d883fbb63566f94e67dffea6cd3f23cdd7b6120c
[linux-block.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/debugreg.h>
36 #include <asm/desc.h>
37 #include <asm/fpu/internal.h>
38 #include <asm/io.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/kexec.h>
41 #include <asm/perf_event.h>
42 #include <asm/mce.h>
43 #include <asm/mmu_context.h>
44 #include <asm/mshyperv.h>
45 #include <asm/mwait.h>
46 #include <asm/spec-ctrl.h>
47 #include <asm/virtext.h>
48 #include <asm/vmx.h>
49
50 #include "capabilities.h"
51 #include "cpuid.h"
52 #include "evmcs.h"
53 #include "irq.h"
54 #include "kvm_cache_regs.h"
55 #include "lapic.h"
56 #include "mmu.h"
57 #include "nested.h"
58 #include "ops.h"
59 #include "pmu.h"
60 #include "trace.h"
61 #include "vmcs.h"
62 #include "vmcs12.h"
63 #include "vmx.h"
64 #include "x86.h"
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 #ifdef MODULE
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71         X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
72         {}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 #endif
76
77 bool __read_mostly enable_vpid = 1;
78 module_param_named(vpid, enable_vpid, bool, 0444);
79
80 static bool __read_mostly enable_vnmi = 1;
81 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
82
83 bool __read_mostly flexpriority_enabled = 1;
84 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
85
86 bool __read_mostly enable_ept = 1;
87 module_param_named(ept, enable_ept, bool, S_IRUGO);
88
89 bool __read_mostly enable_unrestricted_guest = 1;
90 module_param_named(unrestricted_guest,
91                         enable_unrestricted_guest, bool, S_IRUGO);
92
93 bool __read_mostly enable_ept_ad_bits = 1;
94 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
95
96 static bool __read_mostly emulate_invalid_guest_state = true;
97 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
98
99 static bool __read_mostly fasteoi = 1;
100 module_param(fasteoi, bool, S_IRUGO);
101
102 bool __read_mostly enable_apicv = 1;
103 module_param(enable_apicv, bool, S_IRUGO);
104
105 /*
106  * If nested=1, nested virtualization is supported, i.e., guests may use
107  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
108  * use VMX instructions.
109  */
110 static bool __read_mostly nested = 1;
111 module_param(nested, bool, S_IRUGO);
112
113 bool __read_mostly enable_pml = 1;
114 module_param_named(pml, enable_pml, bool, S_IRUGO);
115
116 static bool __read_mostly dump_invalid_vmcs = 0;
117 module_param(dump_invalid_vmcs, bool, 0644);
118
119 #define MSR_BITMAP_MODE_X2APIC          1
120 #define MSR_BITMAP_MODE_X2APIC_APICV    2
121
122 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
123
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
127 #ifdef CONFIG_X86_64
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #endif
130
131 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
132 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
133 #define KVM_VM_CR0_ALWAYS_ON                            \
134         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
135          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
136 #define KVM_CR4_GUEST_OWNED_BITS                                      \
137         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
138          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
139
140 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
141 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
142 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
143
144 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
145
146 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
147         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
148         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
149         RTIT_STATUS_BYTECNT))
150
151 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
152         (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
153
154 /*
155  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
156  * ple_gap:    upper bound on the amount of time between two successive
157  *             executions of PAUSE in a loop. Also indicate if ple enabled.
158  *             According to test, this time is usually smaller than 128 cycles.
159  * ple_window: upper bound on the amount of time a guest is allowed to execute
160  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
161  *             less than 2^12 cycles
162  * Time is measured based on a counter that runs at the same rate as the TSC,
163  * refer SDM volume 3b section 21.6.13 & 22.1.3.
164  */
165 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
166 module_param(ple_gap, uint, 0444);
167
168 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
169 module_param(ple_window, uint, 0444);
170
171 /* Default doubles per-vcpu window every exit. */
172 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
173 module_param(ple_window_grow, uint, 0444);
174
175 /* Default resets per-vcpu window every exit to ple_window. */
176 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
177 module_param(ple_window_shrink, uint, 0444);
178
179 /* Default is to compute the maximum so we can never overflow. */
180 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
181 module_param(ple_window_max, uint, 0444);
182
183 /* Default is SYSTEM mode, 1 for host-guest mode */
184 int __read_mostly pt_mode = PT_MODE_SYSTEM;
185 module_param(pt_mode, int, S_IRUGO);
186
187 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
188 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
189 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
190
191 /* Storage for pre module init parameter parsing */
192 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
193
194 static const struct {
195         const char *option;
196         bool for_parse;
197 } vmentry_l1d_param[] = {
198         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
199         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
200         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
201         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
202         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
203         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
204 };
205
206 #define L1D_CACHE_ORDER 4
207 static void *vmx_l1d_flush_pages;
208
209 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
210 {
211         struct page *page;
212         unsigned int i;
213
214         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
215                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
216                 return 0;
217         }
218
219         if (!enable_ept) {
220                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
221                 return 0;
222         }
223
224         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
225                 u64 msr;
226
227                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
228                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
229                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
230                         return 0;
231                 }
232         }
233
234         /* If set to auto use the default l1tf mitigation method */
235         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
236                 switch (l1tf_mitigation) {
237                 case L1TF_MITIGATION_OFF:
238                         l1tf = VMENTER_L1D_FLUSH_NEVER;
239                         break;
240                 case L1TF_MITIGATION_FLUSH_NOWARN:
241                 case L1TF_MITIGATION_FLUSH:
242                 case L1TF_MITIGATION_FLUSH_NOSMT:
243                         l1tf = VMENTER_L1D_FLUSH_COND;
244                         break;
245                 case L1TF_MITIGATION_FULL:
246                 case L1TF_MITIGATION_FULL_FORCE:
247                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
248                         break;
249                 }
250         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
251                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
252         }
253
254         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
255             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
256                 /*
257                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
258                  * lifetime and so should not be charged to a memcg.
259                  */
260                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
261                 if (!page)
262                         return -ENOMEM;
263                 vmx_l1d_flush_pages = page_address(page);
264
265                 /*
266                  * Initialize each page with a different pattern in
267                  * order to protect against KSM in the nested
268                  * virtualization case.
269                  */
270                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
271                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
272                                PAGE_SIZE);
273                 }
274         }
275
276         l1tf_vmx_mitigation = l1tf;
277
278         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
279                 static_branch_enable(&vmx_l1d_should_flush);
280         else
281                 static_branch_disable(&vmx_l1d_should_flush);
282
283         if (l1tf == VMENTER_L1D_FLUSH_COND)
284                 static_branch_enable(&vmx_l1d_flush_cond);
285         else
286                 static_branch_disable(&vmx_l1d_flush_cond);
287         return 0;
288 }
289
290 static int vmentry_l1d_flush_parse(const char *s)
291 {
292         unsigned int i;
293
294         if (s) {
295                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
296                         if (vmentry_l1d_param[i].for_parse &&
297                             sysfs_streq(s, vmentry_l1d_param[i].option))
298                                 return i;
299                 }
300         }
301         return -EINVAL;
302 }
303
304 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
305 {
306         int l1tf, ret;
307
308         l1tf = vmentry_l1d_flush_parse(s);
309         if (l1tf < 0)
310                 return l1tf;
311
312         if (!boot_cpu_has(X86_BUG_L1TF))
313                 return 0;
314
315         /*
316          * Has vmx_init() run already? If not then this is the pre init
317          * parameter parsing. In that case just store the value and let
318          * vmx_init() do the proper setup after enable_ept has been
319          * established.
320          */
321         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
322                 vmentry_l1d_flush_param = l1tf;
323                 return 0;
324         }
325
326         mutex_lock(&vmx_l1d_flush_mutex);
327         ret = vmx_setup_l1d_flush(l1tf);
328         mutex_unlock(&vmx_l1d_flush_mutex);
329         return ret;
330 }
331
332 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
333 {
334         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
335                 return sprintf(s, "???\n");
336
337         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
338 }
339
340 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
341         .set = vmentry_l1d_flush_set,
342         .get = vmentry_l1d_flush_get,
343 };
344 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
345
346 static bool guest_state_valid(struct kvm_vcpu *vcpu);
347 static u32 vmx_segment_access_rights(struct kvm_segment *var);
348 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
349                                                           u32 msr, int type);
350
351 void vmx_vmexit(void);
352
353 #define vmx_insn_failed(fmt...)         \
354 do {                                    \
355         WARN_ONCE(1, fmt);              \
356         pr_warn_ratelimited(fmt);       \
357 } while (0)
358
359 asmlinkage void vmread_error(unsigned long field, bool fault)
360 {
361         if (fault)
362                 kvm_spurious_fault();
363         else
364                 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
365 }
366
367 noinline void vmwrite_error(unsigned long field, unsigned long value)
368 {
369         vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
370                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
371 }
372
373 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
374 {
375         vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
376 }
377
378 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
379 {
380         vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
381 }
382
383 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
384 {
385         vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
386                         ext, vpid, gva);
387 }
388
389 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
390 {
391         vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
392                         ext, eptp, gpa);
393 }
394
395 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
396 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
397 /*
398  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
399  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
400  */
401 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
402
403 /*
404  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
405  * can find which vCPU should be waken up.
406  */
407 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
408 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
409
410 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
411 static DEFINE_SPINLOCK(vmx_vpid_lock);
412
413 struct vmcs_config vmcs_config;
414 struct vmx_capability vmx_capability;
415
416 #define VMX_SEGMENT_FIELD(seg)                                  \
417         [VCPU_SREG_##seg] = {                                   \
418                 .selector = GUEST_##seg##_SELECTOR,             \
419                 .base = GUEST_##seg##_BASE,                     \
420                 .limit = GUEST_##seg##_LIMIT,                   \
421                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
422         }
423
424 static const struct kvm_vmx_segment_field {
425         unsigned selector;
426         unsigned base;
427         unsigned limit;
428         unsigned ar_bytes;
429 } kvm_vmx_segment_fields[] = {
430         VMX_SEGMENT_FIELD(CS),
431         VMX_SEGMENT_FIELD(DS),
432         VMX_SEGMENT_FIELD(ES),
433         VMX_SEGMENT_FIELD(FS),
434         VMX_SEGMENT_FIELD(GS),
435         VMX_SEGMENT_FIELD(SS),
436         VMX_SEGMENT_FIELD(TR),
437         VMX_SEGMENT_FIELD(LDTR),
438 };
439
440 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
441 {
442         vmx->segment_cache.bitmask = 0;
443 }
444
445 static unsigned long host_idt_base;
446
447 /*
448  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
449  * will emulate SYSCALL in legacy mode if the vendor string in guest
450  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
451  * support this emulation, IA32_STAR must always be included in
452  * vmx_msr_index[], even in i386 builds.
453  */
454 const u32 vmx_msr_index[] = {
455 #ifdef CONFIG_X86_64
456         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
457 #endif
458         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
459         MSR_IA32_TSX_CTRL,
460 };
461
462 #if IS_ENABLED(CONFIG_HYPERV)
463 static bool __read_mostly enlightened_vmcs = true;
464 module_param(enlightened_vmcs, bool, 0444);
465
466 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
467 static void check_ept_pointer_match(struct kvm *kvm)
468 {
469         struct kvm_vcpu *vcpu;
470         u64 tmp_eptp = INVALID_PAGE;
471         int i;
472
473         kvm_for_each_vcpu(i, vcpu, kvm) {
474                 if (!VALID_PAGE(tmp_eptp)) {
475                         tmp_eptp = to_vmx(vcpu)->ept_pointer;
476                 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
477                         to_kvm_vmx(kvm)->ept_pointers_match
478                                 = EPT_POINTERS_MISMATCH;
479                         return;
480                 }
481         }
482
483         to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
484 }
485
486 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
487                 void *data)
488 {
489         struct kvm_tlb_range *range = data;
490
491         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
492                         range->pages);
493 }
494
495 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
496                 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
497 {
498         u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
499
500         /*
501          * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
502          * of the base of EPT PML4 table, strip off EPT configuration
503          * information.
504          */
505         if (range)
506                 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
507                                 kvm_fill_hv_flush_list_func, (void *)range);
508         else
509                 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
510 }
511
512 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
513                 struct kvm_tlb_range *range)
514 {
515         struct kvm_vcpu *vcpu;
516         int ret = 0, i;
517
518         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
519
520         if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
521                 check_ept_pointer_match(kvm);
522
523         if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
524                 kvm_for_each_vcpu(i, vcpu, kvm) {
525                         /* If ept_pointer is invalid pointer, bypass flush request. */
526                         if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
527                                 ret |= __hv_remote_flush_tlb_with_range(
528                                         kvm, vcpu, range);
529                 }
530         } else {
531                 ret = __hv_remote_flush_tlb_with_range(kvm,
532                                 kvm_get_vcpu(kvm, 0), range);
533         }
534
535         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
536         return ret;
537 }
538 static int hv_remote_flush_tlb(struct kvm *kvm)
539 {
540         return hv_remote_flush_tlb_with_range(kvm, NULL);
541 }
542
543 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
544 {
545         struct hv_enlightened_vmcs *evmcs;
546         struct hv_partition_assist_pg **p_hv_pa_pg =
547                         &vcpu->kvm->arch.hyperv.hv_pa_pg;
548         /*
549          * Synthetic VM-Exit is not enabled in current code and so All
550          * evmcs in singe VM shares same assist page.
551          */
552         if (!*p_hv_pa_pg)
553                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
554
555         if (!*p_hv_pa_pg)
556                 return -ENOMEM;
557
558         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
559
560         evmcs->partition_assist_page =
561                 __pa(*p_hv_pa_pg);
562         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
563         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
564
565         return 0;
566 }
567
568 #endif /* IS_ENABLED(CONFIG_HYPERV) */
569
570 /*
571  * Comment's format: document - errata name - stepping - processor name.
572  * Refer from
573  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
574  */
575 static u32 vmx_preemption_cpu_tfms[] = {
576 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
577 0x000206E6,
578 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
579 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
580 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
581 0x00020652,
582 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
583 0x00020655,
584 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
585 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
586 /*
587  * 320767.pdf - AAP86  - B1 -
588  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
589  */
590 0x000106E5,
591 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
592 0x000106A0,
593 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
594 0x000106A1,
595 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
596 0x000106A4,
597  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
598  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
599  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
600 0x000106A5,
601  /* Xeon E3-1220 V2 */
602 0x000306A8,
603 };
604
605 static inline bool cpu_has_broken_vmx_preemption_timer(void)
606 {
607         u32 eax = cpuid_eax(0x00000001), i;
608
609         /* Clear the reserved bits */
610         eax &= ~(0x3U << 14 | 0xfU << 28);
611         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
612                 if (eax == vmx_preemption_cpu_tfms[i])
613                         return true;
614
615         return false;
616 }
617
618 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
619 {
620         return flexpriority_enabled && lapic_in_kernel(vcpu);
621 }
622
623 static inline bool report_flexpriority(void)
624 {
625         return flexpriority_enabled;
626 }
627
628 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
629 {
630         int i;
631
632         for (i = 0; i < vmx->nmsrs; ++i)
633                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
634                         return i;
635         return -1;
636 }
637
638 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
639 {
640         int i;
641
642         i = __find_msr_index(vmx, msr);
643         if (i >= 0)
644                 return &vmx->guest_msrs[i];
645         return NULL;
646 }
647
648 static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data)
649 {
650         int ret = 0;
651
652         u64 old_msr_data = msr->data;
653         msr->data = data;
654         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
655                 preempt_disable();
656                 ret = kvm_set_shared_msr(msr->index, msr->data,
657                                          msr->mask);
658                 preempt_enable();
659                 if (ret)
660                         msr->data = old_msr_data;
661         }
662         return ret;
663 }
664
665 #ifdef CONFIG_KEXEC_CORE
666 static void crash_vmclear_local_loaded_vmcss(void)
667 {
668         int cpu = raw_smp_processor_id();
669         struct loaded_vmcs *v;
670
671         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
672                             loaded_vmcss_on_cpu_link)
673                 vmcs_clear(v->vmcs);
674 }
675 #endif /* CONFIG_KEXEC_CORE */
676
677 static void __loaded_vmcs_clear(void *arg)
678 {
679         struct loaded_vmcs *loaded_vmcs = arg;
680         int cpu = raw_smp_processor_id();
681
682         if (loaded_vmcs->cpu != cpu)
683                 return; /* vcpu migration can race with cpu offline */
684         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
685                 per_cpu(current_vmcs, cpu) = NULL;
686
687         vmcs_clear(loaded_vmcs->vmcs);
688         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
689                 vmcs_clear(loaded_vmcs->shadow_vmcs);
690
691         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
692
693         /*
694          * Ensure all writes to loaded_vmcs, including deleting it from its
695          * current percpu list, complete before setting loaded_vmcs->vcpu to
696          * -1, otherwise a different cpu can see vcpu == -1 first and add
697          * loaded_vmcs to its percpu list before it's deleted from this cpu's
698          * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
699          */
700         smp_wmb();
701
702         loaded_vmcs->cpu = -1;
703         loaded_vmcs->launched = 0;
704 }
705
706 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
707 {
708         int cpu = loaded_vmcs->cpu;
709
710         if (cpu != -1)
711                 smp_call_function_single(cpu,
712                          __loaded_vmcs_clear, loaded_vmcs, 1);
713 }
714
715 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
716                                        unsigned field)
717 {
718         bool ret;
719         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
720
721         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
722                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
723                 vmx->segment_cache.bitmask = 0;
724         }
725         ret = vmx->segment_cache.bitmask & mask;
726         vmx->segment_cache.bitmask |= mask;
727         return ret;
728 }
729
730 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
731 {
732         u16 *p = &vmx->segment_cache.seg[seg].selector;
733
734         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
735                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
736         return *p;
737 }
738
739 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
740 {
741         ulong *p = &vmx->segment_cache.seg[seg].base;
742
743         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
744                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
745         return *p;
746 }
747
748 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
749 {
750         u32 *p = &vmx->segment_cache.seg[seg].limit;
751
752         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
753                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
754         return *p;
755 }
756
757 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
758 {
759         u32 *p = &vmx->segment_cache.seg[seg].ar;
760
761         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
762                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
763         return *p;
764 }
765
766 void update_exception_bitmap(struct kvm_vcpu *vcpu)
767 {
768         u32 eb;
769
770         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
771              (1u << DB_VECTOR) | (1u << AC_VECTOR);
772         /*
773          * Guest access to VMware backdoor ports could legitimately
774          * trigger #GP because of TSS I/O permission bitmap.
775          * We intercept those #GP and allow access to them anyway
776          * as VMware does.
777          */
778         if (enable_vmware_backdoor)
779                 eb |= (1u << GP_VECTOR);
780         if ((vcpu->guest_debug &
781              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
782             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
783                 eb |= 1u << BP_VECTOR;
784         if (to_vmx(vcpu)->rmode.vm86_active)
785                 eb = ~0;
786         if (enable_ept)
787                 eb &= ~(1u << PF_VECTOR);
788
789         /* When we are running a nested L2 guest and L1 specified for it a
790          * certain exception bitmap, we must trap the same exceptions and pass
791          * them to L1. When running L2, we will only handle the exceptions
792          * specified above if L1 did not want them.
793          */
794         if (is_guest_mode(vcpu))
795                 eb |= get_vmcs12(vcpu)->exception_bitmap;
796
797         vmcs_write32(EXCEPTION_BITMAP, eb);
798 }
799
800 /*
801  * Check if MSR is intercepted for currently loaded MSR bitmap.
802  */
803 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
804 {
805         unsigned long *msr_bitmap;
806         int f = sizeof(unsigned long);
807
808         if (!cpu_has_vmx_msr_bitmap())
809                 return true;
810
811         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
812
813         if (msr <= 0x1fff) {
814                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
815         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
816                 msr &= 0x1fff;
817                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
818         }
819
820         return true;
821 }
822
823 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
824                 unsigned long entry, unsigned long exit)
825 {
826         vm_entry_controls_clearbit(vmx, entry);
827         vm_exit_controls_clearbit(vmx, exit);
828 }
829
830 int vmx_find_msr_index(struct vmx_msrs *m, u32 msr)
831 {
832         unsigned int i;
833
834         for (i = 0; i < m->nr; ++i) {
835                 if (m->val[i].index == msr)
836                         return i;
837         }
838         return -ENOENT;
839 }
840
841 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
842 {
843         int i;
844         struct msr_autoload *m = &vmx->msr_autoload;
845
846         switch (msr) {
847         case MSR_EFER:
848                 if (cpu_has_load_ia32_efer()) {
849                         clear_atomic_switch_msr_special(vmx,
850                                         VM_ENTRY_LOAD_IA32_EFER,
851                                         VM_EXIT_LOAD_IA32_EFER);
852                         return;
853                 }
854                 break;
855         case MSR_CORE_PERF_GLOBAL_CTRL:
856                 if (cpu_has_load_perf_global_ctrl()) {
857                         clear_atomic_switch_msr_special(vmx,
858                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
859                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
860                         return;
861                 }
862                 break;
863         }
864         i = vmx_find_msr_index(&m->guest, msr);
865         if (i < 0)
866                 goto skip_guest;
867         --m->guest.nr;
868         m->guest.val[i] = m->guest.val[m->guest.nr];
869         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
870
871 skip_guest:
872         i = vmx_find_msr_index(&m->host, msr);
873         if (i < 0)
874                 return;
875
876         --m->host.nr;
877         m->host.val[i] = m->host.val[m->host.nr];
878         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
879 }
880
881 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
882                 unsigned long entry, unsigned long exit,
883                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
884                 u64 guest_val, u64 host_val)
885 {
886         vmcs_write64(guest_val_vmcs, guest_val);
887         if (host_val_vmcs != HOST_IA32_EFER)
888                 vmcs_write64(host_val_vmcs, host_val);
889         vm_entry_controls_setbit(vmx, entry);
890         vm_exit_controls_setbit(vmx, exit);
891 }
892
893 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
894                                   u64 guest_val, u64 host_val, bool entry_only)
895 {
896         int i, j = 0;
897         struct msr_autoload *m = &vmx->msr_autoload;
898
899         switch (msr) {
900         case MSR_EFER:
901                 if (cpu_has_load_ia32_efer()) {
902                         add_atomic_switch_msr_special(vmx,
903                                         VM_ENTRY_LOAD_IA32_EFER,
904                                         VM_EXIT_LOAD_IA32_EFER,
905                                         GUEST_IA32_EFER,
906                                         HOST_IA32_EFER,
907                                         guest_val, host_val);
908                         return;
909                 }
910                 break;
911         case MSR_CORE_PERF_GLOBAL_CTRL:
912                 if (cpu_has_load_perf_global_ctrl()) {
913                         add_atomic_switch_msr_special(vmx,
914                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
915                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
916                                         GUEST_IA32_PERF_GLOBAL_CTRL,
917                                         HOST_IA32_PERF_GLOBAL_CTRL,
918                                         guest_val, host_val);
919                         return;
920                 }
921                 break;
922         case MSR_IA32_PEBS_ENABLE:
923                 /* PEBS needs a quiescent period after being disabled (to write
924                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
925                  * provide that period, so a CPU could write host's record into
926                  * guest's memory.
927                  */
928                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
929         }
930
931         i = vmx_find_msr_index(&m->guest, msr);
932         if (!entry_only)
933                 j = vmx_find_msr_index(&m->host, msr);
934
935         if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) ||
936                 (j < 0 &&  m->host.nr == NR_LOADSTORE_MSRS)) {
937                 printk_once(KERN_WARNING "Not enough msr switch entries. "
938                                 "Can't add msr %x\n", msr);
939                 return;
940         }
941         if (i < 0) {
942                 i = m->guest.nr++;
943                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
944         }
945         m->guest.val[i].index = msr;
946         m->guest.val[i].value = guest_val;
947
948         if (entry_only)
949                 return;
950
951         if (j < 0) {
952                 j = m->host.nr++;
953                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
954         }
955         m->host.val[j].index = msr;
956         m->host.val[j].value = host_val;
957 }
958
959 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
960 {
961         u64 guest_efer = vmx->vcpu.arch.efer;
962         u64 ignore_bits = 0;
963
964         /* Shadow paging assumes NX to be available.  */
965         if (!enable_ept)
966                 guest_efer |= EFER_NX;
967
968         /*
969          * LMA and LME handled by hardware; SCE meaningless outside long mode.
970          */
971         ignore_bits |= EFER_SCE;
972 #ifdef CONFIG_X86_64
973         ignore_bits |= EFER_LMA | EFER_LME;
974         /* SCE is meaningful only in long mode on Intel */
975         if (guest_efer & EFER_LMA)
976                 ignore_bits &= ~(u64)EFER_SCE;
977 #endif
978
979         /*
980          * On EPT, we can't emulate NX, so we must switch EFER atomically.
981          * On CPUs that support "load IA32_EFER", always switch EFER
982          * atomically, since it's faster than switching it manually.
983          */
984         if (cpu_has_load_ia32_efer() ||
985             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
986                 if (!(guest_efer & EFER_LMA))
987                         guest_efer &= ~EFER_LME;
988                 if (guest_efer != host_efer)
989                         add_atomic_switch_msr(vmx, MSR_EFER,
990                                               guest_efer, host_efer, false);
991                 else
992                         clear_atomic_switch_msr(vmx, MSR_EFER);
993                 return false;
994         } else {
995                 clear_atomic_switch_msr(vmx, MSR_EFER);
996
997                 guest_efer &= ~ignore_bits;
998                 guest_efer |= host_efer & ignore_bits;
999
1000                 vmx->guest_msrs[efer_offset].data = guest_efer;
1001                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1002
1003                 return true;
1004         }
1005 }
1006
1007 #ifdef CONFIG_X86_32
1008 /*
1009  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1010  * VMCS rather than the segment table.  KVM uses this helper to figure
1011  * out the current bases to poke them into the VMCS before entry.
1012  */
1013 static unsigned long segment_base(u16 selector)
1014 {
1015         struct desc_struct *table;
1016         unsigned long v;
1017
1018         if (!(selector & ~SEGMENT_RPL_MASK))
1019                 return 0;
1020
1021         table = get_current_gdt_ro();
1022
1023         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1024                 u16 ldt_selector = kvm_read_ldt();
1025
1026                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1027                         return 0;
1028
1029                 table = (struct desc_struct *)segment_base(ldt_selector);
1030         }
1031         v = get_desc_base(&table[selector >> 3]);
1032         return v;
1033 }
1034 #endif
1035
1036 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1037 {
1038         return vmx_pt_mode_is_host_guest() &&
1039                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1040 }
1041
1042 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1043 {
1044         u32 i;
1045
1046         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1047         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1048         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1049         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1050         for (i = 0; i < addr_range; i++) {
1051                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1052                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1053         }
1054 }
1055
1056 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1057 {
1058         u32 i;
1059
1060         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1061         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1062         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1063         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1064         for (i = 0; i < addr_range; i++) {
1065                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1066                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1067         }
1068 }
1069
1070 static void pt_guest_enter(struct vcpu_vmx *vmx)
1071 {
1072         if (vmx_pt_mode_is_system())
1073                 return;
1074
1075         /*
1076          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1077          * Save host state before VM entry.
1078          */
1079         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1080         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1081                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1082                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1083                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1084         }
1085 }
1086
1087 static void pt_guest_exit(struct vcpu_vmx *vmx)
1088 {
1089         if (vmx_pt_mode_is_system())
1090                 return;
1091
1092         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1093                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1094                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1095         }
1096
1097         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1098         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1099 }
1100
1101 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1102                         unsigned long fs_base, unsigned long gs_base)
1103 {
1104         if (unlikely(fs_sel != host->fs_sel)) {
1105                 if (!(fs_sel & 7))
1106                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1107                 else
1108                         vmcs_write16(HOST_FS_SELECTOR, 0);
1109                 host->fs_sel = fs_sel;
1110         }
1111         if (unlikely(gs_sel != host->gs_sel)) {
1112                 if (!(gs_sel & 7))
1113                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1114                 else
1115                         vmcs_write16(HOST_GS_SELECTOR, 0);
1116                 host->gs_sel = gs_sel;
1117         }
1118         if (unlikely(fs_base != host->fs_base)) {
1119                 vmcs_writel(HOST_FS_BASE, fs_base);
1120                 host->fs_base = fs_base;
1121         }
1122         if (unlikely(gs_base != host->gs_base)) {
1123                 vmcs_writel(HOST_GS_BASE, gs_base);
1124                 host->gs_base = gs_base;
1125         }
1126 }
1127
1128 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1129 {
1130         struct vcpu_vmx *vmx = to_vmx(vcpu);
1131         struct vmcs_host_state *host_state;
1132 #ifdef CONFIG_X86_64
1133         int cpu = raw_smp_processor_id();
1134 #endif
1135         unsigned long fs_base, gs_base;
1136         u16 fs_sel, gs_sel;
1137         int i;
1138
1139         vmx->req_immediate_exit = false;
1140
1141         /*
1142          * Note that guest MSRs to be saved/restored can also be changed
1143          * when guest state is loaded. This happens when guest transitions
1144          * to/from long-mode by setting MSR_EFER.LMA.
1145          */
1146         if (!vmx->guest_msrs_ready) {
1147                 vmx->guest_msrs_ready = true;
1148                 for (i = 0; i < vmx->save_nmsrs; ++i)
1149                         kvm_set_shared_msr(vmx->guest_msrs[i].index,
1150                                            vmx->guest_msrs[i].data,
1151                                            vmx->guest_msrs[i].mask);
1152
1153         }
1154
1155         if (vmx->nested.need_vmcs12_to_shadow_sync)
1156                 nested_sync_vmcs12_to_shadow(vcpu);
1157
1158         if (vmx->guest_state_loaded)
1159                 return;
1160
1161         host_state = &vmx->loaded_vmcs->host_state;
1162
1163         /*
1164          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1165          * allow segment selectors with cpl > 0 or ti == 1.
1166          */
1167         host_state->ldt_sel = kvm_read_ldt();
1168
1169 #ifdef CONFIG_X86_64
1170         savesegment(ds, host_state->ds_sel);
1171         savesegment(es, host_state->es_sel);
1172
1173         gs_base = cpu_kernelmode_gs_base(cpu);
1174         if (likely(is_64bit_mm(current->mm))) {
1175                 save_fsgs_for_kvm();
1176                 fs_sel = current->thread.fsindex;
1177                 gs_sel = current->thread.gsindex;
1178                 fs_base = current->thread.fsbase;
1179                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1180         } else {
1181                 savesegment(fs, fs_sel);
1182                 savesegment(gs, gs_sel);
1183                 fs_base = read_msr(MSR_FS_BASE);
1184                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1185         }
1186
1187         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1188 #else
1189         savesegment(fs, fs_sel);
1190         savesegment(gs, gs_sel);
1191         fs_base = segment_base(fs_sel);
1192         gs_base = segment_base(gs_sel);
1193 #endif
1194
1195         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1196         vmx->guest_state_loaded = true;
1197 }
1198
1199 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1200 {
1201         struct vmcs_host_state *host_state;
1202
1203         if (!vmx->guest_state_loaded)
1204                 return;
1205
1206         host_state = &vmx->loaded_vmcs->host_state;
1207
1208         ++vmx->vcpu.stat.host_state_reload;
1209
1210 #ifdef CONFIG_X86_64
1211         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1212 #endif
1213         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1214                 kvm_load_ldt(host_state->ldt_sel);
1215 #ifdef CONFIG_X86_64
1216                 load_gs_index(host_state->gs_sel);
1217 #else
1218                 loadsegment(gs, host_state->gs_sel);
1219 #endif
1220         }
1221         if (host_state->fs_sel & 7)
1222                 loadsegment(fs, host_state->fs_sel);
1223 #ifdef CONFIG_X86_64
1224         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1225                 loadsegment(ds, host_state->ds_sel);
1226                 loadsegment(es, host_state->es_sel);
1227         }
1228 #endif
1229         invalidate_tss_limit();
1230 #ifdef CONFIG_X86_64
1231         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1232 #endif
1233         load_fixmap_gdt(raw_smp_processor_id());
1234         vmx->guest_state_loaded = false;
1235         vmx->guest_msrs_ready = false;
1236 }
1237
1238 #ifdef CONFIG_X86_64
1239 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1240 {
1241         preempt_disable();
1242         if (vmx->guest_state_loaded)
1243                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1244         preempt_enable();
1245         return vmx->msr_guest_kernel_gs_base;
1246 }
1247
1248 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1249 {
1250         preempt_disable();
1251         if (vmx->guest_state_loaded)
1252                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1253         preempt_enable();
1254         vmx->msr_guest_kernel_gs_base = data;
1255 }
1256 #endif
1257
1258 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1259 {
1260         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1261         struct pi_desc old, new;
1262         unsigned int dest;
1263
1264         /*
1265          * In case of hot-plug or hot-unplug, we may have to undo
1266          * vmx_vcpu_pi_put even if there is no assigned device.  And we
1267          * always keep PI.NDST up to date for simplicity: it makes the
1268          * code easier, and CPU migration is not a fast path.
1269          */
1270         if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1271                 return;
1272
1273         /*
1274          * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1275          * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1276          * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1277          * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1278          * correctly.
1279          */
1280         if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1281                 pi_clear_sn(pi_desc);
1282                 goto after_clear_sn;
1283         }
1284
1285         /* The full case.  */
1286         do {
1287                 old.control = new.control = pi_desc->control;
1288
1289                 dest = cpu_physical_id(cpu);
1290
1291                 if (x2apic_enabled())
1292                         new.ndst = dest;
1293                 else
1294                         new.ndst = (dest << 8) & 0xFF00;
1295
1296                 new.sn = 0;
1297         } while (cmpxchg64(&pi_desc->control, old.control,
1298                            new.control) != old.control);
1299
1300 after_clear_sn:
1301
1302         /*
1303          * Clear SN before reading the bitmap.  The VT-d firmware
1304          * writes the bitmap and reads SN atomically (5.2.3 in the
1305          * spec), so it doesn't really have a memory barrier that
1306          * pairs with this, but we cannot do that and we need one.
1307          */
1308         smp_mb__after_atomic();
1309
1310         if (!pi_is_pir_empty(pi_desc))
1311                 pi_set_on(pi_desc);
1312 }
1313
1314 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1315                         struct loaded_vmcs *buddy)
1316 {
1317         struct vcpu_vmx *vmx = to_vmx(vcpu);
1318         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1319         struct vmcs *prev;
1320
1321         if (!already_loaded) {
1322                 loaded_vmcs_clear(vmx->loaded_vmcs);
1323                 local_irq_disable();
1324
1325                 /*
1326                  * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1327                  * this cpu's percpu list, otherwise it may not yet be deleted
1328                  * from its previous cpu's percpu list.  Pairs with the
1329                  * smb_wmb() in __loaded_vmcs_clear().
1330                  */
1331                 smp_rmb();
1332
1333                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1334                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1335                 local_irq_enable();
1336         }
1337
1338         prev = per_cpu(current_vmcs, cpu);
1339         if (prev != vmx->loaded_vmcs->vmcs) {
1340                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1341                 vmcs_load(vmx->loaded_vmcs->vmcs);
1342
1343                 /*
1344                  * No indirect branch prediction barrier needed when switching
1345                  * the active VMCS within a guest, e.g. on nested VM-Enter.
1346                  * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1347                  */
1348                 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1349                         indirect_branch_prediction_barrier();
1350         }
1351
1352         if (!already_loaded) {
1353                 void *gdt = get_current_gdt_ro();
1354                 unsigned long sysenter_esp;
1355
1356                 /*
1357                  * Flush all EPTP/VPID contexts, the new pCPU may have stale
1358                  * TLB entries from its previous association with the vCPU.
1359                  */
1360                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1361
1362                 /*
1363                  * Linux uses per-cpu TSS and GDT, so set these when switching
1364                  * processors.  See 22.2.4.
1365                  */
1366                 vmcs_writel(HOST_TR_BASE,
1367                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1368                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1369
1370                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1371                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1372
1373                 vmx->loaded_vmcs->cpu = cpu;
1374         }
1375
1376         /* Setup TSC multiplier */
1377         if (kvm_has_tsc_control &&
1378             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1379                 decache_tsc_multiplier(vmx);
1380 }
1381
1382 /*
1383  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1384  * vcpu mutex is already taken.
1385  */
1386 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1387 {
1388         struct vcpu_vmx *vmx = to_vmx(vcpu);
1389
1390         vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1391
1392         vmx_vcpu_pi_load(vcpu, cpu);
1393
1394         vmx->host_debugctlmsr = get_debugctlmsr();
1395 }
1396
1397 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1398 {
1399         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1400
1401         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1402                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
1403                 !kvm_vcpu_apicv_active(vcpu))
1404                 return;
1405
1406         /* Set SN when the vCPU is preempted */
1407         if (vcpu->preempted)
1408                 pi_set_sn(pi_desc);
1409 }
1410
1411 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1412 {
1413         vmx_vcpu_pi_put(vcpu);
1414
1415         vmx_prepare_switch_to_host(to_vmx(vcpu));
1416 }
1417
1418 static bool emulation_required(struct kvm_vcpu *vcpu)
1419 {
1420         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1421 }
1422
1423 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1424 {
1425         struct vcpu_vmx *vmx = to_vmx(vcpu);
1426         unsigned long rflags, save_rflags;
1427
1428         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1429                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1430                 rflags = vmcs_readl(GUEST_RFLAGS);
1431                 if (vmx->rmode.vm86_active) {
1432                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1433                         save_rflags = vmx->rmode.save_rflags;
1434                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1435                 }
1436                 vmx->rflags = rflags;
1437         }
1438         return vmx->rflags;
1439 }
1440
1441 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1442 {
1443         struct vcpu_vmx *vmx = to_vmx(vcpu);
1444         unsigned long old_rflags;
1445
1446         if (enable_unrestricted_guest) {
1447                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1448                 vmx->rflags = rflags;
1449                 vmcs_writel(GUEST_RFLAGS, rflags);
1450                 return;
1451         }
1452
1453         old_rflags = vmx_get_rflags(vcpu);
1454         vmx->rflags = rflags;
1455         if (vmx->rmode.vm86_active) {
1456                 vmx->rmode.save_rflags = rflags;
1457                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1458         }
1459         vmcs_writel(GUEST_RFLAGS, rflags);
1460
1461         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1462                 vmx->emulation_required = emulation_required(vcpu);
1463 }
1464
1465 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1466 {
1467         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1468         int ret = 0;
1469
1470         if (interruptibility & GUEST_INTR_STATE_STI)
1471                 ret |= KVM_X86_SHADOW_INT_STI;
1472         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1473                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1474
1475         return ret;
1476 }
1477
1478 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1479 {
1480         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1481         u32 interruptibility = interruptibility_old;
1482
1483         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1484
1485         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1486                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1487         else if (mask & KVM_X86_SHADOW_INT_STI)
1488                 interruptibility |= GUEST_INTR_STATE_STI;
1489
1490         if ((interruptibility != interruptibility_old))
1491                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1492 }
1493
1494 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1495 {
1496         struct vcpu_vmx *vmx = to_vmx(vcpu);
1497         unsigned long value;
1498
1499         /*
1500          * Any MSR write that attempts to change bits marked reserved will
1501          * case a #GP fault.
1502          */
1503         if (data & vmx->pt_desc.ctl_bitmask)
1504                 return 1;
1505
1506         /*
1507          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1508          * result in a #GP unless the same write also clears TraceEn.
1509          */
1510         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1511                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1512                 return 1;
1513
1514         /*
1515          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1516          * and FabricEn would cause #GP, if
1517          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1518          */
1519         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1520                 !(data & RTIT_CTL_FABRIC_EN) &&
1521                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1522                                         PT_CAP_single_range_output))
1523                 return 1;
1524
1525         /*
1526          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1527          * utilize encodings marked reserved will casue a #GP fault.
1528          */
1529         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1530         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1531                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1532                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1533                 return 1;
1534         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1535                                                 PT_CAP_cycle_thresholds);
1536         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1537                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1538                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1539                 return 1;
1540         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1541         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1542                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1543                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1544                 return 1;
1545
1546         /*
1547          * If ADDRx_CFG is reserved or the encodings is >2 will
1548          * cause a #GP fault.
1549          */
1550         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1551         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1552                 return 1;
1553         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1554         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1555                 return 1;
1556         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1557         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1558                 return 1;
1559         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1560         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1561                 return 1;
1562
1563         return 0;
1564 }
1565
1566 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1567 {
1568         unsigned long rip, orig_rip;
1569
1570         /*
1571          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1572          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1573          * set when EPT misconfig occurs.  In practice, real hardware updates
1574          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1575          * (namely Hyper-V) don't set it due to it being undefined behavior,
1576          * i.e. we end up advancing IP with some random value.
1577          */
1578         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1579             to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1580                 orig_rip = kvm_rip_read(vcpu);
1581                 rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1582 #ifdef CONFIG_X86_64
1583                 /*
1584                  * We need to mask out the high 32 bits of RIP if not in 64-bit
1585                  * mode, but just finding out that we are in 64-bit mode is
1586                  * quite expensive.  Only do it if there was a carry.
1587                  */
1588                 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1589                         rip = (u32)rip;
1590 #endif
1591                 kvm_rip_write(vcpu, rip);
1592         } else {
1593                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1594                         return 0;
1595         }
1596
1597         /* skipping an emulated instruction also counts */
1598         vmx_set_interrupt_shadow(vcpu, 0);
1599
1600         return 1;
1601 }
1602
1603
1604 /*
1605  * Recognizes a pending MTF VM-exit and records the nested state for later
1606  * delivery.
1607  */
1608 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1609 {
1610         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1611         struct vcpu_vmx *vmx = to_vmx(vcpu);
1612
1613         if (!is_guest_mode(vcpu))
1614                 return;
1615
1616         /*
1617          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1618          * T-bit traps. As instruction emulation is completed (i.e. at the
1619          * instruction boundary), any #DB exception pending delivery must be a
1620          * debug-trap. Record the pending MTF state to be delivered in
1621          * vmx_check_nested_events().
1622          */
1623         if (nested_cpu_has_mtf(vmcs12) &&
1624             (!vcpu->arch.exception.pending ||
1625              vcpu->arch.exception.nr == DB_VECTOR))
1626                 vmx->nested.mtf_pending = true;
1627         else
1628                 vmx->nested.mtf_pending = false;
1629 }
1630
1631 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1632 {
1633         vmx_update_emulated_instruction(vcpu);
1634         return skip_emulated_instruction(vcpu);
1635 }
1636
1637 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1638 {
1639         /*
1640          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1641          * explicitly skip the instruction because if the HLT state is set,
1642          * then the instruction is already executing and RIP has already been
1643          * advanced.
1644          */
1645         if (kvm_hlt_in_guest(vcpu->kvm) &&
1646                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1647                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1648 }
1649
1650 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1651 {
1652         struct vcpu_vmx *vmx = to_vmx(vcpu);
1653         unsigned nr = vcpu->arch.exception.nr;
1654         bool has_error_code = vcpu->arch.exception.has_error_code;
1655         u32 error_code = vcpu->arch.exception.error_code;
1656         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1657
1658         kvm_deliver_exception_payload(vcpu);
1659
1660         if (has_error_code) {
1661                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1662                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1663         }
1664
1665         if (vmx->rmode.vm86_active) {
1666                 int inc_eip = 0;
1667                 if (kvm_exception_is_soft(nr))
1668                         inc_eip = vcpu->arch.event_exit_inst_len;
1669                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1670                 return;
1671         }
1672
1673         WARN_ON_ONCE(vmx->emulation_required);
1674
1675         if (kvm_exception_is_soft(nr)) {
1676                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1677                              vmx->vcpu.arch.event_exit_inst_len);
1678                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1679         } else
1680                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1681
1682         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1683
1684         vmx_clear_hlt(vcpu);
1685 }
1686
1687 /*
1688  * Swap MSR entry in host/guest MSR entry array.
1689  */
1690 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1691 {
1692         struct shared_msr_entry tmp;
1693
1694         tmp = vmx->guest_msrs[to];
1695         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1696         vmx->guest_msrs[from] = tmp;
1697 }
1698
1699 /*
1700  * Set up the vmcs to automatically save and restore system
1701  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1702  * mode, as fiddling with msrs is very expensive.
1703  */
1704 static void setup_msrs(struct vcpu_vmx *vmx)
1705 {
1706         int save_nmsrs, index;
1707
1708         save_nmsrs = 0;
1709 #ifdef CONFIG_X86_64
1710         /*
1711          * The SYSCALL MSRs are only needed on long mode guests, and only
1712          * when EFER.SCE is set.
1713          */
1714         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1715                 index = __find_msr_index(vmx, MSR_STAR);
1716                 if (index >= 0)
1717                         move_msr_up(vmx, index, save_nmsrs++);
1718                 index = __find_msr_index(vmx, MSR_LSTAR);
1719                 if (index >= 0)
1720                         move_msr_up(vmx, index, save_nmsrs++);
1721                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1722                 if (index >= 0)
1723                         move_msr_up(vmx, index, save_nmsrs++);
1724         }
1725 #endif
1726         index = __find_msr_index(vmx, MSR_EFER);
1727         if (index >= 0 && update_transition_efer(vmx, index))
1728                 move_msr_up(vmx, index, save_nmsrs++);
1729         index = __find_msr_index(vmx, MSR_TSC_AUX);
1730         if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1731                 move_msr_up(vmx, index, save_nmsrs++);
1732         index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL);
1733         if (index >= 0)
1734                 move_msr_up(vmx, index, save_nmsrs++);
1735
1736         vmx->save_nmsrs = save_nmsrs;
1737         vmx->guest_msrs_ready = false;
1738
1739         if (cpu_has_vmx_msr_bitmap())
1740                 vmx_update_msr_bitmap(&vmx->vcpu);
1741 }
1742
1743 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1744 {
1745         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1746         u64 g_tsc_offset = 0;
1747
1748         /*
1749          * We're here if L1 chose not to trap WRMSR to TSC. According
1750          * to the spec, this should set L1's TSC; The offset that L1
1751          * set for L2 remains unchanged, and still needs to be added
1752          * to the newly set TSC to get L2's TSC.
1753          */
1754         if (is_guest_mode(vcpu) &&
1755             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1756                 g_tsc_offset = vmcs12->tsc_offset;
1757
1758         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1759                                    vcpu->arch.tsc_offset - g_tsc_offset,
1760                                    offset);
1761         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1762         return offset + g_tsc_offset;
1763 }
1764
1765 /*
1766  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1767  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1768  * all guests if the "nested" module option is off, and can also be disabled
1769  * for a single guest by disabling its VMX cpuid bit.
1770  */
1771 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1772 {
1773         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1774 }
1775
1776 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1777                                                  uint64_t val)
1778 {
1779         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1780
1781         return !(val & ~valid_bits);
1782 }
1783
1784 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1785 {
1786         switch (msr->index) {
1787         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1788                 if (!nested)
1789                         return 1;
1790                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1791         default:
1792                 return 1;
1793         }
1794 }
1795
1796 /*
1797  * Reads an msr value (of 'msr_index') into 'pdata'.
1798  * Returns 0 on success, non-0 otherwise.
1799  * Assumes vcpu_load() was already called.
1800  */
1801 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1802 {
1803         struct vcpu_vmx *vmx = to_vmx(vcpu);
1804         struct shared_msr_entry *msr;
1805         u32 index;
1806
1807         switch (msr_info->index) {
1808 #ifdef CONFIG_X86_64
1809         case MSR_FS_BASE:
1810                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1811                 break;
1812         case MSR_GS_BASE:
1813                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1814                 break;
1815         case MSR_KERNEL_GS_BASE:
1816                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1817                 break;
1818 #endif
1819         case MSR_EFER:
1820                 return kvm_get_msr_common(vcpu, msr_info);
1821         case MSR_IA32_TSX_CTRL:
1822                 if (!msr_info->host_initiated &&
1823                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1824                         return 1;
1825                 goto find_shared_msr;
1826         case MSR_IA32_UMWAIT_CONTROL:
1827                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1828                         return 1;
1829
1830                 msr_info->data = vmx->msr_ia32_umwait_control;
1831                 break;
1832         case MSR_IA32_SPEC_CTRL:
1833                 if (!msr_info->host_initiated &&
1834                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1835                         return 1;
1836
1837                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1838                 break;
1839         case MSR_IA32_SYSENTER_CS:
1840                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1841                 break;
1842         case MSR_IA32_SYSENTER_EIP:
1843                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1844                 break;
1845         case MSR_IA32_SYSENTER_ESP:
1846                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1847                 break;
1848         case MSR_IA32_BNDCFGS:
1849                 if (!kvm_mpx_supported() ||
1850                     (!msr_info->host_initiated &&
1851                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1852                         return 1;
1853                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1854                 break;
1855         case MSR_IA32_MCG_EXT_CTL:
1856                 if (!msr_info->host_initiated &&
1857                     !(vmx->msr_ia32_feature_control &
1858                       FEAT_CTL_LMCE_ENABLED))
1859                         return 1;
1860                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1861                 break;
1862         case MSR_IA32_FEAT_CTL:
1863                 msr_info->data = vmx->msr_ia32_feature_control;
1864                 break;
1865         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1866                 if (!nested_vmx_allowed(vcpu))
1867                         return 1;
1868                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1869                                     &msr_info->data))
1870                         return 1;
1871                 /*
1872                  * Enlightened VMCS v1 doesn't have certain fields, but buggy
1873                  * Hyper-V versions are still trying to use corresponding
1874                  * features when they are exposed. Filter out the essential
1875                  * minimum.
1876                  */
1877                 if (!msr_info->host_initiated &&
1878                     vmx->nested.enlightened_vmcs_enabled)
1879                         nested_evmcs_filter_control_msr(msr_info->index,
1880                                                         &msr_info->data);
1881                 break;
1882         case MSR_IA32_RTIT_CTL:
1883                 if (!vmx_pt_mode_is_host_guest())
1884                         return 1;
1885                 msr_info->data = vmx->pt_desc.guest.ctl;
1886                 break;
1887         case MSR_IA32_RTIT_STATUS:
1888                 if (!vmx_pt_mode_is_host_guest())
1889                         return 1;
1890                 msr_info->data = vmx->pt_desc.guest.status;
1891                 break;
1892         case MSR_IA32_RTIT_CR3_MATCH:
1893                 if (!vmx_pt_mode_is_host_guest() ||
1894                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1895                                                 PT_CAP_cr3_filtering))
1896                         return 1;
1897                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1898                 break;
1899         case MSR_IA32_RTIT_OUTPUT_BASE:
1900                 if (!vmx_pt_mode_is_host_guest() ||
1901                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1902                                         PT_CAP_topa_output) &&
1903                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1904                                         PT_CAP_single_range_output)))
1905                         return 1;
1906                 msr_info->data = vmx->pt_desc.guest.output_base;
1907                 break;
1908         case MSR_IA32_RTIT_OUTPUT_MASK:
1909                 if (!vmx_pt_mode_is_host_guest() ||
1910                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1911                                         PT_CAP_topa_output) &&
1912                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1913                                         PT_CAP_single_range_output)))
1914                         return 1;
1915                 msr_info->data = vmx->pt_desc.guest.output_mask;
1916                 break;
1917         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1918                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1919                 if (!vmx_pt_mode_is_host_guest() ||
1920                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1921                                         PT_CAP_num_address_ranges)))
1922                         return 1;
1923                 if (index % 2)
1924                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1925                 else
1926                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1927                 break;
1928         case MSR_TSC_AUX:
1929                 if (!msr_info->host_initiated &&
1930                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1931                         return 1;
1932                 goto find_shared_msr;
1933         default:
1934         find_shared_msr:
1935                 msr = find_msr_entry(vmx, msr_info->index);
1936                 if (msr) {
1937                         msr_info->data = msr->data;
1938                         break;
1939                 }
1940                 return kvm_get_msr_common(vcpu, msr_info);
1941         }
1942
1943         return 0;
1944 }
1945
1946 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1947                                                     u64 data)
1948 {
1949 #ifdef CONFIG_X86_64
1950         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1951                 return (u32)data;
1952 #endif
1953         return (unsigned long)data;
1954 }
1955
1956 /*
1957  * Writes msr value into the appropriate "register".
1958  * Returns 0 on success, non-0 otherwise.
1959  * Assumes vcpu_load() was already called.
1960  */
1961 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1962 {
1963         struct vcpu_vmx *vmx = to_vmx(vcpu);
1964         struct shared_msr_entry *msr;
1965         int ret = 0;
1966         u32 msr_index = msr_info->index;
1967         u64 data = msr_info->data;
1968         u32 index;
1969
1970         switch (msr_index) {
1971         case MSR_EFER:
1972                 ret = kvm_set_msr_common(vcpu, msr_info);
1973                 break;
1974 #ifdef CONFIG_X86_64
1975         case MSR_FS_BASE:
1976                 vmx_segment_cache_clear(vmx);
1977                 vmcs_writel(GUEST_FS_BASE, data);
1978                 break;
1979         case MSR_GS_BASE:
1980                 vmx_segment_cache_clear(vmx);
1981                 vmcs_writel(GUEST_GS_BASE, data);
1982                 break;
1983         case MSR_KERNEL_GS_BASE:
1984                 vmx_write_guest_kernel_gs_base(vmx, data);
1985                 break;
1986 #endif
1987         case MSR_IA32_SYSENTER_CS:
1988                 if (is_guest_mode(vcpu))
1989                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
1990                 vmcs_write32(GUEST_SYSENTER_CS, data);
1991                 break;
1992         case MSR_IA32_SYSENTER_EIP:
1993                 if (is_guest_mode(vcpu)) {
1994                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1995                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
1996                 }
1997                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1998                 break;
1999         case MSR_IA32_SYSENTER_ESP:
2000                 if (is_guest_mode(vcpu)) {
2001                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2002                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
2003                 }
2004                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2005                 break;
2006         case MSR_IA32_DEBUGCTLMSR:
2007                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2008                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
2009                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2010
2011                 ret = kvm_set_msr_common(vcpu, msr_info);
2012                 break;
2013
2014         case MSR_IA32_BNDCFGS:
2015                 if (!kvm_mpx_supported() ||
2016                     (!msr_info->host_initiated &&
2017                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2018                         return 1;
2019                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2020                     (data & MSR_IA32_BNDCFGS_RSVD))
2021                         return 1;
2022                 vmcs_write64(GUEST_BNDCFGS, data);
2023                 break;
2024         case MSR_IA32_UMWAIT_CONTROL:
2025                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2026                         return 1;
2027
2028                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2029                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2030                         return 1;
2031
2032                 vmx->msr_ia32_umwait_control = data;
2033                 break;
2034         case MSR_IA32_SPEC_CTRL:
2035                 if (!msr_info->host_initiated &&
2036                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2037                         return 1;
2038
2039                 if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
2040                         return 1;
2041
2042                 vmx->spec_ctrl = data;
2043                 if (!data)
2044                         break;
2045
2046                 /*
2047                  * For non-nested:
2048                  * When it's written (to non-zero) for the first time, pass
2049                  * it through.
2050                  *
2051                  * For nested:
2052                  * The handling of the MSR bitmap for L2 guests is done in
2053                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2054                  * vmcs02.msr_bitmap here since it gets completely overwritten
2055                  * in the merging. We update the vmcs01 here for L1 as well
2056                  * since it will end up touching the MSR anyway now.
2057                  */
2058                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2059                                               MSR_IA32_SPEC_CTRL,
2060                                               MSR_TYPE_RW);
2061                 break;
2062         case MSR_IA32_TSX_CTRL:
2063                 if (!msr_info->host_initiated &&
2064                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2065                         return 1;
2066                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2067                         return 1;
2068                 goto find_shared_msr;
2069         case MSR_IA32_PRED_CMD:
2070                 if (!msr_info->host_initiated &&
2071                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2072                         return 1;
2073
2074                 if (data & ~PRED_CMD_IBPB)
2075                         return 1;
2076                 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL))
2077                         return 1;
2078                 if (!data)
2079                         break;
2080
2081                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2082
2083                 /*
2084                  * For non-nested:
2085                  * When it's written (to non-zero) for the first time, pass
2086                  * it through.
2087                  *
2088                  * For nested:
2089                  * The handling of the MSR bitmap for L2 guests is done in
2090                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2091                  * vmcs02.msr_bitmap here since it gets completely overwritten
2092                  * in the merging.
2093                  */
2094                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2095                                               MSR_TYPE_W);
2096                 break;
2097         case MSR_IA32_CR_PAT:
2098                 if (!kvm_pat_valid(data))
2099                         return 1;
2100
2101                 if (is_guest_mode(vcpu) &&
2102                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2103                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2104
2105                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2106                         vmcs_write64(GUEST_IA32_PAT, data);
2107                         vcpu->arch.pat = data;
2108                         break;
2109                 }
2110                 ret = kvm_set_msr_common(vcpu, msr_info);
2111                 break;
2112         case MSR_IA32_TSC_ADJUST:
2113                 ret = kvm_set_msr_common(vcpu, msr_info);
2114                 break;
2115         case MSR_IA32_MCG_EXT_CTL:
2116                 if ((!msr_info->host_initiated &&
2117                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2118                        FEAT_CTL_LMCE_ENABLED)) ||
2119                     (data & ~MCG_EXT_CTL_LMCE_EN))
2120                         return 1;
2121                 vcpu->arch.mcg_ext_ctl = data;
2122                 break;
2123         case MSR_IA32_FEAT_CTL:
2124                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2125                     (to_vmx(vcpu)->msr_ia32_feature_control &
2126                      FEAT_CTL_LOCKED && !msr_info->host_initiated))
2127                         return 1;
2128                 vmx->msr_ia32_feature_control = data;
2129                 if (msr_info->host_initiated && data == 0)
2130                         vmx_leave_nested(vcpu);
2131                 break;
2132         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2133                 if (!msr_info->host_initiated)
2134                         return 1; /* they are read-only */
2135                 if (!nested_vmx_allowed(vcpu))
2136                         return 1;
2137                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2138         case MSR_IA32_RTIT_CTL:
2139                 if (!vmx_pt_mode_is_host_guest() ||
2140                         vmx_rtit_ctl_check(vcpu, data) ||
2141                         vmx->nested.vmxon)
2142                         return 1;
2143                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2144                 vmx->pt_desc.guest.ctl = data;
2145                 pt_update_intercept_for_msr(vmx);
2146                 break;
2147         case MSR_IA32_RTIT_STATUS:
2148                 if (!pt_can_write_msr(vmx))
2149                         return 1;
2150                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2151                         return 1;
2152                 vmx->pt_desc.guest.status = data;
2153                 break;
2154         case MSR_IA32_RTIT_CR3_MATCH:
2155                 if (!pt_can_write_msr(vmx))
2156                         return 1;
2157                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2158                                            PT_CAP_cr3_filtering))
2159                         return 1;
2160                 vmx->pt_desc.guest.cr3_match = data;
2161                 break;
2162         case MSR_IA32_RTIT_OUTPUT_BASE:
2163                 if (!pt_can_write_msr(vmx))
2164                         return 1;
2165                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2166                                            PT_CAP_topa_output) &&
2167                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2168                                            PT_CAP_single_range_output))
2169                         return 1;
2170                 if (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)
2171                         return 1;
2172                 vmx->pt_desc.guest.output_base = data;
2173                 break;
2174         case MSR_IA32_RTIT_OUTPUT_MASK:
2175                 if (!pt_can_write_msr(vmx))
2176                         return 1;
2177                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2178                                            PT_CAP_topa_output) &&
2179                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2180                                            PT_CAP_single_range_output))
2181                         return 1;
2182                 vmx->pt_desc.guest.output_mask = data;
2183                 break;
2184         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2185                 if (!pt_can_write_msr(vmx))
2186                         return 1;
2187                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2188                 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2189                                                        PT_CAP_num_address_ranges))
2190                         return 1;
2191                 if (is_noncanonical_address(data, vcpu))
2192                         return 1;
2193                 if (index % 2)
2194                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2195                 else
2196                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2197                 break;
2198         case MSR_TSC_AUX:
2199                 if (!msr_info->host_initiated &&
2200                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2201                         return 1;
2202                 /* Check reserved bit, higher 32 bits should be zero */
2203                 if ((data >> 32) != 0)
2204                         return 1;
2205                 goto find_shared_msr;
2206
2207         default:
2208         find_shared_msr:
2209                 msr = find_msr_entry(vmx, msr_index);
2210                 if (msr)
2211                         ret = vmx_set_guest_msr(vmx, msr, data);
2212                 else
2213                         ret = kvm_set_msr_common(vcpu, msr_info);
2214         }
2215
2216         return ret;
2217 }
2218
2219 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2220 {
2221         unsigned long guest_owned_bits;
2222
2223         kvm_register_mark_available(vcpu, reg);
2224
2225         switch (reg) {
2226         case VCPU_REGS_RSP:
2227                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2228                 break;
2229         case VCPU_REGS_RIP:
2230                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2231                 break;
2232         case VCPU_EXREG_PDPTR:
2233                 if (enable_ept)
2234                         ept_save_pdptrs(vcpu);
2235                 break;
2236         case VCPU_EXREG_CR0:
2237                 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2238
2239                 vcpu->arch.cr0 &= ~guest_owned_bits;
2240                 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2241                 break;
2242         case VCPU_EXREG_CR3:
2243                 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2244                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2245                 break;
2246         case VCPU_EXREG_CR4:
2247                 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2248
2249                 vcpu->arch.cr4 &= ~guest_owned_bits;
2250                 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2251                 break;
2252         default:
2253                 WARN_ON_ONCE(1);
2254                 break;
2255         }
2256 }
2257
2258 static __init int cpu_has_kvm_support(void)
2259 {
2260         return cpu_has_vmx();
2261 }
2262
2263 static __init int vmx_disabled_by_bios(void)
2264 {
2265         return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2266                !boot_cpu_has(X86_FEATURE_VMX);
2267 }
2268
2269 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2270 {
2271         u64 msr;
2272
2273         cr4_set_bits(X86_CR4_VMXE);
2274         intel_pt_handle_vmx(1);
2275
2276         asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2277                           _ASM_EXTABLE(1b, %l[fault])
2278                           : : [vmxon_pointer] "m"(vmxon_pointer)
2279                           : : fault);
2280         return 0;
2281
2282 fault:
2283         WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2284                   rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2285         intel_pt_handle_vmx(0);
2286         cr4_clear_bits(X86_CR4_VMXE);
2287
2288         return -EFAULT;
2289 }
2290
2291 static int hardware_enable(void)
2292 {
2293         int cpu = raw_smp_processor_id();
2294         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2295         int r;
2296
2297         if (cr4_read_shadow() & X86_CR4_VMXE)
2298                 return -EBUSY;
2299
2300         /*
2301          * This can happen if we hot-added a CPU but failed to allocate
2302          * VP assist page for it.
2303          */
2304         if (static_branch_unlikely(&enable_evmcs) &&
2305             !hv_get_vp_assist_page(cpu))
2306                 return -EFAULT;
2307
2308         r = kvm_cpu_vmxon(phys_addr);
2309         if (r)
2310                 return r;
2311
2312         if (enable_ept)
2313                 ept_sync_global();
2314
2315         return 0;
2316 }
2317
2318 static void vmclear_local_loaded_vmcss(void)
2319 {
2320         int cpu = raw_smp_processor_id();
2321         struct loaded_vmcs *v, *n;
2322
2323         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2324                                  loaded_vmcss_on_cpu_link)
2325                 __loaded_vmcs_clear(v);
2326 }
2327
2328
2329 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2330  * tricks.
2331  */
2332 static void kvm_cpu_vmxoff(void)
2333 {
2334         asm volatile (__ex("vmxoff"));
2335
2336         intel_pt_handle_vmx(0);
2337         cr4_clear_bits(X86_CR4_VMXE);
2338 }
2339
2340 static void hardware_disable(void)
2341 {
2342         vmclear_local_loaded_vmcss();
2343         kvm_cpu_vmxoff();
2344 }
2345
2346 /*
2347  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2348  * directly instead of going through cpu_has(), to ensure KVM is trapping
2349  * ENCLS whenever it's supported in hardware.  It does not matter whether
2350  * the host OS supports or has enabled SGX.
2351  */
2352 static bool cpu_has_sgx(void)
2353 {
2354         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2355 }
2356
2357 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2358                                       u32 msr, u32 *result)
2359 {
2360         u32 vmx_msr_low, vmx_msr_high;
2361         u32 ctl = ctl_min | ctl_opt;
2362
2363         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2364
2365         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2366         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2367
2368         /* Ensure minimum (required) set of control bits are supported. */
2369         if (ctl_min & ~ctl)
2370                 return -EIO;
2371
2372         *result = ctl;
2373         return 0;
2374 }
2375
2376 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2377                                     struct vmx_capability *vmx_cap)
2378 {
2379         u32 vmx_msr_low, vmx_msr_high;
2380         u32 min, opt, min2, opt2;
2381         u32 _pin_based_exec_control = 0;
2382         u32 _cpu_based_exec_control = 0;
2383         u32 _cpu_based_2nd_exec_control = 0;
2384         u32 _vmexit_control = 0;
2385         u32 _vmentry_control = 0;
2386
2387         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2388         min = CPU_BASED_HLT_EXITING |
2389 #ifdef CONFIG_X86_64
2390               CPU_BASED_CR8_LOAD_EXITING |
2391               CPU_BASED_CR8_STORE_EXITING |
2392 #endif
2393               CPU_BASED_CR3_LOAD_EXITING |
2394               CPU_BASED_CR3_STORE_EXITING |
2395               CPU_BASED_UNCOND_IO_EXITING |
2396               CPU_BASED_MOV_DR_EXITING |
2397               CPU_BASED_USE_TSC_OFFSETTING |
2398               CPU_BASED_MWAIT_EXITING |
2399               CPU_BASED_MONITOR_EXITING |
2400               CPU_BASED_INVLPG_EXITING |
2401               CPU_BASED_RDPMC_EXITING;
2402
2403         opt = CPU_BASED_TPR_SHADOW |
2404               CPU_BASED_USE_MSR_BITMAPS |
2405               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2406         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2407                                 &_cpu_based_exec_control) < 0)
2408                 return -EIO;
2409 #ifdef CONFIG_X86_64
2410         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2411                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2412                                            ~CPU_BASED_CR8_STORE_EXITING;
2413 #endif
2414         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2415                 min2 = 0;
2416                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2417                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2418                         SECONDARY_EXEC_WBINVD_EXITING |
2419                         SECONDARY_EXEC_ENABLE_VPID |
2420                         SECONDARY_EXEC_ENABLE_EPT |
2421                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2422                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2423                         SECONDARY_EXEC_DESC |
2424                         SECONDARY_EXEC_RDTSCP |
2425                         SECONDARY_EXEC_ENABLE_INVPCID |
2426                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2427                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2428                         SECONDARY_EXEC_SHADOW_VMCS |
2429                         SECONDARY_EXEC_XSAVES |
2430                         SECONDARY_EXEC_RDSEED_EXITING |
2431                         SECONDARY_EXEC_RDRAND_EXITING |
2432                         SECONDARY_EXEC_ENABLE_PML |
2433                         SECONDARY_EXEC_TSC_SCALING |
2434                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2435                         SECONDARY_EXEC_PT_USE_GPA |
2436                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2437                         SECONDARY_EXEC_ENABLE_VMFUNC;
2438                 if (cpu_has_sgx())
2439                         opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2440                 if (adjust_vmx_controls(min2, opt2,
2441                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2442                                         &_cpu_based_2nd_exec_control) < 0)
2443                         return -EIO;
2444         }
2445 #ifndef CONFIG_X86_64
2446         if (!(_cpu_based_2nd_exec_control &
2447                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2448                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2449 #endif
2450
2451         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2452                 _cpu_based_2nd_exec_control &= ~(
2453                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2454                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2455                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2456
2457         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2458                 &vmx_cap->ept, &vmx_cap->vpid);
2459
2460         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2461                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2462                    enabled */
2463                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2464                                              CPU_BASED_CR3_STORE_EXITING |
2465                                              CPU_BASED_INVLPG_EXITING);
2466         } else if (vmx_cap->ept) {
2467                 vmx_cap->ept = 0;
2468                 pr_warn_once("EPT CAP should not exist if not support "
2469                                 "1-setting enable EPT VM-execution control\n");
2470         }
2471         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2472                 vmx_cap->vpid) {
2473                 vmx_cap->vpid = 0;
2474                 pr_warn_once("VPID CAP should not exist if not support "
2475                                 "1-setting enable VPID VM-execution control\n");
2476         }
2477
2478         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2479 #ifdef CONFIG_X86_64
2480         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2481 #endif
2482         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2483               VM_EXIT_LOAD_IA32_PAT |
2484               VM_EXIT_LOAD_IA32_EFER |
2485               VM_EXIT_CLEAR_BNDCFGS |
2486               VM_EXIT_PT_CONCEAL_PIP |
2487               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2488         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2489                                 &_vmexit_control) < 0)
2490                 return -EIO;
2491
2492         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2493         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2494                  PIN_BASED_VMX_PREEMPTION_TIMER;
2495         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2496                                 &_pin_based_exec_control) < 0)
2497                 return -EIO;
2498
2499         if (cpu_has_broken_vmx_preemption_timer())
2500                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2501         if (!(_cpu_based_2nd_exec_control &
2502                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2503                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2504
2505         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2506         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2507               VM_ENTRY_LOAD_IA32_PAT |
2508               VM_ENTRY_LOAD_IA32_EFER |
2509               VM_ENTRY_LOAD_BNDCFGS |
2510               VM_ENTRY_PT_CONCEAL_PIP |
2511               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2512         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2513                                 &_vmentry_control) < 0)
2514                 return -EIO;
2515
2516         /*
2517          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2518          * can't be used due to an errata where VM Exit may incorrectly clear
2519          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2520          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2521          */
2522         if (boot_cpu_data.x86 == 0x6) {
2523                 switch (boot_cpu_data.x86_model) {
2524                 case 26: /* AAK155 */
2525                 case 30: /* AAP115 */
2526                 case 37: /* AAT100 */
2527                 case 44: /* BC86,AAY89,BD102 */
2528                 case 46: /* BA97 */
2529                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2530                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2531                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2532                                         "does not work properly. Using workaround\n");
2533                         break;
2534                 default:
2535                         break;
2536                 }
2537         }
2538
2539
2540         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2541
2542         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2543         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2544                 return -EIO;
2545
2546 #ifdef CONFIG_X86_64
2547         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2548         if (vmx_msr_high & (1u<<16))
2549                 return -EIO;
2550 #endif
2551
2552         /* Require Write-Back (WB) memory type for VMCS accesses. */
2553         if (((vmx_msr_high >> 18) & 15) != 6)
2554                 return -EIO;
2555
2556         vmcs_conf->size = vmx_msr_high & 0x1fff;
2557         vmcs_conf->order = get_order(vmcs_conf->size);
2558         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2559
2560         vmcs_conf->revision_id = vmx_msr_low;
2561
2562         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2563         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2564         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2565         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2566         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2567
2568         if (static_branch_unlikely(&enable_evmcs))
2569                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2570
2571         return 0;
2572 }
2573
2574 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2575 {
2576         int node = cpu_to_node(cpu);
2577         struct page *pages;
2578         struct vmcs *vmcs;
2579
2580         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2581         if (!pages)
2582                 return NULL;
2583         vmcs = page_address(pages);
2584         memset(vmcs, 0, vmcs_config.size);
2585
2586         /* KVM supports Enlightened VMCS v1 only */
2587         if (static_branch_unlikely(&enable_evmcs))
2588                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2589         else
2590                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2591
2592         if (shadow)
2593                 vmcs->hdr.shadow_vmcs = 1;
2594         return vmcs;
2595 }
2596
2597 void free_vmcs(struct vmcs *vmcs)
2598 {
2599         free_pages((unsigned long)vmcs, vmcs_config.order);
2600 }
2601
2602 /*
2603  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2604  */
2605 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2606 {
2607         if (!loaded_vmcs->vmcs)
2608                 return;
2609         loaded_vmcs_clear(loaded_vmcs);
2610         free_vmcs(loaded_vmcs->vmcs);
2611         loaded_vmcs->vmcs = NULL;
2612         if (loaded_vmcs->msr_bitmap)
2613                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2614         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2615 }
2616
2617 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2618 {
2619         loaded_vmcs->vmcs = alloc_vmcs(false);
2620         if (!loaded_vmcs->vmcs)
2621                 return -ENOMEM;
2622
2623         vmcs_clear(loaded_vmcs->vmcs);
2624
2625         loaded_vmcs->shadow_vmcs = NULL;
2626         loaded_vmcs->hv_timer_soft_disabled = false;
2627         loaded_vmcs->cpu = -1;
2628         loaded_vmcs->launched = 0;
2629
2630         if (cpu_has_vmx_msr_bitmap()) {
2631                 loaded_vmcs->msr_bitmap = (unsigned long *)
2632                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2633                 if (!loaded_vmcs->msr_bitmap)
2634                         goto out_vmcs;
2635                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2636
2637                 if (IS_ENABLED(CONFIG_HYPERV) &&
2638                     static_branch_unlikely(&enable_evmcs) &&
2639                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2640                         struct hv_enlightened_vmcs *evmcs =
2641                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2642
2643                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2644                 }
2645         }
2646
2647         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2648         memset(&loaded_vmcs->controls_shadow, 0,
2649                 sizeof(struct vmcs_controls_shadow));
2650
2651         return 0;
2652
2653 out_vmcs:
2654         free_loaded_vmcs(loaded_vmcs);
2655         return -ENOMEM;
2656 }
2657
2658 static void free_kvm_area(void)
2659 {
2660         int cpu;
2661
2662         for_each_possible_cpu(cpu) {
2663                 free_vmcs(per_cpu(vmxarea, cpu));
2664                 per_cpu(vmxarea, cpu) = NULL;
2665         }
2666 }
2667
2668 static __init int alloc_kvm_area(void)
2669 {
2670         int cpu;
2671
2672         for_each_possible_cpu(cpu) {
2673                 struct vmcs *vmcs;
2674
2675                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2676                 if (!vmcs) {
2677                         free_kvm_area();
2678                         return -ENOMEM;
2679                 }
2680
2681                 /*
2682                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2683                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2684                  * revision_id reported by MSR_IA32_VMX_BASIC.
2685                  *
2686                  * However, even though not explicitly documented by
2687                  * TLFS, VMXArea passed as VMXON argument should
2688                  * still be marked with revision_id reported by
2689                  * physical CPU.
2690                  */
2691                 if (static_branch_unlikely(&enable_evmcs))
2692                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2693
2694                 per_cpu(vmxarea, cpu) = vmcs;
2695         }
2696         return 0;
2697 }
2698
2699 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2700                 struct kvm_segment *save)
2701 {
2702         if (!emulate_invalid_guest_state) {
2703                 /*
2704                  * CS and SS RPL should be equal during guest entry according
2705                  * to VMX spec, but in reality it is not always so. Since vcpu
2706                  * is in the middle of the transition from real mode to
2707                  * protected mode it is safe to assume that RPL 0 is a good
2708                  * default value.
2709                  */
2710                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2711                         save->selector &= ~SEGMENT_RPL_MASK;
2712                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2713                 save->s = 1;
2714         }
2715         vmx_set_segment(vcpu, save, seg);
2716 }
2717
2718 static void enter_pmode(struct kvm_vcpu *vcpu)
2719 {
2720         unsigned long flags;
2721         struct vcpu_vmx *vmx = to_vmx(vcpu);
2722
2723         /*
2724          * Update real mode segment cache. It may be not up-to-date if sement
2725          * register was written while vcpu was in a guest mode.
2726          */
2727         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2728         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2729         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2730         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2731         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2732         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2733
2734         vmx->rmode.vm86_active = 0;
2735
2736         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2737
2738         flags = vmcs_readl(GUEST_RFLAGS);
2739         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2740         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2741         vmcs_writel(GUEST_RFLAGS, flags);
2742
2743         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2744                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2745
2746         update_exception_bitmap(vcpu);
2747
2748         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2749         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2750         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2751         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2752         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2753         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2754 }
2755
2756 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2757 {
2758         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2759         struct kvm_segment var = *save;
2760
2761         var.dpl = 0x3;
2762         if (seg == VCPU_SREG_CS)
2763                 var.type = 0x3;
2764
2765         if (!emulate_invalid_guest_state) {
2766                 var.selector = var.base >> 4;
2767                 var.base = var.base & 0xffff0;
2768                 var.limit = 0xffff;
2769                 var.g = 0;
2770                 var.db = 0;
2771                 var.present = 1;
2772                 var.s = 1;
2773                 var.l = 0;
2774                 var.unusable = 0;
2775                 var.type = 0x3;
2776                 var.avl = 0;
2777                 if (save->base & 0xf)
2778                         printk_once(KERN_WARNING "kvm: segment base is not "
2779                                         "paragraph aligned when entering "
2780                                         "protected mode (seg=%d)", seg);
2781         }
2782
2783         vmcs_write16(sf->selector, var.selector);
2784         vmcs_writel(sf->base, var.base);
2785         vmcs_write32(sf->limit, var.limit);
2786         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2787 }
2788
2789 static void enter_rmode(struct kvm_vcpu *vcpu)
2790 {
2791         unsigned long flags;
2792         struct vcpu_vmx *vmx = to_vmx(vcpu);
2793         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2794
2795         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2796         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2797         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2798         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2799         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2800         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2801         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2802
2803         vmx->rmode.vm86_active = 1;
2804
2805         /*
2806          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2807          * vcpu. Warn the user that an update is overdue.
2808          */
2809         if (!kvm_vmx->tss_addr)
2810                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2811                              "called before entering vcpu\n");
2812
2813         vmx_segment_cache_clear(vmx);
2814
2815         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2816         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2817         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2818
2819         flags = vmcs_readl(GUEST_RFLAGS);
2820         vmx->rmode.save_rflags = flags;
2821
2822         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2823
2824         vmcs_writel(GUEST_RFLAGS, flags);
2825         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2826         update_exception_bitmap(vcpu);
2827
2828         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2829         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2830         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2831         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2832         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2833         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2834
2835         kvm_mmu_reset_context(vcpu);
2836 }
2837
2838 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2839 {
2840         struct vcpu_vmx *vmx = to_vmx(vcpu);
2841         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2842
2843         if (!msr)
2844                 return;
2845
2846         vcpu->arch.efer = efer;
2847         if (efer & EFER_LMA) {
2848                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2849                 msr->data = efer;
2850         } else {
2851                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2852
2853                 msr->data = efer & ~EFER_LME;
2854         }
2855         setup_msrs(vmx);
2856 }
2857
2858 #ifdef CONFIG_X86_64
2859
2860 static void enter_lmode(struct kvm_vcpu *vcpu)
2861 {
2862         u32 guest_tr_ar;
2863
2864         vmx_segment_cache_clear(to_vmx(vcpu));
2865
2866         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2867         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2868                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2869                                      __func__);
2870                 vmcs_write32(GUEST_TR_AR_BYTES,
2871                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2872                              | VMX_AR_TYPE_BUSY_64_TSS);
2873         }
2874         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2875 }
2876
2877 static void exit_lmode(struct kvm_vcpu *vcpu)
2878 {
2879         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2880         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2881 }
2882
2883 #endif
2884
2885 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2886 {
2887         struct vcpu_vmx *vmx = to_vmx(vcpu);
2888
2889         /*
2890          * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2891          * the CPU is not required to invalidate guest-physical mappings on
2892          * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2893          * associated with the root EPT structure and not any particular VPID
2894          * (INVVPID also isn't required to invalidate guest-physical mappings).
2895          */
2896         if (enable_ept) {
2897                 ept_sync_global();
2898         } else if (enable_vpid) {
2899                 if (cpu_has_vmx_invvpid_global()) {
2900                         vpid_sync_vcpu_global();
2901                 } else {
2902                         vpid_sync_vcpu_single(vmx->vpid);
2903                         vpid_sync_vcpu_single(vmx->nested.vpid02);
2904                 }
2905         }
2906 }
2907
2908 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2909 {
2910         u64 root_hpa = vcpu->arch.mmu->root_hpa;
2911
2912         /* No flush required if the current context is invalid. */
2913         if (!VALID_PAGE(root_hpa))
2914                 return;
2915
2916         if (enable_ept)
2917                 ept_sync_context(construct_eptp(vcpu, root_hpa));
2918         else if (!is_guest_mode(vcpu))
2919                 vpid_sync_context(to_vmx(vcpu)->vpid);
2920         else
2921                 vpid_sync_context(nested_get_vpid02(vcpu));
2922 }
2923
2924 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2925 {
2926         /*
2927          * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2928          * vmx_flush_tlb_guest() for an explanation of why this is ok.
2929          */
2930         vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2931 }
2932
2933 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2934 {
2935         /*
2936          * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2937          * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
2938          * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2939          * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2940          * i.e. no explicit INVVPID is necessary.
2941          */
2942         vpid_sync_context(to_vmx(vcpu)->vpid);
2943 }
2944
2945 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2946 {
2947         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2948
2949         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2950                 return;
2951
2952         if (is_pae_paging(vcpu)) {
2953                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2954                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2955                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2956                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2957         }
2958 }
2959
2960 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2961 {
2962         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2963
2964         if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2965                 return;
2966
2967         mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2968         mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2969         mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2970         mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2971
2972         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2973 }
2974
2975 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2976                                         unsigned long cr0,
2977                                         struct kvm_vcpu *vcpu)
2978 {
2979         struct vcpu_vmx *vmx = to_vmx(vcpu);
2980
2981         if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
2982                 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
2983         if (!(cr0 & X86_CR0_PG)) {
2984                 /* From paging/starting to nonpaging */
2985                 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2986                                           CPU_BASED_CR3_STORE_EXITING);
2987                 vcpu->arch.cr0 = cr0;
2988                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2989         } else if (!is_paging(vcpu)) {
2990                 /* From nonpaging to paging */
2991                 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2992                                             CPU_BASED_CR3_STORE_EXITING);
2993                 vcpu->arch.cr0 = cr0;
2994                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2995         }
2996
2997         if (!(cr0 & X86_CR0_WP))
2998                 *hw_cr0 &= ~X86_CR0_WP;
2999 }
3000
3001 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3002 {
3003         struct vcpu_vmx *vmx = to_vmx(vcpu);
3004         unsigned long hw_cr0;
3005
3006         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3007         if (enable_unrestricted_guest)
3008                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3009         else {
3010                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3011
3012                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3013                         enter_pmode(vcpu);
3014
3015                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3016                         enter_rmode(vcpu);
3017         }
3018
3019 #ifdef CONFIG_X86_64
3020         if (vcpu->arch.efer & EFER_LME) {
3021                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3022                         enter_lmode(vcpu);
3023                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3024                         exit_lmode(vcpu);
3025         }
3026 #endif
3027
3028         if (enable_ept && !enable_unrestricted_guest)
3029                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3030
3031         vmcs_writel(CR0_READ_SHADOW, cr0);
3032         vmcs_writel(GUEST_CR0, hw_cr0);
3033         vcpu->arch.cr0 = cr0;
3034         kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3035
3036         /* depends on vcpu->arch.cr0 to be set to a new value */
3037         vmx->emulation_required = emulation_required(vcpu);
3038 }
3039
3040 static int vmx_get_tdp_level(struct kvm_vcpu *vcpu)
3041 {
3042         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
3043                 return 5;
3044         return 4;
3045 }
3046
3047 static int get_ept_level(struct kvm_vcpu *vcpu)
3048 {
3049         if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu)))
3050                 return vmx_eptp_page_walk_level(nested_ept_get_eptp(vcpu));
3051
3052         return vmx_get_tdp_level(vcpu);
3053 }
3054
3055 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
3056 {
3057         u64 eptp = VMX_EPTP_MT_WB;
3058
3059         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3060
3061         if (enable_ept_ad_bits &&
3062             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3063                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3064         eptp |= (root_hpa & PAGE_MASK);
3065
3066         return eptp;
3067 }
3068
3069 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd)
3070 {
3071         struct kvm *kvm = vcpu->kvm;
3072         bool update_guest_cr3 = true;
3073         unsigned long guest_cr3;
3074         u64 eptp;
3075
3076         if (enable_ept) {
3077                 eptp = construct_eptp(vcpu, pgd);
3078                 vmcs_write64(EPT_POINTER, eptp);
3079
3080                 if (kvm_x86_ops.tlb_remote_flush) {
3081                         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3082                         to_vmx(vcpu)->ept_pointer = eptp;
3083                         to_kvm_vmx(kvm)->ept_pointers_match
3084                                 = EPT_POINTERS_CHECK;
3085                         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3086                 }
3087
3088                 /* Loading vmcs02.GUEST_CR3 is handled by nested VM-Enter. */
3089                 if (is_guest_mode(vcpu))
3090                         update_guest_cr3 = false;
3091                 else if (!enable_unrestricted_guest && !is_paging(vcpu))
3092                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3093                 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3094                         guest_cr3 = vcpu->arch.cr3;
3095                 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3096                         update_guest_cr3 = false;
3097                 ept_load_pdptrs(vcpu);
3098         } else {
3099                 guest_cr3 = pgd;
3100         }
3101
3102         if (update_guest_cr3)
3103                 vmcs_writel(GUEST_CR3, guest_cr3);
3104 }
3105
3106 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3107 {
3108         struct vcpu_vmx *vmx = to_vmx(vcpu);
3109         /*
3110          * Pass through host's Machine Check Enable value to hw_cr4, which
3111          * is in force while we are in guest mode.  Do not let guests control
3112          * this bit, even if host CR4.MCE == 0.
3113          */
3114         unsigned long hw_cr4;
3115
3116         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3117         if (enable_unrestricted_guest)
3118                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3119         else if (vmx->rmode.vm86_active)
3120                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3121         else
3122                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3123
3124         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3125                 if (cr4 & X86_CR4_UMIP) {
3126                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3127                         hw_cr4 &= ~X86_CR4_UMIP;
3128                 } else if (!is_guest_mode(vcpu) ||
3129                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3130                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3131                 }
3132         }
3133
3134         if (cr4 & X86_CR4_VMXE) {
3135                 /*
3136                  * To use VMXON (and later other VMX instructions), a guest
3137                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3138                  * So basically the check on whether to allow nested VMX
3139                  * is here.  We operate under the default treatment of SMM,
3140                  * so VMX cannot be enabled under SMM.
3141                  */
3142                 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3143                         return 1;
3144         }
3145
3146         if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3147                 return 1;
3148
3149         vcpu->arch.cr4 = cr4;
3150         kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3151
3152         if (!enable_unrestricted_guest) {
3153                 if (enable_ept) {
3154                         if (!is_paging(vcpu)) {
3155                                 hw_cr4 &= ~X86_CR4_PAE;
3156                                 hw_cr4 |= X86_CR4_PSE;
3157                         } else if (!(cr4 & X86_CR4_PAE)) {
3158                                 hw_cr4 &= ~X86_CR4_PAE;
3159                         }
3160                 }
3161
3162                 /*
3163                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3164                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3165                  * to be manually disabled when guest switches to non-paging
3166                  * mode.
3167                  *
3168                  * If !enable_unrestricted_guest, the CPU is always running
3169                  * with CR0.PG=1 and CR4 needs to be modified.
3170                  * If enable_unrestricted_guest, the CPU automatically
3171                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3172                  */
3173                 if (!is_paging(vcpu))
3174                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3175         }
3176
3177         vmcs_writel(CR4_READ_SHADOW, cr4);
3178         vmcs_writel(GUEST_CR4, hw_cr4);
3179         return 0;
3180 }
3181
3182 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3183 {
3184         struct vcpu_vmx *vmx = to_vmx(vcpu);
3185         u32 ar;
3186
3187         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3188                 *var = vmx->rmode.segs[seg];
3189                 if (seg == VCPU_SREG_TR
3190                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3191                         return;
3192                 var->base = vmx_read_guest_seg_base(vmx, seg);
3193                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3194                 return;
3195         }
3196         var->base = vmx_read_guest_seg_base(vmx, seg);
3197         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3198         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3199         ar = vmx_read_guest_seg_ar(vmx, seg);
3200         var->unusable = (ar >> 16) & 1;
3201         var->type = ar & 15;
3202         var->s = (ar >> 4) & 1;
3203         var->dpl = (ar >> 5) & 3;
3204         /*
3205          * Some userspaces do not preserve unusable property. Since usable
3206          * segment has to be present according to VMX spec we can use present
3207          * property to amend userspace bug by making unusable segment always
3208          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3209          * segment as unusable.
3210          */
3211         var->present = !var->unusable;
3212         var->avl = (ar >> 12) & 1;
3213         var->l = (ar >> 13) & 1;
3214         var->db = (ar >> 14) & 1;
3215         var->g = (ar >> 15) & 1;
3216 }
3217
3218 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3219 {
3220         struct kvm_segment s;
3221
3222         if (to_vmx(vcpu)->rmode.vm86_active) {
3223                 vmx_get_segment(vcpu, &s, seg);
3224                 return s.base;
3225         }
3226         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3227 }
3228
3229 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3230 {
3231         struct vcpu_vmx *vmx = to_vmx(vcpu);
3232
3233         if (unlikely(vmx->rmode.vm86_active))
3234                 return 0;
3235         else {
3236                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3237                 return VMX_AR_DPL(ar);
3238         }
3239 }
3240
3241 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3242 {
3243         u32 ar;
3244
3245         if (var->unusable || !var->present)
3246                 ar = 1 << 16;
3247         else {
3248                 ar = var->type & 15;
3249                 ar |= (var->s & 1) << 4;
3250                 ar |= (var->dpl & 3) << 5;
3251                 ar |= (var->present & 1) << 7;
3252                 ar |= (var->avl & 1) << 12;
3253                 ar |= (var->l & 1) << 13;
3254                 ar |= (var->db & 1) << 14;
3255                 ar |= (var->g & 1) << 15;
3256         }
3257
3258         return ar;
3259 }
3260
3261 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3262 {
3263         struct vcpu_vmx *vmx = to_vmx(vcpu);
3264         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3265
3266         vmx_segment_cache_clear(vmx);
3267
3268         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3269                 vmx->rmode.segs[seg] = *var;
3270                 if (seg == VCPU_SREG_TR)
3271                         vmcs_write16(sf->selector, var->selector);
3272                 else if (var->s)
3273                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3274                 goto out;
3275         }
3276
3277         vmcs_writel(sf->base, var->base);
3278         vmcs_write32(sf->limit, var->limit);
3279         vmcs_write16(sf->selector, var->selector);
3280
3281         /*
3282          *   Fix the "Accessed" bit in AR field of segment registers for older
3283          * qemu binaries.
3284          *   IA32 arch specifies that at the time of processor reset the
3285          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3286          * is setting it to 0 in the userland code. This causes invalid guest
3287          * state vmexit when "unrestricted guest" mode is turned on.
3288          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3289          * tree. Newer qemu binaries with that qemu fix would not need this
3290          * kvm hack.
3291          */
3292         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3293                 var->type |= 0x1; /* Accessed */
3294
3295         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3296
3297 out:
3298         vmx->emulation_required = emulation_required(vcpu);
3299 }
3300
3301 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3302 {
3303         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3304
3305         *db = (ar >> 14) & 1;
3306         *l = (ar >> 13) & 1;
3307 }
3308
3309 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3310 {
3311         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3312         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3313 }
3314
3315 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3316 {
3317         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3318         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3319 }
3320
3321 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3322 {
3323         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3324         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3325 }
3326
3327 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3328 {
3329         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3330         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3331 }
3332
3333 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3334 {
3335         struct kvm_segment var;
3336         u32 ar;
3337
3338         vmx_get_segment(vcpu, &var, seg);
3339         var.dpl = 0x3;
3340         if (seg == VCPU_SREG_CS)
3341                 var.type = 0x3;
3342         ar = vmx_segment_access_rights(&var);
3343
3344         if (var.base != (var.selector << 4))
3345                 return false;
3346         if (var.limit != 0xffff)
3347                 return false;
3348         if (ar != 0xf3)
3349                 return false;
3350
3351         return true;
3352 }
3353
3354 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3355 {
3356         struct kvm_segment cs;
3357         unsigned int cs_rpl;
3358
3359         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3360         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3361
3362         if (cs.unusable)
3363                 return false;
3364         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3365                 return false;
3366         if (!cs.s)
3367                 return false;
3368         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3369                 if (cs.dpl > cs_rpl)
3370                         return false;
3371         } else {
3372                 if (cs.dpl != cs_rpl)
3373                         return false;
3374         }
3375         if (!cs.present)
3376                 return false;
3377
3378         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3379         return true;
3380 }
3381
3382 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3383 {
3384         struct kvm_segment ss;
3385         unsigned int ss_rpl;
3386
3387         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3388         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3389
3390         if (ss.unusable)
3391                 return true;
3392         if (ss.type != 3 && ss.type != 7)
3393                 return false;
3394         if (!ss.s)
3395                 return false;
3396         if (ss.dpl != ss_rpl) /* DPL != RPL */
3397                 return false;
3398         if (!ss.present)
3399                 return false;
3400
3401         return true;
3402 }
3403
3404 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3405 {
3406         struct kvm_segment var;
3407         unsigned int rpl;
3408
3409         vmx_get_segment(vcpu, &var, seg);
3410         rpl = var.selector & SEGMENT_RPL_MASK;
3411
3412         if (var.unusable)
3413                 return true;
3414         if (!var.s)
3415                 return false;
3416         if (!var.present)
3417                 return false;
3418         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3419                 if (var.dpl < rpl) /* DPL < RPL */
3420                         return false;
3421         }
3422
3423         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3424          * rights flags
3425          */
3426         return true;
3427 }
3428
3429 static bool tr_valid(struct kvm_vcpu *vcpu)
3430 {
3431         struct kvm_segment tr;
3432
3433         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3434
3435         if (tr.unusable)
3436                 return false;
3437         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3438                 return false;
3439         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3440                 return false;
3441         if (!tr.present)
3442                 return false;
3443
3444         return true;
3445 }
3446
3447 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3448 {
3449         struct kvm_segment ldtr;
3450
3451         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3452
3453         if (ldtr.unusable)
3454                 return true;
3455         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3456                 return false;
3457         if (ldtr.type != 2)
3458                 return false;
3459         if (!ldtr.present)
3460                 return false;
3461
3462         return true;
3463 }
3464
3465 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3466 {
3467         struct kvm_segment cs, ss;
3468
3469         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3470         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3471
3472         return ((cs.selector & SEGMENT_RPL_MASK) ==
3473                  (ss.selector & SEGMENT_RPL_MASK));
3474 }
3475
3476 /*
3477  * Check if guest state is valid. Returns true if valid, false if
3478  * not.
3479  * We assume that registers are always usable
3480  */
3481 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3482 {
3483         if (enable_unrestricted_guest)
3484                 return true;
3485
3486         /* real mode guest state checks */
3487         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3488                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3489                         return false;
3490                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3491                         return false;
3492                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3493                         return false;
3494                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3495                         return false;
3496                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3497                         return false;
3498                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3499                         return false;
3500         } else {
3501         /* protected mode guest state checks */
3502                 if (!cs_ss_rpl_check(vcpu))
3503                         return false;
3504                 if (!code_segment_valid(vcpu))
3505                         return false;
3506                 if (!stack_segment_valid(vcpu))
3507                         return false;
3508                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3509                         return false;
3510                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3511                         return false;
3512                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3513                         return false;
3514                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3515                         return false;
3516                 if (!tr_valid(vcpu))
3517                         return false;
3518                 if (!ldtr_valid(vcpu))
3519                         return false;
3520         }
3521         /* TODO:
3522          * - Add checks on RIP
3523          * - Add checks on RFLAGS
3524          */
3525
3526         return true;
3527 }
3528
3529 static int init_rmode_tss(struct kvm *kvm)
3530 {
3531         gfn_t fn;
3532         u16 data = 0;
3533         int idx, r;
3534
3535         idx = srcu_read_lock(&kvm->srcu);
3536         fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3537         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3538         if (r < 0)
3539                 goto out;
3540         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3541         r = kvm_write_guest_page(kvm, fn++, &data,
3542                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3543         if (r < 0)
3544                 goto out;
3545         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3546         if (r < 0)
3547                 goto out;
3548         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3549         if (r < 0)
3550                 goto out;
3551         data = ~0;
3552         r = kvm_write_guest_page(kvm, fn, &data,
3553                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3554                                  sizeof(u8));
3555 out:
3556         srcu_read_unlock(&kvm->srcu, idx);
3557         return r;
3558 }
3559
3560 static int init_rmode_identity_map(struct kvm *kvm)
3561 {
3562         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3563         int i, r = 0;
3564         kvm_pfn_t identity_map_pfn;
3565         u32 tmp;
3566
3567         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3568         mutex_lock(&kvm->slots_lock);
3569
3570         if (likely(kvm_vmx->ept_identity_pagetable_done))
3571                 goto out;
3572
3573         if (!kvm_vmx->ept_identity_map_addr)
3574                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3575         identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3576
3577         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3578                                     kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3579         if (r < 0)
3580                 goto out;
3581
3582         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3583         if (r < 0)
3584                 goto out;
3585         /* Set up identity-mapping pagetable for EPT in real mode */
3586         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3587                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3588                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3589                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3590                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3591                 if (r < 0)
3592                         goto out;
3593         }
3594         kvm_vmx->ept_identity_pagetable_done = true;
3595
3596 out:
3597         mutex_unlock(&kvm->slots_lock);
3598         return r;
3599 }
3600
3601 static void seg_setup(int seg)
3602 {
3603         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3604         unsigned int ar;
3605
3606         vmcs_write16(sf->selector, 0);
3607         vmcs_writel(sf->base, 0);
3608         vmcs_write32(sf->limit, 0xffff);
3609         ar = 0x93;
3610         if (seg == VCPU_SREG_CS)
3611                 ar |= 0x08; /* code segment */
3612
3613         vmcs_write32(sf->ar_bytes, ar);
3614 }
3615
3616 static int alloc_apic_access_page(struct kvm *kvm)
3617 {
3618         struct page *page;
3619         int r = 0;
3620
3621         mutex_lock(&kvm->slots_lock);
3622         if (kvm->arch.apic_access_page_done)
3623                 goto out;
3624         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3625                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3626         if (r)
3627                 goto out;
3628
3629         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3630         if (is_error_page(page)) {
3631                 r = -EFAULT;
3632                 goto out;
3633         }
3634
3635         /*
3636          * Do not pin the page in memory, so that memory hot-unplug
3637          * is able to migrate it.
3638          */
3639         put_page(page);
3640         kvm->arch.apic_access_page_done = true;
3641 out:
3642         mutex_unlock(&kvm->slots_lock);
3643         return r;
3644 }
3645
3646 int allocate_vpid(void)
3647 {
3648         int vpid;
3649
3650         if (!enable_vpid)
3651                 return 0;
3652         spin_lock(&vmx_vpid_lock);
3653         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3654         if (vpid < VMX_NR_VPIDS)
3655                 __set_bit(vpid, vmx_vpid_bitmap);
3656         else
3657                 vpid = 0;
3658         spin_unlock(&vmx_vpid_lock);
3659         return vpid;
3660 }
3661
3662 void free_vpid(int vpid)
3663 {
3664         if (!enable_vpid || vpid == 0)
3665                 return;
3666         spin_lock(&vmx_vpid_lock);
3667         __clear_bit(vpid, vmx_vpid_bitmap);
3668         spin_unlock(&vmx_vpid_lock);
3669 }
3670
3671 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3672                                                           u32 msr, int type)
3673 {
3674         int f = sizeof(unsigned long);
3675
3676         if (!cpu_has_vmx_msr_bitmap())
3677                 return;
3678
3679         if (static_branch_unlikely(&enable_evmcs))
3680                 evmcs_touch_msr_bitmap();
3681
3682         /*
3683          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3684          * have the write-low and read-high bitmap offsets the wrong way round.
3685          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3686          */
3687         if (msr <= 0x1fff) {
3688                 if (type & MSR_TYPE_R)
3689                         /* read-low */
3690                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3691
3692                 if (type & MSR_TYPE_W)
3693                         /* write-low */
3694                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3695
3696         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3697                 msr &= 0x1fff;
3698                 if (type & MSR_TYPE_R)
3699                         /* read-high */
3700                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3701
3702                 if (type & MSR_TYPE_W)
3703                         /* write-high */
3704                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3705
3706         }
3707 }
3708
3709 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3710                                                          u32 msr, int type)
3711 {
3712         int f = sizeof(unsigned long);
3713
3714         if (!cpu_has_vmx_msr_bitmap())
3715                 return;
3716
3717         if (static_branch_unlikely(&enable_evmcs))
3718                 evmcs_touch_msr_bitmap();
3719
3720         /*
3721          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3722          * have the write-low and read-high bitmap offsets the wrong way round.
3723          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3724          */
3725         if (msr <= 0x1fff) {
3726                 if (type & MSR_TYPE_R)
3727                         /* read-low */
3728                         __set_bit(msr, msr_bitmap + 0x000 / f);
3729
3730                 if (type & MSR_TYPE_W)
3731                         /* write-low */
3732                         __set_bit(msr, msr_bitmap + 0x800 / f);
3733
3734         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3735                 msr &= 0x1fff;
3736                 if (type & MSR_TYPE_R)
3737                         /* read-high */
3738                         __set_bit(msr, msr_bitmap + 0x400 / f);
3739
3740                 if (type & MSR_TYPE_W)
3741                         /* write-high */
3742                         __set_bit(msr, msr_bitmap + 0xc00 / f);
3743
3744         }
3745 }
3746
3747 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3748                                                       u32 msr, int type, bool value)
3749 {
3750         if (value)
3751                 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3752         else
3753                 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3754 }
3755
3756 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3757 {
3758         u8 mode = 0;
3759
3760         if (cpu_has_secondary_exec_ctrls() &&
3761             (secondary_exec_controls_get(to_vmx(vcpu)) &
3762              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3763                 mode |= MSR_BITMAP_MODE_X2APIC;
3764                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3765                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3766         }
3767
3768         return mode;
3769 }
3770
3771 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3772                                          u8 mode)
3773 {
3774         int msr;
3775
3776         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3777                 unsigned word = msr / BITS_PER_LONG;
3778                 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3779                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3780         }
3781
3782         if (mode & MSR_BITMAP_MODE_X2APIC) {
3783                 /*
3784                  * TPR reads and writes can be virtualized even if virtual interrupt
3785                  * delivery is not in use.
3786                  */
3787                 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3788                 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3789                         vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3790                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3791                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3792                 }
3793         }
3794 }
3795
3796 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3797 {
3798         struct vcpu_vmx *vmx = to_vmx(vcpu);
3799         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3800         u8 mode = vmx_msr_bitmap_mode(vcpu);
3801         u8 changed = mode ^ vmx->msr_bitmap_mode;
3802
3803         if (!changed)
3804                 return;
3805
3806         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3807                 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3808
3809         vmx->msr_bitmap_mode = mode;
3810 }
3811
3812 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3813 {
3814         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3815         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3816         u32 i;
3817
3818         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3819                                                         MSR_TYPE_RW, flag);
3820         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3821                                                         MSR_TYPE_RW, flag);
3822         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3823                                                         MSR_TYPE_RW, flag);
3824         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3825                                                         MSR_TYPE_RW, flag);
3826         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3827                 vmx_set_intercept_for_msr(msr_bitmap,
3828                         MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3829                 vmx_set_intercept_for_msr(msr_bitmap,
3830                         MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3831         }
3832 }
3833
3834 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3835 {
3836         struct vcpu_vmx *vmx = to_vmx(vcpu);
3837         void *vapic_page;
3838         u32 vppr;
3839         int rvi;
3840
3841         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3842                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3843                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3844                 return false;
3845
3846         rvi = vmx_get_rvi();
3847
3848         vapic_page = vmx->nested.virtual_apic_map.hva;
3849         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3850
3851         return ((rvi & 0xf0) > (vppr & 0xf0));
3852 }
3853
3854 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3855                                                      bool nested)
3856 {
3857 #ifdef CONFIG_SMP
3858         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3859
3860         if (vcpu->mode == IN_GUEST_MODE) {
3861                 /*
3862                  * The vector of interrupt to be delivered to vcpu had
3863                  * been set in PIR before this function.
3864                  *
3865                  * Following cases will be reached in this block, and
3866                  * we always send a notification event in all cases as
3867                  * explained below.
3868                  *
3869                  * Case 1: vcpu keeps in non-root mode. Sending a
3870                  * notification event posts the interrupt to vcpu.
3871                  *
3872                  * Case 2: vcpu exits to root mode and is still
3873                  * runnable. PIR will be synced to vIRR before the
3874                  * next vcpu entry. Sending a notification event in
3875                  * this case has no effect, as vcpu is not in root
3876                  * mode.
3877                  *
3878                  * Case 3: vcpu exits to root mode and is blocked.
3879                  * vcpu_block() has already synced PIR to vIRR and
3880                  * never blocks vcpu if vIRR is not cleared. Therefore,
3881                  * a blocked vcpu here does not wait for any requested
3882                  * interrupts in PIR, and sending a notification event
3883                  * which has no effect is safe here.
3884                  */
3885
3886                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3887                 return true;
3888         }
3889 #endif
3890         return false;
3891 }
3892
3893 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3894                                                 int vector)
3895 {
3896         struct vcpu_vmx *vmx = to_vmx(vcpu);
3897
3898         if (is_guest_mode(vcpu) &&
3899             vector == vmx->nested.posted_intr_nv) {
3900                 /*
3901                  * If a posted intr is not recognized by hardware,
3902                  * we will accomplish it in the next vmentry.
3903                  */
3904                 vmx->nested.pi_pending = true;
3905                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3906                 /* the PIR and ON have been set by L1. */
3907                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3908                         kvm_vcpu_kick(vcpu);
3909                 return 0;
3910         }
3911         return -1;
3912 }
3913 /*
3914  * Send interrupt to vcpu via posted interrupt way.
3915  * 1. If target vcpu is running(non-root mode), send posted interrupt
3916  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3917  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3918  * interrupt from PIR in next vmentry.
3919  */
3920 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3921 {
3922         struct vcpu_vmx *vmx = to_vmx(vcpu);
3923         int r;
3924
3925         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3926         if (!r)
3927                 return 0;
3928
3929         if (!vcpu->arch.apicv_active)
3930                 return -1;
3931
3932         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3933                 return 0;
3934
3935         /* If a previous notification has sent the IPI, nothing to do.  */
3936         if (pi_test_and_set_on(&vmx->pi_desc))
3937                 return 0;
3938
3939         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3940                 kvm_vcpu_kick(vcpu);
3941
3942         return 0;
3943 }
3944
3945 /*
3946  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3947  * will not change in the lifetime of the guest.
3948  * Note that host-state that does change is set elsewhere. E.g., host-state
3949  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3950  */
3951 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3952 {
3953         u32 low32, high32;
3954         unsigned long tmpl;
3955         unsigned long cr0, cr3, cr4;
3956
3957         cr0 = read_cr0();
3958         WARN_ON(cr0 & X86_CR0_TS);
3959         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3960
3961         /*
3962          * Save the most likely value for this task's CR3 in the VMCS.
3963          * We can't use __get_current_cr3_fast() because we're not atomic.
3964          */
3965         cr3 = __read_cr3();
3966         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3967         vmx->loaded_vmcs->host_state.cr3 = cr3;
3968
3969         /* Save the most likely value for this task's CR4 in the VMCS. */
3970         cr4 = cr4_read_shadow();
3971         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
3972         vmx->loaded_vmcs->host_state.cr4 = cr4;
3973
3974         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3975 #ifdef CONFIG_X86_64
3976         /*
3977          * Load null selectors, so we can avoid reloading them in
3978          * vmx_prepare_switch_to_host(), in case userspace uses
3979          * the null selectors too (the expected case).
3980          */
3981         vmcs_write16(HOST_DS_SELECTOR, 0);
3982         vmcs_write16(HOST_ES_SELECTOR, 0);
3983 #else
3984         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3985         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3986 #endif
3987         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3988         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3989
3990         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3991
3992         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3993
3994         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3995         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3996         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3997         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3998
3999         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4000                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4001                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4002         }
4003
4004         if (cpu_has_load_ia32_efer())
4005                 vmcs_write64(HOST_IA32_EFER, host_efer);
4006 }
4007
4008 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4009 {
4010         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4011         if (enable_ept)
4012                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4013         if (is_guest_mode(&vmx->vcpu))
4014                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4015                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4016         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4017 }
4018
4019 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4020 {
4021         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4022
4023         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4024                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4025
4026         if (!enable_vnmi)
4027                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4028
4029         if (!enable_preemption_timer)
4030                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4031
4032         return pin_based_exec_ctrl;
4033 }
4034
4035 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4036 {
4037         struct vcpu_vmx *vmx = to_vmx(vcpu);
4038
4039         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4040         if (cpu_has_secondary_exec_ctrls()) {
4041                 if (kvm_vcpu_apicv_active(vcpu))
4042                         secondary_exec_controls_setbit(vmx,
4043                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4044                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4045                 else
4046                         secondary_exec_controls_clearbit(vmx,
4047                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
4048                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4049         }
4050
4051         if (cpu_has_vmx_msr_bitmap())
4052                 vmx_update_msr_bitmap(vcpu);
4053 }
4054
4055 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4056 {
4057         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4058
4059         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4060                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4061
4062         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4063                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4064 #ifdef CONFIG_X86_64
4065                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4066                                 CPU_BASED_CR8_LOAD_EXITING;
4067 #endif
4068         }
4069         if (!enable_ept)
4070                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4071                                 CPU_BASED_CR3_LOAD_EXITING  |
4072                                 CPU_BASED_INVLPG_EXITING;
4073         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4074                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4075                                 CPU_BASED_MONITOR_EXITING);
4076         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4077                 exec_control &= ~CPU_BASED_HLT_EXITING;
4078         return exec_control;
4079 }
4080
4081
4082 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4083 {
4084         struct kvm_vcpu *vcpu = &vmx->vcpu;
4085
4086         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4087
4088         if (vmx_pt_mode_is_system())
4089                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4090         if (!cpu_need_virtualize_apic_accesses(vcpu))
4091                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4092         if (vmx->vpid == 0)
4093                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4094         if (!enable_ept) {
4095                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4096                 enable_unrestricted_guest = 0;
4097         }
4098         if (!enable_unrestricted_guest)
4099                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4100         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4101                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4102         if (!kvm_vcpu_apicv_active(vcpu))
4103                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4104                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4105         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4106
4107         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4108          * in vmx_set_cr4.  */
4109         exec_control &= ~SECONDARY_EXEC_DESC;
4110
4111         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4112            (handle_vmptrld).
4113            We can NOT enable shadow_vmcs here because we don't have yet
4114            a current VMCS12
4115         */
4116         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4117
4118         if (!enable_pml)
4119                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4120
4121         if (vmx_xsaves_supported()) {
4122                 /* Exposing XSAVES only when XSAVE is exposed */
4123                 bool xsaves_enabled =
4124                         boot_cpu_has(X86_FEATURE_XSAVE) &&
4125                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4126                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4127
4128                 vcpu->arch.xsaves_enabled = xsaves_enabled;
4129
4130                 if (!xsaves_enabled)
4131                         exec_control &= ~SECONDARY_EXEC_XSAVES;
4132
4133                 if (nested) {
4134                         if (xsaves_enabled)
4135                                 vmx->nested.msrs.secondary_ctls_high |=
4136                                         SECONDARY_EXEC_XSAVES;
4137                         else
4138                                 vmx->nested.msrs.secondary_ctls_high &=
4139                                         ~SECONDARY_EXEC_XSAVES;
4140                 }
4141         }
4142
4143         if (cpu_has_vmx_rdtscp()) {
4144                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4145                 if (!rdtscp_enabled)
4146                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
4147
4148                 if (nested) {
4149                         if (rdtscp_enabled)
4150                                 vmx->nested.msrs.secondary_ctls_high |=
4151                                         SECONDARY_EXEC_RDTSCP;
4152                         else
4153                                 vmx->nested.msrs.secondary_ctls_high &=
4154                                         ~SECONDARY_EXEC_RDTSCP;
4155                 }
4156         }
4157
4158         if (cpu_has_vmx_invpcid()) {
4159                 /* Exposing INVPCID only when PCID is exposed */
4160                 bool invpcid_enabled =
4161                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4162                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4163
4164                 if (!invpcid_enabled) {
4165                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4166                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4167                 }
4168
4169                 if (nested) {
4170                         if (invpcid_enabled)
4171                                 vmx->nested.msrs.secondary_ctls_high |=
4172                                         SECONDARY_EXEC_ENABLE_INVPCID;
4173                         else
4174                                 vmx->nested.msrs.secondary_ctls_high &=
4175                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
4176                 }
4177         }
4178
4179         if (vmx_rdrand_supported()) {
4180                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4181                 if (rdrand_enabled)
4182                         exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4183
4184                 if (nested) {
4185                         if (rdrand_enabled)
4186                                 vmx->nested.msrs.secondary_ctls_high |=
4187                                         SECONDARY_EXEC_RDRAND_EXITING;
4188                         else
4189                                 vmx->nested.msrs.secondary_ctls_high &=
4190                                         ~SECONDARY_EXEC_RDRAND_EXITING;
4191                 }
4192         }
4193
4194         if (vmx_rdseed_supported()) {
4195                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4196                 if (rdseed_enabled)
4197                         exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4198
4199                 if (nested) {
4200                         if (rdseed_enabled)
4201                                 vmx->nested.msrs.secondary_ctls_high |=
4202                                         SECONDARY_EXEC_RDSEED_EXITING;
4203                         else
4204                                 vmx->nested.msrs.secondary_ctls_high &=
4205                                         ~SECONDARY_EXEC_RDSEED_EXITING;
4206                 }
4207         }
4208
4209         if (vmx_waitpkg_supported()) {
4210                 bool waitpkg_enabled =
4211                         guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4212
4213                 if (!waitpkg_enabled)
4214                         exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4215
4216                 if (nested) {
4217                         if (waitpkg_enabled)
4218                                 vmx->nested.msrs.secondary_ctls_high |=
4219                                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4220                         else
4221                                 vmx->nested.msrs.secondary_ctls_high &=
4222                                         ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4223                 }
4224         }
4225
4226         vmx->secondary_exec_control = exec_control;
4227 }
4228
4229 static void ept_set_mmio_spte_mask(void)
4230 {
4231         /*
4232          * EPT Misconfigurations can be generated if the value of bits 2:0
4233          * of an EPT paging-structure entry is 110b (write/execute).
4234          */
4235         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4236                                    VMX_EPT_MISCONFIG_WX_VALUE, 0);
4237 }
4238
4239 #define VMX_XSS_EXIT_BITMAP 0
4240
4241 /*
4242  * Noting that the initialization of Guest-state Area of VMCS is in
4243  * vmx_vcpu_reset().
4244  */
4245 static void init_vmcs(struct vcpu_vmx *vmx)
4246 {
4247         if (nested)
4248                 nested_vmx_set_vmcs_shadowing_bitmap();
4249
4250         if (cpu_has_vmx_msr_bitmap())
4251                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4252
4253         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4254
4255         /* Control */
4256         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4257
4258         exec_controls_set(vmx, vmx_exec_control(vmx));
4259
4260         if (cpu_has_secondary_exec_ctrls()) {
4261                 vmx_compute_secondary_exec_control(vmx);
4262                 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4263         }
4264
4265         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4266                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4267                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4268                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4269                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4270
4271                 vmcs_write16(GUEST_INTR_STATUS, 0);
4272
4273                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4274                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4275         }
4276
4277         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4278                 vmcs_write32(PLE_GAP, ple_gap);
4279                 vmx->ple_window = ple_window;
4280                 vmx->ple_window_dirty = true;
4281         }
4282
4283         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4284         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4285         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4286
4287         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4288         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4289         vmx_set_constant_host_state(vmx);
4290         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4291         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4292
4293         if (cpu_has_vmx_vmfunc())
4294                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4295
4296         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4297         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4298         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4299         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4300         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4301
4302         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4303                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4304
4305         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4306
4307         /* 22.2.1, 20.8.1 */
4308         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4309
4310         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4311         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4312
4313         set_cr4_guest_host_mask(vmx);
4314
4315         if (vmx->vpid != 0)
4316                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4317
4318         if (vmx_xsaves_supported())
4319                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4320
4321         if (enable_pml) {
4322                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4323                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4324         }
4325
4326         if (cpu_has_vmx_encls_vmexit())
4327                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4328
4329         if (vmx_pt_mode_is_host_guest()) {
4330                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4331                 /* Bit[6~0] are forced to 1, writes are ignored. */
4332                 vmx->pt_desc.guest.output_mask = 0x7F;
4333                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4334         }
4335 }
4336
4337 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4338 {
4339         struct vcpu_vmx *vmx = to_vmx(vcpu);
4340         struct msr_data apic_base_msr;
4341         u64 cr0;
4342
4343         vmx->rmode.vm86_active = 0;
4344         vmx->spec_ctrl = 0;
4345
4346         vmx->msr_ia32_umwait_control = 0;
4347
4348         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4349         vmx->hv_deadline_tsc = -1;
4350         kvm_set_cr8(vcpu, 0);
4351
4352         if (!init_event) {
4353                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4354                                      MSR_IA32_APICBASE_ENABLE;
4355                 if (kvm_vcpu_is_reset_bsp(vcpu))
4356                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4357                 apic_base_msr.host_initiated = true;
4358                 kvm_set_apic_base(vcpu, &apic_base_msr);
4359         }
4360
4361         vmx_segment_cache_clear(vmx);
4362
4363         seg_setup(VCPU_SREG_CS);
4364         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4365         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4366
4367         seg_setup(VCPU_SREG_DS);
4368         seg_setup(VCPU_SREG_ES);
4369         seg_setup(VCPU_SREG_FS);
4370         seg_setup(VCPU_SREG_GS);
4371         seg_setup(VCPU_SREG_SS);
4372
4373         vmcs_write16(GUEST_TR_SELECTOR, 0);
4374         vmcs_writel(GUEST_TR_BASE, 0);
4375         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4376         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4377
4378         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4379         vmcs_writel(GUEST_LDTR_BASE, 0);
4380         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4381         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4382
4383         if (!init_event) {
4384                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4385                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4386                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4387                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4388         }
4389
4390         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4391         kvm_rip_write(vcpu, 0xfff0);
4392
4393         vmcs_writel(GUEST_GDTR_BASE, 0);
4394         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4395
4396         vmcs_writel(GUEST_IDTR_BASE, 0);
4397         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4398
4399         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4400         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4401         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4402         if (kvm_mpx_supported())
4403                 vmcs_write64(GUEST_BNDCFGS, 0);
4404
4405         setup_msrs(vmx);
4406
4407         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4408
4409         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4410                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4411                 if (cpu_need_tpr_shadow(vcpu))
4412                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4413                                      __pa(vcpu->arch.apic->regs));
4414                 vmcs_write32(TPR_THRESHOLD, 0);
4415         }
4416
4417         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4418
4419         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4420         vmx->vcpu.arch.cr0 = cr0;
4421         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4422         vmx_set_cr4(vcpu, 0);
4423         vmx_set_efer(vcpu, 0);
4424
4425         update_exception_bitmap(vcpu);
4426
4427         vpid_sync_context(vmx->vpid);
4428         if (init_event)
4429                 vmx_clear_hlt(vcpu);
4430 }
4431
4432 static void enable_irq_window(struct kvm_vcpu *vcpu)
4433 {
4434         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4435 }
4436
4437 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4438 {
4439         if (!enable_vnmi ||
4440             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4441                 enable_irq_window(vcpu);
4442                 return;
4443         }
4444
4445         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4446 }
4447
4448 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4449 {
4450         struct vcpu_vmx *vmx = to_vmx(vcpu);
4451         uint32_t intr;
4452         int irq = vcpu->arch.interrupt.nr;
4453
4454         trace_kvm_inj_virq(irq);
4455
4456         ++vcpu->stat.irq_injections;
4457         if (vmx->rmode.vm86_active) {
4458                 int inc_eip = 0;
4459                 if (vcpu->arch.interrupt.soft)
4460                         inc_eip = vcpu->arch.event_exit_inst_len;
4461                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4462                 return;
4463         }
4464         intr = irq | INTR_INFO_VALID_MASK;
4465         if (vcpu->arch.interrupt.soft) {
4466                 intr |= INTR_TYPE_SOFT_INTR;
4467                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4468                              vmx->vcpu.arch.event_exit_inst_len);
4469         } else
4470                 intr |= INTR_TYPE_EXT_INTR;
4471         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4472
4473         vmx_clear_hlt(vcpu);
4474 }
4475
4476 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4477 {
4478         struct vcpu_vmx *vmx = to_vmx(vcpu);
4479
4480         if (!enable_vnmi) {
4481                 /*
4482                  * Tracking the NMI-blocked state in software is built upon
4483                  * finding the next open IRQ window. This, in turn, depends on
4484                  * well-behaving guests: They have to keep IRQs disabled at
4485                  * least as long as the NMI handler runs. Otherwise we may
4486                  * cause NMI nesting, maybe breaking the guest. But as this is
4487                  * highly unlikely, we can live with the residual risk.
4488                  */
4489                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4490                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4491         }
4492
4493         ++vcpu->stat.nmi_injections;
4494         vmx->loaded_vmcs->nmi_known_unmasked = false;
4495
4496         if (vmx->rmode.vm86_active) {
4497                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4498                 return;
4499         }
4500
4501         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4502                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4503
4504         vmx_clear_hlt(vcpu);
4505 }
4506
4507 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4508 {
4509         struct vcpu_vmx *vmx = to_vmx(vcpu);
4510         bool masked;
4511
4512         if (!enable_vnmi)
4513                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4514         if (vmx->loaded_vmcs->nmi_known_unmasked)
4515                 return false;
4516         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4517         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4518         return masked;
4519 }
4520
4521 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4522 {
4523         struct vcpu_vmx *vmx = to_vmx(vcpu);
4524
4525         if (!enable_vnmi) {
4526                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4527                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4528                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4529                 }
4530         } else {
4531                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4532                 if (masked)
4533                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4534                                       GUEST_INTR_STATE_NMI);
4535                 else
4536                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4537                                         GUEST_INTR_STATE_NMI);
4538         }
4539 }
4540
4541 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4542 {
4543         if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4544                 return false;
4545
4546         if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4547                 return true;
4548
4549         return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4550                 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4551                  GUEST_INTR_STATE_NMI));
4552 }
4553
4554 static bool vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4555 {
4556         if (to_vmx(vcpu)->nested.nested_run_pending)
4557                 return false;
4558
4559         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4560         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4561                 return false;
4562
4563         return !vmx_nmi_blocked(vcpu);
4564 }
4565
4566 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4567 {
4568         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4569                 return false;
4570
4571         return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4572                (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4573                 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4574 }
4575
4576 static bool vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4577 {
4578         if (to_vmx(vcpu)->nested.nested_run_pending)
4579                 return false;
4580
4581        /*
4582         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4583         * e.g. if the IRQ arrived asynchronously after checking nested events.
4584         */
4585         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4586                 return false;
4587
4588         return !vmx_interrupt_blocked(vcpu);
4589 }
4590
4591 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4592 {
4593         int ret;
4594
4595         if (enable_unrestricted_guest)
4596                 return 0;
4597
4598         mutex_lock(&kvm->slots_lock);
4599         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4600                                       PAGE_SIZE * 3);
4601         mutex_unlock(&kvm->slots_lock);
4602
4603         if (ret)
4604                 return ret;
4605         to_kvm_vmx(kvm)->tss_addr = addr;
4606         return init_rmode_tss(kvm);
4607 }
4608
4609 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4610 {
4611         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4612         return 0;
4613 }
4614
4615 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4616 {
4617         switch (vec) {
4618         case BP_VECTOR:
4619                 /*
4620                  * Update instruction length as we may reinject the exception
4621                  * from user space while in guest debugging mode.
4622                  */
4623                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4624                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4625                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4626                         return false;
4627                 /* fall through */
4628         case DB_VECTOR:
4629                 if (vcpu->guest_debug &
4630                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4631                         return false;
4632                 /* fall through */
4633         case DE_VECTOR:
4634         case OF_VECTOR:
4635         case BR_VECTOR:
4636         case UD_VECTOR:
4637         case DF_VECTOR:
4638         case SS_VECTOR:
4639         case GP_VECTOR:
4640         case MF_VECTOR:
4641                 return true;
4642         }
4643         return false;
4644 }
4645
4646 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4647                                   int vec, u32 err_code)
4648 {
4649         /*
4650          * Instruction with address size override prefix opcode 0x67
4651          * Cause the #SS fault with 0 error code in VM86 mode.
4652          */
4653         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4654                 if (kvm_emulate_instruction(vcpu, 0)) {
4655                         if (vcpu->arch.halt_request) {
4656                                 vcpu->arch.halt_request = 0;
4657                                 return kvm_vcpu_halt(vcpu);
4658                         }
4659                         return 1;
4660                 }
4661                 return 0;
4662         }
4663
4664         /*
4665          * Forward all other exceptions that are valid in real mode.
4666          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4667          *        the required debugging infrastructure rework.
4668          */
4669         kvm_queue_exception(vcpu, vec);
4670         return 1;
4671 }
4672
4673 /*
4674  * Trigger machine check on the host. We assume all the MSRs are already set up
4675  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4676  * We pass a fake environment to the machine check handler because we want
4677  * the guest to be always treated like user space, no matter what context
4678  * it used internally.
4679  */
4680 static void kvm_machine_check(void)
4681 {
4682 #if defined(CONFIG_X86_MCE)
4683         struct pt_regs regs = {
4684                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4685                 .flags = X86_EFLAGS_IF,
4686         };
4687
4688         do_machine_check(&regs, 0);
4689 #endif
4690 }
4691
4692 static int handle_machine_check(struct kvm_vcpu *vcpu)
4693 {
4694         /* handled by vmx_vcpu_run() */
4695         return 1;
4696 }
4697
4698 /*
4699  * If the host has split lock detection disabled, then #AC is
4700  * unconditionally injected into the guest, which is the pre split lock
4701  * detection behaviour.
4702  *
4703  * If the host has split lock detection enabled then #AC is
4704  * only injected into the guest when:
4705  *  - Guest CPL == 3 (user mode)
4706  *  - Guest has #AC detection enabled in CR0
4707  *  - Guest EFLAGS has AC bit set
4708  */
4709 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4710 {
4711         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4712                 return true;
4713
4714         return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4715                (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4716 }
4717
4718 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4719 {
4720         struct vcpu_vmx *vmx = to_vmx(vcpu);
4721         struct kvm_run *kvm_run = vcpu->run;
4722         u32 intr_info, ex_no, error_code;
4723         unsigned long cr2, rip, dr6;
4724         u32 vect_info;
4725
4726         vect_info = vmx->idt_vectoring_info;
4727         intr_info = vmx_get_intr_info(vcpu);
4728
4729         if (is_machine_check(intr_info) || is_nmi(intr_info))
4730                 return 1; /* handled by handle_exception_nmi_irqoff() */
4731
4732         if (is_invalid_opcode(intr_info))
4733                 return handle_ud(vcpu);
4734
4735         error_code = 0;
4736         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4737                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4738
4739         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4740                 WARN_ON_ONCE(!enable_vmware_backdoor);
4741
4742                 /*
4743                  * VMware backdoor emulation on #GP interception only handles
4744                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4745                  * error code on #GP.
4746                  */
4747                 if (error_code) {
4748                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4749                         return 1;
4750                 }
4751                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4752         }
4753
4754         /*
4755          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4756          * MMIO, it is better to report an internal error.
4757          * See the comments in vmx_handle_exit.
4758          */
4759         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4760             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4761                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4762                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4763                 vcpu->run->internal.ndata = 3;
4764                 vcpu->run->internal.data[0] = vect_info;
4765                 vcpu->run->internal.data[1] = intr_info;
4766                 vcpu->run->internal.data[2] = error_code;
4767                 return 0;
4768         }
4769
4770         if (is_page_fault(intr_info)) {
4771                 cr2 = vmx_get_exit_qual(vcpu);
4772                 /* EPT won't cause page fault directly */
4773                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4774                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4775         }
4776
4777         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4778
4779         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4780                 return handle_rmode_exception(vcpu, ex_no, error_code);
4781
4782         switch (ex_no) {
4783         case DB_VECTOR:
4784                 dr6 = vmx_get_exit_qual(vcpu);
4785                 if (!(vcpu->guest_debug &
4786                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4787                         if (is_icebp(intr_info))
4788                                 WARN_ON(!skip_emulated_instruction(vcpu));
4789
4790                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4791                         return 1;
4792                 }
4793                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4794                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4795                 /* fall through */
4796         case BP_VECTOR:
4797                 /*
4798                  * Update instruction length as we may reinject #BP from
4799                  * user space while in guest debugging mode. Reading it for
4800                  * #DB as well causes no harm, it is not used in that case.
4801                  */
4802                 vmx->vcpu.arch.event_exit_inst_len =
4803                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4804                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4805                 rip = kvm_rip_read(vcpu);
4806                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4807                 kvm_run->debug.arch.exception = ex_no;
4808                 break;
4809         case AC_VECTOR:
4810                 if (guest_inject_ac(vcpu)) {
4811                         kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4812                         return 1;
4813                 }
4814
4815                 /*
4816                  * Handle split lock. Depending on detection mode this will
4817                  * either warn and disable split lock detection for this
4818                  * task or force SIGBUS on it.
4819                  */
4820                 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4821                         return 1;
4822                 fallthrough;
4823         default:
4824                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4825                 kvm_run->ex.exception = ex_no;
4826                 kvm_run->ex.error_code = error_code;
4827                 break;
4828         }
4829         return 0;
4830 }
4831
4832 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4833 {
4834         ++vcpu->stat.irq_exits;
4835         return 1;
4836 }
4837
4838 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4839 {
4840         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4841         vcpu->mmio_needed = 0;
4842         return 0;
4843 }
4844
4845 static int handle_io(struct kvm_vcpu *vcpu)
4846 {
4847         unsigned long exit_qualification;
4848         int size, in, string;
4849         unsigned port;
4850
4851         exit_qualification = vmx_get_exit_qual(vcpu);
4852         string = (exit_qualification & 16) != 0;
4853
4854         ++vcpu->stat.io_exits;
4855
4856         if (string)
4857                 return kvm_emulate_instruction(vcpu, 0);
4858
4859         port = exit_qualification >> 16;
4860         size = (exit_qualification & 7) + 1;
4861         in = (exit_qualification & 8) != 0;
4862
4863         return kvm_fast_pio(vcpu, size, port, in);
4864 }
4865
4866 static void
4867 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4868 {
4869         /*
4870          * Patch in the VMCALL instruction:
4871          */
4872         hypercall[0] = 0x0f;
4873         hypercall[1] = 0x01;
4874         hypercall[2] = 0xc1;
4875 }
4876
4877 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4878 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4879 {
4880         if (is_guest_mode(vcpu)) {
4881                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4882                 unsigned long orig_val = val;
4883
4884                 /*
4885                  * We get here when L2 changed cr0 in a way that did not change
4886                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4887                  * but did change L0 shadowed bits. So we first calculate the
4888                  * effective cr0 value that L1 would like to write into the
4889                  * hardware. It consists of the L2-owned bits from the new
4890                  * value combined with the L1-owned bits from L1's guest_cr0.
4891                  */
4892                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4893                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4894
4895                 if (!nested_guest_cr0_valid(vcpu, val))
4896                         return 1;
4897
4898                 if (kvm_set_cr0(vcpu, val))
4899                         return 1;
4900                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4901                 return 0;
4902         } else {
4903                 if (to_vmx(vcpu)->nested.vmxon &&
4904                     !nested_host_cr0_valid(vcpu, val))
4905                         return 1;
4906
4907                 return kvm_set_cr0(vcpu, val);
4908         }
4909 }
4910
4911 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4912 {
4913         if (is_guest_mode(vcpu)) {
4914                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4915                 unsigned long orig_val = val;
4916
4917                 /* analogously to handle_set_cr0 */
4918                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4919                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4920                 if (kvm_set_cr4(vcpu, val))
4921                         return 1;
4922                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4923                 return 0;
4924         } else
4925                 return kvm_set_cr4(vcpu, val);
4926 }
4927
4928 static int handle_desc(struct kvm_vcpu *vcpu)
4929 {
4930         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4931         return kvm_emulate_instruction(vcpu, 0);
4932 }
4933
4934 static int handle_cr(struct kvm_vcpu *vcpu)
4935 {
4936         unsigned long exit_qualification, val;
4937         int cr;
4938         int reg;
4939         int err;
4940         int ret;
4941
4942         exit_qualification = vmx_get_exit_qual(vcpu);
4943         cr = exit_qualification & 15;
4944         reg = (exit_qualification >> 8) & 15;
4945         switch ((exit_qualification >> 4) & 3) {
4946         case 0: /* mov to cr */
4947                 val = kvm_register_readl(vcpu, reg);
4948                 trace_kvm_cr_write(cr, val);
4949                 switch (cr) {
4950                 case 0:
4951                         err = handle_set_cr0(vcpu, val);
4952                         return kvm_complete_insn_gp(vcpu, err);
4953                 case 3:
4954                         WARN_ON_ONCE(enable_unrestricted_guest);
4955                         err = kvm_set_cr3(vcpu, val);
4956                         return kvm_complete_insn_gp(vcpu, err);
4957                 case 4:
4958                         err = handle_set_cr4(vcpu, val);
4959                         return kvm_complete_insn_gp(vcpu, err);
4960                 case 8: {
4961                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4962                                 u8 cr8 = (u8)val;
4963                                 err = kvm_set_cr8(vcpu, cr8);
4964                                 ret = kvm_complete_insn_gp(vcpu, err);
4965                                 if (lapic_in_kernel(vcpu))
4966                                         return ret;
4967                                 if (cr8_prev <= cr8)
4968                                         return ret;
4969                                 /*
4970                                  * TODO: we might be squashing a
4971                                  * KVM_GUESTDBG_SINGLESTEP-triggered
4972                                  * KVM_EXIT_DEBUG here.
4973                                  */
4974                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4975                                 return 0;
4976                         }
4977                 }
4978                 break;
4979         case 2: /* clts */
4980                 WARN_ONCE(1, "Guest should always own CR0.TS");
4981                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4982                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4983                 return kvm_skip_emulated_instruction(vcpu);
4984         case 1: /*mov from cr*/
4985                 switch (cr) {
4986                 case 3:
4987                         WARN_ON_ONCE(enable_unrestricted_guest);
4988                         val = kvm_read_cr3(vcpu);
4989                         kvm_register_write(vcpu, reg, val);
4990                         trace_kvm_cr_read(cr, val);
4991                         return kvm_skip_emulated_instruction(vcpu);
4992                 case 8:
4993                         val = kvm_get_cr8(vcpu);
4994                         kvm_register_write(vcpu, reg, val);
4995                         trace_kvm_cr_read(cr, val);
4996                         return kvm_skip_emulated_instruction(vcpu);
4997                 }
4998                 break;
4999         case 3: /* lmsw */
5000                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5001                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5002                 kvm_lmsw(vcpu, val);
5003
5004                 return kvm_skip_emulated_instruction(vcpu);
5005         default:
5006                 break;
5007         }
5008         vcpu->run->exit_reason = 0;
5009         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5010                (int)(exit_qualification >> 4) & 3, cr);
5011         return 0;
5012 }
5013
5014 static int handle_dr(struct kvm_vcpu *vcpu)
5015 {
5016         unsigned long exit_qualification;
5017         int dr, dr7, reg;
5018
5019         exit_qualification = vmx_get_exit_qual(vcpu);
5020         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5021
5022         /* First, if DR does not exist, trigger UD */
5023         if (!kvm_require_dr(vcpu, dr))
5024                 return 1;
5025
5026         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5027         if (!kvm_require_cpl(vcpu, 0))
5028                 return 1;
5029         dr7 = vmcs_readl(GUEST_DR7);
5030         if (dr7 & DR7_GD) {
5031                 /*
5032                  * As the vm-exit takes precedence over the debug trap, we
5033                  * need to emulate the latter, either for the host or the
5034                  * guest debugging itself.
5035                  */
5036                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5037                         vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
5038                         vcpu->run->debug.arch.dr7 = dr7;
5039                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5040                         vcpu->run->debug.arch.exception = DB_VECTOR;
5041                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5042                         return 0;
5043                 } else {
5044                         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5045                         return 1;
5046                 }
5047         }
5048
5049         if (vcpu->guest_debug == 0) {
5050                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5051
5052                 /*
5053                  * No more DR vmexits; force a reload of the debug registers
5054                  * and reenter on this instruction.  The next vmexit will
5055                  * retrieve the full state of the debug registers.
5056                  */
5057                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5058                 return 1;
5059         }
5060
5061         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5062         if (exit_qualification & TYPE_MOV_FROM_DR) {
5063                 unsigned long val;
5064
5065                 if (kvm_get_dr(vcpu, dr, &val))
5066                         return 1;
5067                 kvm_register_write(vcpu, reg, val);
5068         } else
5069                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5070                         return 1;
5071
5072         return kvm_skip_emulated_instruction(vcpu);
5073 }
5074
5075 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5076 {
5077         get_debugreg(vcpu->arch.db[0], 0);
5078         get_debugreg(vcpu->arch.db[1], 1);
5079         get_debugreg(vcpu->arch.db[2], 2);
5080         get_debugreg(vcpu->arch.db[3], 3);
5081         get_debugreg(vcpu->arch.dr6, 6);
5082         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5083
5084         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5085         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5086 }
5087
5088 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5089 {
5090         vmcs_writel(GUEST_DR7, val);
5091 }
5092
5093 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5094 {
5095         kvm_apic_update_ppr(vcpu);
5096         return 1;
5097 }
5098
5099 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5100 {
5101         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5102
5103         kvm_make_request(KVM_REQ_EVENT, vcpu);
5104
5105         ++vcpu->stat.irq_window_exits;
5106         return 1;
5107 }
5108
5109 static int handle_vmcall(struct kvm_vcpu *vcpu)
5110 {
5111         return kvm_emulate_hypercall(vcpu);
5112 }
5113
5114 static int handle_invd(struct kvm_vcpu *vcpu)
5115 {
5116         return kvm_emulate_instruction(vcpu, 0);
5117 }
5118
5119 static int handle_invlpg(struct kvm_vcpu *vcpu)
5120 {
5121         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5122
5123         kvm_mmu_invlpg(vcpu, exit_qualification);
5124         return kvm_skip_emulated_instruction(vcpu);
5125 }
5126
5127 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5128 {
5129         int err;
5130
5131         err = kvm_rdpmc(vcpu);
5132         return kvm_complete_insn_gp(vcpu, err);
5133 }
5134
5135 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5136 {
5137         return kvm_emulate_wbinvd(vcpu);
5138 }
5139
5140 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5141 {
5142         u64 new_bv = kvm_read_edx_eax(vcpu);
5143         u32 index = kvm_rcx_read(vcpu);
5144
5145         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5146                 return kvm_skip_emulated_instruction(vcpu);
5147         return 1;
5148 }
5149
5150 static int handle_apic_access(struct kvm_vcpu *vcpu)
5151 {
5152         if (likely(fasteoi)) {
5153                 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5154                 int access_type, offset;
5155
5156                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5157                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5158                 /*
5159                  * Sane guest uses MOV to write EOI, with written value
5160                  * not cared. So make a short-circuit here by avoiding
5161                  * heavy instruction emulation.
5162                  */
5163                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5164                     (offset == APIC_EOI)) {
5165                         kvm_lapic_set_eoi(vcpu);
5166                         return kvm_skip_emulated_instruction(vcpu);
5167                 }
5168         }
5169         return kvm_emulate_instruction(vcpu, 0);
5170 }
5171
5172 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5173 {
5174         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5175         int vector = exit_qualification & 0xff;
5176
5177         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5178         kvm_apic_set_eoi_accelerated(vcpu, vector);
5179         return 1;
5180 }
5181
5182 static int handle_apic_write(struct kvm_vcpu *vcpu)
5183 {
5184         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5185         u32 offset = exit_qualification & 0xfff;
5186
5187         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5188         kvm_apic_write_nodecode(vcpu, offset);
5189         return 1;
5190 }
5191
5192 static int handle_task_switch(struct kvm_vcpu *vcpu)
5193 {
5194         struct vcpu_vmx *vmx = to_vmx(vcpu);
5195         unsigned long exit_qualification;
5196         bool has_error_code = false;
5197         u32 error_code = 0;
5198         u16 tss_selector;
5199         int reason, type, idt_v, idt_index;
5200
5201         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5202         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5203         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5204
5205         exit_qualification = vmx_get_exit_qual(vcpu);
5206
5207         reason = (u32)exit_qualification >> 30;
5208         if (reason == TASK_SWITCH_GATE && idt_v) {
5209                 switch (type) {
5210                 case INTR_TYPE_NMI_INTR:
5211                         vcpu->arch.nmi_injected = false;
5212                         vmx_set_nmi_mask(vcpu, true);
5213                         break;
5214                 case INTR_TYPE_EXT_INTR:
5215                 case INTR_TYPE_SOFT_INTR:
5216                         kvm_clear_interrupt_queue(vcpu);
5217                         break;
5218                 case INTR_TYPE_HARD_EXCEPTION:
5219                         if (vmx->idt_vectoring_info &
5220                             VECTORING_INFO_DELIVER_CODE_MASK) {
5221                                 has_error_code = true;
5222                                 error_code =
5223                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5224                         }
5225                         /* fall through */
5226                 case INTR_TYPE_SOFT_EXCEPTION:
5227                         kvm_clear_exception_queue(vcpu);
5228                         break;
5229                 default:
5230                         break;
5231                 }
5232         }
5233         tss_selector = exit_qualification;
5234
5235         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5236                        type != INTR_TYPE_EXT_INTR &&
5237                        type != INTR_TYPE_NMI_INTR))
5238                 WARN_ON(!skip_emulated_instruction(vcpu));
5239
5240         /*
5241          * TODO: What about debug traps on tss switch?
5242          *       Are we supposed to inject them and update dr6?
5243          */
5244         return kvm_task_switch(vcpu, tss_selector,
5245                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5246                                reason, has_error_code, error_code);
5247 }
5248
5249 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5250 {
5251         unsigned long exit_qualification;
5252         gpa_t gpa;
5253         u64 error_code;
5254
5255         exit_qualification = vmx_get_exit_qual(vcpu);
5256
5257         /*
5258          * EPT violation happened while executing iret from NMI,
5259          * "blocked by NMI" bit has to be set before next VM entry.
5260          * There are errata that may cause this bit to not be set:
5261          * AAK134, BY25.
5262          */
5263         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5264                         enable_vnmi &&
5265                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5266                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5267
5268         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5269         trace_kvm_page_fault(gpa, exit_qualification);
5270
5271         /* Is it a read fault? */
5272         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5273                      ? PFERR_USER_MASK : 0;
5274         /* Is it a write fault? */
5275         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5276                       ? PFERR_WRITE_MASK : 0;
5277         /* Is it a fetch fault? */
5278         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5279                       ? PFERR_FETCH_MASK : 0;
5280         /* ept page table entry is present? */
5281         error_code |= (exit_qualification &
5282                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5283                         EPT_VIOLATION_EXECUTABLE))
5284                       ? PFERR_PRESENT_MASK : 0;
5285
5286         error_code |= (exit_qualification & 0x100) != 0 ?
5287                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5288
5289         vcpu->arch.exit_qualification = exit_qualification;
5290         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5291 }
5292
5293 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5294 {
5295         gpa_t gpa;
5296
5297         /*
5298          * A nested guest cannot optimize MMIO vmexits, because we have an
5299          * nGPA here instead of the required GPA.
5300          */
5301         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5302         if (!is_guest_mode(vcpu) &&
5303             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5304                 trace_kvm_fast_mmio(gpa);
5305                 return kvm_skip_emulated_instruction(vcpu);
5306         }
5307
5308         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5309 }
5310
5311 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5312 {
5313         WARN_ON_ONCE(!enable_vnmi);
5314         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5315         ++vcpu->stat.nmi_window_exits;
5316         kvm_make_request(KVM_REQ_EVENT, vcpu);
5317
5318         return 1;
5319 }
5320
5321 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5322 {
5323         struct vcpu_vmx *vmx = to_vmx(vcpu);
5324         bool intr_window_requested;
5325         unsigned count = 130;
5326
5327         intr_window_requested = exec_controls_get(vmx) &
5328                                 CPU_BASED_INTR_WINDOW_EXITING;
5329
5330         while (vmx->emulation_required && count-- != 0) {
5331                 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5332                         return handle_interrupt_window(&vmx->vcpu);
5333
5334                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5335                         return 1;
5336
5337                 if (!kvm_emulate_instruction(vcpu, 0))
5338                         return 0;
5339
5340                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5341                     vcpu->arch.exception.pending) {
5342                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5343                         vcpu->run->internal.suberror =
5344                                                 KVM_INTERNAL_ERROR_EMULATION;
5345                         vcpu->run->internal.ndata = 0;
5346                         return 0;
5347                 }
5348
5349                 if (vcpu->arch.halt_request) {
5350                         vcpu->arch.halt_request = 0;
5351                         return kvm_vcpu_halt(vcpu);
5352                 }
5353
5354                 /*
5355                  * Note, return 1 and not 0, vcpu_run() is responsible for
5356                  * morphing the pending signal into the proper return code.
5357                  */
5358                 if (signal_pending(current))
5359                         return 1;
5360
5361                 if (need_resched())
5362                         schedule();
5363         }
5364
5365         return 1;
5366 }
5367
5368 static void grow_ple_window(struct kvm_vcpu *vcpu)
5369 {
5370         struct vcpu_vmx *vmx = to_vmx(vcpu);
5371         unsigned int old = vmx->ple_window;
5372
5373         vmx->ple_window = __grow_ple_window(old, ple_window,
5374                                             ple_window_grow,
5375                                             ple_window_max);
5376
5377         if (vmx->ple_window != old) {
5378                 vmx->ple_window_dirty = true;
5379                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5380                                             vmx->ple_window, old);
5381         }
5382 }
5383
5384 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5385 {
5386         struct vcpu_vmx *vmx = to_vmx(vcpu);
5387         unsigned int old = vmx->ple_window;
5388
5389         vmx->ple_window = __shrink_ple_window(old, ple_window,
5390                                               ple_window_shrink,
5391                                               ple_window);
5392
5393         if (vmx->ple_window != old) {
5394                 vmx->ple_window_dirty = true;
5395                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5396                                             vmx->ple_window, old);
5397         }
5398 }
5399
5400 /*
5401  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5402  */
5403 static void wakeup_handler(void)
5404 {
5405         struct kvm_vcpu *vcpu;
5406         int cpu = smp_processor_id();
5407
5408         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5409         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5410                         blocked_vcpu_list) {
5411                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5412
5413                 if (pi_test_on(pi_desc) == 1)
5414                         kvm_vcpu_kick(vcpu);
5415         }
5416         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5417 }
5418
5419 static void vmx_enable_tdp(void)
5420 {
5421         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5422                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5423                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5424                 0ull, VMX_EPT_EXECUTABLE_MASK,
5425                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5426                 VMX_EPT_RWX_MASK, 0ull);
5427
5428         ept_set_mmio_spte_mask();
5429 }
5430
5431 /*
5432  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5433  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5434  */
5435 static int handle_pause(struct kvm_vcpu *vcpu)
5436 {
5437         if (!kvm_pause_in_guest(vcpu->kvm))
5438                 grow_ple_window(vcpu);
5439
5440         /*
5441          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5442          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5443          * never set PAUSE_EXITING and just set PLE if supported,
5444          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5445          */
5446         kvm_vcpu_on_spin(vcpu, true);
5447         return kvm_skip_emulated_instruction(vcpu);
5448 }
5449
5450 static int handle_nop(struct kvm_vcpu *vcpu)
5451 {
5452         return kvm_skip_emulated_instruction(vcpu);
5453 }
5454
5455 static int handle_mwait(struct kvm_vcpu *vcpu)
5456 {
5457         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5458         return handle_nop(vcpu);
5459 }
5460
5461 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5462 {
5463         kvm_queue_exception(vcpu, UD_VECTOR);
5464         return 1;
5465 }
5466
5467 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5468 {
5469         return 1;
5470 }
5471
5472 static int handle_monitor(struct kvm_vcpu *vcpu)
5473 {
5474         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5475         return handle_nop(vcpu);
5476 }
5477
5478 static int handle_invpcid(struct kvm_vcpu *vcpu)
5479 {
5480         u32 vmx_instruction_info;
5481         unsigned long type;
5482         bool pcid_enabled;
5483         gva_t gva;
5484         struct x86_exception e;
5485         unsigned i;
5486         unsigned long roots_to_free = 0;
5487         struct {
5488                 u64 pcid;
5489                 u64 gla;
5490         } operand;
5491
5492         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5493                 kvm_queue_exception(vcpu, UD_VECTOR);
5494                 return 1;
5495         }
5496
5497         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5498         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5499
5500         if (type > 3) {
5501                 kvm_inject_gp(vcpu, 0);
5502                 return 1;
5503         }
5504
5505         /* According to the Intel instruction reference, the memory operand
5506          * is read even if it isn't needed (e.g., for type==all)
5507          */
5508         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5509                                 vmx_instruction_info, false,
5510                                 sizeof(operand), &gva))
5511                 return 1;
5512
5513         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5514                 kvm_inject_emulated_page_fault(vcpu, &e);
5515                 return 1;
5516         }
5517
5518         if (operand.pcid >> 12 != 0) {
5519                 kvm_inject_gp(vcpu, 0);
5520                 return 1;
5521         }
5522
5523         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5524
5525         switch (type) {
5526         case INVPCID_TYPE_INDIV_ADDR:
5527                 if ((!pcid_enabled && (operand.pcid != 0)) ||
5528                     is_noncanonical_address(operand.gla, vcpu)) {
5529                         kvm_inject_gp(vcpu, 0);
5530                         return 1;
5531                 }
5532                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5533                 return kvm_skip_emulated_instruction(vcpu);
5534
5535         case INVPCID_TYPE_SINGLE_CTXT:
5536                 if (!pcid_enabled && (operand.pcid != 0)) {
5537                         kvm_inject_gp(vcpu, 0);
5538                         return 1;
5539                 }
5540
5541                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5542                         kvm_mmu_sync_roots(vcpu);
5543                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
5544                 }
5545
5546                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5547                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
5548                             == operand.pcid)
5549                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5550
5551                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5552                 /*
5553                  * If neither the current cr3 nor any of the prev_roots use the
5554                  * given PCID, then nothing needs to be done here because a
5555                  * resync will happen anyway before switching to any other CR3.
5556                  */
5557
5558                 return kvm_skip_emulated_instruction(vcpu);
5559
5560         case INVPCID_TYPE_ALL_NON_GLOBAL:
5561                 /*
5562                  * Currently, KVM doesn't mark global entries in the shadow
5563                  * page tables, so a non-global flush just degenerates to a
5564                  * global flush. If needed, we could optimize this later by
5565                  * keeping track of global entries in shadow page tables.
5566                  */
5567
5568                 /* fall-through */
5569         case INVPCID_TYPE_ALL_INCL_GLOBAL:
5570                 kvm_mmu_unload(vcpu);
5571                 return kvm_skip_emulated_instruction(vcpu);
5572
5573         default:
5574                 BUG(); /* We have already checked above that type <= 3 */
5575         }
5576 }
5577
5578 static int handle_pml_full(struct kvm_vcpu *vcpu)
5579 {
5580         unsigned long exit_qualification;
5581
5582         trace_kvm_pml_full(vcpu->vcpu_id);
5583
5584         exit_qualification = vmx_get_exit_qual(vcpu);
5585
5586         /*
5587          * PML buffer FULL happened while executing iret from NMI,
5588          * "blocked by NMI" bit has to be set before next VM entry.
5589          */
5590         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5591                         enable_vnmi &&
5592                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5593                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5594                                 GUEST_INTR_STATE_NMI);
5595
5596         /*
5597          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5598          * here.., and there's no userspace involvement needed for PML.
5599          */
5600         return 1;
5601 }
5602
5603 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5604 {
5605         struct vcpu_vmx *vmx = to_vmx(vcpu);
5606
5607         if (!vmx->req_immediate_exit &&
5608             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5609                 kvm_lapic_expired_hv_timer(vcpu);
5610
5611         return 1;
5612 }
5613
5614 /*
5615  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5616  * are overwritten by nested_vmx_setup() when nested=1.
5617  */
5618 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5619 {
5620         kvm_queue_exception(vcpu, UD_VECTOR);
5621         return 1;
5622 }
5623
5624 static int handle_encls(struct kvm_vcpu *vcpu)
5625 {
5626         /*
5627          * SGX virtualization is not yet supported.  There is no software
5628          * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5629          * to prevent the guest from executing ENCLS.
5630          */
5631         kvm_queue_exception(vcpu, UD_VECTOR);
5632         return 1;
5633 }
5634
5635 /*
5636  * The exit handlers return 1 if the exit was handled fully and guest execution
5637  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5638  * to be done to userspace and return 0.
5639  */
5640 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5641         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5642         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5643         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5644         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5645         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5646         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5647         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5648         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5649         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5650         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5651         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5652         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
5653         [EXIT_REASON_INVD]                    = handle_invd,
5654         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5655         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5656         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5657         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5658         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5659         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5660         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5661         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5662         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5663         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5664         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5665         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5666         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5667         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5668         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5669         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5670         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5671         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5672         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5673         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5674         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5675         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5676         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5677         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5678         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5679         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5680         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5681         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5682         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5683         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5684         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5685         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5686         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5687         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5688         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5689         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5690         [EXIT_REASON_ENCLS]                   = handle_encls,
5691 };
5692
5693 static const int kvm_vmx_max_exit_handlers =
5694         ARRAY_SIZE(kvm_vmx_exit_handlers);
5695
5696 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5697 {
5698         *info1 = vmx_get_exit_qual(vcpu);
5699         *info2 = vmx_get_intr_info(vcpu);
5700 }
5701
5702 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5703 {
5704         if (vmx->pml_pg) {
5705                 __free_page(vmx->pml_pg);
5706                 vmx->pml_pg = NULL;
5707         }
5708 }
5709
5710 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5711 {
5712         struct vcpu_vmx *vmx = to_vmx(vcpu);
5713         u64 *pml_buf;
5714         u16 pml_idx;
5715
5716         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5717
5718         /* Do nothing if PML buffer is empty */
5719         if (pml_idx == (PML_ENTITY_NUM - 1))
5720                 return;
5721
5722         /* PML index always points to next available PML buffer entity */
5723         if (pml_idx >= PML_ENTITY_NUM)
5724                 pml_idx = 0;
5725         else
5726                 pml_idx++;
5727
5728         pml_buf = page_address(vmx->pml_pg);
5729         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5730                 u64 gpa;
5731
5732                 gpa = pml_buf[pml_idx];
5733                 WARN_ON(gpa & (PAGE_SIZE - 1));
5734                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5735         }
5736
5737         /* reset PML index */
5738         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5739 }
5740
5741 /*
5742  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5743  * Called before reporting dirty_bitmap to userspace.
5744  */
5745 static void kvm_flush_pml_buffers(struct kvm *kvm)
5746 {
5747         int i;
5748         struct kvm_vcpu *vcpu;
5749         /*
5750          * We only need to kick vcpu out of guest mode here, as PML buffer
5751          * is flushed at beginning of all VMEXITs, and it's obvious that only
5752          * vcpus running in guest are possible to have unflushed GPAs in PML
5753          * buffer.
5754          */
5755         kvm_for_each_vcpu(i, vcpu, kvm)
5756                 kvm_vcpu_kick(vcpu);
5757 }
5758
5759 static void vmx_dump_sel(char *name, uint32_t sel)
5760 {
5761         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5762                name, vmcs_read16(sel),
5763                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5764                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5765                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5766 }
5767
5768 static void vmx_dump_dtsel(char *name, uint32_t limit)
5769 {
5770         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5771                name, vmcs_read32(limit),
5772                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5773 }
5774
5775 void dump_vmcs(void)
5776 {
5777         u32 vmentry_ctl, vmexit_ctl;
5778         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5779         unsigned long cr4;
5780         u64 efer;
5781
5782         if (!dump_invalid_vmcs) {
5783                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5784                 return;
5785         }
5786
5787         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5788         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5789         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5790         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5791         cr4 = vmcs_readl(GUEST_CR4);
5792         efer = vmcs_read64(GUEST_IA32_EFER);
5793         secondary_exec_control = 0;
5794         if (cpu_has_secondary_exec_ctrls())
5795                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5796
5797         pr_err("*** Guest State ***\n");
5798         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5799                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5800                vmcs_readl(CR0_GUEST_HOST_MASK));
5801         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5802                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5803         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5804         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5805             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5806         {
5807                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5808                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5809                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5810                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5811         }
5812         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5813                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5814         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5815                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5816         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5817                vmcs_readl(GUEST_SYSENTER_ESP),
5818                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5819         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5820         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5821         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5822         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5823         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5824         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5825         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5826         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5827         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5828         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5829         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5830             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5831                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5832                        efer, vmcs_read64(GUEST_IA32_PAT));
5833         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5834                vmcs_read64(GUEST_IA32_DEBUGCTL),
5835                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5836         if (cpu_has_load_perf_global_ctrl() &&
5837             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5838                 pr_err("PerfGlobCtl = 0x%016llx\n",
5839                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5840         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5841                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5842         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5843                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5844                vmcs_read32(GUEST_ACTIVITY_STATE));
5845         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5846                 pr_err("InterruptStatus = %04x\n",
5847                        vmcs_read16(GUEST_INTR_STATUS));
5848
5849         pr_err("*** Host State ***\n");
5850         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5851                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5852         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5853                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5854                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5855                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5856                vmcs_read16(HOST_TR_SELECTOR));
5857         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5858                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5859                vmcs_readl(HOST_TR_BASE));
5860         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5861                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5862         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5863                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5864                vmcs_readl(HOST_CR4));
5865         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5866                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5867                vmcs_read32(HOST_IA32_SYSENTER_CS),
5868                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5869         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5870                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5871                        vmcs_read64(HOST_IA32_EFER),
5872                        vmcs_read64(HOST_IA32_PAT));
5873         if (cpu_has_load_perf_global_ctrl() &&
5874             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5875                 pr_err("PerfGlobCtl = 0x%016llx\n",
5876                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5877
5878         pr_err("*** Control State ***\n");
5879         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5880                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5881         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5882         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5883                vmcs_read32(EXCEPTION_BITMAP),
5884                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5885                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5886         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5887                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5888                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5889                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5890         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5891                vmcs_read32(VM_EXIT_INTR_INFO),
5892                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5893                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5894         pr_err("        reason=%08x qualification=%016lx\n",
5895                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5896         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5897                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5898                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5899         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5900         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5901                 pr_err("TSC Multiplier = 0x%016llx\n",
5902                        vmcs_read64(TSC_MULTIPLIER));
5903         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5904                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5905                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5906                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5907                 }
5908                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5909                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5910                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5911                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5912         }
5913         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5914                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5915         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5916                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5917         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5918                 pr_err("PLE Gap=%08x Window=%08x\n",
5919                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5920         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5921                 pr_err("Virtual processor ID = 0x%04x\n",
5922                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5923 }
5924
5925 /*
5926  * The guest has exited.  See if we can fix it or if we need userspace
5927  * assistance.
5928  */
5929 static int vmx_handle_exit(struct kvm_vcpu *vcpu,
5930         enum exit_fastpath_completion exit_fastpath)
5931 {
5932         struct vcpu_vmx *vmx = to_vmx(vcpu);
5933         u32 exit_reason = vmx->exit_reason;
5934         u32 vectoring_info = vmx->idt_vectoring_info;
5935
5936         /*
5937          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5938          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5939          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5940          * mode as if vcpus is in root mode, the PML buffer must has been
5941          * flushed already.
5942          */
5943         if (enable_pml)
5944                 vmx_flush_pml_buffer(vcpu);
5945
5946         /*
5947          * We should never reach this point with a pending nested VM-Enter, and
5948          * more specifically emulation of L2 due to invalid guest state (see
5949          * below) should never happen as that means we incorrectly allowed a
5950          * nested VM-Enter with an invalid vmcs12.
5951          */
5952         WARN_ON_ONCE(vmx->nested.nested_run_pending);
5953
5954         /* If guest state is invalid, start emulating */
5955         if (vmx->emulation_required)
5956                 return handle_invalid_guest_state(vcpu);
5957
5958         if (is_guest_mode(vcpu)) {
5959                 /*
5960                  * The host physical addresses of some pages of guest memory
5961                  * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5962                  * Page). The CPU may write to these pages via their host
5963                  * physical address while L2 is running, bypassing any
5964                  * address-translation-based dirty tracking (e.g. EPT write
5965                  * protection).
5966                  *
5967                  * Mark them dirty on every exit from L2 to prevent them from
5968                  * getting out of sync with dirty tracking.
5969                  */
5970                 nested_mark_vmcs12_pages_dirty(vcpu);
5971
5972                 if (nested_vmx_reflect_vmexit(vcpu))
5973                         return 1;
5974         }
5975
5976         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5977                 dump_vmcs();
5978                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5979                 vcpu->run->fail_entry.hardware_entry_failure_reason
5980                         = exit_reason;
5981                 return 0;
5982         }
5983
5984         if (unlikely(vmx->fail)) {
5985                 dump_vmcs();
5986                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5987                 vcpu->run->fail_entry.hardware_entry_failure_reason
5988                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5989                 return 0;
5990         }
5991
5992         /*
5993          * Note:
5994          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5995          * delivery event since it indicates guest is accessing MMIO.
5996          * The vm-exit can be triggered again after return to guest that
5997          * will cause infinite loop.
5998          */
5999         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6000                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6001                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
6002                         exit_reason != EXIT_REASON_PML_FULL &&
6003                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
6004                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6005                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6006                 vcpu->run->internal.ndata = 3;
6007                 vcpu->run->internal.data[0] = vectoring_info;
6008                 vcpu->run->internal.data[1] = exit_reason;
6009                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6010                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
6011                         vcpu->run->internal.ndata++;
6012                         vcpu->run->internal.data[3] =
6013                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6014                 }
6015                 return 0;
6016         }
6017
6018         if (unlikely(!enable_vnmi &&
6019                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
6020                 if (!vmx_interrupt_blocked(vcpu)) {
6021                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6022                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6023                            vcpu->arch.nmi_pending) {
6024                         /*
6025                          * This CPU don't support us in finding the end of an
6026                          * NMI-blocked window if the guest runs with IRQs
6027                          * disabled. So we pull the trigger after 1 s of
6028                          * futile waiting, but inform the user about this.
6029                          */
6030                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6031                                "state on VCPU %d after 1 s timeout\n",
6032                                __func__, vcpu->vcpu_id);
6033                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6034                 }
6035         }
6036
6037         if (exit_fastpath == EXIT_FASTPATH_SKIP_EMUL_INS) {
6038                 kvm_skip_emulated_instruction(vcpu);
6039                 return 1;
6040         }
6041
6042         if (exit_reason >= kvm_vmx_max_exit_handlers)
6043                 goto unexpected_vmexit;
6044 #ifdef CONFIG_RETPOLINE
6045         if (exit_reason == EXIT_REASON_MSR_WRITE)
6046                 return kvm_emulate_wrmsr(vcpu);
6047         else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
6048                 return handle_preemption_timer(vcpu);
6049         else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
6050                 return handle_interrupt_window(vcpu);
6051         else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6052                 return handle_external_interrupt(vcpu);
6053         else if (exit_reason == EXIT_REASON_HLT)
6054                 return kvm_emulate_halt(vcpu);
6055         else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
6056                 return handle_ept_misconfig(vcpu);
6057 #endif
6058
6059         exit_reason = array_index_nospec(exit_reason,
6060                                          kvm_vmx_max_exit_handlers);
6061         if (!kvm_vmx_exit_handlers[exit_reason])
6062                 goto unexpected_vmexit;
6063
6064         return kvm_vmx_exit_handlers[exit_reason](vcpu);
6065
6066 unexpected_vmexit:
6067         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason);
6068         dump_vmcs();
6069         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6070         vcpu->run->internal.suberror =
6071                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6072         vcpu->run->internal.ndata = 1;
6073         vcpu->run->internal.data[0] = exit_reason;
6074         return 0;
6075 }
6076
6077 /*
6078  * Software based L1D cache flush which is used when microcode providing
6079  * the cache control MSR is not loaded.
6080  *
6081  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6082  * flush it is required to read in 64 KiB because the replacement algorithm
6083  * is not exactly LRU. This could be sized at runtime via topology
6084  * information but as all relevant affected CPUs have 32KiB L1D cache size
6085  * there is no point in doing so.
6086  */
6087 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6088 {
6089         int size = PAGE_SIZE << L1D_CACHE_ORDER;
6090
6091         /*
6092          * This code is only executed when the the flush mode is 'cond' or
6093          * 'always'
6094          */
6095         if (static_branch_likely(&vmx_l1d_flush_cond)) {
6096                 bool flush_l1d;
6097
6098                 /*
6099                  * Clear the per-vcpu flush bit, it gets set again
6100                  * either from vcpu_run() or from one of the unsafe
6101                  * VMEXIT handlers.
6102                  */
6103                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6104                 vcpu->arch.l1tf_flush_l1d = false;
6105
6106                 /*
6107                  * Clear the per-cpu flush bit, it gets set again from
6108                  * the interrupt handlers.
6109                  */
6110                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6111                 kvm_clear_cpu_l1tf_flush_l1d();
6112
6113                 if (!flush_l1d)
6114                         return;
6115         }
6116
6117         vcpu->stat.l1d_flush++;
6118
6119         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6120                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6121                 return;
6122         }
6123
6124         asm volatile(
6125                 /* First ensure the pages are in the TLB */
6126                 "xorl   %%eax, %%eax\n"
6127                 ".Lpopulate_tlb:\n\t"
6128                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6129                 "addl   $4096, %%eax\n\t"
6130                 "cmpl   %%eax, %[size]\n\t"
6131                 "jne    .Lpopulate_tlb\n\t"
6132                 "xorl   %%eax, %%eax\n\t"
6133                 "cpuid\n\t"
6134                 /* Now fill the cache */
6135                 "xorl   %%eax, %%eax\n"
6136                 ".Lfill_cache:\n"
6137                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6138                 "addl   $64, %%eax\n\t"
6139                 "cmpl   %%eax, %[size]\n\t"
6140                 "jne    .Lfill_cache\n\t"
6141                 "lfence\n"
6142                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6143                     [size] "r" (size)
6144                 : "eax", "ebx", "ecx", "edx");
6145 }
6146
6147 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6148 {
6149         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6150         int tpr_threshold;
6151
6152         if (is_guest_mode(vcpu) &&
6153                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6154                 return;
6155
6156         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6157         if (is_guest_mode(vcpu))
6158                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6159         else
6160                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6161 }
6162
6163 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6164 {
6165         struct vcpu_vmx *vmx = to_vmx(vcpu);
6166         u32 sec_exec_control;
6167
6168         if (!lapic_in_kernel(vcpu))
6169                 return;
6170
6171         if (!flexpriority_enabled &&
6172             !cpu_has_vmx_virtualize_x2apic_mode())
6173                 return;
6174
6175         /* Postpone execution until vmcs01 is the current VMCS. */
6176         if (is_guest_mode(vcpu)) {
6177                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6178                 return;
6179         }
6180
6181         sec_exec_control = secondary_exec_controls_get(vmx);
6182         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6183                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6184
6185         switch (kvm_get_apic_mode(vcpu)) {
6186         case LAPIC_MODE_INVALID:
6187                 WARN_ONCE(true, "Invalid local APIC state");
6188         case LAPIC_MODE_DISABLED:
6189                 break;
6190         case LAPIC_MODE_XAPIC:
6191                 if (flexpriority_enabled) {
6192                         sec_exec_control |=
6193                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6194                         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6195
6196                         /*
6197                          * Flush the TLB, reloading the APIC access page will
6198                          * only do so if its physical address has changed, but
6199                          * the guest may have inserted a non-APIC mapping into
6200                          * the TLB while the APIC access page was disabled.
6201                          */
6202                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6203                 }
6204                 break;
6205         case LAPIC_MODE_X2APIC:
6206                 if (cpu_has_vmx_virtualize_x2apic_mode())
6207                         sec_exec_control |=
6208                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6209                 break;
6210         }
6211         secondary_exec_controls_set(vmx, sec_exec_control);
6212
6213         vmx_update_msr_bitmap(vcpu);
6214 }
6215
6216 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6217 {
6218         struct page *page;
6219
6220         /* Defer reload until vmcs01 is the current VMCS. */
6221         if (is_guest_mode(vcpu)) {
6222                 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6223                 return;
6224         }
6225
6226         if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6227             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6228                 return;
6229
6230         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6231         if (is_error_page(page))
6232                 return;
6233
6234         vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6235         vmx_flush_tlb_current(vcpu);
6236
6237         /*
6238          * Do not pin apic access page in memory, the MMU notifier
6239          * will call us again if it is migrated or swapped out.
6240          */
6241         put_page(page);
6242 }
6243
6244 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6245 {
6246         u16 status;
6247         u8 old;
6248
6249         if (max_isr == -1)
6250                 max_isr = 0;
6251
6252         status = vmcs_read16(GUEST_INTR_STATUS);
6253         old = status >> 8;
6254         if (max_isr != old) {
6255                 status &= 0xff;
6256                 status |= max_isr << 8;
6257                 vmcs_write16(GUEST_INTR_STATUS, status);
6258         }
6259 }
6260
6261 static void vmx_set_rvi(int vector)
6262 {
6263         u16 status;
6264         u8 old;
6265
6266         if (vector == -1)
6267                 vector = 0;
6268
6269         status = vmcs_read16(GUEST_INTR_STATUS);
6270         old = (u8)status & 0xff;
6271         if ((u8)vector != old) {
6272                 status &= ~0xff;
6273                 status |= (u8)vector;
6274                 vmcs_write16(GUEST_INTR_STATUS, status);
6275         }
6276 }
6277
6278 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6279 {
6280         /*
6281          * When running L2, updating RVI is only relevant when
6282          * vmcs12 virtual-interrupt-delivery enabled.
6283          * However, it can be enabled only when L1 also
6284          * intercepts external-interrupts and in that case
6285          * we should not update vmcs02 RVI but instead intercept
6286          * interrupt. Therefore, do nothing when running L2.
6287          */
6288         if (!is_guest_mode(vcpu))
6289                 vmx_set_rvi(max_irr);
6290 }
6291
6292 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6293 {
6294         struct vcpu_vmx *vmx = to_vmx(vcpu);
6295         int max_irr;
6296         bool max_irr_updated;
6297
6298         WARN_ON(!vcpu->arch.apicv_active);
6299         if (pi_test_on(&vmx->pi_desc)) {
6300                 pi_clear_on(&vmx->pi_desc);
6301                 /*
6302                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6303                  * But on x86 this is just a compiler barrier anyway.
6304                  */
6305                 smp_mb__after_atomic();
6306                 max_irr_updated =
6307                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6308
6309                 /*
6310                  * If we are running L2 and L1 has a new pending interrupt
6311                  * which can be injected, we should re-evaluate
6312                  * what should be done with this new L1 interrupt.
6313                  * If L1 intercepts external-interrupts, we should
6314                  * exit from L2 to L1. Otherwise, interrupt should be
6315                  * delivered directly to L2.
6316                  */
6317                 if (is_guest_mode(vcpu) && max_irr_updated) {
6318                         if (nested_exit_on_intr(vcpu))
6319                                 kvm_vcpu_exiting_guest_mode(vcpu);
6320                         else
6321                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6322                 }
6323         } else {
6324                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6325         }
6326         vmx_hwapic_irr_update(vcpu, max_irr);
6327         return max_irr;
6328 }
6329
6330 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6331 {
6332         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6333
6334         return pi_test_on(pi_desc) ||
6335                 (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6336 }
6337
6338 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6339 {
6340         if (!kvm_vcpu_apicv_active(vcpu))
6341                 return;
6342
6343         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6344         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6345         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6346         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6347 }
6348
6349 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6350 {
6351         struct vcpu_vmx *vmx = to_vmx(vcpu);
6352
6353         pi_clear_on(&vmx->pi_desc);
6354         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6355 }
6356
6357 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6358 {
6359         u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6360
6361         /* if exit due to PF check for async PF */
6362         if (is_page_fault(intr_info)) {
6363                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6364         /* Handle machine checks before interrupts are enabled */
6365         } else if (is_machine_check(intr_info)) {
6366                 kvm_machine_check();
6367         /* We need to handle NMIs before interrupts are enabled */
6368         } else if (is_nmi(intr_info)) {
6369                 kvm_before_interrupt(&vmx->vcpu);
6370                 asm("int $2");
6371                 kvm_after_interrupt(&vmx->vcpu);
6372         }
6373 }
6374
6375 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6376 {
6377         unsigned int vector;
6378         unsigned long entry;
6379 #ifdef CONFIG_X86_64
6380         unsigned long tmp;
6381 #endif
6382         gate_desc *desc;
6383         u32 intr_info = vmx_get_intr_info(vcpu);
6384
6385         if (WARN_ONCE(!is_external_intr(intr_info),
6386             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6387                 return;
6388
6389         vector = intr_info & INTR_INFO_VECTOR_MASK;
6390         desc = (gate_desc *)host_idt_base + vector;
6391         entry = gate_offset(desc);
6392
6393         kvm_before_interrupt(vcpu);
6394
6395         asm volatile(
6396 #ifdef CONFIG_X86_64
6397                 "mov %%rsp, %[sp]\n\t"
6398                 "and $-16, %%rsp\n\t"
6399                 "push %[ss]\n\t"
6400                 "push %[sp]\n\t"
6401 #endif
6402                 "pushf\n\t"
6403                 "push %[cs]\n\t"
6404                 CALL_NOSPEC
6405                 :
6406 #ifdef CONFIG_X86_64
6407                 [sp]"=&r"(tmp),
6408 #endif
6409                 ASM_CALL_CONSTRAINT
6410                 :
6411                 [thunk_target]"r"(entry),
6412 #ifdef CONFIG_X86_64
6413                 [ss]"i"(__KERNEL_DS),
6414 #endif
6415                 [cs]"i"(__KERNEL_CS)
6416         );
6417
6418         kvm_after_interrupt(vcpu);
6419 }
6420 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6421
6422 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6423 {
6424         struct vcpu_vmx *vmx = to_vmx(vcpu);
6425
6426         if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6427                 handle_external_interrupt_irqoff(vcpu);
6428         else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6429                 handle_exception_nmi_irqoff(vmx);
6430 }
6431
6432 static bool vmx_has_emulated_msr(int index)
6433 {
6434         switch (index) {
6435         case MSR_IA32_SMBASE:
6436                 /*
6437                  * We cannot do SMM unless we can run the guest in big
6438                  * real mode.
6439                  */
6440                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6441         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6442                 return nested;
6443         case MSR_AMD64_VIRT_SPEC_CTRL:
6444                 /* This is AMD only.  */
6445                 return false;
6446         default:
6447                 return true;
6448         }
6449 }
6450
6451 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6452 {
6453         u32 exit_intr_info;
6454         bool unblock_nmi;
6455         u8 vector;
6456         bool idtv_info_valid;
6457
6458         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6459
6460         if (enable_vnmi) {
6461                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6462                         return;
6463
6464                 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6465                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6466                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6467                 /*
6468                  * SDM 3: 27.7.1.2 (September 2008)
6469                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6470                  * a guest IRET fault.
6471                  * SDM 3: 23.2.2 (September 2008)
6472                  * Bit 12 is undefined in any of the following cases:
6473                  *  If the VM exit sets the valid bit in the IDT-vectoring
6474                  *   information field.
6475                  *  If the VM exit is due to a double fault.
6476                  */
6477                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6478                     vector != DF_VECTOR && !idtv_info_valid)
6479                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6480                                       GUEST_INTR_STATE_NMI);
6481                 else
6482                         vmx->loaded_vmcs->nmi_known_unmasked =
6483                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6484                                   & GUEST_INTR_STATE_NMI);
6485         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6486                 vmx->loaded_vmcs->vnmi_blocked_time +=
6487                         ktime_to_ns(ktime_sub(ktime_get(),
6488                                               vmx->loaded_vmcs->entry_time));
6489 }
6490
6491 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6492                                       u32 idt_vectoring_info,
6493                                       int instr_len_field,
6494                                       int error_code_field)
6495 {
6496         u8 vector;
6497         int type;
6498         bool idtv_info_valid;
6499
6500         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6501
6502         vcpu->arch.nmi_injected = false;
6503         kvm_clear_exception_queue(vcpu);
6504         kvm_clear_interrupt_queue(vcpu);
6505
6506         if (!idtv_info_valid)
6507                 return;
6508
6509         kvm_make_request(KVM_REQ_EVENT, vcpu);
6510
6511         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6512         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6513
6514         switch (type) {
6515         case INTR_TYPE_NMI_INTR:
6516                 vcpu->arch.nmi_injected = true;
6517                 /*
6518                  * SDM 3: 27.7.1.2 (September 2008)
6519                  * Clear bit "block by NMI" before VM entry if a NMI
6520                  * delivery faulted.
6521                  */
6522                 vmx_set_nmi_mask(vcpu, false);
6523                 break;
6524         case INTR_TYPE_SOFT_EXCEPTION:
6525                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6526                 /* fall through */
6527         case INTR_TYPE_HARD_EXCEPTION:
6528                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6529                         u32 err = vmcs_read32(error_code_field);
6530                         kvm_requeue_exception_e(vcpu, vector, err);
6531                 } else
6532                         kvm_requeue_exception(vcpu, vector);
6533                 break;
6534         case INTR_TYPE_SOFT_INTR:
6535                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6536                 /* fall through */
6537         case INTR_TYPE_EXT_INTR:
6538                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6539                 break;
6540         default:
6541                 break;
6542         }
6543 }
6544
6545 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6546 {
6547         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6548                                   VM_EXIT_INSTRUCTION_LEN,
6549                                   IDT_VECTORING_ERROR_CODE);
6550 }
6551
6552 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6553 {
6554         __vmx_complete_interrupts(vcpu,
6555                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6556                                   VM_ENTRY_INSTRUCTION_LEN,
6557                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6558
6559         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6560 }
6561
6562 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6563 {
6564         int i, nr_msrs;
6565         struct perf_guest_switch_msr *msrs;
6566
6567         msrs = perf_guest_get_msrs(&nr_msrs);
6568
6569         if (!msrs)
6570                 return;
6571
6572         for (i = 0; i < nr_msrs; i++)
6573                 if (msrs[i].host == msrs[i].guest)
6574                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6575                 else
6576                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6577                                         msrs[i].host, false);
6578 }
6579
6580 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6581 {
6582         u32 host_umwait_control;
6583
6584         if (!vmx_has_waitpkg(vmx))
6585                 return;
6586
6587         host_umwait_control = get_umwait_control_msr();
6588
6589         if (vmx->msr_ia32_umwait_control != host_umwait_control)
6590                 add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6591                         vmx->msr_ia32_umwait_control,
6592                         host_umwait_control, false);
6593         else
6594                 clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6595 }
6596
6597 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6598 {
6599         struct vcpu_vmx *vmx = to_vmx(vcpu);
6600         u64 tscl;
6601         u32 delta_tsc;
6602
6603         if (vmx->req_immediate_exit) {
6604                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6605                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6606         } else if (vmx->hv_deadline_tsc != -1) {
6607                 tscl = rdtsc();
6608                 if (vmx->hv_deadline_tsc > tscl)
6609                         /* set_hv_timer ensures the delta fits in 32-bits */
6610                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6611                                 cpu_preemption_timer_multi);
6612                 else
6613                         delta_tsc = 0;
6614
6615                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6616                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6617         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6618                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6619                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6620         }
6621 }
6622
6623 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6624 {
6625         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6626                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6627                 vmcs_writel(HOST_RSP, host_rsp);
6628         }
6629 }
6630
6631 static enum exit_fastpath_completion vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6632 {
6633         switch (to_vmx(vcpu)->exit_reason) {
6634         case EXIT_REASON_MSR_WRITE:
6635                 return handle_fastpath_set_msr_irqoff(vcpu);
6636         default:
6637                 return EXIT_FASTPATH_NONE;
6638         }
6639 }
6640
6641 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6642
6643 static enum exit_fastpath_completion vmx_vcpu_run(struct kvm_vcpu *vcpu)
6644 {
6645         enum exit_fastpath_completion exit_fastpath;
6646         struct vcpu_vmx *vmx = to_vmx(vcpu);
6647         unsigned long cr3, cr4;
6648
6649         /* Record the guest's net vcpu time for enforced NMI injections. */
6650         if (unlikely(!enable_vnmi &&
6651                      vmx->loaded_vmcs->soft_vnmi_blocked))
6652                 vmx->loaded_vmcs->entry_time = ktime_get();
6653
6654         /* Don't enter VMX if guest state is invalid, let the exit handler
6655            start emulation until we arrive back to a valid state */
6656         if (vmx->emulation_required)
6657                 return EXIT_FASTPATH_NONE;
6658
6659         if (vmx->ple_window_dirty) {
6660                 vmx->ple_window_dirty = false;
6661                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6662         }
6663
6664         /*
6665          * We did this in prepare_switch_to_guest, because it needs to
6666          * be within srcu_read_lock.
6667          */
6668         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6669
6670         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6671                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6672         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6673                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6674
6675         cr3 = __get_current_cr3_fast();
6676         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6677                 vmcs_writel(HOST_CR3, cr3);
6678                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6679         }
6680
6681         cr4 = cr4_read_shadow();
6682         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6683                 vmcs_writel(HOST_CR4, cr4);
6684                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6685         }
6686
6687         /* When single-stepping over STI and MOV SS, we must clear the
6688          * corresponding interruptibility bits in the guest state. Otherwise
6689          * vmentry fails as it then expects bit 14 (BS) in pending debug
6690          * exceptions being set, but that's not correct for the guest debugging
6691          * case. */
6692         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6693                 vmx_set_interrupt_shadow(vcpu, 0);
6694
6695         kvm_load_guest_xsave_state(vcpu);
6696
6697         pt_guest_enter(vmx);
6698
6699         if (vcpu_to_pmu(vcpu)->version)
6700                 atomic_switch_perf_msrs(vmx);
6701         atomic_switch_umwait_control_msr(vmx);
6702
6703         if (enable_preemption_timer)
6704                 vmx_update_hv_timer(vcpu);
6705
6706         if (lapic_in_kernel(vcpu) &&
6707                 vcpu->arch.apic->lapic_timer.timer_advance_ns)
6708                 kvm_wait_lapic_expire(vcpu);
6709
6710         /*
6711          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6712          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6713          * is no need to worry about the conditional branch over the wrmsr
6714          * being speculatively taken.
6715          */
6716         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6717
6718         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6719         if (static_branch_unlikely(&vmx_l1d_should_flush))
6720                 vmx_l1d_flush(vcpu);
6721         else if (static_branch_unlikely(&mds_user_clear))
6722                 mds_clear_cpu_buffers();
6723
6724         if (vcpu->arch.cr2 != read_cr2())
6725                 write_cr2(vcpu->arch.cr2);
6726
6727         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6728                                    vmx->loaded_vmcs->launched);
6729
6730         vcpu->arch.cr2 = read_cr2();
6731
6732         /*
6733          * We do not use IBRS in the kernel. If this vCPU has used the
6734          * SPEC_CTRL MSR it may have left it on; save the value and
6735          * turn it off. This is much more efficient than blindly adding
6736          * it to the atomic save/restore list. Especially as the former
6737          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6738          *
6739          * For non-nested case:
6740          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6741          * save it.
6742          *
6743          * For nested case:
6744          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6745          * save it.
6746          */
6747         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6748                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6749
6750         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6751
6752         /* All fields are clean at this point */
6753         if (static_branch_unlikely(&enable_evmcs))
6754                 current_evmcs->hv_clean_fields |=
6755                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6756
6757         if (static_branch_unlikely(&enable_evmcs))
6758                 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6759
6760         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6761         if (vmx->host_debugctlmsr)
6762                 update_debugctlmsr(vmx->host_debugctlmsr);
6763
6764 #ifndef CONFIG_X86_64
6765         /*
6766          * The sysexit path does not restore ds/es, so we must set them to
6767          * a reasonable value ourselves.
6768          *
6769          * We can't defer this to vmx_prepare_switch_to_host() since that
6770          * function may be executed in interrupt context, which saves and
6771          * restore segments around it, nullifying its effect.
6772          */
6773         loadsegment(ds, __USER_DS);
6774         loadsegment(es, __USER_DS);
6775 #endif
6776
6777         vmx_register_cache_reset(vcpu);
6778
6779         pt_guest_exit(vmx);
6780
6781         kvm_load_host_xsave_state(vcpu);
6782
6783         vmx->nested.nested_run_pending = 0;
6784         vmx->idt_vectoring_info = 0;
6785
6786         if (unlikely(vmx->fail)) {
6787                 vmx->exit_reason = 0xdead;
6788                 return EXIT_FASTPATH_NONE;
6789         }
6790
6791         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6792         if (unlikely((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY))
6793                 kvm_machine_check();
6794
6795         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6796
6797         if (unlikely(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6798                 return EXIT_FASTPATH_NONE;
6799
6800         vmx->loaded_vmcs->launched = 1;
6801         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6802
6803         vmx_recover_nmi_blocking(vmx);
6804         vmx_complete_interrupts(vmx);
6805
6806         if (is_guest_mode(vcpu))
6807                 return EXIT_FASTPATH_NONE;
6808
6809         exit_fastpath = vmx_exit_handlers_fastpath(vcpu);
6810         return exit_fastpath;
6811 }
6812
6813 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6814 {
6815         struct vcpu_vmx *vmx = to_vmx(vcpu);
6816
6817         if (enable_pml)
6818                 vmx_destroy_pml_buffer(vmx);
6819         free_vpid(vmx->vpid);
6820         nested_vmx_free_vcpu(vcpu);
6821         free_loaded_vmcs(vmx->loaded_vmcs);
6822 }
6823
6824 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6825 {
6826         struct vcpu_vmx *vmx;
6827         unsigned long *msr_bitmap;
6828         int i, cpu, err;
6829
6830         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6831         vmx = to_vmx(vcpu);
6832
6833         err = -ENOMEM;
6834
6835         vmx->vpid = allocate_vpid();
6836
6837         /*
6838          * If PML is turned on, failure on enabling PML just results in failure
6839          * of creating the vcpu, therefore we can simplify PML logic (by
6840          * avoiding dealing with cases, such as enabling PML partially on vcpus
6841          * for the guest), etc.
6842          */
6843         if (enable_pml) {
6844                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6845                 if (!vmx->pml_pg)
6846                         goto free_vpid;
6847         }
6848
6849         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) != NR_SHARED_MSRS);
6850
6851         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6852                 u32 index = vmx_msr_index[i];
6853                 u32 data_low, data_high;
6854                 int j = vmx->nmsrs;
6855
6856                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
6857                         continue;
6858                 if (wrmsr_safe(index, data_low, data_high) < 0)
6859                         continue;
6860
6861                 vmx->guest_msrs[j].index = i;
6862                 vmx->guest_msrs[j].data = 0;
6863                 switch (index) {
6864                 case MSR_IA32_TSX_CTRL:
6865                         /*
6866                          * No need to pass TSX_CTRL_CPUID_CLEAR through, so
6867                          * let's avoid changing CPUID bits under the host
6868                          * kernel's feet.
6869                          */
6870                         vmx->guest_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6871                         break;
6872                 default:
6873                         vmx->guest_msrs[j].mask = -1ull;
6874                         break;
6875                 }
6876                 ++vmx->nmsrs;
6877         }
6878
6879         err = alloc_loaded_vmcs(&vmx->vmcs01);
6880         if (err < 0)
6881                 goto free_pml;
6882
6883         msr_bitmap = vmx->vmcs01.msr_bitmap;
6884         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6885         vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6886         vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6887         vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6888         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6889         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6890         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6891         if (kvm_cstate_in_guest(vcpu->kvm)) {
6892                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6893                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6894                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6895                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6896         }
6897         vmx->msr_bitmap_mode = 0;
6898
6899         vmx->loaded_vmcs = &vmx->vmcs01;
6900         cpu = get_cpu();
6901         vmx_vcpu_load(vcpu, cpu);
6902         vcpu->cpu = cpu;
6903         init_vmcs(vmx);
6904         vmx_vcpu_put(vcpu);
6905         put_cpu();
6906         if (cpu_need_virtualize_apic_accesses(vcpu)) {
6907                 err = alloc_apic_access_page(vcpu->kvm);
6908                 if (err)
6909                         goto free_vmcs;
6910         }
6911
6912         if (enable_ept && !enable_unrestricted_guest) {
6913                 err = init_rmode_identity_map(vcpu->kvm);
6914                 if (err)
6915                         goto free_vmcs;
6916         }
6917
6918         if (nested)
6919                 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6920                                            vmx_capability.ept);
6921         else
6922                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6923
6924         vmx->nested.posted_intr_nv = -1;
6925         vmx->nested.current_vmptr = -1ull;
6926
6927         vcpu->arch.microcode_version = 0x100000000ULL;
6928         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6929
6930         /*
6931          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6932          * or POSTED_INTR_WAKEUP_VECTOR.
6933          */
6934         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6935         vmx->pi_desc.sn = 1;
6936
6937         vmx->ept_pointer = INVALID_PAGE;
6938
6939         return 0;
6940
6941 free_vmcs:
6942         free_loaded_vmcs(vmx->loaded_vmcs);
6943 free_pml:
6944         vmx_destroy_pml_buffer(vmx);
6945 free_vpid:
6946         free_vpid(vmx->vpid);
6947         return err;
6948 }
6949
6950 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6951 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6952
6953 static int vmx_vm_init(struct kvm *kvm)
6954 {
6955         spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6956
6957         if (!ple_gap)
6958                 kvm->arch.pause_in_guest = true;
6959
6960         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6961                 switch (l1tf_mitigation) {
6962                 case L1TF_MITIGATION_OFF:
6963                 case L1TF_MITIGATION_FLUSH_NOWARN:
6964                         /* 'I explicitly don't care' is set */
6965                         break;
6966                 case L1TF_MITIGATION_FLUSH:
6967                 case L1TF_MITIGATION_FLUSH_NOSMT:
6968                 case L1TF_MITIGATION_FULL:
6969                         /*
6970                          * Warn upon starting the first VM in a potentially
6971                          * insecure environment.
6972                          */
6973                         if (sched_smt_active())
6974                                 pr_warn_once(L1TF_MSG_SMT);
6975                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6976                                 pr_warn_once(L1TF_MSG_L1D);
6977                         break;
6978                 case L1TF_MITIGATION_FULL_FORCE:
6979                         /* Flush is enforced */
6980                         break;
6981                 }
6982         }
6983         kvm_apicv_init(kvm, enable_apicv);
6984         return 0;
6985 }
6986
6987 static int __init vmx_check_processor_compat(void)
6988 {
6989         struct vmcs_config vmcs_conf;
6990         struct vmx_capability vmx_cap;
6991
6992         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6993             !this_cpu_has(X86_FEATURE_VMX)) {
6994                 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6995                 return -EIO;
6996         }
6997
6998         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6999                 return -EIO;
7000         if (nested)
7001                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7002         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7003                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7004                                 smp_processor_id());
7005                 return -EIO;
7006         }
7007         return 0;
7008 }
7009
7010 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7011 {
7012         u8 cache;
7013         u64 ipat = 0;
7014
7015         /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7016          * memory aliases with conflicting memory types and sometimes MCEs.
7017          * We have to be careful as to what are honored and when.
7018          *
7019          * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7020          * UC.  The effective memory type is UC or WC depending on guest PAT.
7021          * This was historically the source of MCEs and we want to be
7022          * conservative.
7023          *
7024          * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7025          * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7026          * EPT memory type is set to WB.  The effective memory type is forced
7027          * WB.
7028          *
7029          * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7030          * EPT memory type is used to emulate guest CD/MTRR.
7031          */
7032
7033         if (is_mmio) {
7034                 cache = MTRR_TYPE_UNCACHABLE;
7035                 goto exit;
7036         }
7037
7038         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7039                 ipat = VMX_EPT_IPAT_BIT;
7040                 cache = MTRR_TYPE_WRBACK;
7041                 goto exit;
7042         }
7043
7044         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7045                 ipat = VMX_EPT_IPAT_BIT;
7046                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7047                         cache = MTRR_TYPE_WRBACK;
7048                 else
7049                         cache = MTRR_TYPE_UNCACHABLE;
7050                 goto exit;
7051         }
7052
7053         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7054
7055 exit:
7056         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7057 }
7058
7059 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7060 {
7061         /*
7062          * These bits in the secondary execution controls field
7063          * are dynamic, the others are mostly based on the hypervisor
7064          * architecture and the guest's CPUID.  Do not touch the
7065          * dynamic bits.
7066          */
7067         u32 mask =
7068                 SECONDARY_EXEC_SHADOW_VMCS |
7069                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7070                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7071                 SECONDARY_EXEC_DESC;
7072
7073         u32 new_ctl = vmx->secondary_exec_control;
7074         u32 cur_ctl = secondary_exec_controls_get(vmx);
7075
7076         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7077 }
7078
7079 /*
7080  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7081  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7082  */
7083 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7084 {
7085         struct vcpu_vmx *vmx = to_vmx(vcpu);
7086         struct kvm_cpuid_entry2 *entry;
7087
7088         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7089         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7090
7091 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
7092         if (entry && (entry->_reg & (_cpuid_mask)))                     \
7093                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
7094 } while (0)
7095
7096         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7097         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7098         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7099         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7100         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7101         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7102         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7103         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7104         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7105         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7106         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7107         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7108         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7109         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7110         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7111
7112         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7113         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7114         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7115         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7116         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7117         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7118         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7119
7120 #undef cr4_fixed1_update
7121 }
7122
7123 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7124 {
7125         struct vcpu_vmx *vmx = to_vmx(vcpu);
7126
7127         if (kvm_mpx_supported()) {
7128                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7129
7130                 if (mpx_enabled) {
7131                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7132                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7133                 } else {
7134                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7135                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7136                 }
7137         }
7138 }
7139
7140 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7141 {
7142         struct vcpu_vmx *vmx = to_vmx(vcpu);
7143         struct kvm_cpuid_entry2 *best = NULL;
7144         int i;
7145
7146         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7147                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7148                 if (!best)
7149                         return;
7150                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7151                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7152                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7153                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7154         }
7155
7156         /* Get the number of configurable Address Ranges for filtering */
7157         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7158                                                 PT_CAP_num_address_ranges);
7159
7160         /* Initialize and clear the no dependency bits */
7161         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7162                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7163
7164         /*
7165          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7166          * will inject an #GP
7167          */
7168         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7169                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7170
7171         /*
7172          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7173          * PSBFreq can be set
7174          */
7175         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7176                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7177                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7178
7179         /*
7180          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7181          * MTCFreq can be set
7182          */
7183         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7184                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7185                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7186
7187         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7188         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7189                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7190                                                         RTIT_CTL_PTW_EN);
7191
7192         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7193         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7194                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7195
7196         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7197         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7198                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7199
7200         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7201         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7202                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7203
7204         /* unmask address range configure area */
7205         for (i = 0; i < vmx->pt_desc.addr_range; i++)
7206                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7207 }
7208
7209 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7210 {
7211         struct vcpu_vmx *vmx = to_vmx(vcpu);
7212
7213         /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7214         vcpu->arch.xsaves_enabled = false;
7215
7216         if (cpu_has_secondary_exec_ctrls()) {
7217                 vmx_compute_secondary_exec_control(vmx);
7218                 vmcs_set_secondary_exec_control(vmx);
7219         }
7220
7221         if (nested_vmx_allowed(vcpu))
7222                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7223                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7224                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7225         else
7226                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7227                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7228                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7229
7230         if (nested_vmx_allowed(vcpu)) {
7231                 nested_vmx_cr_fixed1_bits_update(vcpu);
7232                 nested_vmx_entry_exit_ctls_update(vcpu);
7233         }
7234
7235         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7236                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7237                 update_intel_pt_cfg(vcpu);
7238
7239         if (boot_cpu_has(X86_FEATURE_RTM)) {
7240                 struct shared_msr_entry *msr;
7241                 msr = find_msr_entry(vmx, MSR_IA32_TSX_CTRL);
7242                 if (msr) {
7243                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7244                         vmx_set_guest_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7245                 }
7246         }
7247 }
7248
7249 static __init void vmx_set_cpu_caps(void)
7250 {
7251         kvm_set_cpu_caps();
7252
7253         /* CPUID 0x1 */
7254         if (nested)
7255                 kvm_cpu_cap_set(X86_FEATURE_VMX);
7256
7257         /* CPUID 0x7 */
7258         if (kvm_mpx_supported())
7259                 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7260         if (cpu_has_vmx_invpcid())
7261                 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7262         if (vmx_pt_mode_is_host_guest())
7263                 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7264
7265         /* PKU is not yet implemented for shadow paging. */
7266         if (enable_ept && boot_cpu_has(X86_FEATURE_OSPKE))
7267                 kvm_cpu_cap_check_and_set(X86_FEATURE_PKU);
7268
7269         if (vmx_umip_emulated())
7270                 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7271
7272         /* CPUID 0xD.1 */
7273         supported_xss = 0;
7274         if (!vmx_xsaves_supported())
7275                 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7276
7277         /* CPUID 0x80000001 */
7278         if (!cpu_has_vmx_rdtscp())
7279                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7280 }
7281
7282 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7283 {
7284         to_vmx(vcpu)->req_immediate_exit = true;
7285 }
7286
7287 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7288                                   struct x86_instruction_info *info)
7289 {
7290         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7291         unsigned short port;
7292         bool intercept;
7293         int size;
7294
7295         if (info->intercept == x86_intercept_in ||
7296             info->intercept == x86_intercept_ins) {
7297                 port = info->src_val;
7298                 size = info->dst_bytes;
7299         } else {
7300                 port = info->dst_val;
7301                 size = info->src_bytes;
7302         }
7303
7304         /*
7305          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7306          * VM-exits depend on the 'unconditional IO exiting' VM-execution
7307          * control.
7308          *
7309          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7310          */
7311         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7312                 intercept = nested_cpu_has(vmcs12,
7313                                            CPU_BASED_UNCOND_IO_EXITING);
7314         else
7315                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7316
7317         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7318         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7319 }
7320
7321 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7322                                struct x86_instruction_info *info,
7323                                enum x86_intercept_stage stage,
7324                                struct x86_exception *exception)
7325 {
7326         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7327
7328         switch (info->intercept) {
7329         /*
7330          * RDPID causes #UD if disabled through secondary execution controls.
7331          * Because it is marked as EmulateOnUD, we need to intercept it here.
7332          */
7333         case x86_intercept_rdtscp:
7334                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7335                         exception->vector = UD_VECTOR;
7336                         exception->error_code_valid = false;
7337                         return X86EMUL_PROPAGATE_FAULT;
7338                 }
7339                 break;
7340
7341         case x86_intercept_in:
7342         case x86_intercept_ins:
7343         case x86_intercept_out:
7344         case x86_intercept_outs:
7345                 return vmx_check_intercept_io(vcpu, info);
7346
7347         case x86_intercept_lgdt:
7348         case x86_intercept_lidt:
7349         case x86_intercept_lldt:
7350         case x86_intercept_ltr:
7351         case x86_intercept_sgdt:
7352         case x86_intercept_sidt:
7353         case x86_intercept_sldt:
7354         case x86_intercept_str:
7355                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7356                         return X86EMUL_CONTINUE;
7357
7358                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7359                 break;
7360
7361         /* TODO: check more intercepts... */
7362         default:
7363                 break;
7364         }
7365
7366         return X86EMUL_UNHANDLEABLE;
7367 }
7368
7369 #ifdef CONFIG_X86_64
7370 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7371 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7372                                   u64 divisor, u64 *result)
7373 {
7374         u64 low = a << shift, high = a >> (64 - shift);
7375
7376         /* To avoid the overflow on divq */
7377         if (high >= divisor)
7378                 return 1;
7379
7380         /* Low hold the result, high hold rem which is discarded */
7381         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7382             "rm" (divisor), "0" (low), "1" (high));
7383         *result = low;
7384
7385         return 0;
7386 }
7387
7388 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7389                             bool *expired)
7390 {
7391         struct vcpu_vmx *vmx;
7392         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7393         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7394
7395         if (kvm_mwait_in_guest(vcpu->kvm) ||
7396                 kvm_can_post_timer_interrupt(vcpu))
7397                 return -EOPNOTSUPP;
7398
7399         vmx = to_vmx(vcpu);
7400         tscl = rdtsc();
7401         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7402         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7403         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7404                                                     ktimer->timer_advance_ns);
7405
7406         if (delta_tsc > lapic_timer_advance_cycles)
7407                 delta_tsc -= lapic_timer_advance_cycles;
7408         else
7409                 delta_tsc = 0;
7410
7411         /* Convert to host delta tsc if tsc scaling is enabled */
7412         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7413             delta_tsc && u64_shl_div_u64(delta_tsc,
7414                                 kvm_tsc_scaling_ratio_frac_bits,
7415                                 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7416                 return -ERANGE;
7417
7418         /*
7419          * If the delta tsc can't fit in the 32 bit after the multi shift,
7420          * we can't use the preemption timer.
7421          * It's possible that it fits on later vmentries, but checking
7422          * on every vmentry is costly so we just use an hrtimer.
7423          */
7424         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7425                 return -ERANGE;
7426
7427         vmx->hv_deadline_tsc = tscl + delta_tsc;
7428         *expired = !delta_tsc;
7429         return 0;
7430 }
7431
7432 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7433 {
7434         to_vmx(vcpu)->hv_deadline_tsc = -1;
7435 }
7436 #endif
7437
7438 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7439 {
7440         if (!kvm_pause_in_guest(vcpu->kvm))
7441                 shrink_ple_window(vcpu);
7442 }
7443
7444 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7445                                      struct kvm_memory_slot *slot)
7446 {
7447         if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7448                 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7449         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7450 }
7451
7452 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7453                                        struct kvm_memory_slot *slot)
7454 {
7455         kvm_mmu_slot_set_dirty(kvm, slot);
7456 }
7457
7458 static void vmx_flush_log_dirty(struct kvm *kvm)
7459 {
7460         kvm_flush_pml_buffers(kvm);
7461 }
7462
7463 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7464 {
7465         struct vmcs12 *vmcs12;
7466         struct vcpu_vmx *vmx = to_vmx(vcpu);
7467         gpa_t gpa, dst;
7468
7469         if (is_guest_mode(vcpu)) {
7470                 WARN_ON_ONCE(vmx->nested.pml_full);
7471
7472                 /*
7473                  * Check if PML is enabled for the nested guest.
7474                  * Whether eptp bit 6 is set is already checked
7475                  * as part of A/D emulation.
7476                  */
7477                 vmcs12 = get_vmcs12(vcpu);
7478                 if (!nested_cpu_has_pml(vmcs12))
7479                         return 0;
7480
7481                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7482                         vmx->nested.pml_full = true;
7483                         return 1;
7484                 }
7485
7486                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7487                 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7488
7489                 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7490                                          offset_in_page(dst), sizeof(gpa)))
7491                         return 0;
7492
7493                 vmcs12->guest_pml_index--;
7494         }
7495
7496         return 0;
7497 }
7498
7499 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7500                                            struct kvm_memory_slot *memslot,
7501                                            gfn_t offset, unsigned long mask)
7502 {
7503         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7504 }
7505
7506 static void __pi_post_block(struct kvm_vcpu *vcpu)
7507 {
7508         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7509         struct pi_desc old, new;
7510         unsigned int dest;
7511
7512         do {
7513                 old.control = new.control = pi_desc->control;
7514                 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7515                      "Wakeup handler not enabled while the VCPU is blocked\n");
7516
7517                 dest = cpu_physical_id(vcpu->cpu);
7518
7519                 if (x2apic_enabled())
7520                         new.ndst = dest;
7521                 else
7522                         new.ndst = (dest << 8) & 0xFF00;
7523
7524                 /* set 'NV' to 'notification vector' */
7525                 new.nv = POSTED_INTR_VECTOR;
7526         } while (cmpxchg64(&pi_desc->control, old.control,
7527                            new.control) != old.control);
7528
7529         if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7530                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7531                 list_del(&vcpu->blocked_vcpu_list);
7532                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7533                 vcpu->pre_pcpu = -1;
7534         }
7535 }
7536
7537 /*
7538  * This routine does the following things for vCPU which is going
7539  * to be blocked if VT-d PI is enabled.
7540  * - Store the vCPU to the wakeup list, so when interrupts happen
7541  *   we can find the right vCPU to wake up.
7542  * - Change the Posted-interrupt descriptor as below:
7543  *      'NDST' <-- vcpu->pre_pcpu
7544  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7545  * - If 'ON' is set during this process, which means at least one
7546  *   interrupt is posted for this vCPU, we cannot block it, in
7547  *   this case, return 1, otherwise, return 0.
7548  *
7549  */
7550 static int pi_pre_block(struct kvm_vcpu *vcpu)
7551 {
7552         unsigned int dest;
7553         struct pi_desc old, new;
7554         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7555
7556         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7557                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
7558                 !kvm_vcpu_apicv_active(vcpu))
7559                 return 0;
7560
7561         WARN_ON(irqs_disabled());
7562         local_irq_disable();
7563         if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7564                 vcpu->pre_pcpu = vcpu->cpu;
7565                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7566                 list_add_tail(&vcpu->blocked_vcpu_list,
7567                               &per_cpu(blocked_vcpu_on_cpu,
7568                                        vcpu->pre_pcpu));
7569                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7570         }
7571
7572         do {
7573                 old.control = new.control = pi_desc->control;
7574
7575                 WARN((pi_desc->sn == 1),
7576                      "Warning: SN field of posted-interrupts "
7577                      "is set before blocking\n");
7578
7579                 /*
7580                  * Since vCPU can be preempted during this process,
7581                  * vcpu->cpu could be different with pre_pcpu, we
7582                  * need to set pre_pcpu as the destination of wakeup
7583                  * notification event, then we can find the right vCPU
7584                  * to wakeup in wakeup handler if interrupts happen
7585                  * when the vCPU is in blocked state.
7586                  */
7587                 dest = cpu_physical_id(vcpu->pre_pcpu);
7588
7589                 if (x2apic_enabled())
7590                         new.ndst = dest;
7591                 else
7592                         new.ndst = (dest << 8) & 0xFF00;
7593
7594                 /* set 'NV' to 'wakeup vector' */
7595                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7596         } while (cmpxchg64(&pi_desc->control, old.control,
7597                            new.control) != old.control);
7598
7599         /* We should not block the vCPU if an interrupt is posted for it.  */
7600         if (pi_test_on(pi_desc) == 1)
7601                 __pi_post_block(vcpu);
7602
7603         local_irq_enable();
7604         return (vcpu->pre_pcpu == -1);
7605 }
7606
7607 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7608 {
7609         if (pi_pre_block(vcpu))
7610                 return 1;
7611
7612         if (kvm_lapic_hv_timer_in_use(vcpu))
7613                 kvm_lapic_switch_to_sw_timer(vcpu);
7614
7615         return 0;
7616 }
7617
7618 static void pi_post_block(struct kvm_vcpu *vcpu)
7619 {
7620         if (vcpu->pre_pcpu == -1)
7621                 return;
7622
7623         WARN_ON(irqs_disabled());
7624         local_irq_disable();
7625         __pi_post_block(vcpu);
7626         local_irq_enable();
7627 }
7628
7629 static void vmx_post_block(struct kvm_vcpu *vcpu)
7630 {
7631         if (kvm_x86_ops.set_hv_timer)
7632                 kvm_lapic_switch_to_hv_timer(vcpu);
7633
7634         pi_post_block(vcpu);
7635 }
7636
7637 /*
7638  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7639  *
7640  * @kvm: kvm
7641  * @host_irq: host irq of the interrupt
7642  * @guest_irq: gsi of the interrupt
7643  * @set: set or unset PI
7644  * returns 0 on success, < 0 on failure
7645  */
7646 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7647                               uint32_t guest_irq, bool set)
7648 {
7649         struct kvm_kernel_irq_routing_entry *e;
7650         struct kvm_irq_routing_table *irq_rt;
7651         struct kvm_lapic_irq irq;
7652         struct kvm_vcpu *vcpu;
7653         struct vcpu_data vcpu_info;
7654         int idx, ret = 0;
7655
7656         if (!kvm_arch_has_assigned_device(kvm) ||
7657                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7658                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7659                 return 0;
7660
7661         idx = srcu_read_lock(&kvm->irq_srcu);
7662         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7663         if (guest_irq >= irq_rt->nr_rt_entries ||
7664             hlist_empty(&irq_rt->map[guest_irq])) {
7665                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7666                              guest_irq, irq_rt->nr_rt_entries);
7667                 goto out;
7668         }
7669
7670         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7671                 if (e->type != KVM_IRQ_ROUTING_MSI)
7672                         continue;
7673                 /*
7674                  * VT-d PI cannot support posting multicast/broadcast
7675                  * interrupts to a vCPU, we still use interrupt remapping
7676                  * for these kind of interrupts.
7677                  *
7678                  * For lowest-priority interrupts, we only support
7679                  * those with single CPU as the destination, e.g. user
7680                  * configures the interrupts via /proc/irq or uses
7681                  * irqbalance to make the interrupts single-CPU.
7682                  *
7683                  * We will support full lowest-priority interrupt later.
7684                  *
7685                  * In addition, we can only inject generic interrupts using
7686                  * the PI mechanism, refuse to route others through it.
7687                  */
7688
7689                 kvm_set_msi_irq(kvm, e, &irq);
7690                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7691                     !kvm_irq_is_postable(&irq)) {
7692                         /*
7693                          * Make sure the IRTE is in remapped mode if
7694                          * we don't handle it in posted mode.
7695                          */
7696                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7697                         if (ret < 0) {
7698                                 printk(KERN_INFO
7699                                    "failed to back to remapped mode, irq: %u\n",
7700                                    host_irq);
7701                                 goto out;
7702                         }
7703
7704                         continue;
7705                 }
7706
7707                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7708                 vcpu_info.vector = irq.vector;
7709
7710                 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7711                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7712
7713                 if (set)
7714                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7715                 else
7716                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7717
7718                 if (ret < 0) {
7719                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
7720                                         __func__);
7721                         goto out;
7722                 }
7723         }
7724
7725         ret = 0;
7726 out:
7727         srcu_read_unlock(&kvm->irq_srcu, idx);
7728         return ret;
7729 }
7730
7731 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7732 {
7733         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7734                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7735                         FEAT_CTL_LMCE_ENABLED;
7736         else
7737                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7738                         ~FEAT_CTL_LMCE_ENABLED;
7739 }
7740
7741 static bool vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7742 {
7743         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7744         if (to_vmx(vcpu)->nested.nested_run_pending)
7745                 return false;
7746         return !is_smm(vcpu);
7747 }
7748
7749 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7750 {
7751         struct vcpu_vmx *vmx = to_vmx(vcpu);
7752
7753         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7754         if (vmx->nested.smm.guest_mode)
7755                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7756
7757         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7758         vmx->nested.vmxon = false;
7759         vmx_clear_hlt(vcpu);
7760         return 0;
7761 }
7762
7763 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7764 {
7765         struct vcpu_vmx *vmx = to_vmx(vcpu);
7766         int ret;
7767
7768         if (vmx->nested.smm.vmxon) {
7769                 vmx->nested.vmxon = true;
7770                 vmx->nested.smm.vmxon = false;
7771         }
7772
7773         if (vmx->nested.smm.guest_mode) {
7774                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7775                 if (ret)
7776                         return ret;
7777
7778                 vmx->nested.smm.guest_mode = false;
7779         }
7780         return 0;
7781 }
7782
7783 static int enable_smi_window(struct kvm_vcpu *vcpu)
7784 {
7785         return 0;
7786 }
7787
7788 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7789 {
7790         return false;
7791 }
7792
7793 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7794 {
7795         return to_vmx(vcpu)->nested.vmxon;
7796 }
7797
7798 static void hardware_unsetup(void)
7799 {
7800         if (nested)
7801                 nested_vmx_hardware_unsetup();
7802
7803         free_kvm_area();
7804 }
7805
7806 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7807 {
7808         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7809                           BIT(APICV_INHIBIT_REASON_HYPERV);
7810
7811         return supported & BIT(bit);
7812 }
7813
7814 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7815         .hardware_unsetup = hardware_unsetup,
7816
7817         .hardware_enable = hardware_enable,
7818         .hardware_disable = hardware_disable,
7819         .cpu_has_accelerated_tpr = report_flexpriority,
7820         .has_emulated_msr = vmx_has_emulated_msr,
7821
7822         .vm_size = sizeof(struct kvm_vmx),
7823         .vm_init = vmx_vm_init,
7824
7825         .vcpu_create = vmx_create_vcpu,
7826         .vcpu_free = vmx_free_vcpu,
7827         .vcpu_reset = vmx_vcpu_reset,
7828
7829         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7830         .vcpu_load = vmx_vcpu_load,
7831         .vcpu_put = vmx_vcpu_put,
7832
7833         .update_bp_intercept = update_exception_bitmap,
7834         .get_msr_feature = vmx_get_msr_feature,
7835         .get_msr = vmx_get_msr,
7836         .set_msr = vmx_set_msr,
7837         .get_segment_base = vmx_get_segment_base,
7838         .get_segment = vmx_get_segment,
7839         .set_segment = vmx_set_segment,
7840         .get_cpl = vmx_get_cpl,
7841         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7842         .set_cr0 = vmx_set_cr0,
7843         .set_cr4 = vmx_set_cr4,
7844         .set_efer = vmx_set_efer,
7845         .get_idt = vmx_get_idt,
7846         .set_idt = vmx_set_idt,
7847         .get_gdt = vmx_get_gdt,
7848         .set_gdt = vmx_set_gdt,
7849         .set_dr7 = vmx_set_dr7,
7850         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7851         .cache_reg = vmx_cache_reg,
7852         .get_rflags = vmx_get_rflags,
7853         .set_rflags = vmx_set_rflags,
7854
7855         .tlb_flush_all = vmx_flush_tlb_all,
7856         .tlb_flush_current = vmx_flush_tlb_current,
7857         .tlb_flush_gva = vmx_flush_tlb_gva,
7858         .tlb_flush_guest = vmx_flush_tlb_guest,
7859
7860         .run = vmx_vcpu_run,
7861         .handle_exit = vmx_handle_exit,
7862         .skip_emulated_instruction = vmx_skip_emulated_instruction,
7863         .update_emulated_instruction = vmx_update_emulated_instruction,
7864         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7865         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7866         .patch_hypercall = vmx_patch_hypercall,
7867         .set_irq = vmx_inject_irq,
7868         .set_nmi = vmx_inject_nmi,
7869         .queue_exception = vmx_queue_exception,
7870         .cancel_injection = vmx_cancel_injection,
7871         .interrupt_allowed = vmx_interrupt_allowed,
7872         .nmi_allowed = vmx_nmi_allowed,
7873         .get_nmi_mask = vmx_get_nmi_mask,
7874         .set_nmi_mask = vmx_set_nmi_mask,
7875         .enable_nmi_window = enable_nmi_window,
7876         .enable_irq_window = enable_irq_window,
7877         .update_cr8_intercept = update_cr8_intercept,
7878         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7879         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7880         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7881         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7882         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7883         .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7884         .hwapic_irr_update = vmx_hwapic_irr_update,
7885         .hwapic_isr_update = vmx_hwapic_isr_update,
7886         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7887         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7888         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7889         .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7890
7891         .set_tss_addr = vmx_set_tss_addr,
7892         .set_identity_map_addr = vmx_set_identity_map_addr,
7893         .get_tdp_level = vmx_get_tdp_level,
7894         .get_mt_mask = vmx_get_mt_mask,
7895
7896         .get_exit_info = vmx_get_exit_info,
7897
7898         .cpuid_update = vmx_cpuid_update,
7899
7900         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7901
7902         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7903
7904         .load_mmu_pgd = vmx_load_mmu_pgd,
7905
7906         .check_intercept = vmx_check_intercept,
7907         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7908
7909         .request_immediate_exit = vmx_request_immediate_exit,
7910
7911         .sched_in = vmx_sched_in,
7912
7913         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7914         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7915         .flush_log_dirty = vmx_flush_log_dirty,
7916         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7917         .write_log_dirty = vmx_write_pml_buffer,
7918
7919         .pre_block = vmx_pre_block,
7920         .post_block = vmx_post_block,
7921
7922         .pmu_ops = &intel_pmu_ops,
7923         .nested_ops = &vmx_nested_ops,
7924
7925         .update_pi_irte = vmx_update_pi_irte,
7926
7927 #ifdef CONFIG_X86_64
7928         .set_hv_timer = vmx_set_hv_timer,
7929         .cancel_hv_timer = vmx_cancel_hv_timer,
7930 #endif
7931
7932         .setup_mce = vmx_setup_mce,
7933
7934         .smi_allowed = vmx_smi_allowed,
7935         .pre_enter_smm = vmx_pre_enter_smm,
7936         .pre_leave_smm = vmx_pre_leave_smm,
7937         .enable_smi_window = enable_smi_window,
7938
7939         .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7940         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7941 };
7942
7943 static __init int hardware_setup(void)
7944 {
7945         unsigned long host_bndcfgs;
7946         struct desc_ptr dt;
7947         int r, i, ept_lpage_level;
7948
7949         store_idt(&dt);
7950         host_idt_base = dt.address;
7951
7952         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7953                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7954
7955         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7956                 return -EIO;
7957
7958         if (boot_cpu_has(X86_FEATURE_NX))
7959                 kvm_enable_efer_bits(EFER_NX);
7960
7961         if (boot_cpu_has(X86_FEATURE_MPX)) {
7962                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7963                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7964         }
7965
7966         if (!cpu_has_vmx_mpx())
7967                 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7968                                     XFEATURE_MASK_BNDCSR);
7969
7970         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7971             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7972                 enable_vpid = 0;
7973
7974         if (!cpu_has_vmx_ept() ||
7975             !cpu_has_vmx_ept_4levels() ||
7976             !cpu_has_vmx_ept_mt_wb() ||
7977             !cpu_has_vmx_invept_global())
7978                 enable_ept = 0;
7979
7980         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7981                 enable_ept_ad_bits = 0;
7982
7983         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7984                 enable_unrestricted_guest = 0;
7985
7986         if (!cpu_has_vmx_flexpriority())
7987                 flexpriority_enabled = 0;
7988
7989         if (!cpu_has_virtual_nmis())
7990                 enable_vnmi = 0;
7991
7992         /*
7993          * set_apic_access_page_addr() is used to reload apic access
7994          * page upon invalidation.  No need to do anything if not
7995          * using the APIC_ACCESS_ADDR VMCS field.
7996          */
7997         if (!flexpriority_enabled)
7998                 vmx_x86_ops.set_apic_access_page_addr = NULL;
7999
8000         if (!cpu_has_vmx_tpr_shadow())
8001                 vmx_x86_ops.update_cr8_intercept = NULL;
8002
8003 #if IS_ENABLED(CONFIG_HYPERV)
8004         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8005             && enable_ept) {
8006                 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
8007                 vmx_x86_ops.tlb_remote_flush_with_range =
8008                                 hv_remote_flush_tlb_with_range;
8009         }
8010 #endif
8011
8012         if (!cpu_has_vmx_ple()) {
8013                 ple_gap = 0;
8014                 ple_window = 0;
8015                 ple_window_grow = 0;
8016                 ple_window_max = 0;
8017                 ple_window_shrink = 0;
8018         }
8019
8020         if (!cpu_has_vmx_apicv()) {
8021                 enable_apicv = 0;
8022                 vmx_x86_ops.sync_pir_to_irr = NULL;
8023         }
8024
8025         if (cpu_has_vmx_tsc_scaling()) {
8026                 kvm_has_tsc_control = true;
8027                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8028                 kvm_tsc_scaling_ratio_frac_bits = 48;
8029         }
8030
8031         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8032
8033         if (enable_ept)
8034                 vmx_enable_tdp();
8035
8036         if (!enable_ept)
8037                 ept_lpage_level = 0;
8038         else if (cpu_has_vmx_ept_1g_page())
8039                 ept_lpage_level = PG_LEVEL_1G;
8040         else if (cpu_has_vmx_ept_2m_page())
8041                 ept_lpage_level = PG_LEVEL_2M;
8042         else
8043                 ept_lpage_level = PG_LEVEL_4K;
8044         kvm_configure_mmu(enable_ept, ept_lpage_level);
8045
8046         /*
8047          * Only enable PML when hardware supports PML feature, and both EPT
8048          * and EPT A/D bit features are enabled -- PML depends on them to work.
8049          */
8050         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8051                 enable_pml = 0;
8052
8053         if (!enable_pml) {
8054                 vmx_x86_ops.slot_enable_log_dirty = NULL;
8055                 vmx_x86_ops.slot_disable_log_dirty = NULL;
8056                 vmx_x86_ops.flush_log_dirty = NULL;
8057                 vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
8058         }
8059
8060         if (!cpu_has_vmx_preemption_timer())
8061                 enable_preemption_timer = false;
8062
8063         if (enable_preemption_timer) {
8064                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8065                 u64 vmx_msr;
8066
8067                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
8068                 cpu_preemption_timer_multi =
8069                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8070
8071                 if (tsc_khz)
8072                         use_timer_freq = (u64)tsc_khz * 1000;
8073                 use_timer_freq >>= cpu_preemption_timer_multi;
8074
8075                 /*
8076                  * KVM "disables" the preemption timer by setting it to its max
8077                  * value.  Don't use the timer if it might cause spurious exits
8078                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8079                  */
8080                 if (use_timer_freq > 0xffffffffu / 10)
8081                         enable_preemption_timer = false;
8082         }
8083
8084         if (!enable_preemption_timer) {
8085                 vmx_x86_ops.set_hv_timer = NULL;
8086                 vmx_x86_ops.cancel_hv_timer = NULL;
8087                 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8088         }
8089
8090         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
8091
8092         kvm_mce_cap_supported |= MCG_LMCE_P;
8093
8094         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8095                 return -EINVAL;
8096         if (!enable_ept || !cpu_has_vmx_intel_pt())
8097                 pt_mode = PT_MODE_SYSTEM;
8098
8099         if (nested) {
8100                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8101                                            vmx_capability.ept);
8102
8103                 r = nested_vmx_hardware_setup(&vmx_x86_ops,
8104                                               kvm_vmx_exit_handlers);
8105                 if (r)
8106                         return r;
8107         }
8108
8109         vmx_set_cpu_caps();
8110
8111         r = alloc_kvm_area();
8112         if (r)
8113                 nested_vmx_hardware_unsetup();
8114         return r;
8115 }
8116
8117 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8118         .cpu_has_kvm_support = cpu_has_kvm_support,
8119         .disabled_by_bios = vmx_disabled_by_bios,
8120         .check_processor_compatibility = vmx_check_processor_compat,
8121         .hardware_setup = hardware_setup,
8122
8123         .runtime_ops = &vmx_x86_ops,
8124 };
8125
8126 static void vmx_cleanup_l1d_flush(void)
8127 {
8128         if (vmx_l1d_flush_pages) {
8129                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8130                 vmx_l1d_flush_pages = NULL;
8131         }
8132         /* Restore state so sysfs ignores VMX */
8133         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8134 }
8135
8136 static void vmx_exit(void)
8137 {
8138 #ifdef CONFIG_KEXEC_CORE
8139         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8140         synchronize_rcu();
8141 #endif
8142
8143         kvm_exit();
8144
8145 #if IS_ENABLED(CONFIG_HYPERV)
8146         if (static_branch_unlikely(&enable_evmcs)) {
8147                 int cpu;
8148                 struct hv_vp_assist_page *vp_ap;
8149                 /*
8150                  * Reset everything to support using non-enlightened VMCS
8151                  * access later (e.g. when we reload the module with
8152                  * enlightened_vmcs=0)
8153                  */
8154                 for_each_online_cpu(cpu) {
8155                         vp_ap = hv_get_vp_assist_page(cpu);
8156
8157                         if (!vp_ap)
8158                                 continue;
8159
8160                         vp_ap->nested_control.features.directhypercall = 0;
8161                         vp_ap->current_nested_vmcs = 0;
8162                         vp_ap->enlighten_vmentry = 0;
8163                 }
8164
8165                 static_branch_disable(&enable_evmcs);
8166         }
8167 #endif
8168         vmx_cleanup_l1d_flush();
8169 }
8170 module_exit(vmx_exit);
8171
8172 static int __init vmx_init(void)
8173 {
8174         int r, cpu;
8175
8176 #if IS_ENABLED(CONFIG_HYPERV)
8177         /*
8178          * Enlightened VMCS usage should be recommended and the host needs
8179          * to support eVMCS v1 or above. We can also disable eVMCS support
8180          * with module parameter.
8181          */
8182         if (enlightened_vmcs &&
8183             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8184             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8185             KVM_EVMCS_VERSION) {
8186                 int cpu;
8187
8188                 /* Check that we have assist pages on all online CPUs */
8189                 for_each_online_cpu(cpu) {
8190                         if (!hv_get_vp_assist_page(cpu)) {
8191                                 enlightened_vmcs = false;
8192                                 break;
8193                         }
8194                 }
8195
8196                 if (enlightened_vmcs) {
8197                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8198                         static_branch_enable(&enable_evmcs);
8199                 }
8200
8201                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8202                         vmx_x86_ops.enable_direct_tlbflush
8203                                 = hv_enable_direct_tlbflush;
8204
8205         } else {
8206                 enlightened_vmcs = false;
8207         }
8208 #endif
8209
8210         r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8211                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8212         if (r)
8213                 return r;
8214
8215         /*
8216          * Must be called after kvm_init() so enable_ept is properly set
8217          * up. Hand the parameter mitigation value in which was stored in
8218          * the pre module init parser. If no parameter was given, it will
8219          * contain 'auto' which will be turned into the default 'cond'
8220          * mitigation mode.
8221          */
8222         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8223         if (r) {
8224                 vmx_exit();
8225                 return r;
8226         }
8227
8228         for_each_possible_cpu(cpu) {
8229                 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8230                 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
8231                 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8232         }
8233
8234 #ifdef CONFIG_KEXEC_CORE
8235         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8236                            crash_vmclear_local_loaded_vmcss);
8237 #endif
8238         vmx_check_vmcs12_offsets();
8239
8240         return 0;
8241 }
8242 module_init(vmx_init);