODO: What about debug traps on tss switch?
3552          *       Are we supposed to inject them and update dr6?
3553          */
3554
3555         return 1;
3556 }
3557
3558 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3559 {
3560         unsigned long exit_qualification;
3561         gpa_t gpa;
3562         int gla_validity;
3563
3564         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3565
3566         if (exit_qualification & (1 << 6)) {
3567                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3568                 return -EINVAL;
3569         }
3570
3571         gla_validity = (exit_qualification >> 7) & 0x3;
3572         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3573                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3574                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3575                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3576                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3577                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3578                         (long unsigned int)exit_qualification);
3579                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3580                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3581                 return 0;
3582         }
3583
3584         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3585         trace_kvm_page_fault(gpa, exit_qualification);
3586         return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
3587 }
3588
3589 static u64 ept_rsvd_mask(u64 spte, int level)
3590 {
3591         int i;
3592         u64 mask = 0;
3593
3594         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3595                 mask |= (1ULL << i);
3596
3597         if (level > 2)
3598                 /* bits 7:3 reserved */
3599                 mask |= 0xf8;
3600         else if (level == 2) {
3601                 if (spte & (1ULL << 7))
3602                         /* 2MB ref, bits 20:12 reserved */
3603                         mask |= 0x1ff000;
3604                 else
3605                         /* bits 6:3 reserved */
3606                         mask |= 0x78;
3607         }
3608
3609         return mask;
3610 }
3611
3612 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3613                                        int level)
3614 {
3615         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3616
3617         /* 010b (write-only) */
3618         WARN_ON((spte & 0x7) == 0x2);
3619
3620         /* 110b (write/execute) */
3621         WARN_ON((spte & 0x7) == 0x6);
3622
3623         /* 100b (execute-only) and value not supported by logical processor */
3624         if (!cpu_has_vmx_ept_execute_only())
3625                 WARN_ON((spte & 0x7) == 0x4);
3626
3627         /* not 000b */
3628         if ((spte & 0x7)) {
3629                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3630
3631                 if (rsvd_bits != 0) {
3632                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3633                                          __func__, rsvd_bits);
3634                         WARN_ON(1);
3635                 }
3636
3637                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3638                         u64 ept_mem_type = (spte & 0x38) >> 3;
3639
3640                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
3641                             ept_mem_type == 7) {
3642                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3643                                                 __func__, ept_mem_type);
3644                                 WARN_ON(1);
3645                         }
3646                 }
3647         }
3648 }
3649
3650 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3651 {
3652         u64 sptes[4];
3653         int nr_sptes, i;
3654         gpa_t gpa;
3655
3656         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3657
3658         printk(KERN_ERR "EPT: Misconfiguration.\n");
3659         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3660
3661         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3662
3663         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3664                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3665
3666         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3667         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3668
3669         return 0;
3670 }
3671
3672 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3673 {
3674         u32 cpu_based_vm_exec_control;
3675
3676         /* clear pending NMI */
3677         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3678         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3679         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3680         ++vcpu->stat.nmi_window_exits;
3681         kvm_make_request(KVM_REQ_EVENT, vcpu);
3682
3683         return 1;
3684 }
3685
3686 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3687 {
3688         struct vcpu_vmx *vmx = to_vmx(vcpu);
3689         enum emulation_result err = EMULATE_DONE;
3690         int ret = 1;
3691         u32 cpu_exec_ctrl;
3692         bool intr_window_requested;
3693
3694         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3695         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
3696
3697         while (!guest_state_valid(vcpu)) {
3698                 if (intr_window_requested
3699                     && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
3700                         return handle_interrupt_window(&vmx->vcpu);
3701
3702                 err = emulate_instruction(vcpu, 0);
3703
3704                 if (err == EMULATE_DO_MMIO) {
3705                         ret = 0;
3706                         goto out;
3707                 }
3708
3709                 if (err != EMULATE_DONE)
3710                         return 0;
3711
3712                 if (signal_pending(current))
3713                         goto out;
3714                 if (need_resched())
3715                         schedule();
3716         }
3717
3718         vmx->emulation_required = 0;
3719 out:
3720         return ret;
3721 }
3722
3723 /*
3724  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3725  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3726  */
3727 static int handle_pause(struct kvm_vcpu *vcpu)
3728 {
3729         skip_emulated_instruction(vcpu);
3730         kvm_vcpu_on_spin(vcpu);
3731
3732         return 1;
3733 }
3734
3735 static int handle_invalid_op(struct kvm_vcpu *vcpu)
3736 {
3737         kvm_queue_exception(vcpu, UD_VECTOR);
3738         return 1;
3739 }
3740
3741 /*
3742  * The exit handlers return 1 if the exit was handled fully and guest execution
3743  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3744  * to be done to userspace and return 0.
3745  */
3746 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3747         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3748         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3749         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3750         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3751         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3752         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3753         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3754         [EXIT_REASON_CPUID]                   = handle_cpuid,
3755         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3756         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3757         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3758         [EXIT_REASON_HLT]                     = handle_halt,
3759         [EXIT_REASON_INVD]                    = handle_invd,
3760         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3761         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3762         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3763         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3764         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3765         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3766         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3767         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3768         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3769         [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3770         [EXIT_REASON_VMON]                    = handle_vmx_insn,
3771         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3772         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3773         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3774         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
3775         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3776         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3777         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3778         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
3779         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
3780         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
3781         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
3782 };
3783
3784 static const int kvm_vmx_max_exit_handlers =
3785         ARRAY_SIZE(kvm_vmx_exit_handlers);
3786
3787 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3788 {
3789         *info1 = vmcs_readl(EXIT_QUALIFICATION);
3790         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
3791 }
3792
3793 /*
3794  * The guest has exited.  See if we can fix it or if we need userspace
3795  * assistance.
3796  */
3797 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3798 {
3799         struct vcpu_vmx *vmx = to_vmx(vcpu);
3800         u32 exit_reason = vmx->exit_reason;
3801         u32 vectoring_info = vmx->idt_vectoring_info;
3802
3803         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
3804
3805         /* If guest state is invalid, start emulating */
3806         if (vmx->emulation_required && emulate_invalid_guest_state)
3807                 return handle_invalid_guest_state(vcpu);
3808
3809         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
3810                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3811                 vcpu->run->fail_entry.hardware_entry_failure_reason
3812                         = exit_reason;
3813                 return 0;
3814         }
3815
3816         if (unlikely(vmx->fail)) {
3817                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3818                 vcpu->run->fail_entry.hardware_entry_failure_reason
3819                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3820                 return 0;
3821         }
3822
3823         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3824                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3825                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3826                         exit_reason != EXIT_REASON_TASK_SWITCH))
3827                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3828                        "(0x%x) and exit reason is 0x%x\n",
3829                        __func__, vectoring_info, exit_reason);
3830
3831         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3832                 if (vmx_interrupt_allowed(vcpu)) {
3833                         vmx->soft_vnmi_blocked = 0;
3834                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3835                            vcpu->arch.nmi_pending) {
3836                         /*
3837                          * This CPU don't support us in finding the end of an
3838                          * NMI-blocked window if the guest runs with IRQs
3839                          * disabled. So we pull the trigger after 1 s of
3840                          * futile waiting, but inform the user about this.
3841                          */
3842                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3843                                "state on VCPU %d after 1 s timeout\n",
3844                                __func__, vcpu->vcpu_id);
3845                         vmx->soft_vnmi_blocked = 0;
3846                 }
3847         }
3848
3849         if (exit_reason < kvm_vmx_max_exit_handlers
3850             && kvm_vmx_exit_handlers[exit_reason])
3851                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3852         else {
3853                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3854                 vcpu->run->hw.hardware_exit_reason = exit_reason;
3855         }
3856         return 0;
3857 }
3858
3859 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3860 {
3861         if (irr == -1 || tpr < irr) {
3862                 vmcs_write32(TPR_THRESHOLD, 0);
3863                 return;
3864         }
3865
3866         vmcs_write32(TPR_THRESHOLD, irr);
3867 }
3868
3869 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
3870 {
3871         u32 exit_intr_info = vmx->exit_intr_info;
3872
3873         /* Handle machine checks before interrupts are enabled */
3874         if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3875             || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3876                 && is_machine_check(exit_intr_info)))
3877                 kvm_machine_check();
3878
3879         /* We need to handle NMIs before interrupts are enabled */
3880         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3881             (exit_intr_info & INTR_INFO_VALID_MASK)) {
3882                 kvm_before_handle_nmi(&vmx->vcpu);
3883                 asm("int $2");
3884                 kvm_after_handle_nmi(&vmx->vcpu);
3885         }
3886 }
3887
3888 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
3889 {
3890         u32 exit_intr_info = vmx->exit_intr_info;
3891         bool unblock_nmi;
3892         u8 vector;
3893         bool idtv_info_valid;
3894
3895         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3896
3897         if (cpu_has_virtual_nmis()) {
3898                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3899                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3900                 /*
3901                  * SDM 3: 27.7.1.2 (September 2008)
3902                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3903                  * a guest IRET fault.
3904                  * SDM 3: 23.2.2 (September 2008)
3905                  * Bit 12 is undefined in any of the following cases:
3906                  *  If the VM exit sets the valid bit in the IDT-vectoring
3907                  *   information field.
3908                  *  If the VM exit is due to a double fault.
3909                  */
3910                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3911                     vector != DF_VECTOR && !idtv_info_valid)
3912                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3913                                       GUEST_INTR_STATE_NMI);
3914         } else if (unlikely(vmx->soft_vnmi_blocked))
3915                 vmx->vnmi_blocked_time +=
3916                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3917 }
3918
3919 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
3920                                       u32 idt_vectoring_info,
3921                                       int instr_len_field,
3922                                       int error_code_field)
3923 {
3924         u8 vector;
3925         int type;
3926         bool idtv_info_valid;
3927
3928         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3929
3930         vmx->vcpu.arch.nmi_injected = false;
3931         kvm_clear_exception_queue(&vmx->vcpu);
3932         kvm_clear_interrupt_queue(&vmx->vcpu);
3933
3934         if (!idtv_info_valid)
3935                 return;
3936
3937         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
3938
3939         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3940         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3941
3942         switch (type) {
3943         case INTR_TYPE_NMI_INTR:
3944                 vmx->vcpu.arch.nmi_injected = true;
3945                 /*
3946                  * SDM 3: 27.7.1.2 (September 2008)
3947                  * Clear bit "block by NMI" before VM entry if a NMI
3948                  * delivery faulted.
3949                  */
3950                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3951                                 GUEST_INTR_STATE_NMI);
3952                 break;
3953         case INTR_TYPE_SOFT_EXCEPTION:
3954                 vmx->vcpu.arch.event_exit_inst_len =
3955                         vmcs_read32(instr_len_field);
3956                 /* fall through */
3957         case INTR_TYPE_HARD_EXCEPTION:
3958                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3959                         u32 err = vmcs_read32(error_code_field);
3960                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3961                 } else
3962                         kvm_queue_exception(&vmx->vcpu, vector);
3963                 break;
3964         case INTR_TYPE_SOFT_INTR:
3965                 vmx->vcpu.arch.event_exit_inst_len =
3966                         vmcs_read32(instr_len_field);
3967                 /* fall through */
3968         case INTR_TYPE_EXT_INTR:
3969                 kvm_queue_interrupt(&vmx->vcpu, vector,
3970                         type == INTR_TYPE_SOFT_INTR);
3971                 break;
3972         default:
3973                 break;
3974         }
3975 }
3976
3977 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3978 {
3979         __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
3980                                   VM_EXIT_INSTRUCTION_LEN,
3981                                   IDT_VECTORING_ERROR_CODE);
3982 }
3983
3984 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
3985 {
3986         __vmx_complete_interrupts(to_vmx(vcpu),
3987                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
3988                                   VM_ENTRY_INSTRUCTION_LEN,
3989                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
3990
3991         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
3992 }
3993
3994 #ifdef CONFIG_X86_64
3995 #define R "r"
3996 #define Q "q"
3997 #else
3998 #define R "e"
3999 #define Q "l"
4000 #endif
4001
4002 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
4003 {
4004         struct vcpu_vmx *vmx = to_vmx(vcpu);
4005
4006         /* Record the guest's net vcpu time for enforced NMI injections. */
4007         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
4008                 vmx->entry_time = ktime_get();
4009
4010         /* Don't enter VMX if guest state is invalid, let the exit handler
4011            start emulation until we arrive back to a valid state */
4012         if (vmx->emulation_required && emulate_invalid_guest_state)
4013                 return;
4014
4015         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
4016                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
4017         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
4018                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
4019
4020         /* When single-stepping over STI and MOV SS, we must clear the
4021          * corresponding interruptibility bits in the guest state. Otherwise
4022          * vmentry fails as it then expects bit 14 (BS) in pending debug
4023          * exceptions being set, but that's not correct for the guest debugging
4024          * case. */
4025         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
4026                 vmx_set_interrupt_shadow(vcpu, 0);
4027
4028         asm(
4029                 /* Store host registers */
4030                 "push %%"R"dx; push %%"R"bp;"
4031                 "push %%"R"cx \n\t" /* placeholder for guest rcx */
4032                 "push %%"R"cx \n\t"
4033                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
4034                 "je 1f \n\t"
4035                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
4036                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
4037                 "1: \n\t"
4038                 /* Reload cr2 if changed */
4039                 "mov %c[cr2](%0), %%"R"ax \n\t"
4040                 "mov %%cr2, %%"R"dx \n\t"
4041                 "cmp %%"R"ax, %%"R"dx \n\t"
4042                 "je 2f \n\t"
4043                 "mov %%"R"ax, %%cr2 \n\t"
4044                 "2: \n\t"
4045                 /* Check if vmlaunch of vmresume is needed */
4046                 "cmpl $0, %c[launched](%0) \n\t"
4047                 /* Load guest registers.  Don't clobber flags. */
4048                 "mov %c[rax](%0), %%"R"ax \n\t"
4049                 "mov %c[rbx](%0), %%"R"bx \n\t"
4050                 "mov %c[rdx](%0), %%"R"dx \n\t"
4051                 "mov %c[rsi](%0), %%"R"si \n\t"
4052                 "mov %c[rdi](%0), %%"R"di \n\t"
4053                 "mov %c[rbp](%0), %%"R"bp \n\t"
4054 #ifdef CONFIG_X86_64
4055                 "mov %c[r8](%0),  %%r8  \n\t"
4056                 "mov %c[r9](%0),  %%r9  \n\t"
4057                 "mov %c[r10](%0), %%r10 \n\t"
4058                 "mov %c[r11](%0), %%r11 \n\t"
4059                 "mov %c[r12](%0), %%r12 \n\t"
4060                 "mov %c[r13](%0), %%r13 \n\t"
4061                 "mov %c[r14](%0), %%r14 \n\t"
4062                 "mov %c[r15](%0), %%r15 \n\t"
4063 #endif
4064                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
4065
4066                 /* Enter guest mode */
4067                 "jne .Llaunched \n\t"
4068                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
4069                 "jmp .Lkvm_vmx_return \n\t"
4070                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
4071                 ".Lkvm_vmx_return: "
4072                 /* Save guest registers, load host registers, keep flags */
4073                 "mov %0, %c[wordsize](%%"R"sp) \n\t"
4074                 "pop %0 \n\t"
4075                 "mov %%"R"ax, %c[rax](%0) \n\t"
4076                 "mov %%"R"bx, %c[rbx](%0) \n\t"
4077                 "pop"Q" %c[rcx](%0) \n\t"
4078                 "mov %%"R"dx, %c[rdx](%0) \n\t"
4079                 "mov %%"R"si, %c[rsi](%0) \n\t"
4080                 "mov %%"R"di, %c[rdi](%0) \n\t"
4081                 "mov %%"R"bp, %c[rbp](%0) \n\t"
4082 #ifdef CONFIG_X86_64
4083                 "mov %%r8,  %c[r8](%0) \n\t"
4084                 "mov %%r9,  %c[r9](%0) \n\t"
4085                 "mov %%r10, %c[r10](%0) \n\t"
4086                 "mov %%r11, %c[r11](%0) \n\t"
4087                 "mov %%r12, %c[r12](%0) \n\t"
4088                 "mov %%r13, %c[r13](%0) \n\t"
4089                 "mov %%r14, %c[r14](%0) \n\t"
4090                 "mov %%r15, %c[r15](%0) \n\t"
4091 #endif
4092                 "mov %%cr2, %%"R"ax   \n\t"
4093                 "mov %%"R"ax, %c[cr2](%0) \n\t"
4094
4095                 "pop  %%"R"bp; pop  %%"R"dx \n\t"
4096                 "setbe %c[fail](%0) \n\t"
4097               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
4098                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
4099                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
4100                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
4101                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
4102                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
4103                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
4104                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
4105                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
4106                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
4107                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
4108 #ifdef CONFIG_X86_64
4109                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
4110                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
4111                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
4112                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
4113                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
4114                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
4115                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
4116                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
4117 #endif
4118                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
4119                 [wordsize]"i"(sizeof(ulong))
4120               : "cc", "memory"
4121                 , R"ax", R"bx", R"di", R"si"
4122 #ifdef CONFIG_X86_64
4123                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
4124 #endif
4125               );
4126
4127         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
4128                                   | (1 << VCPU_EXREG_PDPTR)
4129                                   | (1 << VCPU_EXREG_CR3));
4130         vcpu->arch.regs_dirty = 0;
4131
4132         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
4133
4134         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
4135         vmx->launched = 1;
4136
4137         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
4138         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
4139
4140         vmx_complete_atomic_exit(vmx);
4141         vmx_recover_nmi_blocking(vmx);
4142         vmx_complete_interrupts(vmx);
4143 }
4144
4145 #undef R
4146 #undef Q
4147
4148 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
4149 {
4150         struct vcpu_vmx *vmx = to_vmx(vcpu);
4151
4152         if (vmx->vmcs) {
4153                 vcpu_clear(vmx);
4154                 free_vmcs(vmx->vmcs);
4155                 vmx->vmcs = NULL;
4156         }
4157 }
4158
4159 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
4160 {
4161         struct vcpu_vmx *vmx = to_vmx(vcpu);
4162
4163         free_vpid(vmx);
4164         vmx_free_vmcs(vcpu);
4165         kfree(vmx->guest_msrs);
4166         kvm_vcpu_uninit(vcpu);
4167         kmem_cache_free(kvm_vcpu_cache, vmx);
4168 }
4169
4170 static inline void vmcs_init(struct vmcs *vmcs)
4171 {
4172         u64 phys_addr = __pa(per_cpu(vmxarea, raw_smp_processor_id()));
4173
4174         if (!vmm_exclusive)
4175                 kvm_cpu_vmxon(phys_addr);
4176
4177         vmcs_clear(vmcs);
4178
4179         if (!vmm_exclusive)
4180                 kvm_cpu_vmxoff();
4181 }
4182
4183 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
4184 {
4185         int err;
4186         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
4187         int cpu;
4188
4189         if (!vmx)
4190                 return ERR_PTR(-ENOMEM);
4191
4192         allocate_vpid(vmx);
4193
4194         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
4195         if (err)
4196                 goto free_vcpu;
4197
4198         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
4199         if (!vmx->guest_msrs) {
4200                 err = -ENOMEM;
4201                 goto uninit_vcpu;
4202         }
4203
4204         vmx->vmcs = alloc_vmcs();
4205         if (!vmx->vmcs)
4206                 goto free_msrs;
4207
4208         vmcs_init(vmx->vmcs);
4209
4210         cpu = get_cpu();
4211         vmx_vcpu_load(&vmx->vcpu, cpu);
4212         vmx->vcpu.cpu = cpu;
4213         err = vmx_vcpu_setup(vmx);
4214         vmx_vcpu_put(&vmx->vcpu);
4215         put_cpu();
4216         if (err)
4217                 goto free_vmcs;
4218         if (vm_need_virtualize_apic_accesses(kvm))
4219                 if (alloc_apic_access_page(kvm) != 0)
4220                         goto free_vmcs;
4221
4222         if (enable_ept) {
4223                 if (!kvm->arch.ept_identity_map_addr)
4224                         kvm->arch.ept_identity_map_addr =
4225                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4226                 if (alloc_identity_pagetable(kvm) != 0)
4227                         goto free_vmcs;
4228         }
4229
4230         return &vmx->vcpu;
4231
4232 free_vmcs:
4233         free_vmcs(vmx->vmcs);
4234 free_msrs:
4235         kfree(vmx->guest_msrs);
4236 uninit_vcpu:
4237         kvm_vcpu_uninit(&vmx->vcpu);
4238 free_vcpu:
4239         free_vpid(vmx);
4240         kmem_cache_free(kvm_vcpu_cache, vmx);
4241         return ERR_PTR(err);
4242 }
4243
4244 static void __init vmx_check_processor_compat(void *rtn)
4245 {
4246         struct vmcs_config vmcs_conf;
4247
4248         *(int *)rtn = 0;
4249         if (setup_vmcs_config(&vmcs_conf) < 0)
4250                 *(int *)rtn = -EIO;
4251         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
4252                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
4253                                 smp_processor_id());
4254                 *(int *)rtn = -EIO;
4255         }
4256 }
4257
4258 static int get_ept_level(void)
4259 {
4260         return VMX_EPT_DEFAULT_GAW + 1;
4261 }
4262
4263 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4264 {
4265         u64 ret;
4266
4267         /* For VT-d and EPT combination
4268          * 1. MMIO: always map as UC
4269          * 2. EPT with VT-d:
4270          *   a. VT-d without snooping control feature: can't guarantee the
4271          *      result, try to trust guest.
4272          *   b. VT-d with snooping control feature: snooping control feature of
4273          *      VT-d engine can guarantee the cache correctness. Just set it
4274          *      to WB to keep consistent with host. So the same as item 3.
4275          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
4276          *    consistent with host MTRR
4277          */
4278         if (is_mmio)
4279                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
4280         else if (vcpu->kvm->arch.iommu_domain &&
4281                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
4282                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
4283                       VMX_EPT_MT_EPTE_SHIFT;
4284         else
4285                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
4286                         | VMX_EPT_IPAT_BIT;
4287
4288         return ret;
4289 }
4290
4291 #define _ER(x) { EXIT_REASON_##x, #x }
4292
4293 static const struct trace_print_flags vmx_exit_reasons_str[] = {
4294         _ER(EXCEPTION_NMI),
4295         _ER(EXTERNAL_INTERRUPT),
4296         _ER(TRIPLE_FAULT),
4297         _ER(PENDING_INTERRUPT),
4298         _ER(NMI_WINDOW),
4299         _ER(TASK_SWITCH),
4300         _ER(CPUID),
4301         _ER(HLT),
4302         _ER(INVLPG),
4303         _ER(RDPMC),
4304         _ER(RDTSC),
4305         _ER(VMCALL),
4306         _ER(VMCLEAR),
4307         _ER(VMLAUNCH),
4308         _ER(VMPTRLD),
4309         _ER(VMPTRST),
4310         _ER(VMREAD),
4311         _ER(VMRESUME),
4312         _ER(VMWRITE),
4313         _ER(VMOFF),
4314         _ER(VMON),
4315         _ER(CR_ACCESS),
4316         _ER(DR_ACCESS),
4317         _ER(IO_INSTRUCTION),
4318         _ER(MSR_READ),
4319         _ER(MSR_WRITE),
4320         _ER(MWAIT_INSTRUCTION),
4321         _ER(MONITOR_INSTRUCTION),
4322         _ER(PAUSE_INSTRUCTION),
4323         _ER(MCE_DURING_VMENTRY),
4324         _ER(TPR_BELOW_THRESHOLD),
4325         _ER(APIC_ACCESS),
4326         _ER(EPT_VIOLATION),
4327         _ER(EPT_MISCONFIG),
4328         _ER(WBINVD),
4329         { -1, NULL }
4330 };
4331
4332 #undef _ER
4333
4334 static int vmx_get_lpage_level(void)
4335 {
4336         if (enable_ept && !cpu_has_vmx_ept_1g_page())
4337                 return PT_DIRECTORY_LEVEL;
4338         else
4339                 /* For shadow and EPT supported 1GB page */
4340                 return PT_PDPE_LEVEL;
4341 }
4342
4343 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
4344 {
4345         struct kvm_cpuid_entry2 *best;
4346         struct vcpu_vmx *vmx = to_vmx(vcpu);
4347         u32 exec_control;
4348
4349         vmx->rdtscp_enabled = false;
4350         if (vmx_rdtscp_supported()) {
4351                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
4352                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
4353                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
4354                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
4355                                 vmx->rdtscp_enabled = true;
4356                         else {
4357                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4358                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4359                                                 exec_control);
4360                         }
4361                 }
4362         }
4363 }
4364
4365 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4366 {
4367 }
4368
4369 static struct kvm_x86_ops vmx_x86_ops = {
4370         .cpu_has_kvm_support = cpu_has_kvm_support,
4371         .disabled_by_bios = vmx_disabled_by_bios,
4372         .hardware_setup = hardware_setup,
4373         .hardware_unsetup = hardware_unsetup,
4374         .check_processor_compatibility = vmx_check_processor_compat,
4375         .hardware_enable = hardware_enable,
4376         .hardware_disable = hardware_disable,
4377         .cpu_has_accelerated_tpr = report_flexpriority,
4378
4379         .vcpu_create = vmx_create_vcpu,
4380         .vcpu_free = vmx_free_vcpu,
4381         .vcpu_reset = vmx_vcpu_reset,
4382
4383         .prepare_guest_switch = vmx_save_host_state,
4384         .vcpu_load = vmx_vcpu_load,
4385         .vcpu_put = vmx_vcpu_put,
4386
4387         .set_guest_debug = set_guest_debug,
4388         .get_msr = vmx_get_msr,
4389         .set_msr = vmx_set_msr,
4390         .get_segment_base = vmx_get_segment_base,
4391         .get_segment = vmx_get_segment,
4392         .set_segment = vmx_set_segment,
4393         .get_cpl = vmx_get_cpl,
4394         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4395         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
4396         .decache_cr3 = vmx_decache_cr3,
4397         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4398         .set_cr0 = vmx_set_cr0,
4399         .set_cr3 = vmx_set_cr3,
4400         .set_cr4 = vmx_set_cr4,
4401         .set_efer = vmx_set_efer,
4402         .get_idt = vmx_get_idt,
4403         .set_idt = vmx_set_idt,
4404         .get_gdt = vmx_get_gdt,
4405         .set_gdt = vmx_set_gdt,
4406         .set_dr7 = vmx_set_dr7,
4407         .cache_reg = vmx_cache_reg,
4408         .get_rflags = vmx_get_rflags,
4409         .set_rflags = vmx_set_rflags,
4410         .fpu_activate = vmx_fpu_activate,
4411         .fpu_deactivate = vmx_fpu_deactivate,
4412
4413         .tlb_flush = vmx_flush_tlb,
4414
4415         .run = vmx_vcpu_run,
4416         .handle_exit = vmx_handle_exit,
4417         .skip_emulated_instruction = skip_emulated_instruction,
4418         .set_interrupt_shadow = vmx_set_interrupt_shadow,
4419         .get_interrupt_shadow = vmx_get_interrupt_shadow,
4420         .patch_hypercall = vmx_patch_hypercall,
4421         .set_irq = vmx_inject_irq,
4422         .set_nmi = vmx_inject_nmi,
4423         .queue_exception = vmx_queue_exception,
4424         .cancel_injection = vmx_cancel_injection,
4425         .interrupt_allowed = vmx_interrupt_allowed,
4426         .nmi_allowed = vmx_nmi_allowed,
4427         .get_nmi_mask = vmx_get_nmi_mask,
4428         .set_nmi_mask = vmx_set_nmi_mask,
4429         .enable_nmi_window = enable_nmi_window,
4430         .enable_irq_window = enable_irq_window,
4431         .update_cr8_intercept = update_cr8_intercept,
4432
4433         .set_tss_addr = vmx_set_tss_addr,
4434         .get_tdp_level = get_ept_level,
4435         .get_mt_mask = vmx_get_mt_mask,
4436
4437         .get_exit_info = vmx_get_exit_info,
4438         .exit_reasons_str = vmx_exit_reasons_str,
4439
4440         .get_lpage_level = vmx_get_lpage_level,
4441
4442         .cpuid_update = vmx_cpuid_update,
4443
4444         .rdtscp_supported = vmx_rdtscp_supported,
4445
4446         .set_supported_cpuid = vmx_set_supported_cpuid,
4447
4448         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
4449
4450         .write_tsc_offset = vmx_write_tsc_offset,
4451         .adjust_tsc_offset = vmx_adjust_tsc_offset,
4452
4453         .set_tdp_cr3 = vmx_set_cr3,
4454 };
4455
4456 static int __init vmx_init(void)
4457 {
4458         int r, i;
4459
4460         rdmsrl_safe(MSR_EFER, &host_efer);
4461
4462         for (i = 0; i < NR_VMX_MSR; ++i)
4463                 kvm_define_shared_msr(i, vmx_msr_index[i]);
4464
4465         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4466         if (!vmx_io_bitmap_a)
4467                 return -ENOMEM;
4468
4469         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4470         if (!vmx_io_bitmap_b) {
4471                 r = -ENOMEM;
4472                 goto out;
4473         }
4474
4475         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4476         if (!vmx_msr_bitmap_legacy) {
4477                 r = -ENOMEM;
4478                 goto out1;
4479         }
4480
4481         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4482         if (!vmx_msr_bitmap_longmode) {
4483                 r = -ENOMEM;
4484                 goto out2;
4485         }
4486
4487         /*
4488          * Allow direct access to the PC debug port (it is often used for I/O
4489          * delays, but the vmexits simply slow things down).
4490          */
4491         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4492         clear_bit(0x80, vmx_io_bitmap_a);
4493
4494         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4495
4496         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4497         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4498
4499         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4500
4501         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
4502                      __alignof__(struct vcpu_vmx), THIS_MODULE);
4503         if (r)
4504                 goto out3;
4505
4506         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4507         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4508         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4509         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4510         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4511         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4512
4513         if (enable_ept) {
4514                 bypass_guest_pf = 0;
4515                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4516                                 VMX_EPT_EXECUTABLE_MASK);
4517                 kvm_enable_tdp();
4518         } else
4519                 kvm_disable_tdp();
4520
4521         if (bypass_guest_pf)
4522                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4523
4524         return 0;
4525
4526 out3:
4527         free_page((unsigned long)vmx_msr_bitmap_longmode);
4528 out2:
4529         free_page((unsigned long)vmx_msr_bitmap_legacy);
4530 out1:
4531         free_page((unsigned long)vmx_io_bitmap_b);
4532 out:
4533         free_page((unsigned long)vmx_io_bitmap_a);
4534         return r;
4535 }
4536
4537 static void __exit vmx_exit(void)
4538 {
4539         free_page((unsigned long)vmx_msr_bitmap_legacy);
4540         free_page((unsigned long)vmx_msr_bitmap_longmode);
4541         free_page((unsigned long)vmx_io_bitmap_b);
4542         free_page((unsigned long)vmx_io_bitmap_a);
4543
4544         kvm_exit();
4545 }
4546
4547 module_init(vmx_init)
4548 module_exit(vmx_exit)