KVM: Add kvm_x86_ops get_tdp_level()
[linux-2.6-block.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "vmx.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29
30 #include <asm/io.h>
31 #include <asm/desc.h>
32
33 MODULE_AUTHOR("Qumranet");
34 MODULE_LICENSE("GPL");
35
36 static int bypass_guest_pf = 1;
37 module_param(bypass_guest_pf, bool, 0);
38
39 static int enable_vpid = 1;
40 module_param(enable_vpid, bool, 0);
41
42 static int flexpriority_enabled = 1;
43 module_param(flexpriority_enabled, bool, 0);
44
45 static int enable_ept;
46 module_param(enable_ept, bool, 0);
47
48 struct vmcs {
49         u32 revision_id;
50         u32 abort;
51         char data[0];
52 };
53
54 struct vcpu_vmx {
55         struct kvm_vcpu       vcpu;
56         int                   launched;
57         u8                    fail;
58         u32                   idt_vectoring_info;
59         struct kvm_msr_entry *guest_msrs;
60         struct kvm_msr_entry *host_msrs;
61         int                   nmsrs;
62         int                   save_nmsrs;
63         int                   msr_offset_efer;
64 #ifdef CONFIG_X86_64
65         int                   msr_offset_kernel_gs_base;
66 #endif
67         struct vmcs          *vmcs;
68         struct {
69                 int           loaded;
70                 u16           fs_sel, gs_sel, ldt_sel;
71                 int           gs_ldt_reload_needed;
72                 int           fs_reload_needed;
73                 int           guest_efer_loaded;
74         } host_state;
75         struct {
76                 struct {
77                         bool pending;
78                         u8 vector;
79                         unsigned rip;
80                 } irq;
81         } rmode;
82         int vpid;
83 };
84
85 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
86 {
87         return container_of(vcpu, struct vcpu_vmx, vcpu);
88 }
89
90 static int init_rmode_tss(struct kvm *kvm);
91
92 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
93 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
94
95 static struct page *vmx_io_bitmap_a;
96 static struct page *vmx_io_bitmap_b;
97 static struct page *vmx_msr_bitmap;
98
99 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
100 static DEFINE_SPINLOCK(vmx_vpid_lock);
101
102 static struct vmcs_config {
103         int size;
104         int order;
105         u32 revision_id;
106         u32 pin_based_exec_ctrl;
107         u32 cpu_based_exec_ctrl;
108         u32 cpu_based_2nd_exec_ctrl;
109         u32 vmexit_ctrl;
110         u32 vmentry_ctrl;
111 } vmcs_config;
112
113 struct vmx_capability {
114         u32 ept;
115         u32 vpid;
116 } vmx_capability;
117
118 #define VMX_SEGMENT_FIELD(seg)                                  \
119         [VCPU_SREG_##seg] = {                                   \
120                 .selector = GUEST_##seg##_SELECTOR,             \
121                 .base = GUEST_##seg##_BASE,                     \
122                 .limit = GUEST_##seg##_LIMIT,                   \
123                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
124         }
125
126 static struct kvm_vmx_segment_field {
127         unsigned selector;
128         unsigned base;
129         unsigned limit;
130         unsigned ar_bytes;
131 } kvm_vmx_segment_fields[] = {
132         VMX_SEGMENT_FIELD(CS),
133         VMX_SEGMENT_FIELD(DS),
134         VMX_SEGMENT_FIELD(ES),
135         VMX_SEGMENT_FIELD(FS),
136         VMX_SEGMENT_FIELD(GS),
137         VMX_SEGMENT_FIELD(SS),
138         VMX_SEGMENT_FIELD(TR),
139         VMX_SEGMENT_FIELD(LDTR),
140 };
141
142 /*
143  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
144  * away by decrementing the array size.
145  */
146 static const u32 vmx_msr_index[] = {
147 #ifdef CONFIG_X86_64
148         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
149 #endif
150         MSR_EFER, MSR_K6_STAR,
151 };
152 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
153
154 static void load_msrs(struct kvm_msr_entry *e, int n)
155 {
156         int i;
157
158         for (i = 0; i < n; ++i)
159                 wrmsrl(e[i].index, e[i].data);
160 }
161
162 static void save_msrs(struct kvm_msr_entry *e, int n)
163 {
164         int i;
165
166         for (i = 0; i < n; ++i)
167                 rdmsrl(e[i].index, e[i].data);
168 }
169
170 static inline int is_page_fault(u32 intr_info)
171 {
172         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
173                              INTR_INFO_VALID_MASK)) ==
174                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
175 }
176
177 static inline int is_no_device(u32 intr_info)
178 {
179         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
180                              INTR_INFO_VALID_MASK)) ==
181                 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
182 }
183
184 static inline int is_invalid_opcode(u32 intr_info)
185 {
186         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
187                              INTR_INFO_VALID_MASK)) ==
188                 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
189 }
190
191 static inline int is_external_interrupt(u32 intr_info)
192 {
193         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
194                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
195 }
196
197 static inline int cpu_has_vmx_msr_bitmap(void)
198 {
199         return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
200 }
201
202 static inline int cpu_has_vmx_tpr_shadow(void)
203 {
204         return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
205 }
206
207 static inline int vm_need_tpr_shadow(struct kvm *kvm)
208 {
209         return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
210 }
211
212 static inline int cpu_has_secondary_exec_ctrls(void)
213 {
214         return (vmcs_config.cpu_based_exec_ctrl &
215                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
216 }
217
218 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
219 {
220         return flexpriority_enabled
221                 && (vmcs_config.cpu_based_2nd_exec_ctrl &
222                     SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
223 }
224
225 static inline int cpu_has_vmx_invept_individual_addr(void)
226 {
227         return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
228 }
229
230 static inline int cpu_has_vmx_invept_context(void)
231 {
232         return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
233 }
234
235 static inline int cpu_has_vmx_invept_global(void)
236 {
237         return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
238 }
239
240 static inline int cpu_has_vmx_ept(void)
241 {
242         return (vmcs_config.cpu_based_2nd_exec_ctrl &
243                 SECONDARY_EXEC_ENABLE_EPT);
244 }
245
246 static inline int vm_need_ept(void)
247 {
248         return (cpu_has_vmx_ept() && enable_ept);
249 }
250
251 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
252 {
253         return ((cpu_has_vmx_virtualize_apic_accesses()) &&
254                 (irqchip_in_kernel(kvm)));
255 }
256
257 static inline int cpu_has_vmx_vpid(void)
258 {
259         return (vmcs_config.cpu_based_2nd_exec_ctrl &
260                 SECONDARY_EXEC_ENABLE_VPID);
261 }
262
263 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
264 {
265         int i;
266
267         for (i = 0; i < vmx->nmsrs; ++i)
268                 if (vmx->guest_msrs[i].index == msr)
269                         return i;
270         return -1;
271 }
272
273 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
274 {
275     struct {
276         u64 vpid : 16;
277         u64 rsvd : 48;
278         u64 gva;
279     } operand = { vpid, 0, gva };
280
281     asm volatile (ASM_VMX_INVVPID
282                   /* CF==1 or ZF==1 --> rc = -1 */
283                   "; ja 1f ; ud2 ; 1:"
284                   : : "a"(&operand), "c"(ext) : "cc", "memory");
285 }
286
287 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
288 {
289         int i;
290
291         i = __find_msr_index(vmx, msr);
292         if (i >= 0)
293                 return &vmx->guest_msrs[i];
294         return NULL;
295 }
296
297 static void vmcs_clear(struct vmcs *vmcs)
298 {
299         u64 phys_addr = __pa(vmcs);
300         u8 error;
301
302         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
303                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
304                       : "cc", "memory");
305         if (error)
306                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
307                        vmcs, phys_addr);
308 }
309
310 static void __vcpu_clear(void *arg)
311 {
312         struct vcpu_vmx *vmx = arg;
313         int cpu = raw_smp_processor_id();
314
315         if (vmx->vcpu.cpu == cpu)
316                 vmcs_clear(vmx->vmcs);
317         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
318                 per_cpu(current_vmcs, cpu) = NULL;
319         rdtscll(vmx->vcpu.arch.host_tsc);
320 }
321
322 static void vcpu_clear(struct vcpu_vmx *vmx)
323 {
324         if (vmx->vcpu.cpu == -1)
325                 return;
326         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
327         vmx->launched = 0;
328 }
329
330 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
331 {
332         if (vmx->vpid == 0)
333                 return;
334
335         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
336 }
337
338 static unsigned long vmcs_readl(unsigned long field)
339 {
340         unsigned long value;
341
342         asm volatile (ASM_VMX_VMREAD_RDX_RAX
343                       : "=a"(value) : "d"(field) : "cc");
344         return value;
345 }
346
347 static u16 vmcs_read16(unsigned long field)
348 {
349         return vmcs_readl(field);
350 }
351
352 static u32 vmcs_read32(unsigned long field)
353 {
354         return vmcs_readl(field);
355 }
356
357 static u64 vmcs_read64(unsigned long field)
358 {
359 #ifdef CONFIG_X86_64
360         return vmcs_readl(field);
361 #else
362         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
363 #endif
364 }
365
366 static noinline void vmwrite_error(unsigned long field, unsigned long value)
367 {
368         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
369                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
370         dump_stack();
371 }
372
373 static void vmcs_writel(unsigned long field, unsigned long value)
374 {
375         u8 error;
376
377         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
378                        : "=q"(error) : "a"(value), "d"(field) : "cc");
379         if (unlikely(error))
380                 vmwrite_error(field, value);
381 }
382
383 static void vmcs_write16(unsigned long field, u16 value)
384 {
385         vmcs_writel(field, value);
386 }
387
388 static void vmcs_write32(unsigned long field, u32 value)
389 {
390         vmcs_writel(field, value);
391 }
392
393 static void vmcs_write64(unsigned long field, u64 value)
394 {
395 #ifdef CONFIG_X86_64
396         vmcs_writel(field, value);
397 #else
398         vmcs_writel(field, value);
399         asm volatile ("");
400         vmcs_writel(field+1, value >> 32);
401 #endif
402 }
403
404 static void vmcs_clear_bits(unsigned long field, u32 mask)
405 {
406         vmcs_writel(field, vmcs_readl(field) & ~mask);
407 }
408
409 static void vmcs_set_bits(unsigned long field, u32 mask)
410 {
411         vmcs_writel(field, vmcs_readl(field) | mask);
412 }
413
414 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
415 {
416         u32 eb;
417
418         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
419         if (!vcpu->fpu_active)
420                 eb |= 1u << NM_VECTOR;
421         if (vcpu->guest_debug.enabled)
422                 eb |= 1u << 1;
423         if (vcpu->arch.rmode.active)
424                 eb = ~0;
425         vmcs_write32(EXCEPTION_BITMAP, eb);
426 }
427
428 static void reload_tss(void)
429 {
430         /*
431          * VT restores TR but not its size.  Useless.
432          */
433         struct descriptor_table gdt;
434         struct desc_struct *descs;
435
436         get_gdt(&gdt);
437         descs = (void *)gdt.base;
438         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
439         load_TR_desc();
440 }
441
442 static void load_transition_efer(struct vcpu_vmx *vmx)
443 {
444         int efer_offset = vmx->msr_offset_efer;
445         u64 host_efer = vmx->host_msrs[efer_offset].data;
446         u64 guest_efer = vmx->guest_msrs[efer_offset].data;
447         u64 ignore_bits;
448
449         if (efer_offset < 0)
450                 return;
451         /*
452          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
453          * outside long mode
454          */
455         ignore_bits = EFER_NX | EFER_SCE;
456 #ifdef CONFIG_X86_64
457         ignore_bits |= EFER_LMA | EFER_LME;
458         /* SCE is meaningful only in long mode on Intel */
459         if (guest_efer & EFER_LMA)
460                 ignore_bits &= ~(u64)EFER_SCE;
461 #endif
462         if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
463                 return;
464
465         vmx->host_state.guest_efer_loaded = 1;
466         guest_efer &= ~ignore_bits;
467         guest_efer |= host_efer & ignore_bits;
468         wrmsrl(MSR_EFER, guest_efer);
469         vmx->vcpu.stat.efer_reload++;
470 }
471
472 static void reload_host_efer(struct vcpu_vmx *vmx)
473 {
474         if (vmx->host_state.guest_efer_loaded) {
475                 vmx->host_state.guest_efer_loaded = 0;
476                 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
477         }
478 }
479
480 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
481 {
482         struct vcpu_vmx *vmx = to_vmx(vcpu);
483
484         if (vmx->host_state.loaded)
485                 return;
486
487         vmx->host_state.loaded = 1;
488         /*
489          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
490          * allow segment selectors with cpl > 0 or ti == 1.
491          */
492         vmx->host_state.ldt_sel = read_ldt();
493         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
494         vmx->host_state.fs_sel = read_fs();
495         if (!(vmx->host_state.fs_sel & 7)) {
496                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
497                 vmx->host_state.fs_reload_needed = 0;
498         } else {
499                 vmcs_write16(HOST_FS_SELECTOR, 0);
500                 vmx->host_state.fs_reload_needed = 1;
501         }
502         vmx->host_state.gs_sel = read_gs();
503         if (!(vmx->host_state.gs_sel & 7))
504                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
505         else {
506                 vmcs_write16(HOST_GS_SELECTOR, 0);
507                 vmx->host_state.gs_ldt_reload_needed = 1;
508         }
509
510 #ifdef CONFIG_X86_64
511         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
512         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
513 #else
514         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
515         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
516 #endif
517
518 #ifdef CONFIG_X86_64
519         if (is_long_mode(&vmx->vcpu))
520                 save_msrs(vmx->host_msrs +
521                           vmx->msr_offset_kernel_gs_base, 1);
522
523 #endif
524         load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
525         load_transition_efer(vmx);
526 }
527
528 static void vmx_load_host_state(struct vcpu_vmx *vmx)
529 {
530         unsigned long flags;
531
532         if (!vmx->host_state.loaded)
533                 return;
534
535         ++vmx->vcpu.stat.host_state_reload;
536         vmx->host_state.loaded = 0;
537         if (vmx->host_state.fs_reload_needed)
538                 load_fs(vmx->host_state.fs_sel);
539         if (vmx->host_state.gs_ldt_reload_needed) {
540                 load_ldt(vmx->host_state.ldt_sel);
541                 /*
542                  * If we have to reload gs, we must take care to
543                  * preserve our gs base.
544                  */
545                 local_irq_save(flags);
546                 load_gs(vmx->host_state.gs_sel);
547 #ifdef CONFIG_X86_64
548                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
549 #endif
550                 local_irq_restore(flags);
551         }
552         reload_tss();
553         save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
554         load_msrs(vmx->host_msrs, vmx->save_nmsrs);
555         reload_host_efer(vmx);
556 }
557
558 /*
559  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
560  * vcpu mutex is already taken.
561  */
562 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
563 {
564         struct vcpu_vmx *vmx = to_vmx(vcpu);
565         u64 phys_addr = __pa(vmx->vmcs);
566         u64 tsc_this, delta, new_offset;
567
568         if (vcpu->cpu != cpu) {
569                 vcpu_clear(vmx);
570                 kvm_migrate_apic_timer(vcpu);
571                 vpid_sync_vcpu_all(vmx);
572         }
573
574         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
575                 u8 error;
576
577                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
578                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
579                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
580                               : "cc");
581                 if (error)
582                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
583                                vmx->vmcs, phys_addr);
584         }
585
586         if (vcpu->cpu != cpu) {
587                 struct descriptor_table dt;
588                 unsigned long sysenter_esp;
589
590                 vcpu->cpu = cpu;
591                 /*
592                  * Linux uses per-cpu TSS and GDT, so set these when switching
593                  * processors.
594                  */
595                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
596                 get_gdt(&dt);
597                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
598
599                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
600                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
601
602                 /*
603                  * Make sure the time stamp counter is monotonous.
604                  */
605                 rdtscll(tsc_this);
606                 if (tsc_this < vcpu->arch.host_tsc) {
607                         delta = vcpu->arch.host_tsc - tsc_this;
608                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
609                         vmcs_write64(TSC_OFFSET, new_offset);
610                 }
611         }
612 }
613
614 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
615 {
616         vmx_load_host_state(to_vmx(vcpu));
617 }
618
619 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
620 {
621         if (vcpu->fpu_active)
622                 return;
623         vcpu->fpu_active = 1;
624         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
625         if (vcpu->arch.cr0 & X86_CR0_TS)
626                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
627         update_exception_bitmap(vcpu);
628 }
629
630 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
631 {
632         if (!vcpu->fpu_active)
633                 return;
634         vcpu->fpu_active = 0;
635         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
636         update_exception_bitmap(vcpu);
637 }
638
639 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
640 {
641         vcpu_clear(to_vmx(vcpu));
642 }
643
644 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
645 {
646         return vmcs_readl(GUEST_RFLAGS);
647 }
648
649 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
650 {
651         if (vcpu->arch.rmode.active)
652                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
653         vmcs_writel(GUEST_RFLAGS, rflags);
654 }
655
656 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
657 {
658         unsigned long rip;
659         u32 interruptibility;
660
661         rip = vmcs_readl(GUEST_RIP);
662         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
663         vmcs_writel(GUEST_RIP, rip);
664
665         /*
666          * We emulated an instruction, so temporary interrupt blocking
667          * should be removed, if set.
668          */
669         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
670         if (interruptibility & 3)
671                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
672                              interruptibility & ~3);
673         vcpu->arch.interrupt_window_open = 1;
674 }
675
676 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
677                                 bool has_error_code, u32 error_code)
678 {
679         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
680                      nr | INTR_TYPE_EXCEPTION
681                      | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
682                      | INTR_INFO_VALID_MASK);
683         if (has_error_code)
684                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
685 }
686
687 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
688 {
689         struct vcpu_vmx *vmx = to_vmx(vcpu);
690
691         return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
692 }
693
694 /*
695  * Swap MSR entry in host/guest MSR entry array.
696  */
697 #ifdef CONFIG_X86_64
698 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
699 {
700         struct kvm_msr_entry tmp;
701
702         tmp = vmx->guest_msrs[to];
703         vmx->guest_msrs[to] = vmx->guest_msrs[from];
704         vmx->guest_msrs[from] = tmp;
705         tmp = vmx->host_msrs[to];
706         vmx->host_msrs[to] = vmx->host_msrs[from];
707         vmx->host_msrs[from] = tmp;
708 }
709 #endif
710
711 /*
712  * Set up the vmcs to automatically save and restore system
713  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
714  * mode, as fiddling with msrs is very expensive.
715  */
716 static void setup_msrs(struct vcpu_vmx *vmx)
717 {
718         int save_nmsrs;
719
720         vmx_load_host_state(vmx);
721         save_nmsrs = 0;
722 #ifdef CONFIG_X86_64
723         if (is_long_mode(&vmx->vcpu)) {
724                 int index;
725
726                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
727                 if (index >= 0)
728                         move_msr_up(vmx, index, save_nmsrs++);
729                 index = __find_msr_index(vmx, MSR_LSTAR);
730                 if (index >= 0)
731                         move_msr_up(vmx, index, save_nmsrs++);
732                 index = __find_msr_index(vmx, MSR_CSTAR);
733                 if (index >= 0)
734                         move_msr_up(vmx, index, save_nmsrs++);
735                 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
736                 if (index >= 0)
737                         move_msr_up(vmx, index, save_nmsrs++);
738                 /*
739                  * MSR_K6_STAR is only needed on long mode guests, and only
740                  * if efer.sce is enabled.
741                  */
742                 index = __find_msr_index(vmx, MSR_K6_STAR);
743                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
744                         move_msr_up(vmx, index, save_nmsrs++);
745         }
746 #endif
747         vmx->save_nmsrs = save_nmsrs;
748
749 #ifdef CONFIG_X86_64
750         vmx->msr_offset_kernel_gs_base =
751                 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
752 #endif
753         vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
754 }
755
756 /*
757  * reads and returns guest's timestamp counter "register"
758  * guest_tsc = host_tsc + tsc_offset    -- 21.3
759  */
760 static u64 guest_read_tsc(void)
761 {
762         u64 host_tsc, tsc_offset;
763
764         rdtscll(host_tsc);
765         tsc_offset = vmcs_read64(TSC_OFFSET);
766         return host_tsc + tsc_offset;
767 }
768
769 /*
770  * writes 'guest_tsc' into guest's timestamp counter "register"
771  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
772  */
773 static void guest_write_tsc(u64 guest_tsc)
774 {
775         u64 host_tsc;
776
777         rdtscll(host_tsc);
778         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
779 }
780
781 /*
782  * Reads an msr value (of 'msr_index') into 'pdata'.
783  * Returns 0 on success, non-0 otherwise.
784  * Assumes vcpu_load() was already called.
785  */
786 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
787 {
788         u64 data;
789         struct kvm_msr_entry *msr;
790
791         if (!pdata) {
792                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
793                 return -EINVAL;
794         }
795
796         switch (msr_index) {
797 #ifdef CONFIG_X86_64
798         case MSR_FS_BASE:
799                 data = vmcs_readl(GUEST_FS_BASE);
800                 break;
801         case MSR_GS_BASE:
802                 data = vmcs_readl(GUEST_GS_BASE);
803                 break;
804         case MSR_EFER:
805                 return kvm_get_msr_common(vcpu, msr_index, pdata);
806 #endif
807         case MSR_IA32_TIME_STAMP_COUNTER:
808                 data = guest_read_tsc();
809                 break;
810         case MSR_IA32_SYSENTER_CS:
811                 data = vmcs_read32(GUEST_SYSENTER_CS);
812                 break;
813         case MSR_IA32_SYSENTER_EIP:
814                 data = vmcs_readl(GUEST_SYSENTER_EIP);
815                 break;
816         case MSR_IA32_SYSENTER_ESP:
817                 data = vmcs_readl(GUEST_SYSENTER_ESP);
818                 break;
819         default:
820                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
821                 if (msr) {
822                         data = msr->data;
823                         break;
824                 }
825                 return kvm_get_msr_common(vcpu, msr_index, pdata);
826         }
827
828         *pdata = data;
829         return 0;
830 }
831
832 /*
833  * Writes msr value into into the appropriate "register".
834  * Returns 0 on success, non-0 otherwise.
835  * Assumes vcpu_load() was already called.
836  */
837 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
838 {
839         struct vcpu_vmx *vmx = to_vmx(vcpu);
840         struct kvm_msr_entry *msr;
841         int ret = 0;
842
843         switch (msr_index) {
844 #ifdef CONFIG_X86_64
845         case MSR_EFER:
846                 ret = kvm_set_msr_common(vcpu, msr_index, data);
847                 if (vmx->host_state.loaded) {
848                         reload_host_efer(vmx);
849                         load_transition_efer(vmx);
850                 }
851                 break;
852         case MSR_FS_BASE:
853                 vmcs_writel(GUEST_FS_BASE, data);
854                 break;
855         case MSR_GS_BASE:
856                 vmcs_writel(GUEST_GS_BASE, data);
857                 break;
858 #endif
859         case MSR_IA32_SYSENTER_CS:
860                 vmcs_write32(GUEST_SYSENTER_CS, data);
861                 break;
862         case MSR_IA32_SYSENTER_EIP:
863                 vmcs_writel(GUEST_SYSENTER_EIP, data);
864                 break;
865         case MSR_IA32_SYSENTER_ESP:
866                 vmcs_writel(GUEST_SYSENTER_ESP, data);
867                 break;
868         case MSR_IA32_TIME_STAMP_COUNTER:
869                 guest_write_tsc(data);
870                 break;
871         default:
872                 msr = find_msr_entry(vmx, msr_index);
873                 if (msr) {
874                         msr->data = data;
875                         if (vmx->host_state.loaded)
876                                 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
877                         break;
878                 }
879                 ret = kvm_set_msr_common(vcpu, msr_index, data);
880         }
881
882         return ret;
883 }
884
885 /*
886  * Sync the rsp and rip registers into the vcpu structure.  This allows
887  * registers to be accessed by indexing vcpu->arch.regs.
888  */
889 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
890 {
891         vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
892         vcpu->arch.rip = vmcs_readl(GUEST_RIP);
893 }
894
895 /*
896  * Syncs rsp and rip back into the vmcs.  Should be called after possible
897  * modification.
898  */
899 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
900 {
901         vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
902         vmcs_writel(GUEST_RIP, vcpu->arch.rip);
903 }
904
905 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
906 {
907         unsigned long dr7 = 0x400;
908         int old_singlestep;
909
910         old_singlestep = vcpu->guest_debug.singlestep;
911
912         vcpu->guest_debug.enabled = dbg->enabled;
913         if (vcpu->guest_debug.enabled) {
914                 int i;
915
916                 dr7 |= 0x200;  /* exact */
917                 for (i = 0; i < 4; ++i) {
918                         if (!dbg->breakpoints[i].enabled)
919                                 continue;
920                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
921                         dr7 |= 2 << (i*2);    /* global enable */
922                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
923                 }
924
925                 vcpu->guest_debug.singlestep = dbg->singlestep;
926         } else
927                 vcpu->guest_debug.singlestep = 0;
928
929         if (old_singlestep && !vcpu->guest_debug.singlestep) {
930                 unsigned long flags;
931
932                 flags = vmcs_readl(GUEST_RFLAGS);
933                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
934                 vmcs_writel(GUEST_RFLAGS, flags);
935         }
936
937         update_exception_bitmap(vcpu);
938         vmcs_writel(GUEST_DR7, dr7);
939
940         return 0;
941 }
942
943 static int vmx_get_irq(struct kvm_vcpu *vcpu)
944 {
945         struct vcpu_vmx *vmx = to_vmx(vcpu);
946         u32 idtv_info_field;
947
948         idtv_info_field = vmx->idt_vectoring_info;
949         if (idtv_info_field & INTR_INFO_VALID_MASK) {
950                 if (is_external_interrupt(idtv_info_field))
951                         return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
952                 else
953                         printk(KERN_DEBUG "pending exception: not handled yet\n");
954         }
955         return -1;
956 }
957
958 static __init int cpu_has_kvm_support(void)
959 {
960         unsigned long ecx = cpuid_ecx(1);
961         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
962 }
963
964 static __init int vmx_disabled_by_bios(void)
965 {
966         u64 msr;
967
968         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
969         return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
970                        MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
971             == MSR_IA32_FEATURE_CONTROL_LOCKED;
972         /* locked but not enabled */
973 }
974
975 static void hardware_enable(void *garbage)
976 {
977         int cpu = raw_smp_processor_id();
978         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
979         u64 old;
980
981         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
982         if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
983                     MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
984             != (MSR_IA32_FEATURE_CONTROL_LOCKED |
985                 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
986                 /* enable and lock */
987                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
988                        MSR_IA32_FEATURE_CONTROL_LOCKED |
989                        MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
990         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
991         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
992                       : "memory", "cc");
993 }
994
995 static void hardware_disable(void *garbage)
996 {
997         asm volatile (ASM_VMX_VMXOFF : : : "cc");
998 }
999
1000 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1001                                       u32 msr, u32 *result)
1002 {
1003         u32 vmx_msr_low, vmx_msr_high;
1004         u32 ctl = ctl_min | ctl_opt;
1005
1006         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1007
1008         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1009         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1010
1011         /* Ensure minimum (required) set of control bits are supported. */
1012         if (ctl_min & ~ctl)
1013                 return -EIO;
1014
1015         *result = ctl;
1016         return 0;
1017 }
1018
1019 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1020 {
1021         u32 vmx_msr_low, vmx_msr_high;
1022         u32 min, opt, min2, opt2;
1023         u32 _pin_based_exec_control = 0;
1024         u32 _cpu_based_exec_control = 0;
1025         u32 _cpu_based_2nd_exec_control = 0;
1026         u32 _vmexit_control = 0;
1027         u32 _vmentry_control = 0;
1028
1029         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1030         opt = 0;
1031         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1032                                 &_pin_based_exec_control) < 0)
1033                 return -EIO;
1034
1035         min = CPU_BASED_HLT_EXITING |
1036 #ifdef CONFIG_X86_64
1037               CPU_BASED_CR8_LOAD_EXITING |
1038               CPU_BASED_CR8_STORE_EXITING |
1039 #endif
1040               CPU_BASED_CR3_LOAD_EXITING |
1041               CPU_BASED_CR3_STORE_EXITING |
1042               CPU_BASED_USE_IO_BITMAPS |
1043               CPU_BASED_MOV_DR_EXITING |
1044               CPU_BASED_USE_TSC_OFFSETING;
1045         opt = CPU_BASED_TPR_SHADOW |
1046               CPU_BASED_USE_MSR_BITMAPS |
1047               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1048         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1049                                 &_cpu_based_exec_control) < 0)
1050                 return -EIO;
1051 #ifdef CONFIG_X86_64
1052         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1053                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1054                                            ~CPU_BASED_CR8_STORE_EXITING;
1055 #endif
1056         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1057                 min2 = 0;
1058                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1059                         SECONDARY_EXEC_WBINVD_EXITING |
1060                         SECONDARY_EXEC_ENABLE_VPID |
1061                         SECONDARY_EXEC_ENABLE_EPT;
1062                 if (adjust_vmx_controls(min2, opt2,
1063                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1064                                         &_cpu_based_2nd_exec_control) < 0)
1065                         return -EIO;
1066         }
1067 #ifndef CONFIG_X86_64
1068         if (!(_cpu_based_2nd_exec_control &
1069                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1070                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1071 #endif
1072         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1073                 /* CR3 accesses don't need to cause VM Exits when EPT enabled */
1074                 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1075                          CPU_BASED_CR3_STORE_EXITING);
1076                 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1077                                         &_cpu_based_exec_control) < 0)
1078                         return -EIO;
1079                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1080                       vmx_capability.ept, vmx_capability.vpid);
1081         }
1082
1083         min = 0;
1084 #ifdef CONFIG_X86_64
1085         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1086 #endif
1087         opt = 0;
1088         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1089                                 &_vmexit_control) < 0)
1090                 return -EIO;
1091
1092         min = opt = 0;
1093         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1094                                 &_vmentry_control) < 0)
1095                 return -EIO;
1096
1097         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1098
1099         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1100         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1101                 return -EIO;
1102
1103 #ifdef CONFIG_X86_64
1104         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1105         if (vmx_msr_high & (1u<<16))
1106                 return -EIO;
1107 #endif
1108
1109         /* Require Write-Back (WB) memory type for VMCS accesses. */
1110         if (((vmx_msr_high >> 18) & 15) != 6)
1111                 return -EIO;
1112
1113         vmcs_conf->size = vmx_msr_high & 0x1fff;
1114         vmcs_conf->order = get_order(vmcs_config.size);
1115         vmcs_conf->revision_id = vmx_msr_low;
1116
1117         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1118         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1119         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1120         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1121         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1122
1123         return 0;
1124 }
1125
1126 static struct vmcs *alloc_vmcs_cpu(int cpu)
1127 {
1128         int node = cpu_to_node(cpu);
1129         struct page *pages;
1130         struct vmcs *vmcs;
1131
1132         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1133         if (!pages)
1134                 return NULL;
1135         vmcs = page_address(pages);
1136         memset(vmcs, 0, vmcs_config.size);
1137         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1138         return vmcs;
1139 }
1140
1141 static struct vmcs *alloc_vmcs(void)
1142 {
1143         return alloc_vmcs_cpu(raw_smp_processor_id());
1144 }
1145
1146 static void free_vmcs(struct vmcs *vmcs)
1147 {
1148         free_pages((unsigned long)vmcs, vmcs_config.order);
1149 }
1150
1151 static void free_kvm_area(void)
1152 {
1153         int cpu;
1154
1155         for_each_online_cpu(cpu)
1156                 free_vmcs(per_cpu(vmxarea, cpu));
1157 }
1158
1159 static __init int alloc_kvm_area(void)
1160 {
1161         int cpu;
1162
1163         for_each_online_cpu(cpu) {
1164                 struct vmcs *vmcs;
1165
1166                 vmcs = alloc_vmcs_cpu(cpu);
1167                 if (!vmcs) {
1168                         free_kvm_area();
1169                         return -ENOMEM;
1170                 }
1171
1172                 per_cpu(vmxarea, cpu) = vmcs;
1173         }
1174         return 0;
1175 }
1176
1177 static __init int hardware_setup(void)
1178 {
1179         if (setup_vmcs_config(&vmcs_config) < 0)
1180                 return -EIO;
1181
1182         if (boot_cpu_has(X86_FEATURE_NX))
1183                 kvm_enable_efer_bits(EFER_NX);
1184
1185         return alloc_kvm_area();
1186 }
1187
1188 static __exit void hardware_unsetup(void)
1189 {
1190         free_kvm_area();
1191 }
1192
1193 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1194 {
1195         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1196
1197         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1198                 vmcs_write16(sf->selector, save->selector);
1199                 vmcs_writel(sf->base, save->base);
1200                 vmcs_write32(sf->limit, save->limit);
1201                 vmcs_write32(sf->ar_bytes, save->ar);
1202         } else {
1203                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1204                         << AR_DPL_SHIFT;
1205                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1206         }
1207 }
1208
1209 static void enter_pmode(struct kvm_vcpu *vcpu)
1210 {
1211         unsigned long flags;
1212
1213         vcpu->arch.rmode.active = 0;
1214
1215         vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1216         vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1217         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1218
1219         flags = vmcs_readl(GUEST_RFLAGS);
1220         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1221         flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1222         vmcs_writel(GUEST_RFLAGS, flags);
1223
1224         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1225                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1226
1227         update_exception_bitmap(vcpu);
1228
1229         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1230         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1231         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1232         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1233
1234         vmcs_write16(GUEST_SS_SELECTOR, 0);
1235         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1236
1237         vmcs_write16(GUEST_CS_SELECTOR,
1238                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1239         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1240 }
1241
1242 static gva_t rmode_tss_base(struct kvm *kvm)
1243 {
1244         if (!kvm->arch.tss_addr) {
1245                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1246                                  kvm->memslots[0].npages - 3;
1247                 return base_gfn << PAGE_SHIFT;
1248         }
1249         return kvm->arch.tss_addr;
1250 }
1251
1252 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1253 {
1254         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1255
1256         save->selector = vmcs_read16(sf->selector);
1257         save->base = vmcs_readl(sf->base);
1258         save->limit = vmcs_read32(sf->limit);
1259         save->ar = vmcs_read32(sf->ar_bytes);
1260         vmcs_write16(sf->selector, save->base >> 4);
1261         vmcs_write32(sf->base, save->base & 0xfffff);
1262         vmcs_write32(sf->limit, 0xffff);
1263         vmcs_write32(sf->ar_bytes, 0xf3);
1264 }
1265
1266 static void enter_rmode(struct kvm_vcpu *vcpu)
1267 {
1268         unsigned long flags;
1269
1270         vcpu->arch.rmode.active = 1;
1271
1272         vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1273         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1274
1275         vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1276         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1277
1278         vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1279         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1280
1281         flags = vmcs_readl(GUEST_RFLAGS);
1282         vcpu->arch.rmode.save_iopl
1283                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1284
1285         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1286
1287         vmcs_writel(GUEST_RFLAGS, flags);
1288         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1289         update_exception_bitmap(vcpu);
1290
1291         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1292         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1293         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1294
1295         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1296         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1297         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1298                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1299         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1300
1301         fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1302         fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1303         fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1304         fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1305
1306         kvm_mmu_reset_context(vcpu);
1307         init_rmode_tss(vcpu->kvm);
1308 }
1309
1310 #ifdef CONFIG_X86_64
1311
1312 static void enter_lmode(struct kvm_vcpu *vcpu)
1313 {
1314         u32 guest_tr_ar;
1315
1316         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1317         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1318                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1319                        __func__);
1320                 vmcs_write32(GUEST_TR_AR_BYTES,
1321                              (guest_tr_ar & ~AR_TYPE_MASK)
1322                              | AR_TYPE_BUSY_64_TSS);
1323         }
1324
1325         vcpu->arch.shadow_efer |= EFER_LMA;
1326
1327         find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1328         vmcs_write32(VM_ENTRY_CONTROLS,
1329                      vmcs_read32(VM_ENTRY_CONTROLS)
1330                      | VM_ENTRY_IA32E_MODE);
1331 }
1332
1333 static void exit_lmode(struct kvm_vcpu *vcpu)
1334 {
1335         vcpu->arch.shadow_efer &= ~EFER_LMA;
1336
1337         vmcs_write32(VM_ENTRY_CONTROLS,
1338                      vmcs_read32(VM_ENTRY_CONTROLS)
1339                      & ~VM_ENTRY_IA32E_MODE);
1340 }
1341
1342 #endif
1343
1344 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1345 {
1346         vpid_sync_vcpu_all(to_vmx(vcpu));
1347 }
1348
1349 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1350 {
1351         vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1352         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1353 }
1354
1355 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1356 {
1357         vmx_fpu_deactivate(vcpu);
1358
1359         if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1360                 enter_pmode(vcpu);
1361
1362         if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1363                 enter_rmode(vcpu);
1364
1365 #ifdef CONFIG_X86_64
1366         if (vcpu->arch.shadow_efer & EFER_LME) {
1367                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1368                         enter_lmode(vcpu);
1369                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1370                         exit_lmode(vcpu);
1371         }
1372 #endif
1373
1374         vmcs_writel(CR0_READ_SHADOW, cr0);
1375         vmcs_writel(GUEST_CR0,
1376                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1377         vcpu->arch.cr0 = cr0;
1378
1379         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1380                 vmx_fpu_activate(vcpu);
1381 }
1382
1383 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1384 {
1385         vmx_flush_tlb(vcpu);
1386         vmcs_writel(GUEST_CR3, cr3);
1387         if (vcpu->arch.cr0 & X86_CR0_PE)
1388                 vmx_fpu_deactivate(vcpu);
1389 }
1390
1391 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1392 {
1393         vmcs_writel(CR4_READ_SHADOW, cr4);
1394         vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
1395                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1396         vcpu->arch.cr4 = cr4;
1397 }
1398
1399 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1400 {
1401         struct vcpu_vmx *vmx = to_vmx(vcpu);
1402         struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1403
1404         vcpu->arch.shadow_efer = efer;
1405         if (!msr)
1406                 return;
1407         if (efer & EFER_LMA) {
1408                 vmcs_write32(VM_ENTRY_CONTROLS,
1409                                      vmcs_read32(VM_ENTRY_CONTROLS) |
1410                                      VM_ENTRY_IA32E_MODE);
1411                 msr->data = efer;
1412
1413         } else {
1414                 vmcs_write32(VM_ENTRY_CONTROLS,
1415                                      vmcs_read32(VM_ENTRY_CONTROLS) &
1416                                      ~VM_ENTRY_IA32E_MODE);
1417
1418                 msr->data = efer & ~EFER_LME;
1419         }
1420         setup_msrs(vmx);
1421 }
1422
1423 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1424 {
1425         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1426
1427         return vmcs_readl(sf->base);
1428 }
1429
1430 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1431                             struct kvm_segment *var, int seg)
1432 {
1433         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1434         u32 ar;
1435
1436         var->base = vmcs_readl(sf->base);
1437         var->limit = vmcs_read32(sf->limit);
1438         var->selector = vmcs_read16(sf->selector);
1439         ar = vmcs_read32(sf->ar_bytes);
1440         if (ar & AR_UNUSABLE_MASK)
1441                 ar = 0;
1442         var->type = ar & 15;
1443         var->s = (ar >> 4) & 1;
1444         var->dpl = (ar >> 5) & 3;
1445         var->present = (ar >> 7) & 1;
1446         var->avl = (ar >> 12) & 1;
1447         var->l = (ar >> 13) & 1;
1448         var->db = (ar >> 14) & 1;
1449         var->g = (ar >> 15) & 1;
1450         var->unusable = (ar >> 16) & 1;
1451 }
1452
1453 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1454 {
1455         struct kvm_segment kvm_seg;
1456
1457         if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1458                 return 0;
1459
1460         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1461                 return 3;
1462
1463         vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1464         return kvm_seg.selector & 3;
1465 }
1466
1467 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1468 {
1469         u32 ar;
1470
1471         if (var->unusable)
1472                 ar = 1 << 16;
1473         else {
1474                 ar = var->type & 15;
1475                 ar |= (var->s & 1) << 4;
1476                 ar |= (var->dpl & 3) << 5;
1477                 ar |= (var->present & 1) << 7;
1478                 ar |= (var->avl & 1) << 12;
1479                 ar |= (var->l & 1) << 13;
1480                 ar |= (var->db & 1) << 14;
1481                 ar |= (var->g & 1) << 15;
1482         }
1483         if (ar == 0) /* a 0 value means unusable */
1484                 ar = AR_UNUSABLE_MASK;
1485
1486         return ar;
1487 }
1488
1489 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1490                             struct kvm_segment *var, int seg)
1491 {
1492         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1493         u32 ar;
1494
1495         if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1496                 vcpu->arch.rmode.tr.selector = var->selector;
1497                 vcpu->arch.rmode.tr.base = var->base;
1498                 vcpu->arch.rmode.tr.limit = var->limit;
1499                 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1500                 return;
1501         }
1502         vmcs_writel(sf->base, var->base);
1503         vmcs_write32(sf->limit, var->limit);
1504         vmcs_write16(sf->selector, var->selector);
1505         if (vcpu->arch.rmode.active && var->s) {
1506                 /*
1507                  * Hack real-mode segments into vm86 compatibility.
1508                  */
1509                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1510                         vmcs_writel(sf->base, 0xf0000);
1511                 ar = 0xf3;
1512         } else
1513                 ar = vmx_segment_access_rights(var);
1514         vmcs_write32(sf->ar_bytes, ar);
1515 }
1516
1517 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1518 {
1519         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1520
1521         *db = (ar >> 14) & 1;
1522         *l = (ar >> 13) & 1;
1523 }
1524
1525 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1526 {
1527         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1528         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1529 }
1530
1531 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1532 {
1533         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1534         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1535 }
1536
1537 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1538 {
1539         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1540         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1541 }
1542
1543 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1544 {
1545         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1546         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1547 }
1548
1549 static int init_rmode_tss(struct kvm *kvm)
1550 {
1551         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1552         u16 data = 0;
1553         int ret = 0;
1554         int r;
1555
1556         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1557         if (r < 0)
1558                 goto out;
1559         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1560         r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1561         if (r < 0)
1562                 goto out;
1563         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1564         if (r < 0)
1565                 goto out;
1566         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1567         if (r < 0)
1568                 goto out;
1569         data = ~0;
1570         r = kvm_write_guest_page(kvm, fn, &data,
1571                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1572                                  sizeof(u8));
1573         if (r < 0)
1574                 goto out;
1575
1576         ret = 1;
1577 out:
1578         return ret;
1579 }
1580
1581 static void seg_setup(int seg)
1582 {
1583         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1584
1585         vmcs_write16(sf->selector, 0);
1586         vmcs_writel(sf->base, 0);
1587         vmcs_write32(sf->limit, 0xffff);
1588         vmcs_write32(sf->ar_bytes, 0x93);
1589 }
1590
1591 static int alloc_apic_access_page(struct kvm *kvm)
1592 {
1593         struct kvm_userspace_memory_region kvm_userspace_mem;
1594         int r = 0;
1595
1596         down_write(&kvm->slots_lock);
1597         if (kvm->arch.apic_access_page)
1598                 goto out;
1599         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1600         kvm_userspace_mem.flags = 0;
1601         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1602         kvm_userspace_mem.memory_size = PAGE_SIZE;
1603         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1604         if (r)
1605                 goto out;
1606
1607         down_read(&current->mm->mmap_sem);
1608         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1609         up_read(&current->mm->mmap_sem);
1610 out:
1611         up_write(&kvm->slots_lock);
1612         return r;
1613 }
1614
1615 static void allocate_vpid(struct vcpu_vmx *vmx)
1616 {
1617         int vpid;
1618
1619         vmx->vpid = 0;
1620         if (!enable_vpid || !cpu_has_vmx_vpid())
1621                 return;
1622         spin_lock(&vmx_vpid_lock);
1623         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
1624         if (vpid < VMX_NR_VPIDS) {
1625                 vmx->vpid = vpid;
1626                 __set_bit(vpid, vmx_vpid_bitmap);
1627         }
1628         spin_unlock(&vmx_vpid_lock);
1629 }
1630
1631 void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
1632 {
1633         void *va;
1634
1635         if (!cpu_has_vmx_msr_bitmap())
1636                 return;
1637
1638         /*
1639          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
1640          * have the write-low and read-high bitmap offsets the wrong way round.
1641          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
1642          */
1643         va = kmap(msr_bitmap);
1644         if (msr <= 0x1fff) {
1645                 __clear_bit(msr, va + 0x000); /* read-low */
1646                 __clear_bit(msr, va + 0x800); /* write-low */
1647         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1648                 msr &= 0x1fff;
1649                 __clear_bit(msr, va + 0x400); /* read-high */
1650                 __clear_bit(msr, va + 0xc00); /* write-high */
1651         }
1652         kunmap(msr_bitmap);
1653 }
1654
1655 /*
1656  * Sets up the vmcs for emulated real mode.
1657  */
1658 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1659 {
1660         u32 host_sysenter_cs;
1661         u32 junk;
1662         unsigned long a;
1663         struct descriptor_table dt;
1664         int i;
1665         unsigned long kvm_vmx_return;
1666         u32 exec_control;
1667
1668         /* I/O */
1669         vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1670         vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1671
1672         if (cpu_has_vmx_msr_bitmap())
1673                 vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
1674
1675         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1676
1677         /* Control */
1678         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1679                 vmcs_config.pin_based_exec_ctrl);
1680
1681         exec_control = vmcs_config.cpu_based_exec_ctrl;
1682         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1683                 exec_control &= ~CPU_BASED_TPR_SHADOW;
1684 #ifdef CONFIG_X86_64
1685                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1686                                 CPU_BASED_CR8_LOAD_EXITING;
1687 #endif
1688         }
1689         if (!vm_need_ept())
1690                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
1691                                 CPU_BASED_CR3_LOAD_EXITING;
1692         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1693
1694         if (cpu_has_secondary_exec_ctrls()) {
1695                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1696                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1697                         exec_control &=
1698                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1699                 if (vmx->vpid == 0)
1700                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
1701                 if (!vm_need_ept())
1702                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
1703                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1704         }
1705
1706         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1707         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1708         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1709
1710         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1711         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1712         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1713
1714         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1715         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1716         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1717         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1718         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1719         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1720 #ifdef CONFIG_X86_64
1721         rdmsrl(MSR_FS_BASE, a);
1722         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1723         rdmsrl(MSR_GS_BASE, a);
1724         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1725 #else
1726         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1727         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1728 #endif
1729
1730         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1731
1732         get_idt(&dt);
1733         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1734
1735         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1736         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1737         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1738         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1739         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1740
1741         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1742         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1743         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1744         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1745         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1746         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1747
1748         for (i = 0; i < NR_VMX_MSR; ++i) {
1749                 u32 index = vmx_msr_index[i];
1750                 u32 data_low, data_high;
1751                 u64 data;
1752                 int j = vmx->nmsrs;
1753
1754                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1755                         continue;
1756                 if (wrmsr_safe(index, data_low, data_high) < 0)
1757                         continue;
1758                 data = data_low | ((u64)data_high << 32);
1759                 vmx->host_msrs[j].index = index;
1760                 vmx->host_msrs[j].reserved = 0;
1761                 vmx->host_msrs[j].data = data;
1762                 vmx->guest_msrs[j] = vmx->host_msrs[j];
1763                 ++vmx->nmsrs;
1764         }
1765
1766         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1767
1768         /* 22.2.1, 20.8.1 */
1769         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1770
1771         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1772         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1773
1774
1775         return 0;
1776 }
1777
1778 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1779 {
1780         struct vcpu_vmx *vmx = to_vmx(vcpu);
1781         u64 msr;
1782         int ret;
1783
1784         down_read(&vcpu->kvm->slots_lock);
1785         if (!init_rmode_tss(vmx->vcpu.kvm)) {
1786                 ret = -ENOMEM;
1787                 goto out;
1788         }
1789
1790         vmx->vcpu.arch.rmode.active = 0;
1791
1792         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1793         kvm_set_cr8(&vmx->vcpu, 0);
1794         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1795         if (vmx->vcpu.vcpu_id == 0)
1796                 msr |= MSR_IA32_APICBASE_BSP;
1797         kvm_set_apic_base(&vmx->vcpu, msr);
1798
1799         fx_init(&vmx->vcpu);
1800
1801         /*
1802          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1803          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1804          */
1805         if (vmx->vcpu.vcpu_id == 0) {
1806                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1807                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1808         } else {
1809                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
1810                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
1811         }
1812         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1813         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1814
1815         seg_setup(VCPU_SREG_DS);
1816         seg_setup(VCPU_SREG_ES);
1817         seg_setup(VCPU_SREG_FS);
1818         seg_setup(VCPU_SREG_GS);
1819         seg_setup(VCPU_SREG_SS);
1820
1821         vmcs_write16(GUEST_TR_SELECTOR, 0);
1822         vmcs_writel(GUEST_TR_BASE, 0);
1823         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1824         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1825
1826         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1827         vmcs_writel(GUEST_LDTR_BASE, 0);
1828         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1829         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1830
1831         vmcs_write32(GUEST_SYSENTER_CS, 0);
1832         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1833         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1834
1835         vmcs_writel(GUEST_RFLAGS, 0x02);
1836         if (vmx->vcpu.vcpu_id == 0)
1837                 vmcs_writel(GUEST_RIP, 0xfff0);
1838         else
1839                 vmcs_writel(GUEST_RIP, 0);
1840         vmcs_writel(GUEST_RSP, 0);
1841
1842         /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
1843         vmcs_writel(GUEST_DR7, 0x400);
1844
1845         vmcs_writel(GUEST_GDTR_BASE, 0);
1846         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1847
1848         vmcs_writel(GUEST_IDTR_BASE, 0);
1849         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1850
1851         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1852         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1853         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1854
1855         guest_write_tsc(0);
1856
1857         /* Special registers */
1858         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1859
1860         setup_msrs(vmx);
1861
1862         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1863
1864         if (cpu_has_vmx_tpr_shadow()) {
1865                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1866                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1867                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1868                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
1869                 vmcs_write32(TPR_THRESHOLD, 0);
1870         }
1871
1872         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1873                 vmcs_write64(APIC_ACCESS_ADDR,
1874                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
1875
1876         if (vmx->vpid != 0)
1877                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
1878
1879         vmx->vcpu.arch.cr0 = 0x60000010;
1880         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
1881         vmx_set_cr4(&vmx->vcpu, 0);
1882         vmx_set_efer(&vmx->vcpu, 0);
1883         vmx_fpu_activate(&vmx->vcpu);
1884         update_exception_bitmap(&vmx->vcpu);
1885
1886         vpid_sync_vcpu_all(vmx);
1887
1888         ret = 0;
1889
1890 out:
1891         up_read(&vcpu->kvm->slots_lock);
1892         return ret;
1893 }
1894
1895 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1896 {
1897         struct vcpu_vmx *vmx = to_vmx(vcpu);
1898
1899         KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
1900
1901         if (vcpu->arch.rmode.active) {
1902                 vmx->rmode.irq.pending = true;
1903                 vmx->rmode.irq.vector = irq;
1904                 vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
1905                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1906                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
1907                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
1908                 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
1909                 return;
1910         }
1911         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1912                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1913 }
1914
1915 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1916 {
1917         int word_index = __ffs(vcpu->arch.irq_summary);
1918         int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
1919         int irq = word_index * BITS_PER_LONG + bit_index;
1920
1921         clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
1922         if (!vcpu->arch.irq_pending[word_index])
1923                 clear_bit(word_index, &vcpu->arch.irq_summary);
1924         vmx_inject_irq(vcpu, irq);
1925 }
1926
1927
1928 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1929                                        struct kvm_run *kvm_run)
1930 {
1931         u32 cpu_based_vm_exec_control;
1932
1933         vcpu->arch.interrupt_window_open =
1934                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1935                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1936
1937         if (vcpu->arch.interrupt_window_open &&
1938             vcpu->arch.irq_summary &&
1939             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1940                 /*
1941                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1942                  */
1943                 kvm_do_inject_irq(vcpu);
1944
1945         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1946         if (!vcpu->arch.interrupt_window_open &&
1947             (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
1948                 /*
1949                  * Interrupts blocked.  Wait for unblock.
1950                  */
1951                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1952         else
1953                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1954         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1955 }
1956
1957 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
1958 {
1959         int ret;
1960         struct kvm_userspace_memory_region tss_mem = {
1961                 .slot = 8,
1962                 .guest_phys_addr = addr,
1963                 .memory_size = PAGE_SIZE * 3,
1964                 .flags = 0,
1965         };
1966
1967         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
1968         if (ret)
1969                 return ret;
1970         kvm->arch.tss_addr = addr;
1971         return 0;
1972 }
1973
1974 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1975 {
1976         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1977
1978         set_debugreg(dbg->bp[0], 0);
1979         set_debugreg(dbg->bp[1], 1);
1980         set_debugreg(dbg->bp[2], 2);
1981         set_debugreg(dbg->bp[3], 3);
1982
1983         if (dbg->singlestep) {
1984                 unsigned long flags;
1985
1986                 flags = vmcs_readl(GUEST_RFLAGS);
1987                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1988                 vmcs_writel(GUEST_RFLAGS, flags);
1989         }
1990 }
1991
1992 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1993                                   int vec, u32 err_code)
1994 {
1995         if (!vcpu->arch.rmode.active)
1996                 return 0;
1997
1998         /*
1999          * Instruction with address size override prefix opcode 0x67
2000          * Cause the #SS fault with 0 error code in VM86 mode.
2001          */
2002         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2003                 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2004                         return 1;
2005         return 0;
2006 }
2007
2008 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2009 {
2010         struct vcpu_vmx *vmx = to_vmx(vcpu);
2011         u32 intr_info, error_code;
2012         unsigned long cr2, rip;
2013         u32 vect_info;
2014         enum emulation_result er;
2015
2016         vect_info = vmx->idt_vectoring_info;
2017         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2018
2019         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2020                                                 !is_page_fault(intr_info))
2021                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2022                        "intr info 0x%x\n", __func__, vect_info, intr_info);
2023
2024         if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2025                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2026                 set_bit(irq, vcpu->arch.irq_pending);
2027                 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
2028         }
2029
2030         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2031                 return 1;  /* already handled by vmx_vcpu_run() */
2032
2033         if (is_no_device(intr_info)) {
2034                 vmx_fpu_activate(vcpu);
2035                 return 1;
2036         }
2037
2038         if (is_invalid_opcode(intr_info)) {
2039                 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2040                 if (er != EMULATE_DONE)
2041                         kvm_queue_exception(vcpu, UD_VECTOR);
2042                 return 1;
2043         }
2044
2045         error_code = 0;
2046         rip = vmcs_readl(GUEST_RIP);
2047         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2048                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2049         if (is_page_fault(intr_info)) {
2050                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2051                 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2052                             (u32)((u64)cr2 >> 32), handler);
2053                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2054         }
2055
2056         if (vcpu->arch.rmode.active &&
2057             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2058                                                                 error_code)) {
2059                 if (vcpu->arch.halt_request) {
2060                         vcpu->arch.halt_request = 0;
2061                         return kvm_emulate_halt(vcpu);
2062                 }
2063                 return 1;
2064         }
2065
2066         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
2067             (INTR_TYPE_EXCEPTION | 1)) {
2068                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2069                 return 0;
2070         }
2071         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2072         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
2073         kvm_run->ex.error_code = error_code;
2074         return 0;
2075 }
2076
2077 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2078                                      struct kvm_run *kvm_run)
2079 {
2080         ++vcpu->stat.irq_exits;
2081         KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2082         return 1;
2083 }
2084
2085 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2086 {
2087         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2088         return 0;
2089 }
2090
2091 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2092 {
2093         unsigned long exit_qualification;
2094         int size, down, in, string, rep;
2095         unsigned port;
2096
2097         ++vcpu->stat.io_exits;
2098         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2099         string = (exit_qualification & 16) != 0;
2100
2101         if (string) {
2102                 if (emulate_instruction(vcpu,
2103                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2104                         return 0;
2105                 return 1;
2106         }
2107
2108         size = (exit_qualification & 7) + 1;
2109         in = (exit_qualification & 8) != 0;
2110         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
2111         rep = (exit_qualification & 32) != 0;
2112         port = exit_qualification >> 16;
2113
2114         return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2115 }
2116
2117 static void
2118 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2119 {
2120         /*
2121          * Patch in the VMCALL instruction:
2122          */
2123         hypercall[0] = 0x0f;
2124         hypercall[1] = 0x01;
2125         hypercall[2] = 0xc1;
2126 }
2127
2128 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2129 {
2130         unsigned long exit_qualification;
2131         int cr;
2132         int reg;
2133
2134         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2135         cr = exit_qualification & 15;
2136         reg = (exit_qualification >> 8) & 15;
2137         switch ((exit_qualification >> 4) & 3) {
2138         case 0: /* mov to cr */
2139                 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)vcpu->arch.regs[reg],
2140                             (u32)((u64)vcpu->arch.regs[reg] >> 32), handler);
2141                 switch (cr) {
2142                 case 0:
2143                         vcpu_load_rsp_rip(vcpu);
2144                         kvm_set_cr0(vcpu, vcpu->arch.regs[reg]);
2145                         skip_emulated_instruction(vcpu);
2146                         return 1;
2147                 case 3:
2148                         vcpu_load_rsp_rip(vcpu);
2149                         kvm_set_cr3(vcpu, vcpu->arch.regs[reg]);
2150                         skip_emulated_instruction(vcpu);
2151                         return 1;
2152                 case 4:
2153                         vcpu_load_rsp_rip(vcpu);
2154                         kvm_set_cr4(vcpu, vcpu->arch.regs[reg]);
2155                         skip_emulated_instruction(vcpu);
2156                         return 1;
2157                 case 8:
2158                         vcpu_load_rsp_rip(vcpu);
2159                         kvm_set_cr8(vcpu, vcpu->arch.regs[reg]);
2160                         skip_emulated_instruction(vcpu);
2161                         if (irqchip_in_kernel(vcpu->kvm))
2162                                 return 1;
2163                         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2164                         return 0;
2165                 };
2166                 break;
2167         case 2: /* clts */
2168                 vcpu_load_rsp_rip(vcpu);
2169                 vmx_fpu_deactivate(vcpu);
2170                 vcpu->arch.cr0 &= ~X86_CR0_TS;
2171                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2172                 vmx_fpu_activate(vcpu);
2173                 KVMTRACE_0D(CLTS, vcpu, handler);
2174                 skip_emulated_instruction(vcpu);
2175                 return 1;
2176         case 1: /*mov from cr*/
2177                 switch (cr) {
2178                 case 3:
2179                         vcpu_load_rsp_rip(vcpu);
2180                         vcpu->arch.regs[reg] = vcpu->arch.cr3;
2181                         vcpu_put_rsp_rip(vcpu);
2182                         KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2183                                     (u32)vcpu->arch.regs[reg],
2184                                     (u32)((u64)vcpu->arch.regs[reg] >> 32),
2185                                     handler);
2186                         skip_emulated_instruction(vcpu);
2187                         return 1;
2188                 case 8:
2189                         vcpu_load_rsp_rip(vcpu);
2190                         vcpu->arch.regs[reg] = kvm_get_cr8(vcpu);
2191                         vcpu_put_rsp_rip(vcpu);
2192                         KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2193                                     (u32)vcpu->arch.regs[reg], handler);
2194                         skip_emulated_instruction(vcpu);
2195                         return 1;
2196                 }
2197                 break;
2198         case 3: /* lmsw */
2199                 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2200
2201                 skip_emulated_instruction(vcpu);
2202                 return 1;
2203         default:
2204                 break;
2205         }
2206         kvm_run->exit_reason = 0;
2207         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2208                (int)(exit_qualification >> 4) & 3, cr);
2209         return 0;
2210 }
2211
2212 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2213 {
2214         unsigned long exit_qualification;
2215         unsigned long val;
2216         int dr, reg;
2217
2218         /*
2219          * FIXME: this code assumes the host is debugging the guest.
2220          *        need to deal with guest debugging itself too.
2221          */
2222         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2223         dr = exit_qualification & 7;
2224         reg = (exit_qualification >> 8) & 15;
2225         vcpu_load_rsp_rip(vcpu);
2226         if (exit_qualification & 16) {
2227                 /* mov from dr */
2228                 switch (dr) {
2229                 case 6:
2230                         val = 0xffff0ff0;
2231                         break;
2232                 case 7:
2233                         val = 0x400;
2234                         break;
2235                 default:
2236                         val = 0;
2237                 }
2238                 vcpu->arch.regs[reg] = val;
2239                 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2240         } else {
2241                 /* mov to dr */
2242         }
2243         vcpu_put_rsp_rip(vcpu);
2244         skip_emulated_instruction(vcpu);
2245         return 1;
2246 }
2247
2248 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2249 {
2250         kvm_emulate_cpuid(vcpu);
2251         return 1;
2252 }
2253
2254 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2255 {
2256         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2257         u64 data;
2258
2259         if (vmx_get_msr(vcpu, ecx, &data)) {
2260                 kvm_inject_gp(vcpu, 0);
2261                 return 1;
2262         }
2263
2264         KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2265                     handler);
2266
2267         /* FIXME: handling of bits 32:63 of rax, rdx */
2268         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2269         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2270         skip_emulated_instruction(vcpu);
2271         return 1;
2272 }
2273
2274 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2275 {
2276         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2277         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2278                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2279
2280         KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2281                     handler);
2282
2283         if (vmx_set_msr(vcpu, ecx, data) != 0) {
2284                 kvm_inject_gp(vcpu, 0);
2285                 return 1;
2286         }
2287
2288         skip_emulated_instruction(vcpu);
2289         return 1;
2290 }
2291
2292 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2293                                       struct kvm_run *kvm_run)
2294 {
2295         return 1;
2296 }
2297
2298 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2299                                    struct kvm_run *kvm_run)
2300 {
2301         u32 cpu_based_vm_exec_control;
2302
2303         /* clear pending irq */
2304         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2305         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2306         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2307
2308         KVMTRACE_0D(PEND_INTR, vcpu, handler);
2309
2310         /*
2311          * If the user space waits to inject interrupts, exit as soon as
2312          * possible
2313          */
2314         if (kvm_run->request_interrupt_window &&
2315             !vcpu->arch.irq_summary) {
2316                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2317                 ++vcpu->stat.irq_window_exits;
2318                 return 0;
2319         }
2320         return 1;
2321 }
2322
2323 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2324 {
2325         skip_emulated_instruction(vcpu);
2326         return kvm_emulate_halt(vcpu);
2327 }
2328
2329 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2330 {
2331         skip_emulated_instruction(vcpu);
2332         kvm_emulate_hypercall(vcpu);
2333         return 1;
2334 }
2335
2336 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2337 {
2338         skip_emulated_instruction(vcpu);
2339         /* TODO: Add support for VT-d/pass-through device */
2340         return 1;
2341 }
2342
2343 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2344 {
2345         u64 exit_qualification;
2346         enum emulation_result er;
2347         unsigned long offset;
2348
2349         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2350         offset = exit_qualification & 0xffful;
2351
2352         KVMTRACE_1D(APIC_ACCESS, vcpu, (u32)offset, handler);
2353
2354         er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2355
2356         if (er !=  EMULATE_DONE) {
2357                 printk(KERN_ERR
2358                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2359                        offset);
2360                 return -ENOTSUPP;
2361         }
2362         return 1;
2363 }
2364
2365 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2366 {
2367         unsigned long exit_qualification;
2368         u16 tss_selector;
2369         int reason;
2370
2371         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2372
2373         reason = (u32)exit_qualification >> 30;
2374         tss_selector = exit_qualification;
2375
2376         return kvm_task_switch(vcpu, tss_selector, reason);
2377 }
2378
2379 /*
2380  * The exit handlers return 1 if the exit was handled fully and guest execution
2381  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
2382  * to be done to userspace and return 0.
2383  */
2384 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2385                                       struct kvm_run *kvm_run) = {
2386         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
2387         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
2388         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
2389         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
2390         [EXIT_REASON_CR_ACCESS]               = handle_cr,
2391         [EXIT_REASON_DR_ACCESS]               = handle_dr,
2392         [EXIT_REASON_CPUID]                   = handle_cpuid,
2393         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
2394         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
2395         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
2396         [EXIT_REASON_HLT]                     = handle_halt,
2397         [EXIT_REASON_VMCALL]                  = handle_vmcall,
2398         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
2399         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
2400         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
2401         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
2402 };
2403
2404 static const int kvm_vmx_max_exit_handlers =
2405         ARRAY_SIZE(kvm_vmx_exit_handlers);
2406
2407 /*
2408  * The guest has exited.  See if we can fix it or if we need userspace
2409  * assistance.
2410  */
2411 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2412 {
2413         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2414         struct vcpu_vmx *vmx = to_vmx(vcpu);
2415         u32 vectoring_info = vmx->idt_vectoring_info;
2416
2417         KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)vmcs_readl(GUEST_RIP),
2418                     (u32)((u64)vmcs_readl(GUEST_RIP) >> 32), entryexit);
2419
2420         if (unlikely(vmx->fail)) {
2421                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2422                 kvm_run->fail_entry.hardware_entry_failure_reason
2423                         = vmcs_read32(VM_INSTRUCTION_ERROR);
2424                 return 0;
2425         }
2426
2427         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2428                                 exit_reason != EXIT_REASON_EXCEPTION_NMI)
2429                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2430                        "exit reason is 0x%x\n", __func__, exit_reason);
2431         if (exit_reason < kvm_vmx_max_exit_handlers
2432             && kvm_vmx_exit_handlers[exit_reason])
2433                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2434         else {
2435                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2436                 kvm_run->hw.hardware_exit_reason = exit_reason;
2437         }
2438         return 0;
2439 }
2440
2441 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2442 {
2443         int max_irr, tpr;
2444
2445         if (!vm_need_tpr_shadow(vcpu->kvm))
2446                 return;
2447
2448         if (!kvm_lapic_enabled(vcpu) ||
2449             ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2450                 vmcs_write32(TPR_THRESHOLD, 0);
2451                 return;
2452         }
2453
2454         tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2455         vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2456 }
2457
2458 static void enable_irq_window(struct kvm_vcpu *vcpu)
2459 {
2460         u32 cpu_based_vm_exec_control;
2461
2462         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2463         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2464         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2465 }
2466
2467 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2468 {
2469         struct vcpu_vmx *vmx = to_vmx(vcpu);
2470         u32 idtv_info_field, intr_info_field;
2471         int has_ext_irq, interrupt_window_open;
2472         int vector;
2473
2474         update_tpr_threshold(vcpu);
2475
2476         has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2477         intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2478         idtv_info_field = vmx->idt_vectoring_info;
2479         if (intr_info_field & INTR_INFO_VALID_MASK) {
2480                 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2481                         /* TODO: fault when IDT_Vectoring */
2482                         if (printk_ratelimit())
2483                                 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2484                 }
2485                 if (has_ext_irq)
2486                         enable_irq_window(vcpu);
2487                 return;
2488         }
2489         if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2490                 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2491                     == INTR_TYPE_EXT_INTR
2492                     && vcpu->arch.rmode.active) {
2493                         u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2494
2495                         vmx_inject_irq(vcpu, vect);
2496                         if (unlikely(has_ext_irq))
2497                                 enable_irq_window(vcpu);
2498                         return;
2499                 }
2500
2501                 KVMTRACE_1D(REDELIVER_EVT, vcpu, idtv_info_field, handler);
2502
2503                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2504                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2505                                 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2506
2507                 if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
2508                         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2509                                 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2510                 if (unlikely(has_ext_irq))
2511                         enable_irq_window(vcpu);
2512                 return;
2513         }
2514         if (!has_ext_irq)
2515                 return;
2516         interrupt_window_open =
2517                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2518                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2519         if (interrupt_window_open) {
2520                 vector = kvm_cpu_get_interrupt(vcpu);
2521                 vmx_inject_irq(vcpu, vector);
2522                 kvm_timer_intr_post(vcpu, vector);
2523         } else
2524                 enable_irq_window(vcpu);
2525 }
2526
2527 /*
2528  * Failure to inject an interrupt should give us the information
2529  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
2530  * when fetching the interrupt redirection bitmap in the real-mode
2531  * tss, this doesn't happen.  So we do it ourselves.
2532  */
2533 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2534 {
2535         vmx->rmode.irq.pending = 0;
2536         if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
2537                 return;
2538         vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
2539         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2540                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2541                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2542                 return;
2543         }
2544         vmx->idt_vectoring_info =
2545                 VECTORING_INFO_VALID_MASK
2546                 | INTR_TYPE_EXT_INTR
2547                 | vmx->rmode.irq.vector;
2548 }
2549
2550 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2551 {
2552         struct vcpu_vmx *vmx = to_vmx(vcpu);
2553         u32 intr_info;
2554
2555         /*
2556          * Loading guest fpu may have cleared host cr0.ts
2557          */
2558         vmcs_writel(HOST_CR0, read_cr0());
2559
2560         asm(
2561                 /* Store host registers */
2562 #ifdef CONFIG_X86_64
2563                 "push %%rdx; push %%rbp;"
2564                 "push %%rcx \n\t"
2565 #else
2566                 "push %%edx; push %%ebp;"
2567                 "push %%ecx \n\t"
2568 #endif
2569                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2570                 /* Check if vmlaunch of vmresume is needed */
2571                 "cmpl $0, %c[launched](%0) \n\t"
2572                 /* Load guest registers.  Don't clobber flags. */
2573 #ifdef CONFIG_X86_64
2574                 "mov %c[cr2](%0), %%rax \n\t"
2575                 "mov %%rax, %%cr2 \n\t"
2576                 "mov %c[rax](%0), %%rax \n\t"
2577                 "mov %c[rbx](%0), %%rbx \n\t"
2578                 "mov %c[rdx](%0), %%rdx \n\t"
2579                 "mov %c[rsi](%0), %%rsi \n\t"
2580                 "mov %c[rdi](%0), %%rdi \n\t"
2581                 "mov %c[rbp](%0), %%rbp \n\t"
2582                 "mov %c[r8](%0),  %%r8  \n\t"
2583                 "mov %c[r9](%0),  %%r9  \n\t"
2584                 "mov %c[r10](%0), %%r10 \n\t"
2585                 "mov %c[r11](%0), %%r11 \n\t"
2586                 "mov %c[r12](%0), %%r12 \n\t"
2587                 "mov %c[r13](%0), %%r13 \n\t"
2588                 "mov %c[r14](%0), %%r14 \n\t"
2589                 "mov %c[r15](%0), %%r15 \n\t"
2590                 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2591 #else
2592                 "mov %c[cr2](%0), %%eax \n\t"
2593                 "mov %%eax,   %%cr2 \n\t"
2594                 "mov %c[rax](%0), %%eax \n\t"
2595                 "mov %c[rbx](%0), %%ebx \n\t"
2596                 "mov %c[rdx](%0), %%edx \n\t"
2597                 "mov %c[rsi](%0), %%esi \n\t"
2598                 "mov %c[rdi](%0), %%edi \n\t"
2599                 "mov %c[rbp](%0), %%ebp \n\t"
2600                 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2601 #endif
2602                 /* Enter guest mode */
2603                 "jne .Llaunched \n\t"
2604                 ASM_VMX_VMLAUNCH "\n\t"
2605                 "jmp .Lkvm_vmx_return \n\t"
2606                 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2607                 ".Lkvm_vmx_return: "
2608                 /* Save guest registers, load host registers, keep flags */
2609 #ifdef CONFIG_X86_64
2610                 "xchg %0,     (%%rsp) \n\t"
2611                 "mov %%rax, %c[rax](%0) \n\t"
2612                 "mov %%rbx, %c[rbx](%0) \n\t"
2613                 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2614                 "mov %%rdx, %c[rdx](%0) \n\t"
2615                 "mov %%rsi, %c[rsi](%0) \n\t"
2616                 "mov %%rdi, %c[rdi](%0) \n\t"
2617                 "mov %%rbp, %c[rbp](%0) \n\t"
2618                 "mov %%r8,  %c[r8](%0) \n\t"
2619                 "mov %%r9,  %c[r9](%0) \n\t"
2620                 "mov %%r10, %c[r10](%0) \n\t"
2621                 "mov %%r11, %c[r11](%0) \n\t"
2622                 "mov %%r12, %c[r12](%0) \n\t"
2623                 "mov %%r13, %c[r13](%0) \n\t"
2624                 "mov %%r14, %c[r14](%0) \n\t"
2625                 "mov %%r15, %c[r15](%0) \n\t"
2626                 "mov %%cr2, %%rax   \n\t"
2627                 "mov %%rax, %c[cr2](%0) \n\t"
2628
2629                 "pop  %%rbp; pop  %%rbp; pop  %%rdx \n\t"
2630 #else
2631                 "xchg %0, (%%esp) \n\t"
2632                 "mov %%eax, %c[rax](%0) \n\t"
2633                 "mov %%ebx, %c[rbx](%0) \n\t"
2634                 "pushl (%%esp); popl %c[rcx](%0) \n\t"
2635                 "mov %%edx, %c[rdx](%0) \n\t"
2636                 "mov %%esi, %c[rsi](%0) \n\t"
2637                 "mov %%edi, %c[rdi](%0) \n\t"
2638                 "mov %%ebp, %c[rbp](%0) \n\t"
2639                 "mov %%cr2, %%eax  \n\t"
2640                 "mov %%eax, %c[cr2](%0) \n\t"
2641
2642                 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
2643 #endif
2644                 "setbe %c[fail](%0) \n\t"
2645               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
2646                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
2647                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2648                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
2649                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
2650                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
2651                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
2652                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
2653                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
2654                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
2655 #ifdef CONFIG_X86_64
2656                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
2657                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
2658                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
2659                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
2660                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
2661                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
2662                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
2663                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
2664 #endif
2665                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
2666               : "cc", "memory"
2667 #ifdef CONFIG_X86_64
2668                 , "rbx", "rdi", "rsi"
2669                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2670 #else
2671                 , "ebx", "edi", "rsi"
2672 #endif
2673               );
2674
2675         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2676         if (vmx->rmode.irq.pending)
2677                 fixup_rmode_irq(vmx);
2678
2679         vcpu->arch.interrupt_window_open =
2680                 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2681
2682         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2683         vmx->launched = 1;
2684
2685         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2686
2687         /* We need to handle NMIs before interrupts are enabled */
2688         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
2689                 KVMTRACE_0D(NMI, vcpu, handler);
2690                 asm("int $2");
2691         }
2692 }
2693
2694 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2695 {
2696         struct vcpu_vmx *vmx = to_vmx(vcpu);
2697
2698         if (vmx->vmcs) {
2699                 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2700                 free_vmcs(vmx->vmcs);
2701                 vmx->vmcs = NULL;
2702         }
2703 }
2704
2705 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2706 {
2707         struct vcpu_vmx *vmx = to_vmx(vcpu);
2708
2709         spin_lock(&vmx_vpid_lock);
2710         if (vmx->vpid != 0)
2711                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2712         spin_unlock(&vmx_vpid_lock);
2713         vmx_free_vmcs(vcpu);
2714         kfree(vmx->host_msrs);
2715         kfree(vmx->guest_msrs);
2716         kvm_vcpu_uninit(vcpu);
2717         kmem_cache_free(kvm_vcpu_cache, vmx);
2718 }
2719
2720 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2721 {
2722         int err;
2723         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2724         int cpu;
2725
2726         if (!vmx)
2727                 return ERR_PTR(-ENOMEM);
2728
2729         allocate_vpid(vmx);
2730
2731         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2732         if (err)
2733                 goto free_vcpu;
2734
2735         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2736         if (!vmx->guest_msrs) {
2737                 err = -ENOMEM;
2738                 goto uninit_vcpu;
2739         }
2740
2741         vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2742         if (!vmx->host_msrs)
2743                 goto free_guest_msrs;
2744
2745         vmx->vmcs = alloc_vmcs();
2746         if (!vmx->vmcs)
2747                 goto free_msrs;
2748
2749         vmcs_clear(vmx->vmcs);
2750
2751         cpu = get_cpu();
2752         vmx_vcpu_load(&vmx->vcpu, cpu);
2753         err = vmx_vcpu_setup(vmx);
2754         vmx_vcpu_put(&vmx->vcpu);
2755         put_cpu();
2756         if (err)
2757                 goto free_vmcs;
2758         if (vm_need_virtualize_apic_accesses(kvm))
2759                 if (alloc_apic_access_page(kvm) != 0)
2760                         goto free_vmcs;
2761
2762         return &vmx->vcpu;
2763
2764 free_vmcs:
2765         free_vmcs(vmx->vmcs);
2766 free_msrs:
2767         kfree(vmx->host_msrs);
2768 free_guest_msrs:
2769         kfree(vmx->guest_msrs);
2770 uninit_vcpu:
2771         kvm_vcpu_uninit(&vmx->vcpu);
2772 free_vcpu:
2773         kmem_cache_free(kvm_vcpu_cache, vmx);
2774         return ERR_PTR(err);
2775 }
2776
2777 static void __init vmx_check_processor_compat(void *rtn)
2778 {
2779         struct vmcs_config vmcs_conf;
2780
2781         *(int *)rtn = 0;
2782         if (setup_vmcs_config(&vmcs_conf) < 0)
2783                 *(int *)rtn = -EIO;
2784         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2785                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2786                                 smp_processor_id());
2787                 *(int *)rtn = -EIO;
2788         }
2789 }
2790
2791 static int get_ept_level(void)
2792 {
2793         return VMX_EPT_DEFAULT_GAW + 1;
2794 }
2795
2796 static struct kvm_x86_ops vmx_x86_ops = {
2797         .cpu_has_kvm_support = cpu_has_kvm_support,
2798         .disabled_by_bios = vmx_disabled_by_bios,
2799         .hardware_setup = hardware_setup,
2800         .hardware_unsetup = hardware_unsetup,
2801         .check_processor_compatibility = vmx_check_processor_compat,
2802         .hardware_enable = hardware_enable,
2803         .hardware_disable = hardware_disable,
2804         .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
2805
2806         .vcpu_create = vmx_create_vcpu,
2807         .vcpu_free = vmx_free_vcpu,
2808         .vcpu_reset = vmx_vcpu_reset,
2809
2810         .prepare_guest_switch = vmx_save_host_state,
2811         .vcpu_load = vmx_vcpu_load,
2812         .vcpu_put = vmx_vcpu_put,
2813         .vcpu_decache = vmx_vcpu_decache,
2814
2815         .set_guest_debug = set_guest_debug,
2816         .guest_debug_pre = kvm_guest_debug_pre,
2817         .get_msr = vmx_get_msr,
2818         .set_msr = vmx_set_msr,
2819         .get_segment_base = vmx_get_segment_base,
2820         .get_segment = vmx_get_segment,
2821         .set_segment = vmx_set_segment,
2822         .get_cpl = vmx_get_cpl,
2823         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2824         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2825         .set_cr0 = vmx_set_cr0,
2826         .set_cr3 = vmx_set_cr3,
2827         .set_cr4 = vmx_set_cr4,
2828         .set_efer = vmx_set_efer,
2829         .get_idt = vmx_get_idt,
2830         .set_idt = vmx_set_idt,
2831         .get_gdt = vmx_get_gdt,
2832         .set_gdt = vmx_set_gdt,
2833         .cache_regs = vcpu_load_rsp_rip,
2834         .decache_regs = vcpu_put_rsp_rip,
2835         .get_rflags = vmx_get_rflags,
2836         .set_rflags = vmx_set_rflags,
2837
2838         .tlb_flush = vmx_flush_tlb,
2839
2840         .run = vmx_vcpu_run,
2841         .handle_exit = kvm_handle_exit,
2842         .skip_emulated_instruction = skip_emulated_instruction,
2843         .patch_hypercall = vmx_patch_hypercall,
2844         .get_irq = vmx_get_irq,
2845         .set_irq = vmx_inject_irq,
2846         .queue_exception = vmx_queue_exception,
2847         .exception_injected = vmx_exception_injected,
2848         .inject_pending_irq = vmx_intr_assist,
2849         .inject_pending_vectors = do_interrupt_requests,
2850
2851         .set_tss_addr = vmx_set_tss_addr,
2852         .get_tdp_level = get_ept_level,
2853 };
2854
2855 static int __init vmx_init(void)
2856 {
2857         void *va;
2858         int r;
2859
2860         vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2861         if (!vmx_io_bitmap_a)
2862                 return -ENOMEM;
2863
2864         vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2865         if (!vmx_io_bitmap_b) {
2866                 r = -ENOMEM;
2867                 goto out;
2868         }
2869
2870         vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2871         if (!vmx_msr_bitmap) {
2872                 r = -ENOMEM;
2873                 goto out1;
2874         }
2875
2876         /*
2877          * Allow direct access to the PC debug port (it is often used for I/O
2878          * delays, but the vmexits simply slow things down).
2879          */
2880         va = kmap(vmx_io_bitmap_a);
2881         memset(va, 0xff, PAGE_SIZE);
2882         clear_bit(0x80, va);
2883         kunmap(vmx_io_bitmap_a);
2884
2885         va = kmap(vmx_io_bitmap_b);
2886         memset(va, 0xff, PAGE_SIZE);
2887         kunmap(vmx_io_bitmap_b);
2888
2889         va = kmap(vmx_msr_bitmap);
2890         memset(va, 0xff, PAGE_SIZE);
2891         kunmap(vmx_msr_bitmap);
2892
2893         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
2894
2895         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2896         if (r)
2897                 goto out2;
2898
2899         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
2900         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
2901         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
2902         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
2903         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
2904
2905         if (bypass_guest_pf)
2906                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
2907
2908         return 0;
2909
2910 out2:
2911         __free_page(vmx_msr_bitmap);
2912 out1:
2913         __free_page(vmx_io_bitmap_b);
2914 out:
2915         __free_page(vmx_io_bitmap_a);
2916         return r;
2917 }
2918
2919 static void __exit vmx_exit(void)
2920 {
2921         __free_page(vmx_msr_bitmap);
2922         __free_page(vmx_io_bitmap_b);
2923         __free_page(vmx_io_bitmap_a);
2924
2925         kvm_exit();
2926 }
2927
2928 module_init(vmx_init)
2929 module_exit(vmx_exit)