Merge tag 'for-linus-5.4-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "x86.h"
15
16 static bool __read_mostly enable_shadow_vmcs = 1;
17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18
19 static bool __read_mostly nested_early_check = 0;
20 module_param(nested_early_check, bool, S_IRUGO);
21
22 #define CC(consistency_check)                                           \
23 ({                                                                      \
24         bool failed = (consistency_check);                              \
25         if (failed)                                                     \
26                 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
27         failed;                                                         \
28 })
29
30 /*
31  * Hyper-V requires all of these, so mark them as supported even though
32  * they are just treated the same as all-context.
33  */
34 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
35         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
36         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
37         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
38         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
39
40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
41
42 enum {
43         VMX_VMREAD_BITMAP,
44         VMX_VMWRITE_BITMAP,
45         VMX_BITMAP_NR
46 };
47 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
48
49 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
50 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
51
52 struct shadow_vmcs_field {
53         u16     encoding;
54         u16     offset;
55 };
56 static struct shadow_vmcs_field shadow_read_only_fields[] = {
57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
58 #include "vmcs_shadow_fields.h"
59 };
60 static int max_shadow_read_only_fields =
61         ARRAY_SIZE(shadow_read_only_fields);
62
63 static struct shadow_vmcs_field shadow_read_write_fields[] = {
64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
65 #include "vmcs_shadow_fields.h"
66 };
67 static int max_shadow_read_write_fields =
68         ARRAY_SIZE(shadow_read_write_fields);
69
70 static void init_vmcs_shadow_fields(void)
71 {
72         int i, j;
73
74         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
75         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
76
77         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
78                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
79                 u16 field = entry.encoding;
80
81                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
82                     (i + 1 == max_shadow_read_only_fields ||
83                      shadow_read_only_fields[i + 1].encoding != field + 1))
84                         pr_err("Missing field from shadow_read_only_field %x\n",
85                                field + 1);
86
87                 clear_bit(field, vmx_vmread_bitmap);
88                 if (field & 1)
89 #ifdef CONFIG_X86_64
90                         continue;
91 #else
92                         entry.offset += sizeof(u32);
93 #endif
94                 shadow_read_only_fields[j++] = entry;
95         }
96         max_shadow_read_only_fields = j;
97
98         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
99                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
100                 u16 field = entry.encoding;
101
102                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
103                     (i + 1 == max_shadow_read_write_fields ||
104                      shadow_read_write_fields[i + 1].encoding != field + 1))
105                         pr_err("Missing field from shadow_read_write_field %x\n",
106                                field + 1);
107
108                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
109                           field <= GUEST_TR_AR_BYTES,
110                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
111
112                 /*
113                  * PML and the preemption timer can be emulated, but the
114                  * processor cannot vmwrite to fields that don't exist
115                  * on bare metal.
116                  */
117                 switch (field) {
118                 case GUEST_PML_INDEX:
119                         if (!cpu_has_vmx_pml())
120                                 continue;
121                         break;
122                 case VMX_PREEMPTION_TIMER_VALUE:
123                         if (!cpu_has_vmx_preemption_timer())
124                                 continue;
125                         break;
126                 case GUEST_INTR_STATUS:
127                         if (!cpu_has_vmx_apicv())
128                                 continue;
129                         break;
130                 default:
131                         break;
132                 }
133
134                 clear_bit(field, vmx_vmwrite_bitmap);
135                 clear_bit(field, vmx_vmread_bitmap);
136                 if (field & 1)
137 #ifdef CONFIG_X86_64
138                         continue;
139 #else
140                         entry.offset += sizeof(u32);
141 #endif
142                 shadow_read_write_fields[j++] = entry;
143         }
144         max_shadow_read_write_fields = j;
145 }
146
147 /*
148  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149  * set the success or error code of an emulated VMX instruction (as specified
150  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
151  * instruction.
152  */
153 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154 {
155         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
156                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
157                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
158         return kvm_skip_emulated_instruction(vcpu);
159 }
160
161 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162 {
163         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
164                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
165                             X86_EFLAGS_SF | X86_EFLAGS_OF))
166                         | X86_EFLAGS_CF);
167         return kvm_skip_emulated_instruction(vcpu);
168 }
169
170 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
171                                 u32 vm_instruction_error)
172 {
173         struct vcpu_vmx *vmx = to_vmx(vcpu);
174
175         /*
176          * failValid writes the error number to the current VMCS, which
177          * can't be done if there isn't a current VMCS.
178          */
179         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
180                 return nested_vmx_failInvalid(vcpu);
181
182         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
183                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
184                             X86_EFLAGS_SF | X86_EFLAGS_OF))
185                         | X86_EFLAGS_ZF);
186         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
187         /*
188          * We don't need to force a shadow sync because
189          * VM_INSTRUCTION_ERROR is not shadowed
190          */
191         return kvm_skip_emulated_instruction(vcpu);
192 }
193
194 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
195 {
196         /* TODO: not to reset guest simply here. */
197         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
198         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
199 }
200
201 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
202 {
203         return fixed_bits_valid(control, low, high);
204 }
205
206 static inline u64 vmx_control_msr(u32 low, u32 high)
207 {
208         return low | ((u64)high << 32);
209 }
210
211 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
212 {
213         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
214         vmcs_write64(VMCS_LINK_POINTER, -1ull);
215         vmx->nested.need_vmcs12_to_shadow_sync = false;
216 }
217
218 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
219 {
220         struct vcpu_vmx *vmx = to_vmx(vcpu);
221
222         if (!vmx->nested.hv_evmcs)
223                 return;
224
225         kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
226         vmx->nested.hv_evmcs_vmptr = -1ull;
227         vmx->nested.hv_evmcs = NULL;
228 }
229
230 /*
231  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
232  * just stops using VMX.
233  */
234 static void free_nested(struct kvm_vcpu *vcpu)
235 {
236         struct vcpu_vmx *vmx = to_vmx(vcpu);
237
238         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
239                 return;
240
241         kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
242
243         vmx->nested.vmxon = false;
244         vmx->nested.smm.vmxon = false;
245         free_vpid(vmx->nested.vpid02);
246         vmx->nested.posted_intr_nv = -1;
247         vmx->nested.current_vmptr = -1ull;
248         if (enable_shadow_vmcs) {
249                 vmx_disable_shadow_vmcs(vmx);
250                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
251                 free_vmcs(vmx->vmcs01.shadow_vmcs);
252                 vmx->vmcs01.shadow_vmcs = NULL;
253         }
254         kfree(vmx->nested.cached_vmcs12);
255         vmx->nested.cached_vmcs12 = NULL;
256         kfree(vmx->nested.cached_shadow_vmcs12);
257         vmx->nested.cached_shadow_vmcs12 = NULL;
258         /* Unpin physical memory we referred to in the vmcs02 */
259         if (vmx->nested.apic_access_page) {
260                 kvm_release_page_dirty(vmx->nested.apic_access_page);
261                 vmx->nested.apic_access_page = NULL;
262         }
263         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
264         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
265         vmx->nested.pi_desc = NULL;
266
267         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
268
269         nested_release_evmcs(vcpu);
270
271         free_loaded_vmcs(&vmx->nested.vmcs02);
272 }
273
274 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
275                                      struct loaded_vmcs *prev)
276 {
277         struct vmcs_host_state *dest, *src;
278
279         if (unlikely(!vmx->guest_state_loaded))
280                 return;
281
282         src = &prev->host_state;
283         dest = &vmx->loaded_vmcs->host_state;
284
285         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
286         dest->ldt_sel = src->ldt_sel;
287 #ifdef CONFIG_X86_64
288         dest->ds_sel = src->ds_sel;
289         dest->es_sel = src->es_sel;
290 #endif
291 }
292
293 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
294 {
295         struct vcpu_vmx *vmx = to_vmx(vcpu);
296         struct loaded_vmcs *prev;
297         int cpu;
298
299         if (vmx->loaded_vmcs == vmcs)
300                 return;
301
302         cpu = get_cpu();
303         prev = vmx->loaded_vmcs;
304         vmx->loaded_vmcs = vmcs;
305         vmx_vcpu_load_vmcs(vcpu, cpu);
306         vmx_sync_vmcs_host_state(vmx, prev);
307         put_cpu();
308
309         vmx_segment_cache_clear(vmx);
310 }
311
312 /*
313  * Ensure that the current vmcs of the logical processor is the
314  * vmcs01 of the vcpu before calling free_nested().
315  */
316 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
317 {
318         vcpu_load(vcpu);
319         vmx_leave_nested(vcpu);
320         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
321         free_nested(vcpu);
322         vcpu_put(vcpu);
323 }
324
325 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
326                 struct x86_exception *fault)
327 {
328         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
329         struct vcpu_vmx *vmx = to_vmx(vcpu);
330         u32 exit_reason;
331         unsigned long exit_qualification = vcpu->arch.exit_qualification;
332
333         if (vmx->nested.pml_full) {
334                 exit_reason = EXIT_REASON_PML_FULL;
335                 vmx->nested.pml_full = false;
336                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
337         } else if (fault->error_code & PFERR_RSVD_MASK)
338                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
339         else
340                 exit_reason = EXIT_REASON_EPT_VIOLATION;
341
342         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
343         vmcs12->guest_physical_address = fault->address;
344 }
345
346 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
347 {
348         WARN_ON(mmu_is_nested(vcpu));
349
350         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
351         kvm_init_shadow_ept_mmu(vcpu,
352                         to_vmx(vcpu)->nested.msrs.ept_caps &
353                         VMX_EPT_EXECUTE_ONLY_BIT,
354                         nested_ept_ad_enabled(vcpu),
355                         nested_ept_get_cr3(vcpu));
356         vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
357         vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
358         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
359         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
360
361         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
362 }
363
364 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
365 {
366         vcpu->arch.mmu = &vcpu->arch.root_mmu;
367         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
368 }
369
370 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
371                                             u16 error_code)
372 {
373         bool inequality, bit;
374
375         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
376         inequality =
377                 (error_code & vmcs12->page_fault_error_code_mask) !=
378                  vmcs12->page_fault_error_code_match;
379         return inequality ^ bit;
380 }
381
382
383 /*
384  * KVM wants to inject page-faults which it got to the guest. This function
385  * checks whether in a nested guest, we need to inject them to L1 or L2.
386  */
387 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
388 {
389         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
390         unsigned int nr = vcpu->arch.exception.nr;
391         bool has_payload = vcpu->arch.exception.has_payload;
392         unsigned long payload = vcpu->arch.exception.payload;
393
394         if (nr == PF_VECTOR) {
395                 if (vcpu->arch.exception.nested_apf) {
396                         *exit_qual = vcpu->arch.apf.nested_apf_token;
397                         return 1;
398                 }
399                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
400                                                     vcpu->arch.exception.error_code)) {
401                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
402                         return 1;
403                 }
404         } else if (vmcs12->exception_bitmap & (1u << nr)) {
405                 if (nr == DB_VECTOR) {
406                         if (!has_payload) {
407                                 payload = vcpu->arch.dr6;
408                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
409                                 payload ^= DR6_RTM;
410                         }
411                         *exit_qual = payload;
412                 } else
413                         *exit_qual = 0;
414                 return 1;
415         }
416
417         return 0;
418 }
419
420
421 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
422                 struct x86_exception *fault)
423 {
424         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
425
426         WARN_ON(!is_guest_mode(vcpu));
427
428         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
429                 !to_vmx(vcpu)->nested.nested_run_pending) {
430                 vmcs12->vm_exit_intr_error_code = fault->error_code;
431                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
432                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
433                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
434                                   fault->address);
435         } else {
436                 kvm_inject_page_fault(vcpu, fault);
437         }
438 }
439
440 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
441 {
442         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
443 }
444
445 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
446                                                struct vmcs12 *vmcs12)
447 {
448         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
449                 return 0;
450
451         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
452             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
453                 return -EINVAL;
454
455         return 0;
456 }
457
458 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
459                                                 struct vmcs12 *vmcs12)
460 {
461         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
462                 return 0;
463
464         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
465                 return -EINVAL;
466
467         return 0;
468 }
469
470 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
471                                                 struct vmcs12 *vmcs12)
472 {
473         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
474                 return 0;
475
476         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
477                 return -EINVAL;
478
479         return 0;
480 }
481
482 /*
483  * Check if MSR is intercepted for L01 MSR bitmap.
484  */
485 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
486 {
487         unsigned long *msr_bitmap;
488         int f = sizeof(unsigned long);
489
490         if (!cpu_has_vmx_msr_bitmap())
491                 return true;
492
493         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
494
495         if (msr <= 0x1fff) {
496                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
497         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
498                 msr &= 0x1fff;
499                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
500         }
501
502         return true;
503 }
504
505 /*
506  * If a msr is allowed by L0, we should check whether it is allowed by L1.
507  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
508  */
509 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
510                                                unsigned long *msr_bitmap_nested,
511                                                u32 msr, int type)
512 {
513         int f = sizeof(unsigned long);
514
515         /*
516          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
517          * have the write-low and read-high bitmap offsets the wrong way round.
518          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
519          */
520         if (msr <= 0x1fff) {
521                 if (type & MSR_TYPE_R &&
522                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
523                         /* read-low */
524                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
525
526                 if (type & MSR_TYPE_W &&
527                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
528                         /* write-low */
529                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
530
531         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
532                 msr &= 0x1fff;
533                 if (type & MSR_TYPE_R &&
534                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
535                         /* read-high */
536                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
537
538                 if (type & MSR_TYPE_W &&
539                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
540                         /* write-high */
541                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
542
543         }
544 }
545
546 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
547         int msr;
548
549         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
550                 unsigned word = msr / BITS_PER_LONG;
551
552                 msr_bitmap[word] = ~0;
553                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
554         }
555 }
556
557 /*
558  * Merge L0's and L1's MSR bitmap, return false to indicate that
559  * we do not use the hardware.
560  */
561 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
562                                                  struct vmcs12 *vmcs12)
563 {
564         int msr;
565         unsigned long *msr_bitmap_l1;
566         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
567         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
568
569         /* Nothing to do if the MSR bitmap is not in use.  */
570         if (!cpu_has_vmx_msr_bitmap() ||
571             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
572                 return false;
573
574         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
575                 return false;
576
577         msr_bitmap_l1 = (unsigned long *)map->hva;
578
579         /*
580          * To keep the control flow simple, pay eight 8-byte writes (sixteen
581          * 4-byte writes on 32-bit systems) up front to enable intercepts for
582          * the x2APIC MSR range and selectively disable them below.
583          */
584         enable_x2apic_msr_intercepts(msr_bitmap_l0);
585
586         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
587                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
588                         /*
589                          * L0 need not intercept reads for MSRs between 0x800
590                          * and 0x8ff, it just lets the processor take the value
591                          * from the virtual-APIC page; take those 256 bits
592                          * directly from the L1 bitmap.
593                          */
594                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
595                                 unsigned word = msr / BITS_PER_LONG;
596
597                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
598                         }
599                 }
600
601                 nested_vmx_disable_intercept_for_msr(
602                         msr_bitmap_l1, msr_bitmap_l0,
603                         X2APIC_MSR(APIC_TASKPRI),
604                         MSR_TYPE_R | MSR_TYPE_W);
605
606                 if (nested_cpu_has_vid(vmcs12)) {
607                         nested_vmx_disable_intercept_for_msr(
608                                 msr_bitmap_l1, msr_bitmap_l0,
609                                 X2APIC_MSR(APIC_EOI),
610                                 MSR_TYPE_W);
611                         nested_vmx_disable_intercept_for_msr(
612                                 msr_bitmap_l1, msr_bitmap_l0,
613                                 X2APIC_MSR(APIC_SELF_IPI),
614                                 MSR_TYPE_W);
615                 }
616         }
617
618         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
619         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
620                                              MSR_FS_BASE, MSR_TYPE_RW);
621
622         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
623                                              MSR_GS_BASE, MSR_TYPE_RW);
624
625         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
626                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
627
628         /*
629          * Checking the L0->L1 bitmap is trying to verify two things:
630          *
631          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
632          *    ensures that we do not accidentally generate an L02 MSR bitmap
633          *    from the L12 MSR bitmap that is too permissive.
634          * 2. That L1 or L2s have actually used the MSR. This avoids
635          *    unnecessarily merging of the bitmap if the MSR is unused. This
636          *    works properly because we only update the L01 MSR bitmap lazily.
637          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
638          *    updated to reflect this when L1 (or its L2s) actually write to
639          *    the MSR.
640          */
641         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
642                 nested_vmx_disable_intercept_for_msr(
643                                         msr_bitmap_l1, msr_bitmap_l0,
644                                         MSR_IA32_SPEC_CTRL,
645                                         MSR_TYPE_R | MSR_TYPE_W);
646
647         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
648                 nested_vmx_disable_intercept_for_msr(
649                                         msr_bitmap_l1, msr_bitmap_l0,
650                                         MSR_IA32_PRED_CMD,
651                                         MSR_TYPE_W);
652
653         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
654
655         return true;
656 }
657
658 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
659                                        struct vmcs12 *vmcs12)
660 {
661         struct kvm_host_map map;
662         struct vmcs12 *shadow;
663
664         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
665             vmcs12->vmcs_link_pointer == -1ull)
666                 return;
667
668         shadow = get_shadow_vmcs12(vcpu);
669
670         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
671                 return;
672
673         memcpy(shadow, map.hva, VMCS12_SIZE);
674         kvm_vcpu_unmap(vcpu, &map, false);
675 }
676
677 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
678                                               struct vmcs12 *vmcs12)
679 {
680         struct vcpu_vmx *vmx = to_vmx(vcpu);
681
682         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
683             vmcs12->vmcs_link_pointer == -1ull)
684                 return;
685
686         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
687                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
688 }
689
690 /*
691  * In nested virtualization, check if L1 has set
692  * VM_EXIT_ACK_INTR_ON_EXIT
693  */
694 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
695 {
696         return get_vmcs12(vcpu)->vm_exit_controls &
697                 VM_EXIT_ACK_INTR_ON_EXIT;
698 }
699
700 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
701 {
702         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
703 }
704
705 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
706                                           struct vmcs12 *vmcs12)
707 {
708         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
709             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
710                 return -EINVAL;
711         else
712                 return 0;
713 }
714
715 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
716                                            struct vmcs12 *vmcs12)
717 {
718         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
719             !nested_cpu_has_apic_reg_virt(vmcs12) &&
720             !nested_cpu_has_vid(vmcs12) &&
721             !nested_cpu_has_posted_intr(vmcs12))
722                 return 0;
723
724         /*
725          * If virtualize x2apic mode is enabled,
726          * virtualize apic access must be disabled.
727          */
728         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
729                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
730                 return -EINVAL;
731
732         /*
733          * If virtual interrupt delivery is enabled,
734          * we must exit on external interrupts.
735          */
736         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
737                 return -EINVAL;
738
739         /*
740          * bits 15:8 should be zero in posted_intr_nv,
741          * the descriptor address has been already checked
742          * in nested_get_vmcs12_pages.
743          *
744          * bits 5:0 of posted_intr_desc_addr should be zero.
745          */
746         if (nested_cpu_has_posted_intr(vmcs12) &&
747            (CC(!nested_cpu_has_vid(vmcs12)) ||
748             CC(!nested_exit_intr_ack_set(vcpu)) ||
749             CC((vmcs12->posted_intr_nv & 0xff00)) ||
750             CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
751             CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
752                 return -EINVAL;
753
754         /* tpr shadow is needed by all apicv features. */
755         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
756                 return -EINVAL;
757
758         return 0;
759 }
760
761 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
762                                        u32 count, u64 addr)
763 {
764         int maxphyaddr;
765
766         if (count == 0)
767                 return 0;
768         maxphyaddr = cpuid_maxphyaddr(vcpu);
769         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
770             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
771                 return -EINVAL;
772
773         return 0;
774 }
775
776 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
777                                                      struct vmcs12 *vmcs12)
778 {
779         if (CC(nested_vmx_check_msr_switch(vcpu,
780                                            vmcs12->vm_exit_msr_load_count,
781                                            vmcs12->vm_exit_msr_load_addr)) ||
782             CC(nested_vmx_check_msr_switch(vcpu,
783                                            vmcs12->vm_exit_msr_store_count,
784                                            vmcs12->vm_exit_msr_store_addr)))
785                 return -EINVAL;
786
787         return 0;
788 }
789
790 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
791                                                       struct vmcs12 *vmcs12)
792 {
793         if (CC(nested_vmx_check_msr_switch(vcpu,
794                                            vmcs12->vm_entry_msr_load_count,
795                                            vmcs12->vm_entry_msr_load_addr)))
796                 return -EINVAL;
797
798         return 0;
799 }
800
801 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
802                                          struct vmcs12 *vmcs12)
803 {
804         if (!nested_cpu_has_pml(vmcs12))
805                 return 0;
806
807         if (CC(!nested_cpu_has_ept(vmcs12)) ||
808             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
809                 return -EINVAL;
810
811         return 0;
812 }
813
814 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
815                                                         struct vmcs12 *vmcs12)
816 {
817         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
818                !nested_cpu_has_ept(vmcs12)))
819                 return -EINVAL;
820         return 0;
821 }
822
823 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
824                                                          struct vmcs12 *vmcs12)
825 {
826         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
827                !nested_cpu_has_ept(vmcs12)))
828                 return -EINVAL;
829         return 0;
830 }
831
832 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
833                                                  struct vmcs12 *vmcs12)
834 {
835         if (!nested_cpu_has_shadow_vmcs(vmcs12))
836                 return 0;
837
838         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
839             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
840                 return -EINVAL;
841
842         return 0;
843 }
844
845 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
846                                        struct vmx_msr_entry *e)
847 {
848         /* x2APIC MSR accesses are not allowed */
849         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
850                 return -EINVAL;
851         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
852             CC(e->index == MSR_IA32_UCODE_REV))
853                 return -EINVAL;
854         if (CC(e->reserved != 0))
855                 return -EINVAL;
856         return 0;
857 }
858
859 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
860                                      struct vmx_msr_entry *e)
861 {
862         if (CC(e->index == MSR_FS_BASE) ||
863             CC(e->index == MSR_GS_BASE) ||
864             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
865             nested_vmx_msr_check_common(vcpu, e))
866                 return -EINVAL;
867         return 0;
868 }
869
870 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
871                                       struct vmx_msr_entry *e)
872 {
873         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
874             nested_vmx_msr_check_common(vcpu, e))
875                 return -EINVAL;
876         return 0;
877 }
878
879 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
880 {
881         struct vcpu_vmx *vmx = to_vmx(vcpu);
882         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
883                                        vmx->nested.msrs.misc_high);
884
885         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
886 }
887
888 /*
889  * Load guest's/host's msr at nested entry/exit.
890  * return 0 for success, entry index for failure.
891  *
892  * One of the failure modes for MSR load/store is when a list exceeds the
893  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
894  * as possible, process all valid entries before failing rather than precheck
895  * for a capacity violation.
896  */
897 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
898 {
899         u32 i;
900         struct vmx_msr_entry e;
901         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
902
903         for (i = 0; i < count; i++) {
904                 if (unlikely(i >= max_msr_list_size))
905                         goto fail;
906
907                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
908                                         &e, sizeof(e))) {
909                         pr_debug_ratelimited(
910                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
911                                 __func__, i, gpa + i * sizeof(e));
912                         goto fail;
913                 }
914                 if (nested_vmx_load_msr_check(vcpu, &e)) {
915                         pr_debug_ratelimited(
916                                 "%s check failed (%u, 0x%x, 0x%x)\n",
917                                 __func__, i, e.index, e.reserved);
918                         goto fail;
919                 }
920                 if (kvm_set_msr(vcpu, e.index, e.value)) {
921                         pr_debug_ratelimited(
922                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
923                                 __func__, i, e.index, e.value);
924                         goto fail;
925                 }
926         }
927         return 0;
928 fail:
929         return i + 1;
930 }
931
932 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
933 {
934         u64 data;
935         u32 i;
936         struct vmx_msr_entry e;
937         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
938
939         for (i = 0; i < count; i++) {
940                 if (unlikely(i >= max_msr_list_size))
941                         return -EINVAL;
942
943                 if (kvm_vcpu_read_guest(vcpu,
944                                         gpa + i * sizeof(e),
945                                         &e, 2 * sizeof(u32))) {
946                         pr_debug_ratelimited(
947                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
948                                 __func__, i, gpa + i * sizeof(e));
949                         return -EINVAL;
950                 }
951                 if (nested_vmx_store_msr_check(vcpu, &e)) {
952                         pr_debug_ratelimited(
953                                 "%s check failed (%u, 0x%x, 0x%x)\n",
954                                 __func__, i, e.index, e.reserved);
955                         return -EINVAL;
956                 }
957                 if (kvm_get_msr(vcpu, e.index, &data)) {
958                         pr_debug_ratelimited(
959                                 "%s cannot read MSR (%u, 0x%x)\n",
960                                 __func__, i, e.index);
961                         return -EINVAL;
962                 }
963                 if (kvm_vcpu_write_guest(vcpu,
964                                          gpa + i * sizeof(e) +
965                                              offsetof(struct vmx_msr_entry, value),
966                                          &data, sizeof(data))) {
967                         pr_debug_ratelimited(
968                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
969                                 __func__, i, e.index, data);
970                         return -EINVAL;
971                 }
972         }
973         return 0;
974 }
975
976 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
977 {
978         unsigned long invalid_mask;
979
980         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
981         return (val & invalid_mask) == 0;
982 }
983
984 /*
985  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
986  * emulating VM entry into a guest with EPT enabled.
987  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
988  * is assigned to entry_failure_code on failure.
989  */
990 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
991                                u32 *entry_failure_code)
992 {
993         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
994                 if (CC(!nested_cr3_valid(vcpu, cr3))) {
995                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
996                         return -EINVAL;
997                 }
998
999                 /*
1000                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1001                  * must not be dereferenced.
1002                  */
1003                 if (is_pae_paging(vcpu) && !nested_ept) {
1004                         if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1005                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1006                                 return -EINVAL;
1007                         }
1008                 }
1009         }
1010
1011         if (!nested_ept)
1012                 kvm_mmu_new_cr3(vcpu, cr3, false);
1013
1014         vcpu->arch.cr3 = cr3;
1015         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
1016
1017         kvm_init_mmu(vcpu, false);
1018
1019         return 0;
1020 }
1021
1022 /*
1023  * Returns if KVM is able to config CPU to tag TLB entries
1024  * populated by L2 differently than TLB entries populated
1025  * by L1.
1026  *
1027  * If L1 uses EPT, then TLB entries are tagged with different EPTP.
1028  *
1029  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1030  * with different VPID (L1 entries are tagged with vmx->vpid
1031  * while L2 entries are tagged with vmx->nested.vpid02).
1032  */
1033 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1034 {
1035         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1036
1037         return nested_cpu_has_ept(vmcs12) ||
1038                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1039 }
1040
1041 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
1042 {
1043         struct vcpu_vmx *vmx = to_vmx(vcpu);
1044
1045         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
1046 }
1047
1048 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1049 {
1050         superset &= mask;
1051         subset &= mask;
1052
1053         return (superset | subset) == superset;
1054 }
1055
1056 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1057 {
1058         const u64 feature_and_reserved =
1059                 /* feature (except bit 48; see below) */
1060                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1061                 /* reserved */
1062                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1063         u64 vmx_basic = vmx->nested.msrs.basic;
1064
1065         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1066                 return -EINVAL;
1067
1068         /*
1069          * KVM does not emulate a version of VMX that constrains physical
1070          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1071          */
1072         if (data & BIT_ULL(48))
1073                 return -EINVAL;
1074
1075         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1076             vmx_basic_vmcs_revision_id(data))
1077                 return -EINVAL;
1078
1079         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1080                 return -EINVAL;
1081
1082         vmx->nested.msrs.basic = data;
1083         return 0;
1084 }
1085
1086 static int
1087 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1088 {
1089         u64 supported;
1090         u32 *lowp, *highp;
1091
1092         switch (msr_index) {
1093         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1094                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1095                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1096                 break;
1097         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1098                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1099                 highp = &vmx->nested.msrs.procbased_ctls_high;
1100                 break;
1101         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1102                 lowp = &vmx->nested.msrs.exit_ctls_low;
1103                 highp = &vmx->nested.msrs.exit_ctls_high;
1104                 break;
1105         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1106                 lowp = &vmx->nested.msrs.entry_ctls_low;
1107                 highp = &vmx->nested.msrs.entry_ctls_high;
1108                 break;
1109         case MSR_IA32_VMX_PROCBASED_CTLS2:
1110                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1111                 highp = &vmx->nested.msrs.secondary_ctls_high;
1112                 break;
1113         default:
1114                 BUG();
1115         }
1116
1117         supported = vmx_control_msr(*lowp, *highp);
1118
1119         /* Check must-be-1 bits are still 1. */
1120         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1121                 return -EINVAL;
1122
1123         /* Check must-be-0 bits are still 0. */
1124         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1125                 return -EINVAL;
1126
1127         *lowp = data;
1128         *highp = data >> 32;
1129         return 0;
1130 }
1131
1132 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1133 {
1134         const u64 feature_and_reserved_bits =
1135                 /* feature */
1136                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1137                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1138                 /* reserved */
1139                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1140         u64 vmx_misc;
1141
1142         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1143                                    vmx->nested.msrs.misc_high);
1144
1145         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1146                 return -EINVAL;
1147
1148         if ((vmx->nested.msrs.pinbased_ctls_high &
1149              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1150             vmx_misc_preemption_timer_rate(data) !=
1151             vmx_misc_preemption_timer_rate(vmx_misc))
1152                 return -EINVAL;
1153
1154         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1155                 return -EINVAL;
1156
1157         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1158                 return -EINVAL;
1159
1160         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1161                 return -EINVAL;
1162
1163         vmx->nested.msrs.misc_low = data;
1164         vmx->nested.msrs.misc_high = data >> 32;
1165
1166         return 0;
1167 }
1168
1169 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1170 {
1171         u64 vmx_ept_vpid_cap;
1172
1173         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1174                                            vmx->nested.msrs.vpid_caps);
1175
1176         /* Every bit is either reserved or a feature bit. */
1177         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1178                 return -EINVAL;
1179
1180         vmx->nested.msrs.ept_caps = data;
1181         vmx->nested.msrs.vpid_caps = data >> 32;
1182         return 0;
1183 }
1184
1185 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1186 {
1187         u64 *msr;
1188
1189         switch (msr_index) {
1190         case MSR_IA32_VMX_CR0_FIXED0:
1191                 msr = &vmx->nested.msrs.cr0_fixed0;
1192                 break;
1193         case MSR_IA32_VMX_CR4_FIXED0:
1194                 msr = &vmx->nested.msrs.cr4_fixed0;
1195                 break;
1196         default:
1197                 BUG();
1198         }
1199
1200         /*
1201          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1202          * must be 1 in the restored value.
1203          */
1204         if (!is_bitwise_subset(data, *msr, -1ULL))
1205                 return -EINVAL;
1206
1207         *msr = data;
1208         return 0;
1209 }
1210
1211 /*
1212  * Called when userspace is restoring VMX MSRs.
1213  *
1214  * Returns 0 on success, non-0 otherwise.
1215  */
1216 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1217 {
1218         struct vcpu_vmx *vmx = to_vmx(vcpu);
1219
1220         /*
1221          * Don't allow changes to the VMX capability MSRs while the vCPU
1222          * is in VMX operation.
1223          */
1224         if (vmx->nested.vmxon)
1225                 return -EBUSY;
1226
1227         switch (msr_index) {
1228         case MSR_IA32_VMX_BASIC:
1229                 return vmx_restore_vmx_basic(vmx, data);
1230         case MSR_IA32_VMX_PINBASED_CTLS:
1231         case MSR_IA32_VMX_PROCBASED_CTLS:
1232         case MSR_IA32_VMX_EXIT_CTLS:
1233         case MSR_IA32_VMX_ENTRY_CTLS:
1234                 /*
1235                  * The "non-true" VMX capability MSRs are generated from the
1236                  * "true" MSRs, so we do not support restoring them directly.
1237                  *
1238                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1239                  * should restore the "true" MSRs with the must-be-1 bits
1240                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1241                  * DEFAULT SETTINGS".
1242                  */
1243                 return -EINVAL;
1244         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1245         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1246         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1247         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1248         case MSR_IA32_VMX_PROCBASED_CTLS2:
1249                 return vmx_restore_control_msr(vmx, msr_index, data);
1250         case MSR_IA32_VMX_MISC:
1251                 return vmx_restore_vmx_misc(vmx, data);
1252         case MSR_IA32_VMX_CR0_FIXED0:
1253         case MSR_IA32_VMX_CR4_FIXED0:
1254                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1255         case MSR_IA32_VMX_CR0_FIXED1:
1256         case MSR_IA32_VMX_CR4_FIXED1:
1257                 /*
1258                  * These MSRs are generated based on the vCPU's CPUID, so we
1259                  * do not support restoring them directly.
1260                  */
1261                 return -EINVAL;
1262         case MSR_IA32_VMX_EPT_VPID_CAP:
1263                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1264         case MSR_IA32_VMX_VMCS_ENUM:
1265                 vmx->nested.msrs.vmcs_enum = data;
1266                 return 0;
1267         case MSR_IA32_VMX_VMFUNC:
1268                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1269                         return -EINVAL;
1270                 vmx->nested.msrs.vmfunc_controls = data;
1271                 return 0;
1272         default:
1273                 /*
1274                  * The rest of the VMX capability MSRs do not support restore.
1275                  */
1276                 return -EINVAL;
1277         }
1278 }
1279
1280 /* Returns 0 on success, non-0 otherwise. */
1281 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1282 {
1283         switch (msr_index) {
1284         case MSR_IA32_VMX_BASIC:
1285                 *pdata = msrs->basic;
1286                 break;
1287         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1288         case MSR_IA32_VMX_PINBASED_CTLS:
1289                 *pdata = vmx_control_msr(
1290                         msrs->pinbased_ctls_low,
1291                         msrs->pinbased_ctls_high);
1292                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1293                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1294                 break;
1295         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1296         case MSR_IA32_VMX_PROCBASED_CTLS:
1297                 *pdata = vmx_control_msr(
1298                         msrs->procbased_ctls_low,
1299                         msrs->procbased_ctls_high);
1300                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1301                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1302                 break;
1303         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1304         case MSR_IA32_VMX_EXIT_CTLS:
1305                 *pdata = vmx_control_msr(
1306                         msrs->exit_ctls_low,
1307                         msrs->exit_ctls_high);
1308                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1309                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1310                 break;
1311         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1312         case MSR_IA32_VMX_ENTRY_CTLS:
1313                 *pdata = vmx_control_msr(
1314                         msrs->entry_ctls_low,
1315                         msrs->entry_ctls_high);
1316                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1317                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1318                 break;
1319         case MSR_IA32_VMX_MISC:
1320                 *pdata = vmx_control_msr(
1321                         msrs->misc_low,
1322                         msrs->misc_high);
1323                 break;
1324         case MSR_IA32_VMX_CR0_FIXED0:
1325                 *pdata = msrs->cr0_fixed0;
1326                 break;
1327         case MSR_IA32_VMX_CR0_FIXED1:
1328                 *pdata = msrs->cr0_fixed1;
1329                 break;
1330         case MSR_IA32_VMX_CR4_FIXED0:
1331                 *pdata = msrs->cr4_fixed0;
1332                 break;
1333         case MSR_IA32_VMX_CR4_FIXED1:
1334                 *pdata = msrs->cr4_fixed1;
1335                 break;
1336         case MSR_IA32_VMX_VMCS_ENUM:
1337                 *pdata = msrs->vmcs_enum;
1338                 break;
1339         case MSR_IA32_VMX_PROCBASED_CTLS2:
1340                 *pdata = vmx_control_msr(
1341                         msrs->secondary_ctls_low,
1342                         msrs->secondary_ctls_high);
1343                 break;
1344         case MSR_IA32_VMX_EPT_VPID_CAP:
1345                 *pdata = msrs->ept_caps |
1346                         ((u64)msrs->vpid_caps << 32);
1347                 break;
1348         case MSR_IA32_VMX_VMFUNC:
1349                 *pdata = msrs->vmfunc_controls;
1350                 break;
1351         default:
1352                 return 1;
1353         }
1354
1355         return 0;
1356 }
1357
1358 /*
1359  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1360  * been modified by the L1 guest.  Note, "writable" in this context means
1361  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1362  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1363  * VM-exit information fields (which are actually writable if the vCPU is
1364  * configured to support "VMWRITE to any supported field in the VMCS").
1365  */
1366 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1367 {
1368         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1369         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1370         struct shadow_vmcs_field field;
1371         unsigned long val;
1372         int i;
1373
1374         if (WARN_ON(!shadow_vmcs))
1375                 return;
1376
1377         preempt_disable();
1378
1379         vmcs_load(shadow_vmcs);
1380
1381         for (i = 0; i < max_shadow_read_write_fields; i++) {
1382                 field = shadow_read_write_fields[i];
1383                 val = __vmcs_readl(field.encoding);
1384                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1385         }
1386
1387         vmcs_clear(shadow_vmcs);
1388         vmcs_load(vmx->loaded_vmcs->vmcs);
1389
1390         preempt_enable();
1391 }
1392
1393 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1394 {
1395         const struct shadow_vmcs_field *fields[] = {
1396                 shadow_read_write_fields,
1397                 shadow_read_only_fields
1398         };
1399         const int max_fields[] = {
1400                 max_shadow_read_write_fields,
1401                 max_shadow_read_only_fields
1402         };
1403         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1404         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1405         struct shadow_vmcs_field field;
1406         unsigned long val;
1407         int i, q;
1408
1409         if (WARN_ON(!shadow_vmcs))
1410                 return;
1411
1412         vmcs_load(shadow_vmcs);
1413
1414         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1415                 for (i = 0; i < max_fields[q]; i++) {
1416                         field = fields[q][i];
1417                         val = vmcs12_read_any(vmcs12, field.encoding,
1418                                               field.offset);
1419                         __vmcs_writel(field.encoding, val);
1420                 }
1421         }
1422
1423         vmcs_clear(shadow_vmcs);
1424         vmcs_load(vmx->loaded_vmcs->vmcs);
1425 }
1426
1427 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1428 {
1429         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1430         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1431
1432         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1433         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1434         vmcs12->guest_rip = evmcs->guest_rip;
1435
1436         if (unlikely(!(evmcs->hv_clean_fields &
1437                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1438                 vmcs12->guest_rsp = evmcs->guest_rsp;
1439                 vmcs12->guest_rflags = evmcs->guest_rflags;
1440                 vmcs12->guest_interruptibility_info =
1441                         evmcs->guest_interruptibility_info;
1442         }
1443
1444         if (unlikely(!(evmcs->hv_clean_fields &
1445                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1446                 vmcs12->cpu_based_vm_exec_control =
1447                         evmcs->cpu_based_vm_exec_control;
1448         }
1449
1450         if (unlikely(!(evmcs->hv_clean_fields &
1451                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1452                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1453         }
1454
1455         if (unlikely(!(evmcs->hv_clean_fields &
1456                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1457                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1458         }
1459
1460         if (unlikely(!(evmcs->hv_clean_fields &
1461                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1462                 vmcs12->vm_entry_intr_info_field =
1463                         evmcs->vm_entry_intr_info_field;
1464                 vmcs12->vm_entry_exception_error_code =
1465                         evmcs->vm_entry_exception_error_code;
1466                 vmcs12->vm_entry_instruction_len =
1467                         evmcs->vm_entry_instruction_len;
1468         }
1469
1470         if (unlikely(!(evmcs->hv_clean_fields &
1471                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1472                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1473                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1474                 vmcs12->host_cr0 = evmcs->host_cr0;
1475                 vmcs12->host_cr3 = evmcs->host_cr3;
1476                 vmcs12->host_cr4 = evmcs->host_cr4;
1477                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1478                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1479                 vmcs12->host_rip = evmcs->host_rip;
1480                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1481                 vmcs12->host_es_selector = evmcs->host_es_selector;
1482                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1483                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1484                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1485                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1486                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1487                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1488         }
1489
1490         if (unlikely(!(evmcs->hv_clean_fields &
1491                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1492                 vmcs12->pin_based_vm_exec_control =
1493                         evmcs->pin_based_vm_exec_control;
1494                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1495                 vmcs12->secondary_vm_exec_control =
1496                         evmcs->secondary_vm_exec_control;
1497         }
1498
1499         if (unlikely(!(evmcs->hv_clean_fields &
1500                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1501                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1502                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1503         }
1504
1505         if (unlikely(!(evmcs->hv_clean_fields &
1506                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1507                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1508         }
1509
1510         if (unlikely(!(evmcs->hv_clean_fields &
1511                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1512                 vmcs12->guest_es_base = evmcs->guest_es_base;
1513                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1514                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1515                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1516                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1517                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1518                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1519                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1520                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1521                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1522                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1523                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1524                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1525                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1526                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1527                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1528                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1529                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1530                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1531                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1532                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1533                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1534                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1535                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1536                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1537                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1538                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1539                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1540                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1541                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1542                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1543                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1544                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1545                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1546                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1547                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1548         }
1549
1550         if (unlikely(!(evmcs->hv_clean_fields &
1551                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1552                 vmcs12->tsc_offset = evmcs->tsc_offset;
1553                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1554                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1555         }
1556
1557         if (unlikely(!(evmcs->hv_clean_fields &
1558                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1559                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1560                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1561                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1562                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1563                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1564                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1565                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1566                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1567         }
1568
1569         if (unlikely(!(evmcs->hv_clean_fields &
1570                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1571                 vmcs12->host_fs_base = evmcs->host_fs_base;
1572                 vmcs12->host_gs_base = evmcs->host_gs_base;
1573                 vmcs12->host_tr_base = evmcs->host_tr_base;
1574                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1575                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1576                 vmcs12->host_rsp = evmcs->host_rsp;
1577         }
1578
1579         if (unlikely(!(evmcs->hv_clean_fields &
1580                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1581                 vmcs12->ept_pointer = evmcs->ept_pointer;
1582                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1583         }
1584
1585         if (unlikely(!(evmcs->hv_clean_fields &
1586                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1587                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1588                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1589                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1590                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1591                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1592                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1593                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1594                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1595                 vmcs12->guest_pending_dbg_exceptions =
1596                         evmcs->guest_pending_dbg_exceptions;
1597                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1598                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1599                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1600                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1601                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1602         }
1603
1604         /*
1605          * Not used?
1606          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1607          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1608          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1609          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1610          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1611          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1612          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1613          * vmcs12->page_fault_error_code_mask =
1614          *              evmcs->page_fault_error_code_mask;
1615          * vmcs12->page_fault_error_code_match =
1616          *              evmcs->page_fault_error_code_match;
1617          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1618          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1619          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1620          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1621          */
1622
1623         /*
1624          * Read only fields:
1625          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1626          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1627          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1628          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1629          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1630          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1631          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1632          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1633          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1634          * vmcs12->exit_qualification = evmcs->exit_qualification;
1635          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1636          *
1637          * Not present in struct vmcs12:
1638          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1639          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1640          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1641          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1642          */
1643
1644         return 0;
1645 }
1646
1647 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1648 {
1649         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1650         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1651
1652         /*
1653          * Should not be changed by KVM:
1654          *
1655          * evmcs->host_es_selector = vmcs12->host_es_selector;
1656          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1657          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1658          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1659          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1660          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1661          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1662          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1663          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1664          * evmcs->host_cr0 = vmcs12->host_cr0;
1665          * evmcs->host_cr3 = vmcs12->host_cr3;
1666          * evmcs->host_cr4 = vmcs12->host_cr4;
1667          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1668          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1669          * evmcs->host_rip = vmcs12->host_rip;
1670          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1671          * evmcs->host_fs_base = vmcs12->host_fs_base;
1672          * evmcs->host_gs_base = vmcs12->host_gs_base;
1673          * evmcs->host_tr_base = vmcs12->host_tr_base;
1674          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1675          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1676          * evmcs->host_rsp = vmcs12->host_rsp;
1677          * sync_vmcs02_to_vmcs12() doesn't read these:
1678          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1679          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1680          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1681          * evmcs->ept_pointer = vmcs12->ept_pointer;
1682          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1683          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1684          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1685          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1686          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1687          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1688          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1689          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1690          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1691          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1692          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1693          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1694          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1695          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1696          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1697          * evmcs->page_fault_error_code_mask =
1698          *              vmcs12->page_fault_error_code_mask;
1699          * evmcs->page_fault_error_code_match =
1700          *              vmcs12->page_fault_error_code_match;
1701          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1702          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1703          * evmcs->tsc_offset = vmcs12->tsc_offset;
1704          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1705          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1706          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1707          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1708          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1709          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1710          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1711          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1712          *
1713          * Not present in struct vmcs12:
1714          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1715          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1716          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1717          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1718          */
1719
1720         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1721         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1722         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1723         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1724         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1725         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1726         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1727         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1728
1729         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1730         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1731         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1732         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1733         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1734         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1735         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1736         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1737         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1738         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1739
1740         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1741         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1742         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1743         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1744         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1745         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1746         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1747         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1748
1749         evmcs->guest_es_base = vmcs12->guest_es_base;
1750         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1751         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1752         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1753         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1754         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1755         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1756         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1757         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1758         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1759
1760         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1761         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1762
1763         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1764         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1765         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1766         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1767
1768         evmcs->guest_pending_dbg_exceptions =
1769                 vmcs12->guest_pending_dbg_exceptions;
1770         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1771         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1772
1773         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1774         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1775
1776         evmcs->guest_cr0 = vmcs12->guest_cr0;
1777         evmcs->guest_cr3 = vmcs12->guest_cr3;
1778         evmcs->guest_cr4 = vmcs12->guest_cr4;
1779         evmcs->guest_dr7 = vmcs12->guest_dr7;
1780
1781         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1782
1783         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1784         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1785         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1786         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1787         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1788         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1789         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1790         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1791
1792         evmcs->exit_qualification = vmcs12->exit_qualification;
1793
1794         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1795         evmcs->guest_rsp = vmcs12->guest_rsp;
1796         evmcs->guest_rflags = vmcs12->guest_rflags;
1797
1798         evmcs->guest_interruptibility_info =
1799                 vmcs12->guest_interruptibility_info;
1800         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1801         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1802         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1803         evmcs->vm_entry_exception_error_code =
1804                 vmcs12->vm_entry_exception_error_code;
1805         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1806
1807         evmcs->guest_rip = vmcs12->guest_rip;
1808
1809         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1810
1811         return 0;
1812 }
1813
1814 /*
1815  * This is an equivalent of the nested hypervisor executing the vmptrld
1816  * instruction.
1817  */
1818 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1819                                                  bool from_launch)
1820 {
1821         struct vcpu_vmx *vmx = to_vmx(vcpu);
1822         bool evmcs_gpa_changed = false;
1823         u64 evmcs_gpa;
1824
1825         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1826                 return 1;
1827
1828         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1829                 return 1;
1830
1831         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1832                 if (!vmx->nested.hv_evmcs)
1833                         vmx->nested.current_vmptr = -1ull;
1834
1835                 nested_release_evmcs(vcpu);
1836
1837                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1838                                  &vmx->nested.hv_evmcs_map))
1839                         return 0;
1840
1841                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1842
1843                 /*
1844                  * Currently, KVM only supports eVMCS version 1
1845                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1846                  * value to first u32 field of eVMCS which should specify eVMCS
1847                  * VersionNumber.
1848                  *
1849                  * Guest should be aware of supported eVMCS versions by host by
1850                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1851                  * expected to set this CPUID leaf according to the value
1852                  * returned in vmcs_version from nested_enable_evmcs().
1853                  *
1854                  * However, it turns out that Microsoft Hyper-V fails to comply
1855                  * to their own invented interface: When Hyper-V use eVMCS, it
1856                  * just sets first u32 field of eVMCS to revision_id specified
1857                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1858                  * which is one of the supported versions specified in
1859                  * CPUID.0x4000000A.EAX[0:15].
1860                  *
1861                  * To overcome Hyper-V bug, we accept here either a supported
1862                  * eVMCS version or VMCS12 revision_id as valid values for first
1863                  * u32 field of eVMCS.
1864                  */
1865                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1866                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1867                         nested_release_evmcs(vcpu);
1868                         return 0;
1869                 }
1870
1871                 vmx->nested.dirty_vmcs12 = true;
1872                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1873
1874                 evmcs_gpa_changed = true;
1875                 /*
1876                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1877                  * reloaded from guest's memory (read only fields, fields not
1878                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1879                  * are no leftovers.
1880                  */
1881                 if (from_launch) {
1882                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1883                         memset(vmcs12, 0, sizeof(*vmcs12));
1884                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1885                 }
1886
1887         }
1888
1889         /*
1890          * Clean fields data can't de used on VMLAUNCH and when we switch
1891          * between different L2 guests as KVM keeps a single VMCS12 per L1.
1892          */
1893         if (from_launch || evmcs_gpa_changed)
1894                 vmx->nested.hv_evmcs->hv_clean_fields &=
1895                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1896
1897         return 1;
1898 }
1899
1900 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
1901 {
1902         struct vcpu_vmx *vmx = to_vmx(vcpu);
1903
1904         /*
1905          * hv_evmcs may end up being not mapped after migration (when
1906          * L2 was running), map it here to make sure vmcs12 changes are
1907          * properly reflected.
1908          */
1909         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1910                 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1911
1912         if (vmx->nested.hv_evmcs) {
1913                 copy_vmcs12_to_enlightened(vmx);
1914                 /* All fields are clean */
1915                 vmx->nested.hv_evmcs->hv_clean_fields |=
1916                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1917         } else {
1918                 copy_vmcs12_to_shadow(vmx);
1919         }
1920
1921         vmx->nested.need_vmcs12_to_shadow_sync = false;
1922 }
1923
1924 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1925 {
1926         struct vcpu_vmx *vmx =
1927                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1928
1929         vmx->nested.preemption_timer_expired = true;
1930         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1931         kvm_vcpu_kick(&vmx->vcpu);
1932
1933         return HRTIMER_NORESTART;
1934 }
1935
1936 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1937 {
1938         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1939         struct vcpu_vmx *vmx = to_vmx(vcpu);
1940
1941         /*
1942          * A timer value of zero is architecturally guaranteed to cause
1943          * a VMExit prior to executing any instructions in the guest.
1944          */
1945         if (preemption_timeout == 0) {
1946                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1947                 return;
1948         }
1949
1950         if (vcpu->arch.virtual_tsc_khz == 0)
1951                 return;
1952
1953         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1954         preemption_timeout *= 1000000;
1955         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1956         hrtimer_start(&vmx->nested.preemption_timer,
1957                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1958 }
1959
1960 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1961 {
1962         if (vmx->nested.nested_run_pending &&
1963             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1964                 return vmcs12->guest_ia32_efer;
1965         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1966                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1967         else
1968                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1969 }
1970
1971 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1972 {
1973         /*
1974          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1975          * according to L0's settings (vmcs12 is irrelevant here).  Host
1976          * fields that come from L0 and are not constant, e.g. HOST_CR3,
1977          * will be set as needed prior to VMLAUNCH/VMRESUME.
1978          */
1979         if (vmx->nested.vmcs02_initialized)
1980                 return;
1981         vmx->nested.vmcs02_initialized = true;
1982
1983         /*
1984          * We don't care what the EPTP value is we just need to guarantee
1985          * it's valid so we don't get a false positive when doing early
1986          * consistency checks.
1987          */
1988         if (enable_ept && nested_early_check)
1989                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1990
1991         /* All VMFUNCs are currently emulated through L0 vmexits.  */
1992         if (cpu_has_vmx_vmfunc())
1993                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
1994
1995         if (cpu_has_vmx_posted_intr())
1996                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1997
1998         if (cpu_has_vmx_msr_bitmap())
1999                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2000
2001         /*
2002          * The PML address never changes, so it is constant in vmcs02.
2003          * Conceptually we want to copy the PML index from vmcs01 here,
2004          * and then back to vmcs01 on nested vmexit.  But since we flush
2005          * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2006          * index is also effectively constant in vmcs02.
2007          */
2008         if (enable_pml) {
2009                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2010                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2011         }
2012
2013         if (cpu_has_vmx_encls_vmexit())
2014                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2015
2016         /*
2017          * Set the MSR load/store lists to match L0's settings.  Only the
2018          * addresses are constant (for vmcs02), the counts can change based
2019          * on L2's behavior, e.g. switching to/from long mode.
2020          */
2021         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2022         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2023         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2024
2025         vmx_set_constant_host_state(vmx);
2026 }
2027
2028 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2029                                       struct vmcs12 *vmcs12)
2030 {
2031         prepare_vmcs02_constant_state(vmx);
2032
2033         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2034
2035         if (enable_vpid) {
2036                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2037                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2038                 else
2039                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2040         }
2041 }
2042
2043 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2044 {
2045         u32 exec_control, vmcs12_exec_ctrl;
2046         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2047
2048         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2049                 prepare_vmcs02_early_rare(vmx, vmcs12);
2050
2051         /*
2052          * PIN CONTROLS
2053          */
2054         exec_control = vmx_pin_based_exec_ctrl(vmx);
2055         exec_control |= (vmcs12->pin_based_vm_exec_control &
2056                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2057
2058         /* Posted interrupts setting is only taken from vmcs12.  */
2059         if (nested_cpu_has_posted_intr(vmcs12)) {
2060                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2061                 vmx->nested.pi_pending = false;
2062         } else {
2063                 exec_control &= ~PIN_BASED_POSTED_INTR;
2064         }
2065         pin_controls_set(vmx, exec_control);
2066
2067         /*
2068          * EXEC CONTROLS
2069          */
2070         exec_control = vmx_exec_control(vmx); /* L0's desires */
2071         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2072         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2073         exec_control &= ~CPU_BASED_TPR_SHADOW;
2074         exec_control |= vmcs12->cpu_based_vm_exec_control;
2075
2076         if (exec_control & CPU_BASED_TPR_SHADOW)
2077                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2078 #ifdef CONFIG_X86_64
2079         else
2080                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2081                                 CPU_BASED_CR8_STORE_EXITING;
2082 #endif
2083
2084         /*
2085          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2086          * for I/O port accesses.
2087          */
2088         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2089         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2090
2091         /*
2092          * This bit will be computed in nested_get_vmcs12_pages, because
2093          * we do not have access to L1's MSR bitmap yet.  For now, keep
2094          * the same bit as before, hoping to avoid multiple VMWRITEs that
2095          * only set/clear this bit.
2096          */
2097         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2098         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2099
2100         exec_controls_set(vmx, exec_control);
2101
2102         /*
2103          * SECONDARY EXEC CONTROLS
2104          */
2105         if (cpu_has_secondary_exec_ctrls()) {
2106                 exec_control = vmx->secondary_exec_control;
2107
2108                 /* Take the following fields only from vmcs12 */
2109                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2110                                   SECONDARY_EXEC_ENABLE_INVPCID |
2111                                   SECONDARY_EXEC_RDTSCP |
2112                                   SECONDARY_EXEC_XSAVES |
2113                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2114                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2115                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2116                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2117                 if (nested_cpu_has(vmcs12,
2118                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2119                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2120                                 ~SECONDARY_EXEC_ENABLE_PML;
2121                         exec_control |= vmcs12_exec_ctrl;
2122                 }
2123
2124                 /* VMCS shadowing for L2 is emulated for now */
2125                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2126
2127                 /*
2128                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2129                  * will not have to rewrite the controls just for this bit.
2130                  */
2131                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2132                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2133                         exec_control |= SECONDARY_EXEC_DESC;
2134
2135                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2136                         vmcs_write16(GUEST_INTR_STATUS,
2137                                 vmcs12->guest_intr_status);
2138
2139                 secondary_exec_controls_set(vmx, exec_control);
2140         }
2141
2142         /*
2143          * ENTRY CONTROLS
2144          *
2145          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2146          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2147          * on the related bits (if supported by the CPU) in the hope that
2148          * we can avoid VMWrites during vmx_set_efer().
2149          */
2150         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2151                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2152         if (cpu_has_load_ia32_efer()) {
2153                 if (guest_efer & EFER_LMA)
2154                         exec_control |= VM_ENTRY_IA32E_MODE;
2155                 if (guest_efer != host_efer)
2156                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2157         }
2158         vm_entry_controls_set(vmx, exec_control);
2159
2160         /*
2161          * EXIT CONTROLS
2162          *
2163          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2164          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2165          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2166          */
2167         exec_control = vmx_vmexit_ctrl();
2168         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2169                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2170         vm_exit_controls_set(vmx, exec_control);
2171
2172         /*
2173          * Interrupt/Exception Fields
2174          */
2175         if (vmx->nested.nested_run_pending) {
2176                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2177                              vmcs12->vm_entry_intr_info_field);
2178                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2179                              vmcs12->vm_entry_exception_error_code);
2180                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2181                              vmcs12->vm_entry_instruction_len);
2182                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2183                              vmcs12->guest_interruptibility_info);
2184                 vmx->loaded_vmcs->nmi_known_unmasked =
2185                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2186         } else {
2187                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2188         }
2189 }
2190
2191 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2192 {
2193         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2194
2195         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2196                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2197                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2198                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2199                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2200                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2201                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2202                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2203                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2204                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2205                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2206                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2207                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2208                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2209                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2210                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2211                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2212                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2213                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2214                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2215                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2216                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2217                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2218                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2219                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2220                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2221                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2222                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2223                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2224                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2225                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2226                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2227                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2228                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2229                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2230                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2231                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2232                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2233         }
2234
2235         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2236                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2237                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2238                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2239                             vmcs12->guest_pending_dbg_exceptions);
2240                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2241                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2242
2243                 /*
2244                  * L1 may access the L2's PDPTR, so save them to construct
2245                  * vmcs12
2246                  */
2247                 if (enable_ept) {
2248                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2249                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2250                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2251                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2252                 }
2253
2254                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2255                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2256                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2257         }
2258
2259         if (nested_cpu_has_xsaves(vmcs12))
2260                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2261
2262         /*
2263          * Whether page-faults are trapped is determined by a combination of
2264          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2265          * If enable_ept, L0 doesn't care about page faults and we should
2266          * set all of these to L1's desires. However, if !enable_ept, L0 does
2267          * care about (at least some) page faults, and because it is not easy
2268          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2269          * to exit on each and every L2 page fault. This is done by setting
2270          * MASK=MATCH=0 and (see below) EB.PF=1.
2271          * Note that below we don't need special code to set EB.PF beyond the
2272          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2273          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2274          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2275          */
2276         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2277                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2278         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2279                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2280
2281         if (cpu_has_vmx_apicv()) {
2282                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2283                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2284                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2285                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2286         }
2287
2288         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2289         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2290
2291         set_cr4_guest_host_mask(vmx);
2292 }
2293
2294 /*
2295  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2296  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2297  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2298  * guest in a way that will both be appropriate to L1's requests, and our
2299  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2300  * function also has additional necessary side-effects, like setting various
2301  * vcpu->arch fields.
2302  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2303  * is assigned to entry_failure_code on failure.
2304  */
2305 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2306                           u32 *entry_failure_code)
2307 {
2308         struct vcpu_vmx *vmx = to_vmx(vcpu);
2309         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2310         bool load_guest_pdptrs_vmcs12 = false;
2311
2312         if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2313                 prepare_vmcs02_rare(vmx, vmcs12);
2314                 vmx->nested.dirty_vmcs12 = false;
2315
2316                 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2317                         !(hv_evmcs->hv_clean_fields &
2318                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2319         }
2320
2321         if (vmx->nested.nested_run_pending &&
2322             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2323                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2324                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2325         } else {
2326                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2327                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2328         }
2329         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2330             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2331                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2332         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2333
2334         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2335          * bitwise-or of what L1 wants to trap for L2, and what we want to
2336          * trap. Note that CR0.TS also needs updating - we do this later.
2337          */
2338         update_exception_bitmap(vcpu);
2339         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2340         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2341
2342         if (vmx->nested.nested_run_pending &&
2343             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2344                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2345                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2346         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2347                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2348         }
2349
2350         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2351
2352         if (kvm_has_tsc_control)
2353                 decache_tsc_multiplier(vmx);
2354
2355         if (enable_vpid) {
2356                 /*
2357                  * There is no direct mapping between vpid02 and vpid12, the
2358                  * vpid02 is per-vCPU for L0 and reused while the value of
2359                  * vpid12 is changed w/ one invvpid during nested vmentry.
2360                  * The vpid12 is allocated by L1 for L2, so it will not
2361                  * influence global bitmap(for vpid01 and vpid02 allocation)
2362                  * even if spawn a lot of nested vCPUs.
2363                  */
2364                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2365                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2366                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2367                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2368                         }
2369                 } else {
2370                         /*
2371                          * If L1 use EPT, then L0 needs to execute INVEPT on
2372                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2373                          * flush until vmcs02->eptp is fully updated by
2374                          * KVM_REQ_LOAD_CR3. Note that this assumes
2375                          * KVM_REQ_TLB_FLUSH is evaluated after
2376                          * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2377                          */
2378                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2379                 }
2380         }
2381
2382         if (nested_cpu_has_ept(vmcs12))
2383                 nested_ept_init_mmu_context(vcpu);
2384         else if (nested_cpu_has2(vmcs12,
2385                                  SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2386                 vmx_flush_tlb(vcpu, true);
2387
2388         /*
2389          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2390          * bits which we consider mandatory enabled.
2391          * The CR0_READ_SHADOW is what L2 should have expected to read given
2392          * the specifications by L1; It's not enough to take
2393          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2394          * have more bits than L1 expected.
2395          */
2396         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2397         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2398
2399         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2400         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2401
2402         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2403         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2404         vmx_set_efer(vcpu, vcpu->arch.efer);
2405
2406         /*
2407          * Guest state is invalid and unrestricted guest is disabled,
2408          * which means L1 attempted VMEntry to L2 with invalid state.
2409          * Fail the VMEntry.
2410          */
2411         if (vmx->emulation_required) {
2412                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2413                 return -EINVAL;
2414         }
2415
2416         /* Shadow page tables on either EPT or shadow page tables. */
2417         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2418                                 entry_failure_code))
2419                 return -EINVAL;
2420
2421         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2422         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2423             is_pae_paging(vcpu)) {
2424                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2425                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2426                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2427                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2428         }
2429
2430         if (!enable_ept)
2431                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2432
2433         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2434         kvm_rip_write(vcpu, vmcs12->guest_rip);
2435         return 0;
2436 }
2437
2438 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2439 {
2440         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2441                nested_cpu_has_virtual_nmis(vmcs12)))
2442                 return -EINVAL;
2443
2444         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2445                nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING)))
2446                 return -EINVAL;
2447
2448         return 0;
2449 }
2450
2451 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2452 {
2453         struct vcpu_vmx *vmx = to_vmx(vcpu);
2454         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2455
2456         /* Check for memory type validity */
2457         switch (address & VMX_EPTP_MT_MASK) {
2458         case VMX_EPTP_MT_UC:
2459                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2460                         return false;
2461                 break;
2462         case VMX_EPTP_MT_WB:
2463                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2464                         return false;
2465                 break;
2466         default:
2467                 return false;
2468         }
2469
2470         /* only 4 levels page-walk length are valid */
2471         if (CC((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4))
2472                 return false;
2473
2474         /* Reserved bits should not be set */
2475         if (CC(address >> maxphyaddr || ((address >> 7) & 0x1f)))
2476                 return false;
2477
2478         /* AD, if set, should be supported */
2479         if (address & VMX_EPTP_AD_ENABLE_BIT) {
2480                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2481                         return false;
2482         }
2483
2484         return true;
2485 }
2486
2487 /*
2488  * Checks related to VM-Execution Control Fields
2489  */
2490 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2491                                               struct vmcs12 *vmcs12)
2492 {
2493         struct vcpu_vmx *vmx = to_vmx(vcpu);
2494
2495         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2496                                    vmx->nested.msrs.pinbased_ctls_low,
2497                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2498             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2499                                    vmx->nested.msrs.procbased_ctls_low,
2500                                    vmx->nested.msrs.procbased_ctls_high)))
2501                 return -EINVAL;
2502
2503         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2504             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2505                                    vmx->nested.msrs.secondary_ctls_low,
2506                                    vmx->nested.msrs.secondary_ctls_high)))
2507                 return -EINVAL;
2508
2509         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2510             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2511             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2512             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2513             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2514             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2515             nested_vmx_check_nmi_controls(vmcs12) ||
2516             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2517             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2518             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2519             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2520             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2521                 return -EINVAL;
2522
2523         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2524             nested_cpu_has_save_preemption_timer(vmcs12))
2525                 return -EINVAL;
2526
2527         if (nested_cpu_has_ept(vmcs12) &&
2528             CC(!valid_ept_address(vcpu, vmcs12->ept_pointer)))
2529                 return -EINVAL;
2530
2531         if (nested_cpu_has_vmfunc(vmcs12)) {
2532                 if (CC(vmcs12->vm_function_control &
2533                        ~vmx->nested.msrs.vmfunc_controls))
2534                         return -EINVAL;
2535
2536                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2537                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2538                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2539                                 return -EINVAL;
2540                 }
2541         }
2542
2543         return 0;
2544 }
2545
2546 /*
2547  * Checks related to VM-Exit Control Fields
2548  */
2549 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2550                                          struct vmcs12 *vmcs12)
2551 {
2552         struct vcpu_vmx *vmx = to_vmx(vcpu);
2553
2554         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2555                                     vmx->nested.msrs.exit_ctls_low,
2556                                     vmx->nested.msrs.exit_ctls_high)) ||
2557             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2558                 return -EINVAL;
2559
2560         return 0;
2561 }
2562
2563 /*
2564  * Checks related to VM-Entry Control Fields
2565  */
2566 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2567                                           struct vmcs12 *vmcs12)
2568 {
2569         struct vcpu_vmx *vmx = to_vmx(vcpu);
2570
2571         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2572                                     vmx->nested.msrs.entry_ctls_low,
2573                                     vmx->nested.msrs.entry_ctls_high)))
2574                 return -EINVAL;
2575
2576         /*
2577          * From the Intel SDM, volume 3:
2578          * Fields relevant to VM-entry event injection must be set properly.
2579          * These fields are the VM-entry interruption-information field, the
2580          * VM-entry exception error code, and the VM-entry instruction length.
2581          */
2582         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2583                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2584                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2585                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2586                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2587                 bool should_have_error_code;
2588                 bool urg = nested_cpu_has2(vmcs12,
2589                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2590                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2591
2592                 /* VM-entry interruption-info field: interruption type */
2593                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2594                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2595                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2596                         return -EINVAL;
2597
2598                 /* VM-entry interruption-info field: vector */
2599                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2600                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2601                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2602                         return -EINVAL;
2603
2604                 /* VM-entry interruption-info field: deliver error code */
2605                 should_have_error_code =
2606                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2607                         x86_exception_has_error_code(vector);
2608                 if (CC(has_error_code != should_have_error_code))
2609                         return -EINVAL;
2610
2611                 /* VM-entry exception error code */
2612                 if (CC(has_error_code &&
2613                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 15)))
2614                         return -EINVAL;
2615
2616                 /* VM-entry interruption-info field: reserved bits */
2617                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2618                         return -EINVAL;
2619
2620                 /* VM-entry instruction length */
2621                 switch (intr_type) {
2622                 case INTR_TYPE_SOFT_EXCEPTION:
2623                 case INTR_TYPE_SOFT_INTR:
2624                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2625                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2626                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2627                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2628                                 return -EINVAL;
2629                 }
2630         }
2631
2632         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2633                 return -EINVAL;
2634
2635         return 0;
2636 }
2637
2638 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2639                                      struct vmcs12 *vmcs12)
2640 {
2641         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2642             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2643             nested_check_vm_entry_controls(vcpu, vmcs12))
2644                 return -EINVAL;
2645
2646         return 0;
2647 }
2648
2649 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2650                                        struct vmcs12 *vmcs12)
2651 {
2652         bool ia32e;
2653
2654         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2655             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2656             CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2657                 return -EINVAL;
2658
2659         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2660             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2661                 return -EINVAL;
2662
2663         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2664             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2665                 return -EINVAL;
2666
2667 #ifdef CONFIG_X86_64
2668         ia32e = !!(vcpu->arch.efer & EFER_LMA);
2669 #else
2670         ia32e = false;
2671 #endif
2672
2673         if (ia32e) {
2674                 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2675                     CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2676                         return -EINVAL;
2677         } else {
2678                 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2679                     CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2680                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2681                     CC((vmcs12->host_rip) >> 32))
2682                         return -EINVAL;
2683         }
2684
2685         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2686             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2687             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2688             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2689             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2690             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2691             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2692             CC(vmcs12->host_cs_selector == 0) ||
2693             CC(vmcs12->host_tr_selector == 0) ||
2694             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2695                 return -EINVAL;
2696
2697 #ifdef CONFIG_X86_64
2698         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2699             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2700             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2701             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2702             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2703             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2704                 return -EINVAL;
2705 #endif
2706
2707         /*
2708          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2709          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2710          * the values of the LMA and LME bits in the field must each be that of
2711          * the host address-space size VM-exit control.
2712          */
2713         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2714                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2715                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2716                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2717                         return -EINVAL;
2718         }
2719
2720         return 0;
2721 }
2722
2723 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2724                                           struct vmcs12 *vmcs12)
2725 {
2726         int r = 0;
2727         struct vmcs12 *shadow;
2728         struct kvm_host_map map;
2729
2730         if (vmcs12->vmcs_link_pointer == -1ull)
2731                 return 0;
2732
2733         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2734                 return -EINVAL;
2735
2736         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2737                 return -EINVAL;
2738
2739         shadow = map.hva;
2740
2741         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2742             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2743                 r = -EINVAL;
2744
2745         kvm_vcpu_unmap(vcpu, &map, false);
2746         return r;
2747 }
2748
2749 /*
2750  * Checks related to Guest Non-register State
2751  */
2752 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2753 {
2754         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2755                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2756                 return -EINVAL;
2757
2758         return 0;
2759 }
2760
2761 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2762                                         struct vmcs12 *vmcs12,
2763                                         u32 *exit_qual)
2764 {
2765         bool ia32e;
2766
2767         *exit_qual = ENTRY_FAIL_DEFAULT;
2768
2769         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2770             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2771                 return -EINVAL;
2772
2773         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2774             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2775                 return -EINVAL;
2776
2777         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2778                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2779                 return -EINVAL;
2780         }
2781
2782         /*
2783          * If the load IA32_EFER VM-entry control is 1, the following checks
2784          * are performed on the field for the IA32_EFER MSR:
2785          * - Bits reserved in the IA32_EFER MSR must be 0.
2786          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2787          *   the IA-32e mode guest VM-exit control. It must also be identical
2788          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2789          *   CR0.PG) is 1.
2790          */
2791         if (to_vmx(vcpu)->nested.nested_run_pending &&
2792             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2793                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2794                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2795                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2796                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2797                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2798                         return -EINVAL;
2799         }
2800
2801         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2802             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2803              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
2804                 return -EINVAL;
2805
2806         if (nested_check_guest_non_reg_state(vmcs12))
2807                 return -EINVAL;
2808
2809         return 0;
2810 }
2811
2812 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2813 {
2814         struct vcpu_vmx *vmx = to_vmx(vcpu);
2815         unsigned long cr3, cr4;
2816         bool vm_fail;
2817
2818         if (!nested_early_check)
2819                 return 0;
2820
2821         if (vmx->msr_autoload.host.nr)
2822                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2823         if (vmx->msr_autoload.guest.nr)
2824                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2825
2826         preempt_disable();
2827
2828         vmx_prepare_switch_to_guest(vcpu);
2829
2830         /*
2831          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2832          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2833          * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2834          * there is no need to preserve other bits or save/restore the field.
2835          */
2836         vmcs_writel(GUEST_RFLAGS, 0);
2837
2838         cr3 = __get_current_cr3_fast();
2839         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2840                 vmcs_writel(HOST_CR3, cr3);
2841                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2842         }
2843
2844         cr4 = cr4_read_shadow();
2845         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2846                 vmcs_writel(HOST_CR4, cr4);
2847                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2848         }
2849
2850         asm(
2851                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2852                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2853                 "je 1f \n\t"
2854                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2855                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2856                 "1: \n\t"
2857                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2858
2859                 /* Check if vmlaunch or vmresume is needed */
2860                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2861
2862                 /*
2863                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2864                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2865                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2866                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2867                  */
2868                 "call vmx_vmenter\n\t"
2869
2870                 CC_SET(be)
2871               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
2872               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
2873                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
2874                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
2875                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
2876                 [wordsize]"i"(sizeof(ulong))
2877               : "memory"
2878         );
2879
2880         if (vmx->msr_autoload.host.nr)
2881                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2882         if (vmx->msr_autoload.guest.nr)
2883                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2884
2885         if (vm_fail) {
2886                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
2887
2888                 preempt_enable();
2889
2890                 trace_kvm_nested_vmenter_failed(
2891                         "early hardware check VM-instruction error: ", error);
2892                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2893                 return 1;
2894         }
2895
2896         /*
2897          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2898          */
2899         local_irq_enable();
2900         if (hw_breakpoint_active())
2901                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
2902         preempt_enable();
2903
2904         /*
2905          * A non-failing VMEntry means we somehow entered guest mode with
2906          * an illegal RIP, and that's just the tip of the iceberg.  There
2907          * is no telling what memory has been modified or what state has
2908          * been exposed to unknown code.  Hitting this all but guarantees
2909          * a (very critical) hardware issue.
2910          */
2911         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2912                 VMX_EXIT_REASONS_FAILED_VMENTRY));
2913
2914         return 0;
2915 }
2916
2917 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2918                                                  struct vmcs12 *vmcs12);
2919
2920 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2921 {
2922         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2923         struct vcpu_vmx *vmx = to_vmx(vcpu);
2924         struct kvm_host_map *map;
2925         struct page *page;
2926         u64 hpa;
2927
2928         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2929                 /*
2930                  * Translate L1 physical address to host physical
2931                  * address for vmcs02. Keep the page pinned, so this
2932                  * physical address remains valid. We keep a reference
2933                  * to it so we can release it later.
2934                  */
2935                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2936                         kvm_release_page_dirty(vmx->nested.apic_access_page);
2937                         vmx->nested.apic_access_page = NULL;
2938                 }
2939                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2940                 /*
2941                  * If translation failed, no matter: This feature asks
2942                  * to exit when accessing the given address, and if it
2943                  * can never be accessed, this feature won't do
2944                  * anything anyway.
2945                  */
2946                 if (!is_error_page(page)) {
2947                         vmx->nested.apic_access_page = page;
2948                         hpa = page_to_phys(vmx->nested.apic_access_page);
2949                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
2950                 } else {
2951                         secondary_exec_controls_clearbit(vmx,
2952                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
2953                 }
2954         }
2955
2956         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2957                 map = &vmx->nested.virtual_apic_map;
2958
2959                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
2960                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
2961                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
2962                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
2963                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2964                         /*
2965                          * The processor will never use the TPR shadow, simply
2966                          * clear the bit from the execution control.  Such a
2967                          * configuration is useless, but it happens in tests.
2968                          * For any other configuration, failing the vm entry is
2969                          * _not_ what the processor does but it's basically the
2970                          * only possibility we have.
2971                          */
2972                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
2973                 } else {
2974                         /*
2975                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
2976                          * force VM-Entry to fail.
2977                          */
2978                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2979                 }
2980         }
2981
2982         if (nested_cpu_has_posted_intr(vmcs12)) {
2983                 map = &vmx->nested.pi_desc_map;
2984
2985                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
2986                         vmx->nested.pi_desc =
2987                                 (struct pi_desc *)(((void *)map->hva) +
2988                                 offset_in_page(vmcs12->posted_intr_desc_addr));
2989                         vmcs_write64(POSTED_INTR_DESC_ADDR,
2990                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
2991                 }
2992         }
2993         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2994                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
2995         else
2996                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
2997 }
2998
2999 /*
3000  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3001  * for running VMX instructions (except VMXON, whose prerequisites are
3002  * slightly different). It also specifies what exception to inject otherwise.
3003  * Note that many of these exceptions have priority over VM exits, so they
3004  * don't have to be checked again here.
3005  */
3006 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3007 {
3008         if (!to_vmx(vcpu)->nested.vmxon) {
3009                 kvm_queue_exception(vcpu, UD_VECTOR);
3010                 return 0;
3011         }
3012
3013         if (vmx_get_cpl(vcpu)) {
3014                 kvm_inject_gp(vcpu, 0);
3015                 return 0;
3016         }
3017
3018         return 1;
3019 }
3020
3021 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3022 {
3023         u8 rvi = vmx_get_rvi();
3024         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3025
3026         return ((rvi & 0xf0) > (vppr & 0xf0));
3027 }
3028
3029 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3030                                    struct vmcs12 *vmcs12);
3031
3032 /*
3033  * If from_vmentry is false, this is being called from state restore (either RSM
3034  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3035 + *
3036 + * Returns:
3037 + *   0 - success, i.e. proceed with actual VMEnter
3038 + *   1 - consistency check VMExit
3039 + *  -1 - consistency check VMFail
3040  */
3041 int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
3042 {
3043         struct vcpu_vmx *vmx = to_vmx(vcpu);
3044         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3045         bool evaluate_pending_interrupts;
3046         u32 exit_reason = EXIT_REASON_INVALID_STATE;
3047         u32 exit_qual;
3048
3049         evaluate_pending_interrupts = exec_controls_get(vmx) &
3050                 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
3051         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3052                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3053
3054         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3055                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3056         if (kvm_mpx_supported() &&
3057                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3058                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3059
3060         /*
3061          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3062          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3063          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3064          * software model to the pre-VMEntry host state.  When EPT is disabled,
3065          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3066          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3067          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3068          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3069          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3070          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3071          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3072          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3073          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3074          * path would need to manually save/restore vmcs01.GUEST_CR3.
3075          */
3076         if (!enable_ept && !nested_early_check)
3077                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3078
3079         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3080
3081         prepare_vmcs02_early(vmx, vmcs12);
3082
3083         if (from_vmentry) {
3084                 nested_get_vmcs12_pages(vcpu);
3085
3086                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3087                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3088                         return -1;
3089                 }
3090
3091                 if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
3092                         goto vmentry_fail_vmexit;
3093         }
3094
3095         enter_guest_mode(vcpu);
3096         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3097                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3098
3099         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
3100                 goto vmentry_fail_vmexit_guest_mode;
3101
3102         if (from_vmentry) {
3103                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3104                 exit_qual = nested_vmx_load_msr(vcpu,
3105                                                 vmcs12->vm_entry_msr_load_addr,
3106                                                 vmcs12->vm_entry_msr_load_count);
3107                 if (exit_qual)
3108                         goto vmentry_fail_vmexit_guest_mode;
3109         } else {
3110                 /*
3111                  * The MMU is not initialized to point at the right entities yet and
3112                  * "get pages" would need to read data from the guest (i.e. we will
3113                  * need to perform gpa to hpa translation). Request a call
3114                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3115                  * have already been set at vmentry time and should not be reset.
3116                  */
3117                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3118         }
3119
3120         /*
3121          * If L1 had a pending IRQ/NMI until it executed
3122          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3123          * disallowed (e.g. interrupts disabled), L0 needs to
3124          * evaluate if this pending event should cause an exit from L2
3125          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3126          * intercept EXTERNAL_INTERRUPT).
3127          *
3128          * Usually this would be handled by the processor noticing an
3129          * IRQ/NMI window request, or checking RVI during evaluation of
3130          * pending virtual interrupts.  However, this setting was done
3131          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3132          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3133          */
3134         if (unlikely(evaluate_pending_interrupts))
3135                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3136
3137         /*
3138          * Do not start the preemption timer hrtimer until after we know
3139          * we are successful, so that only nested_vmx_vmexit needs to cancel
3140          * the timer.
3141          */
3142         vmx->nested.preemption_timer_expired = false;
3143         if (nested_cpu_has_preemption_timer(vmcs12))
3144                 vmx_start_preemption_timer(vcpu);
3145
3146         /*
3147          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3148          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3149          * returned as far as L1 is concerned. It will only return (and set
3150          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3151          */
3152         return 0;
3153
3154         /*
3155          * A failed consistency check that leads to a VMExit during L1's
3156          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3157          * 26.7 "VM-entry failures during or after loading guest state".
3158          */
3159 vmentry_fail_vmexit_guest_mode:
3160         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3161                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3162         leave_guest_mode(vcpu);
3163
3164 vmentry_fail_vmexit:
3165         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3166
3167         if (!from_vmentry)
3168                 return 1;
3169
3170         load_vmcs12_host_state(vcpu, vmcs12);
3171         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3172         vmcs12->exit_qualification = exit_qual;
3173         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3174                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3175         return 1;
3176 }
3177
3178 /*
3179  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3180  * for running an L2 nested guest.
3181  */
3182 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3183 {
3184         struct vmcs12 *vmcs12;
3185         struct vcpu_vmx *vmx = to_vmx(vcpu);
3186         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3187         int ret;
3188
3189         if (!nested_vmx_check_permission(vcpu))
3190                 return 1;
3191
3192         if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
3193                 return 1;
3194
3195         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3196                 return nested_vmx_failInvalid(vcpu);
3197
3198         vmcs12 = get_vmcs12(vcpu);
3199
3200         /*
3201          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3202          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3203          * rather than RFLAGS.ZF, and no error number is stored to the
3204          * VM-instruction error field.
3205          */
3206         if (vmcs12->hdr.shadow_vmcs)
3207                 return nested_vmx_failInvalid(vcpu);
3208
3209         if (vmx->nested.hv_evmcs) {
3210                 copy_enlightened_to_vmcs12(vmx);
3211                 /* Enlightened VMCS doesn't have launch state */
3212                 vmcs12->launch_state = !launch;
3213         } else if (enable_shadow_vmcs) {
3214                 copy_shadow_to_vmcs12(vmx);
3215         }
3216
3217         /*
3218          * The nested entry process starts with enforcing various prerequisites
3219          * on vmcs12 as required by the Intel SDM, and act appropriately when
3220          * they fail: As the SDM explains, some conditions should cause the
3221          * instruction to fail, while others will cause the instruction to seem
3222          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3223          * To speed up the normal (success) code path, we should avoid checking
3224          * for misconfigurations which will anyway be caught by the processor
3225          * when using the merged vmcs02.
3226          */
3227         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3228                 return nested_vmx_failValid(vcpu,
3229                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3230
3231         if (vmcs12->launch_state == launch)
3232                 return nested_vmx_failValid(vcpu,
3233                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3234                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3235
3236         if (nested_vmx_check_controls(vcpu, vmcs12))
3237                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3238
3239         if (nested_vmx_check_host_state(vcpu, vmcs12))
3240                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3241
3242         /*
3243          * We're finally done with prerequisite checking, and can start with
3244          * the nested entry.
3245          */
3246         vmx->nested.nested_run_pending = 1;
3247         ret = nested_vmx_enter_non_root_mode(vcpu, true);
3248         vmx->nested.nested_run_pending = !ret;
3249         if (ret > 0)
3250                 return 1;
3251         else if (ret)
3252                 return nested_vmx_failValid(vcpu,
3253                         VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3254
3255         /* Hide L1D cache contents from the nested guest.  */
3256         vmx->vcpu.arch.l1tf_flush_l1d = true;
3257
3258         /*
3259          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3260          * also be used as part of restoring nVMX state for
3261          * snapshot restore (migration).
3262          *
3263          * In this flow, it is assumed that vmcs12 cache was
3264          * trasferred as part of captured nVMX state and should
3265          * therefore not be read from guest memory (which may not
3266          * exist on destination host yet).
3267          */
3268         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3269
3270         /*
3271          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3272          * awakened by event injection or by an NMI-window VM-exit or
3273          * by an interrupt-window VM-exit, halt the vcpu.
3274          */
3275         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3276             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3277             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3278             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3279               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3280                 vmx->nested.nested_run_pending = 0;
3281                 return kvm_vcpu_halt(vcpu);
3282         }
3283         return 1;
3284 }
3285
3286 /*
3287  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3288  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3289  * This function returns the new value we should put in vmcs12.guest_cr0.
3290  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3291  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3292  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3293  *     didn't trap the bit, because if L1 did, so would L0).
3294  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3295  *     been modified by L2, and L1 knows it. So just leave the old value of
3296  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3297  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3298  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3299  *     changed these bits, and therefore they need to be updated, but L0
3300  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3301  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3302  */
3303 static inline unsigned long
3304 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3305 {
3306         return
3307         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3308         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3309         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3310                         vcpu->arch.cr0_guest_owned_bits));
3311 }
3312
3313 static inline unsigned long
3314 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3315 {
3316         return
3317         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3318         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3319         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3320                         vcpu->arch.cr4_guest_owned_bits));
3321 }
3322
3323 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3324                                       struct vmcs12 *vmcs12)
3325 {
3326         u32 idt_vectoring;
3327         unsigned int nr;
3328
3329         if (vcpu->arch.exception.injected) {
3330                 nr = vcpu->arch.exception.nr;
3331                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3332
3333                 if (kvm_exception_is_soft(nr)) {
3334                         vmcs12->vm_exit_instruction_len =
3335                                 vcpu->arch.event_exit_inst_len;
3336                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3337                 } else
3338                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3339
3340                 if (vcpu->arch.exception.has_error_code) {
3341                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3342                         vmcs12->idt_vectoring_error_code =
3343                                 vcpu->arch.exception.error_code;
3344                 }
3345
3346                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3347         } else if (vcpu->arch.nmi_injected) {
3348                 vmcs12->idt_vectoring_info_field =
3349                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3350         } else if (vcpu->arch.interrupt.injected) {
3351                 nr = vcpu->arch.interrupt.nr;
3352                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3353
3354                 if (vcpu->arch.interrupt.soft) {
3355                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3356                         vmcs12->vm_entry_instruction_len =
3357                                 vcpu->arch.event_exit_inst_len;
3358                 } else
3359                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3360
3361                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3362         }
3363 }
3364
3365
3366 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3367 {
3368         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3369         gfn_t gfn;
3370
3371         /*
3372          * Don't need to mark the APIC access page dirty; it is never
3373          * written to by the CPU during APIC virtualization.
3374          */
3375
3376         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3377                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3378                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3379         }
3380
3381         if (nested_cpu_has_posted_intr(vmcs12)) {
3382                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3383                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3384         }
3385 }
3386
3387 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3388 {
3389         struct vcpu_vmx *vmx = to_vmx(vcpu);
3390         int max_irr;
3391         void *vapic_page;
3392         u16 status;
3393
3394         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3395                 return;
3396
3397         vmx->nested.pi_pending = false;
3398         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3399                 return;
3400
3401         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3402         if (max_irr != 256) {
3403                 vapic_page = vmx->nested.virtual_apic_map.hva;
3404                 if (!vapic_page)
3405                         return;
3406
3407                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3408                         vapic_page, &max_irr);
3409                 status = vmcs_read16(GUEST_INTR_STATUS);
3410                 if ((u8)max_irr > ((u8)status & 0xff)) {
3411                         status &= ~0xff;
3412                         status |= (u8)max_irr;
3413                         vmcs_write16(GUEST_INTR_STATUS, status);
3414                 }
3415         }
3416
3417         nested_mark_vmcs12_pages_dirty(vcpu);
3418 }
3419
3420 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3421                                                unsigned long exit_qual)
3422 {
3423         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3424         unsigned int nr = vcpu->arch.exception.nr;
3425         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3426
3427         if (vcpu->arch.exception.has_error_code) {
3428                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3429                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3430         }
3431
3432         if (kvm_exception_is_soft(nr))
3433                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3434         else
3435                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3436
3437         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3438             vmx_get_nmi_mask(vcpu))
3439                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3440
3441         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3442 }
3443
3444 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3445 {
3446         struct vcpu_vmx *vmx = to_vmx(vcpu);
3447         unsigned long exit_qual;
3448         bool block_nested_events =
3449             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3450         struct kvm_lapic *apic = vcpu->arch.apic;
3451
3452         if (lapic_in_kernel(vcpu) &&
3453                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3454                 if (block_nested_events)
3455                         return -EBUSY;
3456                 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3457                 return 0;
3458         }
3459
3460         if (vcpu->arch.exception.pending &&
3461                 nested_vmx_check_exception(vcpu, &exit_qual)) {
3462                 if (block_nested_events)
3463                         return -EBUSY;
3464                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3465                 return 0;
3466         }
3467
3468         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3469             vmx->nested.preemption_timer_expired) {
3470                 if (block_nested_events)
3471                         return -EBUSY;
3472                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3473                 return 0;
3474         }
3475
3476         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3477                 if (block_nested_events)
3478                         return -EBUSY;
3479                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3480                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3481                                   INTR_INFO_VALID_MASK, 0);
3482                 /*
3483                  * The NMI-triggered VM exit counts as injection:
3484                  * clear this one and block further NMIs.
3485                  */
3486                 vcpu->arch.nmi_pending = 0;
3487                 vmx_set_nmi_mask(vcpu, true);
3488                 return 0;
3489         }
3490
3491         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3492             nested_exit_on_intr(vcpu)) {
3493                 if (block_nested_events)
3494                         return -EBUSY;
3495                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3496                 return 0;
3497         }
3498
3499         vmx_complete_nested_posted_interrupt(vcpu);
3500         return 0;
3501 }
3502
3503 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3504 {
3505         ktime_t remaining =
3506                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3507         u64 value;
3508
3509         if (ktime_to_ns(remaining) <= 0)
3510                 return 0;
3511
3512         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3513         do_div(value, 1000000);
3514         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3515 }
3516
3517 static bool is_vmcs12_ext_field(unsigned long field)
3518 {
3519         switch (field) {
3520         case GUEST_ES_SELECTOR:
3521         case GUEST_CS_SELECTOR:
3522         case GUEST_SS_SELECTOR:
3523         case GUEST_DS_SELECTOR:
3524         case GUEST_FS_SELECTOR:
3525         case GUEST_GS_SELECTOR:
3526         case GUEST_LDTR_SELECTOR:
3527         case GUEST_TR_SELECTOR:
3528         case GUEST_ES_LIMIT:
3529         case GUEST_CS_LIMIT:
3530         case GUEST_SS_LIMIT:
3531         case GUEST_DS_LIMIT:
3532         case GUEST_FS_LIMIT:
3533         case GUEST_GS_LIMIT:
3534         case GUEST_LDTR_LIMIT:
3535         case GUEST_TR_LIMIT:
3536         case GUEST_GDTR_LIMIT:
3537         case GUEST_IDTR_LIMIT:
3538         case GUEST_ES_AR_BYTES:
3539         case GUEST_DS_AR_BYTES:
3540         case GUEST_FS_AR_BYTES:
3541         case GUEST_GS_AR_BYTES:
3542         case GUEST_LDTR_AR_BYTES:
3543         case GUEST_TR_AR_BYTES:
3544         case GUEST_ES_BASE:
3545         case GUEST_CS_BASE:
3546         case GUEST_SS_BASE:
3547         case GUEST_DS_BASE:
3548         case GUEST_FS_BASE:
3549         case GUEST_GS_BASE:
3550         case GUEST_LDTR_BASE:
3551         case GUEST_TR_BASE:
3552         case GUEST_GDTR_BASE:
3553         case GUEST_IDTR_BASE:
3554         case GUEST_PENDING_DBG_EXCEPTIONS:
3555         case GUEST_BNDCFGS:
3556                 return true;
3557         default:
3558                 break;
3559         }
3560
3561         return false;
3562 }
3563
3564 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3565                                        struct vmcs12 *vmcs12)
3566 {
3567         struct vcpu_vmx *vmx = to_vmx(vcpu);
3568
3569         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3570         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3571         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3572         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3573         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3574         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3575         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3576         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3577         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3578         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3579         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3580         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3581         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3582         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3583         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3584         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3585         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3586         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3587         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3588         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3589         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3590         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3591         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3592         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3593         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3594         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3595         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3596         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3597         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3598         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3599         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3600         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3601         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3602         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3603         vmcs12->guest_pending_dbg_exceptions =
3604                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3605         if (kvm_mpx_supported())
3606                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3607
3608         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3609 }
3610
3611 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3612                                        struct vmcs12 *vmcs12)
3613 {
3614         struct vcpu_vmx *vmx = to_vmx(vcpu);
3615         int cpu;
3616
3617         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3618                 return;
3619
3620
3621         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3622
3623         cpu = get_cpu();
3624         vmx->loaded_vmcs = &vmx->nested.vmcs02;
3625         vmx_vcpu_load(&vmx->vcpu, cpu);
3626
3627         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3628
3629         vmx->loaded_vmcs = &vmx->vmcs01;
3630         vmx_vcpu_load(&vmx->vcpu, cpu);
3631         put_cpu();
3632 }
3633
3634 /*
3635  * Update the guest state fields of vmcs12 to reflect changes that
3636  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3637  * VM-entry controls is also updated, since this is really a guest
3638  * state bit.)
3639  */
3640 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3641 {
3642         struct vcpu_vmx *vmx = to_vmx(vcpu);
3643
3644         if (vmx->nested.hv_evmcs)
3645                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3646
3647         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3648
3649         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3650         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3651
3652         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3653         vmcs12->guest_rip = kvm_rip_read(vcpu);
3654         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3655
3656         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3657         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3658
3659         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3660         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3661         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3662
3663         vmcs12->guest_interruptibility_info =
3664                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3665
3666         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3667                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3668         else
3669                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3670
3671         if (nested_cpu_has_preemption_timer(vmcs12) &&
3672             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3673                         vmcs12->vmx_preemption_timer_value =
3674                                 vmx_get_preemption_timer_value(vcpu);
3675
3676         /*
3677          * In some cases (usually, nested EPT), L2 is allowed to change its
3678          * own CR3 without exiting. If it has changed it, we must keep it.
3679          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3680          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3681          *
3682          * Additionally, restore L2's PDPTR to vmcs12.
3683          */
3684         if (enable_ept) {
3685                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3686                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3687                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3688                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3689                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3690                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3691                 }
3692         }
3693
3694         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3695
3696         if (nested_cpu_has_vid(vmcs12))
3697                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3698
3699         vmcs12->vm_entry_controls =
3700                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3701                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3702
3703         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3704                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3705
3706         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3707                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3708 }
3709
3710 /*
3711  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3712  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3713  * and this function updates it to reflect the changes to the guest state while
3714  * L2 was running (and perhaps made some exits which were handled directly by L0
3715  * without going back to L1), and to reflect the exit reason.
3716  * Note that we do not have to copy here all VMCS fields, just those that
3717  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3718  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3719  * which already writes to vmcs12 directly.
3720  */
3721 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3722                            u32 exit_reason, u32 exit_intr_info,
3723                            unsigned long exit_qualification)
3724 {
3725         /* update exit information fields: */
3726         vmcs12->vm_exit_reason = exit_reason;
3727         vmcs12->exit_qualification = exit_qualification;
3728         vmcs12->vm_exit_intr_info = exit_intr_info;
3729
3730         vmcs12->idt_vectoring_info_field = 0;
3731         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3732         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3733
3734         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3735                 vmcs12->launch_state = 1;
3736
3737                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3738                  * instead of reading the real value. */
3739                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3740
3741                 /*
3742                  * Transfer the event that L0 or L1 may wanted to inject into
3743                  * L2 to IDT_VECTORING_INFO_FIELD.
3744                  */
3745                 vmcs12_save_pending_event(vcpu, vmcs12);
3746
3747                 /*
3748                  * According to spec, there's no need to store the guest's
3749                  * MSRs if the exit is due to a VM-entry failure that occurs
3750                  * during or after loading the guest state. Since this exit
3751                  * does not fall in that category, we need to save the MSRs.
3752                  */
3753                 if (nested_vmx_store_msr(vcpu,
3754                                          vmcs12->vm_exit_msr_store_addr,
3755                                          vmcs12->vm_exit_msr_store_count))
3756                         nested_vmx_abort(vcpu,
3757                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3758         }
3759
3760         /*
3761          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3762          * preserved above and would only end up incorrectly in L1.
3763          */
3764         vcpu->arch.nmi_injected = false;
3765         kvm_clear_exception_queue(vcpu);
3766         kvm_clear_interrupt_queue(vcpu);
3767 }
3768
3769 /*
3770  * A part of what we need to when the nested L2 guest exits and we want to
3771  * run its L1 parent, is to reset L1's guest state to the host state specified
3772  * in vmcs12.
3773  * This function is to be called not only on normal nested exit, but also on
3774  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3775  * Failures During or After Loading Guest State").
3776  * This function should be called when the active VMCS is L1's (vmcs01).
3777  */
3778 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3779                                    struct vmcs12 *vmcs12)
3780 {
3781         struct kvm_segment seg;
3782         u32 entry_failure_code;
3783
3784         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3785                 vcpu->arch.efer = vmcs12->host_ia32_efer;
3786         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3787                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3788         else
3789                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3790         vmx_set_efer(vcpu, vcpu->arch.efer);
3791
3792         kvm_rsp_write(vcpu, vmcs12->host_rsp);
3793         kvm_rip_write(vcpu, vmcs12->host_rip);
3794         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3795         vmx_set_interrupt_shadow(vcpu, 0);
3796
3797         /*
3798          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3799          * actually changed, because vmx_set_cr0 refers to efer set above.
3800          *
3801          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3802          * (KVM doesn't change it);
3803          */
3804         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3805         vmx_set_cr0(vcpu, vmcs12->host_cr0);
3806
3807         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
3808         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3809         vmx_set_cr4(vcpu, vmcs12->host_cr4);
3810
3811         nested_ept_uninit_mmu_context(vcpu);
3812
3813         /*
3814          * Only PDPTE load can fail as the value of cr3 was checked on entry and
3815          * couldn't have changed.
3816          */
3817         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3818                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3819
3820         if (!enable_ept)
3821                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3822
3823         /*
3824          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3825          * VMEntry/VMExit. Thus, no need to flush TLB.
3826          *
3827          * If vmcs12 doesn't use VPID, L1 expects TLB to be
3828          * flushed on every VMEntry/VMExit.
3829          *
3830          * Otherwise, we can preserve TLB entries as long as we are
3831          * able to tag L1 TLB entries differently than L2 TLB entries.
3832          *
3833          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3834          * and therefore we request the TLB flush to happen only after VMCS EPTP
3835          * has been set by KVM_REQ_LOAD_CR3.
3836          */
3837         if (enable_vpid &&
3838             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3839                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3840         }
3841
3842         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3843         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3844         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3845         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3846         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3847         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3848         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3849
3850         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3851         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3852                 vmcs_write64(GUEST_BNDCFGS, 0);
3853
3854         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3855                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3856                 vcpu->arch.pat = vmcs12->host_ia32_pat;
3857         }
3858         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3859                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3860                         vmcs12->host_ia32_perf_global_ctrl);
3861
3862         /* Set L1 segment info according to Intel SDM
3863             27.5.2 Loading Host Segment and Descriptor-Table Registers */
3864         seg = (struct kvm_segment) {
3865                 .base = 0,
3866                 .limit = 0xFFFFFFFF,
3867                 .selector = vmcs12->host_cs_selector,
3868                 .type = 11,
3869                 .present = 1,
3870                 .s = 1,
3871                 .g = 1
3872         };
3873         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3874                 seg.l = 1;
3875         else
3876                 seg.db = 1;
3877         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3878         seg = (struct kvm_segment) {
3879                 .base = 0,
3880                 .limit = 0xFFFFFFFF,
3881                 .type = 3,
3882                 .present = 1,
3883                 .s = 1,
3884                 .db = 1,
3885                 .g = 1
3886         };
3887         seg.selector = vmcs12->host_ds_selector;
3888         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3889         seg.selector = vmcs12->host_es_selector;
3890         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3891         seg.selector = vmcs12->host_ss_selector;
3892         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3893         seg.selector = vmcs12->host_fs_selector;
3894         seg.base = vmcs12->host_fs_base;
3895         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3896         seg.selector = vmcs12->host_gs_selector;
3897         seg.base = vmcs12->host_gs_base;
3898         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3899         seg = (struct kvm_segment) {
3900                 .base = vmcs12->host_tr_base,
3901                 .limit = 0x67,
3902                 .selector = vmcs12->host_tr_selector,
3903                 .type = 11,
3904                 .present = 1
3905         };
3906         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3907
3908         kvm_set_dr(vcpu, 7, 0x400);
3909         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3910
3911         if (cpu_has_vmx_msr_bitmap())
3912                 vmx_update_msr_bitmap(vcpu);
3913
3914         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3915                                 vmcs12->vm_exit_msr_load_count))
3916                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3917 }
3918
3919 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3920 {
3921         struct shared_msr_entry *efer_msr;
3922         unsigned int i;
3923
3924         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3925                 return vmcs_read64(GUEST_IA32_EFER);
3926
3927         if (cpu_has_load_ia32_efer())
3928                 return host_efer;
3929
3930         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3931                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3932                         return vmx->msr_autoload.guest.val[i].value;
3933         }
3934
3935         efer_msr = find_msr_entry(vmx, MSR_EFER);
3936         if (efer_msr)
3937                 return efer_msr->data;
3938
3939         return host_efer;
3940 }
3941
3942 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3943 {
3944         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3945         struct vcpu_vmx *vmx = to_vmx(vcpu);
3946         struct vmx_msr_entry g, h;
3947         gpa_t gpa;
3948         u32 i, j;
3949
3950         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3951
3952         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3953                 /*
3954                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3955                  * as vmcs01.GUEST_DR7 contains a userspace defined value
3956                  * and vcpu->arch.dr7 is not squirreled away before the
3957                  * nested VMENTER (not worth adding a variable in nested_vmx).
3958                  */
3959                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3960                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3961                 else
3962                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3963         }
3964
3965         /*
3966          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3967          * handle a variety of side effects to KVM's software model.
3968          */
3969         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3970
3971         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3972         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3973
3974         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3975         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3976
3977         nested_ept_uninit_mmu_context(vcpu);
3978         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3979         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3980
3981         /*
3982          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3983          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
3984          * VMFail, like everything else we just need to ensure our
3985          * software model is up-to-date.
3986          */
3987         if (enable_ept)
3988                 ept_save_pdptrs(vcpu);
3989
3990         kvm_mmu_reset_context(vcpu);
3991
3992         if (cpu_has_vmx_msr_bitmap())
3993                 vmx_update_msr_bitmap(vcpu);
3994
3995         /*
3996          * This nasty bit of open coding is a compromise between blindly
3997          * loading L1's MSRs using the exit load lists (incorrect emulation
3998          * of VMFail), leaving the nested VM's MSRs in the software model
3999          * (incorrect behavior) and snapshotting the modified MSRs (too
4000          * expensive since the lists are unbound by hardware).  For each
4001          * MSR that was (prematurely) loaded from the nested VMEntry load
4002          * list, reload it from the exit load list if it exists and differs
4003          * from the guest value.  The intent is to stuff host state as
4004          * silently as possible, not to fully process the exit load list.
4005          */
4006         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4007                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4008                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4009                         pr_debug_ratelimited(
4010                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4011                                 __func__, i, gpa);
4012                         goto vmabort;
4013                 }
4014
4015                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4016                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4017                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4018                                 pr_debug_ratelimited(
4019                                         "%s read MSR failed (%u, 0x%08llx)\n",
4020                                         __func__, j, gpa);
4021                                 goto vmabort;
4022                         }
4023                         if (h.index != g.index)
4024                                 continue;
4025                         if (h.value == g.value)
4026                                 break;
4027
4028                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4029                                 pr_debug_ratelimited(
4030                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4031                                         __func__, j, h.index, h.reserved);
4032                                 goto vmabort;
4033                         }
4034
4035                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4036                                 pr_debug_ratelimited(
4037                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4038                                         __func__, j, h.index, h.value);
4039                                 goto vmabort;
4040                         }
4041                 }
4042         }
4043
4044         return;
4045
4046 vmabort:
4047         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4048 }
4049
4050 /*
4051  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4052  * and modify vmcs12 to make it see what it would expect to see there if
4053  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4054  */
4055 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
4056                        u32 exit_intr_info, unsigned long exit_qualification)
4057 {
4058         struct vcpu_vmx *vmx = to_vmx(vcpu);
4059         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4060
4061         /* trying to cancel vmlaunch/vmresume is a bug */
4062         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4063
4064         leave_guest_mode(vcpu);
4065
4066         if (nested_cpu_has_preemption_timer(vmcs12))
4067                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4068
4069         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
4070                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4071
4072         if (likely(!vmx->fail)) {
4073                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4074
4075                 if (exit_reason != -1)
4076                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
4077                                        exit_qualification);
4078
4079                 /*
4080                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4081                  * also be used to capture vmcs12 cache as part of
4082                  * capturing nVMX state for snapshot (migration).
4083                  *
4084                  * Otherwise, this flush will dirty guest memory at a
4085                  * point it is already assumed by user-space to be
4086                  * immutable.
4087                  */
4088                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4089         } else {
4090                 /*
4091                  * The only expected VM-instruction error is "VM entry with
4092                  * invalid control field(s)." Anything else indicates a
4093                  * problem with L0.  And we should never get here with a
4094                  * VMFail of any type if early consistency checks are enabled.
4095                  */
4096                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4097                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4098                 WARN_ON_ONCE(nested_early_check);
4099         }
4100
4101         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4102
4103         /* Update any VMCS fields that might have changed while L2 ran */
4104         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4105         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4106         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4107
4108         if (kvm_has_tsc_control)
4109                 decache_tsc_multiplier(vmx);
4110
4111         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4112                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4113                 vmx_set_virtual_apic_mode(vcpu);
4114         } else if (!nested_cpu_has_ept(vmcs12) &&
4115                    nested_cpu_has2(vmcs12,
4116                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
4117                 vmx_flush_tlb(vcpu, true);
4118         }
4119
4120         /* Unpin physical memory we referred to in vmcs02 */
4121         if (vmx->nested.apic_access_page) {
4122                 kvm_release_page_dirty(vmx->nested.apic_access_page);
4123                 vmx->nested.apic_access_page = NULL;
4124         }
4125         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4126         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4127         vmx->nested.pi_desc = NULL;
4128
4129         /*
4130          * We are now running in L2, mmu_notifier will force to reload the
4131          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
4132          */
4133         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4134
4135         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4136                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4137
4138         /* in case we halted in L2 */
4139         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4140
4141         if (likely(!vmx->fail)) {
4142                 /*
4143                  * TODO: SDM says that with acknowledge interrupt on
4144                  * exit, bit 31 of the VM-exit interrupt information
4145                  * (valid interrupt) is always set to 1 on
4146                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
4147                  * need kvm_cpu_has_interrupt().  See the commit
4148                  * message for details.
4149                  */
4150                 if (nested_exit_intr_ack_set(vcpu) &&
4151                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4152                     kvm_cpu_has_interrupt(vcpu)) {
4153                         int irq = kvm_cpu_get_interrupt(vcpu);
4154                         WARN_ON(irq < 0);
4155                         vmcs12->vm_exit_intr_info = irq |
4156                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4157                 }
4158
4159                 if (exit_reason != -1)
4160                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4161                                                        vmcs12->exit_qualification,
4162                                                        vmcs12->idt_vectoring_info_field,
4163                                                        vmcs12->vm_exit_intr_info,
4164                                                        vmcs12->vm_exit_intr_error_code,
4165                                                        KVM_ISA_VMX);
4166
4167                 load_vmcs12_host_state(vcpu, vmcs12);
4168
4169                 return;
4170         }
4171
4172         /*
4173          * After an early L2 VM-entry failure, we're now back
4174          * in L1 which thinks it just finished a VMLAUNCH or
4175          * VMRESUME instruction, so we need to set the failure
4176          * flag and the VM-instruction error field of the VMCS
4177          * accordingly, and skip the emulated instruction.
4178          */
4179         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4180
4181         /*
4182          * Restore L1's host state to KVM's software model.  We're here
4183          * because a consistency check was caught by hardware, which
4184          * means some amount of guest state has been propagated to KVM's
4185          * model and needs to be unwound to the host's state.
4186          */
4187         nested_vmx_restore_host_state(vcpu);
4188
4189         vmx->fail = 0;
4190 }
4191
4192 /*
4193  * Decode the memory-address operand of a vmx instruction, as recorded on an
4194  * exit caused by such an instruction (run by a guest hypervisor).
4195  * On success, returns 0. When the operand is invalid, returns 1 and throws
4196  * #UD or #GP.
4197  */
4198 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4199                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4200 {
4201         gva_t off;
4202         bool exn;
4203         struct kvm_segment s;
4204
4205         /*
4206          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4207          * Execution", on an exit, vmx_instruction_info holds most of the
4208          * addressing components of the operand. Only the displacement part
4209          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4210          * For how an actual address is calculated from all these components,
4211          * refer to Vol. 1, "Operand Addressing".
4212          */
4213         int  scaling = vmx_instruction_info & 3;
4214         int  addr_size = (vmx_instruction_info >> 7) & 7;
4215         bool is_reg = vmx_instruction_info & (1u << 10);
4216         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4217         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4218         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4219         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4220         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4221
4222         if (is_reg) {
4223                 kvm_queue_exception(vcpu, UD_VECTOR);
4224                 return 1;
4225         }
4226
4227         /* Addr = segment_base + offset */
4228         /* offset = base + [index * scale] + displacement */
4229         off = exit_qualification; /* holds the displacement */
4230         if (addr_size == 1)
4231                 off = (gva_t)sign_extend64(off, 31);
4232         else if (addr_size == 0)
4233                 off = (gva_t)sign_extend64(off, 15);
4234         if (base_is_valid)
4235                 off += kvm_register_read(vcpu, base_reg);
4236         if (index_is_valid)
4237                 off += kvm_register_read(vcpu, index_reg)<<scaling;
4238         vmx_get_segment(vcpu, &s, seg_reg);
4239
4240         /*
4241          * The effective address, i.e. @off, of a memory operand is truncated
4242          * based on the address size of the instruction.  Note that this is
4243          * the *effective address*, i.e. the address prior to accounting for
4244          * the segment's base.
4245          */
4246         if (addr_size == 1) /* 32 bit */
4247                 off &= 0xffffffff;
4248         else if (addr_size == 0) /* 16 bit */
4249                 off &= 0xffff;
4250
4251         /* Checks for #GP/#SS exceptions. */
4252         exn = false;
4253         if (is_long_mode(vcpu)) {
4254                 /*
4255                  * The virtual/linear address is never truncated in 64-bit
4256                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4257                  * address when using FS/GS with a non-zero base.
4258                  */
4259                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4260                         *ret = s.base + off;
4261                 else
4262                         *ret = off;
4263
4264                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4265                  * non-canonical form. This is the only check on the memory
4266                  * destination for long mode!
4267                  */
4268                 exn = is_noncanonical_address(*ret, vcpu);
4269         } else {
4270                 /*
4271                  * When not in long mode, the virtual/linear address is
4272                  * unconditionally truncated to 32 bits regardless of the
4273                  * address size.
4274                  */
4275                 *ret = (s.base + off) & 0xffffffff;
4276
4277                 /* Protected mode: apply checks for segment validity in the
4278                  * following order:
4279                  * - segment type check (#GP(0) may be thrown)
4280                  * - usability check (#GP(0)/#SS(0))
4281                  * - limit check (#GP(0)/#SS(0))
4282                  */
4283                 if (wr)
4284                         /* #GP(0) if the destination operand is located in a
4285                          * read-only data segment or any code segment.
4286                          */
4287                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4288                 else
4289                         /* #GP(0) if the source operand is located in an
4290                          * execute-only code segment
4291                          */
4292                         exn = ((s.type & 0xa) == 8);
4293                 if (exn) {
4294                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4295                         return 1;
4296                 }
4297                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4298                  */
4299                 exn = (s.unusable != 0);
4300
4301                 /*
4302                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4303                  * outside the segment limit.  All CPUs that support VMX ignore
4304                  * limit checks for flat segments, i.e. segments with base==0,
4305                  * limit==0xffffffff and of type expand-up data or code.
4306                  */
4307                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4308                      ((s.type & 8) || !(s.type & 4))))
4309                         exn = exn || ((u64)off + len - 1 > s.limit);
4310         }
4311         if (exn) {
4312                 kvm_queue_exception_e(vcpu,
4313                                       seg_reg == VCPU_SREG_SS ?
4314                                                 SS_VECTOR : GP_VECTOR,
4315                                       0);
4316                 return 1;
4317         }
4318
4319         return 0;
4320 }
4321
4322 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4323 {
4324         gva_t gva;
4325         struct x86_exception e;
4326
4327         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4328                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4329                                 sizeof(*vmpointer), &gva))
4330                 return 1;
4331
4332         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4333                 kvm_inject_page_fault(vcpu, &e);
4334                 return 1;
4335         }
4336
4337         return 0;
4338 }
4339
4340 /*
4341  * Allocate a shadow VMCS and associate it with the currently loaded
4342  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4343  * VMCS is also VMCLEARed, so that it is ready for use.
4344  */
4345 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4346 {
4347         struct vcpu_vmx *vmx = to_vmx(vcpu);
4348         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4349
4350         /*
4351          * We should allocate a shadow vmcs for vmcs01 only when L1
4352          * executes VMXON and free it when L1 executes VMXOFF.
4353          * As it is invalid to execute VMXON twice, we shouldn't reach
4354          * here when vmcs01 already have an allocated shadow vmcs.
4355          */
4356         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4357
4358         if (!loaded_vmcs->shadow_vmcs) {
4359                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4360                 if (loaded_vmcs->shadow_vmcs)
4361                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4362         }
4363         return loaded_vmcs->shadow_vmcs;
4364 }
4365
4366 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4367 {
4368         struct vcpu_vmx *vmx = to_vmx(vcpu);
4369         int r;
4370
4371         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4372         if (r < 0)
4373                 goto out_vmcs02;
4374
4375         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4376         if (!vmx->nested.cached_vmcs12)
4377                 goto out_cached_vmcs12;
4378
4379         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4380         if (!vmx->nested.cached_shadow_vmcs12)
4381                 goto out_cached_shadow_vmcs12;
4382
4383         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4384                 goto out_shadow_vmcs;
4385
4386         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4387                      HRTIMER_MODE_REL_PINNED);
4388         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4389
4390         vmx->nested.vpid02 = allocate_vpid();
4391
4392         vmx->nested.vmcs02_initialized = false;
4393         vmx->nested.vmxon = true;
4394
4395         if (pt_mode == PT_MODE_HOST_GUEST) {
4396                 vmx->pt_desc.guest.ctl = 0;
4397                 pt_update_intercept_for_msr(vmx);
4398         }
4399
4400         return 0;
4401
4402 out_shadow_vmcs:
4403         kfree(vmx->nested.cached_shadow_vmcs12);
4404
4405 out_cached_shadow_vmcs12:
4406         kfree(vmx->nested.cached_vmcs12);
4407
4408 out_cached_vmcs12:
4409         free_loaded_vmcs(&vmx->nested.vmcs02);
4410
4411 out_vmcs02:
4412         return -ENOMEM;
4413 }
4414
4415 /*
4416  * Emulate the VMXON instruction.
4417  * Currently, we just remember that VMX is active, and do not save or even
4418  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4419  * do not currently need to store anything in that guest-allocated memory
4420  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4421  * argument is different from the VMXON pointer (which the spec says they do).
4422  */
4423 static int handle_vmon(struct kvm_vcpu *vcpu)
4424 {
4425         int ret;
4426         gpa_t vmptr;
4427         uint32_t revision;
4428         struct vcpu_vmx *vmx = to_vmx(vcpu);
4429         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4430                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4431
4432         /*
4433          * The Intel VMX Instruction Reference lists a bunch of bits that are
4434          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4435          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4436          * Otherwise, we should fail with #UD.  But most faulting conditions
4437          * have already been checked by hardware, prior to the VM-exit for
4438          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4439          * that bit set to 1 in non-root mode.
4440          */
4441         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4442                 kvm_queue_exception(vcpu, UD_VECTOR);
4443                 return 1;
4444         }
4445
4446         /* CPL=0 must be checked manually. */
4447         if (vmx_get_cpl(vcpu)) {
4448                 kvm_inject_gp(vcpu, 0);
4449                 return 1;
4450         }
4451
4452         if (vmx->nested.vmxon)
4453                 return nested_vmx_failValid(vcpu,
4454                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4455
4456         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4457                         != VMXON_NEEDED_FEATURES) {
4458                 kvm_inject_gp(vcpu, 0);
4459                 return 1;
4460         }
4461
4462         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4463                 return 1;
4464
4465         /*
4466          * SDM 3: 24.11.5
4467          * The first 4 bytes of VMXON region contain the supported
4468          * VMCS revision identifier
4469          *
4470          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4471          * which replaces physical address width with 32
4472          */
4473         if (!page_address_valid(vcpu, vmptr))
4474                 return nested_vmx_failInvalid(vcpu);
4475
4476         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4477             revision != VMCS12_REVISION)
4478                 return nested_vmx_failInvalid(vcpu);
4479
4480         vmx->nested.vmxon_ptr = vmptr;
4481         ret = enter_vmx_operation(vcpu);
4482         if (ret)
4483                 return ret;
4484
4485         return nested_vmx_succeed(vcpu);
4486 }
4487
4488 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4489 {
4490         struct vcpu_vmx *vmx = to_vmx(vcpu);
4491
4492         if (vmx->nested.current_vmptr == -1ull)
4493                 return;
4494
4495         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4496
4497         if (enable_shadow_vmcs) {
4498                 /* copy to memory all shadowed fields in case
4499                    they were modified */
4500                 copy_shadow_to_vmcs12(vmx);
4501                 vmx_disable_shadow_vmcs(vmx);
4502         }
4503         vmx->nested.posted_intr_nv = -1;
4504
4505         /* Flush VMCS12 to guest memory */
4506         kvm_vcpu_write_guest_page(vcpu,
4507                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4508                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4509
4510         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4511
4512         vmx->nested.current_vmptr = -1ull;
4513 }
4514
4515 /* Emulate the VMXOFF instruction */
4516 static int handle_vmoff(struct kvm_vcpu *vcpu)
4517 {
4518         if (!nested_vmx_check_permission(vcpu))
4519                 return 1;
4520
4521         free_nested(vcpu);
4522
4523         /* Process a latched INIT during time CPU was in VMX operation */
4524         kvm_make_request(KVM_REQ_EVENT, vcpu);
4525
4526         return nested_vmx_succeed(vcpu);
4527 }
4528
4529 /* Emulate the VMCLEAR instruction */
4530 static int handle_vmclear(struct kvm_vcpu *vcpu)
4531 {
4532         struct vcpu_vmx *vmx = to_vmx(vcpu);
4533         u32 zero = 0;
4534         gpa_t vmptr;
4535         u64 evmcs_gpa;
4536
4537         if (!nested_vmx_check_permission(vcpu))
4538                 return 1;
4539
4540         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4541                 return 1;
4542
4543         if (!page_address_valid(vcpu, vmptr))
4544                 return nested_vmx_failValid(vcpu,
4545                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4546
4547         if (vmptr == vmx->nested.vmxon_ptr)
4548                 return nested_vmx_failValid(vcpu,
4549                         VMXERR_VMCLEAR_VMXON_POINTER);
4550
4551         /*
4552          * When Enlightened VMEntry is enabled on the calling CPU we treat
4553          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4554          * way to distinguish it from VMCS12) and we must not corrupt it by
4555          * writing to the non-existent 'launch_state' field. The area doesn't
4556          * have to be the currently active EVMCS on the calling CPU and there's
4557          * nothing KVM has to do to transition it from 'active' to 'non-active'
4558          * state. It is possible that the area will stay mapped as
4559          * vmx->nested.hv_evmcs but this shouldn't be a problem.
4560          */
4561         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4562                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4563                 if (vmptr == vmx->nested.current_vmptr)
4564                         nested_release_vmcs12(vcpu);
4565
4566                 kvm_vcpu_write_guest(vcpu,
4567                                      vmptr + offsetof(struct vmcs12,
4568                                                       launch_state),
4569                                      &zero, sizeof(zero));
4570         }
4571
4572         return nested_vmx_succeed(vcpu);
4573 }
4574
4575 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4576
4577 /* Emulate the VMLAUNCH instruction */
4578 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4579 {
4580         return nested_vmx_run(vcpu, true);
4581 }
4582
4583 /* Emulate the VMRESUME instruction */
4584 static int handle_vmresume(struct kvm_vcpu *vcpu)
4585 {
4586
4587         return nested_vmx_run(vcpu, false);
4588 }
4589
4590 static int handle_vmread(struct kvm_vcpu *vcpu)
4591 {
4592         unsigned long field;
4593         u64 field_value;
4594         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4595         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4596         int len;
4597         gva_t gva = 0;
4598         struct vmcs12 *vmcs12;
4599         struct x86_exception e;
4600         short offset;
4601
4602         if (!nested_vmx_check_permission(vcpu))
4603                 return 1;
4604
4605         if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4606                 return nested_vmx_failInvalid(vcpu);
4607
4608         if (!is_guest_mode(vcpu))
4609                 vmcs12 = get_vmcs12(vcpu);
4610         else {
4611                 /*
4612                  * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4613                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4614                  */
4615                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4616                         return nested_vmx_failInvalid(vcpu);
4617                 vmcs12 = get_shadow_vmcs12(vcpu);
4618         }
4619
4620         /* Decode instruction info and find the field to read */
4621         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4622
4623         offset = vmcs_field_to_offset(field);
4624         if (offset < 0)
4625                 return nested_vmx_failValid(vcpu,
4626                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4627
4628         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4629                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4630
4631         /* Read the field, zero-extended to a u64 field_value */
4632         field_value = vmcs12_read_any(vmcs12, field, offset);
4633
4634         /*
4635          * Now copy part of this value to register or memory, as requested.
4636          * Note that the number of bits actually copied is 32 or 64 depending
4637          * on the guest's mode (32 or 64 bit), not on the given field's length.
4638          */
4639         if (vmx_instruction_info & (1u << 10)) {
4640                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4641                         field_value);
4642         } else {
4643                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4644                 if (get_vmx_mem_address(vcpu, exit_qualification,
4645                                 vmx_instruction_info, true, len, &gva))
4646                         return 1;
4647                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4648                 if (kvm_write_guest_virt_system(vcpu, gva, &field_value, len, &e))
4649                         kvm_inject_page_fault(vcpu, &e);
4650         }
4651
4652         return nested_vmx_succeed(vcpu);
4653 }
4654
4655 static bool is_shadow_field_rw(unsigned long field)
4656 {
4657         switch (field) {
4658 #define SHADOW_FIELD_RW(x, y) case x:
4659 #include "vmcs_shadow_fields.h"
4660                 return true;
4661         default:
4662                 break;
4663         }
4664         return false;
4665 }
4666
4667 static bool is_shadow_field_ro(unsigned long field)
4668 {
4669         switch (field) {
4670 #define SHADOW_FIELD_RO(x, y) case x:
4671 #include "vmcs_shadow_fields.h"
4672                 return true;
4673         default:
4674                 break;
4675         }
4676         return false;
4677 }
4678
4679 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4680 {
4681         unsigned long field;
4682         int len;
4683         gva_t gva;
4684         struct vcpu_vmx *vmx = to_vmx(vcpu);
4685         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4686         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4687
4688         /* The value to write might be 32 or 64 bits, depending on L1's long
4689          * mode, and eventually we need to write that into a field of several
4690          * possible lengths. The code below first zero-extends the value to 64
4691          * bit (field_value), and then copies only the appropriate number of
4692          * bits into the vmcs12 field.
4693          */
4694         u64 field_value = 0;
4695         struct x86_exception e;
4696         struct vmcs12 *vmcs12;
4697         short offset;
4698
4699         if (!nested_vmx_check_permission(vcpu))
4700                 return 1;
4701
4702         if (vmx->nested.current_vmptr == -1ull)
4703                 return nested_vmx_failInvalid(vcpu);
4704
4705         if (vmx_instruction_info & (1u << 10))
4706                 field_value = kvm_register_readl(vcpu,
4707                         (((vmx_instruction_info) >> 3) & 0xf));
4708         else {
4709                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4710                 if (get_vmx_mem_address(vcpu, exit_qualification,
4711                                 vmx_instruction_info, false, len, &gva))
4712                         return 1;
4713                 if (kvm_read_guest_virt(vcpu, gva, &field_value, len, &e)) {
4714                         kvm_inject_page_fault(vcpu, &e);
4715                         return 1;
4716                 }
4717         }
4718
4719
4720         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4721         /*
4722          * If the vCPU supports "VMWRITE to any supported field in the
4723          * VMCS," then the "read-only" fields are actually read/write.
4724          */
4725         if (vmcs_field_readonly(field) &&
4726             !nested_cpu_has_vmwrite_any_field(vcpu))
4727                 return nested_vmx_failValid(vcpu,
4728                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4729
4730         if (!is_guest_mode(vcpu)) {
4731                 vmcs12 = get_vmcs12(vcpu);
4732
4733                 /*
4734                  * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
4735                  * vmcs12, else we may crush a field or consume a stale value.
4736                  */
4737                 if (!is_shadow_field_rw(field))
4738                         copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4739         } else {
4740                 /*
4741                  * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4742                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4743                  */
4744                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4745                         return nested_vmx_failInvalid(vcpu);
4746                 vmcs12 = get_shadow_vmcs12(vcpu);
4747         }
4748
4749         offset = vmcs_field_to_offset(field);
4750         if (offset < 0)
4751                 return nested_vmx_failValid(vcpu,
4752                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4753
4754         /*
4755          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
4756          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
4757          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
4758          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
4759          * from L1 will return a different value than VMREAD from L2 (L1 sees
4760          * the stripped down value, L2 sees the full value as stored by KVM).
4761          */
4762         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
4763                 field_value &= 0x1f0ff;
4764
4765         vmcs12_write_any(vmcs12, field, offset, field_value);
4766
4767         /*
4768          * Do not track vmcs12 dirty-state if in guest-mode as we actually
4769          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
4770          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
4771          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
4772          */
4773         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
4774                 /*
4775                  * L1 can read these fields without exiting, ensure the
4776                  * shadow VMCS is up-to-date.
4777                  */
4778                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
4779                         preempt_disable();
4780                         vmcs_load(vmx->vmcs01.shadow_vmcs);
4781
4782                         __vmcs_writel(field, field_value);
4783
4784                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
4785                         vmcs_load(vmx->loaded_vmcs->vmcs);
4786                         preempt_enable();
4787                 }
4788                 vmx->nested.dirty_vmcs12 = true;
4789         }
4790
4791         return nested_vmx_succeed(vcpu);
4792 }
4793
4794 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4795 {
4796         vmx->nested.current_vmptr = vmptr;
4797         if (enable_shadow_vmcs) {
4798                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
4799                 vmcs_write64(VMCS_LINK_POINTER,
4800                              __pa(vmx->vmcs01.shadow_vmcs));
4801                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4802         }
4803         vmx->nested.dirty_vmcs12 = true;
4804 }
4805
4806 /* Emulate the VMPTRLD instruction */
4807 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4808 {
4809         struct vcpu_vmx *vmx = to_vmx(vcpu);
4810         gpa_t vmptr;
4811
4812         if (!nested_vmx_check_permission(vcpu))
4813                 return 1;
4814
4815         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4816                 return 1;
4817
4818         if (!page_address_valid(vcpu, vmptr))
4819                 return nested_vmx_failValid(vcpu,
4820                         VMXERR_VMPTRLD_INVALID_ADDRESS);
4821
4822         if (vmptr == vmx->nested.vmxon_ptr)
4823                 return nested_vmx_failValid(vcpu,
4824                         VMXERR_VMPTRLD_VMXON_POINTER);
4825
4826         /* Forbid normal VMPTRLD if Enlightened version was used */
4827         if (vmx->nested.hv_evmcs)
4828                 return 1;
4829
4830         if (vmx->nested.current_vmptr != vmptr) {
4831                 struct kvm_host_map map;
4832                 struct vmcs12 *new_vmcs12;
4833
4834                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
4835                         /*
4836                          * Reads from an unbacked page return all 1s,
4837                          * which means that the 32 bits located at the
4838                          * given physical address won't match the required
4839                          * VMCS12_REVISION identifier.
4840                          */
4841                         return nested_vmx_failValid(vcpu,
4842                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4843                 }
4844
4845                 new_vmcs12 = map.hva;
4846
4847                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4848                     (new_vmcs12->hdr.shadow_vmcs &&
4849                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4850                         kvm_vcpu_unmap(vcpu, &map, false);
4851                         return nested_vmx_failValid(vcpu,
4852                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4853                 }
4854
4855                 nested_release_vmcs12(vcpu);
4856
4857                 /*
4858                  * Load VMCS12 from guest memory since it is not already
4859                  * cached.
4860                  */
4861                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4862                 kvm_vcpu_unmap(vcpu, &map, false);
4863
4864                 set_current_vmptr(vmx, vmptr);
4865         }
4866
4867         return nested_vmx_succeed(vcpu);
4868 }
4869
4870 /* Emulate the VMPTRST instruction */
4871 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4872 {
4873         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4874         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4875         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4876         struct x86_exception e;
4877         gva_t gva;
4878
4879         if (!nested_vmx_check_permission(vcpu))
4880                 return 1;
4881
4882         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4883                 return 1;
4884
4885         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
4886                                 true, sizeof(gpa_t), &gva))
4887                 return 1;
4888         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4889         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4890                                         sizeof(gpa_t), &e)) {
4891                 kvm_inject_page_fault(vcpu, &e);
4892                 return 1;
4893         }
4894         return nested_vmx_succeed(vcpu);
4895 }
4896
4897 /* Emulate the INVEPT instruction */
4898 static int handle_invept(struct kvm_vcpu *vcpu)
4899 {
4900         struct vcpu_vmx *vmx = to_vmx(vcpu);
4901         u32 vmx_instruction_info, types;
4902         unsigned long type;
4903         gva_t gva;
4904         struct x86_exception e;
4905         struct {
4906                 u64 eptp, gpa;
4907         } operand;
4908
4909         if (!(vmx->nested.msrs.secondary_ctls_high &
4910               SECONDARY_EXEC_ENABLE_EPT) ||
4911             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4912                 kvm_queue_exception(vcpu, UD_VECTOR);
4913                 return 1;
4914         }
4915
4916         if (!nested_vmx_check_permission(vcpu))
4917                 return 1;
4918
4919         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4920         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4921
4922         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4923
4924         if (type >= 32 || !(types & (1 << type)))
4925                 return nested_vmx_failValid(vcpu,
4926                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4927
4928         /* According to the Intel VMX instruction reference, the memory
4929          * operand is read even if it isn't needed (e.g., for type==global)
4930          */
4931         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4932                         vmx_instruction_info, false, sizeof(operand), &gva))
4933                 return 1;
4934         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4935                 kvm_inject_page_fault(vcpu, &e);
4936                 return 1;
4937         }
4938
4939         switch (type) {
4940         case VMX_EPT_EXTENT_GLOBAL:
4941         case VMX_EPT_EXTENT_CONTEXT:
4942         /*
4943          * TODO: Sync the necessary shadow EPT roots here, rather than
4944          * at the next emulated VM-entry.
4945          */
4946                 break;
4947         default:
4948                 BUG_ON(1);
4949                 break;
4950         }
4951
4952         return nested_vmx_succeed(vcpu);
4953 }
4954
4955 static int handle_invvpid(struct kvm_vcpu *vcpu)
4956 {
4957         struct vcpu_vmx *vmx = to_vmx(vcpu);
4958         u32 vmx_instruction_info;
4959         unsigned long type, types;
4960         gva_t gva;
4961         struct x86_exception e;
4962         struct {
4963                 u64 vpid;
4964                 u64 gla;
4965         } operand;
4966         u16 vpid02;
4967
4968         if (!(vmx->nested.msrs.secondary_ctls_high &
4969               SECONDARY_EXEC_ENABLE_VPID) ||
4970                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4971                 kvm_queue_exception(vcpu, UD_VECTOR);
4972                 return 1;
4973         }
4974
4975         if (!nested_vmx_check_permission(vcpu))
4976                 return 1;
4977
4978         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4979         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4980
4981         types = (vmx->nested.msrs.vpid_caps &
4982                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4983
4984         if (type >= 32 || !(types & (1 << type)))
4985                 return nested_vmx_failValid(vcpu,
4986                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4987
4988         /* according to the intel vmx instruction reference, the memory
4989          * operand is read even if it isn't needed (e.g., for type==global)
4990          */
4991         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4992                         vmx_instruction_info, false, sizeof(operand), &gva))
4993                 return 1;
4994         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4995                 kvm_inject_page_fault(vcpu, &e);
4996                 return 1;
4997         }
4998         if (operand.vpid >> 16)
4999                 return nested_vmx_failValid(vcpu,
5000                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5001
5002         vpid02 = nested_get_vpid02(vcpu);
5003         switch (type) {
5004         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5005                 if (!operand.vpid ||
5006                     is_noncanonical_address(operand.gla, vcpu))
5007                         return nested_vmx_failValid(vcpu,
5008                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5009                 if (cpu_has_vmx_invvpid_individual_addr()) {
5010                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
5011                                 vpid02, operand.gla);
5012                 } else
5013                         __vmx_flush_tlb(vcpu, vpid02, false);
5014                 break;
5015         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5016         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5017                 if (!operand.vpid)
5018                         return nested_vmx_failValid(vcpu,
5019                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5020                 __vmx_flush_tlb(vcpu, vpid02, false);
5021                 break;
5022         case VMX_VPID_EXTENT_ALL_CONTEXT:
5023                 __vmx_flush_tlb(vcpu, vpid02, false);
5024                 break;
5025         default:
5026                 WARN_ON_ONCE(1);
5027                 return kvm_skip_emulated_instruction(vcpu);
5028         }
5029
5030         return nested_vmx_succeed(vcpu);
5031 }
5032
5033 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5034                                      struct vmcs12 *vmcs12)
5035 {
5036         u32 index = kvm_rcx_read(vcpu);
5037         u64 address;
5038         bool accessed_dirty;
5039         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5040
5041         if (!nested_cpu_has_eptp_switching(vmcs12) ||
5042             !nested_cpu_has_ept(vmcs12))
5043                 return 1;
5044
5045         if (index >= VMFUNC_EPTP_ENTRIES)
5046                 return 1;
5047
5048
5049         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5050                                      &address, index * 8, 8))
5051                 return 1;
5052
5053         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
5054
5055         /*
5056          * If the (L2) guest does a vmfunc to the currently
5057          * active ept pointer, we don't have to do anything else
5058          */
5059         if (vmcs12->ept_pointer != address) {
5060                 if (!valid_ept_address(vcpu, address))
5061                         return 1;
5062
5063                 kvm_mmu_unload(vcpu);
5064                 mmu->ept_ad = accessed_dirty;
5065                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5066                 vmcs12->ept_pointer = address;
5067                 /*
5068                  * TODO: Check what's the correct approach in case
5069                  * mmu reload fails. Currently, we just let the next
5070                  * reload potentially fail
5071                  */
5072                 kvm_mmu_reload(vcpu);
5073         }
5074
5075         return 0;
5076 }
5077
5078 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5079 {
5080         struct vcpu_vmx *vmx = to_vmx(vcpu);
5081         struct vmcs12 *vmcs12;
5082         u32 function = kvm_rax_read(vcpu);
5083
5084         /*
5085          * VMFUNC is only supported for nested guests, but we always enable the
5086          * secondary control for simplicity; for non-nested mode, fake that we
5087          * didn't by injecting #UD.
5088          */
5089         if (!is_guest_mode(vcpu)) {
5090                 kvm_queue_exception(vcpu, UD_VECTOR);
5091                 return 1;
5092         }
5093
5094         vmcs12 = get_vmcs12(vcpu);
5095         if ((vmcs12->vm_function_control & (1 << function)) == 0)
5096                 goto fail;
5097
5098         switch (function) {
5099         case 0:
5100                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5101                         goto fail;
5102                 break;
5103         default:
5104                 goto fail;
5105         }
5106         return kvm_skip_emulated_instruction(vcpu);
5107
5108 fail:
5109         nested_vmx_vmexit(vcpu, vmx->exit_reason,
5110                           vmcs_read32(VM_EXIT_INTR_INFO),
5111                           vmcs_readl(EXIT_QUALIFICATION));
5112         return 1;
5113 }
5114
5115
5116 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5117                                        struct vmcs12 *vmcs12)
5118 {
5119         unsigned long exit_qualification;
5120         gpa_t bitmap, last_bitmap;
5121         unsigned int port;
5122         int size;
5123         u8 b;
5124
5125         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5126                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5127
5128         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5129
5130         port = exit_qualification >> 16;
5131         size = (exit_qualification & 7) + 1;
5132
5133         last_bitmap = (gpa_t)-1;
5134         b = -1;
5135
5136         while (size > 0) {
5137                 if (port < 0x8000)
5138                         bitmap = vmcs12->io_bitmap_a;
5139                 else if (port < 0x10000)
5140                         bitmap = vmcs12->io_bitmap_b;
5141                 else
5142                         return true;
5143                 bitmap += (port & 0x7fff) / 8;
5144
5145                 if (last_bitmap != bitmap)
5146                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5147                                 return true;
5148                 if (b & (1 << (port & 7)))
5149                         return true;
5150
5151                 port++;
5152                 size--;
5153                 last_bitmap = bitmap;
5154         }
5155
5156         return false;
5157 }
5158
5159 /*
5160  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5161  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5162  * disinterest in the current event (read or write a specific MSR) by using an
5163  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5164  */
5165 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5166         struct vmcs12 *vmcs12, u32 exit_reason)
5167 {
5168         u32 msr_index = kvm_rcx_read(vcpu);
5169         gpa_t bitmap;
5170
5171         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5172                 return true;
5173
5174         /*
5175          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5176          * for the four combinations of read/write and low/high MSR numbers.
5177          * First we need to figure out which of the four to use:
5178          */
5179         bitmap = vmcs12->msr_bitmap;
5180         if (exit_reason == EXIT_REASON_MSR_WRITE)
5181                 bitmap += 2048;
5182         if (msr_index >= 0xc0000000) {
5183                 msr_index -= 0xc0000000;
5184                 bitmap += 1024;
5185         }
5186
5187         /* Then read the msr_index'th bit from this bitmap: */
5188         if (msr_index < 1024*8) {
5189                 unsigned char b;
5190                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5191                         return true;
5192                 return 1 & (b >> (msr_index & 7));
5193         } else
5194                 return true; /* let L1 handle the wrong parameter */
5195 }
5196
5197 /*
5198  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5199  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5200  * intercept (via guest_host_mask etc.) the current event.
5201  */
5202 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5203         struct vmcs12 *vmcs12)
5204 {
5205         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5206         int cr = exit_qualification & 15;
5207         int reg;
5208         unsigned long val;
5209
5210         switch ((exit_qualification >> 4) & 3) {
5211         case 0: /* mov to cr */
5212                 reg = (exit_qualification >> 8) & 15;
5213                 val = kvm_register_readl(vcpu, reg);
5214                 switch (cr) {
5215                 case 0:
5216                         if (vmcs12->cr0_guest_host_mask &
5217                             (val ^ vmcs12->cr0_read_shadow))
5218                                 return true;
5219                         break;
5220                 case 3:
5221                         if ((vmcs12->cr3_target_count >= 1 &&
5222                                         vmcs12->cr3_target_value0 == val) ||
5223                                 (vmcs12->cr3_target_count >= 2 &&
5224                                         vmcs12->cr3_target_value1 == val) ||
5225                                 (vmcs12->cr3_target_count >= 3 &&
5226                                         vmcs12->cr3_target_value2 == val) ||
5227                                 (vmcs12->cr3_target_count >= 4 &&
5228                                         vmcs12->cr3_target_value3 == val))
5229                                 return false;
5230                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5231                                 return true;
5232                         break;
5233                 case 4:
5234                         if (vmcs12->cr4_guest_host_mask &
5235                             (vmcs12->cr4_read_shadow ^ val))
5236                                 return true;
5237                         break;
5238                 case 8:
5239                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5240                                 return true;
5241                         break;
5242                 }
5243                 break;
5244         case 2: /* clts */
5245                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5246                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5247                         return true;
5248                 break;
5249         case 1: /* mov from cr */
5250                 switch (cr) {
5251                 case 3:
5252                         if (vmcs12->cpu_based_vm_exec_control &
5253                             CPU_BASED_CR3_STORE_EXITING)
5254                                 return true;
5255                         break;
5256                 case 8:
5257                         if (vmcs12->cpu_based_vm_exec_control &
5258                             CPU_BASED_CR8_STORE_EXITING)
5259                                 return true;
5260                         break;
5261                 }
5262                 break;
5263         case 3: /* lmsw */
5264                 /*
5265                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5266                  * cr0. Other attempted changes are ignored, with no exit.
5267                  */
5268                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5269                 if (vmcs12->cr0_guest_host_mask & 0xe &
5270                     (val ^ vmcs12->cr0_read_shadow))
5271                         return true;
5272                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5273                     !(vmcs12->cr0_read_shadow & 0x1) &&
5274                     (val & 0x1))
5275                         return true;
5276                 break;
5277         }
5278         return false;
5279 }
5280
5281 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5282         struct vmcs12 *vmcs12, gpa_t bitmap)
5283 {
5284         u32 vmx_instruction_info;
5285         unsigned long field;
5286         u8 b;
5287
5288         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5289                 return true;
5290
5291         /* Decode instruction info and find the field to access */
5292         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5293         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5294
5295         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5296         if (field >> 15)
5297                 return true;
5298
5299         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5300                 return true;
5301
5302         return 1 & (b >> (field & 7));
5303 }
5304
5305 /*
5306  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5307  * should handle it ourselves in L0 (and then continue L2). Only call this
5308  * when in is_guest_mode (L2).
5309  */
5310 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5311 {
5312         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5313         struct vcpu_vmx *vmx = to_vmx(vcpu);
5314         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5315
5316         if (vmx->nested.nested_run_pending)
5317                 return false;
5318
5319         if (unlikely(vmx->fail)) {
5320                 trace_kvm_nested_vmenter_failed(
5321                         "hardware VM-instruction error: ",
5322                         vmcs_read32(VM_INSTRUCTION_ERROR));
5323                 return true;
5324         }
5325
5326         /*
5327          * The host physical addresses of some pages of guest memory
5328          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5329          * Page). The CPU may write to these pages via their host
5330          * physical address while L2 is running, bypassing any
5331          * address-translation-based dirty tracking (e.g. EPT write
5332          * protection).
5333          *
5334          * Mark them dirty on every exit from L2 to prevent them from
5335          * getting out of sync with dirty tracking.
5336          */
5337         nested_mark_vmcs12_pages_dirty(vcpu);
5338
5339         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5340                                 vmcs_readl(EXIT_QUALIFICATION),
5341                                 vmx->idt_vectoring_info,
5342                                 intr_info,
5343                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5344                                 KVM_ISA_VMX);
5345
5346         switch (exit_reason) {
5347         case EXIT_REASON_EXCEPTION_NMI:
5348                 if (is_nmi(intr_info))
5349                         return false;
5350                 else if (is_page_fault(intr_info))
5351                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5352                 else if (is_debug(intr_info) &&
5353                          vcpu->guest_debug &
5354                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5355                         return false;
5356                 else if (is_breakpoint(intr_info) &&
5357                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5358                         return false;
5359                 return vmcs12->exception_bitmap &
5360                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5361         case EXIT_REASON_EXTERNAL_INTERRUPT:
5362                 return false;
5363         case EXIT_REASON_TRIPLE_FAULT:
5364                 return true;
5365         case EXIT_REASON_PENDING_INTERRUPT:
5366                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5367         case EXIT_REASON_NMI_WINDOW:
5368                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5369         case EXIT_REASON_TASK_SWITCH:
5370                 return true;
5371         case EXIT_REASON_CPUID:
5372                 return true;
5373         case EXIT_REASON_HLT:
5374                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5375         case EXIT_REASON_INVD:
5376                 return true;
5377         case EXIT_REASON_INVLPG:
5378                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5379         case EXIT_REASON_RDPMC:
5380                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5381         case EXIT_REASON_RDRAND:
5382                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5383         case EXIT_REASON_RDSEED:
5384                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5385         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5386                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5387         case EXIT_REASON_VMREAD:
5388                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5389                         vmcs12->vmread_bitmap);
5390         case EXIT_REASON_VMWRITE:
5391                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5392                         vmcs12->vmwrite_bitmap);
5393         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5394         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5395         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5396         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5397         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5398                 /*
5399                  * VMX instructions trap unconditionally. This allows L1 to
5400                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5401                  */
5402                 return true;
5403         case EXIT_REASON_CR_ACCESS:
5404                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5405         case EXIT_REASON_DR_ACCESS:
5406                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5407         case EXIT_REASON_IO_INSTRUCTION:
5408                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5409         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5410                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5411         case EXIT_REASON_MSR_READ:
5412         case EXIT_REASON_MSR_WRITE:
5413                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5414         case EXIT_REASON_INVALID_STATE:
5415                 return true;
5416         case EXIT_REASON_MWAIT_INSTRUCTION:
5417                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5418         case EXIT_REASON_MONITOR_TRAP_FLAG:
5419                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5420         case EXIT_REASON_MONITOR_INSTRUCTION:
5421                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5422         case EXIT_REASON_PAUSE_INSTRUCTION:
5423                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5424                         nested_cpu_has2(vmcs12,
5425                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5426         case EXIT_REASON_MCE_DURING_VMENTRY:
5427                 return false;
5428         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5429                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5430         case EXIT_REASON_APIC_ACCESS:
5431         case EXIT_REASON_APIC_WRITE:
5432         case EXIT_REASON_EOI_INDUCED:
5433                 /*
5434                  * The controls for "virtualize APIC accesses," "APIC-
5435                  * register virtualization," and "virtual-interrupt
5436                  * delivery" only come from vmcs12.
5437                  */
5438                 return true;
5439         case EXIT_REASON_EPT_VIOLATION:
5440                 /*
5441                  * L0 always deals with the EPT violation. If nested EPT is
5442                  * used, and the nested mmu code discovers that the address is
5443                  * missing in the guest EPT table (EPT12), the EPT violation
5444                  * will be injected with nested_ept_inject_page_fault()
5445                  */
5446                 return false;
5447         case EXIT_REASON_EPT_MISCONFIG:
5448                 /*
5449                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5450                  * table (shadow on EPT) or a merged EPT table that L0 built
5451                  * (EPT on EPT). So any problems with the structure of the
5452                  * table is L0's fault.
5453                  */
5454                 return false;
5455         case EXIT_REASON_INVPCID:
5456                 return
5457                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5458                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5459         case EXIT_REASON_WBINVD:
5460                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5461         case EXIT_REASON_XSETBV:
5462                 return true;
5463         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5464                 /*
5465                  * This should never happen, since it is not possible to
5466                  * set XSS to a non-zero value---neither in L1 nor in L2.
5467                  * If if it were, XSS would have to be checked against
5468                  * the XSS exit bitmap in vmcs12.
5469                  */
5470                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5471         case EXIT_REASON_PREEMPTION_TIMER:
5472                 return false;
5473         case EXIT_REASON_PML_FULL:
5474                 /* We emulate PML support to L1. */
5475                 return false;
5476         case EXIT_REASON_VMFUNC:
5477                 /* VM functions are emulated through L2->L0 vmexits. */
5478                 return false;
5479         case EXIT_REASON_ENCLS:
5480                 /* SGX is never exposed to L1 */
5481                 return false;
5482         case EXIT_REASON_UMWAIT:
5483         case EXIT_REASON_TPAUSE:
5484                 return nested_cpu_has2(vmcs12,
5485                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5486         default:
5487                 return true;
5488         }
5489 }
5490
5491
5492 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5493                                 struct kvm_nested_state __user *user_kvm_nested_state,
5494                                 u32 user_data_size)
5495 {
5496         struct vcpu_vmx *vmx;
5497         struct vmcs12 *vmcs12;
5498         struct kvm_nested_state kvm_state = {
5499                 .flags = 0,
5500                 .format = KVM_STATE_NESTED_FORMAT_VMX,
5501                 .size = sizeof(kvm_state),
5502                 .hdr.vmx.vmxon_pa = -1ull,
5503                 .hdr.vmx.vmcs12_pa = -1ull,
5504         };
5505         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5506                 &user_kvm_nested_state->data.vmx[0];
5507
5508         if (!vcpu)
5509                 return kvm_state.size + sizeof(*user_vmx_nested_state);
5510
5511         vmx = to_vmx(vcpu);
5512         vmcs12 = get_vmcs12(vcpu);
5513
5514         if (nested_vmx_allowed(vcpu) &&
5515             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5516                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5517                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5518
5519                 if (vmx_has_valid_vmcs12(vcpu)) {
5520                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5521
5522                         if (vmx->nested.hv_evmcs)
5523                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5524
5525                         if (is_guest_mode(vcpu) &&
5526                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5527                             vmcs12->vmcs_link_pointer != -1ull)
5528                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5529                 }
5530
5531                 if (vmx->nested.smm.vmxon)
5532                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5533
5534                 if (vmx->nested.smm.guest_mode)
5535                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5536
5537                 if (is_guest_mode(vcpu)) {
5538                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5539
5540                         if (vmx->nested.nested_run_pending)
5541                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5542                 }
5543         }
5544
5545         if (user_data_size < kvm_state.size)
5546                 goto out;
5547
5548         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5549                 return -EFAULT;
5550
5551         if (!vmx_has_valid_vmcs12(vcpu))
5552                 goto out;
5553
5554         /*
5555          * When running L2, the authoritative vmcs12 state is in the
5556          * vmcs02. When running L1, the authoritative vmcs12 state is
5557          * in the shadow or enlightened vmcs linked to vmcs01, unless
5558          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5559          * vmcs12 state is in the vmcs12 already.
5560          */
5561         if (is_guest_mode(vcpu)) {
5562                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5563                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5564         } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5565                 if (vmx->nested.hv_evmcs)
5566                         copy_enlightened_to_vmcs12(vmx);
5567                 else if (enable_shadow_vmcs)
5568                         copy_shadow_to_vmcs12(vmx);
5569         }
5570
5571         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5572         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5573
5574         /*
5575          * Copy over the full allocated size of vmcs12 rather than just the size
5576          * of the struct.
5577          */
5578         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5579                 return -EFAULT;
5580
5581         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5582             vmcs12->vmcs_link_pointer != -1ull) {
5583                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5584                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5585                         return -EFAULT;
5586         }
5587
5588 out:
5589         return kvm_state.size;
5590 }
5591
5592 /*
5593  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5594  */
5595 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5596 {
5597         if (is_guest_mode(vcpu)) {
5598                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5599                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5600         }
5601         free_nested(vcpu);
5602 }
5603
5604 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5605                                 struct kvm_nested_state __user *user_kvm_nested_state,
5606                                 struct kvm_nested_state *kvm_state)
5607 {
5608         struct vcpu_vmx *vmx = to_vmx(vcpu);
5609         struct vmcs12 *vmcs12;
5610         u32 exit_qual;
5611         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5612                 &user_kvm_nested_state->data.vmx[0];
5613         int ret;
5614
5615         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
5616                 return -EINVAL;
5617
5618         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5619                 if (kvm_state->hdr.vmx.smm.flags)
5620                         return -EINVAL;
5621
5622                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
5623                         return -EINVAL;
5624
5625                 /*
5626                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
5627                  * enable eVMCS capability on vCPU. However, since then
5628                  * code was changed such that flag signals vmcs12 should
5629                  * be copied into eVMCS in guest memory.
5630                  *
5631                  * To preserve backwards compatability, allow user
5632                  * to set this flag even when there is no VMXON region.
5633                  */
5634                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
5635                         return -EINVAL;
5636         } else {
5637                 if (!nested_vmx_allowed(vcpu))
5638                         return -EINVAL;
5639
5640                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5641                         return -EINVAL;
5642         }
5643
5644         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5645             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5646                 return -EINVAL;
5647
5648         if (kvm_state->hdr.vmx.smm.flags &
5649             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5650                 return -EINVAL;
5651
5652         /*
5653          * SMM temporarily disables VMX, so we cannot be in guest mode,
5654          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5655          * must be zero.
5656          */
5657         if (is_smm(vcpu) ?
5658                 (kvm_state->flags &
5659                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
5660                 : kvm_state->hdr.vmx.smm.flags)
5661                 return -EINVAL;
5662
5663         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5664             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5665                 return -EINVAL;
5666
5667         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
5668                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
5669                         return -EINVAL;
5670
5671         vmx_leave_nested(vcpu);
5672
5673         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5674                 return 0;
5675
5676         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
5677         ret = enter_vmx_operation(vcpu);
5678         if (ret)
5679                 return ret;
5680
5681         /* Empty 'VMXON' state is permitted */
5682         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5683                 return 0;
5684
5685         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5686                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5687                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
5688                         return -EINVAL;
5689
5690                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
5691         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5692                 /*
5693                  * Sync eVMCS upon entry as we may not have
5694                  * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5695                  */
5696                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5697         } else {
5698                 return -EINVAL;
5699         }
5700
5701         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5702                 vmx->nested.smm.vmxon = true;
5703                 vmx->nested.vmxon = false;
5704
5705                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5706                         vmx->nested.smm.guest_mode = true;
5707         }
5708
5709         vmcs12 = get_vmcs12(vcpu);
5710         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
5711                 return -EFAULT;
5712
5713         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5714                 return -EINVAL;
5715
5716         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5717                 return 0;
5718
5719         vmx->nested.nested_run_pending =
5720                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5721
5722         ret = -EINVAL;
5723         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5724             vmcs12->vmcs_link_pointer != -1ull) {
5725                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5726
5727                 if (kvm_state->size <
5728                     sizeof(*kvm_state) +
5729                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
5730                         goto error_guest_mode;
5731
5732                 if (copy_from_user(shadow_vmcs12,
5733                                    user_vmx_nested_state->shadow_vmcs12,
5734                                    sizeof(*shadow_vmcs12))) {
5735                         ret = -EFAULT;
5736                         goto error_guest_mode;
5737                 }
5738
5739                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5740                     !shadow_vmcs12->hdr.shadow_vmcs)
5741                         goto error_guest_mode;
5742         }
5743
5744         if (nested_vmx_check_controls(vcpu, vmcs12) ||
5745             nested_vmx_check_host_state(vcpu, vmcs12) ||
5746             nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5747                 goto error_guest_mode;
5748
5749         vmx->nested.dirty_vmcs12 = true;
5750         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5751         if (ret)
5752                 goto error_guest_mode;
5753
5754         return 0;
5755
5756 error_guest_mode:
5757         vmx->nested.nested_run_pending = 0;
5758         return ret;
5759 }
5760
5761 void nested_vmx_vcpu_setup(void)
5762 {
5763         if (enable_shadow_vmcs) {
5764                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5765                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5766         }
5767 }
5768
5769 /*
5770  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5771  * returned for the various VMX controls MSRs when nested VMX is enabled.
5772  * The same values should also be used to verify that vmcs12 control fields are
5773  * valid during nested entry from L1 to L2.
5774  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5775  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5776  * bit in the high half is on if the corresponding bit in the control field
5777  * may be on. See also vmx_control_verify().
5778  */
5779 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5780                                 bool apicv)
5781 {
5782         /*
5783          * Note that as a general rule, the high half of the MSRs (bits in
5784          * the control fields which may be 1) should be initialized by the
5785          * intersection of the underlying hardware's MSR (i.e., features which
5786          * can be supported) and the list of features we want to expose -
5787          * because they are known to be properly supported in our code.
5788          * Also, usually, the low half of the MSRs (bits which must be 1) can
5789          * be set to 0, meaning that L1 may turn off any of these bits. The
5790          * reason is that if one of these bits is necessary, it will appear
5791          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5792          * fields of vmcs01 and vmcs02, will turn these bits off - and
5793          * nested_vmx_exit_reflected() will not pass related exits to L1.
5794          * These rules have exceptions below.
5795          */
5796
5797         /* pin-based controls */
5798         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5799                 msrs->pinbased_ctls_low,
5800                 msrs->pinbased_ctls_high);
5801         msrs->pinbased_ctls_low |=
5802                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5803         msrs->pinbased_ctls_high &=
5804                 PIN_BASED_EXT_INTR_MASK |
5805                 PIN_BASED_NMI_EXITING |
5806                 PIN_BASED_VIRTUAL_NMIS |
5807                 (apicv ? PIN_BASED_POSTED_INTR : 0);
5808         msrs->pinbased_ctls_high |=
5809                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5810                 PIN_BASED_VMX_PREEMPTION_TIMER;
5811
5812         /* exit controls */
5813         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5814                 msrs->exit_ctls_low,
5815                 msrs->exit_ctls_high);
5816         msrs->exit_ctls_low =
5817                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5818
5819         msrs->exit_ctls_high &=
5820 #ifdef CONFIG_X86_64
5821                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5822 #endif
5823                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5824         msrs->exit_ctls_high |=
5825                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5826                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5827                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5828
5829         /* We support free control of debug control saving. */
5830         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5831
5832         /* entry controls */
5833         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5834                 msrs->entry_ctls_low,
5835                 msrs->entry_ctls_high);
5836         msrs->entry_ctls_low =
5837                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5838         msrs->entry_ctls_high &=
5839 #ifdef CONFIG_X86_64
5840                 VM_ENTRY_IA32E_MODE |
5841 #endif
5842                 VM_ENTRY_LOAD_IA32_PAT;
5843         msrs->entry_ctls_high |=
5844                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5845
5846         /* We support free control of debug control loading. */
5847         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5848
5849         /* cpu-based controls */
5850         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5851                 msrs->procbased_ctls_low,
5852                 msrs->procbased_ctls_high);
5853         msrs->procbased_ctls_low =
5854                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5855         msrs->procbased_ctls_high &=
5856                 CPU_BASED_VIRTUAL_INTR_PENDING |
5857                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5858                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5859                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5860                 CPU_BASED_CR3_STORE_EXITING |
5861 #ifdef CONFIG_X86_64
5862                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5863 #endif
5864                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5865                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5866                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5867                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5868                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5869         /*
5870          * We can allow some features even when not supported by the
5871          * hardware. For example, L1 can specify an MSR bitmap - and we
5872          * can use it to avoid exits to L1 - even when L0 runs L2
5873          * without MSR bitmaps.
5874          */
5875         msrs->procbased_ctls_high |=
5876                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5877                 CPU_BASED_USE_MSR_BITMAPS;
5878
5879         /* We support free control of CR3 access interception. */
5880         msrs->procbased_ctls_low &=
5881                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5882
5883         /*
5884          * secondary cpu-based controls.  Do not include those that
5885          * depend on CPUID bits, they are added later by vmx_cpuid_update.
5886          */
5887         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
5888                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5889                       msrs->secondary_ctls_low,
5890                       msrs->secondary_ctls_high);
5891
5892         msrs->secondary_ctls_low = 0;
5893         msrs->secondary_ctls_high &=
5894                 SECONDARY_EXEC_DESC |
5895                 SECONDARY_EXEC_RDTSCP |
5896                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5897                 SECONDARY_EXEC_WBINVD_EXITING |
5898                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5899                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5900                 SECONDARY_EXEC_RDRAND_EXITING |
5901                 SECONDARY_EXEC_ENABLE_INVPCID |
5902                 SECONDARY_EXEC_RDSEED_EXITING |
5903                 SECONDARY_EXEC_XSAVES;
5904
5905         /*
5906          * We can emulate "VMCS shadowing," even if the hardware
5907          * doesn't support it.
5908          */
5909         msrs->secondary_ctls_high |=
5910                 SECONDARY_EXEC_SHADOW_VMCS;
5911
5912         if (enable_ept) {
5913                 /* nested EPT: emulate EPT also to L1 */
5914                 msrs->secondary_ctls_high |=
5915                         SECONDARY_EXEC_ENABLE_EPT;
5916                 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5917                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5918                 if (cpu_has_vmx_ept_execute_only())
5919                         msrs->ept_caps |=
5920                                 VMX_EPT_EXECUTE_ONLY_BIT;
5921                 msrs->ept_caps &= ept_caps;
5922                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5923                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5924                         VMX_EPT_1GB_PAGE_BIT;
5925                 if (enable_ept_ad_bits) {
5926                         msrs->secondary_ctls_high |=
5927                                 SECONDARY_EXEC_ENABLE_PML;
5928                         msrs->ept_caps |= VMX_EPT_AD_BIT;
5929                 }
5930         }
5931
5932         if (cpu_has_vmx_vmfunc()) {
5933                 msrs->secondary_ctls_high |=
5934                         SECONDARY_EXEC_ENABLE_VMFUNC;
5935                 /*
5936                  * Advertise EPTP switching unconditionally
5937                  * since we emulate it
5938                  */
5939                 if (enable_ept)
5940                         msrs->vmfunc_controls =
5941                                 VMX_VMFUNC_EPTP_SWITCHING;
5942         }
5943
5944         /*
5945          * Old versions of KVM use the single-context version without
5946          * checking for support, so declare that it is supported even
5947          * though it is treated as global context.  The alternative is
5948          * not failing the single-context invvpid, and it is worse.
5949          */
5950         if (enable_vpid) {
5951                 msrs->secondary_ctls_high |=
5952                         SECONDARY_EXEC_ENABLE_VPID;
5953                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5954                         VMX_VPID_EXTENT_SUPPORTED_MASK;
5955         }
5956
5957         if (enable_unrestricted_guest)
5958                 msrs->secondary_ctls_high |=
5959                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
5960
5961         if (flexpriority_enabled)
5962                 msrs->secondary_ctls_high |=
5963                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5964
5965         /* miscellaneous data */
5966         rdmsr(MSR_IA32_VMX_MISC,
5967                 msrs->misc_low,
5968                 msrs->misc_high);
5969         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5970         msrs->misc_low |=
5971                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5972                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5973                 VMX_MISC_ACTIVITY_HLT;
5974         msrs->misc_high = 0;
5975
5976         /*
5977          * This MSR reports some information about VMX support. We
5978          * should return information about the VMX we emulate for the
5979          * guest, and the VMCS structure we give it - not about the
5980          * VMX support of the underlying hardware.
5981          */
5982         msrs->basic =
5983                 VMCS12_REVISION |
5984                 VMX_BASIC_TRUE_CTLS |
5985                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5986                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5987
5988         if (cpu_has_vmx_basic_inout())
5989                 msrs->basic |= VMX_BASIC_INOUT;
5990
5991         /*
5992          * These MSRs specify bits which the guest must keep fixed on
5993          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
5994          * We picked the standard core2 setting.
5995          */
5996 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
5997 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
5998         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
5999         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6000
6001         /* These MSRs specify bits which the guest must keep fixed off. */
6002         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6003         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6004
6005         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6006         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6007 }
6008
6009 void nested_vmx_hardware_unsetup(void)
6010 {
6011         int i;
6012
6013         if (enable_shadow_vmcs) {
6014                 for (i = 0; i < VMX_BITMAP_NR; i++)
6015                         free_page((unsigned long)vmx_bitmap[i]);
6016         }
6017 }
6018
6019 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6020 {
6021         int i;
6022
6023         if (!cpu_has_vmx_shadow_vmcs())
6024                 enable_shadow_vmcs = 0;
6025         if (enable_shadow_vmcs) {
6026                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6027                         /*
6028                          * The vmx_bitmap is not tied to a VM and so should
6029                          * not be charged to a memcg.
6030                          */
6031                         vmx_bitmap[i] = (unsigned long *)
6032                                 __get_free_page(GFP_KERNEL);
6033                         if (!vmx_bitmap[i]) {
6034                                 nested_vmx_hardware_unsetup();
6035                                 return -ENOMEM;
6036                         }
6037                 }
6038
6039                 init_vmcs_shadow_fields();
6040         }
6041
6042         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear,
6043         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch,
6044         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld,
6045         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst,
6046         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread,
6047         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume,
6048         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite,
6049         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff,
6050         exit_handlers[EXIT_REASON_VMON]         = handle_vmon,
6051         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept,
6052         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid,
6053         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc,
6054
6055         kvm_x86_ops->check_nested_events = vmx_check_nested_events;
6056         kvm_x86_ops->get_nested_state = vmx_get_nested_state;
6057         kvm_x86_ops->set_nested_state = vmx_set_nested_state;
6058         kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
6059         kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
6060         kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
6061
6062         return 0;
6063 }