KVM: x86/speculation: Disable Fill buffer clear within guests
[linux-block.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/idtentry.h>
41 #include <asm/io.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/kexec.h>
44 #include <asm/perf_event.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/mwait.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/virtext.h>
50 #include <asm/vmx.h>
51
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "evmcs.h"
55 #include "hyperv.h"
56 #include "kvm_onhyperv.h"
57 #include "irq.h"
58 #include "kvm_cache_regs.h"
59 #include "lapic.h"
60 #include "mmu.h"
61 #include "nested.h"
62 #include "pmu.h"
63 #include "sgx.h"
64 #include "trace.h"
65 #include "vmcs.h"
66 #include "vmcs12.h"
67 #include "vmx.h"
68 #include "x86.h"
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 #ifdef MODULE
74 static const struct x86_cpu_id vmx_cpu_id[] = {
75         X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
76         {}
77 };
78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
79 #endif
80
81 bool __read_mostly enable_vpid = 1;
82 module_param_named(vpid, enable_vpid, bool, 0444);
83
84 static bool __read_mostly enable_vnmi = 1;
85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
86
87 bool __read_mostly flexpriority_enabled = 1;
88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
89
90 bool __read_mostly enable_ept = 1;
91 module_param_named(ept, enable_ept, bool, S_IRUGO);
92
93 bool __read_mostly enable_unrestricted_guest = 1;
94 module_param_named(unrestricted_guest,
95                         enable_unrestricted_guest, bool, S_IRUGO);
96
97 bool __read_mostly enable_ept_ad_bits = 1;
98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
99
100 static bool __read_mostly emulate_invalid_guest_state = true;
101 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
102
103 static bool __read_mostly fasteoi = 1;
104 module_param(fasteoi, bool, S_IRUGO);
105
106 module_param(enable_apicv, bool, S_IRUGO);
107
108 /*
109  * If nested=1, nested virtualization is supported, i.e., guests may use
110  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
111  * use VMX instructions.
112  */
113 static bool __read_mostly nested = 1;
114 module_param(nested, bool, S_IRUGO);
115
116 bool __read_mostly enable_pml = 1;
117 module_param_named(pml, enable_pml, bool, S_IRUGO);
118
119 static bool __read_mostly dump_invalid_vmcs = 0;
120 module_param(dump_invalid_vmcs, bool, 0644);
121
122 #define MSR_BITMAP_MODE_X2APIC          1
123 #define MSR_BITMAP_MODE_X2APIC_APICV    2
124
125 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
126
127 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
128 static int __read_mostly cpu_preemption_timer_multi;
129 static bool __read_mostly enable_preemption_timer = 1;
130 #ifdef CONFIG_X86_64
131 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
132 #endif
133
134 extern bool __read_mostly allow_smaller_maxphyaddr;
135 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
136
137 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
138 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
139 #define KVM_VM_CR0_ALWAYS_ON                            \
140         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
141
142 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
143 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
144 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
145
146 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
147
148 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
149         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
150         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
151         RTIT_STATUS_BYTECNT))
152
153 /*
154  * List of MSRs that can be directly passed to the guest.
155  * In addition to these x2apic and PT MSRs are handled specially.
156  */
157 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
158         MSR_IA32_SPEC_CTRL,
159         MSR_IA32_PRED_CMD,
160         MSR_IA32_TSC,
161 #ifdef CONFIG_X86_64
162         MSR_FS_BASE,
163         MSR_GS_BASE,
164         MSR_KERNEL_GS_BASE,
165         MSR_IA32_XFD,
166         MSR_IA32_XFD_ERR,
167 #endif
168         MSR_IA32_SYSENTER_CS,
169         MSR_IA32_SYSENTER_ESP,
170         MSR_IA32_SYSENTER_EIP,
171         MSR_CORE_C1_RES,
172         MSR_CORE_C3_RESIDENCY,
173         MSR_CORE_C6_RESIDENCY,
174         MSR_CORE_C7_RESIDENCY,
175 };
176
177 /*
178  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
179  * ple_gap:    upper bound on the amount of time between two successive
180  *             executions of PAUSE in a loop. Also indicate if ple enabled.
181  *             According to test, this time is usually smaller than 128 cycles.
182  * ple_window: upper bound on the amount of time a guest is allowed to execute
183  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
184  *             less than 2^12 cycles
185  * Time is measured based on a counter that runs at the same rate as the TSC,
186  * refer SDM volume 3b section 21.6.13 & 22.1.3.
187  */
188 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
189 module_param(ple_gap, uint, 0444);
190
191 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
192 module_param(ple_window, uint, 0444);
193
194 /* Default doubles per-vcpu window every exit. */
195 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
196 module_param(ple_window_grow, uint, 0444);
197
198 /* Default resets per-vcpu window every exit to ple_window. */
199 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
200 module_param(ple_window_shrink, uint, 0444);
201
202 /* Default is to compute the maximum so we can never overflow. */
203 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
204 module_param(ple_window_max, uint, 0444);
205
206 /* Default is SYSTEM mode, 1 for host-guest mode */
207 int __read_mostly pt_mode = PT_MODE_SYSTEM;
208 module_param(pt_mode, int, S_IRUGO);
209
210 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
211 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
212 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
213
214 /* Storage for pre module init parameter parsing */
215 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
216
217 static const struct {
218         const char *option;
219         bool for_parse;
220 } vmentry_l1d_param[] = {
221         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
222         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
223         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
224         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
225         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
226         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
227 };
228
229 #define L1D_CACHE_ORDER 4
230 static void *vmx_l1d_flush_pages;
231
232 /* Control for disabling CPU Fill buffer clear */
233 static bool __read_mostly vmx_fb_clear_ctrl_available;
234
235 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
236 {
237         struct page *page;
238         unsigned int i;
239
240         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
241                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
242                 return 0;
243         }
244
245         if (!enable_ept) {
246                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
247                 return 0;
248         }
249
250         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
251                 u64 msr;
252
253                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
254                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
255                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
256                         return 0;
257                 }
258         }
259
260         /* If set to auto use the default l1tf mitigation method */
261         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
262                 switch (l1tf_mitigation) {
263                 case L1TF_MITIGATION_OFF:
264                         l1tf = VMENTER_L1D_FLUSH_NEVER;
265                         break;
266                 case L1TF_MITIGATION_FLUSH_NOWARN:
267                 case L1TF_MITIGATION_FLUSH:
268                 case L1TF_MITIGATION_FLUSH_NOSMT:
269                         l1tf = VMENTER_L1D_FLUSH_COND;
270                         break;
271                 case L1TF_MITIGATION_FULL:
272                 case L1TF_MITIGATION_FULL_FORCE:
273                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
274                         break;
275                 }
276         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
277                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
278         }
279
280         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
281             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
282                 /*
283                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
284                  * lifetime and so should not be charged to a memcg.
285                  */
286                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
287                 if (!page)
288                         return -ENOMEM;
289                 vmx_l1d_flush_pages = page_address(page);
290
291                 /*
292                  * Initialize each page with a different pattern in
293                  * order to protect against KSM in the nested
294                  * virtualization case.
295                  */
296                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
297                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
298                                PAGE_SIZE);
299                 }
300         }
301
302         l1tf_vmx_mitigation = l1tf;
303
304         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
305                 static_branch_enable(&vmx_l1d_should_flush);
306         else
307                 static_branch_disable(&vmx_l1d_should_flush);
308
309         if (l1tf == VMENTER_L1D_FLUSH_COND)
310                 static_branch_enable(&vmx_l1d_flush_cond);
311         else
312                 static_branch_disable(&vmx_l1d_flush_cond);
313         return 0;
314 }
315
316 static int vmentry_l1d_flush_parse(const char *s)
317 {
318         unsigned int i;
319
320         if (s) {
321                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
322                         if (vmentry_l1d_param[i].for_parse &&
323                             sysfs_streq(s, vmentry_l1d_param[i].option))
324                                 return i;
325                 }
326         }
327         return -EINVAL;
328 }
329
330 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
331 {
332         int l1tf, ret;
333
334         l1tf = vmentry_l1d_flush_parse(s);
335         if (l1tf < 0)
336                 return l1tf;
337
338         if (!boot_cpu_has(X86_BUG_L1TF))
339                 return 0;
340
341         /*
342          * Has vmx_init() run already? If not then this is the pre init
343          * parameter parsing. In that case just store the value and let
344          * vmx_init() do the proper setup after enable_ept has been
345          * established.
346          */
347         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
348                 vmentry_l1d_flush_param = l1tf;
349                 return 0;
350         }
351
352         mutex_lock(&vmx_l1d_flush_mutex);
353         ret = vmx_setup_l1d_flush(l1tf);
354         mutex_unlock(&vmx_l1d_flush_mutex);
355         return ret;
356 }
357
358 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
359 {
360         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
361                 return sprintf(s, "???\n");
362
363         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
364 }
365
366 static void vmx_setup_fb_clear_ctrl(void)
367 {
368         u64 msr;
369
370         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
371             !boot_cpu_has_bug(X86_BUG_MDS) &&
372             !boot_cpu_has_bug(X86_BUG_TAA)) {
373                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
374                 if (msr & ARCH_CAP_FB_CLEAR_CTRL)
375                         vmx_fb_clear_ctrl_available = true;
376         }
377 }
378
379 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
380 {
381         u64 msr;
382
383         if (!vmx->disable_fb_clear)
384                 return;
385
386         rdmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
387         msr |= FB_CLEAR_DIS;
388         wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
389         /* Cache the MSR value to avoid reading it later */
390         vmx->msr_ia32_mcu_opt_ctrl = msr;
391 }
392
393 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
394 {
395         if (!vmx->disable_fb_clear)
396                 return;
397
398         vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
399         wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
400 }
401
402 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
403 {
404         vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
405
406         /*
407          * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
408          * at VMEntry. Skip the MSR read/write when a guest has no use case to
409          * execute VERW.
410          */
411         if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
412            ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
413             (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
414             (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
415             (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
416             (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
417                 vmx->disable_fb_clear = false;
418 }
419
420 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
421         .set = vmentry_l1d_flush_set,
422         .get = vmentry_l1d_flush_get,
423 };
424 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
425
426 static u32 vmx_segment_access_rights(struct kvm_segment *var);
427
428 void vmx_vmexit(void);
429
430 #define vmx_insn_failed(fmt...)         \
431 do {                                    \
432         WARN_ONCE(1, fmt);              \
433         pr_warn_ratelimited(fmt);       \
434 } while (0)
435
436 asmlinkage void vmread_error(unsigned long field, bool fault)
437 {
438         if (fault)
439                 kvm_spurious_fault();
440         else
441                 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
442 }
443
444 noinline void vmwrite_error(unsigned long field, unsigned long value)
445 {
446         vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
447                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
448 }
449
450 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
451 {
452         vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
453 }
454
455 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
456 {
457         vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
458 }
459
460 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
461 {
462         vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
463                         ext, vpid, gva);
464 }
465
466 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
467 {
468         vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
469                         ext, eptp, gpa);
470 }
471
472 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
473 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
474 /*
475  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
476  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
477  */
478 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
479
480 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
481 static DEFINE_SPINLOCK(vmx_vpid_lock);
482
483 struct vmcs_config vmcs_config;
484 struct vmx_capability vmx_capability;
485
486 #define VMX_SEGMENT_FIELD(seg)                                  \
487         [VCPU_SREG_##seg] = {                                   \
488                 .selector = GUEST_##seg##_SELECTOR,             \
489                 .base = GUEST_##seg##_BASE,                     \
490                 .limit = GUEST_##seg##_LIMIT,                   \
491                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
492         }
493
494 static const struct kvm_vmx_segment_field {
495         unsigned selector;
496         unsigned base;
497         unsigned limit;
498         unsigned ar_bytes;
499 } kvm_vmx_segment_fields[] = {
500         VMX_SEGMENT_FIELD(CS),
501         VMX_SEGMENT_FIELD(DS),
502         VMX_SEGMENT_FIELD(ES),
503         VMX_SEGMENT_FIELD(FS),
504         VMX_SEGMENT_FIELD(GS),
505         VMX_SEGMENT_FIELD(SS),
506         VMX_SEGMENT_FIELD(TR),
507         VMX_SEGMENT_FIELD(LDTR),
508 };
509
510 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
511 {
512         vmx->segment_cache.bitmask = 0;
513 }
514
515 static unsigned long host_idt_base;
516
517 #if IS_ENABLED(CONFIG_HYPERV)
518 static bool __read_mostly enlightened_vmcs = true;
519 module_param(enlightened_vmcs, bool, 0444);
520
521 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
522 {
523         struct hv_enlightened_vmcs *evmcs;
524         struct hv_partition_assist_pg **p_hv_pa_pg =
525                         &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
526         /*
527          * Synthetic VM-Exit is not enabled in current code and so All
528          * evmcs in singe VM shares same assist page.
529          */
530         if (!*p_hv_pa_pg)
531                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
532
533         if (!*p_hv_pa_pg)
534                 return -ENOMEM;
535
536         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
537
538         evmcs->partition_assist_page =
539                 __pa(*p_hv_pa_pg);
540         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
541         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
542
543         return 0;
544 }
545
546 #endif /* IS_ENABLED(CONFIG_HYPERV) */
547
548 /*
549  * Comment's format: document - errata name - stepping - processor name.
550  * Refer from
551  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
552  */
553 static u32 vmx_preemption_cpu_tfms[] = {
554 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
555 0x000206E6,
556 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
557 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
558 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
559 0x00020652,
560 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
561 0x00020655,
562 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
563 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
564 /*
565  * 320767.pdf - AAP86  - B1 -
566  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
567  */
568 0x000106E5,
569 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
570 0x000106A0,
571 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
572 0x000106A1,
573 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
574 0x000106A4,
575  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
576  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
577  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
578 0x000106A5,
579  /* Xeon E3-1220 V2 */
580 0x000306A8,
581 };
582
583 static inline bool cpu_has_broken_vmx_preemption_timer(void)
584 {
585         u32 eax = cpuid_eax(0x00000001), i;
586
587         /* Clear the reserved bits */
588         eax &= ~(0x3U << 14 | 0xfU << 28);
589         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
590                 if (eax == vmx_preemption_cpu_tfms[i])
591                         return true;
592
593         return false;
594 }
595
596 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
597 {
598         return flexpriority_enabled && lapic_in_kernel(vcpu);
599 }
600
601 static int possible_passthrough_msr_slot(u32 msr)
602 {
603         u32 i;
604
605         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
606                 if (vmx_possible_passthrough_msrs[i] == msr)
607                         return i;
608
609         return -ENOENT;
610 }
611
612 static bool is_valid_passthrough_msr(u32 msr)
613 {
614         bool r;
615
616         switch (msr) {
617         case 0x800 ... 0x8ff:
618                 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
619                 return true;
620         case MSR_IA32_RTIT_STATUS:
621         case MSR_IA32_RTIT_OUTPUT_BASE:
622         case MSR_IA32_RTIT_OUTPUT_MASK:
623         case MSR_IA32_RTIT_CR3_MATCH:
624         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
625                 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
626         case MSR_LBR_SELECT:
627         case MSR_LBR_TOS:
628         case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
629         case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
630         case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
631         case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
632         case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
633                 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
634                 return true;
635         }
636
637         r = possible_passthrough_msr_slot(msr) != -ENOENT;
638
639         WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
640
641         return r;
642 }
643
644 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
645 {
646         int i;
647
648         i = kvm_find_user_return_msr(msr);
649         if (i >= 0)
650                 return &vmx->guest_uret_msrs[i];
651         return NULL;
652 }
653
654 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
655                                   struct vmx_uret_msr *msr, u64 data)
656 {
657         unsigned int slot = msr - vmx->guest_uret_msrs;
658         int ret = 0;
659
660         if (msr->load_into_hardware) {
661                 preempt_disable();
662                 ret = kvm_set_user_return_msr(slot, data, msr->mask);
663                 preempt_enable();
664         }
665         if (!ret)
666                 msr->data = data;
667         return ret;
668 }
669
670 #ifdef CONFIG_KEXEC_CORE
671 static void crash_vmclear_local_loaded_vmcss(void)
672 {
673         int cpu = raw_smp_processor_id();
674         struct loaded_vmcs *v;
675
676         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
677                             loaded_vmcss_on_cpu_link)
678                 vmcs_clear(v->vmcs);
679 }
680 #endif /* CONFIG_KEXEC_CORE */
681
682 static void __loaded_vmcs_clear(void *arg)
683 {
684         struct loaded_vmcs *loaded_vmcs = arg;
685         int cpu = raw_smp_processor_id();
686
687         if (loaded_vmcs->cpu != cpu)
688                 return; /* vcpu migration can race with cpu offline */
689         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
690                 per_cpu(current_vmcs, cpu) = NULL;
691
692         vmcs_clear(loaded_vmcs->vmcs);
693         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
694                 vmcs_clear(loaded_vmcs->shadow_vmcs);
695
696         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
697
698         /*
699          * Ensure all writes to loaded_vmcs, including deleting it from its
700          * current percpu list, complete before setting loaded_vmcs->cpu to
701          * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
702          * and add loaded_vmcs to its percpu list before it's deleted from this
703          * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
704          */
705         smp_wmb();
706
707         loaded_vmcs->cpu = -1;
708         loaded_vmcs->launched = 0;
709 }
710
711 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
712 {
713         int cpu = loaded_vmcs->cpu;
714
715         if (cpu != -1)
716                 smp_call_function_single(cpu,
717                          __loaded_vmcs_clear, loaded_vmcs, 1);
718 }
719
720 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
721                                        unsigned field)
722 {
723         bool ret;
724         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
725
726         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
727                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
728                 vmx->segment_cache.bitmask = 0;
729         }
730         ret = vmx->segment_cache.bitmask & mask;
731         vmx->segment_cache.bitmask |= mask;
732         return ret;
733 }
734
735 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
736 {
737         u16 *p = &vmx->segment_cache.seg[seg].selector;
738
739         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
740                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
741         return *p;
742 }
743
744 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
745 {
746         ulong *p = &vmx->segment_cache.seg[seg].base;
747
748         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
749                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
750         return *p;
751 }
752
753 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
754 {
755         u32 *p = &vmx->segment_cache.seg[seg].limit;
756
757         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
758                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
759         return *p;
760 }
761
762 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
763 {
764         u32 *p = &vmx->segment_cache.seg[seg].ar;
765
766         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
767                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
768         return *p;
769 }
770
771 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
772 {
773         u32 eb;
774
775         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
776              (1u << DB_VECTOR) | (1u << AC_VECTOR);
777         /*
778          * Guest access to VMware backdoor ports could legitimately
779          * trigger #GP because of TSS I/O permission bitmap.
780          * We intercept those #GP and allow access to them anyway
781          * as VMware does.
782          */
783         if (enable_vmware_backdoor)
784                 eb |= (1u << GP_VECTOR);
785         if ((vcpu->guest_debug &
786              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
787             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
788                 eb |= 1u << BP_VECTOR;
789         if (to_vmx(vcpu)->rmode.vm86_active)
790                 eb = ~0;
791         if (!vmx_need_pf_intercept(vcpu))
792                 eb &= ~(1u << PF_VECTOR);
793
794         /* When we are running a nested L2 guest and L1 specified for it a
795          * certain exception bitmap, we must trap the same exceptions and pass
796          * them to L1. When running L2, we will only handle the exceptions
797          * specified above if L1 did not want them.
798          */
799         if (is_guest_mode(vcpu))
800                 eb |= get_vmcs12(vcpu)->exception_bitmap;
801         else {
802                 int mask = 0, match = 0;
803
804                 if (enable_ept && (eb & (1u << PF_VECTOR))) {
805                         /*
806                          * If EPT is enabled, #PF is currently only intercepted
807                          * if MAXPHYADDR is smaller on the guest than on the
808                          * host.  In that case we only care about present,
809                          * non-reserved faults.  For vmcs02, however, PFEC_MASK
810                          * and PFEC_MATCH are set in prepare_vmcs02_rare.
811                          */
812                         mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
813                         match = PFERR_PRESENT_MASK;
814                 }
815                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
816                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
817         }
818
819         /*
820          * Disabling xfd interception indicates that dynamic xfeatures
821          * might be used in the guest. Always trap #NM in this case
822          * to save guest xfd_err timely.
823          */
824         if (vcpu->arch.xfd_no_write_intercept)
825                 eb |= (1u << NM_VECTOR);
826
827         vmcs_write32(EXCEPTION_BITMAP, eb);
828 }
829
830 /*
831  * Check if MSR is intercepted for currently loaded MSR bitmap.
832  */
833 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
834 {
835         if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
836                 return true;
837
838         return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap,
839                                          MSR_IA32_SPEC_CTRL);
840 }
841
842 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
843                 unsigned long entry, unsigned long exit)
844 {
845         vm_entry_controls_clearbit(vmx, entry);
846         vm_exit_controls_clearbit(vmx, exit);
847 }
848
849 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
850 {
851         unsigned int i;
852
853         for (i = 0; i < m->nr; ++i) {
854                 if (m->val[i].index == msr)
855                         return i;
856         }
857         return -ENOENT;
858 }
859
860 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
861 {
862         int i;
863         struct msr_autoload *m = &vmx->msr_autoload;
864
865         switch (msr) {
866         case MSR_EFER:
867                 if (cpu_has_load_ia32_efer()) {
868                         clear_atomic_switch_msr_special(vmx,
869                                         VM_ENTRY_LOAD_IA32_EFER,
870                                         VM_EXIT_LOAD_IA32_EFER);
871                         return;
872                 }
873                 break;
874         case MSR_CORE_PERF_GLOBAL_CTRL:
875                 if (cpu_has_load_perf_global_ctrl()) {
876                         clear_atomic_switch_msr_special(vmx,
877                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
878                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
879                         return;
880                 }
881                 break;
882         }
883         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
884         if (i < 0)
885                 goto skip_guest;
886         --m->guest.nr;
887         m->guest.val[i] = m->guest.val[m->guest.nr];
888         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
889
890 skip_guest:
891         i = vmx_find_loadstore_msr_slot(&m->host, msr);
892         if (i < 0)
893                 return;
894
895         --m->host.nr;
896         m->host.val[i] = m->host.val[m->host.nr];
897         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
898 }
899
900 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
901                 unsigned long entry, unsigned long exit,
902                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
903                 u64 guest_val, u64 host_val)
904 {
905         vmcs_write64(guest_val_vmcs, guest_val);
906         if (host_val_vmcs != HOST_IA32_EFER)
907                 vmcs_write64(host_val_vmcs, host_val);
908         vm_entry_controls_setbit(vmx, entry);
909         vm_exit_controls_setbit(vmx, exit);
910 }
911
912 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
913                                   u64 guest_val, u64 host_val, bool entry_only)
914 {
915         int i, j = 0;
916         struct msr_autoload *m = &vmx->msr_autoload;
917
918         switch (msr) {
919         case MSR_EFER:
920                 if (cpu_has_load_ia32_efer()) {
921                         add_atomic_switch_msr_special(vmx,
922                                         VM_ENTRY_LOAD_IA32_EFER,
923                                         VM_EXIT_LOAD_IA32_EFER,
924                                         GUEST_IA32_EFER,
925                                         HOST_IA32_EFER,
926                                         guest_val, host_val);
927                         return;
928                 }
929                 break;
930         case MSR_CORE_PERF_GLOBAL_CTRL:
931                 if (cpu_has_load_perf_global_ctrl()) {
932                         add_atomic_switch_msr_special(vmx,
933                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
934                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
935                                         GUEST_IA32_PERF_GLOBAL_CTRL,
936                                         HOST_IA32_PERF_GLOBAL_CTRL,
937                                         guest_val, host_val);
938                         return;
939                 }
940                 break;
941         case MSR_IA32_PEBS_ENABLE:
942                 /* PEBS needs a quiescent period after being disabled (to write
943                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
944                  * provide that period, so a CPU could write host's record into
945                  * guest's memory.
946                  */
947                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
948         }
949
950         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
951         if (!entry_only)
952                 j = vmx_find_loadstore_msr_slot(&m->host, msr);
953
954         if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
955             (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
956                 printk_once(KERN_WARNING "Not enough msr switch entries. "
957                                 "Can't add msr %x\n", msr);
958                 return;
959         }
960         if (i < 0) {
961                 i = m->guest.nr++;
962                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
963         }
964         m->guest.val[i].index = msr;
965         m->guest.val[i].value = guest_val;
966
967         if (entry_only)
968                 return;
969
970         if (j < 0) {
971                 j = m->host.nr++;
972                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
973         }
974         m->host.val[j].index = msr;
975         m->host.val[j].value = host_val;
976 }
977
978 static bool update_transition_efer(struct vcpu_vmx *vmx)
979 {
980         u64 guest_efer = vmx->vcpu.arch.efer;
981         u64 ignore_bits = 0;
982         int i;
983
984         /* Shadow paging assumes NX to be available.  */
985         if (!enable_ept)
986                 guest_efer |= EFER_NX;
987
988         /*
989          * LMA and LME handled by hardware; SCE meaningless outside long mode.
990          */
991         ignore_bits |= EFER_SCE;
992 #ifdef CONFIG_X86_64
993         ignore_bits |= EFER_LMA | EFER_LME;
994         /* SCE is meaningful only in long mode on Intel */
995         if (guest_efer & EFER_LMA)
996                 ignore_bits &= ~(u64)EFER_SCE;
997 #endif
998
999         /*
1000          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1001          * On CPUs that support "load IA32_EFER", always switch EFER
1002          * atomically, since it's faster than switching it manually.
1003          */
1004         if (cpu_has_load_ia32_efer() ||
1005             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1006                 if (!(guest_efer & EFER_LMA))
1007                         guest_efer &= ~EFER_LME;
1008                 if (guest_efer != host_efer)
1009                         add_atomic_switch_msr(vmx, MSR_EFER,
1010                                               guest_efer, host_efer, false);
1011                 else
1012                         clear_atomic_switch_msr(vmx, MSR_EFER);
1013                 return false;
1014         }
1015
1016         i = kvm_find_user_return_msr(MSR_EFER);
1017         if (i < 0)
1018                 return false;
1019
1020         clear_atomic_switch_msr(vmx, MSR_EFER);
1021
1022         guest_efer &= ~ignore_bits;
1023         guest_efer |= host_efer & ignore_bits;
1024
1025         vmx->guest_uret_msrs[i].data = guest_efer;
1026         vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1027
1028         return true;
1029 }
1030
1031 #ifdef CONFIG_X86_32
1032 /*
1033  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1034  * VMCS rather than the segment table.  KVM uses this helper to figure
1035  * out the current bases to poke them into the VMCS before entry.
1036  */
1037 static unsigned long segment_base(u16 selector)
1038 {
1039         struct desc_struct *table;
1040         unsigned long v;
1041
1042         if (!(selector & ~SEGMENT_RPL_MASK))
1043                 return 0;
1044
1045         table = get_current_gdt_ro();
1046
1047         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1048                 u16 ldt_selector = kvm_read_ldt();
1049
1050                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1051                         return 0;
1052
1053                 table = (struct desc_struct *)segment_base(ldt_selector);
1054         }
1055         v = get_desc_base(&table[selector >> 3]);
1056         return v;
1057 }
1058 #endif
1059
1060 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1061 {
1062         return vmx_pt_mode_is_host_guest() &&
1063                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1064 }
1065
1066 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1067 {
1068         /* The base must be 128-byte aligned and a legal physical address. */
1069         return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1070 }
1071
1072 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1073 {
1074         u32 i;
1075
1076         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1077         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1078         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1079         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1080         for (i = 0; i < addr_range; i++) {
1081                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1082                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1083         }
1084 }
1085
1086 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1087 {
1088         u32 i;
1089
1090         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1091         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1092         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1093         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1094         for (i = 0; i < addr_range; i++) {
1095                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1096                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1097         }
1098 }
1099
1100 static void pt_guest_enter(struct vcpu_vmx *vmx)
1101 {
1102         if (vmx_pt_mode_is_system())
1103                 return;
1104
1105         /*
1106          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1107          * Save host state before VM entry.
1108          */
1109         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1110         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1111                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1112                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1113                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1114         }
1115 }
1116
1117 static void pt_guest_exit(struct vcpu_vmx *vmx)
1118 {
1119         if (vmx_pt_mode_is_system())
1120                 return;
1121
1122         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1123                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1124                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1125         }
1126
1127         /*
1128          * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1129          * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1130          */
1131         if (vmx->pt_desc.host.ctl)
1132                 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1133 }
1134
1135 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1136                         unsigned long fs_base, unsigned long gs_base)
1137 {
1138         if (unlikely(fs_sel != host->fs_sel)) {
1139                 if (!(fs_sel & 7))
1140                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1141                 else
1142                         vmcs_write16(HOST_FS_SELECTOR, 0);
1143                 host->fs_sel = fs_sel;
1144         }
1145         if (unlikely(gs_sel != host->gs_sel)) {
1146                 if (!(gs_sel & 7))
1147                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1148                 else
1149                         vmcs_write16(HOST_GS_SELECTOR, 0);
1150                 host->gs_sel = gs_sel;
1151         }
1152         if (unlikely(fs_base != host->fs_base)) {
1153                 vmcs_writel(HOST_FS_BASE, fs_base);
1154                 host->fs_base = fs_base;
1155         }
1156         if (unlikely(gs_base != host->gs_base)) {
1157                 vmcs_writel(HOST_GS_BASE, gs_base);
1158                 host->gs_base = gs_base;
1159         }
1160 }
1161
1162 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1163 {
1164         struct vcpu_vmx *vmx = to_vmx(vcpu);
1165         struct vmcs_host_state *host_state;
1166 #ifdef CONFIG_X86_64
1167         int cpu = raw_smp_processor_id();
1168 #endif
1169         unsigned long fs_base, gs_base;
1170         u16 fs_sel, gs_sel;
1171         int i;
1172
1173         vmx->req_immediate_exit = false;
1174
1175         /*
1176          * Note that guest MSRs to be saved/restored can also be changed
1177          * when guest state is loaded. This happens when guest transitions
1178          * to/from long-mode by setting MSR_EFER.LMA.
1179          */
1180         if (!vmx->guest_uret_msrs_loaded) {
1181                 vmx->guest_uret_msrs_loaded = true;
1182                 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1183                         if (!vmx->guest_uret_msrs[i].load_into_hardware)
1184                                 continue;
1185
1186                         kvm_set_user_return_msr(i,
1187                                                 vmx->guest_uret_msrs[i].data,
1188                                                 vmx->guest_uret_msrs[i].mask);
1189                 }
1190         }
1191
1192         if (vmx->nested.need_vmcs12_to_shadow_sync)
1193                 nested_sync_vmcs12_to_shadow(vcpu);
1194
1195         if (vmx->guest_state_loaded)
1196                 return;
1197
1198         host_state = &vmx->loaded_vmcs->host_state;
1199
1200         /*
1201          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1202          * allow segment selectors with cpl > 0 or ti == 1.
1203          */
1204         host_state->ldt_sel = kvm_read_ldt();
1205
1206 #ifdef CONFIG_X86_64
1207         savesegment(ds, host_state->ds_sel);
1208         savesegment(es, host_state->es_sel);
1209
1210         gs_base = cpu_kernelmode_gs_base(cpu);
1211         if (likely(is_64bit_mm(current->mm))) {
1212                 current_save_fsgs();
1213                 fs_sel = current->thread.fsindex;
1214                 gs_sel = current->thread.gsindex;
1215                 fs_base = current->thread.fsbase;
1216                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1217         } else {
1218                 savesegment(fs, fs_sel);
1219                 savesegment(gs, gs_sel);
1220                 fs_base = read_msr(MSR_FS_BASE);
1221                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1222         }
1223
1224         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1225 #else
1226         savesegment(fs, fs_sel);
1227         savesegment(gs, gs_sel);
1228         fs_base = segment_base(fs_sel);
1229         gs_base = segment_base(gs_sel);
1230 #endif
1231
1232         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1233         vmx->guest_state_loaded = true;
1234 }
1235
1236 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1237 {
1238         struct vmcs_host_state *host_state;
1239
1240         if (!vmx->guest_state_loaded)
1241                 return;
1242
1243         host_state = &vmx->loaded_vmcs->host_state;
1244
1245         ++vmx->vcpu.stat.host_state_reload;
1246
1247 #ifdef CONFIG_X86_64
1248         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1249 #endif
1250         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1251                 kvm_load_ldt(host_state->ldt_sel);
1252 #ifdef CONFIG_X86_64
1253                 load_gs_index(host_state->gs_sel);
1254 #else
1255                 loadsegment(gs, host_state->gs_sel);
1256 #endif
1257         }
1258         if (host_state->fs_sel & 7)
1259                 loadsegment(fs, host_state->fs_sel);
1260 #ifdef CONFIG_X86_64
1261         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1262                 loadsegment(ds, host_state->ds_sel);
1263                 loadsegment(es, host_state->es_sel);
1264         }
1265 #endif
1266         invalidate_tss_limit();
1267 #ifdef CONFIG_X86_64
1268         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1269 #endif
1270         load_fixmap_gdt(raw_smp_processor_id());
1271         vmx->guest_state_loaded = false;
1272         vmx->guest_uret_msrs_loaded = false;
1273 }
1274
1275 #ifdef CONFIG_X86_64
1276 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1277 {
1278         preempt_disable();
1279         if (vmx->guest_state_loaded)
1280                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1281         preempt_enable();
1282         return vmx->msr_guest_kernel_gs_base;
1283 }
1284
1285 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1286 {
1287         preempt_disable();
1288         if (vmx->guest_state_loaded)
1289                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1290         preempt_enable();
1291         vmx->msr_guest_kernel_gs_base = data;
1292 }
1293 #endif
1294
1295 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1296                         struct loaded_vmcs *buddy)
1297 {
1298         struct vcpu_vmx *vmx = to_vmx(vcpu);
1299         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1300         struct vmcs *prev;
1301
1302         if (!already_loaded) {
1303                 loaded_vmcs_clear(vmx->loaded_vmcs);
1304                 local_irq_disable();
1305
1306                 /*
1307                  * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1308                  * this cpu's percpu list, otherwise it may not yet be deleted
1309                  * from its previous cpu's percpu list.  Pairs with the
1310                  * smb_wmb() in __loaded_vmcs_clear().
1311                  */
1312                 smp_rmb();
1313
1314                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1315                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1316                 local_irq_enable();
1317         }
1318
1319         prev = per_cpu(current_vmcs, cpu);
1320         if (prev != vmx->loaded_vmcs->vmcs) {
1321                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1322                 vmcs_load(vmx->loaded_vmcs->vmcs);
1323
1324                 /*
1325                  * No indirect branch prediction barrier needed when switching
1326                  * the active VMCS within a guest, e.g. on nested VM-Enter.
1327                  * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1328                  */
1329                 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1330                         indirect_branch_prediction_barrier();
1331         }
1332
1333         if (!already_loaded) {
1334                 void *gdt = get_current_gdt_ro();
1335
1336                 /*
1337                  * Flush all EPTP/VPID contexts, the new pCPU may have stale
1338                  * TLB entries from its previous association with the vCPU.
1339                  */
1340                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1341
1342                 /*
1343                  * Linux uses per-cpu TSS and GDT, so set these when switching
1344                  * processors.  See 22.2.4.
1345                  */
1346                 vmcs_writel(HOST_TR_BASE,
1347                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1348                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1349
1350                 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1351                         /* 22.2.3 */
1352                         vmcs_writel(HOST_IA32_SYSENTER_ESP,
1353                                     (unsigned long)(cpu_entry_stack(cpu) + 1));
1354                 }
1355
1356                 vmx->loaded_vmcs->cpu = cpu;
1357         }
1358 }
1359
1360 /*
1361  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1362  * vcpu mutex is already taken.
1363  */
1364 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1365 {
1366         struct vcpu_vmx *vmx = to_vmx(vcpu);
1367
1368         vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1369
1370         vmx_vcpu_pi_load(vcpu, cpu);
1371
1372         vmx->host_debugctlmsr = get_debugctlmsr();
1373 }
1374
1375 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1376 {
1377         vmx_vcpu_pi_put(vcpu);
1378
1379         vmx_prepare_switch_to_host(to_vmx(vcpu));
1380 }
1381
1382 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1383 {
1384         return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1385 }
1386
1387 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1388 {
1389         struct vcpu_vmx *vmx = to_vmx(vcpu);
1390         unsigned long rflags, save_rflags;
1391
1392         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1393                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1394                 rflags = vmcs_readl(GUEST_RFLAGS);
1395                 if (vmx->rmode.vm86_active) {
1396                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1397                         save_rflags = vmx->rmode.save_rflags;
1398                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1399                 }
1400                 vmx->rflags = rflags;
1401         }
1402         return vmx->rflags;
1403 }
1404
1405 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1406 {
1407         struct vcpu_vmx *vmx = to_vmx(vcpu);
1408         unsigned long old_rflags;
1409
1410         if (is_unrestricted_guest(vcpu)) {
1411                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1412                 vmx->rflags = rflags;
1413                 vmcs_writel(GUEST_RFLAGS, rflags);
1414                 return;
1415         }
1416
1417         old_rflags = vmx_get_rflags(vcpu);
1418         vmx->rflags = rflags;
1419         if (vmx->rmode.vm86_active) {
1420                 vmx->rmode.save_rflags = rflags;
1421                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1422         }
1423         vmcs_writel(GUEST_RFLAGS, rflags);
1424
1425         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1426                 vmx->emulation_required = vmx_emulation_required(vcpu);
1427 }
1428
1429 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1430 {
1431         return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1432 }
1433
1434 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1435 {
1436         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1437         int ret = 0;
1438
1439         if (interruptibility & GUEST_INTR_STATE_STI)
1440                 ret |= KVM_X86_SHADOW_INT_STI;
1441         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1442                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1443
1444         return ret;
1445 }
1446
1447 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1448 {
1449         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1450         u32 interruptibility = interruptibility_old;
1451
1452         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1453
1454         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1455                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1456         else if (mask & KVM_X86_SHADOW_INT_STI)
1457                 interruptibility |= GUEST_INTR_STATE_STI;
1458
1459         if ((interruptibility != interruptibility_old))
1460                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1461 }
1462
1463 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1464 {
1465         struct vcpu_vmx *vmx = to_vmx(vcpu);
1466         unsigned long value;
1467
1468         /*
1469          * Any MSR write that attempts to change bits marked reserved will
1470          * case a #GP fault.
1471          */
1472         if (data & vmx->pt_desc.ctl_bitmask)
1473                 return 1;
1474
1475         /*
1476          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1477          * result in a #GP unless the same write also clears TraceEn.
1478          */
1479         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1480                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1481                 return 1;
1482
1483         /*
1484          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1485          * and FabricEn would cause #GP, if
1486          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1487          */
1488         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1489                 !(data & RTIT_CTL_FABRIC_EN) &&
1490                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1491                                         PT_CAP_single_range_output))
1492                 return 1;
1493
1494         /*
1495          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1496          * utilize encodings marked reserved will cause a #GP fault.
1497          */
1498         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1499         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1500                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1501                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1502                 return 1;
1503         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1504                                                 PT_CAP_cycle_thresholds);
1505         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1506                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1507                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1508                 return 1;
1509         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1510         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1511                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1512                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1513                 return 1;
1514
1515         /*
1516          * If ADDRx_CFG is reserved or the encodings is >2 will
1517          * cause a #GP fault.
1518          */
1519         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1520         if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1521                 return 1;
1522         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1523         if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1524                 return 1;
1525         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1526         if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1527                 return 1;
1528         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1529         if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1530                 return 1;
1531
1532         return 0;
1533 }
1534
1535 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1536                                         void *insn, int insn_len)
1537 {
1538         /*
1539          * Emulation of instructions in SGX enclaves is impossible as RIP does
1540          * not point at the failing instruction, and even if it did, the code
1541          * stream is inaccessible.  Inject #UD instead of exiting to userspace
1542          * so that guest userspace can't DoS the guest simply by triggering
1543          * emulation (enclaves are CPL3 only).
1544          */
1545         if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1546                 kvm_queue_exception(vcpu, UD_VECTOR);
1547                 return false;
1548         }
1549         return true;
1550 }
1551
1552 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1553 {
1554         union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1555         unsigned long rip, orig_rip;
1556         u32 instr_len;
1557
1558         /*
1559          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1560          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1561          * set when EPT misconfig occurs.  In practice, real hardware updates
1562          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1563          * (namely Hyper-V) don't set it due to it being undefined behavior,
1564          * i.e. we end up advancing IP with some random value.
1565          */
1566         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1567             exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1568                 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1569
1570                 /*
1571                  * Emulating an enclave's instructions isn't supported as KVM
1572                  * cannot access the enclave's memory or its true RIP, e.g. the
1573                  * vmcs.GUEST_RIP points at the exit point of the enclave, not
1574                  * the RIP that actually triggered the VM-Exit.  But, because
1575                  * most instructions that cause VM-Exit will #UD in an enclave,
1576                  * most instruction-based VM-Exits simply do not occur.
1577                  *
1578                  * There are a few exceptions, notably the debug instructions
1579                  * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1580                  * and generate #DB/#BP as expected, which KVM might intercept.
1581                  * But again, the CPU does the dirty work and saves an instr
1582                  * length of zero so VMMs don't shoot themselves in the foot.
1583                  * WARN if KVM tries to skip a non-zero length instruction on
1584                  * a VM-Exit from an enclave.
1585                  */
1586                 if (!instr_len)
1587                         goto rip_updated;
1588
1589                 WARN(exit_reason.enclave_mode,
1590                      "KVM: skipping instruction after SGX enclave VM-Exit");
1591
1592                 orig_rip = kvm_rip_read(vcpu);
1593                 rip = orig_rip + instr_len;
1594 #ifdef CONFIG_X86_64
1595                 /*
1596                  * We need to mask out the high 32 bits of RIP if not in 64-bit
1597                  * mode, but just finding out that we are in 64-bit mode is
1598                  * quite expensive.  Only do it if there was a carry.
1599                  */
1600                 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1601                         rip = (u32)rip;
1602 #endif
1603                 kvm_rip_write(vcpu, rip);
1604         } else {
1605                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1606                         return 0;
1607         }
1608
1609 rip_updated:
1610         /* skipping an emulated instruction also counts */
1611         vmx_set_interrupt_shadow(vcpu, 0);
1612
1613         return 1;
1614 }
1615
1616 /*
1617  * Recognizes a pending MTF VM-exit and records the nested state for later
1618  * delivery.
1619  */
1620 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1621 {
1622         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1623         struct vcpu_vmx *vmx = to_vmx(vcpu);
1624
1625         if (!is_guest_mode(vcpu))
1626                 return;
1627
1628         /*
1629          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1630          * T-bit traps. As instruction emulation is completed (i.e. at the
1631          * instruction boundary), any #DB exception pending delivery must be a
1632          * debug-trap. Record the pending MTF state to be delivered in
1633          * vmx_check_nested_events().
1634          */
1635         if (nested_cpu_has_mtf(vmcs12) &&
1636             (!vcpu->arch.exception.pending ||
1637              vcpu->arch.exception.nr == DB_VECTOR))
1638                 vmx->nested.mtf_pending = true;
1639         else
1640                 vmx->nested.mtf_pending = false;
1641 }
1642
1643 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1644 {
1645         vmx_update_emulated_instruction(vcpu);
1646         return skip_emulated_instruction(vcpu);
1647 }
1648
1649 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1650 {
1651         /*
1652          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1653          * explicitly skip the instruction because if the HLT state is set,
1654          * then the instruction is already executing and RIP has already been
1655          * advanced.
1656          */
1657         if (kvm_hlt_in_guest(vcpu->kvm) &&
1658                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1659                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1660 }
1661
1662 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1663 {
1664         struct vcpu_vmx *vmx = to_vmx(vcpu);
1665         unsigned nr = vcpu->arch.exception.nr;
1666         bool has_error_code = vcpu->arch.exception.has_error_code;
1667         u32 error_code = vcpu->arch.exception.error_code;
1668         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1669
1670         kvm_deliver_exception_payload(vcpu);
1671
1672         if (has_error_code) {
1673                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1674                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1675         }
1676
1677         if (vmx->rmode.vm86_active) {
1678                 int inc_eip = 0;
1679                 if (kvm_exception_is_soft(nr))
1680                         inc_eip = vcpu->arch.event_exit_inst_len;
1681                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1682                 return;
1683         }
1684
1685         WARN_ON_ONCE(vmx->emulation_required);
1686
1687         if (kvm_exception_is_soft(nr)) {
1688                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1689                              vmx->vcpu.arch.event_exit_inst_len);
1690                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1691         } else
1692                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1693
1694         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1695
1696         vmx_clear_hlt(vcpu);
1697 }
1698
1699 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1700                                bool load_into_hardware)
1701 {
1702         struct vmx_uret_msr *uret_msr;
1703
1704         uret_msr = vmx_find_uret_msr(vmx, msr);
1705         if (!uret_msr)
1706                 return;
1707
1708         uret_msr->load_into_hardware = load_into_hardware;
1709 }
1710
1711 /*
1712  * Configuring user return MSRs to automatically save, load, and restore MSRs
1713  * that need to be shoved into hardware when running the guest.  Note, omitting
1714  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1715  * loaded into hardware when running the guest.
1716  */
1717 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1718 {
1719 #ifdef CONFIG_X86_64
1720         bool load_syscall_msrs;
1721
1722         /*
1723          * The SYSCALL MSRs are only needed on long mode guests, and only
1724          * when EFER.SCE is set.
1725          */
1726         load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1727                             (vmx->vcpu.arch.efer & EFER_SCE);
1728
1729         vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1730         vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1731         vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1732 #endif
1733         vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1734
1735         vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1736                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1737                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1738
1739         /*
1740          * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1741          * kernel and old userspace.  If those guests run on a tsx=off host, do
1742          * allow guests to use TSX_CTRL, but don't change the value in hardware
1743          * so that TSX remains always disabled.
1744          */
1745         vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1746
1747         /*
1748          * The set of MSRs to load may have changed, reload MSRs before the
1749          * next VM-Enter.
1750          */
1751         vmx->guest_uret_msrs_loaded = false;
1752 }
1753
1754 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1755 {
1756         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1757
1758         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1759                 return vmcs12->tsc_offset;
1760
1761         return 0;
1762 }
1763
1764 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1765 {
1766         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1767
1768         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1769             nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1770                 return vmcs12->tsc_multiplier;
1771
1772         return kvm_default_tsc_scaling_ratio;
1773 }
1774
1775 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1776 {
1777         vmcs_write64(TSC_OFFSET, offset);
1778 }
1779
1780 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1781 {
1782         vmcs_write64(TSC_MULTIPLIER, multiplier);
1783 }
1784
1785 /*
1786  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1787  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1788  * all guests if the "nested" module option is off, and can also be disabled
1789  * for a single guest by disabling its VMX cpuid bit.
1790  */
1791 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1792 {
1793         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1794 }
1795
1796 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1797                                                  uint64_t val)
1798 {
1799         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1800
1801         return !(val & ~valid_bits);
1802 }
1803
1804 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1805 {
1806         switch (msr->index) {
1807         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1808                 if (!nested)
1809                         return 1;
1810                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1811         case MSR_IA32_PERF_CAPABILITIES:
1812                 msr->data = vmx_get_perf_capabilities();
1813                 return 0;
1814         default:
1815                 return KVM_MSR_RET_INVALID;
1816         }
1817 }
1818
1819 /*
1820  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1821  * Returns 0 on success, non-0 otherwise.
1822  * Assumes vcpu_load() was already called.
1823  */
1824 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1825 {
1826         struct vcpu_vmx *vmx = to_vmx(vcpu);
1827         struct vmx_uret_msr *msr;
1828         u32 index;
1829
1830         switch (msr_info->index) {
1831 #ifdef CONFIG_X86_64
1832         case MSR_FS_BASE:
1833                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1834                 break;
1835         case MSR_GS_BASE:
1836                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1837                 break;
1838         case MSR_KERNEL_GS_BASE:
1839                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1840                 break;
1841 #endif
1842         case MSR_EFER:
1843                 return kvm_get_msr_common(vcpu, msr_info);
1844         case MSR_IA32_TSX_CTRL:
1845                 if (!msr_info->host_initiated &&
1846                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1847                         return 1;
1848                 goto find_uret_msr;
1849         case MSR_IA32_UMWAIT_CONTROL:
1850                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1851                         return 1;
1852
1853                 msr_info->data = vmx->msr_ia32_umwait_control;
1854                 break;
1855         case MSR_IA32_SPEC_CTRL:
1856                 if (!msr_info->host_initiated &&
1857                     !guest_has_spec_ctrl_msr(vcpu))
1858                         return 1;
1859
1860                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1861                 break;
1862         case MSR_IA32_SYSENTER_CS:
1863                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1864                 break;
1865         case MSR_IA32_SYSENTER_EIP:
1866                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1867                 break;
1868         case MSR_IA32_SYSENTER_ESP:
1869                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1870                 break;
1871         case MSR_IA32_BNDCFGS:
1872                 if (!kvm_mpx_supported() ||
1873                     (!msr_info->host_initiated &&
1874                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1875                         return 1;
1876                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1877                 break;
1878         case MSR_IA32_MCG_EXT_CTL:
1879                 if (!msr_info->host_initiated &&
1880                     !(vmx->msr_ia32_feature_control &
1881                       FEAT_CTL_LMCE_ENABLED))
1882                         return 1;
1883                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1884                 break;
1885         case MSR_IA32_FEAT_CTL:
1886                 msr_info->data = vmx->msr_ia32_feature_control;
1887                 break;
1888         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1889                 if (!msr_info->host_initiated &&
1890                     !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1891                         return 1;
1892                 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1893                         [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1894                 break;
1895         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1896                 if (!nested_vmx_allowed(vcpu))
1897                         return 1;
1898                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1899                                     &msr_info->data))
1900                         return 1;
1901                 /*
1902                  * Enlightened VMCS v1 doesn't have certain VMCS fields but
1903                  * instead of just ignoring the features, different Hyper-V
1904                  * versions are either trying to use them and fail or do some
1905                  * sanity checking and refuse to boot. Filter all unsupported
1906                  * features out.
1907                  */
1908                 if (!msr_info->host_initiated &&
1909                     vmx->nested.enlightened_vmcs_enabled)
1910                         nested_evmcs_filter_control_msr(msr_info->index,
1911                                                         &msr_info->data);
1912                 break;
1913         case MSR_IA32_RTIT_CTL:
1914                 if (!vmx_pt_mode_is_host_guest())
1915                         return 1;
1916                 msr_info->data = vmx->pt_desc.guest.ctl;
1917                 break;
1918         case MSR_IA32_RTIT_STATUS:
1919                 if (!vmx_pt_mode_is_host_guest())
1920                         return 1;
1921                 msr_info->data = vmx->pt_desc.guest.status;
1922                 break;
1923         case MSR_IA32_RTIT_CR3_MATCH:
1924                 if (!vmx_pt_mode_is_host_guest() ||
1925                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1926                                                 PT_CAP_cr3_filtering))
1927                         return 1;
1928                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1929                 break;
1930         case MSR_IA32_RTIT_OUTPUT_BASE:
1931                 if (!vmx_pt_mode_is_host_guest() ||
1932                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1933                                         PT_CAP_topa_output) &&
1934                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1935                                         PT_CAP_single_range_output)))
1936                         return 1;
1937                 msr_info->data = vmx->pt_desc.guest.output_base;
1938                 break;
1939         case MSR_IA32_RTIT_OUTPUT_MASK:
1940                 if (!vmx_pt_mode_is_host_guest() ||
1941                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1942                                         PT_CAP_topa_output) &&
1943                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1944                                         PT_CAP_single_range_output)))
1945                         return 1;
1946                 msr_info->data = vmx->pt_desc.guest.output_mask;
1947                 break;
1948         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1949                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1950                 if (!vmx_pt_mode_is_host_guest() ||
1951                     (index >= 2 * vmx->pt_desc.num_address_ranges))
1952                         return 1;
1953                 if (index % 2)
1954                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1955                 else
1956                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1957                 break;
1958         case MSR_IA32_DEBUGCTLMSR:
1959                 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1960                 break;
1961         default:
1962         find_uret_msr:
1963                 msr = vmx_find_uret_msr(vmx, msr_info->index);
1964                 if (msr) {
1965                         msr_info->data = msr->data;
1966                         break;
1967                 }
1968                 return kvm_get_msr_common(vcpu, msr_info);
1969         }
1970
1971         return 0;
1972 }
1973
1974 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1975                                                     u64 data)
1976 {
1977 #ifdef CONFIG_X86_64
1978         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1979                 return (u32)data;
1980 #endif
1981         return (unsigned long)data;
1982 }
1983
1984 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1985 {
1986         u64 debugctl = vmx_supported_debugctl();
1987
1988         if (!intel_pmu_lbr_is_enabled(vcpu))
1989                 debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1990
1991         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1992                 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1993
1994         return debugctl;
1995 }
1996
1997 /*
1998  * Writes msr value into the appropriate "register".
1999  * Returns 0 on success, non-0 otherwise.
2000  * Assumes vcpu_load() was already called.
2001  */
2002 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2003 {
2004         struct vcpu_vmx *vmx = to_vmx(vcpu);
2005         struct vmx_uret_msr *msr;
2006         int ret = 0;
2007         u32 msr_index = msr_info->index;
2008         u64 data = msr_info->data;
2009         u32 index;
2010
2011         switch (msr_index) {
2012         case MSR_EFER:
2013                 ret = kvm_set_msr_common(vcpu, msr_info);
2014                 break;
2015 #ifdef CONFIG_X86_64
2016         case MSR_FS_BASE:
2017                 vmx_segment_cache_clear(vmx);
2018                 vmcs_writel(GUEST_FS_BASE, data);
2019                 break;
2020         case MSR_GS_BASE:
2021                 vmx_segment_cache_clear(vmx);
2022                 vmcs_writel(GUEST_GS_BASE, data);
2023                 break;
2024         case MSR_KERNEL_GS_BASE:
2025                 vmx_write_guest_kernel_gs_base(vmx, data);
2026                 break;
2027         case MSR_IA32_XFD:
2028                 ret = kvm_set_msr_common(vcpu, msr_info);
2029                 /*
2030                  * Always intercepting WRMSR could incur non-negligible
2031                  * overhead given xfd might be changed frequently in
2032                  * guest context switch. Disable write interception
2033                  * upon the first write with a non-zero value (indicating
2034                  * potential usage on dynamic xfeatures). Also update
2035                  * exception bitmap to trap #NM for proper virtualization
2036                  * of guest xfd_err.
2037                  */
2038                 if (!ret && data) {
2039                         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2040                                                       MSR_TYPE_RW);
2041                         vcpu->arch.xfd_no_write_intercept = true;
2042                         vmx_update_exception_bitmap(vcpu);
2043                 }
2044                 break;
2045 #endif
2046         case MSR_IA32_SYSENTER_CS:
2047                 if (is_guest_mode(vcpu))
2048                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
2049                 vmcs_write32(GUEST_SYSENTER_CS, data);
2050                 break;
2051         case MSR_IA32_SYSENTER_EIP:
2052                 if (is_guest_mode(vcpu)) {
2053                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2054                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
2055                 }
2056                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2057                 break;
2058         case MSR_IA32_SYSENTER_ESP:
2059                 if (is_guest_mode(vcpu)) {
2060                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2061                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
2062                 }
2063                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2064                 break;
2065         case MSR_IA32_DEBUGCTLMSR: {
2066                 u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
2067                 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2068                         if (report_ignored_msrs)
2069                                 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
2070                                             __func__, data);
2071                         data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2072                         invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2073                 }
2074
2075                 if (invalid)
2076                         return 1;
2077
2078                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2079                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
2080                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2081
2082                 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2083                 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2084                     (data & DEBUGCTLMSR_LBR))
2085                         intel_pmu_create_guest_lbr_event(vcpu);
2086                 return 0;
2087         }
2088         case MSR_IA32_BNDCFGS:
2089                 if (!kvm_mpx_supported() ||
2090                     (!msr_info->host_initiated &&
2091                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2092                         return 1;
2093                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2094                     (data & MSR_IA32_BNDCFGS_RSVD))
2095                         return 1;
2096                 vmcs_write64(GUEST_BNDCFGS, data);
2097                 break;
2098         case MSR_IA32_UMWAIT_CONTROL:
2099                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2100                         return 1;
2101
2102                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2103                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2104                         return 1;
2105
2106                 vmx->msr_ia32_umwait_control = data;
2107                 break;
2108         case MSR_IA32_SPEC_CTRL:
2109                 if (!msr_info->host_initiated &&
2110                     !guest_has_spec_ctrl_msr(vcpu))
2111                         return 1;
2112
2113                 if (kvm_spec_ctrl_test_value(data))
2114                         return 1;
2115
2116                 vmx->spec_ctrl = data;
2117                 if (!data)
2118                         break;
2119
2120                 /*
2121                  * For non-nested:
2122                  * When it's written (to non-zero) for the first time, pass
2123                  * it through.
2124                  *
2125                  * For nested:
2126                  * The handling of the MSR bitmap for L2 guests is done in
2127                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2128                  * vmcs02.msr_bitmap here since it gets completely overwritten
2129                  * in the merging. We update the vmcs01 here for L1 as well
2130                  * since it will end up touching the MSR anyway now.
2131                  */
2132                 vmx_disable_intercept_for_msr(vcpu,
2133                                               MSR_IA32_SPEC_CTRL,
2134                                               MSR_TYPE_RW);
2135                 break;
2136         case MSR_IA32_TSX_CTRL:
2137                 if (!msr_info->host_initiated &&
2138                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2139                         return 1;
2140                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2141                         return 1;
2142                 goto find_uret_msr;
2143         case MSR_IA32_PRED_CMD:
2144                 if (!msr_info->host_initiated &&
2145                     !guest_has_pred_cmd_msr(vcpu))
2146                         return 1;
2147
2148                 if (data & ~PRED_CMD_IBPB)
2149                         return 1;
2150                 if (!boot_cpu_has(X86_FEATURE_IBPB))
2151                         return 1;
2152                 if (!data)
2153                         break;
2154
2155                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2156
2157                 /*
2158                  * For non-nested:
2159                  * When it's written (to non-zero) for the first time, pass
2160                  * it through.
2161                  *
2162                  * For nested:
2163                  * The handling of the MSR bitmap for L2 guests is done in
2164                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2165                  * vmcs02.msr_bitmap here since it gets completely overwritten
2166                  * in the merging.
2167                  */
2168                 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2169                 break;
2170         case MSR_IA32_CR_PAT:
2171                 if (!kvm_pat_valid(data))
2172                         return 1;
2173
2174                 if (is_guest_mode(vcpu) &&
2175                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2176                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2177
2178                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2179                         vmcs_write64(GUEST_IA32_PAT, data);
2180                         vcpu->arch.pat = data;
2181                         break;
2182                 }
2183                 ret = kvm_set_msr_common(vcpu, msr_info);
2184                 break;
2185         case MSR_IA32_MCG_EXT_CTL:
2186                 if ((!msr_info->host_initiated &&
2187                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2188                        FEAT_CTL_LMCE_ENABLED)) ||
2189                     (data & ~MCG_EXT_CTL_LMCE_EN))
2190                         return 1;
2191                 vcpu->arch.mcg_ext_ctl = data;
2192                 break;
2193         case MSR_IA32_FEAT_CTL:
2194                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2195                     (to_vmx(vcpu)->msr_ia32_feature_control &
2196                      FEAT_CTL_LOCKED && !msr_info->host_initiated))
2197                         return 1;
2198                 vmx->msr_ia32_feature_control = data;
2199                 if (msr_info->host_initiated && data == 0)
2200                         vmx_leave_nested(vcpu);
2201
2202                 /* SGX may be enabled/disabled by guest's firmware */
2203                 vmx_write_encls_bitmap(vcpu, NULL);
2204                 break;
2205         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2206                 /*
2207                  * On real hardware, the LE hash MSRs are writable before
2208                  * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2209                  * at which point SGX related bits in IA32_FEATURE_CONTROL
2210                  * become writable.
2211                  *
2212                  * KVM does not emulate SGX activation for simplicity, so
2213                  * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2214                  * is unlocked.  This is technically not architectural
2215                  * behavior, but it's close enough.
2216                  */
2217                 if (!msr_info->host_initiated &&
2218                     (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2219                     ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2220                     !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2221                         return 1;
2222                 vmx->msr_ia32_sgxlepubkeyhash
2223                         [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2224                 break;
2225         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2226                 if (!msr_info->host_initiated)
2227                         return 1; /* they are read-only */
2228                 if (!nested_vmx_allowed(vcpu))
2229                         return 1;
2230                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2231         case MSR_IA32_RTIT_CTL:
2232                 if (!vmx_pt_mode_is_host_guest() ||
2233                         vmx_rtit_ctl_check(vcpu, data) ||
2234                         vmx->nested.vmxon)
2235                         return 1;
2236                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2237                 vmx->pt_desc.guest.ctl = data;
2238                 pt_update_intercept_for_msr(vcpu);
2239                 break;
2240         case MSR_IA32_RTIT_STATUS:
2241                 if (!pt_can_write_msr(vmx))
2242                         return 1;
2243                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2244                         return 1;
2245                 vmx->pt_desc.guest.status = data;
2246                 break;
2247         case MSR_IA32_RTIT_CR3_MATCH:
2248                 if (!pt_can_write_msr(vmx))
2249                         return 1;
2250                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2251                                            PT_CAP_cr3_filtering))
2252                         return 1;
2253                 vmx->pt_desc.guest.cr3_match = data;
2254                 break;
2255         case MSR_IA32_RTIT_OUTPUT_BASE:
2256                 if (!pt_can_write_msr(vmx))
2257                         return 1;
2258                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2259                                            PT_CAP_topa_output) &&
2260                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2261                                            PT_CAP_single_range_output))
2262                         return 1;
2263                 if (!pt_output_base_valid(vcpu, data))
2264                         return 1;
2265                 vmx->pt_desc.guest.output_base = data;
2266                 break;
2267         case MSR_IA32_RTIT_OUTPUT_MASK:
2268                 if (!pt_can_write_msr(vmx))
2269                         return 1;
2270                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2271                                            PT_CAP_topa_output) &&
2272                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2273                                            PT_CAP_single_range_output))
2274                         return 1;
2275                 vmx->pt_desc.guest.output_mask = data;
2276                 break;
2277         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2278                 if (!pt_can_write_msr(vmx))
2279                         return 1;
2280                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2281                 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2282                         return 1;
2283                 if (is_noncanonical_address(data, vcpu))
2284                         return 1;
2285                 if (index % 2)
2286                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2287                 else
2288                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2289                 break;
2290         case MSR_IA32_PERF_CAPABILITIES:
2291                 if (data && !vcpu_to_pmu(vcpu)->version)
2292                         return 1;
2293                 if (data & PMU_CAP_LBR_FMT) {
2294                         if ((data & PMU_CAP_LBR_FMT) !=
2295                             (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2296                                 return 1;
2297                         if (!intel_pmu_lbr_is_compatible(vcpu))
2298                                 return 1;
2299                 }
2300                 ret = kvm_set_msr_common(vcpu, msr_info);
2301                 break;
2302
2303         default:
2304         find_uret_msr:
2305                 msr = vmx_find_uret_msr(vmx, msr_index);
2306                 if (msr)
2307                         ret = vmx_set_guest_uret_msr(vmx, msr, data);
2308                 else
2309                         ret = kvm_set_msr_common(vcpu, msr_info);
2310         }
2311
2312         /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2313         if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2314                 vmx_update_fb_clear_dis(vcpu, vmx);
2315
2316         return ret;
2317 }
2318
2319 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2320 {
2321         unsigned long guest_owned_bits;
2322
2323         kvm_register_mark_available(vcpu, reg);
2324
2325         switch (reg) {
2326         case VCPU_REGS_RSP:
2327                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2328                 break;
2329         case VCPU_REGS_RIP:
2330                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2331                 break;
2332         case VCPU_EXREG_PDPTR:
2333                 if (enable_ept)
2334                         ept_save_pdptrs(vcpu);
2335                 break;
2336         case VCPU_EXREG_CR0:
2337                 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2338
2339                 vcpu->arch.cr0 &= ~guest_owned_bits;
2340                 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2341                 break;
2342         case VCPU_EXREG_CR3:
2343                 /*
2344                  * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2345                  * CR3 is loaded into hardware, not the guest's CR3.
2346                  */
2347                 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2348                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2349                 break;
2350         case VCPU_EXREG_CR4:
2351                 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2352
2353                 vcpu->arch.cr4 &= ~guest_owned_bits;
2354                 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2355                 break;
2356         default:
2357                 KVM_BUG_ON(1, vcpu->kvm);
2358                 break;
2359         }
2360 }
2361
2362 static __init int cpu_has_kvm_support(void)
2363 {
2364         return cpu_has_vmx();
2365 }
2366
2367 static __init int vmx_disabled_by_bios(void)
2368 {
2369         return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2370                !boot_cpu_has(X86_FEATURE_VMX);
2371 }
2372
2373 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2374 {
2375         u64 msr;
2376
2377         cr4_set_bits(X86_CR4_VMXE);
2378
2379         asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2380                           _ASM_EXTABLE(1b, %l[fault])
2381                           : : [vmxon_pointer] "m"(vmxon_pointer)
2382                           : : fault);
2383         return 0;
2384
2385 fault:
2386         WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2387                   rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2388         cr4_clear_bits(X86_CR4_VMXE);
2389
2390         return -EFAULT;
2391 }
2392
2393 static int vmx_hardware_enable(void)
2394 {
2395         int cpu = raw_smp_processor_id();
2396         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2397         int r;
2398
2399         if (cr4_read_shadow() & X86_CR4_VMXE)
2400                 return -EBUSY;
2401
2402         /*
2403          * This can happen if we hot-added a CPU but failed to allocate
2404          * VP assist page for it.
2405          */
2406         if (static_branch_unlikely(&enable_evmcs) &&
2407             !hv_get_vp_assist_page(cpu))
2408                 return -EFAULT;
2409
2410         intel_pt_handle_vmx(1);
2411
2412         r = kvm_cpu_vmxon(phys_addr);
2413         if (r) {
2414                 intel_pt_handle_vmx(0);
2415                 return r;
2416         }
2417
2418         if (enable_ept)
2419                 ept_sync_global();
2420
2421         return 0;
2422 }
2423
2424 static void vmclear_local_loaded_vmcss(void)
2425 {
2426         int cpu = raw_smp_processor_id();
2427         struct loaded_vmcs *v, *n;
2428
2429         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2430                                  loaded_vmcss_on_cpu_link)
2431                 __loaded_vmcs_clear(v);
2432 }
2433
2434 static void vmx_hardware_disable(void)
2435 {
2436         vmclear_local_loaded_vmcss();
2437
2438         if (cpu_vmxoff())
2439                 kvm_spurious_fault();
2440
2441         intel_pt_handle_vmx(0);
2442 }
2443
2444 /*
2445  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2446  * directly instead of going through cpu_has(), to ensure KVM is trapping
2447  * ENCLS whenever it's supported in hardware.  It does not matter whether
2448  * the host OS supports or has enabled SGX.
2449  */
2450 static bool cpu_has_sgx(void)
2451 {
2452         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2453 }
2454
2455 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2456                                       u32 msr, u32 *result)
2457 {
2458         u32 vmx_msr_low, vmx_msr_high;
2459         u32 ctl = ctl_min | ctl_opt;
2460
2461         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2462
2463         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2464         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2465
2466         /* Ensure minimum (required) set of control bits are supported. */
2467         if (ctl_min & ~ctl)
2468                 return -EIO;
2469
2470         *result = ctl;
2471         return 0;
2472 }
2473
2474 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2475                                     struct vmx_capability *vmx_cap)
2476 {
2477         u32 vmx_msr_low, vmx_msr_high;
2478         u32 min, opt, min2, opt2;
2479         u32 _pin_based_exec_control = 0;
2480         u32 _cpu_based_exec_control = 0;
2481         u32 _cpu_based_2nd_exec_control = 0;
2482         u32 _vmexit_control = 0;
2483         u32 _vmentry_control = 0;
2484
2485         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2486         min = CPU_BASED_HLT_EXITING |
2487 #ifdef CONFIG_X86_64
2488               CPU_BASED_CR8_LOAD_EXITING |
2489               CPU_BASED_CR8_STORE_EXITING |
2490 #endif
2491               CPU_BASED_CR3_LOAD_EXITING |
2492               CPU_BASED_CR3_STORE_EXITING |
2493               CPU_BASED_UNCOND_IO_EXITING |
2494               CPU_BASED_MOV_DR_EXITING |
2495               CPU_BASED_USE_TSC_OFFSETTING |
2496               CPU_BASED_MWAIT_EXITING |
2497               CPU_BASED_MONITOR_EXITING |
2498               CPU_BASED_INVLPG_EXITING |
2499               CPU_BASED_RDPMC_EXITING;
2500
2501         opt = CPU_BASED_TPR_SHADOW |
2502               CPU_BASED_USE_MSR_BITMAPS |
2503               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2504         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2505                                 &_cpu_based_exec_control) < 0)
2506                 return -EIO;
2507 #ifdef CONFIG_X86_64
2508         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2509                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2510                                            ~CPU_BASED_CR8_STORE_EXITING;
2511 #endif
2512         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2513                 min2 = 0;
2514                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2515                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2516                         SECONDARY_EXEC_WBINVD_EXITING |
2517                         SECONDARY_EXEC_ENABLE_VPID |
2518                         SECONDARY_EXEC_ENABLE_EPT |
2519                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2520                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2521                         SECONDARY_EXEC_DESC |
2522                         SECONDARY_EXEC_ENABLE_RDTSCP |
2523                         SECONDARY_EXEC_ENABLE_INVPCID |
2524                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2525                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2526                         SECONDARY_EXEC_SHADOW_VMCS |
2527                         SECONDARY_EXEC_XSAVES |
2528                         SECONDARY_EXEC_RDSEED_EXITING |
2529                         SECONDARY_EXEC_RDRAND_EXITING |
2530                         SECONDARY_EXEC_ENABLE_PML |
2531                         SECONDARY_EXEC_TSC_SCALING |
2532                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2533                         SECONDARY_EXEC_PT_USE_GPA |
2534                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2535                         SECONDARY_EXEC_ENABLE_VMFUNC |
2536                         SECONDARY_EXEC_BUS_LOCK_DETECTION;
2537                 if (cpu_has_sgx())
2538                         opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2539                 if (adjust_vmx_controls(min2, opt2,
2540                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2541                                         &_cpu_based_2nd_exec_control) < 0)
2542                         return -EIO;
2543         }
2544 #ifndef CONFIG_X86_64
2545         if (!(_cpu_based_2nd_exec_control &
2546                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2547                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2548 #endif
2549
2550         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2551                 _cpu_based_2nd_exec_control &= ~(
2552                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2553                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2554                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2555
2556         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2557                 &vmx_cap->ept, &vmx_cap->vpid);
2558
2559         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2560                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2561                    enabled */
2562                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2563                                              CPU_BASED_CR3_STORE_EXITING |
2564                                              CPU_BASED_INVLPG_EXITING);
2565         } else if (vmx_cap->ept) {
2566                 vmx_cap->ept = 0;
2567                 pr_warn_once("EPT CAP should not exist if not support "
2568                                 "1-setting enable EPT VM-execution control\n");
2569         }
2570         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2571                 vmx_cap->vpid) {
2572                 vmx_cap->vpid = 0;
2573                 pr_warn_once("VPID CAP should not exist if not support "
2574                                 "1-setting enable VPID VM-execution control\n");
2575         }
2576
2577         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2578 #ifdef CONFIG_X86_64
2579         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2580 #endif
2581         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2582               VM_EXIT_LOAD_IA32_PAT |
2583               VM_EXIT_LOAD_IA32_EFER |
2584               VM_EXIT_CLEAR_BNDCFGS |
2585               VM_EXIT_PT_CONCEAL_PIP |
2586               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2587         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2588                                 &_vmexit_control) < 0)
2589                 return -EIO;
2590
2591         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2592         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2593                  PIN_BASED_VMX_PREEMPTION_TIMER;
2594         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2595                                 &_pin_based_exec_control) < 0)
2596                 return -EIO;
2597
2598         if (cpu_has_broken_vmx_preemption_timer())
2599                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2600         if (!(_cpu_based_2nd_exec_control &
2601                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2602                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2603
2604         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2605         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2606               VM_ENTRY_LOAD_IA32_PAT |
2607               VM_ENTRY_LOAD_IA32_EFER |
2608               VM_ENTRY_LOAD_BNDCFGS |
2609               VM_ENTRY_PT_CONCEAL_PIP |
2610               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2611         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2612                                 &_vmentry_control) < 0)
2613                 return -EIO;
2614
2615         /*
2616          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2617          * can't be used due to an errata where VM Exit may incorrectly clear
2618          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2619          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2620          */
2621         if (boot_cpu_data.x86 == 0x6) {
2622                 switch (boot_cpu_data.x86_model) {
2623                 case 26: /* AAK155 */
2624                 case 30: /* AAP115 */
2625                 case 37: /* AAT100 */
2626                 case 44: /* BC86,AAY89,BD102 */
2627                 case 46: /* BA97 */
2628                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2629                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2630                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2631                                         "does not work properly. Using workaround\n");
2632                         break;
2633                 default:
2634                         break;
2635                 }
2636         }
2637
2638
2639         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2640
2641         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2642         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2643                 return -EIO;
2644
2645 #ifdef CONFIG_X86_64
2646         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2647         if (vmx_msr_high & (1u<<16))
2648                 return -EIO;
2649 #endif
2650
2651         /* Require Write-Back (WB) memory type for VMCS accesses. */
2652         if (((vmx_msr_high >> 18) & 15) != 6)
2653                 return -EIO;
2654
2655         vmcs_conf->size = vmx_msr_high & 0x1fff;
2656         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2657
2658         vmcs_conf->revision_id = vmx_msr_low;
2659
2660         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2661         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2662         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2663         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2664         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2665
2666 #if IS_ENABLED(CONFIG_HYPERV)
2667         if (enlightened_vmcs)
2668                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2669 #endif
2670
2671         return 0;
2672 }
2673
2674 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2675 {
2676         int node = cpu_to_node(cpu);
2677         struct page *pages;
2678         struct vmcs *vmcs;
2679
2680         pages = __alloc_pages_node(node, flags, 0);
2681         if (!pages)
2682                 return NULL;
2683         vmcs = page_address(pages);
2684         memset(vmcs, 0, vmcs_config.size);
2685
2686         /* KVM supports Enlightened VMCS v1 only */
2687         if (static_branch_unlikely(&enable_evmcs))
2688                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2689         else
2690                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2691
2692         if (shadow)
2693                 vmcs->hdr.shadow_vmcs = 1;
2694         return vmcs;
2695 }
2696
2697 void free_vmcs(struct vmcs *vmcs)
2698 {
2699         free_page((unsigned long)vmcs);
2700 }
2701
2702 /*
2703  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2704  */
2705 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2706 {
2707         if (!loaded_vmcs->vmcs)
2708                 return;
2709         loaded_vmcs_clear(loaded_vmcs);
2710         free_vmcs(loaded_vmcs->vmcs);
2711         loaded_vmcs->vmcs = NULL;
2712         if (loaded_vmcs->msr_bitmap)
2713                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2714         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2715 }
2716
2717 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2718 {
2719         loaded_vmcs->vmcs = alloc_vmcs(false);
2720         if (!loaded_vmcs->vmcs)
2721                 return -ENOMEM;
2722
2723         vmcs_clear(loaded_vmcs->vmcs);
2724
2725         loaded_vmcs->shadow_vmcs = NULL;
2726         loaded_vmcs->hv_timer_soft_disabled = false;
2727         loaded_vmcs->cpu = -1;
2728         loaded_vmcs->launched = 0;
2729
2730         if (cpu_has_vmx_msr_bitmap()) {
2731                 loaded_vmcs->msr_bitmap = (unsigned long *)
2732                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2733                 if (!loaded_vmcs->msr_bitmap)
2734                         goto out_vmcs;
2735                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2736         }
2737
2738         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2739         memset(&loaded_vmcs->controls_shadow, 0,
2740                 sizeof(struct vmcs_controls_shadow));
2741
2742         return 0;
2743
2744 out_vmcs:
2745         free_loaded_vmcs(loaded_vmcs);
2746         return -ENOMEM;
2747 }
2748
2749 static void free_kvm_area(void)
2750 {
2751         int cpu;
2752
2753         for_each_possible_cpu(cpu) {
2754                 free_vmcs(per_cpu(vmxarea, cpu));
2755                 per_cpu(vmxarea, cpu) = NULL;
2756         }
2757 }
2758
2759 static __init int alloc_kvm_area(void)
2760 {
2761         int cpu;
2762
2763         for_each_possible_cpu(cpu) {
2764                 struct vmcs *vmcs;
2765
2766                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2767                 if (!vmcs) {
2768                         free_kvm_area();
2769                         return -ENOMEM;
2770                 }
2771
2772                 /*
2773                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2774                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2775                  * revision_id reported by MSR_IA32_VMX_BASIC.
2776                  *
2777                  * However, even though not explicitly documented by
2778                  * TLFS, VMXArea passed as VMXON argument should
2779                  * still be marked with revision_id reported by
2780                  * physical CPU.
2781                  */
2782                 if (static_branch_unlikely(&enable_evmcs))
2783                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2784
2785                 per_cpu(vmxarea, cpu) = vmcs;
2786         }
2787         return 0;
2788 }
2789
2790 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2791                 struct kvm_segment *save)
2792 {
2793         if (!emulate_invalid_guest_state) {
2794                 /*
2795                  * CS and SS RPL should be equal during guest entry according
2796                  * to VMX spec, but in reality it is not always so. Since vcpu
2797                  * is in the middle of the transition from real mode to
2798                  * protected mode it is safe to assume that RPL 0 is a good
2799                  * default value.
2800                  */
2801                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2802                         save->selector &= ~SEGMENT_RPL_MASK;
2803                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2804                 save->s = 1;
2805         }
2806         __vmx_set_segment(vcpu, save, seg);
2807 }
2808
2809 static void enter_pmode(struct kvm_vcpu *vcpu)
2810 {
2811         unsigned long flags;
2812         struct vcpu_vmx *vmx = to_vmx(vcpu);
2813
2814         /*
2815          * Update real mode segment cache. It may be not up-to-date if segment
2816          * register was written while vcpu was in a guest mode.
2817          */
2818         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2819         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2820         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2821         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2822         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2823         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2824
2825         vmx->rmode.vm86_active = 0;
2826
2827         __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2828
2829         flags = vmcs_readl(GUEST_RFLAGS);
2830         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2831         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2832         vmcs_writel(GUEST_RFLAGS, flags);
2833
2834         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2835                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2836
2837         vmx_update_exception_bitmap(vcpu);
2838
2839         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2840         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2841         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2842         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2843         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2844         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2845 }
2846
2847 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2848 {
2849         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2850         struct kvm_segment var = *save;
2851
2852         var.dpl = 0x3;
2853         if (seg == VCPU_SREG_CS)
2854                 var.type = 0x3;
2855
2856         if (!emulate_invalid_guest_state) {
2857                 var.selector = var.base >> 4;
2858                 var.base = var.base & 0xffff0;
2859                 var.limit = 0xffff;
2860                 var.g = 0;
2861                 var.db = 0;
2862                 var.present = 1;
2863                 var.s = 1;
2864                 var.l = 0;
2865                 var.unusable = 0;
2866                 var.type = 0x3;
2867                 var.avl = 0;
2868                 if (save->base & 0xf)
2869                         printk_once(KERN_WARNING "kvm: segment base is not "
2870                                         "paragraph aligned when entering "
2871                                         "protected mode (seg=%d)", seg);
2872         }
2873
2874         vmcs_write16(sf->selector, var.selector);
2875         vmcs_writel(sf->base, var.base);
2876         vmcs_write32(sf->limit, var.limit);
2877         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2878 }
2879
2880 static void enter_rmode(struct kvm_vcpu *vcpu)
2881 {
2882         unsigned long flags;
2883         struct vcpu_vmx *vmx = to_vmx(vcpu);
2884         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2885
2886         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2887         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2888         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2889         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2890         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2891         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2892         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2893
2894         vmx->rmode.vm86_active = 1;
2895
2896         /*
2897          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2898          * vcpu. Warn the user that an update is overdue.
2899          */
2900         if (!kvm_vmx->tss_addr)
2901                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2902                              "called before entering vcpu\n");
2903
2904         vmx_segment_cache_clear(vmx);
2905
2906         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2907         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2908         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2909
2910         flags = vmcs_readl(GUEST_RFLAGS);
2911         vmx->rmode.save_rflags = flags;
2912
2913         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2914
2915         vmcs_writel(GUEST_RFLAGS, flags);
2916         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2917         vmx_update_exception_bitmap(vcpu);
2918
2919         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2920         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2921         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2922         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2923         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2924         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2925 }
2926
2927 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2928 {
2929         struct vcpu_vmx *vmx = to_vmx(vcpu);
2930
2931         /* Nothing to do if hardware doesn't support EFER. */
2932         if (!vmx_find_uret_msr(vmx, MSR_EFER))
2933                 return 0;
2934
2935         vcpu->arch.efer = efer;
2936         if (efer & EFER_LMA)
2937                 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
2938         else
2939                 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
2940
2941         vmx_setup_uret_msrs(vmx);
2942         return 0;
2943 }
2944
2945 #ifdef CONFIG_X86_64
2946
2947 static void enter_lmode(struct kvm_vcpu *vcpu)
2948 {
2949         u32 guest_tr_ar;
2950
2951         vmx_segment_cache_clear(to_vmx(vcpu));
2952
2953         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2954         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2955                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2956                                      __func__);
2957                 vmcs_write32(GUEST_TR_AR_BYTES,
2958                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2959                              | VMX_AR_TYPE_BUSY_64_TSS);
2960         }
2961         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2962 }
2963
2964 static void exit_lmode(struct kvm_vcpu *vcpu)
2965 {
2966         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2967 }
2968
2969 #endif
2970
2971 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2972 {
2973         struct vcpu_vmx *vmx = to_vmx(vcpu);
2974
2975         /*
2976          * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2977          * the CPU is not required to invalidate guest-physical mappings on
2978          * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2979          * associated with the root EPT structure and not any particular VPID
2980          * (INVVPID also isn't required to invalidate guest-physical mappings).
2981          */
2982         if (enable_ept) {
2983                 ept_sync_global();
2984         } else if (enable_vpid) {
2985                 if (cpu_has_vmx_invvpid_global()) {
2986                         vpid_sync_vcpu_global();
2987                 } else {
2988                         vpid_sync_vcpu_single(vmx->vpid);
2989                         vpid_sync_vcpu_single(vmx->nested.vpid02);
2990                 }
2991         }
2992 }
2993
2994 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
2995 {
2996         if (is_guest_mode(vcpu))
2997                 return nested_get_vpid02(vcpu);
2998         return to_vmx(vcpu)->vpid;
2999 }
3000
3001 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3002 {
3003         struct kvm_mmu *mmu = vcpu->arch.mmu;
3004         u64 root_hpa = mmu->root.hpa;
3005
3006         /* No flush required if the current context is invalid. */
3007         if (!VALID_PAGE(root_hpa))
3008                 return;
3009
3010         if (enable_ept)
3011                 ept_sync_context(construct_eptp(vcpu, root_hpa,
3012                                                 mmu->shadow_root_level));
3013         else
3014                 vpid_sync_context(vmx_get_current_vpid(vcpu));
3015 }
3016
3017 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3018 {
3019         /*
3020          * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3021          * vmx_flush_tlb_guest() for an explanation of why this is ok.
3022          */
3023         vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3024 }
3025
3026 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3027 {
3028         /*
3029          * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3030          * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3031          * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3032          * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3033          * i.e. no explicit INVVPID is necessary.
3034          */
3035         vpid_sync_context(vmx_get_current_vpid(vcpu));
3036 }
3037
3038 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3039 {
3040         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3041
3042         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3043                 return;
3044
3045         if (is_pae_paging(vcpu)) {
3046                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3047                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3048                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3049                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3050         }
3051 }
3052
3053 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3054 {
3055         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3056
3057         if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3058                 return;
3059
3060         mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3061         mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3062         mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3063         mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3064
3065         kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3066 }
3067
3068 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3069                           CPU_BASED_CR3_STORE_EXITING)
3070
3071 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3072 {
3073         struct vcpu_vmx *vmx = to_vmx(vcpu);
3074         unsigned long hw_cr0, old_cr0_pg;
3075         u32 tmp;
3076
3077         old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3078
3079         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3080         if (is_unrestricted_guest(vcpu))
3081                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3082         else {
3083                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3084                 if (!enable_ept)
3085                         hw_cr0 |= X86_CR0_WP;
3086
3087                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3088                         enter_pmode(vcpu);
3089
3090                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3091                         enter_rmode(vcpu);
3092         }
3093
3094         vmcs_writel(CR0_READ_SHADOW, cr0);
3095         vmcs_writel(GUEST_CR0, hw_cr0);
3096         vcpu->arch.cr0 = cr0;
3097         kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3098
3099 #ifdef CONFIG_X86_64
3100         if (vcpu->arch.efer & EFER_LME) {
3101                 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3102                         enter_lmode(vcpu);
3103                 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3104                         exit_lmode(vcpu);
3105         }
3106 #endif
3107
3108         if (enable_ept && !is_unrestricted_guest(vcpu)) {
3109                 /*
3110                  * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3111                  * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3112                  * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3113                  * KVM's CR3 is installed.
3114                  */
3115                 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3116                         vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3117
3118                 /*
3119                  * When running with EPT but not unrestricted guest, KVM must
3120                  * intercept CR3 accesses when paging is _disabled_.  This is
3121                  * necessary because restricted guests can't actually run with
3122                  * paging disabled, and so KVM stuffs its own CR3 in order to
3123                  * run the guest when identity mapped page tables.
3124                  *
3125                  * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3126                  * update, it may be stale with respect to CR3 interception,
3127                  * e.g. after nested VM-Enter.
3128                  *
3129                  * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3130                  * stores to forward them to L1, even if KVM does not need to
3131                  * intercept them to preserve its identity mapped page tables.
3132                  */
3133                 if (!(cr0 & X86_CR0_PG)) {
3134                         exec_controls_setbit(vmx, CR3_EXITING_BITS);
3135                 } else if (!is_guest_mode(vcpu)) {
3136                         exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3137                 } else {
3138                         tmp = exec_controls_get(vmx);
3139                         tmp &= ~CR3_EXITING_BITS;
3140                         tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3141                         exec_controls_set(vmx, tmp);
3142                 }
3143
3144                 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3145                 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3146                         vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3147
3148                 /*
3149                  * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3150                  * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3151                  */
3152                 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3153                         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3154         }
3155
3156         /* depends on vcpu->arch.cr0 to be set to a new value */
3157         vmx->emulation_required = vmx_emulation_required(vcpu);
3158 }
3159
3160 static int vmx_get_max_tdp_level(void)
3161 {
3162         if (cpu_has_vmx_ept_5levels())
3163                 return 5;
3164         return 4;
3165 }
3166
3167 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3168 {
3169         u64 eptp = VMX_EPTP_MT_WB;
3170
3171         eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3172
3173         if (enable_ept_ad_bits &&
3174             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3175                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3176         eptp |= root_hpa;
3177
3178         return eptp;
3179 }
3180
3181 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3182                              int root_level)
3183 {
3184         struct kvm *kvm = vcpu->kvm;
3185         bool update_guest_cr3 = true;
3186         unsigned long guest_cr3;
3187         u64 eptp;
3188
3189         if (enable_ept) {
3190                 eptp = construct_eptp(vcpu, root_hpa, root_level);
3191                 vmcs_write64(EPT_POINTER, eptp);
3192
3193                 hv_track_root_tdp(vcpu, root_hpa);
3194
3195                 if (!enable_unrestricted_guest && !is_paging(vcpu))
3196                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3197                 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3198                         guest_cr3 = vcpu->arch.cr3;
3199                 else /* vmcs.GUEST_CR3 is already up-to-date. */
3200                         update_guest_cr3 = false;
3201                 vmx_ept_load_pdptrs(vcpu);
3202         } else {
3203                 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3204         }
3205
3206         if (update_guest_cr3)
3207                 vmcs_writel(GUEST_CR3, guest_cr3);
3208 }
3209
3210
3211 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3212 {
3213         /*
3214          * We operate under the default treatment of SMM, so VMX cannot be
3215          * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3216          * handled by kvm_is_valid_cr4().
3217          */
3218         if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3219                 return false;
3220
3221         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3222                 return false;
3223
3224         return true;
3225 }
3226
3227 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3228 {
3229         unsigned long old_cr4 = vcpu->arch.cr4;
3230         struct vcpu_vmx *vmx = to_vmx(vcpu);
3231         /*
3232          * Pass through host's Machine Check Enable value to hw_cr4, which
3233          * is in force while we are in guest mode.  Do not let guests control
3234          * this bit, even if host CR4.MCE == 0.
3235          */
3236         unsigned long hw_cr4;
3237
3238         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3239         if (is_unrestricted_guest(vcpu))
3240                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3241         else if (vmx->rmode.vm86_active)
3242                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3243         else
3244                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3245
3246         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3247                 if (cr4 & X86_CR4_UMIP) {
3248                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3249                         hw_cr4 &= ~X86_CR4_UMIP;
3250                 } else if (!is_guest_mode(vcpu) ||
3251                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3252                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3253                 }
3254         }
3255
3256         vcpu->arch.cr4 = cr4;
3257         kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3258
3259         if (!is_unrestricted_guest(vcpu)) {
3260                 if (enable_ept) {
3261                         if (!is_paging(vcpu)) {
3262                                 hw_cr4 &= ~X86_CR4_PAE;
3263                                 hw_cr4 |= X86_CR4_PSE;
3264                         } else if (!(cr4 & X86_CR4_PAE)) {
3265                                 hw_cr4 &= ~X86_CR4_PAE;
3266                         }
3267                 }
3268
3269                 /*
3270                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3271                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3272                  * to be manually disabled when guest switches to non-paging
3273                  * mode.
3274                  *
3275                  * If !enable_unrestricted_guest, the CPU is always running
3276                  * with CR0.PG=1 and CR4 needs to be modified.
3277                  * If enable_unrestricted_guest, the CPU automatically
3278                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3279                  */
3280                 if (!is_paging(vcpu))
3281                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3282         }
3283
3284         vmcs_writel(CR4_READ_SHADOW, cr4);
3285         vmcs_writel(GUEST_CR4, hw_cr4);
3286
3287         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3288                 kvm_update_cpuid_runtime(vcpu);
3289 }
3290
3291 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3292 {
3293         struct vcpu_vmx *vmx = to_vmx(vcpu);
3294         u32 ar;
3295
3296         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3297                 *var = vmx->rmode.segs[seg];
3298                 if (seg == VCPU_SREG_TR
3299                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3300                         return;
3301                 var->base = vmx_read_guest_seg_base(vmx, seg);
3302                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3303                 return;
3304         }
3305         var->base = vmx_read_guest_seg_base(vmx, seg);
3306         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3307         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3308         ar = vmx_read_guest_seg_ar(vmx, seg);
3309         var->unusable = (ar >> 16) & 1;
3310         var->type = ar & 15;
3311         var->s = (ar >> 4) & 1;
3312         var->dpl = (ar >> 5) & 3;
3313         /*
3314          * Some userspaces do not preserve unusable property. Since usable
3315          * segment has to be present according to VMX spec we can use present
3316          * property to amend userspace bug by making unusable segment always
3317          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3318          * segment as unusable.
3319          */
3320         var->present = !var->unusable;
3321         var->avl = (ar >> 12) & 1;
3322         var->l = (ar >> 13) & 1;
3323         var->db = (ar >> 14) & 1;
3324         var->g = (ar >> 15) & 1;
3325 }
3326
3327 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3328 {
3329         struct kvm_segment s;
3330
3331         if (to_vmx(vcpu)->rmode.vm86_active) {
3332                 vmx_get_segment(vcpu, &s, seg);
3333                 return s.base;
3334         }
3335         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3336 }
3337
3338 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3339 {
3340         struct vcpu_vmx *vmx = to_vmx(vcpu);
3341
3342         if (unlikely(vmx->rmode.vm86_active))
3343                 return 0;
3344         else {
3345                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3346                 return VMX_AR_DPL(ar);
3347         }
3348 }
3349
3350 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3351 {
3352         u32 ar;
3353
3354         if (var->unusable || !var->present)
3355                 ar = 1 << 16;
3356         else {
3357                 ar = var->type & 15;
3358                 ar |= (var->s & 1) << 4;
3359                 ar |= (var->dpl & 3) << 5;
3360                 ar |= (var->present & 1) << 7;
3361                 ar |= (var->avl & 1) << 12;
3362                 ar |= (var->l & 1) << 13;
3363                 ar |= (var->db & 1) << 14;
3364                 ar |= (var->g & 1) << 15;
3365         }
3366
3367         return ar;
3368 }
3369
3370 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3371 {
3372         struct vcpu_vmx *vmx = to_vmx(vcpu);
3373         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3374
3375         vmx_segment_cache_clear(vmx);
3376
3377         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3378                 vmx->rmode.segs[seg] = *var;
3379                 if (seg == VCPU_SREG_TR)
3380                         vmcs_write16(sf->selector, var->selector);
3381                 else if (var->s)
3382                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3383                 return;
3384         }
3385
3386         vmcs_writel(sf->base, var->base);
3387         vmcs_write32(sf->limit, var->limit);
3388         vmcs_write16(sf->selector, var->selector);
3389
3390         /*
3391          *   Fix the "Accessed" bit in AR field of segment registers for older
3392          * qemu binaries.
3393          *   IA32 arch specifies that at the time of processor reset the
3394          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3395          * is setting it to 0 in the userland code. This causes invalid guest
3396          * state vmexit when "unrestricted guest" mode is turned on.
3397          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3398          * tree. Newer qemu binaries with that qemu fix would not need this
3399          * kvm hack.
3400          */
3401         if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3402                 var->type |= 0x1; /* Accessed */
3403
3404         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3405 }
3406
3407 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3408 {
3409         __vmx_set_segment(vcpu, var, seg);
3410
3411         to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3412 }
3413
3414 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3415 {
3416         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3417
3418         *db = (ar >> 14) & 1;
3419         *l = (ar >> 13) & 1;
3420 }
3421
3422 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3423 {
3424         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3425         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3426 }
3427
3428 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3429 {
3430         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3431         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3432 }
3433
3434 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3435 {
3436         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3437         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3438 }
3439
3440 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3441 {
3442         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3443         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3444 }
3445
3446 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3447 {
3448         struct kvm_segment var;
3449         u32 ar;
3450
3451         vmx_get_segment(vcpu, &var, seg);
3452         var.dpl = 0x3;
3453         if (seg == VCPU_SREG_CS)
3454                 var.type = 0x3;
3455         ar = vmx_segment_access_rights(&var);
3456
3457         if (var.base != (var.selector << 4))
3458                 return false;
3459         if (var.limit != 0xffff)
3460                 return false;
3461         if (ar != 0xf3)
3462                 return false;
3463
3464         return true;
3465 }
3466
3467 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3468 {
3469         struct kvm_segment cs;
3470         unsigned int cs_rpl;
3471
3472         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3473         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3474
3475         if (cs.unusable)
3476                 return false;
3477         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3478                 return false;
3479         if (!cs.s)
3480                 return false;
3481         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3482                 if (cs.dpl > cs_rpl)
3483                         return false;
3484         } else {
3485                 if (cs.dpl != cs_rpl)
3486                         return false;
3487         }
3488         if (!cs.present)
3489                 return false;
3490
3491         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3492         return true;
3493 }
3494
3495 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3496 {
3497         struct kvm_segment ss;
3498         unsigned int ss_rpl;
3499
3500         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3501         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3502
3503         if (ss.unusable)
3504                 return true;
3505         if (ss.type != 3 && ss.type != 7)
3506                 return false;
3507         if (!ss.s)
3508                 return false;
3509         if (ss.dpl != ss_rpl) /* DPL != RPL */
3510                 return false;
3511         if (!ss.present)
3512                 return false;
3513
3514         return true;
3515 }
3516
3517 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3518 {
3519         struct kvm_segment var;
3520         unsigned int rpl;
3521
3522         vmx_get_segment(vcpu, &var, seg);
3523         rpl = var.selector & SEGMENT_RPL_MASK;
3524
3525         if (var.unusable)
3526                 return true;
3527         if (!var.s)
3528                 return false;
3529         if (!var.present)
3530                 return false;
3531         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3532                 if (var.dpl < rpl) /* DPL < RPL */
3533                         return false;
3534         }
3535
3536         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3537          * rights flags
3538          */
3539         return true;
3540 }
3541
3542 static bool tr_valid(struct kvm_vcpu *vcpu)
3543 {
3544         struct kvm_segment tr;
3545
3546         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3547
3548         if (tr.unusable)
3549                 return false;
3550         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3551                 return false;
3552         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3553                 return false;
3554         if (!tr.present)
3555                 return false;
3556
3557         return true;
3558 }
3559
3560 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3561 {
3562         struct kvm_segment ldtr;
3563
3564         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3565
3566         if (ldtr.unusable)
3567                 return true;
3568         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3569                 return false;
3570         if (ldtr.type != 2)
3571                 return false;
3572         if (!ldtr.present)
3573                 return false;
3574
3575         return true;
3576 }
3577
3578 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3579 {
3580         struct kvm_segment cs, ss;
3581
3582         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3583         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3584
3585         return ((cs.selector & SEGMENT_RPL_MASK) ==
3586                  (ss.selector & SEGMENT_RPL_MASK));
3587 }
3588
3589 /*
3590  * Check if guest state is valid. Returns true if valid, false if
3591  * not.
3592  * We assume that registers are always usable
3593  */
3594 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3595 {
3596         /* real mode guest state checks */
3597         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3598                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3599                         return false;
3600                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3601                         return false;
3602                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3603                         return false;
3604                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3605                         return false;
3606                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3607                         return false;
3608                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3609                         return false;
3610         } else {
3611         /* protected mode guest state checks */
3612                 if (!cs_ss_rpl_check(vcpu))
3613                         return false;
3614                 if (!code_segment_valid(vcpu))
3615                         return false;
3616                 if (!stack_segment_valid(vcpu))
3617                         return false;
3618                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3619                         return false;
3620                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3621                         return false;
3622                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3623                         return false;
3624                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3625                         return false;
3626                 if (!tr_valid(vcpu))
3627                         return false;
3628                 if (!ldtr_valid(vcpu))
3629                         return false;
3630         }
3631         /* TODO:
3632          * - Add checks on RIP
3633          * - Add checks on RFLAGS
3634          */
3635
3636         return true;
3637 }
3638
3639 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3640 {
3641         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3642         u16 data;
3643         int i;
3644
3645         for (i = 0; i < 3; i++) {
3646                 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3647                         return -EFAULT;
3648         }
3649
3650         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3651         if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3652                 return -EFAULT;
3653
3654         data = ~0;
3655         if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3656                 return -EFAULT;
3657
3658         return 0;
3659 }
3660
3661 static int init_rmode_identity_map(struct kvm *kvm)
3662 {
3663         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3664         int i, r = 0;
3665         void __user *uaddr;
3666         u32 tmp;
3667
3668         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3669         mutex_lock(&kvm->slots_lock);
3670
3671         if (likely(kvm_vmx->ept_identity_pagetable_done))
3672                 goto out;
3673
3674         if (!kvm_vmx->ept_identity_map_addr)
3675                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3676
3677         uaddr = __x86_set_memory_region(kvm,
3678                                         IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3679                                         kvm_vmx->ept_identity_map_addr,
3680                                         PAGE_SIZE);
3681         if (IS_ERR(uaddr)) {
3682                 r = PTR_ERR(uaddr);
3683                 goto out;
3684         }
3685
3686         /* Set up identity-mapping pagetable for EPT in real mode */
3687         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3688                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3689                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3690                 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3691                         r = -EFAULT;
3692                         goto out;
3693                 }
3694         }
3695         kvm_vmx->ept_identity_pagetable_done = true;
3696
3697 out:
3698         mutex_unlock(&kvm->slots_lock);
3699         return r;
3700 }
3701
3702 static void seg_setup(int seg)
3703 {
3704         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3705         unsigned int ar;
3706
3707         vmcs_write16(sf->selector, 0);
3708         vmcs_writel(sf->base, 0);
3709         vmcs_write32(sf->limit, 0xffff);
3710         ar = 0x93;
3711         if (seg == VCPU_SREG_CS)
3712                 ar |= 0x08; /* code segment */
3713
3714         vmcs_write32(sf->ar_bytes, ar);
3715 }
3716
3717 static int alloc_apic_access_page(struct kvm *kvm)
3718 {
3719         struct page *page;
3720         void __user *hva;
3721         int ret = 0;
3722
3723         mutex_lock(&kvm->slots_lock);
3724         if (kvm->arch.apic_access_memslot_enabled)
3725                 goto out;
3726         hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3727                                       APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3728         if (IS_ERR(hva)) {
3729                 ret = PTR_ERR(hva);
3730                 goto out;
3731         }
3732
3733         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3734         if (is_error_page(page)) {
3735                 ret = -EFAULT;
3736                 goto out;
3737         }
3738
3739         /*
3740          * Do not pin the page in memory, so that memory hot-unplug
3741          * is able to migrate it.
3742          */
3743         put_page(page);
3744         kvm->arch.apic_access_memslot_enabled = true;
3745 out:
3746         mutex_unlock(&kvm->slots_lock);
3747         return ret;
3748 }
3749
3750 int allocate_vpid(void)
3751 {
3752         int vpid;
3753
3754         if (!enable_vpid)
3755                 return 0;
3756         spin_lock(&vmx_vpid_lock);
3757         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3758         if (vpid < VMX_NR_VPIDS)
3759                 __set_bit(vpid, vmx_vpid_bitmap);
3760         else
3761                 vpid = 0;
3762         spin_unlock(&vmx_vpid_lock);
3763         return vpid;
3764 }
3765
3766 void free_vpid(int vpid)
3767 {
3768         if (!enable_vpid || vpid == 0)
3769                 return;
3770         spin_lock(&vmx_vpid_lock);
3771         __clear_bit(vpid, vmx_vpid_bitmap);
3772         spin_unlock(&vmx_vpid_lock);
3773 }
3774
3775 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3776 {
3777         /*
3778          * When KVM is a nested hypervisor on top of Hyper-V and uses
3779          * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3780          * bitmap has changed.
3781          */
3782         if (static_branch_unlikely(&enable_evmcs))
3783                 evmcs_touch_msr_bitmap();
3784
3785         vmx->nested.force_msr_bitmap_recalc = true;
3786 }
3787
3788 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3789 {
3790         struct vcpu_vmx *vmx = to_vmx(vcpu);
3791         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3792
3793         if (!cpu_has_vmx_msr_bitmap())
3794                 return;
3795
3796         vmx_msr_bitmap_l01_changed(vmx);
3797
3798         /*
3799          * Mark the desired intercept state in shadow bitmap, this is needed
3800          * for resync when the MSR filters change.
3801         */
3802         if (is_valid_passthrough_msr(msr)) {
3803                 int idx = possible_passthrough_msr_slot(msr);
3804
3805                 if (idx != -ENOENT) {
3806                         if (type & MSR_TYPE_R)
3807                                 clear_bit(idx, vmx->shadow_msr_intercept.read);
3808                         if (type & MSR_TYPE_W)
3809                                 clear_bit(idx, vmx->shadow_msr_intercept.write);
3810                 }
3811         }
3812
3813         if ((type & MSR_TYPE_R) &&
3814             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3815                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3816                 type &= ~MSR_TYPE_R;
3817         }
3818
3819         if ((type & MSR_TYPE_W) &&
3820             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3821                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3822                 type &= ~MSR_TYPE_W;
3823         }
3824
3825         if (type & MSR_TYPE_R)
3826                 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3827
3828         if (type & MSR_TYPE_W)
3829                 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3830 }
3831
3832 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3833 {
3834         struct vcpu_vmx *vmx = to_vmx(vcpu);
3835         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3836
3837         if (!cpu_has_vmx_msr_bitmap())
3838                 return;
3839
3840         vmx_msr_bitmap_l01_changed(vmx);
3841
3842         /*
3843          * Mark the desired intercept state in shadow bitmap, this is needed
3844          * for resync when the MSR filter changes.
3845         */
3846         if (is_valid_passthrough_msr(msr)) {
3847                 int idx = possible_passthrough_msr_slot(msr);
3848
3849                 if (idx != -ENOENT) {
3850                         if (type & MSR_TYPE_R)
3851                                 set_bit(idx, vmx->shadow_msr_intercept.read);
3852                         if (type & MSR_TYPE_W)
3853                                 set_bit(idx, vmx->shadow_msr_intercept.write);
3854                 }
3855         }
3856
3857         if (type & MSR_TYPE_R)
3858                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3859
3860         if (type & MSR_TYPE_W)
3861                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3862 }
3863
3864 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3865 {
3866         unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3867         unsigned long read_intercept;
3868         int msr;
3869
3870         read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3871
3872         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3873                 unsigned int read_idx = msr / BITS_PER_LONG;
3874                 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3875
3876                 msr_bitmap[read_idx] = read_intercept;
3877                 msr_bitmap[write_idx] = ~0ul;
3878         }
3879 }
3880
3881 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3882 {
3883         struct vcpu_vmx *vmx = to_vmx(vcpu);
3884         u8 mode;
3885
3886         if (!cpu_has_vmx_msr_bitmap())
3887                 return;
3888
3889         if (cpu_has_secondary_exec_ctrls() &&
3890             (secondary_exec_controls_get(vmx) &
3891              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3892                 mode = MSR_BITMAP_MODE_X2APIC;
3893                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3894                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3895         } else {
3896                 mode = 0;
3897         }
3898
3899         if (mode == vmx->x2apic_msr_bitmap_mode)
3900                 return;
3901
3902         vmx->x2apic_msr_bitmap_mode = mode;
3903
3904         vmx_reset_x2apic_msrs(vcpu, mode);
3905
3906         /*
3907          * TPR reads and writes can be virtualized even if virtual interrupt
3908          * delivery is not in use.
3909          */
3910         vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3911                                   !(mode & MSR_BITMAP_MODE_X2APIC));
3912
3913         if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3914                 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3915                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3916                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3917         }
3918 }
3919
3920 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3921 {
3922         struct vcpu_vmx *vmx = to_vmx(vcpu);
3923         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3924         u32 i;
3925
3926         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3927         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3928         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3929         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3930         for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
3931                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3932                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3933         }
3934 }
3935
3936 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3937 {
3938         struct vcpu_vmx *vmx = to_vmx(vcpu);
3939         void *vapic_page;
3940         u32 vppr;
3941         int rvi;
3942
3943         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3944                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3945                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3946                 return false;
3947
3948         rvi = vmx_get_rvi();
3949
3950         vapic_page = vmx->nested.virtual_apic_map.hva;
3951         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3952
3953         return ((rvi & 0xf0) > (vppr & 0xf0));
3954 }
3955
3956 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3957 {
3958         struct vcpu_vmx *vmx = to_vmx(vcpu);
3959         u32 i;
3960
3961         /*
3962          * Set intercept permissions for all potentially passed through MSRs
3963          * again. They will automatically get filtered through the MSR filter,
3964          * so we are back in sync after this.
3965          */
3966         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3967                 u32 msr = vmx_possible_passthrough_msrs[i];
3968                 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3969                 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3970
3971                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3972                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3973         }
3974
3975         pt_update_intercept_for_msr(vcpu);
3976 }
3977
3978 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3979                                                      int pi_vec)
3980 {
3981 #ifdef CONFIG_SMP
3982         if (vcpu->mode == IN_GUEST_MODE) {
3983                 /*
3984                  * The vector of the virtual has already been set in the PIR.
3985                  * Send a notification event to deliver the virtual interrupt
3986                  * unless the vCPU is the currently running vCPU, i.e. the
3987                  * event is being sent from a fastpath VM-Exit handler, in
3988                  * which case the PIR will be synced to the vIRR before
3989                  * re-entering the guest.
3990                  *
3991                  * When the target is not the running vCPU, the following
3992                  * possibilities emerge:
3993                  *
3994                  * Case 1: vCPU stays in non-root mode. Sending a notification
3995                  * event posts the interrupt to the vCPU.
3996                  *
3997                  * Case 2: vCPU exits to root mode and is still runnable. The
3998                  * PIR will be synced to the vIRR before re-entering the guest.
3999                  * Sending a notification event is ok as the host IRQ handler
4000                  * will ignore the spurious event.
4001                  *
4002                  * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4003                  * has already synced PIR to vIRR and never blocks the vCPU if
4004                  * the vIRR is not empty. Therefore, a blocked vCPU here does
4005                  * not wait for any requested interrupts in PIR, and sending a
4006                  * notification event also results in a benign, spurious event.
4007                  */
4008
4009                 if (vcpu != kvm_get_running_vcpu())
4010                         apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4011                 return;
4012         }
4013 #endif
4014         /*
4015          * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4016          * otherwise do nothing as KVM will grab the highest priority pending
4017          * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4018          */
4019         kvm_vcpu_wake_up(vcpu);
4020 }
4021
4022 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4023                                                 int vector)
4024 {
4025         struct vcpu_vmx *vmx = to_vmx(vcpu);
4026
4027         if (is_guest_mode(vcpu) &&
4028             vector == vmx->nested.posted_intr_nv) {
4029                 /*
4030                  * If a posted intr is not recognized by hardware,
4031                  * we will accomplish it in the next vmentry.
4032                  */
4033                 vmx->nested.pi_pending = true;
4034                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4035
4036                 /*
4037                  * This pairs with the smp_mb_*() after setting vcpu->mode in
4038                  * vcpu_enter_guest() to guarantee the vCPU sees the event
4039                  * request if triggering a posted interrupt "fails" because
4040                  * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4041                  * the smb_wmb() in kvm_make_request() only ensures everything
4042                  * done before making the request is visible when the request
4043                  * is visible, it doesn't ensure ordering between the store to
4044                  * vcpu->requests and the load from vcpu->mode.
4045                  */
4046                 smp_mb__after_atomic();
4047
4048                 /* the PIR and ON have been set by L1. */
4049                 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4050                 return 0;
4051         }
4052         return -1;
4053 }
4054 /*
4055  * Send interrupt to vcpu via posted interrupt way.
4056  * 1. If target vcpu is running(non-root mode), send posted interrupt
4057  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4058  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4059  * interrupt from PIR in next vmentry.
4060  */
4061 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4062 {
4063         struct vcpu_vmx *vmx = to_vmx(vcpu);
4064         int r;
4065
4066         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4067         if (!r)
4068                 return 0;
4069
4070         if (!vcpu->arch.apicv_active)
4071                 return -1;
4072
4073         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4074                 return 0;
4075
4076         /* If a previous notification has sent the IPI, nothing to do.  */
4077         if (pi_test_and_set_on(&vmx->pi_desc))
4078                 return 0;
4079
4080         /*
4081          * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4082          * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4083          * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4084          * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4085          */
4086         kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4087         return 0;
4088 }
4089
4090 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4091                                   int trig_mode, int vector)
4092 {
4093         struct kvm_vcpu *vcpu = apic->vcpu;
4094
4095         if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4096                 kvm_lapic_set_irr(vector, apic);
4097                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4098                 kvm_vcpu_kick(vcpu);
4099         } else {
4100                 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4101                                            trig_mode, vector);
4102         }
4103 }
4104
4105 /*
4106  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4107  * will not change in the lifetime of the guest.
4108  * Note that host-state that does change is set elsewhere. E.g., host-state
4109  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4110  */
4111 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4112 {
4113         u32 low32, high32;
4114         unsigned long tmpl;
4115         unsigned long cr0, cr3, cr4;
4116
4117         cr0 = read_cr0();
4118         WARN_ON(cr0 & X86_CR0_TS);
4119         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4120
4121         /*
4122          * Save the most likely value for this task's CR3 in the VMCS.
4123          * We can't use __get_current_cr3_fast() because we're not atomic.
4124          */
4125         cr3 = __read_cr3();
4126         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
4127         vmx->loaded_vmcs->host_state.cr3 = cr3;
4128
4129         /* Save the most likely value for this task's CR4 in the VMCS. */
4130         cr4 = cr4_read_shadow();
4131         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4132         vmx->loaded_vmcs->host_state.cr4 = cr4;
4133
4134         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4135 #ifdef CONFIG_X86_64
4136         /*
4137          * Load null selectors, so we can avoid reloading them in
4138          * vmx_prepare_switch_to_host(), in case userspace uses
4139          * the null selectors too (the expected case).
4140          */
4141         vmcs_write16(HOST_DS_SELECTOR, 0);
4142         vmcs_write16(HOST_ES_SELECTOR, 0);
4143 #else
4144         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4145         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4146 #endif
4147         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4148         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4149
4150         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4151
4152         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4153
4154         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4155         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4156
4157         /*
4158          * SYSENTER is used for 32-bit system calls on either 32-bit or
4159          * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4160          * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4161          * have already done so!).
4162          */
4163         if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4164                 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4165
4166         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4167         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4168
4169         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4170                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4171                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4172         }
4173
4174         if (cpu_has_load_ia32_efer())
4175                 vmcs_write64(HOST_IA32_EFER, host_efer);
4176 }
4177
4178 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4179 {
4180         struct kvm_vcpu *vcpu = &vmx->vcpu;
4181
4182         vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4183                                           ~vcpu->arch.cr4_guest_rsvd_bits;
4184         if (!enable_ept) {
4185                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4186                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4187         }
4188         if (is_guest_mode(&vmx->vcpu))
4189                 vcpu->arch.cr4_guest_owned_bits &=
4190                         ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4191         vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4192 }
4193
4194 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4195 {
4196         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4197
4198         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4199                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4200
4201         if (!enable_vnmi)
4202                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4203
4204         if (!enable_preemption_timer)
4205                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4206
4207         return pin_based_exec_ctrl;
4208 }
4209
4210 static u32 vmx_vmentry_ctrl(void)
4211 {
4212         u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4213
4214         if (vmx_pt_mode_is_system())
4215                 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4216                                   VM_ENTRY_LOAD_IA32_RTIT_CTL);
4217         /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4218         return vmentry_ctrl &
4219                 ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
4220 }
4221
4222 static u32 vmx_vmexit_ctrl(void)
4223 {
4224         u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4225
4226         if (vmx_pt_mode_is_system())
4227                 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4228                                  VM_EXIT_CLEAR_IA32_RTIT_CTL);
4229         /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4230         return vmexit_ctrl &
4231                 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4232 }
4233
4234 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4235 {
4236         struct vcpu_vmx *vmx = to_vmx(vcpu);
4237
4238         if (is_guest_mode(vcpu)) {
4239                 vmx->nested.update_vmcs01_apicv_status = true;
4240                 return;
4241         }
4242
4243         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4244         if (cpu_has_secondary_exec_ctrls()) {
4245                 if (kvm_vcpu_apicv_active(vcpu))
4246                         secondary_exec_controls_setbit(vmx,
4247                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4248                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4249                 else
4250                         secondary_exec_controls_clearbit(vmx,
4251                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
4252                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4253         }
4254
4255         vmx_update_msr_bitmap_x2apic(vcpu);
4256 }
4257
4258 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4259 {
4260         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4261
4262         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4263                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4264
4265         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4266                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4267 #ifdef CONFIG_X86_64
4268                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4269                                 CPU_BASED_CR8_LOAD_EXITING;
4270 #endif
4271         }
4272         if (!enable_ept)
4273                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4274                                 CPU_BASED_CR3_LOAD_EXITING  |
4275                                 CPU_BASED_INVLPG_EXITING;
4276         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4277                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4278                                 CPU_BASED_MONITOR_EXITING);
4279         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4280                 exec_control &= ~CPU_BASED_HLT_EXITING;
4281         return exec_control;
4282 }
4283
4284 /*
4285  * Adjust a single secondary execution control bit to intercept/allow an
4286  * instruction in the guest.  This is usually done based on whether or not a
4287  * feature has been exposed to the guest in order to correctly emulate faults.
4288  */
4289 static inline void
4290 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4291                                   u32 control, bool enabled, bool exiting)
4292 {
4293         /*
4294          * If the control is for an opt-in feature, clear the control if the
4295          * feature is not exposed to the guest, i.e. not enabled.  If the
4296          * control is opt-out, i.e. an exiting control, clear the control if
4297          * the feature _is_ exposed to the guest, i.e. exiting/interception is
4298          * disabled for the associated instruction.  Note, the caller is
4299          * responsible presetting exec_control to set all supported bits.
4300          */
4301         if (enabled == exiting)
4302                 *exec_control &= ~control;
4303
4304         /*
4305          * Update the nested MSR settings so that a nested VMM can/can't set
4306          * controls for features that are/aren't exposed to the guest.
4307          */
4308         if (nested) {
4309                 if (enabled)
4310                         vmx->nested.msrs.secondary_ctls_high |= control;
4311                 else
4312                         vmx->nested.msrs.secondary_ctls_high &= ~control;
4313         }
4314 }
4315
4316 /*
4317  * Wrapper macro for the common case of adjusting a secondary execution control
4318  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4319  * verifies that the control is actually supported by KVM and hardware.
4320  */
4321 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4322 ({                                                                       \
4323         bool __enabled;                                                  \
4324                                                                          \
4325         if (cpu_has_vmx_##name()) {                                      \
4326                 __enabled = guest_cpuid_has(&(vmx)->vcpu,                \
4327                                             X86_FEATURE_##feat_name);    \
4328                 vmx_adjust_secondary_exec_control(vmx, exec_control,     \
4329                         SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4330         }                                                                \
4331 })
4332
4333 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4334 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4335         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4336
4337 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4338         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4339
4340 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4341 {
4342         struct kvm_vcpu *vcpu = &vmx->vcpu;
4343
4344         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4345
4346         if (vmx_pt_mode_is_system())
4347                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4348         if (!cpu_need_virtualize_apic_accesses(vcpu))
4349                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4350         if (vmx->vpid == 0)
4351                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4352         if (!enable_ept) {
4353                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4354                 enable_unrestricted_guest = 0;
4355         }
4356         if (!enable_unrestricted_guest)
4357                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4358         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4359                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4360         if (!kvm_vcpu_apicv_active(vcpu))
4361                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4362                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4363         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4364
4365         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4366          * in vmx_set_cr4.  */
4367         exec_control &= ~SECONDARY_EXEC_DESC;
4368
4369         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4370            (handle_vmptrld).
4371            We can NOT enable shadow_vmcs here because we don't have yet
4372            a current VMCS12
4373         */
4374         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4375
4376         /*
4377          * PML is enabled/disabled when dirty logging of memsmlots changes, but
4378          * it needs to be set here when dirty logging is already active, e.g.
4379          * if this vCPU was created after dirty logging was enabled.
4380          */
4381         if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4382                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4383
4384         if (cpu_has_vmx_xsaves()) {
4385                 /* Exposing XSAVES only when XSAVE is exposed */
4386                 bool xsaves_enabled =
4387                         boot_cpu_has(X86_FEATURE_XSAVE) &&
4388                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4389                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4390
4391                 vcpu->arch.xsaves_enabled = xsaves_enabled;
4392
4393                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4394                                                   SECONDARY_EXEC_XSAVES,
4395                                                   xsaves_enabled, false);
4396         }
4397
4398         /*
4399          * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4400          * feature is exposed to the guest.  This creates a virtualization hole
4401          * if both are supported in hardware but only one is exposed to the
4402          * guest, but letting the guest execute RDTSCP or RDPID when either one
4403          * is advertised is preferable to emulating the advertised instruction
4404          * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4405          */
4406         if (cpu_has_vmx_rdtscp()) {
4407                 bool rdpid_or_rdtscp_enabled =
4408                         guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4409                         guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4410
4411                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4412                                                   SECONDARY_EXEC_ENABLE_RDTSCP,
4413                                                   rdpid_or_rdtscp_enabled, false);
4414         }
4415         vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4416
4417         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4418         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4419
4420         vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4421                                     ENABLE_USR_WAIT_PAUSE, false);
4422
4423         if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4424                 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4425
4426         return exec_control;
4427 }
4428
4429 #define VMX_XSS_EXIT_BITMAP 0
4430
4431 static void init_vmcs(struct vcpu_vmx *vmx)
4432 {
4433         if (nested)
4434                 nested_vmx_set_vmcs_shadowing_bitmap();
4435
4436         if (cpu_has_vmx_msr_bitmap())
4437                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4438
4439         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4440
4441         /* Control */
4442         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4443
4444         exec_controls_set(vmx, vmx_exec_control(vmx));
4445
4446         if (cpu_has_secondary_exec_ctrls())
4447                 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4448
4449         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4450                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4451                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4452                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4453                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4454
4455                 vmcs_write16(GUEST_INTR_STATUS, 0);
4456
4457                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4458                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4459         }
4460
4461         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4462                 vmcs_write32(PLE_GAP, ple_gap);
4463                 vmx->ple_window = ple_window;
4464                 vmx->ple_window_dirty = true;
4465         }
4466
4467         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4468         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4469         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4470
4471         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4472         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4473         vmx_set_constant_host_state(vmx);
4474         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4475         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4476
4477         if (cpu_has_vmx_vmfunc())
4478                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4479
4480         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4481         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4482         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4483         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4484         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4485
4486         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4487                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4488
4489         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4490
4491         /* 22.2.1, 20.8.1 */
4492         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4493
4494         vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4495         vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4496
4497         set_cr4_guest_host_mask(vmx);
4498
4499         if (vmx->vpid != 0)
4500                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4501
4502         if (cpu_has_vmx_xsaves())
4503                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4504
4505         if (enable_pml) {
4506                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4507                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4508         }
4509
4510         vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4511
4512         if (vmx_pt_mode_is_host_guest()) {
4513                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4514                 /* Bit[6~0] are forced to 1, writes are ignored. */
4515                 vmx->pt_desc.guest.output_mask = 0x7F;
4516                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4517         }
4518
4519         vmcs_write32(GUEST_SYSENTER_CS, 0);
4520         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4521         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4522         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4523
4524         if (cpu_has_vmx_tpr_shadow()) {
4525                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4526                 if (cpu_need_tpr_shadow(&vmx->vcpu))
4527                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4528                                      __pa(vmx->vcpu.arch.apic->regs));
4529                 vmcs_write32(TPR_THRESHOLD, 0);
4530         }
4531
4532         vmx_setup_uret_msrs(vmx);
4533 }
4534
4535 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4536 {
4537         struct vcpu_vmx *vmx = to_vmx(vcpu);
4538
4539         init_vmcs(vmx);
4540
4541         if (nested)
4542                 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4543
4544         vcpu_setup_sgx_lepubkeyhash(vcpu);
4545
4546         vmx->nested.posted_intr_nv = -1;
4547         vmx->nested.vmxon_ptr = INVALID_GPA;
4548         vmx->nested.current_vmptr = INVALID_GPA;
4549         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4550
4551         vcpu->arch.microcode_version = 0x100000000ULL;
4552         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4553
4554         /*
4555          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4556          * or POSTED_INTR_WAKEUP_VECTOR.
4557          */
4558         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4559         vmx->pi_desc.sn = 1;
4560 }
4561
4562 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4563 {
4564         struct vcpu_vmx *vmx = to_vmx(vcpu);
4565
4566         if (!init_event)
4567                 __vmx_vcpu_reset(vcpu);
4568
4569         vmx->rmode.vm86_active = 0;
4570         vmx->spec_ctrl = 0;
4571
4572         vmx->msr_ia32_umwait_control = 0;
4573
4574         vmx->hv_deadline_tsc = -1;
4575         kvm_set_cr8(vcpu, 0);
4576
4577         vmx_segment_cache_clear(vmx);
4578         kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4579
4580         seg_setup(VCPU_SREG_CS);
4581         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4582         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4583
4584         seg_setup(VCPU_SREG_DS);
4585         seg_setup(VCPU_SREG_ES);
4586         seg_setup(VCPU_SREG_FS);
4587         seg_setup(VCPU_SREG_GS);
4588         seg_setup(VCPU_SREG_SS);
4589
4590         vmcs_write16(GUEST_TR_SELECTOR, 0);
4591         vmcs_writel(GUEST_TR_BASE, 0);
4592         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4593         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4594
4595         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4596         vmcs_writel(GUEST_LDTR_BASE, 0);
4597         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4598         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4599
4600         vmcs_writel(GUEST_GDTR_BASE, 0);
4601         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4602
4603         vmcs_writel(GUEST_IDTR_BASE, 0);
4604         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4605
4606         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4607         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4608         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4609         if (kvm_mpx_supported())
4610                 vmcs_write64(GUEST_BNDCFGS, 0);
4611
4612         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4613
4614         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4615
4616         vpid_sync_context(vmx->vpid);
4617
4618         vmx_update_fb_clear_dis(vcpu, vmx);
4619 }
4620
4621 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4622 {
4623         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4624 }
4625
4626 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4627 {
4628         if (!enable_vnmi ||
4629             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4630                 vmx_enable_irq_window(vcpu);
4631                 return;
4632         }
4633
4634         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4635 }
4636
4637 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4638 {
4639         struct vcpu_vmx *vmx = to_vmx(vcpu);
4640         uint32_t intr;
4641         int irq = vcpu->arch.interrupt.nr;
4642
4643         trace_kvm_inj_virq(irq);
4644
4645         ++vcpu->stat.irq_injections;
4646         if (vmx->rmode.vm86_active) {
4647                 int inc_eip = 0;
4648                 if (vcpu->arch.interrupt.soft)
4649                         inc_eip = vcpu->arch.event_exit_inst_len;
4650                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4651                 return;
4652         }
4653         intr = irq | INTR_INFO_VALID_MASK;
4654         if (vcpu->arch.interrupt.soft) {
4655                 intr |= INTR_TYPE_SOFT_INTR;
4656                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4657                              vmx->vcpu.arch.event_exit_inst_len);
4658         } else
4659                 intr |= INTR_TYPE_EXT_INTR;
4660         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4661
4662         vmx_clear_hlt(vcpu);
4663 }
4664
4665 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4666 {
4667         struct vcpu_vmx *vmx = to_vmx(vcpu);
4668
4669         if (!enable_vnmi) {
4670                 /*
4671                  * Tracking the NMI-blocked state in software is built upon
4672                  * finding the next open IRQ window. This, in turn, depends on
4673                  * well-behaving guests: They have to keep IRQs disabled at
4674                  * least as long as the NMI handler runs. Otherwise we may
4675                  * cause NMI nesting, maybe breaking the guest. But as this is
4676                  * highly unlikely, we can live with the residual risk.
4677                  */
4678                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4679                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4680         }
4681
4682         ++vcpu->stat.nmi_injections;
4683         vmx->loaded_vmcs->nmi_known_unmasked = false;
4684
4685         if (vmx->rmode.vm86_active) {
4686                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4687                 return;
4688         }
4689
4690         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4691                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4692
4693         vmx_clear_hlt(vcpu);
4694 }
4695
4696 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4697 {
4698         struct vcpu_vmx *vmx = to_vmx(vcpu);
4699         bool masked;
4700
4701         if (!enable_vnmi)
4702                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4703         if (vmx->loaded_vmcs->nmi_known_unmasked)
4704                 return false;
4705         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4706         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4707         return masked;
4708 }
4709
4710 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4711 {
4712         struct vcpu_vmx *vmx = to_vmx(vcpu);
4713
4714         if (!enable_vnmi) {
4715                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4716                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4717                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4718                 }
4719         } else {
4720                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4721                 if (masked)
4722                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4723                                       GUEST_INTR_STATE_NMI);
4724                 else
4725                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4726                                         GUEST_INTR_STATE_NMI);
4727         }
4728 }
4729
4730 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4731 {
4732         if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4733                 return false;
4734
4735         if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4736                 return true;
4737
4738         return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4739                 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4740                  GUEST_INTR_STATE_NMI));
4741 }
4742
4743 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4744 {
4745         if (to_vmx(vcpu)->nested.nested_run_pending)
4746                 return -EBUSY;
4747
4748         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4749         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4750                 return -EBUSY;
4751
4752         return !vmx_nmi_blocked(vcpu);
4753 }
4754
4755 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4756 {
4757         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4758                 return false;
4759
4760         return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4761                (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4762                 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4763 }
4764
4765 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4766 {
4767         if (to_vmx(vcpu)->nested.nested_run_pending)
4768                 return -EBUSY;
4769
4770        /*
4771         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4772         * e.g. if the IRQ arrived asynchronously after checking nested events.
4773         */
4774         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4775                 return -EBUSY;
4776
4777         return !vmx_interrupt_blocked(vcpu);
4778 }
4779
4780 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4781 {
4782         void __user *ret;
4783
4784         if (enable_unrestricted_guest)
4785                 return 0;
4786
4787         mutex_lock(&kvm->slots_lock);
4788         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4789                                       PAGE_SIZE * 3);
4790         mutex_unlock(&kvm->slots_lock);
4791
4792         if (IS_ERR(ret))
4793                 return PTR_ERR(ret);
4794
4795         to_kvm_vmx(kvm)->tss_addr = addr;
4796
4797         return init_rmode_tss(kvm, ret);
4798 }
4799
4800 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4801 {
4802         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4803         return 0;
4804 }
4805
4806 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4807 {
4808         switch (vec) {
4809         case BP_VECTOR:
4810                 /*
4811                  * Update instruction length as we may reinject the exception
4812                  * from user space while in guest debugging mode.
4813                  */
4814                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4815                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4816                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4817                         return false;
4818                 fallthrough;
4819         case DB_VECTOR:
4820                 return !(vcpu->guest_debug &
4821                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4822         case DE_VECTOR:
4823         case OF_VECTOR:
4824         case BR_VECTOR:
4825         case UD_VECTOR:
4826         case DF_VECTOR:
4827         case SS_VECTOR:
4828         case GP_VECTOR:
4829         case MF_VECTOR:
4830                 return true;
4831         }
4832         return false;
4833 }
4834
4835 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4836                                   int vec, u32 err_code)
4837 {
4838         /*
4839          * Instruction with address size override prefix opcode 0x67
4840          * Cause the #SS fault with 0 error code in VM86 mode.
4841          */
4842         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4843                 if (kvm_emulate_instruction(vcpu, 0)) {
4844                         if (vcpu->arch.halt_request) {
4845                                 vcpu->arch.halt_request = 0;
4846                                 return kvm_emulate_halt_noskip(vcpu);
4847                         }
4848                         return 1;
4849                 }
4850                 return 0;
4851         }
4852
4853         /*
4854          * Forward all other exceptions that are valid in real mode.
4855          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4856          *        the required debugging infrastructure rework.
4857          */
4858         kvm_queue_exception(vcpu, vec);
4859         return 1;
4860 }
4861
4862 static int handle_machine_check(struct kvm_vcpu *vcpu)
4863 {
4864         /* handled by vmx_vcpu_run() */
4865         return 1;
4866 }
4867
4868 /*
4869  * If the host has split lock detection disabled, then #AC is
4870  * unconditionally injected into the guest, which is the pre split lock
4871  * detection behaviour.
4872  *
4873  * If the host has split lock detection enabled then #AC is
4874  * only injected into the guest when:
4875  *  - Guest CPL == 3 (user mode)
4876  *  - Guest has #AC detection enabled in CR0
4877  *  - Guest EFLAGS has AC bit set
4878  */
4879 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4880 {
4881         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4882                 return true;
4883
4884         return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4885                (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4886 }
4887
4888 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4889 {
4890         struct vcpu_vmx *vmx = to_vmx(vcpu);
4891         struct kvm_run *kvm_run = vcpu->run;
4892         u32 intr_info, ex_no, error_code;
4893         unsigned long cr2, dr6;
4894         u32 vect_info;
4895
4896         vect_info = vmx->idt_vectoring_info;
4897         intr_info = vmx_get_intr_info(vcpu);
4898
4899         if (is_machine_check(intr_info) || is_nmi(intr_info))
4900                 return 1; /* handled by handle_exception_nmi_irqoff() */
4901
4902         /*
4903          * Queue the exception here instead of in handle_nm_fault_irqoff().
4904          * This ensures the nested_vmx check is not skipped so vmexit can
4905          * be reflected to L1 (when it intercepts #NM) before reaching this
4906          * point.
4907          */
4908         if (is_nm_fault(intr_info)) {
4909                 kvm_queue_exception(vcpu, NM_VECTOR);
4910                 return 1;
4911         }
4912
4913         if (is_invalid_opcode(intr_info))
4914                 return handle_ud(vcpu);
4915
4916         error_code = 0;
4917         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4918                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4919
4920         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4921                 WARN_ON_ONCE(!enable_vmware_backdoor);
4922
4923                 /*
4924                  * VMware backdoor emulation on #GP interception only handles
4925                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4926                  * error code on #GP.
4927                  */
4928                 if (error_code) {
4929                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4930                         return 1;
4931                 }
4932                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4933         }
4934
4935         /*
4936          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4937          * MMIO, it is better to report an internal error.
4938          * See the comments in vmx_handle_exit.
4939          */
4940         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4941             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4942                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4943                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4944                 vcpu->run->internal.ndata = 4;
4945                 vcpu->run->internal.data[0] = vect_info;
4946                 vcpu->run->internal.data[1] = intr_info;
4947                 vcpu->run->internal.data[2] = error_code;
4948                 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4949                 return 0;
4950         }
4951
4952         if (is_page_fault(intr_info)) {
4953                 cr2 = vmx_get_exit_qual(vcpu);
4954                 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4955                         /*
4956                          * EPT will cause page fault only if we need to
4957                          * detect illegal GPAs.
4958                          */
4959                         WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4960                         kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4961                         return 1;
4962                 } else
4963                         return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4964         }
4965
4966         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4967
4968         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4969                 return handle_rmode_exception(vcpu, ex_no, error_code);
4970
4971         switch (ex_no) {
4972         case DB_VECTOR:
4973                 dr6 = vmx_get_exit_qual(vcpu);
4974                 if (!(vcpu->guest_debug &
4975                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4976                         /*
4977                          * If the #DB was due to ICEBP, a.k.a. INT1, skip the
4978                          * instruction.  ICEBP generates a trap-like #DB, but
4979                          * despite its interception control being tied to #DB,
4980                          * is an instruction intercept, i.e. the VM-Exit occurs
4981                          * on the ICEBP itself.  Note, skipping ICEBP also
4982                          * clears STI and MOVSS blocking.
4983                          *
4984                          * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
4985                          * if single-step is enabled in RFLAGS and STI or MOVSS
4986                          * blocking is active, as the CPU doesn't set the bit
4987                          * on VM-Exit due to #DB interception.  VM-Entry has a
4988                          * consistency check that a single-step #DB is pending
4989                          * in this scenario as the previous instruction cannot
4990                          * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
4991                          * don't modify RFLAGS), therefore the one instruction
4992                          * delay when activating single-step breakpoints must
4993                          * have already expired.  Note, the CPU sets/clears BS
4994                          * as appropriate for all other VM-Exits types.
4995                          */
4996                         if (is_icebp(intr_info))
4997                                 WARN_ON(!skip_emulated_instruction(vcpu));
4998                         else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
4999                                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5000                                   (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5001                                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5002                                             vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5003
5004                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5005                         return 1;
5006                 }
5007                 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5008                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5009                 fallthrough;
5010         case BP_VECTOR:
5011                 /*
5012                  * Update instruction length as we may reinject #BP from
5013                  * user space while in guest debugging mode. Reading it for
5014                  * #DB as well causes no harm, it is not used in that case.
5015                  */
5016                 vmx->vcpu.arch.event_exit_inst_len =
5017                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5018                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5019                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5020                 kvm_run->debug.arch.exception = ex_no;
5021                 break;
5022         case AC_VECTOR:
5023                 if (vmx_guest_inject_ac(vcpu)) {
5024                         kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5025                         return 1;
5026                 }
5027
5028                 /*
5029                  * Handle split lock. Depending on detection mode this will
5030                  * either warn and disable split lock detection for this
5031                  * task or force SIGBUS on it.
5032                  */
5033                 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5034                         return 1;
5035                 fallthrough;
5036         default:
5037                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5038                 kvm_run->ex.exception = ex_no;
5039                 kvm_run->ex.error_code = error_code;
5040                 break;
5041         }
5042         return 0;
5043 }
5044
5045 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5046 {
5047         ++vcpu->stat.irq_exits;
5048         return 1;
5049 }
5050
5051 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5052 {
5053         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5054         vcpu->mmio_needed = 0;
5055         return 0;
5056 }
5057
5058 static int handle_io(struct kvm_vcpu *vcpu)
5059 {
5060         unsigned long exit_qualification;
5061         int size, in, string;
5062         unsigned port;
5063
5064         exit_qualification = vmx_get_exit_qual(vcpu);
5065         string = (exit_qualification & 16) != 0;
5066
5067         ++vcpu->stat.io_exits;
5068
5069         if (string)
5070                 return kvm_emulate_instruction(vcpu, 0);
5071
5072         port = exit_qualification >> 16;
5073         size = (exit_qualification & 7) + 1;
5074         in = (exit_qualification & 8) != 0;
5075
5076         return kvm_fast_pio(vcpu, size, port, in);
5077 }
5078
5079 static void
5080 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5081 {
5082         /*
5083          * Patch in the VMCALL instruction:
5084          */
5085         hypercall[0] = 0x0f;
5086         hypercall[1] = 0x01;
5087         hypercall[2] = 0xc1;
5088 }
5089
5090 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5091 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5092 {
5093         if (is_guest_mode(vcpu)) {
5094                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5095                 unsigned long orig_val = val;
5096
5097                 /*
5098                  * We get here when L2 changed cr0 in a way that did not change
5099                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5100                  * but did change L0 shadowed bits. So we first calculate the
5101                  * effective cr0 value that L1 would like to write into the
5102                  * hardware. It consists of the L2-owned bits from the new
5103                  * value combined with the L1-owned bits from L1's guest_cr0.
5104                  */
5105                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5106                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5107
5108                 if (!nested_guest_cr0_valid(vcpu, val))
5109                         return 1;
5110
5111                 if (kvm_set_cr0(vcpu, val))
5112                         return 1;
5113                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5114                 return 0;
5115         } else {
5116                 if (to_vmx(vcpu)->nested.vmxon &&
5117                     !nested_host_cr0_valid(vcpu, val))
5118                         return 1;
5119
5120                 return kvm_set_cr0(vcpu, val);
5121         }
5122 }
5123
5124 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5125 {
5126         if (is_guest_mode(vcpu)) {
5127                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5128                 unsigned long orig_val = val;
5129
5130                 /* analogously to handle_set_cr0 */
5131                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5132                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5133                 if (kvm_set_cr4(vcpu, val))
5134                         return 1;
5135                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5136                 return 0;
5137         } else
5138                 return kvm_set_cr4(vcpu, val);
5139 }
5140
5141 static int handle_desc(struct kvm_vcpu *vcpu)
5142 {
5143         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5144         return kvm_emulate_instruction(vcpu, 0);
5145 }
5146
5147 static int handle_cr(struct kvm_vcpu *vcpu)
5148 {
5149         unsigned long exit_qualification, val;
5150         int cr;
5151         int reg;
5152         int err;
5153         int ret;
5154
5155         exit_qualification = vmx_get_exit_qual(vcpu);
5156         cr = exit_qualification & 15;
5157         reg = (exit_qualification >> 8) & 15;
5158         switch ((exit_qualification >> 4) & 3) {
5159         case 0: /* mov to cr */
5160                 val = kvm_register_read(vcpu, reg);
5161                 trace_kvm_cr_write(cr, val);
5162                 switch (cr) {
5163                 case 0:
5164                         err = handle_set_cr0(vcpu, val);
5165                         return kvm_complete_insn_gp(vcpu, err);
5166                 case 3:
5167                         WARN_ON_ONCE(enable_unrestricted_guest);
5168
5169                         err = kvm_set_cr3(vcpu, val);
5170                         return kvm_complete_insn_gp(vcpu, err);
5171                 case 4:
5172                         err = handle_set_cr4(vcpu, val);
5173                         return kvm_complete_insn_gp(vcpu, err);
5174                 case 8: {
5175                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5176                                 u8 cr8 = (u8)val;
5177                                 err = kvm_set_cr8(vcpu, cr8);
5178                                 ret = kvm_complete_insn_gp(vcpu, err);
5179                                 if (lapic_in_kernel(vcpu))
5180                                         return ret;
5181                                 if (cr8_prev <= cr8)
5182                                         return ret;
5183                                 /*
5184                                  * TODO: we might be squashing a
5185                                  * KVM_GUESTDBG_SINGLESTEP-triggered
5186                                  * KVM_EXIT_DEBUG here.
5187                                  */
5188                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5189                                 return 0;
5190                         }
5191                 }
5192                 break;
5193         case 2: /* clts */
5194                 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5195                 return -EIO;
5196         case 1: /*mov from cr*/
5197                 switch (cr) {
5198                 case 3:
5199                         WARN_ON_ONCE(enable_unrestricted_guest);
5200
5201                         val = kvm_read_cr3(vcpu);
5202                         kvm_register_write(vcpu, reg, val);
5203                         trace_kvm_cr_read(cr, val);
5204                         return kvm_skip_emulated_instruction(vcpu);
5205                 case 8:
5206                         val = kvm_get_cr8(vcpu);
5207                         kvm_register_write(vcpu, reg, val);
5208                         trace_kvm_cr_read(cr, val);
5209                         return kvm_skip_emulated_instruction(vcpu);
5210                 }
5211                 break;
5212         case 3: /* lmsw */
5213                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5214                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5215                 kvm_lmsw(vcpu, val);
5216
5217                 return kvm_skip_emulated_instruction(vcpu);
5218         default:
5219                 break;
5220         }
5221         vcpu->run->exit_reason = 0;
5222         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5223                (int)(exit_qualification >> 4) & 3, cr);
5224         return 0;
5225 }
5226
5227 static int handle_dr(struct kvm_vcpu *vcpu)
5228 {
5229         unsigned long exit_qualification;
5230         int dr, dr7, reg;
5231         int err = 1;
5232
5233         exit_qualification = vmx_get_exit_qual(vcpu);
5234         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5235
5236         /* First, if DR does not exist, trigger UD */
5237         if (!kvm_require_dr(vcpu, dr))
5238                 return 1;
5239
5240         if (vmx_get_cpl(vcpu) > 0)
5241                 goto out;
5242
5243         dr7 = vmcs_readl(GUEST_DR7);
5244         if (dr7 & DR7_GD) {
5245                 /*
5246                  * As the vm-exit takes precedence over the debug trap, we
5247                  * need to emulate the latter, either for the host or the
5248                  * guest debugging itself.
5249                  */
5250                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5251                         vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5252                         vcpu->run->debug.arch.dr7 = dr7;
5253                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5254                         vcpu->run->debug.arch.exception = DB_VECTOR;
5255                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5256                         return 0;
5257                 } else {
5258                         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5259                         return 1;
5260                 }
5261         }
5262
5263         if (vcpu->guest_debug == 0) {
5264                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5265
5266                 /*
5267                  * No more DR vmexits; force a reload of the debug registers
5268                  * and reenter on this instruction.  The next vmexit will
5269                  * retrieve the full state of the debug registers.
5270                  */
5271                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5272                 return 1;
5273         }
5274
5275         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5276         if (exit_qualification & TYPE_MOV_FROM_DR) {
5277                 unsigned long val;
5278
5279                 kvm_get_dr(vcpu, dr, &val);
5280                 kvm_register_write(vcpu, reg, val);
5281                 err = 0;
5282         } else {
5283                 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5284         }
5285
5286 out:
5287         return kvm_complete_insn_gp(vcpu, err);
5288 }
5289
5290 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5291 {
5292         get_debugreg(vcpu->arch.db[0], 0);
5293         get_debugreg(vcpu->arch.db[1], 1);
5294         get_debugreg(vcpu->arch.db[2], 2);
5295         get_debugreg(vcpu->arch.db[3], 3);
5296         get_debugreg(vcpu->arch.dr6, 6);
5297         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5298
5299         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5300         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5301
5302         /*
5303          * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5304          * a stale dr6 from the guest.
5305          */
5306         set_debugreg(DR6_RESERVED, 6);
5307 }
5308
5309 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5310 {
5311         vmcs_writel(GUEST_DR7, val);
5312 }
5313
5314 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5315 {
5316         kvm_apic_update_ppr(vcpu);
5317         return 1;
5318 }
5319
5320 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5321 {
5322         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5323
5324         kvm_make_request(KVM_REQ_EVENT, vcpu);
5325
5326         ++vcpu->stat.irq_window_exits;
5327         return 1;
5328 }
5329
5330 static int handle_invlpg(struct kvm_vcpu *vcpu)
5331 {
5332         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5333
5334         kvm_mmu_invlpg(vcpu, exit_qualification);
5335         return kvm_skip_emulated_instruction(vcpu);
5336 }
5337
5338 static int handle_apic_access(struct kvm_vcpu *vcpu)
5339 {
5340         if (likely(fasteoi)) {
5341                 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5342                 int access_type, offset;
5343
5344                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5345                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5346                 /*
5347                  * Sane guest uses MOV to write EOI, with written value
5348                  * not cared. So make a short-circuit here by avoiding
5349                  * heavy instruction emulation.
5350                  */
5351                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5352                     (offset == APIC_EOI)) {
5353                         kvm_lapic_set_eoi(vcpu);
5354                         return kvm_skip_emulated_instruction(vcpu);
5355                 }
5356         }
5357         return kvm_emulate_instruction(vcpu, 0);
5358 }
5359
5360 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5361 {
5362         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5363         int vector = exit_qualification & 0xff;
5364
5365         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5366         kvm_apic_set_eoi_accelerated(vcpu, vector);
5367         return 1;
5368 }
5369
5370 static int handle_apic_write(struct kvm_vcpu *vcpu)
5371 {
5372         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5373
5374         /*
5375          * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5376          * hardware has done any necessary aliasing, offset adjustments, etc...
5377          * for the access.  I.e. the correct value has already been  written to
5378          * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5379          * retrieve the register value and emulate the access.
5380          */
5381         u32 offset = exit_qualification & 0xff0;
5382
5383         kvm_apic_write_nodecode(vcpu, offset);
5384         return 1;
5385 }
5386
5387 static int handle_task_switch(struct kvm_vcpu *vcpu)
5388 {
5389         struct vcpu_vmx *vmx = to_vmx(vcpu);
5390         unsigned long exit_qualification;
5391         bool has_error_code = false;
5392         u32 error_code = 0;
5393         u16 tss_selector;
5394         int reason, type, idt_v, idt_index;
5395
5396         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5397         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5398         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5399
5400         exit_qualification = vmx_get_exit_qual(vcpu);
5401
5402         reason = (u32)exit_qualification >> 30;
5403         if (reason == TASK_SWITCH_GATE && idt_v) {
5404                 switch (type) {
5405                 case INTR_TYPE_NMI_INTR:
5406                         vcpu->arch.nmi_injected = false;
5407                         vmx_set_nmi_mask(vcpu, true);
5408                         break;
5409                 case INTR_TYPE_EXT_INTR:
5410                 case INTR_TYPE_SOFT_INTR:
5411                         kvm_clear_interrupt_queue(vcpu);
5412                         break;
5413                 case INTR_TYPE_HARD_EXCEPTION:
5414                         if (vmx->idt_vectoring_info &
5415                             VECTORING_INFO_DELIVER_CODE_MASK) {
5416                                 has_error_code = true;
5417                                 error_code =
5418                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5419                         }
5420                         fallthrough;
5421                 case INTR_TYPE_SOFT_EXCEPTION:
5422                         kvm_clear_exception_queue(vcpu);
5423                         break;
5424                 default:
5425                         break;
5426                 }
5427         }
5428         tss_selector = exit_qualification;
5429
5430         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5431                        type != INTR_TYPE_EXT_INTR &&
5432                        type != INTR_TYPE_NMI_INTR))
5433                 WARN_ON(!skip_emulated_instruction(vcpu));
5434
5435         /*
5436          * TODO: What about debug traps on tss switch?
5437          *       Are we supposed to inject them and update dr6?
5438          */
5439         return kvm_task_switch(vcpu, tss_selector,
5440                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5441                                reason, has_error_code, error_code);
5442 }
5443
5444 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5445 {
5446         unsigned long exit_qualification;
5447         gpa_t gpa;
5448         u64 error_code;
5449
5450         exit_qualification = vmx_get_exit_qual(vcpu);
5451
5452         /*
5453          * EPT violation happened while executing iret from NMI,
5454          * "blocked by NMI" bit has to be set before next VM entry.
5455          * There are errata that may cause this bit to not be set:
5456          * AAK134, BY25.
5457          */
5458         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5459                         enable_vnmi &&
5460                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5461                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5462
5463         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5464         trace_kvm_page_fault(gpa, exit_qualification);
5465
5466         /* Is it a read fault? */
5467         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5468                      ? PFERR_USER_MASK : 0;
5469         /* Is it a write fault? */
5470         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5471                       ? PFERR_WRITE_MASK : 0;
5472         /* Is it a fetch fault? */
5473         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5474                       ? PFERR_FETCH_MASK : 0;
5475         /* ept page table entry is present? */
5476         error_code |= (exit_qualification &
5477                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5478                         EPT_VIOLATION_EXECUTABLE))
5479                       ? PFERR_PRESENT_MASK : 0;
5480
5481         error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5482                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5483
5484         vcpu->arch.exit_qualification = exit_qualification;
5485
5486         /*
5487          * Check that the GPA doesn't exceed physical memory limits, as that is
5488          * a guest page fault.  We have to emulate the instruction here, because
5489          * if the illegal address is that of a paging structure, then
5490          * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5491          * would also use advanced VM-exit information for EPT violations to
5492          * reconstruct the page fault error code.
5493          */
5494         if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5495                 return kvm_emulate_instruction(vcpu, 0);
5496
5497         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5498 }
5499
5500 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5501 {
5502         gpa_t gpa;
5503
5504         if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5505                 return 1;
5506
5507         /*
5508          * A nested guest cannot optimize MMIO vmexits, because we have an
5509          * nGPA here instead of the required GPA.
5510          */
5511         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5512         if (!is_guest_mode(vcpu) &&
5513             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5514                 trace_kvm_fast_mmio(gpa);
5515                 return kvm_skip_emulated_instruction(vcpu);
5516         }
5517
5518         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5519 }
5520
5521 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5522 {
5523         if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5524                 return -EIO;
5525
5526         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5527         ++vcpu->stat.nmi_window_exits;
5528         kvm_make_request(KVM_REQ_EVENT, vcpu);
5529
5530         return 1;
5531 }
5532
5533 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5534 {
5535         struct vcpu_vmx *vmx = to_vmx(vcpu);
5536
5537         return vmx->emulation_required && !vmx->rmode.vm86_active &&
5538                (vcpu->arch.exception.pending || vcpu->arch.exception.injected);
5539 }
5540
5541 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5542 {
5543         struct vcpu_vmx *vmx = to_vmx(vcpu);
5544         bool intr_window_requested;
5545         unsigned count = 130;
5546
5547         intr_window_requested = exec_controls_get(vmx) &
5548                                 CPU_BASED_INTR_WINDOW_EXITING;
5549
5550         while (vmx->emulation_required && count-- != 0) {
5551                 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5552                         return handle_interrupt_window(&vmx->vcpu);
5553
5554                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5555                         return 1;
5556
5557                 if (!kvm_emulate_instruction(vcpu, 0))
5558                         return 0;
5559
5560                 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5561                         kvm_prepare_emulation_failure_exit(vcpu);
5562                         return 0;
5563                 }
5564
5565                 if (vcpu->arch.halt_request) {
5566                         vcpu->arch.halt_request = 0;
5567                         return kvm_emulate_halt_noskip(vcpu);
5568                 }
5569
5570                 /*
5571                  * Note, return 1 and not 0, vcpu_run() will invoke
5572                  * xfer_to_guest_mode() which will create a proper return
5573                  * code.
5574                  */
5575                 if (__xfer_to_guest_mode_work_pending())
5576                         return 1;
5577         }
5578
5579         return 1;
5580 }
5581
5582 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5583 {
5584         if (vmx_emulation_required_with_pending_exception(vcpu)) {
5585                 kvm_prepare_emulation_failure_exit(vcpu);
5586                 return 0;
5587         }
5588
5589         return 1;
5590 }
5591
5592 static void grow_ple_window(struct kvm_vcpu *vcpu)
5593 {
5594         struct vcpu_vmx *vmx = to_vmx(vcpu);
5595         unsigned int old = vmx->ple_window;
5596
5597         vmx->ple_window = __grow_ple_window(old, ple_window,
5598                                             ple_window_grow,
5599                                             ple_window_max);
5600
5601         if (vmx->ple_window != old) {
5602                 vmx->ple_window_dirty = true;
5603                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5604                                             vmx->ple_window, old);
5605         }
5606 }
5607
5608 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5609 {
5610         struct vcpu_vmx *vmx = to_vmx(vcpu);
5611         unsigned int old = vmx->ple_window;
5612
5613         vmx->ple_window = __shrink_ple_window(old, ple_window,
5614                                               ple_window_shrink,
5615                                               ple_window);
5616
5617         if (vmx->ple_window != old) {
5618                 vmx->ple_window_dirty = true;
5619                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5620                                             vmx->ple_window, old);
5621         }
5622 }
5623
5624 /*
5625  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5626  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5627  */
5628 static int handle_pause(struct kvm_vcpu *vcpu)
5629 {
5630         if (!kvm_pause_in_guest(vcpu->kvm))
5631                 grow_ple_window(vcpu);
5632
5633         /*
5634          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5635          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5636          * never set PAUSE_EXITING and just set PLE if supported,
5637          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5638          */
5639         kvm_vcpu_on_spin(vcpu, true);
5640         return kvm_skip_emulated_instruction(vcpu);
5641 }
5642
5643 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5644 {
5645         return 1;
5646 }
5647
5648 static int handle_invpcid(struct kvm_vcpu *vcpu)
5649 {
5650         u32 vmx_instruction_info;
5651         unsigned long type;
5652         gva_t gva;
5653         struct {
5654                 u64 pcid;
5655                 u64 gla;
5656         } operand;
5657         int gpr_index;
5658
5659         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5660                 kvm_queue_exception(vcpu, UD_VECTOR);
5661                 return 1;
5662         }
5663
5664         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5665         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5666         type = kvm_register_read(vcpu, gpr_index);
5667
5668         /* According to the Intel instruction reference, the memory operand
5669          * is read even if it isn't needed (e.g., for type==all)
5670          */
5671         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5672                                 vmx_instruction_info, false,
5673                                 sizeof(operand), &gva))
5674                 return 1;
5675
5676         return kvm_handle_invpcid(vcpu, type, gva);
5677 }
5678
5679 static int handle_pml_full(struct kvm_vcpu *vcpu)
5680 {
5681         unsigned long exit_qualification;
5682
5683         trace_kvm_pml_full(vcpu->vcpu_id);
5684
5685         exit_qualification = vmx_get_exit_qual(vcpu);
5686
5687         /*
5688          * PML buffer FULL happened while executing iret from NMI,
5689          * "blocked by NMI" bit has to be set before next VM entry.
5690          */
5691         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5692                         enable_vnmi &&
5693                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5694                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5695                                 GUEST_INTR_STATE_NMI);
5696
5697         /*
5698          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5699          * here.., and there's no userspace involvement needed for PML.
5700          */
5701         return 1;
5702 }
5703
5704 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5705 {
5706         struct vcpu_vmx *vmx = to_vmx(vcpu);
5707
5708         if (!vmx->req_immediate_exit &&
5709             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5710                 kvm_lapic_expired_hv_timer(vcpu);
5711                 return EXIT_FASTPATH_REENTER_GUEST;
5712         }
5713
5714         return EXIT_FASTPATH_NONE;
5715 }
5716
5717 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5718 {
5719         handle_fastpath_preemption_timer(vcpu);
5720         return 1;
5721 }
5722
5723 /*
5724  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5725  * are overwritten by nested_vmx_setup() when nested=1.
5726  */
5727 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5728 {
5729         kvm_queue_exception(vcpu, UD_VECTOR);
5730         return 1;
5731 }
5732
5733 #ifndef CONFIG_X86_SGX_KVM
5734 static int handle_encls(struct kvm_vcpu *vcpu)
5735 {
5736         /*
5737          * SGX virtualization is disabled.  There is no software enable bit for
5738          * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5739          * the guest from executing ENCLS (when SGX is supported by hardware).
5740          */
5741         kvm_queue_exception(vcpu, UD_VECTOR);
5742         return 1;
5743 }
5744 #endif /* CONFIG_X86_SGX_KVM */
5745
5746 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5747 {
5748         /*
5749          * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5750          * VM-Exits. Unconditionally set the flag here and leave the handling to
5751          * vmx_handle_exit().
5752          */
5753         to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
5754         return 1;
5755 }
5756
5757 /*
5758  * The exit handlers return 1 if the exit was handled fully and guest execution
5759  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5760  * to be done to userspace and return 0.
5761  */
5762 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5763         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5764         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5765         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5766         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5767         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5768         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5769         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5770         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5771         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5772         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5773         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5774         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
5775         [EXIT_REASON_INVD]                    = kvm_emulate_invd,
5776         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5777         [EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5778         [EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5779         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5780         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5781         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5782         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5783         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5784         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5785         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5786         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5787         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5788         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5789         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5790         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5791         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5792         [EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5793         [EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5794         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5795         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5796         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5797         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5798         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5799         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5800         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5801         [EXIT_REASON_MWAIT_INSTRUCTION]       = kvm_emulate_mwait,
5802         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5803         [EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
5804         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5805         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5806         [EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
5807         [EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
5808         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5809         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5810         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5811         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5812         [EXIT_REASON_ENCLS]                   = handle_encls,
5813         [EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5814 };
5815
5816 static const int kvm_vmx_max_exit_handlers =
5817         ARRAY_SIZE(kvm_vmx_exit_handlers);
5818
5819 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
5820                               u64 *info1, u64 *info2,
5821                               u32 *intr_info, u32 *error_code)
5822 {
5823         struct vcpu_vmx *vmx = to_vmx(vcpu);
5824
5825         *reason = vmx->exit_reason.full;
5826         *info1 = vmx_get_exit_qual(vcpu);
5827         if (!(vmx->exit_reason.failed_vmentry)) {
5828                 *info2 = vmx->idt_vectoring_info;
5829                 *intr_info = vmx_get_intr_info(vcpu);
5830                 if (is_exception_with_error_code(*intr_info))
5831                         *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5832                 else
5833                         *error_code = 0;
5834         } else {
5835                 *info2 = 0;
5836                 *intr_info = 0;
5837                 *error_code = 0;
5838         }
5839 }
5840
5841 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5842 {
5843         if (vmx->pml_pg) {
5844                 __free_page(vmx->pml_pg);
5845                 vmx->pml_pg = NULL;
5846         }
5847 }
5848
5849 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5850 {
5851         struct vcpu_vmx *vmx = to_vmx(vcpu);
5852         u64 *pml_buf;
5853         u16 pml_idx;
5854
5855         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5856
5857         /* Do nothing if PML buffer is empty */
5858         if (pml_idx == (PML_ENTITY_NUM - 1))
5859                 return;
5860
5861         /* PML index always points to next available PML buffer entity */
5862         if (pml_idx >= PML_ENTITY_NUM)
5863                 pml_idx = 0;
5864         else
5865                 pml_idx++;
5866
5867         pml_buf = page_address(vmx->pml_pg);
5868         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5869                 u64 gpa;
5870
5871                 gpa = pml_buf[pml_idx];
5872                 WARN_ON(gpa & (PAGE_SIZE - 1));
5873                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5874         }
5875
5876         /* reset PML index */
5877         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5878 }
5879
5880 static void vmx_dump_sel(char *name, uint32_t sel)
5881 {
5882         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5883                name, vmcs_read16(sel),
5884                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5885                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5886                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5887 }
5888
5889 static void vmx_dump_dtsel(char *name, uint32_t limit)
5890 {
5891         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5892                name, vmcs_read32(limit),
5893                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5894 }
5895
5896 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5897 {
5898         unsigned int i;
5899         struct vmx_msr_entry *e;
5900
5901         pr_err("MSR %s:\n", name);
5902         for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5903                 pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5904 }
5905
5906 void dump_vmcs(struct kvm_vcpu *vcpu)
5907 {
5908         struct vcpu_vmx *vmx = to_vmx(vcpu);
5909         u32 vmentry_ctl, vmexit_ctl;
5910         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5911         unsigned long cr4;
5912         int efer_slot;
5913
5914         if (!dump_invalid_vmcs) {
5915                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5916                 return;
5917         }
5918
5919         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5920         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5921         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5922         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5923         cr4 = vmcs_readl(GUEST_CR4);
5924         secondary_exec_control = 0;
5925         if (cpu_has_secondary_exec_ctrls())
5926                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5927
5928         pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
5929                vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
5930         pr_err("*** Guest State ***\n");
5931         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5932                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5933                vmcs_readl(CR0_GUEST_HOST_MASK));
5934         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5935                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5936         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5937         if (cpu_has_vmx_ept()) {
5938                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5939                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5940                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5941                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5942         }
5943         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5944                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5945         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5946                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5947         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5948                vmcs_readl(GUEST_SYSENTER_ESP),
5949                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5950         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5951         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5952         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5953         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5954         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5955         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5956         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5957         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5958         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5959         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5960         efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5961         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5962                 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5963         else if (efer_slot >= 0)
5964                 pr_err("EFER= 0x%016llx (autoload)\n",
5965                        vmx->msr_autoload.guest.val[efer_slot].value);
5966         else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5967                 pr_err("EFER= 0x%016llx (effective)\n",
5968                        vcpu->arch.efer | (EFER_LMA | EFER_LME));
5969         else
5970                 pr_err("EFER= 0x%016llx (effective)\n",
5971                        vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5972         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5973                 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5974         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5975                vmcs_read64(GUEST_IA32_DEBUGCTL),
5976                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5977         if (cpu_has_load_perf_global_ctrl() &&
5978             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5979                 pr_err("PerfGlobCtl = 0x%016llx\n",
5980                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5981         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5982                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5983         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5984                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5985                vmcs_read32(GUEST_ACTIVITY_STATE));
5986         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5987                 pr_err("InterruptStatus = %04x\n",
5988                        vmcs_read16(GUEST_INTR_STATUS));
5989         if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5990                 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5991         if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5992                 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5993
5994         pr_err("*** Host State ***\n");
5995         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5996                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5997         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5998                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5999                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6000                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6001                vmcs_read16(HOST_TR_SELECTOR));
6002         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6003                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6004                vmcs_readl(HOST_TR_BASE));
6005         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6006                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6007         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6008                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6009                vmcs_readl(HOST_CR4));
6010         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6011                vmcs_readl(HOST_IA32_SYSENTER_ESP),
6012                vmcs_read32(HOST_IA32_SYSENTER_CS),
6013                vmcs_readl(HOST_IA32_SYSENTER_EIP));
6014         if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6015                 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6016         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6017                 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6018         if (cpu_has_load_perf_global_ctrl() &&
6019             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6020                 pr_err("PerfGlobCtl = 0x%016llx\n",
6021                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6022         if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6023                 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6024
6025         pr_err("*** Control State ***\n");
6026         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
6027                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
6028         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
6029         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6030                vmcs_read32(EXCEPTION_BITMAP),
6031                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6032                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6033         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6034                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6035                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6036                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6037         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6038                vmcs_read32(VM_EXIT_INTR_INFO),
6039                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6040                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6041         pr_err("        reason=%08x qualification=%016lx\n",
6042                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6043         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6044                vmcs_read32(IDT_VECTORING_INFO_FIELD),
6045                vmcs_read32(IDT_VECTORING_ERROR_CODE));
6046         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6047         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6048                 pr_err("TSC Multiplier = 0x%016llx\n",
6049                        vmcs_read64(TSC_MULTIPLIER));
6050         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6051                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6052                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
6053                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6054                 }
6055                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6056                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6057                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6058                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6059         }
6060         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6061                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6062         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6063                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6064         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6065                 pr_err("PLE Gap=%08x Window=%08x\n",
6066                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6067         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6068                 pr_err("Virtual processor ID = 0x%04x\n",
6069                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
6070 }
6071
6072 /*
6073  * The guest has exited.  See if we can fix it or if we need userspace
6074  * assistance.
6075  */
6076 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6077 {
6078         struct vcpu_vmx *vmx = to_vmx(vcpu);
6079         union vmx_exit_reason exit_reason = vmx->exit_reason;
6080         u32 vectoring_info = vmx->idt_vectoring_info;
6081         u16 exit_handler_index;
6082
6083         /*
6084          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6085          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6086          * querying dirty_bitmap, we only need to kick all vcpus out of guest
6087          * mode as if vcpus is in root mode, the PML buffer must has been
6088          * flushed already.  Note, PML is never enabled in hardware while
6089          * running L2.
6090          */
6091         if (enable_pml && !is_guest_mode(vcpu))
6092                 vmx_flush_pml_buffer(vcpu);
6093
6094         /*
6095          * KVM should never reach this point with a pending nested VM-Enter.
6096          * More specifically, short-circuiting VM-Entry to emulate L2 due to
6097          * invalid guest state should never happen as that means KVM knowingly
6098          * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6099          */
6100         if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6101                 return -EIO;
6102
6103         if (is_guest_mode(vcpu)) {
6104                 /*
6105                  * PML is never enabled when running L2, bail immediately if a
6106                  * PML full exit occurs as something is horribly wrong.
6107                  */
6108                 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6109                         goto unexpected_vmexit;
6110
6111                 /*
6112                  * The host physical addresses of some pages of guest memory
6113                  * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6114                  * Page). The CPU may write to these pages via their host
6115                  * physical address while L2 is running, bypassing any
6116                  * address-translation-based dirty tracking (e.g. EPT write
6117                  * protection).
6118                  *
6119                  * Mark them dirty on every exit from L2 to prevent them from
6120                  * getting out of sync with dirty tracking.
6121                  */
6122                 nested_mark_vmcs12_pages_dirty(vcpu);
6123
6124                 /*
6125                  * Synthesize a triple fault if L2 state is invalid.  In normal
6126                  * operation, nested VM-Enter rejects any attempt to enter L2
6127                  * with invalid state.  However, those checks are skipped if
6128                  * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6129                  * L2 state is invalid, it means either L1 modified SMRAM state
6130                  * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6131                  * doing so is architecturally allowed in the RSM case, and is
6132                  * the least awful solution for the userspace case without
6133                  * risking false positives.
6134                  */
6135                 if (vmx->emulation_required) {
6136                         nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6137                         return 1;
6138                 }
6139
6140                 if (nested_vmx_reflect_vmexit(vcpu))
6141                         return 1;
6142         }
6143
6144         /* If guest state is invalid, start emulating.  L2 is handled above. */
6145         if (vmx->emulation_required)
6146                 return handle_invalid_guest_state(vcpu);
6147
6148         if (exit_reason.failed_vmentry) {
6149                 dump_vmcs(vcpu);
6150                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6151                 vcpu->run->fail_entry.hardware_entry_failure_reason
6152                         = exit_reason.full;
6153                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6154                 return 0;
6155         }
6156
6157         if (unlikely(vmx->fail)) {
6158                 dump_vmcs(vcpu);
6159                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6160                 vcpu->run->fail_entry.hardware_entry_failure_reason
6161                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6162                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6163                 return 0;
6164         }
6165
6166         /*
6167          * Note:
6168          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6169          * delivery event since it indicates guest is accessing MMIO.
6170          * The vm-exit can be triggered again after return to guest that
6171          * will cause infinite loop.
6172          */
6173         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6174             (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6175              exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6176              exit_reason.basic != EXIT_REASON_PML_FULL &&
6177              exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6178              exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6179                 int ndata = 3;
6180
6181                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6182                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6183                 vcpu->run->internal.data[0] = vectoring_info;
6184                 vcpu->run->internal.data[1] = exit_reason.full;
6185                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6186                 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6187                         vcpu->run->internal.data[ndata++] =
6188                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6189                 }
6190                 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6191                 vcpu->run->internal.ndata = ndata;
6192                 return 0;
6193         }
6194
6195         if (unlikely(!enable_vnmi &&
6196                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
6197                 if (!vmx_interrupt_blocked(vcpu)) {
6198                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6199                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6200                            vcpu->arch.nmi_pending) {
6201                         /*
6202                          * This CPU don't support us in finding the end of an
6203                          * NMI-blocked window if the guest runs with IRQs
6204                          * disabled. So we pull the trigger after 1 s of
6205                          * futile waiting, but inform the user about this.
6206                          */
6207                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6208                                "state on VCPU %d after 1 s timeout\n",
6209                                __func__, vcpu->vcpu_id);
6210                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6211                 }
6212         }
6213
6214         if (exit_fastpath != EXIT_FASTPATH_NONE)
6215                 return 1;
6216
6217         if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6218                 goto unexpected_vmexit;
6219 #ifdef CONFIG_RETPOLINE
6220         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6221                 return kvm_emulate_wrmsr(vcpu);
6222         else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6223                 return handle_preemption_timer(vcpu);
6224         else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6225                 return handle_interrupt_window(vcpu);
6226         else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6227                 return handle_external_interrupt(vcpu);
6228         else if (exit_reason.basic == EXIT_REASON_HLT)
6229                 return kvm_emulate_halt(vcpu);
6230         else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6231                 return handle_ept_misconfig(vcpu);
6232 #endif
6233
6234         exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6235                                                 kvm_vmx_max_exit_handlers);
6236         if (!kvm_vmx_exit_handlers[exit_handler_index])
6237                 goto unexpected_vmexit;
6238
6239         return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6240
6241 unexpected_vmexit:
6242         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6243                     exit_reason.full);
6244         dump_vmcs(vcpu);
6245         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6246         vcpu->run->internal.suberror =
6247                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6248         vcpu->run->internal.ndata = 2;
6249         vcpu->run->internal.data[0] = exit_reason.full;
6250         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6251         return 0;
6252 }
6253
6254 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6255 {
6256         int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6257
6258         /*
6259          * Exit to user space when bus lock detected to inform that there is
6260          * a bus lock in guest.
6261          */
6262         if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6263                 if (ret > 0)
6264                         vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6265
6266                 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6267                 return 0;
6268         }
6269         return ret;
6270 }
6271
6272 /*
6273  * Software based L1D cache flush which is used when microcode providing
6274  * the cache control MSR is not loaded.
6275  *
6276  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6277  * flush it is required to read in 64 KiB because the replacement algorithm
6278  * is not exactly LRU. This could be sized at runtime via topology
6279  * information but as all relevant affected CPUs have 32KiB L1D cache size
6280  * there is no point in doing so.
6281  */
6282 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6283 {
6284         int size = PAGE_SIZE << L1D_CACHE_ORDER;
6285
6286         /*
6287          * This code is only executed when the the flush mode is 'cond' or
6288          * 'always'
6289          */
6290         if (static_branch_likely(&vmx_l1d_flush_cond)) {
6291                 bool flush_l1d;
6292
6293                 /*
6294                  * Clear the per-vcpu flush bit, it gets set again
6295                  * either from vcpu_run() or from one of the unsafe
6296                  * VMEXIT handlers.
6297                  */
6298                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6299                 vcpu->arch.l1tf_flush_l1d = false;
6300
6301                 /*
6302                  * Clear the per-cpu flush bit, it gets set again from
6303                  * the interrupt handlers.
6304                  */
6305                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6306                 kvm_clear_cpu_l1tf_flush_l1d();
6307
6308                 if (!flush_l1d)
6309                         return;
6310         }
6311
6312         vcpu->stat.l1d_flush++;
6313
6314         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6315                 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6316                 return;
6317         }
6318
6319         asm volatile(
6320                 /* First ensure the pages are in the TLB */
6321                 "xorl   %%eax, %%eax\n"
6322                 ".Lpopulate_tlb:\n\t"
6323                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6324                 "addl   $4096, %%eax\n\t"
6325                 "cmpl   %%eax, %[size]\n\t"
6326                 "jne    .Lpopulate_tlb\n\t"
6327                 "xorl   %%eax, %%eax\n\t"
6328                 "cpuid\n\t"
6329                 /* Now fill the cache */
6330                 "xorl   %%eax, %%eax\n"
6331                 ".Lfill_cache:\n"
6332                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6333                 "addl   $64, %%eax\n\t"
6334                 "cmpl   %%eax, %[size]\n\t"
6335                 "jne    .Lfill_cache\n\t"
6336                 "lfence\n"
6337                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6338                     [size] "r" (size)
6339                 : "eax", "ebx", "ecx", "edx");
6340 }
6341
6342 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6343 {
6344         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6345         int tpr_threshold;
6346
6347         if (is_guest_mode(vcpu) &&
6348                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6349                 return;
6350
6351         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6352         if (is_guest_mode(vcpu))
6353                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6354         else
6355                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6356 }
6357
6358 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6359 {
6360         struct vcpu_vmx *vmx = to_vmx(vcpu);
6361         u32 sec_exec_control;
6362
6363         if (!lapic_in_kernel(vcpu))
6364                 return;
6365
6366         if (!flexpriority_enabled &&
6367             !cpu_has_vmx_virtualize_x2apic_mode())
6368                 return;
6369
6370         /* Postpone execution until vmcs01 is the current VMCS. */
6371         if (is_guest_mode(vcpu)) {
6372                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6373                 return;
6374         }
6375
6376         sec_exec_control = secondary_exec_controls_get(vmx);
6377         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6378                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6379
6380         switch (kvm_get_apic_mode(vcpu)) {
6381         case LAPIC_MODE_INVALID:
6382                 WARN_ONCE(true, "Invalid local APIC state");
6383                 break;
6384         case LAPIC_MODE_DISABLED:
6385                 break;
6386         case LAPIC_MODE_XAPIC:
6387                 if (flexpriority_enabled) {
6388                         sec_exec_control |=
6389                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6390                         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6391
6392                         /*
6393                          * Flush the TLB, reloading the APIC access page will
6394                          * only do so if its physical address has changed, but
6395                          * the guest may have inserted a non-APIC mapping into
6396                          * the TLB while the APIC access page was disabled.
6397                          */
6398                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6399                 }
6400                 break;
6401         case LAPIC_MODE_X2APIC:
6402                 if (cpu_has_vmx_virtualize_x2apic_mode())
6403                         sec_exec_control |=
6404                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6405                 break;
6406         }
6407         secondary_exec_controls_set(vmx, sec_exec_control);
6408
6409         vmx_update_msr_bitmap_x2apic(vcpu);
6410 }
6411
6412 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6413 {
6414         struct page *page;
6415
6416         /* Defer reload until vmcs01 is the current VMCS. */
6417         if (is_guest_mode(vcpu)) {
6418                 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6419                 return;
6420         }
6421
6422         if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6423             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6424                 return;
6425
6426         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6427         if (is_error_page(page))
6428                 return;
6429
6430         vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6431         vmx_flush_tlb_current(vcpu);
6432
6433         /*
6434          * Do not pin apic access page in memory, the MMU notifier
6435          * will call us again if it is migrated or swapped out.
6436          */
6437         put_page(page);
6438 }
6439
6440 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6441 {
6442         u16 status;
6443         u8 old;
6444
6445         if (max_isr == -1)
6446                 max_isr = 0;
6447
6448         status = vmcs_read16(GUEST_INTR_STATUS);
6449         old = status >> 8;
6450         if (max_isr != old) {
6451                 status &= 0xff;
6452                 status |= max_isr << 8;
6453                 vmcs_write16(GUEST_INTR_STATUS, status);
6454         }
6455 }
6456
6457 static void vmx_set_rvi(int vector)
6458 {
6459         u16 status;
6460         u8 old;
6461
6462         if (vector == -1)
6463                 vector = 0;
6464
6465         status = vmcs_read16(GUEST_INTR_STATUS);
6466         old = (u8)status & 0xff;
6467         if ((u8)vector != old) {
6468                 status &= ~0xff;
6469                 status |= (u8)vector;
6470                 vmcs_write16(GUEST_INTR_STATUS, status);
6471         }
6472 }
6473
6474 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6475 {
6476         /*
6477          * When running L2, updating RVI is only relevant when
6478          * vmcs12 virtual-interrupt-delivery enabled.
6479          * However, it can be enabled only when L1 also
6480          * intercepts external-interrupts and in that case
6481          * we should not update vmcs02 RVI but instead intercept
6482          * interrupt. Therefore, do nothing when running L2.
6483          */
6484         if (!is_guest_mode(vcpu))
6485                 vmx_set_rvi(max_irr);
6486 }
6487
6488 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6489 {
6490         struct vcpu_vmx *vmx = to_vmx(vcpu);
6491         int max_irr;
6492         bool got_posted_interrupt;
6493
6494         if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6495                 return -EIO;
6496
6497         if (pi_test_on(&vmx->pi_desc)) {
6498                 pi_clear_on(&vmx->pi_desc);
6499                 /*
6500                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6501                  * But on x86 this is just a compiler barrier anyway.
6502                  */
6503                 smp_mb__after_atomic();
6504                 got_posted_interrupt =
6505                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6506         } else {
6507                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6508                 got_posted_interrupt = false;
6509         }
6510
6511         /*
6512          * Newly recognized interrupts are injected via either virtual interrupt
6513          * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6514          * disabled in two cases:
6515          *
6516          * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6517          * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6518          * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6519          * into L2, but KVM doesn't use virtual interrupt delivery to inject
6520          * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6521          *
6522          * 2) If APICv is disabled for this vCPU, assigned devices may still
6523          * attempt to post interrupts.  The posted interrupt vector will cause
6524          * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6525          */
6526         if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6527                 vmx_set_rvi(max_irr);
6528         else if (got_posted_interrupt)
6529                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6530
6531         return max_irr;
6532 }
6533
6534 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6535 {
6536         if (!kvm_vcpu_apicv_active(vcpu))
6537                 return;
6538
6539         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6540         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6541         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6542         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6543 }
6544
6545 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6546 {
6547         struct vcpu_vmx *vmx = to_vmx(vcpu);
6548
6549         pi_clear_on(&vmx->pi_desc);
6550         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6551 }
6552
6553 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6554
6555 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6556                                         unsigned long entry)
6557 {
6558         bool is_nmi = entry == (unsigned long)asm_exc_nmi_noist;
6559
6560         kvm_before_interrupt(vcpu, is_nmi ? KVM_HANDLING_NMI : KVM_HANDLING_IRQ);
6561         vmx_do_interrupt_nmi_irqoff(entry);
6562         kvm_after_interrupt(vcpu);
6563 }
6564
6565 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6566 {
6567         /*
6568          * Save xfd_err to guest_fpu before interrupt is enabled, so the
6569          * MSR value is not clobbered by the host activity before the guest
6570          * has chance to consume it.
6571          *
6572          * Do not blindly read xfd_err here, since this exception might
6573          * be caused by L1 interception on a platform which doesn't
6574          * support xfd at all.
6575          *
6576          * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6577          * only when xfd contains a non-zero value.
6578          *
6579          * Queuing exception is done in vmx_handle_exit. See comment there.
6580          */
6581         if (vcpu->arch.guest_fpu.fpstate->xfd)
6582                 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6583 }
6584
6585 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6586 {
6587         const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6588         u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6589
6590         /* if exit due to PF check for async PF */
6591         if (is_page_fault(intr_info))
6592                 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6593         /* if exit due to NM, handle before interrupts are enabled */
6594         else if (is_nm_fault(intr_info))
6595                 handle_nm_fault_irqoff(&vmx->vcpu);
6596         /* Handle machine checks before interrupts are enabled */
6597         else if (is_machine_check(intr_info))
6598                 kvm_machine_check();
6599         /* We need to handle NMIs before interrupts are enabled */
6600         else if (is_nmi(intr_info))
6601                 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6602 }
6603
6604 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6605 {
6606         u32 intr_info = vmx_get_intr_info(vcpu);
6607         unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6608         gate_desc *desc = (gate_desc *)host_idt_base + vector;
6609
6610         if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6611             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6612                 return;
6613
6614         handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6615 }
6616
6617 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6618 {
6619         struct vcpu_vmx *vmx = to_vmx(vcpu);
6620
6621         if (vmx->emulation_required)
6622                 return;
6623
6624         if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6625                 handle_external_interrupt_irqoff(vcpu);
6626         else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6627                 handle_exception_nmi_irqoff(vmx);
6628 }
6629
6630 /*
6631  * The kvm parameter can be NULL (module initialization, or invocation before
6632  * VM creation). Be sure to check the kvm parameter before using it.
6633  */
6634 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6635 {
6636         switch (index) {
6637         case MSR_IA32_SMBASE:
6638                 /*
6639                  * We cannot do SMM unless we can run the guest in big
6640                  * real mode.
6641                  */
6642                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6643         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6644                 return nested;
6645         case MSR_AMD64_VIRT_SPEC_CTRL:
6646         case MSR_AMD64_TSC_RATIO:
6647                 /* This is AMD only.  */
6648                 return false;
6649         default:
6650                 return true;
6651         }
6652 }
6653
6654 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6655 {
6656         u32 exit_intr_info;
6657         bool unblock_nmi;
6658         u8 vector;
6659         bool idtv_info_valid;
6660
6661         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6662
6663         if (enable_vnmi) {
6664                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6665                         return;
6666
6667                 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6668                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6669                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6670                 /*
6671                  * SDM 3: 27.7.1.2 (September 2008)
6672                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6673                  * a guest IRET fault.
6674                  * SDM 3: 23.2.2 (September 2008)
6675                  * Bit 12 is undefined in any of the following cases:
6676                  *  If the VM exit sets the valid bit in the IDT-vectoring
6677                  *   information field.
6678                  *  If the VM exit is due to a double fault.
6679                  */
6680                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6681                     vector != DF_VECTOR && !idtv_info_valid)
6682                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6683                                       GUEST_INTR_STATE_NMI);
6684                 else
6685                         vmx->loaded_vmcs->nmi_known_unmasked =
6686                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6687                                   & GUEST_INTR_STATE_NMI);
6688         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6689                 vmx->loaded_vmcs->vnmi_blocked_time +=
6690                         ktime_to_ns(ktime_sub(ktime_get(),
6691                                               vmx->loaded_vmcs->entry_time));
6692 }
6693
6694 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6695                                       u32 idt_vectoring_info,
6696                                       int instr_len_field,
6697                                       int error_code_field)
6698 {
6699         u8 vector;
6700         int type;
6701         bool idtv_info_valid;
6702
6703         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6704
6705         vcpu->arch.nmi_injected = false;
6706         kvm_clear_exception_queue(vcpu);
6707         kvm_clear_interrupt_queue(vcpu);
6708
6709         if (!idtv_info_valid)
6710                 return;
6711
6712         kvm_make_request(KVM_REQ_EVENT, vcpu);
6713
6714         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6715         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6716
6717         switch (type) {
6718         case INTR_TYPE_NMI_INTR:
6719                 vcpu->arch.nmi_injected = true;
6720                 /*
6721                  * SDM 3: 27.7.1.2 (September 2008)
6722                  * Clear bit "block by NMI" before VM entry if a NMI
6723                  * delivery faulted.
6724                  */
6725                 vmx_set_nmi_mask(vcpu, false);
6726                 break;
6727         case INTR_TYPE_SOFT_EXCEPTION:
6728                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6729                 fallthrough;
6730         case INTR_TYPE_HARD_EXCEPTION:
6731                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6732                         u32 err = vmcs_read32(error_code_field);
6733                         kvm_requeue_exception_e(vcpu, vector, err);
6734                 } else
6735                         kvm_requeue_exception(vcpu, vector);
6736                 break;
6737         case INTR_TYPE_SOFT_INTR:
6738                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6739                 fallthrough;
6740         case INTR_TYPE_EXT_INTR:
6741                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6742                 break;
6743         default:
6744                 break;
6745         }
6746 }
6747
6748 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6749 {
6750         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6751                                   VM_EXIT_INSTRUCTION_LEN,
6752                                   IDT_VECTORING_ERROR_CODE);
6753 }
6754
6755 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6756 {
6757         __vmx_complete_interrupts(vcpu,
6758                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6759                                   VM_ENTRY_INSTRUCTION_LEN,
6760                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6761
6762         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6763 }
6764
6765 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6766 {
6767         int i, nr_msrs;
6768         struct perf_guest_switch_msr *msrs;
6769
6770         /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6771         msrs = perf_guest_get_msrs(&nr_msrs);
6772         if (!msrs)
6773                 return;
6774
6775         for (i = 0; i < nr_msrs; i++)
6776                 if (msrs[i].host == msrs[i].guest)
6777                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6778                 else
6779                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6780                                         msrs[i].host, false);
6781 }
6782
6783 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6784 {
6785         struct vcpu_vmx *vmx = to_vmx(vcpu);
6786         u64 tscl;
6787         u32 delta_tsc;
6788
6789         if (vmx->req_immediate_exit) {
6790                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6791                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6792         } else if (vmx->hv_deadline_tsc != -1) {
6793                 tscl = rdtsc();
6794                 if (vmx->hv_deadline_tsc > tscl)
6795                         /* set_hv_timer ensures the delta fits in 32-bits */
6796                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6797                                 cpu_preemption_timer_multi);
6798                 else
6799                         delta_tsc = 0;
6800
6801                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6802                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6803         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6804                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6805                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6806         }
6807 }
6808
6809 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6810 {
6811         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6812                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6813                 vmcs_writel(HOST_RSP, host_rsp);
6814         }
6815 }
6816
6817 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6818 {
6819         switch (to_vmx(vcpu)->exit_reason.basic) {
6820         case EXIT_REASON_MSR_WRITE:
6821                 return handle_fastpath_set_msr_irqoff(vcpu);
6822         case EXIT_REASON_PREEMPTION_TIMER:
6823                 return handle_fastpath_preemption_timer(vcpu);
6824         default:
6825                 return EXIT_FASTPATH_NONE;
6826         }
6827 }
6828
6829 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6830                                         struct vcpu_vmx *vmx)
6831 {
6832         guest_state_enter_irqoff();
6833
6834         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6835         if (static_branch_unlikely(&vmx_l1d_should_flush))
6836                 vmx_l1d_flush(vcpu);
6837         else if (static_branch_unlikely(&mds_user_clear))
6838                 mds_clear_cpu_buffers();
6839         else if (static_branch_unlikely(&mmio_stale_data_clear) &&
6840                  kvm_arch_has_assigned_device(vcpu->kvm))
6841                 mds_clear_cpu_buffers();
6842
6843         vmx_disable_fb_clear(vmx);
6844
6845         if (vcpu->arch.cr2 != native_read_cr2())
6846                 native_write_cr2(vcpu->arch.cr2);
6847
6848         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6849                                    vmx->loaded_vmcs->launched);
6850
6851         vcpu->arch.cr2 = native_read_cr2();
6852
6853         vmx_enable_fb_clear(vmx);
6854
6855         guest_state_exit_irqoff();
6856 }
6857
6858 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6859 {
6860         struct vcpu_vmx *vmx = to_vmx(vcpu);
6861         unsigned long cr3, cr4;
6862
6863         /* Record the guest's net vcpu time for enforced NMI injections. */
6864         if (unlikely(!enable_vnmi &&
6865                      vmx->loaded_vmcs->soft_vnmi_blocked))
6866                 vmx->loaded_vmcs->entry_time = ktime_get();
6867
6868         /*
6869          * Don't enter VMX if guest state is invalid, let the exit handler
6870          * start emulation until we arrive back to a valid state.  Synthesize a
6871          * consistency check VM-Exit due to invalid guest state and bail.
6872          */
6873         if (unlikely(vmx->emulation_required)) {
6874                 vmx->fail = 0;
6875
6876                 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
6877                 vmx->exit_reason.failed_vmentry = 1;
6878                 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
6879                 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
6880                 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
6881                 vmx->exit_intr_info = 0;
6882                 return EXIT_FASTPATH_NONE;
6883         }
6884
6885         trace_kvm_entry(vcpu);
6886
6887         if (vmx->ple_window_dirty) {
6888                 vmx->ple_window_dirty = false;
6889                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6890         }
6891
6892         /*
6893          * We did this in prepare_switch_to_guest, because it needs to
6894          * be within srcu_read_lock.
6895          */
6896         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6897
6898         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6899                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6900         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6901                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6902         vcpu->arch.regs_dirty = 0;
6903
6904         /*
6905          * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
6906          * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
6907          * it switches back to the current->mm, which can occur in KVM context
6908          * when switching to a temporary mm to patch kernel code, e.g. if KVM
6909          * toggles a static key while handling a VM-Exit.
6910          */
6911         cr3 = __get_current_cr3_fast();
6912         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6913                 vmcs_writel(HOST_CR3, cr3);
6914                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6915         }
6916
6917         cr4 = cr4_read_shadow();
6918         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6919                 vmcs_writel(HOST_CR4, cr4);
6920                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6921         }
6922
6923         /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
6924         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
6925                 set_debugreg(vcpu->arch.dr6, 6);
6926
6927         /* When single-stepping over STI and MOV SS, we must clear the
6928          * corresponding interruptibility bits in the guest state. Otherwise
6929          * vmentry fails as it then expects bit 14 (BS) in pending debug
6930          * exceptions being set, but that's not correct for the guest debugging
6931          * case. */
6932         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6933                 vmx_set_interrupt_shadow(vcpu, 0);
6934
6935         kvm_load_guest_xsave_state(vcpu);
6936
6937         pt_guest_enter(vmx);
6938
6939         atomic_switch_perf_msrs(vmx);
6940         if (intel_pmu_lbr_is_enabled(vcpu))
6941                 vmx_passthrough_lbr_msrs(vcpu);
6942
6943         if (enable_preemption_timer)
6944                 vmx_update_hv_timer(vcpu);
6945
6946         kvm_wait_lapic_expire(vcpu);
6947
6948         /*
6949          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6950          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6951          * is no need to worry about the conditional branch over the wrmsr
6952          * being speculatively taken.
6953          */
6954         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6955
6956         /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6957         vmx_vcpu_enter_exit(vcpu, vmx);
6958
6959         /*
6960          * We do not use IBRS in the kernel. If this vCPU has used the
6961          * SPEC_CTRL MSR it may have left it on; save the value and
6962          * turn it off. This is much more efficient than blindly adding
6963          * it to the atomic save/restore list. Especially as the former
6964          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6965          *
6966          * For non-nested case:
6967          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6968          * save it.
6969          *
6970          * For nested case:
6971          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6972          * save it.
6973          */
6974         if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
6975                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6976
6977         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6978
6979         /* All fields are clean at this point */
6980         if (static_branch_unlikely(&enable_evmcs)) {
6981                 current_evmcs->hv_clean_fields |=
6982                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6983
6984                 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6985         }
6986
6987         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6988         if (vmx->host_debugctlmsr)
6989                 update_debugctlmsr(vmx->host_debugctlmsr);
6990
6991 #ifndef CONFIG_X86_64
6992         /*
6993          * The sysexit path does not restore ds/es, so we must set them to
6994          * a reasonable value ourselves.
6995          *
6996          * We can't defer this to vmx_prepare_switch_to_host() since that
6997          * function may be executed in interrupt context, which saves and
6998          * restore segments around it, nullifying its effect.
6999          */
7000         loadsegment(ds, __USER_DS);
7001         loadsegment(es, __USER_DS);
7002 #endif
7003
7004         vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7005
7006         pt_guest_exit(vmx);
7007
7008         kvm_load_host_xsave_state(vcpu);
7009
7010         if (is_guest_mode(vcpu)) {
7011                 /*
7012                  * Track VMLAUNCH/VMRESUME that have made past guest state
7013                  * checking.
7014                  */
7015                 if (vmx->nested.nested_run_pending &&
7016                     !vmx->exit_reason.failed_vmentry)
7017                         ++vcpu->stat.nested_run;
7018
7019                 vmx->nested.nested_run_pending = 0;
7020         }
7021
7022         vmx->idt_vectoring_info = 0;
7023
7024         if (unlikely(vmx->fail)) {
7025                 vmx->exit_reason.full = 0xdead;
7026                 return EXIT_FASTPATH_NONE;
7027         }
7028
7029         vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7030         if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7031                 kvm_machine_check();
7032
7033         if (likely(!vmx->exit_reason.failed_vmentry))
7034                 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7035
7036         trace_kvm_exit(vcpu, KVM_ISA_VMX);
7037
7038         if (unlikely(vmx->exit_reason.failed_vmentry))
7039                 return EXIT_FASTPATH_NONE;
7040
7041         vmx->loaded_vmcs->launched = 1;
7042
7043         vmx_recover_nmi_blocking(vmx);
7044         vmx_complete_interrupts(vmx);
7045
7046         if (is_guest_mode(vcpu))
7047                 return EXIT_FASTPATH_NONE;
7048
7049         return vmx_exit_handlers_fastpath(vcpu);
7050 }
7051
7052 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7053 {
7054         struct vcpu_vmx *vmx = to_vmx(vcpu);
7055
7056         if (enable_pml)
7057                 vmx_destroy_pml_buffer(vmx);
7058         free_vpid(vmx->vpid);
7059         nested_vmx_free_vcpu(vcpu);
7060         free_loaded_vmcs(vmx->loaded_vmcs);
7061 }
7062
7063 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7064 {
7065         struct vmx_uret_msr *tsx_ctrl;
7066         struct vcpu_vmx *vmx;
7067         int i, err;
7068
7069         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7070         vmx = to_vmx(vcpu);
7071
7072         INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7073
7074         err = -ENOMEM;
7075
7076         vmx->vpid = allocate_vpid();
7077
7078         /*
7079          * If PML is turned on, failure on enabling PML just results in failure
7080          * of creating the vcpu, therefore we can simplify PML logic (by
7081          * avoiding dealing with cases, such as enabling PML partially on vcpus
7082          * for the guest), etc.
7083          */
7084         if (enable_pml) {
7085                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7086                 if (!vmx->pml_pg)
7087                         goto free_vpid;
7088         }
7089
7090         for (i = 0; i < kvm_nr_uret_msrs; ++i)
7091                 vmx->guest_uret_msrs[i].mask = -1ull;
7092         if (boot_cpu_has(X86_FEATURE_RTM)) {
7093                 /*
7094                  * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7095                  * Keep the host value unchanged to avoid changing CPUID bits
7096                  * under the host kernel's feet.
7097                  */
7098                 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7099                 if (tsx_ctrl)
7100                         tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7101         }
7102
7103         err = alloc_loaded_vmcs(&vmx->vmcs01);
7104         if (err < 0)
7105                 goto free_pml;
7106
7107         /*
7108          * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7109          * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7110          * feature only for vmcs01, KVM currently isn't equipped to realize any
7111          * performance benefits from enabling it for vmcs02.
7112          */
7113         if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) &&
7114             (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7115                 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7116
7117                 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7118         }
7119
7120         /* The MSR bitmap starts with all ones */
7121         bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7122         bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7123
7124         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7125 #ifdef CONFIG_X86_64
7126         vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7127         vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7128         vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7129 #endif
7130         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7131         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7132         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7133         if (kvm_cstate_in_guest(vcpu->kvm)) {
7134                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7135                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7136                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7137                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7138         }
7139
7140         vmx->loaded_vmcs = &vmx->vmcs01;
7141
7142         if (cpu_need_virtualize_apic_accesses(vcpu)) {
7143                 err = alloc_apic_access_page(vcpu->kvm);
7144                 if (err)
7145                         goto free_vmcs;
7146         }
7147
7148         if (enable_ept && !enable_unrestricted_guest) {
7149                 err = init_rmode_identity_map(vcpu->kvm);
7150                 if (err)
7151                         goto free_vmcs;
7152         }
7153
7154         return 0;
7155
7156 free_vmcs:
7157         free_loaded_vmcs(vmx->loaded_vmcs);
7158 free_pml:
7159         vmx_destroy_pml_buffer(vmx);
7160 free_vpid:
7161         free_vpid(vmx->vpid);
7162         return err;
7163 }
7164
7165 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7166 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7167
7168 static int vmx_vm_init(struct kvm *kvm)
7169 {
7170         if (!ple_gap)
7171                 kvm->arch.pause_in_guest = true;
7172
7173         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7174                 switch (l1tf_mitigation) {
7175                 case L1TF_MITIGATION_OFF:
7176                 case L1TF_MITIGATION_FLUSH_NOWARN:
7177                         /* 'I explicitly don't care' is set */
7178                         break;
7179                 case L1TF_MITIGATION_FLUSH:
7180                 case L1TF_MITIGATION_FLUSH_NOSMT:
7181                 case L1TF_MITIGATION_FULL:
7182                         /*
7183                          * Warn upon starting the first VM in a potentially
7184                          * insecure environment.
7185                          */
7186                         if (sched_smt_active())
7187                                 pr_warn_once(L1TF_MSG_SMT);
7188                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7189                                 pr_warn_once(L1TF_MSG_L1D);
7190                         break;
7191                 case L1TF_MITIGATION_FULL_FORCE:
7192                         /* Flush is enforced */
7193                         break;
7194                 }
7195         }
7196         return 0;
7197 }
7198
7199 static int __init vmx_check_processor_compat(void)
7200 {
7201         struct vmcs_config vmcs_conf;
7202         struct vmx_capability vmx_cap;
7203
7204         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7205             !this_cpu_has(X86_FEATURE_VMX)) {
7206                 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7207                 return -EIO;
7208         }
7209
7210         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7211                 return -EIO;
7212         if (nested)
7213                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7214         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7215                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7216                                 smp_processor_id());
7217                 return -EIO;
7218         }
7219         return 0;
7220 }
7221
7222 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7223 {
7224         u8 cache;
7225
7226         /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7227          * memory aliases with conflicting memory types and sometimes MCEs.
7228          * We have to be careful as to what are honored and when.
7229          *
7230          * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7231          * UC.  The effective memory type is UC or WC depending on guest PAT.
7232          * This was historically the source of MCEs and we want to be
7233          * conservative.
7234          *
7235          * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7236          * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7237          * EPT memory type is set to WB.  The effective memory type is forced
7238          * WB.
7239          *
7240          * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7241          * EPT memory type is used to emulate guest CD/MTRR.
7242          */
7243
7244         if (is_mmio)
7245                 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7246
7247         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7248                 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7249
7250         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7251                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7252                         cache = MTRR_TYPE_WRBACK;
7253                 else
7254                         cache = MTRR_TYPE_UNCACHABLE;
7255
7256                 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7257         }
7258
7259         return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7260 }
7261
7262 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7263 {
7264         /*
7265          * These bits in the secondary execution controls field
7266          * are dynamic, the others are mostly based on the hypervisor
7267          * architecture and the guest's CPUID.  Do not touch the
7268          * dynamic bits.
7269          */
7270         u32 mask =
7271                 SECONDARY_EXEC_SHADOW_VMCS |
7272                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7273                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7274                 SECONDARY_EXEC_DESC;
7275
7276         u32 cur_ctl = secondary_exec_controls_get(vmx);
7277
7278         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7279 }
7280
7281 /*
7282  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7283  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7284  */
7285 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7286 {
7287         struct vcpu_vmx *vmx = to_vmx(vcpu);
7288         struct kvm_cpuid_entry2 *entry;
7289
7290         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7291         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7292
7293 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
7294         if (entry && (entry->_reg & (_cpuid_mask)))                     \
7295                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
7296 } while (0)
7297
7298         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7299         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7300         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7301         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7302         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7303         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7304         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7305         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7306         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7307         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7308         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7309         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7310         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7311         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7312         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7313
7314         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7315         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7316         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7317         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7318         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7319         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7320         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7321
7322 #undef cr4_fixed1_update
7323 }
7324
7325 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7326 {
7327         struct vcpu_vmx *vmx = to_vmx(vcpu);
7328
7329         if (kvm_mpx_supported()) {
7330                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7331
7332                 if (mpx_enabled) {
7333                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7334                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7335                 } else {
7336                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7337                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7338                 }
7339         }
7340 }
7341
7342 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7343 {
7344         struct vcpu_vmx *vmx = to_vmx(vcpu);
7345         struct kvm_cpuid_entry2 *best = NULL;
7346         int i;
7347
7348         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7349                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7350                 if (!best)
7351                         return;
7352                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7353                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7354                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7355                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7356         }
7357
7358         /* Get the number of configurable Address Ranges for filtering */
7359         vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7360                                                 PT_CAP_num_address_ranges);
7361
7362         /* Initialize and clear the no dependency bits */
7363         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7364                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7365                         RTIT_CTL_BRANCH_EN);
7366
7367         /*
7368          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7369          * will inject an #GP
7370          */
7371         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7372                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7373
7374         /*
7375          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7376          * PSBFreq can be set
7377          */
7378         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7379                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7380                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7381
7382         /*
7383          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7384          */
7385         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7386                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7387                                               RTIT_CTL_MTC_RANGE);
7388
7389         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7390         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7391                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7392                                                         RTIT_CTL_PTW_EN);
7393
7394         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7395         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7396                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7397
7398         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7399         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7400                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7401
7402         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7403         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7404                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7405
7406         /* unmask address range configure area */
7407         for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7408                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7409 }
7410
7411 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7412 {
7413         struct vcpu_vmx *vmx = to_vmx(vcpu);
7414
7415         /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7416         vcpu->arch.xsaves_enabled = false;
7417
7418         vmx_setup_uret_msrs(vmx);
7419
7420         if (cpu_has_secondary_exec_ctrls())
7421                 vmcs_set_secondary_exec_control(vmx,
7422                                                 vmx_secondary_exec_control(vmx));
7423
7424         if (nested_vmx_allowed(vcpu))
7425                 vmx->msr_ia32_feature_control_valid_bits |=
7426                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7427                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7428         else
7429                 vmx->msr_ia32_feature_control_valid_bits &=
7430                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7431                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7432
7433         if (nested_vmx_allowed(vcpu)) {
7434                 nested_vmx_cr_fixed1_bits_update(vcpu);
7435                 nested_vmx_entry_exit_ctls_update(vcpu);
7436         }
7437
7438         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7439                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7440                 update_intel_pt_cfg(vcpu);
7441
7442         if (boot_cpu_has(X86_FEATURE_RTM)) {
7443                 struct vmx_uret_msr *msr;
7444                 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7445                 if (msr) {
7446                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7447                         vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7448                 }
7449         }
7450
7451         if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7452                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7453                                           !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7454
7455
7456         set_cr4_guest_host_mask(vmx);
7457
7458         vmx_write_encls_bitmap(vcpu, NULL);
7459         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7460                 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7461         else
7462                 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7463
7464         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7465                 vmx->msr_ia32_feature_control_valid_bits |=
7466                         FEAT_CTL_SGX_LC_ENABLED;
7467         else
7468                 vmx->msr_ia32_feature_control_valid_bits &=
7469                         ~FEAT_CTL_SGX_LC_ENABLED;
7470
7471         /* Refresh #PF interception to account for MAXPHYADDR changes. */
7472         vmx_update_exception_bitmap(vcpu);
7473 }
7474
7475 static __init void vmx_set_cpu_caps(void)
7476 {
7477         kvm_set_cpu_caps();
7478
7479         /* CPUID 0x1 */
7480         if (nested)
7481                 kvm_cpu_cap_set(X86_FEATURE_VMX);
7482
7483         /* CPUID 0x7 */
7484         if (kvm_mpx_supported())
7485                 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7486         if (!cpu_has_vmx_invpcid())
7487                 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7488         if (vmx_pt_mode_is_host_guest())
7489                 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7490
7491         if (!enable_sgx) {
7492                 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7493                 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7494                 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7495                 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7496         }
7497
7498         if (vmx_umip_emulated())
7499                 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7500
7501         /* CPUID 0xD.1 */
7502         supported_xss = 0;
7503         if (!cpu_has_vmx_xsaves())
7504                 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7505
7506         /* CPUID 0x80000001 and 0x7 (RDPID) */
7507         if (!cpu_has_vmx_rdtscp()) {
7508                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7509                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7510         }
7511
7512         if (cpu_has_vmx_waitpkg())
7513                 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7514 }
7515
7516 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7517 {
7518         to_vmx(vcpu)->req_immediate_exit = true;
7519 }
7520
7521 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7522                                   struct x86_instruction_info *info)
7523 {
7524         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7525         unsigned short port;
7526         bool intercept;
7527         int size;
7528
7529         if (info->intercept == x86_intercept_in ||
7530             info->intercept == x86_intercept_ins) {
7531                 port = info->src_val;
7532                 size = info->dst_bytes;
7533         } else {
7534                 port = info->dst_val;
7535                 size = info->src_bytes;
7536         }
7537
7538         /*
7539          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7540          * VM-exits depend on the 'unconditional IO exiting' VM-execution
7541          * control.
7542          *
7543          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7544          */
7545         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7546                 intercept = nested_cpu_has(vmcs12,
7547                                            CPU_BASED_UNCOND_IO_EXITING);
7548         else
7549                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7550
7551         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7552         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7553 }
7554
7555 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7556                                struct x86_instruction_info *info,
7557                                enum x86_intercept_stage stage,
7558                                struct x86_exception *exception)
7559 {
7560         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7561
7562         switch (info->intercept) {
7563         /*
7564          * RDPID causes #UD if disabled through secondary execution controls.
7565          * Because it is marked as EmulateOnUD, we need to intercept it here.
7566          * Note, RDPID is hidden behind ENABLE_RDTSCP.
7567          */
7568         case x86_intercept_rdpid:
7569                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7570                         exception->vector = UD_VECTOR;
7571                         exception->error_code_valid = false;
7572                         return X86EMUL_PROPAGATE_FAULT;
7573                 }
7574                 break;
7575
7576         case x86_intercept_in:
7577         case x86_intercept_ins:
7578         case x86_intercept_out:
7579         case x86_intercept_outs:
7580                 return vmx_check_intercept_io(vcpu, info);
7581
7582         case x86_intercept_lgdt:
7583         case x86_intercept_lidt:
7584         case x86_intercept_lldt:
7585         case x86_intercept_ltr:
7586         case x86_intercept_sgdt:
7587         case x86_intercept_sidt:
7588         case x86_intercept_sldt:
7589         case x86_intercept_str:
7590                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7591                         return X86EMUL_CONTINUE;
7592
7593                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7594                 break;
7595
7596         /* TODO: check more intercepts... */
7597         default:
7598                 break;
7599         }
7600
7601         return X86EMUL_UNHANDLEABLE;
7602 }
7603
7604 #ifdef CONFIG_X86_64
7605 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7606 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7607                                   u64 divisor, u64 *result)
7608 {
7609         u64 low = a << shift, high = a >> (64 - shift);
7610
7611         /* To avoid the overflow on divq */
7612         if (high >= divisor)
7613                 return 1;
7614
7615         /* Low hold the result, high hold rem which is discarded */
7616         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7617             "rm" (divisor), "0" (low), "1" (high));
7618         *result = low;
7619
7620         return 0;
7621 }
7622
7623 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7624                             bool *expired)
7625 {
7626         struct vcpu_vmx *vmx;
7627         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7628         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7629
7630         vmx = to_vmx(vcpu);
7631         tscl = rdtsc();
7632         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7633         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7634         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7635                                                     ktimer->timer_advance_ns);
7636
7637         if (delta_tsc > lapic_timer_advance_cycles)
7638                 delta_tsc -= lapic_timer_advance_cycles;
7639         else
7640                 delta_tsc = 0;
7641
7642         /* Convert to host delta tsc if tsc scaling is enabled */
7643         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7644             delta_tsc && u64_shl_div_u64(delta_tsc,
7645                                 kvm_tsc_scaling_ratio_frac_bits,
7646                                 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7647                 return -ERANGE;
7648
7649         /*
7650          * If the delta tsc can't fit in the 32 bit after the multi shift,
7651          * we can't use the preemption timer.
7652          * It's possible that it fits on later vmentries, but checking
7653          * on every vmentry is costly so we just use an hrtimer.
7654          */
7655         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7656                 return -ERANGE;
7657
7658         vmx->hv_deadline_tsc = tscl + delta_tsc;
7659         *expired = !delta_tsc;
7660         return 0;
7661 }
7662
7663 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7664 {
7665         to_vmx(vcpu)->hv_deadline_tsc = -1;
7666 }
7667 #endif
7668
7669 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7670 {
7671         if (!kvm_pause_in_guest(vcpu->kvm))
7672                 shrink_ple_window(vcpu);
7673 }
7674
7675 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7676 {
7677         struct vcpu_vmx *vmx = to_vmx(vcpu);
7678
7679         if (is_guest_mode(vcpu)) {
7680                 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7681                 return;
7682         }
7683
7684         /*
7685          * Note, cpu_dirty_logging_count can be changed concurrent with this
7686          * code, but in that case another update request will be made and so
7687          * the guest will never run with a stale PML value.
7688          */
7689         if (vcpu->kvm->arch.cpu_dirty_logging_count)
7690                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7691         else
7692                 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7693 }
7694
7695 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7696 {
7697         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7698                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7699                         FEAT_CTL_LMCE_ENABLED;
7700         else
7701                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7702                         ~FEAT_CTL_LMCE_ENABLED;
7703 }
7704
7705 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7706 {
7707         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7708         if (to_vmx(vcpu)->nested.nested_run_pending)
7709                 return -EBUSY;
7710         return !is_smm(vcpu);
7711 }
7712
7713 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7714 {
7715         struct vcpu_vmx *vmx = to_vmx(vcpu);
7716
7717         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7718         if (vmx->nested.smm.guest_mode)
7719                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7720
7721         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7722         vmx->nested.vmxon = false;
7723         vmx_clear_hlt(vcpu);
7724         return 0;
7725 }
7726
7727 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7728 {
7729         struct vcpu_vmx *vmx = to_vmx(vcpu);
7730         int ret;
7731
7732         if (vmx->nested.smm.vmxon) {
7733                 vmx->nested.vmxon = true;
7734                 vmx->nested.smm.vmxon = false;
7735         }
7736
7737         if (vmx->nested.smm.guest_mode) {
7738                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7739                 if (ret)
7740                         return ret;
7741
7742                 vmx->nested.nested_run_pending = 1;
7743                 vmx->nested.smm.guest_mode = false;
7744         }
7745         return 0;
7746 }
7747
7748 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7749 {
7750         /* RSM will cause a vmexit anyway.  */
7751 }
7752
7753 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7754 {
7755         return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7756 }
7757
7758 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7759 {
7760         if (is_guest_mode(vcpu)) {
7761                 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7762
7763                 if (hrtimer_try_to_cancel(timer) == 1)
7764                         hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7765         }
7766 }
7767
7768 static void vmx_hardware_unsetup(void)
7769 {
7770         kvm_set_posted_intr_wakeup_handler(NULL);
7771
7772         if (nested)
7773                 nested_vmx_hardware_unsetup();
7774
7775         free_kvm_area();
7776 }
7777
7778 static bool vmx_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason)
7779 {
7780         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7781                           BIT(APICV_INHIBIT_REASON_ABSENT) |
7782                           BIT(APICV_INHIBIT_REASON_HYPERV) |
7783                           BIT(APICV_INHIBIT_REASON_BLOCKIRQ);
7784
7785         return supported & BIT(reason);
7786 }
7787
7788 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7789         .name = "kvm_intel",
7790
7791         .hardware_unsetup = vmx_hardware_unsetup,
7792
7793         .hardware_enable = vmx_hardware_enable,
7794         .hardware_disable = vmx_hardware_disable,
7795         .has_emulated_msr = vmx_has_emulated_msr,
7796
7797         .vm_size = sizeof(struct kvm_vmx),
7798         .vm_init = vmx_vm_init,
7799
7800         .vcpu_create = vmx_vcpu_create,
7801         .vcpu_free = vmx_vcpu_free,
7802         .vcpu_reset = vmx_vcpu_reset,
7803
7804         .prepare_switch_to_guest = vmx_prepare_switch_to_guest,
7805         .vcpu_load = vmx_vcpu_load,
7806         .vcpu_put = vmx_vcpu_put,
7807
7808         .update_exception_bitmap = vmx_update_exception_bitmap,
7809         .get_msr_feature = vmx_get_msr_feature,
7810         .get_msr = vmx_get_msr,
7811         .set_msr = vmx_set_msr,
7812         .get_segment_base = vmx_get_segment_base,
7813         .get_segment = vmx_get_segment,
7814         .set_segment = vmx_set_segment,
7815         .get_cpl = vmx_get_cpl,
7816         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7817         .set_cr0 = vmx_set_cr0,
7818         .is_valid_cr4 = vmx_is_valid_cr4,
7819         .set_cr4 = vmx_set_cr4,
7820         .set_efer = vmx_set_efer,
7821         .get_idt = vmx_get_idt,
7822         .set_idt = vmx_set_idt,
7823         .get_gdt = vmx_get_gdt,
7824         .set_gdt = vmx_set_gdt,
7825         .set_dr7 = vmx_set_dr7,
7826         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7827         .cache_reg = vmx_cache_reg,
7828         .get_rflags = vmx_get_rflags,
7829         .set_rflags = vmx_set_rflags,
7830         .get_if_flag = vmx_get_if_flag,
7831
7832         .flush_tlb_all = vmx_flush_tlb_all,
7833         .flush_tlb_current = vmx_flush_tlb_current,
7834         .flush_tlb_gva = vmx_flush_tlb_gva,
7835         .flush_tlb_guest = vmx_flush_tlb_guest,
7836
7837         .vcpu_pre_run = vmx_vcpu_pre_run,
7838         .vcpu_run = vmx_vcpu_run,
7839         .handle_exit = vmx_handle_exit,
7840         .skip_emulated_instruction = vmx_skip_emulated_instruction,
7841         .update_emulated_instruction = vmx_update_emulated_instruction,
7842         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7843         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7844         .patch_hypercall = vmx_patch_hypercall,
7845         .inject_irq = vmx_inject_irq,
7846         .inject_nmi = vmx_inject_nmi,
7847         .queue_exception = vmx_queue_exception,
7848         .cancel_injection = vmx_cancel_injection,
7849         .interrupt_allowed = vmx_interrupt_allowed,
7850         .nmi_allowed = vmx_nmi_allowed,
7851         .get_nmi_mask = vmx_get_nmi_mask,
7852         .set_nmi_mask = vmx_set_nmi_mask,
7853         .enable_nmi_window = vmx_enable_nmi_window,
7854         .enable_irq_window = vmx_enable_irq_window,
7855         .update_cr8_intercept = vmx_update_cr8_intercept,
7856         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7857         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7858         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7859         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7860         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7861         .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7862         .hwapic_irr_update = vmx_hwapic_irr_update,
7863         .hwapic_isr_update = vmx_hwapic_isr_update,
7864         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7865         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7866         .deliver_interrupt = vmx_deliver_interrupt,
7867         .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7868
7869         .set_tss_addr = vmx_set_tss_addr,
7870         .set_identity_map_addr = vmx_set_identity_map_addr,
7871         .get_mt_mask = vmx_get_mt_mask,
7872
7873         .get_exit_info = vmx_get_exit_info,
7874
7875         .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7876
7877         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7878
7879         .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
7880         .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
7881         .write_tsc_offset = vmx_write_tsc_offset,
7882         .write_tsc_multiplier = vmx_write_tsc_multiplier,
7883
7884         .load_mmu_pgd = vmx_load_mmu_pgd,
7885
7886         .check_intercept = vmx_check_intercept,
7887         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7888
7889         .request_immediate_exit = vmx_request_immediate_exit,
7890
7891         .sched_in = vmx_sched_in,
7892
7893         .cpu_dirty_log_size = PML_ENTITY_NUM,
7894         .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7895
7896         .pmu_ops = &intel_pmu_ops,
7897         .nested_ops = &vmx_nested_ops,
7898
7899         .pi_update_irte = vmx_pi_update_irte,
7900         .pi_start_assignment = vmx_pi_start_assignment,
7901
7902 #ifdef CONFIG_X86_64
7903         .set_hv_timer = vmx_set_hv_timer,
7904         .cancel_hv_timer = vmx_cancel_hv_timer,
7905 #endif
7906
7907         .setup_mce = vmx_setup_mce,
7908
7909         .smi_allowed = vmx_smi_allowed,
7910         .enter_smm = vmx_enter_smm,
7911         .leave_smm = vmx_leave_smm,
7912         .enable_smi_window = vmx_enable_smi_window,
7913
7914         .can_emulate_instruction = vmx_can_emulate_instruction,
7915         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7916         .migrate_timers = vmx_migrate_timers,
7917
7918         .msr_filter_changed = vmx_msr_filter_changed,
7919         .complete_emulated_msr = kvm_complete_insn_gp,
7920
7921         .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7922 };
7923
7924 static unsigned int vmx_handle_intel_pt_intr(void)
7925 {
7926         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
7927
7928         /* '0' on failure so that the !PT case can use a RET0 static call. */
7929         if (!kvm_arch_pmi_in_guest(vcpu))
7930                 return 0;
7931
7932         kvm_make_request(KVM_REQ_PMI, vcpu);
7933         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7934                   (unsigned long *)&vcpu->arch.pmu.global_status);
7935         return 1;
7936 }
7937
7938 static __init void vmx_setup_user_return_msrs(void)
7939 {
7940
7941         /*
7942          * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7943          * will emulate SYSCALL in legacy mode if the vendor string in guest
7944          * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7945          * support this emulation, MSR_STAR is included in the list for i386,
7946          * but is never loaded into hardware.  MSR_CSTAR is also never loaded
7947          * into hardware and is here purely for emulation purposes.
7948          */
7949         const u32 vmx_uret_msrs_list[] = {
7950         #ifdef CONFIG_X86_64
7951                 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7952         #endif
7953                 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7954                 MSR_IA32_TSX_CTRL,
7955         };
7956         int i;
7957
7958         BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7959
7960         for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7961                 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7962 }
7963
7964 static struct kvm_x86_init_ops vmx_init_ops __initdata;
7965
7966 static __init int hardware_setup(void)
7967 {
7968         unsigned long host_bndcfgs;
7969         struct desc_ptr dt;
7970         int r;
7971
7972         store_idt(&dt);
7973         host_idt_base = dt.address;
7974
7975         vmx_setup_user_return_msrs();
7976
7977         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7978                 return -EIO;
7979
7980         if (boot_cpu_has(X86_FEATURE_NX))
7981                 kvm_enable_efer_bits(EFER_NX);
7982
7983         if (boot_cpu_has(X86_FEATURE_MPX)) {
7984                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7985                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7986         }
7987
7988         if (!cpu_has_vmx_mpx())
7989                 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7990                                     XFEATURE_MASK_BNDCSR);
7991
7992         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7993             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7994                 enable_vpid = 0;
7995
7996         if (!cpu_has_vmx_ept() ||
7997             !cpu_has_vmx_ept_4levels() ||
7998             !cpu_has_vmx_ept_mt_wb() ||
7999             !cpu_has_vmx_invept_global())
8000                 enable_ept = 0;
8001
8002         /* NX support is required for shadow paging. */
8003         if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8004                 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
8005                 return -EOPNOTSUPP;
8006         }
8007
8008         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8009                 enable_ept_ad_bits = 0;
8010
8011         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8012                 enable_unrestricted_guest = 0;
8013
8014         if (!cpu_has_vmx_flexpriority())
8015                 flexpriority_enabled = 0;
8016
8017         if (!cpu_has_virtual_nmis())
8018                 enable_vnmi = 0;
8019
8020         /*
8021          * set_apic_access_page_addr() is used to reload apic access
8022          * page upon invalidation.  No need to do anything if not
8023          * using the APIC_ACCESS_ADDR VMCS field.
8024          */
8025         if (!flexpriority_enabled)
8026                 vmx_x86_ops.set_apic_access_page_addr = NULL;
8027
8028         if (!cpu_has_vmx_tpr_shadow())
8029                 vmx_x86_ops.update_cr8_intercept = NULL;
8030
8031 #if IS_ENABLED(CONFIG_HYPERV)
8032         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8033             && enable_ept) {
8034                 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
8035                 vmx_x86_ops.tlb_remote_flush_with_range =
8036                                 hv_remote_flush_tlb_with_range;
8037         }
8038 #endif
8039
8040         if (!cpu_has_vmx_ple()) {
8041                 ple_gap = 0;
8042                 ple_window = 0;
8043                 ple_window_grow = 0;
8044                 ple_window_max = 0;
8045                 ple_window_shrink = 0;
8046         }
8047
8048         if (!cpu_has_vmx_apicv())
8049                 enable_apicv = 0;
8050         if (!enable_apicv)
8051                 vmx_x86_ops.sync_pir_to_irr = NULL;
8052
8053         if (cpu_has_vmx_tsc_scaling())
8054                 kvm_has_tsc_control = true;
8055
8056         kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8057         kvm_tsc_scaling_ratio_frac_bits = 48;
8058         kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8059
8060         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8061
8062         if (enable_ept)
8063                 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8064                                       cpu_has_vmx_ept_execute_only());
8065
8066         kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
8067                           ept_caps_to_lpage_level(vmx_capability.ept));
8068
8069         /*
8070          * Only enable PML when hardware supports PML feature, and both EPT
8071          * and EPT A/D bit features are enabled -- PML depends on them to work.
8072          */
8073         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8074                 enable_pml = 0;
8075
8076         if (!enable_pml)
8077                 vmx_x86_ops.cpu_dirty_log_size = 0;
8078
8079         if (!cpu_has_vmx_preemption_timer())
8080                 enable_preemption_timer = false;
8081
8082         if (enable_preemption_timer) {
8083                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8084                 u64 vmx_msr;
8085
8086                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
8087                 cpu_preemption_timer_multi =
8088                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8089
8090                 if (tsc_khz)
8091                         use_timer_freq = (u64)tsc_khz * 1000;
8092                 use_timer_freq >>= cpu_preemption_timer_multi;
8093
8094                 /*
8095                  * KVM "disables" the preemption timer by setting it to its max
8096                  * value.  Don't use the timer if it might cause spurious exits
8097                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8098                  */
8099                 if (use_timer_freq > 0xffffffffu / 10)
8100                         enable_preemption_timer = false;
8101         }
8102
8103         if (!enable_preemption_timer) {
8104                 vmx_x86_ops.set_hv_timer = NULL;
8105                 vmx_x86_ops.cancel_hv_timer = NULL;
8106                 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8107         }
8108
8109         kvm_mce_cap_supported |= MCG_LMCE_P;
8110
8111         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8112                 return -EINVAL;
8113         if (!enable_ept || !cpu_has_vmx_intel_pt())
8114                 pt_mode = PT_MODE_SYSTEM;
8115         if (pt_mode == PT_MODE_HOST_GUEST)
8116                 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8117         else
8118                 vmx_init_ops.handle_intel_pt_intr = NULL;
8119
8120         setup_default_sgx_lepubkeyhash();
8121
8122         if (nested) {
8123                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8124                                            vmx_capability.ept);
8125
8126                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8127                 if (r)
8128                         return r;
8129         }
8130
8131         vmx_set_cpu_caps();
8132
8133         r = alloc_kvm_area();
8134         if (r && nested)
8135                 nested_vmx_hardware_unsetup();
8136
8137         kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8138
8139         return r;
8140 }
8141
8142 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8143         .cpu_has_kvm_support = cpu_has_kvm_support,
8144         .disabled_by_bios = vmx_disabled_by_bios,
8145         .check_processor_compatibility = vmx_check_processor_compat,
8146         .hardware_setup = hardware_setup,
8147         .handle_intel_pt_intr = NULL,
8148
8149         .runtime_ops = &vmx_x86_ops,
8150 };
8151
8152 static void vmx_cleanup_l1d_flush(void)
8153 {
8154         if (vmx_l1d_flush_pages) {
8155                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8156                 vmx_l1d_flush_pages = NULL;
8157         }
8158         /* Restore state so sysfs ignores VMX */
8159         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8160 }
8161
8162 static void vmx_exit(void)
8163 {
8164 #ifdef CONFIG_KEXEC_CORE
8165         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8166         synchronize_rcu();
8167 #endif
8168
8169         kvm_exit();
8170
8171 #if IS_ENABLED(CONFIG_HYPERV)
8172         if (static_branch_unlikely(&enable_evmcs)) {
8173                 int cpu;
8174                 struct hv_vp_assist_page *vp_ap;
8175                 /*
8176                  * Reset everything to support using non-enlightened VMCS
8177                  * access later (e.g. when we reload the module with
8178                  * enlightened_vmcs=0)
8179                  */
8180                 for_each_online_cpu(cpu) {
8181                         vp_ap = hv_get_vp_assist_page(cpu);
8182
8183                         if (!vp_ap)
8184                                 continue;
8185
8186                         vp_ap->nested_control.features.directhypercall = 0;
8187                         vp_ap->current_nested_vmcs = 0;
8188                         vp_ap->enlighten_vmentry = 0;
8189                 }
8190
8191                 static_branch_disable(&enable_evmcs);
8192         }
8193 #endif
8194         vmx_cleanup_l1d_flush();
8195
8196         allow_smaller_maxphyaddr = false;
8197 }
8198 module_exit(vmx_exit);
8199
8200 static int __init vmx_init(void)
8201 {
8202         int r, cpu;
8203
8204 #if IS_ENABLED(CONFIG_HYPERV)
8205         /*
8206          * Enlightened VMCS usage should be recommended and the host needs
8207          * to support eVMCS v1 or above. We can also disable eVMCS support
8208          * with module parameter.
8209          */
8210         if (enlightened_vmcs &&
8211             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8212             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8213             KVM_EVMCS_VERSION) {
8214
8215                 /* Check that we have assist pages on all online CPUs */
8216                 for_each_online_cpu(cpu) {
8217                         if (!hv_get_vp_assist_page(cpu)) {
8218                                 enlightened_vmcs = false;
8219                                 break;
8220                         }
8221                 }
8222
8223                 if (enlightened_vmcs) {
8224                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8225                         static_branch_enable(&enable_evmcs);
8226                 }
8227
8228                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8229                         vmx_x86_ops.enable_direct_tlbflush
8230                                 = hv_enable_direct_tlbflush;
8231
8232         } else {
8233                 enlightened_vmcs = false;
8234         }
8235 #endif
8236
8237         r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8238                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8239         if (r)
8240                 return r;
8241
8242         /*
8243          * Must be called after kvm_init() so enable_ept is properly set
8244          * up. Hand the parameter mitigation value in which was stored in
8245          * the pre module init parser. If no parameter was given, it will
8246          * contain 'auto' which will be turned into the default 'cond'
8247          * mitigation mode.
8248          */
8249         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8250         if (r) {
8251                 vmx_exit();
8252                 return r;
8253         }
8254
8255         vmx_setup_fb_clear_ctrl();
8256
8257         for_each_possible_cpu(cpu) {
8258                 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8259
8260                 pi_init_cpu(cpu);
8261         }
8262
8263 #ifdef CONFIG_KEXEC_CORE
8264         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8265                            crash_vmclear_local_loaded_vmcss);
8266 #endif
8267         vmx_check_vmcs12_offsets();
8268
8269         /*
8270          * Shadow paging doesn't have a (further) performance penalty
8271          * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8272          * by default
8273          */
8274         if (!enable_ept)
8275                 allow_smaller_maxphyaddr = true;
8276
8277         return 0;
8278 }
8279 module_init(vmx_init);