424d9a77af86ef29f16b440fcafade4cff77b8f6
[linux-block.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "trace.h"
15 #include "x86.h"
16
17 static bool __read_mostly enable_shadow_vmcs = 1;
18 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
19
20 static bool __read_mostly nested_early_check = 0;
21 module_param(nested_early_check, bool, S_IRUGO);
22
23 #define CC(consistency_check)                                           \
24 ({                                                                      \
25         bool failed = (consistency_check);                              \
26         if (failed)                                                     \
27                 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
28         failed;                                                         \
29 })
30
31 /*
32  * Hyper-V requires all of these, so mark them as supported even though
33  * they are just treated the same as all-context.
34  */
35 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
36         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
37         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
38         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
39         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
40
41 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
42
43 enum {
44         VMX_VMREAD_BITMAP,
45         VMX_VMWRITE_BITMAP,
46         VMX_BITMAP_NR
47 };
48 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
49
50 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
51 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
52
53 struct shadow_vmcs_field {
54         u16     encoding;
55         u16     offset;
56 };
57 static struct shadow_vmcs_field shadow_read_only_fields[] = {
58 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
59 #include "vmcs_shadow_fields.h"
60 };
61 static int max_shadow_read_only_fields =
62         ARRAY_SIZE(shadow_read_only_fields);
63
64 static struct shadow_vmcs_field shadow_read_write_fields[] = {
65 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
66 #include "vmcs_shadow_fields.h"
67 };
68 static int max_shadow_read_write_fields =
69         ARRAY_SIZE(shadow_read_write_fields);
70
71 static void init_vmcs_shadow_fields(void)
72 {
73         int i, j;
74
75         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
76         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
77
78         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
79                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
80                 u16 field = entry.encoding;
81
82                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
83                     (i + 1 == max_shadow_read_only_fields ||
84                      shadow_read_only_fields[i + 1].encoding != field + 1))
85                         pr_err("Missing field from shadow_read_only_field %x\n",
86                                field + 1);
87
88                 clear_bit(field, vmx_vmread_bitmap);
89                 if (field & 1)
90 #ifdef CONFIG_X86_64
91                         continue;
92 #else
93                         entry.offset += sizeof(u32);
94 #endif
95                 shadow_read_only_fields[j++] = entry;
96         }
97         max_shadow_read_only_fields = j;
98
99         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
100                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
101                 u16 field = entry.encoding;
102
103                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
104                     (i + 1 == max_shadow_read_write_fields ||
105                      shadow_read_write_fields[i + 1].encoding != field + 1))
106                         pr_err("Missing field from shadow_read_write_field %x\n",
107                                field + 1);
108
109                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
110                           field <= GUEST_TR_AR_BYTES,
111                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
112
113                 /*
114                  * PML and the preemption timer can be emulated, but the
115                  * processor cannot vmwrite to fields that don't exist
116                  * on bare metal.
117                  */
118                 switch (field) {
119                 case GUEST_PML_INDEX:
120                         if (!cpu_has_vmx_pml())
121                                 continue;
122                         break;
123                 case VMX_PREEMPTION_TIMER_VALUE:
124                         if (!cpu_has_vmx_preemption_timer())
125                                 continue;
126                         break;
127                 case GUEST_INTR_STATUS:
128                         if (!cpu_has_vmx_apicv())
129                                 continue;
130                         break;
131                 default:
132                         break;
133                 }
134
135                 clear_bit(field, vmx_vmwrite_bitmap);
136                 clear_bit(field, vmx_vmread_bitmap);
137                 if (field & 1)
138 #ifdef CONFIG_X86_64
139                         continue;
140 #else
141                         entry.offset += sizeof(u32);
142 #endif
143                 shadow_read_write_fields[j++] = entry;
144         }
145         max_shadow_read_write_fields = j;
146 }
147
148 /*
149  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
150  * set the success or error code of an emulated VMX instruction (as specified
151  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
152  * instruction.
153  */
154 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
155 {
156         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
157                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
158                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
159         return kvm_skip_emulated_instruction(vcpu);
160 }
161
162 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
163 {
164         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
166                             X86_EFLAGS_SF | X86_EFLAGS_OF))
167                         | X86_EFLAGS_CF);
168         return kvm_skip_emulated_instruction(vcpu);
169 }
170
171 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
172                                 u32 vm_instruction_error)
173 {
174         struct vcpu_vmx *vmx = to_vmx(vcpu);
175
176         /*
177          * failValid writes the error number to the current VMCS, which
178          * can't be done if there isn't a current VMCS.
179          */
180         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
181                 return nested_vmx_failInvalid(vcpu);
182
183         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
184                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
185                             X86_EFLAGS_SF | X86_EFLAGS_OF))
186                         | X86_EFLAGS_ZF);
187         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
188         /*
189          * We don't need to force a shadow sync because
190          * VM_INSTRUCTION_ERROR is not shadowed
191          */
192         return kvm_skip_emulated_instruction(vcpu);
193 }
194
195 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
196 {
197         /* TODO: not to reset guest simply here. */
198         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
199         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
200 }
201
202 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
203 {
204         return fixed_bits_valid(control, low, high);
205 }
206
207 static inline u64 vmx_control_msr(u32 low, u32 high)
208 {
209         return low | ((u64)high << 32);
210 }
211
212 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
213 {
214         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
215         vmcs_write64(VMCS_LINK_POINTER, -1ull);
216         vmx->nested.need_vmcs12_to_shadow_sync = false;
217 }
218
219 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
220 {
221         struct vcpu_vmx *vmx = to_vmx(vcpu);
222
223         if (!vmx->nested.hv_evmcs)
224                 return;
225
226         kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
227         vmx->nested.hv_evmcs_vmptr = 0;
228         vmx->nested.hv_evmcs = NULL;
229 }
230
231 /*
232  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
233  * just stops using VMX.
234  */
235 static void free_nested(struct kvm_vcpu *vcpu)
236 {
237         struct vcpu_vmx *vmx = to_vmx(vcpu);
238
239         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
240                 return;
241
242         kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
243
244         vmx->nested.vmxon = false;
245         vmx->nested.smm.vmxon = false;
246         free_vpid(vmx->nested.vpid02);
247         vmx->nested.posted_intr_nv = -1;
248         vmx->nested.current_vmptr = -1ull;
249         if (enable_shadow_vmcs) {
250                 vmx_disable_shadow_vmcs(vmx);
251                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
252                 free_vmcs(vmx->vmcs01.shadow_vmcs);
253                 vmx->vmcs01.shadow_vmcs = NULL;
254         }
255         kfree(vmx->nested.cached_vmcs12);
256         vmx->nested.cached_vmcs12 = NULL;
257         kfree(vmx->nested.cached_shadow_vmcs12);
258         vmx->nested.cached_shadow_vmcs12 = NULL;
259         /* Unpin physical memory we referred to in the vmcs02 */
260         if (vmx->nested.apic_access_page) {
261                 kvm_release_page_clean(vmx->nested.apic_access_page);
262                 vmx->nested.apic_access_page = NULL;
263         }
264         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
265         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
266         vmx->nested.pi_desc = NULL;
267
268         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
269
270         nested_release_evmcs(vcpu);
271
272         free_loaded_vmcs(&vmx->nested.vmcs02);
273 }
274
275 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
276                                      struct loaded_vmcs *prev)
277 {
278         struct vmcs_host_state *dest, *src;
279
280         if (unlikely(!vmx->guest_state_loaded))
281                 return;
282
283         src = &prev->host_state;
284         dest = &vmx->loaded_vmcs->host_state;
285
286         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
287         dest->ldt_sel = src->ldt_sel;
288 #ifdef CONFIG_X86_64
289         dest->ds_sel = src->ds_sel;
290         dest->es_sel = src->es_sel;
291 #endif
292 }
293
294 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
295 {
296         struct vcpu_vmx *vmx = to_vmx(vcpu);
297         struct loaded_vmcs *prev;
298         int cpu;
299
300         if (vmx->loaded_vmcs == vmcs)
301                 return;
302
303         cpu = get_cpu();
304         prev = vmx->loaded_vmcs;
305         vmx->loaded_vmcs = vmcs;
306         vmx_vcpu_load_vmcs(vcpu, cpu);
307         vmx_sync_vmcs_host_state(vmx, prev);
308         put_cpu();
309
310         vmx_segment_cache_clear(vmx);
311 }
312
313 /*
314  * Ensure that the current vmcs of the logical processor is the
315  * vmcs01 of the vcpu before calling free_nested().
316  */
317 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
318 {
319         vcpu_load(vcpu);
320         vmx_leave_nested(vcpu);
321         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
322         free_nested(vcpu);
323         vcpu_put(vcpu);
324 }
325
326 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
327                 struct x86_exception *fault)
328 {
329         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
330         struct vcpu_vmx *vmx = to_vmx(vcpu);
331         u32 exit_reason;
332         unsigned long exit_qualification = vcpu->arch.exit_qualification;
333
334         if (vmx->nested.pml_full) {
335                 exit_reason = EXIT_REASON_PML_FULL;
336                 vmx->nested.pml_full = false;
337                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
338         } else if (fault->error_code & PFERR_RSVD_MASK)
339                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
340         else
341                 exit_reason = EXIT_REASON_EPT_VIOLATION;
342
343         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
344         vmcs12->guest_physical_address = fault->address;
345 }
346
347 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
348 {
349         WARN_ON(mmu_is_nested(vcpu));
350
351         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
352         kvm_init_shadow_ept_mmu(vcpu,
353                         to_vmx(vcpu)->nested.msrs.ept_caps &
354                         VMX_EPT_EXECUTE_ONLY_BIT,
355                         nested_ept_ad_enabled(vcpu),
356                         nested_ept_get_eptp(vcpu));
357         vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
358         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
359         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
360
361         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
362 }
363
364 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
365 {
366         vcpu->arch.mmu = &vcpu->arch.root_mmu;
367         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
368 }
369
370 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
371                                             u16 error_code)
372 {
373         bool inequality, bit;
374
375         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
376         inequality =
377                 (error_code & vmcs12->page_fault_error_code_mask) !=
378                  vmcs12->page_fault_error_code_match;
379         return inequality ^ bit;
380 }
381
382
383 /*
384  * KVM wants to inject page-faults which it got to the guest. This function
385  * checks whether in a nested guest, we need to inject them to L1 or L2.
386  */
387 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
388 {
389         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
390         unsigned int nr = vcpu->arch.exception.nr;
391         bool has_payload = vcpu->arch.exception.has_payload;
392         unsigned long payload = vcpu->arch.exception.payload;
393
394         if (nr == PF_VECTOR) {
395                 if (vcpu->arch.exception.nested_apf) {
396                         *exit_qual = vcpu->arch.apf.nested_apf_token;
397                         return 1;
398                 }
399                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
400                                                     vcpu->arch.exception.error_code)) {
401                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
402                         return 1;
403                 }
404         } else if (vmcs12->exception_bitmap & (1u << nr)) {
405                 if (nr == DB_VECTOR) {
406                         if (!has_payload) {
407                                 payload = vcpu->arch.dr6;
408                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
409                                 payload ^= DR6_RTM;
410                         }
411                         *exit_qual = payload;
412                 } else
413                         *exit_qual = 0;
414                 return 1;
415         }
416
417         return 0;
418 }
419
420
421 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
422                 struct x86_exception *fault)
423 {
424         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
425
426         WARN_ON(!is_guest_mode(vcpu));
427
428         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
429                 !to_vmx(vcpu)->nested.nested_run_pending) {
430                 vmcs12->vm_exit_intr_error_code = fault->error_code;
431                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
432                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
433                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
434                                   fault->address);
435         } else {
436                 kvm_inject_page_fault(vcpu, fault);
437         }
438 }
439
440 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
441 {
442         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
443 }
444
445 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
446                                                struct vmcs12 *vmcs12)
447 {
448         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
449                 return 0;
450
451         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
452             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
453                 return -EINVAL;
454
455         return 0;
456 }
457
458 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
459                                                 struct vmcs12 *vmcs12)
460 {
461         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
462                 return 0;
463
464         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
465                 return -EINVAL;
466
467         return 0;
468 }
469
470 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
471                                                 struct vmcs12 *vmcs12)
472 {
473         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
474                 return 0;
475
476         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
477                 return -EINVAL;
478
479         return 0;
480 }
481
482 /*
483  * Check if MSR is intercepted for L01 MSR bitmap.
484  */
485 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
486 {
487         unsigned long *msr_bitmap;
488         int f = sizeof(unsigned long);
489
490         if (!cpu_has_vmx_msr_bitmap())
491                 return true;
492
493         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
494
495         if (msr <= 0x1fff) {
496                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
497         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
498                 msr &= 0x1fff;
499                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
500         }
501
502         return true;
503 }
504
505 /*
506  * If a msr is allowed by L0, we should check whether it is allowed by L1.
507  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
508  */
509 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
510                                                unsigned long *msr_bitmap_nested,
511                                                u32 msr, int type)
512 {
513         int f = sizeof(unsigned long);
514
515         /*
516          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
517          * have the write-low and read-high bitmap offsets the wrong way round.
518          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
519          */
520         if (msr <= 0x1fff) {
521                 if (type & MSR_TYPE_R &&
522                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
523                         /* read-low */
524                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
525
526                 if (type & MSR_TYPE_W &&
527                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
528                         /* write-low */
529                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
530
531         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
532                 msr &= 0x1fff;
533                 if (type & MSR_TYPE_R &&
534                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
535                         /* read-high */
536                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
537
538                 if (type & MSR_TYPE_W &&
539                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
540                         /* write-high */
541                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
542
543         }
544 }
545
546 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
547 {
548         int msr;
549
550         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
551                 unsigned word = msr / BITS_PER_LONG;
552
553                 msr_bitmap[word] = ~0;
554                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
555         }
556 }
557
558 /*
559  * Merge L0's and L1's MSR bitmap, return false to indicate that
560  * we do not use the hardware.
561  */
562 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
563                                                  struct vmcs12 *vmcs12)
564 {
565         int msr;
566         unsigned long *msr_bitmap_l1;
567         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
568         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
569
570         /* Nothing to do if the MSR bitmap is not in use.  */
571         if (!cpu_has_vmx_msr_bitmap() ||
572             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
573                 return false;
574
575         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
576                 return false;
577
578         msr_bitmap_l1 = (unsigned long *)map->hva;
579
580         /*
581          * To keep the control flow simple, pay eight 8-byte writes (sixteen
582          * 4-byte writes on 32-bit systems) up front to enable intercepts for
583          * the x2APIC MSR range and selectively disable them below.
584          */
585         enable_x2apic_msr_intercepts(msr_bitmap_l0);
586
587         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
588                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
589                         /*
590                          * L0 need not intercept reads for MSRs between 0x800
591                          * and 0x8ff, it just lets the processor take the value
592                          * from the virtual-APIC page; take those 256 bits
593                          * directly from the L1 bitmap.
594                          */
595                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
596                                 unsigned word = msr / BITS_PER_LONG;
597
598                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
599                         }
600                 }
601
602                 nested_vmx_disable_intercept_for_msr(
603                         msr_bitmap_l1, msr_bitmap_l0,
604                         X2APIC_MSR(APIC_TASKPRI),
605                         MSR_TYPE_R | MSR_TYPE_W);
606
607                 if (nested_cpu_has_vid(vmcs12)) {
608                         nested_vmx_disable_intercept_for_msr(
609                                 msr_bitmap_l1, msr_bitmap_l0,
610                                 X2APIC_MSR(APIC_EOI),
611                                 MSR_TYPE_W);
612                         nested_vmx_disable_intercept_for_msr(
613                                 msr_bitmap_l1, msr_bitmap_l0,
614                                 X2APIC_MSR(APIC_SELF_IPI),
615                                 MSR_TYPE_W);
616                 }
617         }
618
619         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
620         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
621                                              MSR_FS_BASE, MSR_TYPE_RW);
622
623         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
624                                              MSR_GS_BASE, MSR_TYPE_RW);
625
626         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
627                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
628
629         /*
630          * Checking the L0->L1 bitmap is trying to verify two things:
631          *
632          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
633          *    ensures that we do not accidentally generate an L02 MSR bitmap
634          *    from the L12 MSR bitmap that is too permissive.
635          * 2. That L1 or L2s have actually used the MSR. This avoids
636          *    unnecessarily merging of the bitmap if the MSR is unused. This
637          *    works properly because we only update the L01 MSR bitmap lazily.
638          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
639          *    updated to reflect this when L1 (or its L2s) actually write to
640          *    the MSR.
641          */
642         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
643                 nested_vmx_disable_intercept_for_msr(
644                                         msr_bitmap_l1, msr_bitmap_l0,
645                                         MSR_IA32_SPEC_CTRL,
646                                         MSR_TYPE_R | MSR_TYPE_W);
647
648         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
649                 nested_vmx_disable_intercept_for_msr(
650                                         msr_bitmap_l1, msr_bitmap_l0,
651                                         MSR_IA32_PRED_CMD,
652                                         MSR_TYPE_W);
653
654         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
655
656         return true;
657 }
658
659 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
660                                        struct vmcs12 *vmcs12)
661 {
662         struct kvm_host_map map;
663         struct vmcs12 *shadow;
664
665         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
666             vmcs12->vmcs_link_pointer == -1ull)
667                 return;
668
669         shadow = get_shadow_vmcs12(vcpu);
670
671         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
672                 return;
673
674         memcpy(shadow, map.hva, VMCS12_SIZE);
675         kvm_vcpu_unmap(vcpu, &map, false);
676 }
677
678 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
679                                               struct vmcs12 *vmcs12)
680 {
681         struct vcpu_vmx *vmx = to_vmx(vcpu);
682
683         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
684             vmcs12->vmcs_link_pointer == -1ull)
685                 return;
686
687         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
688                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
689 }
690
691 /*
692  * In nested virtualization, check if L1 has set
693  * VM_EXIT_ACK_INTR_ON_EXIT
694  */
695 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
696 {
697         return get_vmcs12(vcpu)->vm_exit_controls &
698                 VM_EXIT_ACK_INTR_ON_EXIT;
699 }
700
701 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
702 {
703         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
704 }
705
706 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
707                                           struct vmcs12 *vmcs12)
708 {
709         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
710             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
711                 return -EINVAL;
712         else
713                 return 0;
714 }
715
716 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
717                                            struct vmcs12 *vmcs12)
718 {
719         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
720             !nested_cpu_has_apic_reg_virt(vmcs12) &&
721             !nested_cpu_has_vid(vmcs12) &&
722             !nested_cpu_has_posted_intr(vmcs12))
723                 return 0;
724
725         /*
726          * If virtualize x2apic mode is enabled,
727          * virtualize apic access must be disabled.
728          */
729         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
730                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
731                 return -EINVAL;
732
733         /*
734          * If virtual interrupt delivery is enabled,
735          * we must exit on external interrupts.
736          */
737         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
738                 return -EINVAL;
739
740         /*
741          * bits 15:8 should be zero in posted_intr_nv,
742          * the descriptor address has been already checked
743          * in nested_get_vmcs12_pages.
744          *
745          * bits 5:0 of posted_intr_desc_addr should be zero.
746          */
747         if (nested_cpu_has_posted_intr(vmcs12) &&
748            (CC(!nested_cpu_has_vid(vmcs12)) ||
749             CC(!nested_exit_intr_ack_set(vcpu)) ||
750             CC((vmcs12->posted_intr_nv & 0xff00)) ||
751             CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
752             CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
753                 return -EINVAL;
754
755         /* tpr shadow is needed by all apicv features. */
756         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
757                 return -EINVAL;
758
759         return 0;
760 }
761
762 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
763                                        u32 count, u64 addr)
764 {
765         int maxphyaddr;
766
767         if (count == 0)
768                 return 0;
769         maxphyaddr = cpuid_maxphyaddr(vcpu);
770         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
771             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
772                 return -EINVAL;
773
774         return 0;
775 }
776
777 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
778                                                      struct vmcs12 *vmcs12)
779 {
780         if (CC(nested_vmx_check_msr_switch(vcpu,
781                                            vmcs12->vm_exit_msr_load_count,
782                                            vmcs12->vm_exit_msr_load_addr)) ||
783             CC(nested_vmx_check_msr_switch(vcpu,
784                                            vmcs12->vm_exit_msr_store_count,
785                                            vmcs12->vm_exit_msr_store_addr)))
786                 return -EINVAL;
787
788         return 0;
789 }
790
791 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
792                                                       struct vmcs12 *vmcs12)
793 {
794         if (CC(nested_vmx_check_msr_switch(vcpu,
795                                            vmcs12->vm_entry_msr_load_count,
796                                            vmcs12->vm_entry_msr_load_addr)))
797                 return -EINVAL;
798
799         return 0;
800 }
801
802 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
803                                          struct vmcs12 *vmcs12)
804 {
805         if (!nested_cpu_has_pml(vmcs12))
806                 return 0;
807
808         if (CC(!nested_cpu_has_ept(vmcs12)) ||
809             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
810                 return -EINVAL;
811
812         return 0;
813 }
814
815 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
816                                                         struct vmcs12 *vmcs12)
817 {
818         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
819                !nested_cpu_has_ept(vmcs12)))
820                 return -EINVAL;
821         return 0;
822 }
823
824 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
825                                                          struct vmcs12 *vmcs12)
826 {
827         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
828                !nested_cpu_has_ept(vmcs12)))
829                 return -EINVAL;
830         return 0;
831 }
832
833 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
834                                                  struct vmcs12 *vmcs12)
835 {
836         if (!nested_cpu_has_shadow_vmcs(vmcs12))
837                 return 0;
838
839         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
840             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
841                 return -EINVAL;
842
843         return 0;
844 }
845
846 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
847                                        struct vmx_msr_entry *e)
848 {
849         /* x2APIC MSR accesses are not allowed */
850         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
851                 return -EINVAL;
852         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
853             CC(e->index == MSR_IA32_UCODE_REV))
854                 return -EINVAL;
855         if (CC(e->reserved != 0))
856                 return -EINVAL;
857         return 0;
858 }
859
860 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
861                                      struct vmx_msr_entry *e)
862 {
863         if (CC(e->index == MSR_FS_BASE) ||
864             CC(e->index == MSR_GS_BASE) ||
865             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
866             nested_vmx_msr_check_common(vcpu, e))
867                 return -EINVAL;
868         return 0;
869 }
870
871 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
872                                       struct vmx_msr_entry *e)
873 {
874         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
875             nested_vmx_msr_check_common(vcpu, e))
876                 return -EINVAL;
877         return 0;
878 }
879
880 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
881 {
882         struct vcpu_vmx *vmx = to_vmx(vcpu);
883         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
884                                        vmx->nested.msrs.misc_high);
885
886         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
887 }
888
889 /*
890  * Load guest's/host's msr at nested entry/exit.
891  * return 0 for success, entry index for failure.
892  *
893  * One of the failure modes for MSR load/store is when a list exceeds the
894  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
895  * as possible, process all valid entries before failing rather than precheck
896  * for a capacity violation.
897  */
898 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
899 {
900         u32 i;
901         struct vmx_msr_entry e;
902         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
903
904         for (i = 0; i < count; i++) {
905                 if (unlikely(i >= max_msr_list_size))
906                         goto fail;
907
908                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
909                                         &e, sizeof(e))) {
910                         pr_debug_ratelimited(
911                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
912                                 __func__, i, gpa + i * sizeof(e));
913                         goto fail;
914                 }
915                 if (nested_vmx_load_msr_check(vcpu, &e)) {
916                         pr_debug_ratelimited(
917                                 "%s check failed (%u, 0x%x, 0x%x)\n",
918                                 __func__, i, e.index, e.reserved);
919                         goto fail;
920                 }
921                 if (kvm_set_msr(vcpu, e.index, e.value)) {
922                         pr_debug_ratelimited(
923                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
924                                 __func__, i, e.index, e.value);
925                         goto fail;
926                 }
927         }
928         return 0;
929 fail:
930         return i + 1;
931 }
932
933 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
934                                             u32 msr_index,
935                                             u64 *data)
936 {
937         struct vcpu_vmx *vmx = to_vmx(vcpu);
938
939         /*
940          * If the L0 hypervisor stored a more accurate value for the TSC that
941          * does not include the time taken for emulation of the L2->L1
942          * VM-exit in L0, use the more accurate value.
943          */
944         if (msr_index == MSR_IA32_TSC) {
945                 int index = vmx_find_msr_index(&vmx->msr_autostore.guest,
946                                                MSR_IA32_TSC);
947
948                 if (index >= 0) {
949                         u64 val = vmx->msr_autostore.guest.val[index].value;
950
951                         *data = kvm_read_l1_tsc(vcpu, val);
952                         return true;
953                 }
954         }
955
956         if (kvm_get_msr(vcpu, msr_index, data)) {
957                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
958                         msr_index);
959                 return false;
960         }
961         return true;
962 }
963
964 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
965                                      struct vmx_msr_entry *e)
966 {
967         if (kvm_vcpu_read_guest(vcpu,
968                                 gpa + i * sizeof(*e),
969                                 e, 2 * sizeof(u32))) {
970                 pr_debug_ratelimited(
971                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
972                         __func__, i, gpa + i * sizeof(*e));
973                 return false;
974         }
975         if (nested_vmx_store_msr_check(vcpu, e)) {
976                 pr_debug_ratelimited(
977                         "%s check failed (%u, 0x%x, 0x%x)\n",
978                         __func__, i, e->index, e->reserved);
979                 return false;
980         }
981         return true;
982 }
983
984 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
985 {
986         u64 data;
987         u32 i;
988         struct vmx_msr_entry e;
989         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
990
991         for (i = 0; i < count; i++) {
992                 if (unlikely(i >= max_msr_list_size))
993                         return -EINVAL;
994
995                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
996                         return -EINVAL;
997
998                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
999                         return -EINVAL;
1000
1001                 if (kvm_vcpu_write_guest(vcpu,
1002                                          gpa + i * sizeof(e) +
1003                                              offsetof(struct vmx_msr_entry, value),
1004                                          &data, sizeof(data))) {
1005                         pr_debug_ratelimited(
1006                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1007                                 __func__, i, e.index, data);
1008                         return -EINVAL;
1009                 }
1010         }
1011         return 0;
1012 }
1013
1014 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1015 {
1016         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1017         u32 count = vmcs12->vm_exit_msr_store_count;
1018         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1019         struct vmx_msr_entry e;
1020         u32 i;
1021
1022         for (i = 0; i < count; i++) {
1023                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1024                         return false;
1025
1026                 if (e.index == msr_index)
1027                         return true;
1028         }
1029         return false;
1030 }
1031
1032 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1033                                            u32 msr_index)
1034 {
1035         struct vcpu_vmx *vmx = to_vmx(vcpu);
1036         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1037         bool in_vmcs12_store_list;
1038         int msr_autostore_index;
1039         bool in_autostore_list;
1040         int last;
1041
1042         msr_autostore_index = vmx_find_msr_index(autostore, msr_index);
1043         in_autostore_list = msr_autostore_index >= 0;
1044         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1045
1046         if (in_vmcs12_store_list && !in_autostore_list) {
1047                 if (autostore->nr == NR_LOADSTORE_MSRS) {
1048                         /*
1049                          * Emulated VMEntry does not fail here.  Instead a less
1050                          * accurate value will be returned by
1051                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1052                          * instead of reading the value from the vmcs02 VMExit
1053                          * MSR-store area.
1054                          */
1055                         pr_warn_ratelimited(
1056                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1057                                 msr_index);
1058                         return;
1059                 }
1060                 last = autostore->nr++;
1061                 autostore->val[last].index = msr_index;
1062         } else if (!in_vmcs12_store_list && in_autostore_list) {
1063                 last = --autostore->nr;
1064                 autostore->val[msr_autostore_index] = autostore->val[last];
1065         }
1066 }
1067
1068 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1069 {
1070         unsigned long invalid_mask;
1071
1072         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1073         return (val & invalid_mask) == 0;
1074 }
1075
1076 /*
1077  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1078  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1079  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1080  * @entry_failure_code.
1081  */
1082 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1083                                u32 *entry_failure_code)
1084 {
1085         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1086                 if (CC(!nested_cr3_valid(vcpu, cr3))) {
1087                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
1088                         return -EINVAL;
1089                 }
1090
1091                 /*
1092                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1093                  * must not be dereferenced.
1094                  */
1095                 if (is_pae_paging(vcpu) && !nested_ept) {
1096                         if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1097                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1098                                 return -EINVAL;
1099                         }
1100                 }
1101         }
1102
1103         if (!nested_ept)
1104                 kvm_mmu_new_cr3(vcpu, cr3, false);
1105
1106         vcpu->arch.cr3 = cr3;
1107         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1108
1109         kvm_init_mmu(vcpu, false);
1110
1111         return 0;
1112 }
1113
1114 /*
1115  * Returns if KVM is able to config CPU to tag TLB entries
1116  * populated by L2 differently than TLB entries populated
1117  * by L1.
1118  *
1119  * If L0 uses EPT, L1 and L2 run with different EPTP because
1120  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1121  * are tagged with different EPTP.
1122  *
1123  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1124  * with different VPID (L1 entries are tagged with vmx->vpid
1125  * while L2 entries are tagged with vmx->nested.vpid02).
1126  */
1127 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1128 {
1129         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1130
1131         return enable_ept ||
1132                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1133 }
1134
1135 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
1136 {
1137         struct vcpu_vmx *vmx = to_vmx(vcpu);
1138
1139         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
1140 }
1141
1142 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1143 {
1144         superset &= mask;
1145         subset &= mask;
1146
1147         return (superset | subset) == superset;
1148 }
1149
1150 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1151 {
1152         const u64 feature_and_reserved =
1153                 /* feature (except bit 48; see below) */
1154                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1155                 /* reserved */
1156                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1157         u64 vmx_basic = vmx->nested.msrs.basic;
1158
1159         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1160                 return -EINVAL;
1161
1162         /*
1163          * KVM does not emulate a version of VMX that constrains physical
1164          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1165          */
1166         if (data & BIT_ULL(48))
1167                 return -EINVAL;
1168
1169         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1170             vmx_basic_vmcs_revision_id(data))
1171                 return -EINVAL;
1172
1173         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1174                 return -EINVAL;
1175
1176         vmx->nested.msrs.basic = data;
1177         return 0;
1178 }
1179
1180 static int
1181 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1182 {
1183         u64 supported;
1184         u32 *lowp, *highp;
1185
1186         switch (msr_index) {
1187         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1188                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1189                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1190                 break;
1191         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1192                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1193                 highp = &vmx->nested.msrs.procbased_ctls_high;
1194                 break;
1195         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1196                 lowp = &vmx->nested.msrs.exit_ctls_low;
1197                 highp = &vmx->nested.msrs.exit_ctls_high;
1198                 break;
1199         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1200                 lowp = &vmx->nested.msrs.entry_ctls_low;
1201                 highp = &vmx->nested.msrs.entry_ctls_high;
1202                 break;
1203         case MSR_IA32_VMX_PROCBASED_CTLS2:
1204                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1205                 highp = &vmx->nested.msrs.secondary_ctls_high;
1206                 break;
1207         default:
1208                 BUG();
1209         }
1210
1211         supported = vmx_control_msr(*lowp, *highp);
1212
1213         /* Check must-be-1 bits are still 1. */
1214         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1215                 return -EINVAL;
1216
1217         /* Check must-be-0 bits are still 0. */
1218         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1219                 return -EINVAL;
1220
1221         *lowp = data;
1222         *highp = data >> 32;
1223         return 0;
1224 }
1225
1226 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1227 {
1228         const u64 feature_and_reserved_bits =
1229                 /* feature */
1230                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1231                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1232                 /* reserved */
1233                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1234         u64 vmx_misc;
1235
1236         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1237                                    vmx->nested.msrs.misc_high);
1238
1239         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1240                 return -EINVAL;
1241
1242         if ((vmx->nested.msrs.pinbased_ctls_high &
1243              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1244             vmx_misc_preemption_timer_rate(data) !=
1245             vmx_misc_preemption_timer_rate(vmx_misc))
1246                 return -EINVAL;
1247
1248         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1249                 return -EINVAL;
1250
1251         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1252                 return -EINVAL;
1253
1254         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1255                 return -EINVAL;
1256
1257         vmx->nested.msrs.misc_low = data;
1258         vmx->nested.msrs.misc_high = data >> 32;
1259
1260         return 0;
1261 }
1262
1263 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1264 {
1265         u64 vmx_ept_vpid_cap;
1266
1267         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1268                                            vmx->nested.msrs.vpid_caps);
1269
1270         /* Every bit is either reserved or a feature bit. */
1271         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1272                 return -EINVAL;
1273
1274         vmx->nested.msrs.ept_caps = data;
1275         vmx->nested.msrs.vpid_caps = data >> 32;
1276         return 0;
1277 }
1278
1279 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1280 {
1281         u64 *msr;
1282
1283         switch (msr_index) {
1284         case MSR_IA32_VMX_CR0_FIXED0:
1285                 msr = &vmx->nested.msrs.cr0_fixed0;
1286                 break;
1287         case MSR_IA32_VMX_CR4_FIXED0:
1288                 msr = &vmx->nested.msrs.cr4_fixed0;
1289                 break;
1290         default:
1291                 BUG();
1292         }
1293
1294         /*
1295          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1296          * must be 1 in the restored value.
1297          */
1298         if (!is_bitwise_subset(data, *msr, -1ULL))
1299                 return -EINVAL;
1300
1301         *msr = data;
1302         return 0;
1303 }
1304
1305 /*
1306  * Called when userspace is restoring VMX MSRs.
1307  *
1308  * Returns 0 on success, non-0 otherwise.
1309  */
1310 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1311 {
1312         struct vcpu_vmx *vmx = to_vmx(vcpu);
1313
1314         /*
1315          * Don't allow changes to the VMX capability MSRs while the vCPU
1316          * is in VMX operation.
1317          */
1318         if (vmx->nested.vmxon)
1319                 return -EBUSY;
1320
1321         switch (msr_index) {
1322         case MSR_IA32_VMX_BASIC:
1323                 return vmx_restore_vmx_basic(vmx, data);
1324         case MSR_IA32_VMX_PINBASED_CTLS:
1325         case MSR_IA32_VMX_PROCBASED_CTLS:
1326         case MSR_IA32_VMX_EXIT_CTLS:
1327         case MSR_IA32_VMX_ENTRY_CTLS:
1328                 /*
1329                  * The "non-true" VMX capability MSRs are generated from the
1330                  * "true" MSRs, so we do not support restoring them directly.
1331                  *
1332                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1333                  * should restore the "true" MSRs with the must-be-1 bits
1334                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1335                  * DEFAULT SETTINGS".
1336                  */
1337                 return -EINVAL;
1338         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1339         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1340         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1341         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1342         case MSR_IA32_VMX_PROCBASED_CTLS2:
1343                 return vmx_restore_control_msr(vmx, msr_index, data);
1344         case MSR_IA32_VMX_MISC:
1345                 return vmx_restore_vmx_misc(vmx, data);
1346         case MSR_IA32_VMX_CR0_FIXED0:
1347         case MSR_IA32_VMX_CR4_FIXED0:
1348                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1349         case MSR_IA32_VMX_CR0_FIXED1:
1350         case MSR_IA32_VMX_CR4_FIXED1:
1351                 /*
1352                  * These MSRs are generated based on the vCPU's CPUID, so we
1353                  * do not support restoring them directly.
1354                  */
1355                 return -EINVAL;
1356         case MSR_IA32_VMX_EPT_VPID_CAP:
1357                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1358         case MSR_IA32_VMX_VMCS_ENUM:
1359                 vmx->nested.msrs.vmcs_enum = data;
1360                 return 0;
1361         case MSR_IA32_VMX_VMFUNC:
1362                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1363                         return -EINVAL;
1364                 vmx->nested.msrs.vmfunc_controls = data;
1365                 return 0;
1366         default:
1367                 /*
1368                  * The rest of the VMX capability MSRs do not support restore.
1369                  */
1370                 return -EINVAL;
1371         }
1372 }
1373
1374 /* Returns 0 on success, non-0 otherwise. */
1375 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1376 {
1377         switch (msr_index) {
1378         case MSR_IA32_VMX_BASIC:
1379                 *pdata = msrs->basic;
1380                 break;
1381         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1382         case MSR_IA32_VMX_PINBASED_CTLS:
1383                 *pdata = vmx_control_msr(
1384                         msrs->pinbased_ctls_low,
1385                         msrs->pinbased_ctls_high);
1386                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1387                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1388                 break;
1389         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1390         case MSR_IA32_VMX_PROCBASED_CTLS:
1391                 *pdata = vmx_control_msr(
1392                         msrs->procbased_ctls_low,
1393                         msrs->procbased_ctls_high);
1394                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1395                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1396                 break;
1397         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1398         case MSR_IA32_VMX_EXIT_CTLS:
1399                 *pdata = vmx_control_msr(
1400                         msrs->exit_ctls_low,
1401                         msrs->exit_ctls_high);
1402                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1403                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1404                 break;
1405         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1406         case MSR_IA32_VMX_ENTRY_CTLS:
1407                 *pdata = vmx_control_msr(
1408                         msrs->entry_ctls_low,
1409                         msrs->entry_ctls_high);
1410                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1411                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1412                 break;
1413         case MSR_IA32_VMX_MISC:
1414                 *pdata = vmx_control_msr(
1415                         msrs->misc_low,
1416                         msrs->misc_high);
1417                 break;
1418         case MSR_IA32_VMX_CR0_FIXED0:
1419                 *pdata = msrs->cr0_fixed0;
1420                 break;
1421         case MSR_IA32_VMX_CR0_FIXED1:
1422                 *pdata = msrs->cr0_fixed1;
1423                 break;
1424         case MSR_IA32_VMX_CR4_FIXED0:
1425                 *pdata = msrs->cr4_fixed0;
1426                 break;
1427         case MSR_IA32_VMX_CR4_FIXED1:
1428                 *pdata = msrs->cr4_fixed1;
1429                 break;
1430         case MSR_IA32_VMX_VMCS_ENUM:
1431                 *pdata = msrs->vmcs_enum;
1432                 break;
1433         case MSR_IA32_VMX_PROCBASED_CTLS2:
1434                 *pdata = vmx_control_msr(
1435                         msrs->secondary_ctls_low,
1436                         msrs->secondary_ctls_high);
1437                 break;
1438         case MSR_IA32_VMX_EPT_VPID_CAP:
1439                 *pdata = msrs->ept_caps |
1440                         ((u64)msrs->vpid_caps << 32);
1441                 break;
1442         case MSR_IA32_VMX_VMFUNC:
1443                 *pdata = msrs->vmfunc_controls;
1444                 break;
1445         default:
1446                 return 1;
1447         }
1448
1449         return 0;
1450 }
1451
1452 /*
1453  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1454  * been modified by the L1 guest.  Note, "writable" in this context means
1455  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1456  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1457  * VM-exit information fields (which are actually writable if the vCPU is
1458  * configured to support "VMWRITE to any supported field in the VMCS").
1459  */
1460 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1461 {
1462         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1463         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1464         struct shadow_vmcs_field field;
1465         unsigned long val;
1466         int i;
1467
1468         if (WARN_ON(!shadow_vmcs))
1469                 return;
1470
1471         preempt_disable();
1472
1473         vmcs_load(shadow_vmcs);
1474
1475         for (i = 0; i < max_shadow_read_write_fields; i++) {
1476                 field = shadow_read_write_fields[i];
1477                 val = __vmcs_readl(field.encoding);
1478                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1479         }
1480
1481         vmcs_clear(shadow_vmcs);
1482         vmcs_load(vmx->loaded_vmcs->vmcs);
1483
1484         preempt_enable();
1485 }
1486
1487 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1488 {
1489         const struct shadow_vmcs_field *fields[] = {
1490                 shadow_read_write_fields,
1491                 shadow_read_only_fields
1492         };
1493         const int max_fields[] = {
1494                 max_shadow_read_write_fields,
1495                 max_shadow_read_only_fields
1496         };
1497         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1498         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1499         struct shadow_vmcs_field field;
1500         unsigned long val;
1501         int i, q;
1502
1503         if (WARN_ON(!shadow_vmcs))
1504                 return;
1505
1506         vmcs_load(shadow_vmcs);
1507
1508         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1509                 for (i = 0; i < max_fields[q]; i++) {
1510                         field = fields[q][i];
1511                         val = vmcs12_read_any(vmcs12, field.encoding,
1512                                               field.offset);
1513                         __vmcs_writel(field.encoding, val);
1514                 }
1515         }
1516
1517         vmcs_clear(shadow_vmcs);
1518         vmcs_load(vmx->loaded_vmcs->vmcs);
1519 }
1520
1521 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1522 {
1523         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1524         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1525
1526         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1527         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1528         vmcs12->guest_rip = evmcs->guest_rip;
1529
1530         if (unlikely(!(evmcs->hv_clean_fields &
1531                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1532                 vmcs12->guest_rsp = evmcs->guest_rsp;
1533                 vmcs12->guest_rflags = evmcs->guest_rflags;
1534                 vmcs12->guest_interruptibility_info =
1535                         evmcs->guest_interruptibility_info;
1536         }
1537
1538         if (unlikely(!(evmcs->hv_clean_fields &
1539                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1540                 vmcs12->cpu_based_vm_exec_control =
1541                         evmcs->cpu_based_vm_exec_control;
1542         }
1543
1544         if (unlikely(!(evmcs->hv_clean_fields &
1545                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1546                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1547         }
1548
1549         if (unlikely(!(evmcs->hv_clean_fields &
1550                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1551                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1552         }
1553
1554         if (unlikely(!(evmcs->hv_clean_fields &
1555                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1556                 vmcs12->vm_entry_intr_info_field =
1557                         evmcs->vm_entry_intr_info_field;
1558                 vmcs12->vm_entry_exception_error_code =
1559                         evmcs->vm_entry_exception_error_code;
1560                 vmcs12->vm_entry_instruction_len =
1561                         evmcs->vm_entry_instruction_len;
1562         }
1563
1564         if (unlikely(!(evmcs->hv_clean_fields &
1565                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1566                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1567                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1568                 vmcs12->host_cr0 = evmcs->host_cr0;
1569                 vmcs12->host_cr3 = evmcs->host_cr3;
1570                 vmcs12->host_cr4 = evmcs->host_cr4;
1571                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1572                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1573                 vmcs12->host_rip = evmcs->host_rip;
1574                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1575                 vmcs12->host_es_selector = evmcs->host_es_selector;
1576                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1577                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1578                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1579                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1580                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1581                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1582         }
1583
1584         if (unlikely(!(evmcs->hv_clean_fields &
1585                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1586                 vmcs12->pin_based_vm_exec_control =
1587                         evmcs->pin_based_vm_exec_control;
1588                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1589                 vmcs12->secondary_vm_exec_control =
1590                         evmcs->secondary_vm_exec_control;
1591         }
1592
1593         if (unlikely(!(evmcs->hv_clean_fields &
1594                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1595                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1596                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1597         }
1598
1599         if (unlikely(!(evmcs->hv_clean_fields &
1600                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1601                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1602         }
1603
1604         if (unlikely(!(evmcs->hv_clean_fields &
1605                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1606                 vmcs12->guest_es_base = evmcs->guest_es_base;
1607                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1608                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1609                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1610                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1611                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1612                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1613                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1614                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1615                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1616                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1617                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1618                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1619                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1620                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1621                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1622                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1623                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1624                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1625                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1626                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1627                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1628                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1629                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1630                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1631                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1632                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1633                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1634                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1635                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1636                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1637                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1638                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1639                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1640                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1641                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1642         }
1643
1644         if (unlikely(!(evmcs->hv_clean_fields &
1645                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1646                 vmcs12->tsc_offset = evmcs->tsc_offset;
1647                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1648                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1649         }
1650
1651         if (unlikely(!(evmcs->hv_clean_fields &
1652                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1653                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1654                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1655                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1656                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1657                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1658                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1659                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1660                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1661         }
1662
1663         if (unlikely(!(evmcs->hv_clean_fields &
1664                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1665                 vmcs12->host_fs_base = evmcs->host_fs_base;
1666                 vmcs12->host_gs_base = evmcs->host_gs_base;
1667                 vmcs12->host_tr_base = evmcs->host_tr_base;
1668                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1669                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1670                 vmcs12->host_rsp = evmcs->host_rsp;
1671         }
1672
1673         if (unlikely(!(evmcs->hv_clean_fields &
1674                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1675                 vmcs12->ept_pointer = evmcs->ept_pointer;
1676                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1677         }
1678
1679         if (unlikely(!(evmcs->hv_clean_fields &
1680                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1681                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1682                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1683                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1684                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1685                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1686                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1687                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1688                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1689                 vmcs12->guest_pending_dbg_exceptions =
1690                         evmcs->guest_pending_dbg_exceptions;
1691                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1692                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1693                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1694                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1695                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1696         }
1697
1698         /*
1699          * Not used?
1700          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1701          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1702          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1703          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1704          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1705          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1706          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1707          * vmcs12->page_fault_error_code_mask =
1708          *              evmcs->page_fault_error_code_mask;
1709          * vmcs12->page_fault_error_code_match =
1710          *              evmcs->page_fault_error_code_match;
1711          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1712          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1713          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1714          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1715          */
1716
1717         /*
1718          * Read only fields:
1719          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1720          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1721          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1722          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1723          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1724          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1725          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1726          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1727          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1728          * vmcs12->exit_qualification = evmcs->exit_qualification;
1729          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1730          *
1731          * Not present in struct vmcs12:
1732          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1733          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1734          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1735          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1736          */
1737
1738         return 0;
1739 }
1740
1741 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1742 {
1743         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1744         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1745
1746         /*
1747          * Should not be changed by KVM:
1748          *
1749          * evmcs->host_es_selector = vmcs12->host_es_selector;
1750          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1751          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1752          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1753          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1754          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1755          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1756          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1757          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1758          * evmcs->host_cr0 = vmcs12->host_cr0;
1759          * evmcs->host_cr3 = vmcs12->host_cr3;
1760          * evmcs->host_cr4 = vmcs12->host_cr4;
1761          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1762          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1763          * evmcs->host_rip = vmcs12->host_rip;
1764          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1765          * evmcs->host_fs_base = vmcs12->host_fs_base;
1766          * evmcs->host_gs_base = vmcs12->host_gs_base;
1767          * evmcs->host_tr_base = vmcs12->host_tr_base;
1768          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1769          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1770          * evmcs->host_rsp = vmcs12->host_rsp;
1771          * sync_vmcs02_to_vmcs12() doesn't read these:
1772          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1773          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1774          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1775          * evmcs->ept_pointer = vmcs12->ept_pointer;
1776          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1777          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1778          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1779          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1780          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1781          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1782          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1783          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1784          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1785          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1786          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1787          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1788          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1789          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1790          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1791          * evmcs->page_fault_error_code_mask =
1792          *              vmcs12->page_fault_error_code_mask;
1793          * evmcs->page_fault_error_code_match =
1794          *              vmcs12->page_fault_error_code_match;
1795          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1796          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1797          * evmcs->tsc_offset = vmcs12->tsc_offset;
1798          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1799          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1800          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1801          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1802          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1803          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1804          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1805          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1806          *
1807          * Not present in struct vmcs12:
1808          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1809          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1810          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1811          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1812          */
1813
1814         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1815         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1816         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1817         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1818         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1819         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1820         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1821         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1822
1823         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1824         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1825         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1826         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1827         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1828         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1829         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1830         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1831         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1832         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1833
1834         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1835         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1836         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1837         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1838         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1839         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1840         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1841         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1842
1843         evmcs->guest_es_base = vmcs12->guest_es_base;
1844         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1845         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1846         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1847         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1848         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1849         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1850         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1851         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1852         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1853
1854         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1855         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1856
1857         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1858         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1859         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1860         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1861
1862         evmcs->guest_pending_dbg_exceptions =
1863                 vmcs12->guest_pending_dbg_exceptions;
1864         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1865         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1866
1867         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1868         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1869
1870         evmcs->guest_cr0 = vmcs12->guest_cr0;
1871         evmcs->guest_cr3 = vmcs12->guest_cr3;
1872         evmcs->guest_cr4 = vmcs12->guest_cr4;
1873         evmcs->guest_dr7 = vmcs12->guest_dr7;
1874
1875         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1876
1877         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1878         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1879         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1880         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1881         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1882         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1883         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1884         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1885
1886         evmcs->exit_qualification = vmcs12->exit_qualification;
1887
1888         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1889         evmcs->guest_rsp = vmcs12->guest_rsp;
1890         evmcs->guest_rflags = vmcs12->guest_rflags;
1891
1892         evmcs->guest_interruptibility_info =
1893                 vmcs12->guest_interruptibility_info;
1894         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1895         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1896         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1897         evmcs->vm_entry_exception_error_code =
1898                 vmcs12->vm_entry_exception_error_code;
1899         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1900
1901         evmcs->guest_rip = vmcs12->guest_rip;
1902
1903         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1904
1905         return 0;
1906 }
1907
1908 /*
1909  * This is an equivalent of the nested hypervisor executing the vmptrld
1910  * instruction.
1911  */
1912 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1913                                                  bool from_launch)
1914 {
1915         struct vcpu_vmx *vmx = to_vmx(vcpu);
1916         bool evmcs_gpa_changed = false;
1917         u64 evmcs_gpa;
1918
1919         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1920                 return 1;
1921
1922         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1923                 return 1;
1924
1925         if (unlikely(!vmx->nested.hv_evmcs ||
1926                      evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1927                 if (!vmx->nested.hv_evmcs)
1928                         vmx->nested.current_vmptr = -1ull;
1929
1930                 nested_release_evmcs(vcpu);
1931
1932                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1933                                  &vmx->nested.hv_evmcs_map))
1934                         return 0;
1935
1936                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1937
1938                 /*
1939                  * Currently, KVM only supports eVMCS version 1
1940                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1941                  * value to first u32 field of eVMCS which should specify eVMCS
1942                  * VersionNumber.
1943                  *
1944                  * Guest should be aware of supported eVMCS versions by host by
1945                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1946                  * expected to set this CPUID leaf according to the value
1947                  * returned in vmcs_version from nested_enable_evmcs().
1948                  *
1949                  * However, it turns out that Microsoft Hyper-V fails to comply
1950                  * to their own invented interface: When Hyper-V use eVMCS, it
1951                  * just sets first u32 field of eVMCS to revision_id specified
1952                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1953                  * which is one of the supported versions specified in
1954                  * CPUID.0x4000000A.EAX[0:15].
1955                  *
1956                  * To overcome Hyper-V bug, we accept here either a supported
1957                  * eVMCS version or VMCS12 revision_id as valid values for first
1958                  * u32 field of eVMCS.
1959                  */
1960                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1961                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1962                         nested_release_evmcs(vcpu);
1963                         return 0;
1964                 }
1965
1966                 vmx->nested.dirty_vmcs12 = true;
1967                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1968
1969                 evmcs_gpa_changed = true;
1970                 /*
1971                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1972                  * reloaded from guest's memory (read only fields, fields not
1973                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1974                  * are no leftovers.
1975                  */
1976                 if (from_launch) {
1977                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1978                         memset(vmcs12, 0, sizeof(*vmcs12));
1979                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1980                 }
1981
1982         }
1983
1984         /*
1985          * Clean fields data can't be used on VMLAUNCH and when we switch
1986          * between different L2 guests as KVM keeps a single VMCS12 per L1.
1987          */
1988         if (from_launch || evmcs_gpa_changed)
1989                 vmx->nested.hv_evmcs->hv_clean_fields &=
1990                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1991
1992         return 1;
1993 }
1994
1995 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
1996 {
1997         struct vcpu_vmx *vmx = to_vmx(vcpu);
1998
1999         if (vmx->nested.hv_evmcs) {
2000                 copy_vmcs12_to_enlightened(vmx);
2001                 /* All fields are clean */
2002                 vmx->nested.hv_evmcs->hv_clean_fields |=
2003                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2004         } else {
2005                 copy_vmcs12_to_shadow(vmx);
2006         }
2007
2008         vmx->nested.need_vmcs12_to_shadow_sync = false;
2009 }
2010
2011 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2012 {
2013         struct vcpu_vmx *vmx =
2014                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2015
2016         vmx->nested.preemption_timer_expired = true;
2017         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2018         kvm_vcpu_kick(&vmx->vcpu);
2019
2020         return HRTIMER_NORESTART;
2021 }
2022
2023 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
2024 {
2025         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
2026         struct vcpu_vmx *vmx = to_vmx(vcpu);
2027
2028         /*
2029          * A timer value of zero is architecturally guaranteed to cause
2030          * a VMExit prior to executing any instructions in the guest.
2031          */
2032         if (preemption_timeout == 0) {
2033                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2034                 return;
2035         }
2036
2037         if (vcpu->arch.virtual_tsc_khz == 0)
2038                 return;
2039
2040         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2041         preemption_timeout *= 1000000;
2042         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2043         hrtimer_start(&vmx->nested.preemption_timer,
2044                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
2045 }
2046
2047 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2048 {
2049         if (vmx->nested.nested_run_pending &&
2050             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2051                 return vmcs12->guest_ia32_efer;
2052         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2053                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2054         else
2055                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2056 }
2057
2058 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2059 {
2060         /*
2061          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2062          * according to L0's settings (vmcs12 is irrelevant here).  Host
2063          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2064          * will be set as needed prior to VMLAUNCH/VMRESUME.
2065          */
2066         if (vmx->nested.vmcs02_initialized)
2067                 return;
2068         vmx->nested.vmcs02_initialized = true;
2069
2070         /*
2071          * We don't care what the EPTP value is we just need to guarantee
2072          * it's valid so we don't get a false positive when doing early
2073          * consistency checks.
2074          */
2075         if (enable_ept && nested_early_check)
2076                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
2077
2078         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2079         if (cpu_has_vmx_vmfunc())
2080                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2081
2082         if (cpu_has_vmx_posted_intr())
2083                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2084
2085         if (cpu_has_vmx_msr_bitmap())
2086                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2087
2088         /*
2089          * The PML address never changes, so it is constant in vmcs02.
2090          * Conceptually we want to copy the PML index from vmcs01 here,
2091          * and then back to vmcs01 on nested vmexit.  But since we flush
2092          * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2093          * index is also effectively constant in vmcs02.
2094          */
2095         if (enable_pml) {
2096                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2097                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2098         }
2099
2100         if (cpu_has_vmx_encls_vmexit())
2101                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2102
2103         /*
2104          * Set the MSR load/store lists to match L0's settings.  Only the
2105          * addresses are constant (for vmcs02), the counts can change based
2106          * on L2's behavior, e.g. switching to/from long mode.
2107          */
2108         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2109         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2110         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2111
2112         vmx_set_constant_host_state(vmx);
2113 }
2114
2115 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2116                                       struct vmcs12 *vmcs12)
2117 {
2118         prepare_vmcs02_constant_state(vmx);
2119
2120         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2121
2122         if (enable_vpid) {
2123                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2124                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2125                 else
2126                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2127         }
2128 }
2129
2130 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2131 {
2132         u32 exec_control, vmcs12_exec_ctrl;
2133         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2134
2135         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2136                 prepare_vmcs02_early_rare(vmx, vmcs12);
2137
2138         /*
2139          * PIN CONTROLS
2140          */
2141         exec_control = vmx_pin_based_exec_ctrl(vmx);
2142         exec_control |= (vmcs12->pin_based_vm_exec_control &
2143                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2144
2145         /* Posted interrupts setting is only taken from vmcs12.  */
2146         if (nested_cpu_has_posted_intr(vmcs12)) {
2147                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2148                 vmx->nested.pi_pending = false;
2149         } else {
2150                 exec_control &= ~PIN_BASED_POSTED_INTR;
2151         }
2152         pin_controls_set(vmx, exec_control);
2153
2154         /*
2155          * EXEC CONTROLS
2156          */
2157         exec_control = vmx_exec_control(vmx); /* L0's desires */
2158         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2159         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2160         exec_control &= ~CPU_BASED_TPR_SHADOW;
2161         exec_control |= vmcs12->cpu_based_vm_exec_control;
2162
2163         vmx->nested.l1_tpr_threshold = -1;
2164         if (exec_control & CPU_BASED_TPR_SHADOW)
2165                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2166 #ifdef CONFIG_X86_64
2167         else
2168                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2169                                 CPU_BASED_CR8_STORE_EXITING;
2170 #endif
2171
2172         /*
2173          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2174          * for I/O port accesses.
2175          */
2176         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2177         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2178
2179         /*
2180          * This bit will be computed in nested_get_vmcs12_pages, because
2181          * we do not have access to L1's MSR bitmap yet.  For now, keep
2182          * the same bit as before, hoping to avoid multiple VMWRITEs that
2183          * only set/clear this bit.
2184          */
2185         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2186         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2187
2188         exec_controls_set(vmx, exec_control);
2189
2190         /*
2191          * SECONDARY EXEC CONTROLS
2192          */
2193         if (cpu_has_secondary_exec_ctrls()) {
2194                 exec_control = vmx->secondary_exec_control;
2195
2196                 /* Take the following fields only from vmcs12 */
2197                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2198                                   SECONDARY_EXEC_ENABLE_INVPCID |
2199                                   SECONDARY_EXEC_RDTSCP |
2200                                   SECONDARY_EXEC_XSAVES |
2201                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2202                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2203                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2204                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2205                 if (nested_cpu_has(vmcs12,
2206                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2207                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2208                                 ~SECONDARY_EXEC_ENABLE_PML;
2209                         exec_control |= vmcs12_exec_ctrl;
2210                 }
2211
2212                 /* VMCS shadowing for L2 is emulated for now */
2213                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2214
2215                 /*
2216                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2217                  * will not have to rewrite the controls just for this bit.
2218                  */
2219                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2220                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2221                         exec_control |= SECONDARY_EXEC_DESC;
2222
2223                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2224                         vmcs_write16(GUEST_INTR_STATUS,
2225                                 vmcs12->guest_intr_status);
2226
2227                 secondary_exec_controls_set(vmx, exec_control);
2228         }
2229
2230         /*
2231          * ENTRY CONTROLS
2232          *
2233          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2234          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2235          * on the related bits (if supported by the CPU) in the hope that
2236          * we can avoid VMWrites during vmx_set_efer().
2237          */
2238         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2239                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2240         if (cpu_has_load_ia32_efer()) {
2241                 if (guest_efer & EFER_LMA)
2242                         exec_control |= VM_ENTRY_IA32E_MODE;
2243                 if (guest_efer != host_efer)
2244                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2245         }
2246         vm_entry_controls_set(vmx, exec_control);
2247
2248         /*
2249          * EXIT CONTROLS
2250          *
2251          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2252          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2253          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2254          */
2255         exec_control = vmx_vmexit_ctrl();
2256         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2257                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2258         vm_exit_controls_set(vmx, exec_control);
2259
2260         /*
2261          * Interrupt/Exception Fields
2262          */
2263         if (vmx->nested.nested_run_pending) {
2264                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2265                              vmcs12->vm_entry_intr_info_field);
2266                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2267                              vmcs12->vm_entry_exception_error_code);
2268                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2269                              vmcs12->vm_entry_instruction_len);
2270                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2271                              vmcs12->guest_interruptibility_info);
2272                 vmx->loaded_vmcs->nmi_known_unmasked =
2273                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2274         } else {
2275                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2276         }
2277 }
2278
2279 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2280 {
2281         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2282
2283         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2284                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2285                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2286                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2287                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2288                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2289                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2290                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2291                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2292                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2293                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2294                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2295                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2296                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2297                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2298                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2299                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2300                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2301                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2302                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2303                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2304                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2305                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2306                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2307                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2308                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2309                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2310                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2311                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2312                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2313                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2314                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2315                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2316                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2317                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2318                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2319                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2320                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2321         }
2322
2323         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2324                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2325                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2326                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2327                             vmcs12->guest_pending_dbg_exceptions);
2328                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2329                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2330
2331                 /*
2332                  * L1 may access the L2's PDPTR, so save them to construct
2333                  * vmcs12
2334                  */
2335                 if (enable_ept) {
2336                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2337                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2338                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2339                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2340                 }
2341
2342                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2343                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2344                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2345         }
2346
2347         if (nested_cpu_has_xsaves(vmcs12))
2348                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2349
2350         /*
2351          * Whether page-faults are trapped is determined by a combination of
2352          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2353          * If enable_ept, L0 doesn't care about page faults and we should
2354          * set all of these to L1's desires. However, if !enable_ept, L0 does
2355          * care about (at least some) page faults, and because it is not easy
2356          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2357          * to exit on each and every L2 page fault. This is done by setting
2358          * MASK=MATCH=0 and (see below) EB.PF=1.
2359          * Note that below we don't need special code to set EB.PF beyond the
2360          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2361          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2362          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2363          */
2364         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2365                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2366         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2367                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2368
2369         if (cpu_has_vmx_apicv()) {
2370                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2371                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2372                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2373                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2374         }
2375
2376         /*
2377          * Make sure the msr_autostore list is up to date before we set the
2378          * count in the vmcs02.
2379          */
2380         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2381
2382         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2383         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2384         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2385
2386         set_cr4_guest_host_mask(vmx);
2387 }
2388
2389 /*
2390  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2391  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2392  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2393  * guest in a way that will both be appropriate to L1's requests, and our
2394  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2395  * function also has additional necessary side-effects, like setting various
2396  * vcpu->arch fields.
2397  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2398  * is assigned to entry_failure_code on failure.
2399  */
2400 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2401                           u32 *entry_failure_code)
2402 {
2403         struct vcpu_vmx *vmx = to_vmx(vcpu);
2404         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2405         bool load_guest_pdptrs_vmcs12 = false;
2406
2407         if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2408                 prepare_vmcs02_rare(vmx, vmcs12);
2409                 vmx->nested.dirty_vmcs12 = false;
2410
2411                 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2412                         !(hv_evmcs->hv_clean_fields &
2413                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2414         }
2415
2416         if (vmx->nested.nested_run_pending &&
2417             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2418                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2419                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2420         } else {
2421                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2422                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2423         }
2424         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2425             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2426                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2427         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2428
2429         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2430          * bitwise-or of what L1 wants to trap for L2, and what we want to
2431          * trap. Note that CR0.TS also needs updating - we do this later.
2432          */
2433         update_exception_bitmap(vcpu);
2434         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2435         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2436
2437         if (vmx->nested.nested_run_pending &&
2438             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2439                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2440                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2441         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2442                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2443         }
2444
2445         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2446
2447         if (kvm_has_tsc_control)
2448                 decache_tsc_multiplier(vmx);
2449
2450         if (enable_vpid) {
2451                 /*
2452                  * There is no direct mapping between vpid02 and vpid12, the
2453                  * vpid02 is per-vCPU for L0 and reused while the value of
2454                  * vpid12 is changed w/ one invvpid during nested vmentry.
2455                  * The vpid12 is allocated by L1 for L2, so it will not
2456                  * influence global bitmap(for vpid01 and vpid02 allocation)
2457                  * even if spawn a lot of nested vCPUs.
2458                  */
2459                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2460                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2461                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2462                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2463                         }
2464                 } else {
2465                         /*
2466                          * If L1 use EPT, then L0 needs to execute INVEPT on
2467                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2468                          * flush until vmcs02->eptp is fully updated by
2469                          * KVM_REQ_LOAD_MMU_PGD. Note that this assumes
2470                          * KVM_REQ_TLB_FLUSH is evaluated after
2471                          * KVM_REQ_LOAD_MMU_PGD in vcpu_enter_guest().
2472                          */
2473                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2474                 }
2475         }
2476
2477         if (nested_cpu_has_ept(vmcs12))
2478                 nested_ept_init_mmu_context(vcpu);
2479
2480         /*
2481          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2482          * bits which we consider mandatory enabled.
2483          * The CR0_READ_SHADOW is what L2 should have expected to read given
2484          * the specifications by L1; It's not enough to take
2485          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2486          * have more bits than L1 expected.
2487          */
2488         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2489         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2490
2491         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2492         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2493
2494         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2495         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2496         vmx_set_efer(vcpu, vcpu->arch.efer);
2497
2498         /*
2499          * Guest state is invalid and unrestricted guest is disabled,
2500          * which means L1 attempted VMEntry to L2 with invalid state.
2501          * Fail the VMEntry.
2502          */
2503         if (vmx->emulation_required) {
2504                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2505                 return -EINVAL;
2506         }
2507
2508         /* Shadow page tables on either EPT or shadow page tables. */
2509         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2510                                 entry_failure_code))
2511                 return -EINVAL;
2512
2513         /*
2514          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2515          * on nested VM-Exit, which can occur without actually running L2 and
2516          * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2517          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2518          * transition to HLT instead of running L2.
2519          */
2520         if (enable_ept)
2521                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2522
2523         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2524         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2525             is_pae_paging(vcpu)) {
2526                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2527                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2528                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2529                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2530         }
2531
2532         if (!enable_ept)
2533                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2534
2535         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2536             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2537                                      vmcs12->guest_ia32_perf_global_ctrl)))
2538                 return -EINVAL;
2539
2540         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2541         kvm_rip_write(vcpu, vmcs12->guest_rip);
2542         return 0;
2543 }
2544
2545 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2546 {
2547         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2548                nested_cpu_has_virtual_nmis(vmcs12)))
2549                 return -EINVAL;
2550
2551         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2552                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2553                 return -EINVAL;
2554
2555         return 0;
2556 }
2557
2558 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2559 {
2560         struct vcpu_vmx *vmx = to_vmx(vcpu);
2561         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2562
2563         /* Check for memory type validity */
2564         switch (new_eptp & VMX_EPTP_MT_MASK) {
2565         case VMX_EPTP_MT_UC:
2566                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2567                         return false;
2568                 break;
2569         case VMX_EPTP_MT_WB:
2570                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2571                         return false;
2572                 break;
2573         default:
2574                 return false;
2575         }
2576
2577         /* Page-walk levels validity. */
2578         switch (new_eptp & VMX_EPTP_PWL_MASK) {
2579         case VMX_EPTP_PWL_5:
2580                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2581                         return false;
2582                 break;
2583         case VMX_EPTP_PWL_4:
2584                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2585                         return false;
2586                 break;
2587         default:
2588                 return false;
2589         }
2590
2591         /* Reserved bits should not be set */
2592         if (CC(new_eptp >> maxphyaddr || ((new_eptp >> 7) & 0x1f)))
2593                 return false;
2594
2595         /* AD, if set, should be supported */
2596         if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2597                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2598                         return false;
2599         }
2600
2601         return true;
2602 }
2603
2604 /*
2605  * Checks related to VM-Execution Control Fields
2606  */
2607 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2608                                               struct vmcs12 *vmcs12)
2609 {
2610         struct vcpu_vmx *vmx = to_vmx(vcpu);
2611
2612         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2613                                    vmx->nested.msrs.pinbased_ctls_low,
2614                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2615             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2616                                    vmx->nested.msrs.procbased_ctls_low,
2617                                    vmx->nested.msrs.procbased_ctls_high)))
2618                 return -EINVAL;
2619
2620         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2621             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2622                                    vmx->nested.msrs.secondary_ctls_low,
2623                                    vmx->nested.msrs.secondary_ctls_high)))
2624                 return -EINVAL;
2625
2626         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2627             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2628             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2629             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2630             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2631             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2632             nested_vmx_check_nmi_controls(vmcs12) ||
2633             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2634             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2635             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2636             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2637             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2638                 return -EINVAL;
2639
2640         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2641             nested_cpu_has_save_preemption_timer(vmcs12))
2642                 return -EINVAL;
2643
2644         if (nested_cpu_has_ept(vmcs12) &&
2645             CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2646                 return -EINVAL;
2647
2648         if (nested_cpu_has_vmfunc(vmcs12)) {
2649                 if (CC(vmcs12->vm_function_control &
2650                        ~vmx->nested.msrs.vmfunc_controls))
2651                         return -EINVAL;
2652
2653                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2654                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2655                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2656                                 return -EINVAL;
2657                 }
2658         }
2659
2660         return 0;
2661 }
2662
2663 /*
2664  * Checks related to VM-Exit Control Fields
2665  */
2666 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2667                                          struct vmcs12 *vmcs12)
2668 {
2669         struct vcpu_vmx *vmx = to_vmx(vcpu);
2670
2671         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2672                                     vmx->nested.msrs.exit_ctls_low,
2673                                     vmx->nested.msrs.exit_ctls_high)) ||
2674             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2675                 return -EINVAL;
2676
2677         return 0;
2678 }
2679
2680 /*
2681  * Checks related to VM-Entry Control Fields
2682  */
2683 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2684                                           struct vmcs12 *vmcs12)
2685 {
2686         struct vcpu_vmx *vmx = to_vmx(vcpu);
2687
2688         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2689                                     vmx->nested.msrs.entry_ctls_low,
2690                                     vmx->nested.msrs.entry_ctls_high)))
2691                 return -EINVAL;
2692
2693         /*
2694          * From the Intel SDM, volume 3:
2695          * Fields relevant to VM-entry event injection must be set properly.
2696          * These fields are the VM-entry interruption-information field, the
2697          * VM-entry exception error code, and the VM-entry instruction length.
2698          */
2699         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2700                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2701                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2702                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2703                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2704                 bool should_have_error_code;
2705                 bool urg = nested_cpu_has2(vmcs12,
2706                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2707                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2708
2709                 /* VM-entry interruption-info field: interruption type */
2710                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2711                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2712                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2713                         return -EINVAL;
2714
2715                 /* VM-entry interruption-info field: vector */
2716                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2717                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2718                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2719                         return -EINVAL;
2720
2721                 /* VM-entry interruption-info field: deliver error code */
2722                 should_have_error_code =
2723                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2724                         x86_exception_has_error_code(vector);
2725                 if (CC(has_error_code != should_have_error_code))
2726                         return -EINVAL;
2727
2728                 /* VM-entry exception error code */
2729                 if (CC(has_error_code &&
2730                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2731                         return -EINVAL;
2732
2733                 /* VM-entry interruption-info field: reserved bits */
2734                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2735                         return -EINVAL;
2736
2737                 /* VM-entry instruction length */
2738                 switch (intr_type) {
2739                 case INTR_TYPE_SOFT_EXCEPTION:
2740                 case INTR_TYPE_SOFT_INTR:
2741                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2742                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2743                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2744                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2745                                 return -EINVAL;
2746                 }
2747         }
2748
2749         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2750                 return -EINVAL;
2751
2752         return 0;
2753 }
2754
2755 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2756                                      struct vmcs12 *vmcs12)
2757 {
2758         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2759             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2760             nested_check_vm_entry_controls(vcpu, vmcs12))
2761                 return -EINVAL;
2762
2763         if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2764                 return nested_evmcs_check_controls(vmcs12);
2765
2766         return 0;
2767 }
2768
2769 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2770                                        struct vmcs12 *vmcs12)
2771 {
2772         bool ia32e;
2773
2774         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2775             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2776             CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2777                 return -EINVAL;
2778
2779         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2780             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2781                 return -EINVAL;
2782
2783         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2784             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2785                 return -EINVAL;
2786
2787         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2788             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2789                                            vmcs12->host_ia32_perf_global_ctrl)))
2790                 return -EINVAL;
2791
2792 #ifdef CONFIG_X86_64
2793         ia32e = !!(vcpu->arch.efer & EFER_LMA);
2794 #else
2795         ia32e = false;
2796 #endif
2797
2798         if (ia32e) {
2799                 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2800                     CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2801                         return -EINVAL;
2802         } else {
2803                 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2804                     CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2805                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2806                     CC((vmcs12->host_rip) >> 32))
2807                         return -EINVAL;
2808         }
2809
2810         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2811             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2812             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2813             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2814             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2815             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2816             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2817             CC(vmcs12->host_cs_selector == 0) ||
2818             CC(vmcs12->host_tr_selector == 0) ||
2819             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2820                 return -EINVAL;
2821
2822         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2823             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2824             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2825             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2826             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2827             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2828                 return -EINVAL;
2829
2830         /*
2831          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2832          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2833          * the values of the LMA and LME bits in the field must each be that of
2834          * the host address-space size VM-exit control.
2835          */
2836         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2837                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2838                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2839                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2840                         return -EINVAL;
2841         }
2842
2843         return 0;
2844 }
2845
2846 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2847                                           struct vmcs12 *vmcs12)
2848 {
2849         int r = 0;
2850         struct vmcs12 *shadow;
2851         struct kvm_host_map map;
2852
2853         if (vmcs12->vmcs_link_pointer == -1ull)
2854                 return 0;
2855
2856         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2857                 return -EINVAL;
2858
2859         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2860                 return -EINVAL;
2861
2862         shadow = map.hva;
2863
2864         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2865             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2866                 r = -EINVAL;
2867
2868         kvm_vcpu_unmap(vcpu, &map, false);
2869         return r;
2870 }
2871
2872 /*
2873  * Checks related to Guest Non-register State
2874  */
2875 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2876 {
2877         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2878                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2879                 return -EINVAL;
2880
2881         return 0;
2882 }
2883
2884 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2885                                         struct vmcs12 *vmcs12,
2886                                         u32 *exit_qual)
2887 {
2888         bool ia32e;
2889
2890         *exit_qual = ENTRY_FAIL_DEFAULT;
2891
2892         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2893             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2894                 return -EINVAL;
2895
2896         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2897             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2898                 return -EINVAL;
2899
2900         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2901             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2902                 return -EINVAL;
2903
2904         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2905                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2906                 return -EINVAL;
2907         }
2908
2909         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2910             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2911                                            vmcs12->guest_ia32_perf_global_ctrl)))
2912                 return -EINVAL;
2913
2914         /*
2915          * If the load IA32_EFER VM-entry control is 1, the following checks
2916          * are performed on the field for the IA32_EFER MSR:
2917          * - Bits reserved in the IA32_EFER MSR must be 0.
2918          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2919          *   the IA-32e mode guest VM-exit control. It must also be identical
2920          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2921          *   CR0.PG) is 1.
2922          */
2923         if (to_vmx(vcpu)->nested.nested_run_pending &&
2924             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2925                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2926                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2927                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2928                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2929                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2930                         return -EINVAL;
2931         }
2932
2933         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2934             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2935              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
2936                 return -EINVAL;
2937
2938         if (nested_check_guest_non_reg_state(vmcs12))
2939                 return -EINVAL;
2940
2941         return 0;
2942 }
2943
2944 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2945 {
2946         struct vcpu_vmx *vmx = to_vmx(vcpu);
2947         unsigned long cr3, cr4;
2948         bool vm_fail;
2949
2950         if (!nested_early_check)
2951                 return 0;
2952
2953         if (vmx->msr_autoload.host.nr)
2954                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2955         if (vmx->msr_autoload.guest.nr)
2956                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2957
2958         preempt_disable();
2959
2960         vmx_prepare_switch_to_guest(vcpu);
2961
2962         /*
2963          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2964          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2965          * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
2966          * there is no need to preserve other bits or save/restore the field.
2967          */
2968         vmcs_writel(GUEST_RFLAGS, 0);
2969
2970         cr3 = __get_current_cr3_fast();
2971         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2972                 vmcs_writel(HOST_CR3, cr3);
2973                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2974         }
2975
2976         cr4 = cr4_read_shadow();
2977         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2978                 vmcs_writel(HOST_CR4, cr4);
2979                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2980         }
2981
2982         asm(
2983                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2984                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2985                 "je 1f \n\t"
2986                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2987                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2988                 "1: \n\t"
2989                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2990
2991                 /* Check if vmlaunch or vmresume is needed */
2992                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2993
2994                 /*
2995                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2996                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2997                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2998                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2999                  */
3000                 "call vmx_vmenter\n\t"
3001
3002                 CC_SET(be)
3003               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
3004               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
3005                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
3006                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
3007                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
3008                 [wordsize]"i"(sizeof(ulong))
3009               : "memory"
3010         );
3011
3012         if (vmx->msr_autoload.host.nr)
3013                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3014         if (vmx->msr_autoload.guest.nr)
3015                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3016
3017         if (vm_fail) {
3018                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3019
3020                 preempt_enable();
3021
3022                 trace_kvm_nested_vmenter_failed(
3023                         "early hardware check VM-instruction error: ", error);
3024                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3025                 return 1;
3026         }
3027
3028         /*
3029          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3030          */
3031         local_irq_enable();
3032         if (hw_breakpoint_active())
3033                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3034         preempt_enable();
3035
3036         /*
3037          * A non-failing VMEntry means we somehow entered guest mode with
3038          * an illegal RIP, and that's just the tip of the iceberg.  There
3039          * is no telling what memory has been modified or what state has
3040          * been exposed to unknown code.  Hitting this all but guarantees
3041          * a (very critical) hardware issue.
3042          */
3043         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3044                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3045
3046         return 0;
3047 }
3048
3049 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3050 {
3051         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3052         struct vcpu_vmx *vmx = to_vmx(vcpu);
3053         struct kvm_host_map *map;
3054         struct page *page;
3055         u64 hpa;
3056
3057         /*
3058          * hv_evmcs may end up being not mapped after migration (when
3059          * L2 was running), map it here to make sure vmcs12 changes are
3060          * properly reflected.
3061          */
3062         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
3063                 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3064
3065         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3066                 /*
3067                  * Translate L1 physical address to host physical
3068                  * address for vmcs02. Keep the page pinned, so this
3069                  * physical address remains valid. We keep a reference
3070                  * to it so we can release it later.
3071                  */
3072                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3073                         kvm_release_page_clean(vmx->nested.apic_access_page);
3074                         vmx->nested.apic_access_page = NULL;
3075                 }
3076                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3077                 if (!is_error_page(page)) {
3078                         vmx->nested.apic_access_page = page;
3079                         hpa = page_to_phys(vmx->nested.apic_access_page);
3080                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
3081                 } else {
3082                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3083                                              __func__);
3084                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3085                         vcpu->run->internal.suberror =
3086                                 KVM_INTERNAL_ERROR_EMULATION;
3087                         vcpu->run->internal.ndata = 0;
3088                         return false;
3089                 }
3090         }
3091
3092         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3093                 map = &vmx->nested.virtual_apic_map;
3094
3095                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3096                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3097                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3098                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3099                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3100                         /*
3101                          * The processor will never use the TPR shadow, simply
3102                          * clear the bit from the execution control.  Such a
3103                          * configuration is useless, but it happens in tests.
3104                          * For any other configuration, failing the vm entry is
3105                          * _not_ what the processor does but it's basically the
3106                          * only possibility we have.
3107                          */
3108                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3109                 } else {
3110                         /*
3111                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3112                          * force VM-Entry to fail.
3113                          */
3114                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3115                 }
3116         }
3117
3118         if (nested_cpu_has_posted_intr(vmcs12)) {
3119                 map = &vmx->nested.pi_desc_map;
3120
3121                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3122                         vmx->nested.pi_desc =
3123                                 (struct pi_desc *)(((void *)map->hva) +
3124                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3125                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3126                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3127                 }
3128         }
3129         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3130                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3131         else
3132                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3133         return true;
3134 }
3135
3136 /*
3137  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3138  * for running VMX instructions (except VMXON, whose prerequisites are
3139  * slightly different). It also specifies what exception to inject otherwise.
3140  * Note that many of these exceptions have priority over VM exits, so they
3141  * don't have to be checked again here.
3142  */
3143 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3144 {
3145         if (!to_vmx(vcpu)->nested.vmxon) {
3146                 kvm_queue_exception(vcpu, UD_VECTOR);
3147                 return 0;
3148         }
3149
3150         if (vmx_get_cpl(vcpu)) {
3151                 kvm_inject_gp(vcpu, 0);
3152                 return 0;
3153         }
3154
3155         return 1;
3156 }
3157
3158 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3159 {
3160         u8 rvi = vmx_get_rvi();
3161         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3162
3163         return ((rvi & 0xf0) > (vppr & 0xf0));
3164 }
3165
3166 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3167                                    struct vmcs12 *vmcs12);
3168
3169 /*
3170  * If from_vmentry is false, this is being called from state restore (either RSM
3171  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3172  *
3173  * Returns:
3174  *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3175  *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3176  *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3177  *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3178  */
3179 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3180                                                         bool from_vmentry)
3181 {
3182         struct vcpu_vmx *vmx = to_vmx(vcpu);
3183         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3184         bool evaluate_pending_interrupts;
3185         u32 exit_reason = EXIT_REASON_INVALID_STATE;
3186         u32 exit_qual;
3187
3188         evaluate_pending_interrupts = exec_controls_get(vmx) &
3189                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3190         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3191                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3192
3193         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3194                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3195         if (kvm_mpx_supported() &&
3196                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3197                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3198
3199         /*
3200          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3201          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3202          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3203          * software model to the pre-VMEntry host state.  When EPT is disabled,
3204          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3205          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3206          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3207          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3208          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3209          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3210          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3211          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3212          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3213          * path would need to manually save/restore vmcs01.GUEST_CR3.
3214          */
3215         if (!enable_ept && !nested_early_check)
3216                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3217
3218         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3219
3220         prepare_vmcs02_early(vmx, vmcs12);
3221
3222         if (from_vmentry) {
3223                 if (unlikely(!nested_get_vmcs12_pages(vcpu)))
3224                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3225
3226                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3227                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3228                         return NVMX_VMENTRY_VMFAIL;
3229                 }
3230
3231                 if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
3232                         goto vmentry_fail_vmexit;
3233         }
3234
3235         enter_guest_mode(vcpu);
3236         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3237                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3238
3239         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
3240                 goto vmentry_fail_vmexit_guest_mode;
3241
3242         if (from_vmentry) {
3243                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3244                 exit_qual = nested_vmx_load_msr(vcpu,
3245                                                 vmcs12->vm_entry_msr_load_addr,
3246                                                 vmcs12->vm_entry_msr_load_count);
3247                 if (exit_qual)
3248                         goto vmentry_fail_vmexit_guest_mode;
3249         } else {
3250                 /*
3251                  * The MMU is not initialized to point at the right entities yet and
3252                  * "get pages" would need to read data from the guest (i.e. we will
3253                  * need to perform gpa to hpa translation). Request a call
3254                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3255                  * have already been set at vmentry time and should not be reset.
3256                  */
3257                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3258         }
3259
3260         /*
3261          * If L1 had a pending IRQ/NMI until it executed
3262          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3263          * disallowed (e.g. interrupts disabled), L0 needs to
3264          * evaluate if this pending event should cause an exit from L2
3265          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3266          * intercept EXTERNAL_INTERRUPT).
3267          *
3268          * Usually this would be handled by the processor noticing an
3269          * IRQ/NMI window request, or checking RVI during evaluation of
3270          * pending virtual interrupts.  However, this setting was done
3271          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3272          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3273          */
3274         if (unlikely(evaluate_pending_interrupts))
3275                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3276
3277         /*
3278          * Do not start the preemption timer hrtimer until after we know
3279          * we are successful, so that only nested_vmx_vmexit needs to cancel
3280          * the timer.
3281          */
3282         vmx->nested.preemption_timer_expired = false;
3283         if (nested_cpu_has_preemption_timer(vmcs12))
3284                 vmx_start_preemption_timer(vcpu);
3285
3286         /*
3287          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3288          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3289          * returned as far as L1 is concerned. It will only return (and set
3290          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3291          */
3292         return NVMX_VMENTRY_SUCCESS;
3293
3294         /*
3295          * A failed consistency check that leads to a VMExit during L1's
3296          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3297          * 26.7 "VM-entry failures during or after loading guest state".
3298          */
3299 vmentry_fail_vmexit_guest_mode:
3300         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3301                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3302         leave_guest_mode(vcpu);
3303
3304 vmentry_fail_vmexit:
3305         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3306
3307         if (!from_vmentry)
3308                 return NVMX_VMENTRY_VMEXIT;
3309
3310         load_vmcs12_host_state(vcpu, vmcs12);
3311         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3312         vmcs12->exit_qualification = exit_qual;
3313         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3314                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3315         return NVMX_VMENTRY_VMEXIT;
3316 }
3317
3318 /*
3319  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3320  * for running an L2 nested guest.
3321  */
3322 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3323 {
3324         struct vmcs12 *vmcs12;
3325         enum nvmx_vmentry_status status;
3326         struct vcpu_vmx *vmx = to_vmx(vcpu);
3327         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3328
3329         if (!nested_vmx_check_permission(vcpu))
3330                 return 1;
3331
3332         if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
3333                 return 1;
3334
3335         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3336                 return nested_vmx_failInvalid(vcpu);
3337
3338         vmcs12 = get_vmcs12(vcpu);
3339
3340         /*
3341          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3342          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3343          * rather than RFLAGS.ZF, and no error number is stored to the
3344          * VM-instruction error field.
3345          */
3346         if (vmcs12->hdr.shadow_vmcs)
3347                 return nested_vmx_failInvalid(vcpu);
3348
3349         if (vmx->nested.hv_evmcs) {
3350                 copy_enlightened_to_vmcs12(vmx);
3351                 /* Enlightened VMCS doesn't have launch state */
3352                 vmcs12->launch_state = !launch;
3353         } else if (enable_shadow_vmcs) {
3354                 copy_shadow_to_vmcs12(vmx);
3355         }
3356
3357         /*
3358          * The nested entry process starts with enforcing various prerequisites
3359          * on vmcs12 as required by the Intel SDM, and act appropriately when
3360          * they fail: As the SDM explains, some conditions should cause the
3361          * instruction to fail, while others will cause the instruction to seem
3362          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3363          * To speed up the normal (success) code path, we should avoid checking
3364          * for misconfigurations which will anyway be caught by the processor
3365          * when using the merged vmcs02.
3366          */
3367         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3368                 return nested_vmx_failValid(vcpu,
3369                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3370
3371         if (vmcs12->launch_state == launch)
3372                 return nested_vmx_failValid(vcpu,
3373                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3374                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3375
3376         if (nested_vmx_check_controls(vcpu, vmcs12))
3377                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3378
3379         if (nested_vmx_check_host_state(vcpu, vmcs12))
3380                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3381
3382         /*
3383          * We're finally done with prerequisite checking, and can start with
3384          * the nested entry.
3385          */
3386         vmx->nested.nested_run_pending = 1;
3387         status = nested_vmx_enter_non_root_mode(vcpu, true);
3388         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3389                 goto vmentry_failed;
3390
3391         /* Hide L1D cache contents from the nested guest.  */
3392         vmx->vcpu.arch.l1tf_flush_l1d = true;
3393
3394         /*
3395          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3396          * also be used as part of restoring nVMX state for
3397          * snapshot restore (migration).
3398          *
3399          * In this flow, it is assumed that vmcs12 cache was
3400          * trasferred as part of captured nVMX state and should
3401          * therefore not be read from guest memory (which may not
3402          * exist on destination host yet).
3403          */
3404         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3405
3406         /*
3407          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3408          * awakened by event injection or by an NMI-window VM-exit or
3409          * by an interrupt-window VM-exit, halt the vcpu.
3410          */
3411         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3412             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3413             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
3414             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
3415               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3416                 vmx->nested.nested_run_pending = 0;
3417                 return kvm_vcpu_halt(vcpu);
3418         }
3419         return 1;
3420
3421 vmentry_failed:
3422         vmx->nested.nested_run_pending = 0;
3423         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3424                 return 0;
3425         if (status == NVMX_VMENTRY_VMEXIT)
3426                 return 1;
3427         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3428         return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3429 }
3430
3431 /*
3432  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3433  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3434  * This function returns the new value we should put in vmcs12.guest_cr0.
3435  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3436  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3437  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3438  *     didn't trap the bit, because if L1 did, so would L0).
3439  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3440  *     been modified by L2, and L1 knows it. So just leave the old value of
3441  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3442  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3443  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3444  *     changed these bits, and therefore they need to be updated, but L0
3445  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3446  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3447  */
3448 static inline unsigned long
3449 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3450 {
3451         return
3452         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3453         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3454         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3455                         vcpu->arch.cr0_guest_owned_bits));
3456 }
3457
3458 static inline unsigned long
3459 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3460 {
3461         return
3462         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3463         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3464         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3465                         vcpu->arch.cr4_guest_owned_bits));
3466 }
3467
3468 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3469                                       struct vmcs12 *vmcs12)
3470 {
3471         u32 idt_vectoring;
3472         unsigned int nr;
3473
3474         if (vcpu->arch.exception.injected) {
3475                 nr = vcpu->arch.exception.nr;
3476                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3477
3478                 if (kvm_exception_is_soft(nr)) {
3479                         vmcs12->vm_exit_instruction_len =
3480                                 vcpu->arch.event_exit_inst_len;
3481                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3482                 } else
3483                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3484
3485                 if (vcpu->arch.exception.has_error_code) {
3486                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3487                         vmcs12->idt_vectoring_error_code =
3488                                 vcpu->arch.exception.error_code;
3489                 }
3490
3491                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3492         } else if (vcpu->arch.nmi_injected) {
3493                 vmcs12->idt_vectoring_info_field =
3494                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3495         } else if (vcpu->arch.interrupt.injected) {
3496                 nr = vcpu->arch.interrupt.nr;
3497                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3498
3499                 if (vcpu->arch.interrupt.soft) {
3500                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3501                         vmcs12->vm_entry_instruction_len =
3502                                 vcpu->arch.event_exit_inst_len;
3503                 } else
3504                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3505
3506                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3507         }
3508 }
3509
3510
3511 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3512 {
3513         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3514         gfn_t gfn;
3515
3516         /*
3517          * Don't need to mark the APIC access page dirty; it is never
3518          * written to by the CPU during APIC virtualization.
3519          */
3520
3521         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3522                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3523                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3524         }
3525
3526         if (nested_cpu_has_posted_intr(vmcs12)) {
3527                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3528                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3529         }
3530 }
3531
3532 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3533 {
3534         struct vcpu_vmx *vmx = to_vmx(vcpu);
3535         int max_irr;
3536         void *vapic_page;
3537         u16 status;
3538
3539         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3540                 return;
3541
3542         vmx->nested.pi_pending = false;
3543         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3544                 return;
3545
3546         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3547         if (max_irr != 256) {
3548                 vapic_page = vmx->nested.virtual_apic_map.hva;
3549                 if (!vapic_page)
3550                         return;
3551
3552                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3553                         vapic_page, &max_irr);
3554                 status = vmcs_read16(GUEST_INTR_STATUS);
3555                 if ((u8)max_irr > ((u8)status & 0xff)) {
3556                         status &= ~0xff;
3557                         status |= (u8)max_irr;
3558                         vmcs_write16(GUEST_INTR_STATUS, status);
3559                 }
3560         }
3561
3562         nested_mark_vmcs12_pages_dirty(vcpu);
3563 }
3564
3565 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3566                                                unsigned long exit_qual)
3567 {
3568         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3569         unsigned int nr = vcpu->arch.exception.nr;
3570         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3571
3572         if (vcpu->arch.exception.has_error_code) {
3573                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3574                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3575         }
3576
3577         if (kvm_exception_is_soft(nr))
3578                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3579         else
3580                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3581
3582         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3583             vmx_get_nmi_mask(vcpu))
3584                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3585
3586         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3587 }
3588
3589 /*
3590  * Returns true if a debug trap is pending delivery.
3591  *
3592  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3593  * exception may be inferred from the presence of an exception payload.
3594  */
3595 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3596 {
3597         return vcpu->arch.exception.pending &&
3598                         vcpu->arch.exception.nr == DB_VECTOR &&
3599                         vcpu->arch.exception.payload;
3600 }
3601
3602 /*
3603  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3604  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3605  * represents these debug traps with a payload that is said to be compatible
3606  * with the 'pending debug exceptions' field, write the payload to the VMCS
3607  * field if a VM-exit is delivered before the debug trap.
3608  */
3609 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3610 {
3611         if (vmx_pending_dbg_trap(vcpu))
3612                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3613                             vcpu->arch.exception.payload);
3614 }
3615
3616 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3617 {
3618         struct vcpu_vmx *vmx = to_vmx(vcpu);
3619         unsigned long exit_qual;
3620         bool block_nested_events =
3621             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3622         bool mtf_pending = vmx->nested.mtf_pending;
3623         struct kvm_lapic *apic = vcpu->arch.apic;
3624
3625         /*
3626          * Clear the MTF state. If a higher priority VM-exit is delivered first,
3627          * this state is discarded.
3628          */
3629         vmx->nested.mtf_pending = false;
3630
3631         if (lapic_in_kernel(vcpu) &&
3632                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3633                 if (block_nested_events)
3634                         return -EBUSY;
3635                 nested_vmx_update_pending_dbg(vcpu);
3636                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3637                 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3638                 return 0;
3639         }
3640
3641         /*
3642          * Process any exceptions that are not debug traps before MTF.
3643          */
3644         if (vcpu->arch.exception.pending &&
3645             !vmx_pending_dbg_trap(vcpu) &&
3646             nested_vmx_check_exception(vcpu, &exit_qual)) {
3647                 if (block_nested_events)
3648                         return -EBUSY;
3649                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3650                 return 0;
3651         }
3652
3653         if (mtf_pending) {
3654                 if (block_nested_events)
3655                         return -EBUSY;
3656                 nested_vmx_update_pending_dbg(vcpu);
3657                 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3658                 return 0;
3659         }
3660
3661         if (vcpu->arch.exception.pending &&
3662             nested_vmx_check_exception(vcpu, &exit_qual)) {
3663                 if (block_nested_events)
3664                         return -EBUSY;
3665                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3666                 return 0;
3667         }
3668
3669         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3670             vmx->nested.preemption_timer_expired) {
3671                 if (block_nested_events)
3672                         return -EBUSY;
3673                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3674                 return 0;
3675         }
3676
3677         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3678                 if (block_nested_events)
3679                         return -EBUSY;
3680                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3681                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3682                                   INTR_INFO_VALID_MASK, 0);
3683                 /*
3684                  * The NMI-triggered VM exit counts as injection:
3685                  * clear this one and block further NMIs.
3686                  */
3687                 vcpu->arch.nmi_pending = 0;
3688                 vmx_set_nmi_mask(vcpu, true);
3689                 return 0;
3690         }
3691
3692         if (kvm_cpu_has_interrupt(vcpu) && nested_exit_on_intr(vcpu)) {
3693                 if (block_nested_events)
3694                         return -EBUSY;
3695                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3696                 return 0;
3697         }
3698
3699         vmx_complete_nested_posted_interrupt(vcpu);
3700         return 0;
3701 }
3702
3703 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3704 {
3705         ktime_t remaining =
3706                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3707         u64 value;
3708
3709         if (ktime_to_ns(remaining) <= 0)
3710                 return 0;
3711
3712         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3713         do_div(value, 1000000);
3714         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3715 }
3716
3717 static bool is_vmcs12_ext_field(unsigned long field)
3718 {
3719         switch (field) {
3720         case GUEST_ES_SELECTOR:
3721         case GUEST_CS_SELECTOR:
3722         case GUEST_SS_SELECTOR:
3723         case GUEST_DS_SELECTOR:
3724         case GUEST_FS_SELECTOR:
3725         case GUEST_GS_SELECTOR:
3726         case GUEST_LDTR_SELECTOR:
3727         case GUEST_TR_SELECTOR:
3728         case GUEST_ES_LIMIT:
3729         case GUEST_CS_LIMIT:
3730         case GUEST_SS_LIMIT:
3731         case GUEST_DS_LIMIT:
3732         case GUEST_FS_LIMIT:
3733         case GUEST_GS_LIMIT:
3734         case GUEST_LDTR_LIMIT:
3735         case GUEST_TR_LIMIT:
3736         case GUEST_GDTR_LIMIT:
3737         case GUEST_IDTR_LIMIT:
3738         case GUEST_ES_AR_BYTES:
3739         case GUEST_DS_AR_BYTES:
3740         case GUEST_FS_AR_BYTES:
3741         case GUEST_GS_AR_BYTES:
3742         case GUEST_LDTR_AR_BYTES:
3743         case GUEST_TR_AR_BYTES:
3744         case GUEST_ES_BASE:
3745         case GUEST_CS_BASE:
3746         case GUEST_SS_BASE:
3747         case GUEST_DS_BASE:
3748         case GUEST_FS_BASE:
3749         case GUEST_GS_BASE:
3750         case GUEST_LDTR_BASE:
3751         case GUEST_TR_BASE:
3752         case GUEST_GDTR_BASE:
3753         case GUEST_IDTR_BASE:
3754         case GUEST_PENDING_DBG_EXCEPTIONS:
3755         case GUEST_BNDCFGS:
3756                 return true;
3757         default:
3758                 break;
3759         }
3760
3761         return false;
3762 }
3763
3764 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3765                                        struct vmcs12 *vmcs12)
3766 {
3767         struct vcpu_vmx *vmx = to_vmx(vcpu);
3768
3769         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3770         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3771         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3772         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3773         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3774         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3775         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3776         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3777         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3778         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3779         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3780         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3781         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3782         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3783         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3784         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3785         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3786         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3787         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3788         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3789         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3790         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3791         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3792         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3793         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3794         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3795         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3796         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3797         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3798         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3799         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3800         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3801         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3802         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3803         vmcs12->guest_pending_dbg_exceptions =
3804                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3805         if (kvm_mpx_supported())
3806                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3807
3808         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3809 }
3810
3811 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3812                                        struct vmcs12 *vmcs12)
3813 {
3814         struct vcpu_vmx *vmx = to_vmx(vcpu);
3815         int cpu;
3816
3817         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3818                 return;
3819
3820
3821         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3822
3823         cpu = get_cpu();
3824         vmx->loaded_vmcs = &vmx->nested.vmcs02;
3825         vmx_vcpu_load(&vmx->vcpu, cpu);
3826
3827         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3828
3829         vmx->loaded_vmcs = &vmx->vmcs01;
3830         vmx_vcpu_load(&vmx->vcpu, cpu);
3831         put_cpu();
3832 }
3833
3834 /*
3835  * Update the guest state fields of vmcs12 to reflect changes that
3836  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3837  * VM-entry controls is also updated, since this is really a guest
3838  * state bit.)
3839  */
3840 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3841 {
3842         struct vcpu_vmx *vmx = to_vmx(vcpu);
3843
3844         if (vmx->nested.hv_evmcs)
3845                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3846
3847         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3848
3849         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3850         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3851
3852         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3853         vmcs12->guest_rip = kvm_rip_read(vcpu);
3854         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3855
3856         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3857         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3858
3859         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3860         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3861         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3862
3863         vmcs12->guest_interruptibility_info =
3864                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3865
3866         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3867                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3868         else
3869                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3870
3871         if (nested_cpu_has_preemption_timer(vmcs12) &&
3872             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3873                         vmcs12->vmx_preemption_timer_value =
3874                                 vmx_get_preemption_timer_value(vcpu);
3875
3876         /*
3877          * In some cases (usually, nested EPT), L2 is allowed to change its
3878          * own CR3 without exiting. If it has changed it, we must keep it.
3879          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3880          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3881          *
3882          * Additionally, restore L2's PDPTR to vmcs12.
3883          */
3884         if (enable_ept) {
3885                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3886                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3887                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3888                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3889                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3890                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3891                 }
3892         }
3893
3894         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3895
3896         if (nested_cpu_has_vid(vmcs12))
3897                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3898
3899         vmcs12->vm_entry_controls =
3900                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3901                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3902
3903         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3904                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3905
3906         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3907                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3908 }
3909
3910 /*
3911  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3912  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3913  * and this function updates it to reflect the changes to the guest state while
3914  * L2 was running (and perhaps made some exits which were handled directly by L0
3915  * without going back to L1), and to reflect the exit reason.
3916  * Note that we do not have to copy here all VMCS fields, just those that
3917  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3918  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3919  * which already writes to vmcs12 directly.
3920  */
3921 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3922                            u32 exit_reason, u32 exit_intr_info,
3923                            unsigned long exit_qualification)
3924 {
3925         /* update exit information fields: */
3926         vmcs12->vm_exit_reason = exit_reason;
3927         vmcs12->exit_qualification = exit_qualification;
3928         vmcs12->vm_exit_intr_info = exit_intr_info;
3929
3930         vmcs12->idt_vectoring_info_field = 0;
3931         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3932         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3933
3934         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3935                 vmcs12->launch_state = 1;
3936
3937                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3938                  * instead of reading the real value. */
3939                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3940
3941                 /*
3942                  * Transfer the event that L0 or L1 may wanted to inject into
3943                  * L2 to IDT_VECTORING_INFO_FIELD.
3944                  */
3945                 vmcs12_save_pending_event(vcpu, vmcs12);
3946
3947                 /*
3948                  * According to spec, there's no need to store the guest's
3949                  * MSRs if the exit is due to a VM-entry failure that occurs
3950                  * during or after loading the guest state. Since this exit
3951                  * does not fall in that category, we need to save the MSRs.
3952                  */
3953                 if (nested_vmx_store_msr(vcpu,
3954                                          vmcs12->vm_exit_msr_store_addr,
3955                                          vmcs12->vm_exit_msr_store_count))
3956                         nested_vmx_abort(vcpu,
3957                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3958         }
3959
3960         /*
3961          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3962          * preserved above and would only end up incorrectly in L1.
3963          */
3964         vcpu->arch.nmi_injected = false;
3965         kvm_clear_exception_queue(vcpu);
3966         kvm_clear_interrupt_queue(vcpu);
3967 }
3968
3969 /*
3970  * A part of what we need to when the nested L2 guest exits and we want to
3971  * run its L1 parent, is to reset L1's guest state to the host state specified
3972  * in vmcs12.
3973  * This function is to be called not only on normal nested exit, but also on
3974  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3975  * Failures During or After Loading Guest State").
3976  * This function should be called when the active VMCS is L1's (vmcs01).
3977  */
3978 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3979                                    struct vmcs12 *vmcs12)
3980 {
3981         struct kvm_segment seg;
3982         u32 entry_failure_code;
3983
3984         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3985                 vcpu->arch.efer = vmcs12->host_ia32_efer;
3986         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3987                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3988         else
3989                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3990         vmx_set_efer(vcpu, vcpu->arch.efer);
3991
3992         kvm_rsp_write(vcpu, vmcs12->host_rsp);
3993         kvm_rip_write(vcpu, vmcs12->host_rip);
3994         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3995         vmx_set_interrupt_shadow(vcpu, 0);
3996
3997         /*
3998          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3999          * actually changed, because vmx_set_cr0 refers to efer set above.
4000          *
4001          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4002          * (KVM doesn't change it);
4003          */
4004         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
4005         vmx_set_cr0(vcpu, vmcs12->host_cr0);
4006
4007         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4008         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4009         vmx_set_cr4(vcpu, vmcs12->host_cr4);
4010
4011         nested_ept_uninit_mmu_context(vcpu);
4012
4013         /*
4014          * Only PDPTE load can fail as the value of cr3 was checked on entry and
4015          * couldn't have changed.
4016          */
4017         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
4018                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4019
4020         if (!enable_ept)
4021                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
4022
4023         /*
4024          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
4025          * VMEntry/VMExit. Thus, no need to flush TLB.
4026          *
4027          * If vmcs12 doesn't use VPID, L1 expects TLB to be
4028          * flushed on every VMEntry/VMExit.
4029          *
4030          * Otherwise, we can preserve TLB entries as long as we are
4031          * able to tag L1 TLB entries differently than L2 TLB entries.
4032          *
4033          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
4034          * and therefore we request the TLB flush to happen only after VMCS EPTP
4035          * has been set by KVM_REQ_LOAD_MMU_PGD.
4036          */
4037         if (enable_vpid &&
4038             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
4039                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4040         }
4041
4042         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4043         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4044         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4045         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4046         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4047         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4048         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4049
4050         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4051         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4052                 vmcs_write64(GUEST_BNDCFGS, 0);
4053
4054         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4055                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4056                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4057         }
4058         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4059                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4060                                          vmcs12->host_ia32_perf_global_ctrl));
4061
4062         /* Set L1 segment info according to Intel SDM
4063             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4064         seg = (struct kvm_segment) {
4065                 .base = 0,
4066                 .limit = 0xFFFFFFFF,
4067                 .selector = vmcs12->host_cs_selector,
4068                 .type = 11,
4069                 .present = 1,
4070                 .s = 1,
4071                 .g = 1
4072         };
4073         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4074                 seg.l = 1;
4075         else
4076                 seg.db = 1;
4077         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4078         seg = (struct kvm_segment) {
4079                 .base = 0,
4080                 .limit = 0xFFFFFFFF,
4081                 .type = 3,
4082                 .present = 1,
4083                 .s = 1,
4084                 .db = 1,
4085                 .g = 1
4086         };
4087         seg.selector = vmcs12->host_ds_selector;
4088         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4089         seg.selector = vmcs12->host_es_selector;
4090         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4091         seg.selector = vmcs12->host_ss_selector;
4092         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4093         seg.selector = vmcs12->host_fs_selector;
4094         seg.base = vmcs12->host_fs_base;
4095         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4096         seg.selector = vmcs12->host_gs_selector;
4097         seg.base = vmcs12->host_gs_base;
4098         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4099         seg = (struct kvm_segment) {
4100                 .base = vmcs12->host_tr_base,
4101                 .limit = 0x67,
4102                 .selector = vmcs12->host_tr_selector,
4103                 .type = 11,
4104                 .present = 1
4105         };
4106         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4107
4108         kvm_set_dr(vcpu, 7, 0x400);
4109         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4110
4111         if (cpu_has_vmx_msr_bitmap())
4112                 vmx_update_msr_bitmap(vcpu);
4113
4114         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4115                                 vmcs12->vm_exit_msr_load_count))
4116                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4117 }
4118
4119 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4120 {
4121         struct shared_msr_entry *efer_msr;
4122         unsigned int i;
4123
4124         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4125                 return vmcs_read64(GUEST_IA32_EFER);
4126
4127         if (cpu_has_load_ia32_efer())
4128                 return host_efer;
4129
4130         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4131                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4132                         return vmx->msr_autoload.guest.val[i].value;
4133         }
4134
4135         efer_msr = find_msr_entry(vmx, MSR_EFER);
4136         if (efer_msr)
4137                 return efer_msr->data;
4138
4139         return host_efer;
4140 }
4141
4142 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4143 {
4144         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4145         struct vcpu_vmx *vmx = to_vmx(vcpu);
4146         struct vmx_msr_entry g, h;
4147         gpa_t gpa;
4148         u32 i, j;
4149
4150         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4151
4152         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4153                 /*
4154                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4155                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4156                  * and vcpu->arch.dr7 is not squirreled away before the
4157                  * nested VMENTER (not worth adding a variable in nested_vmx).
4158                  */
4159                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4160                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4161                 else
4162                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4163         }
4164
4165         /*
4166          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4167          * handle a variety of side effects to KVM's software model.
4168          */
4169         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4170
4171         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
4172         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4173
4174         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4175         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4176
4177         nested_ept_uninit_mmu_context(vcpu);
4178         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4179         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4180
4181         /*
4182          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4183          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4184          * VMFail, like everything else we just need to ensure our
4185          * software model is up-to-date.
4186          */
4187         if (enable_ept)
4188                 ept_save_pdptrs(vcpu);
4189
4190         kvm_mmu_reset_context(vcpu);
4191
4192         if (cpu_has_vmx_msr_bitmap())
4193                 vmx_update_msr_bitmap(vcpu);
4194
4195         /*
4196          * This nasty bit of open coding is a compromise between blindly
4197          * loading L1's MSRs using the exit load lists (incorrect emulation
4198          * of VMFail), leaving the nested VM's MSRs in the software model
4199          * (incorrect behavior) and snapshotting the modified MSRs (too
4200          * expensive since the lists are unbound by hardware).  For each
4201          * MSR that was (prematurely) loaded from the nested VMEntry load
4202          * list, reload it from the exit load list if it exists and differs
4203          * from the guest value.  The intent is to stuff host state as
4204          * silently as possible, not to fully process the exit load list.
4205          */
4206         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4207                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4208                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4209                         pr_debug_ratelimited(
4210                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4211                                 __func__, i, gpa);
4212                         goto vmabort;
4213                 }
4214
4215                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4216                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4217                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4218                                 pr_debug_ratelimited(
4219                                         "%s read MSR failed (%u, 0x%08llx)\n",
4220                                         __func__, j, gpa);
4221                                 goto vmabort;
4222                         }
4223                         if (h.index != g.index)
4224                                 continue;
4225                         if (h.value == g.value)
4226                                 break;
4227
4228                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4229                                 pr_debug_ratelimited(
4230                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4231                                         __func__, j, h.index, h.reserved);
4232                                 goto vmabort;
4233                         }
4234
4235                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4236                                 pr_debug_ratelimited(
4237                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4238                                         __func__, j, h.index, h.value);
4239                                 goto vmabort;
4240                         }
4241                 }
4242         }
4243
4244         return;
4245
4246 vmabort:
4247         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4248 }
4249
4250 /*
4251  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4252  * and modify vmcs12 to make it see what it would expect to see there if
4253  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4254  */
4255 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
4256                        u32 exit_intr_info, unsigned long exit_qualification)
4257 {
4258         struct vcpu_vmx *vmx = to_vmx(vcpu);
4259         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4260
4261         /* trying to cancel vmlaunch/vmresume is a bug */
4262         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4263
4264         leave_guest_mode(vcpu);
4265
4266         if (nested_cpu_has_preemption_timer(vmcs12))
4267                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4268
4269         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4270                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4271
4272         if (likely(!vmx->fail)) {
4273                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4274
4275                 if (exit_reason != -1)
4276                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
4277                                        exit_qualification);
4278
4279                 /*
4280                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4281                  * also be used to capture vmcs12 cache as part of
4282                  * capturing nVMX state for snapshot (migration).
4283                  *
4284                  * Otherwise, this flush will dirty guest memory at a
4285                  * point it is already assumed by user-space to be
4286                  * immutable.
4287                  */
4288                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4289         } else {
4290                 /*
4291                  * The only expected VM-instruction error is "VM entry with
4292                  * invalid control field(s)." Anything else indicates a
4293                  * problem with L0.  And we should never get here with a
4294                  * VMFail of any type if early consistency checks are enabled.
4295                  */
4296                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4297                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4298                 WARN_ON_ONCE(nested_early_check);
4299         }
4300
4301         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4302
4303         /* Update any VMCS fields that might have changed while L2 ran */
4304         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4305         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4306         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4307         if (vmx->nested.l1_tpr_threshold != -1)
4308                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4309
4310         if (kvm_has_tsc_control)
4311                 decache_tsc_multiplier(vmx);
4312
4313         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4314                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4315                 vmx_set_virtual_apic_mode(vcpu);
4316         }
4317
4318         /* Unpin physical memory we referred to in vmcs02 */
4319         if (vmx->nested.apic_access_page) {
4320                 kvm_release_page_clean(vmx->nested.apic_access_page);
4321                 vmx->nested.apic_access_page = NULL;
4322         }
4323         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4324         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4325         vmx->nested.pi_desc = NULL;
4326
4327         /*
4328          * We are now running in L2, mmu_notifier will force to reload the
4329          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
4330          */
4331         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4332
4333         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4334                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4335
4336         /* in case we halted in L2 */
4337         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4338
4339         if (likely(!vmx->fail)) {
4340                 if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4341                     nested_exit_intr_ack_set(vcpu)) {
4342                         int irq = kvm_cpu_get_interrupt(vcpu);
4343                         WARN_ON(irq < 0);
4344                         vmcs12->vm_exit_intr_info = irq |
4345                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4346                 }
4347
4348                 if (exit_reason != -1)
4349                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4350                                                        vmcs12->exit_qualification,
4351                                                        vmcs12->idt_vectoring_info_field,
4352                                                        vmcs12->vm_exit_intr_info,
4353                                                        vmcs12->vm_exit_intr_error_code,
4354                                                        KVM_ISA_VMX);
4355
4356                 load_vmcs12_host_state(vcpu, vmcs12);
4357
4358                 return;
4359         }
4360
4361         /*
4362          * After an early L2 VM-entry failure, we're now back
4363          * in L1 which thinks it just finished a VMLAUNCH or
4364          * VMRESUME instruction, so we need to set the failure
4365          * flag and the VM-instruction error field of the VMCS
4366          * accordingly, and skip the emulated instruction.
4367          */
4368         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4369
4370         /*
4371          * Restore L1's host state to KVM's software model.  We're here
4372          * because a consistency check was caught by hardware, which
4373          * means some amount of guest state has been propagated to KVM's
4374          * model and needs to be unwound to the host's state.
4375          */
4376         nested_vmx_restore_host_state(vcpu);
4377
4378         vmx->fail = 0;
4379 }
4380
4381 /*
4382  * Decode the memory-address operand of a vmx instruction, as recorded on an
4383  * exit caused by such an instruction (run by a guest hypervisor).
4384  * On success, returns 0. When the operand is invalid, returns 1 and throws
4385  * #UD, #GP, or #SS.
4386  */
4387 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4388                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4389 {
4390         gva_t off;
4391         bool exn;
4392         struct kvm_segment s;
4393
4394         /*
4395          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4396          * Execution", on an exit, vmx_instruction_info holds most of the
4397          * addressing components of the operand. Only the displacement part
4398          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4399          * For how an actual address is calculated from all these components,
4400          * refer to Vol. 1, "Operand Addressing".
4401          */
4402         int  scaling = vmx_instruction_info & 3;
4403         int  addr_size = (vmx_instruction_info >> 7) & 7;
4404         bool is_reg = vmx_instruction_info & (1u << 10);
4405         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4406         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4407         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4408         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4409         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4410
4411         if (is_reg) {
4412                 kvm_queue_exception(vcpu, UD_VECTOR);
4413                 return 1;
4414         }
4415
4416         /* Addr = segment_base + offset */
4417         /* offset = base + [index * scale] + displacement */
4418         off = exit_qualification; /* holds the displacement */
4419         if (addr_size == 1)
4420                 off = (gva_t)sign_extend64(off, 31);
4421         else if (addr_size == 0)
4422                 off = (gva_t)sign_extend64(off, 15);
4423         if (base_is_valid)
4424                 off += kvm_register_read(vcpu, base_reg);
4425         if (index_is_valid)
4426                 off += kvm_register_read(vcpu, index_reg) << scaling;
4427         vmx_get_segment(vcpu, &s, seg_reg);
4428
4429         /*
4430          * The effective address, i.e. @off, of a memory operand is truncated
4431          * based on the address size of the instruction.  Note that this is
4432          * the *effective address*, i.e. the address prior to accounting for
4433          * the segment's base.
4434          */
4435         if (addr_size == 1) /* 32 bit */
4436                 off &= 0xffffffff;
4437         else if (addr_size == 0) /* 16 bit */
4438                 off &= 0xffff;
4439
4440         /* Checks for #GP/#SS exceptions. */
4441         exn = false;
4442         if (is_long_mode(vcpu)) {
4443                 /*
4444                  * The virtual/linear address is never truncated in 64-bit
4445                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4446                  * address when using FS/GS with a non-zero base.
4447                  */
4448                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4449                         *ret = s.base + off;
4450                 else
4451                         *ret = off;
4452
4453                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4454                  * non-canonical form. This is the only check on the memory
4455                  * destination for long mode!
4456                  */
4457                 exn = is_noncanonical_address(*ret, vcpu);
4458         } else {
4459                 /*
4460                  * When not in long mode, the virtual/linear address is
4461                  * unconditionally truncated to 32 bits regardless of the
4462                  * address size.
4463                  */
4464                 *ret = (s.base + off) & 0xffffffff;
4465
4466                 /* Protected mode: apply checks for segment validity in the
4467                  * following order:
4468                  * - segment type check (#GP(0) may be thrown)
4469                  * - usability check (#GP(0)/#SS(0))
4470                  * - limit check (#GP(0)/#SS(0))
4471                  */
4472                 if (wr)
4473                         /* #GP(0) if the destination operand is located in a
4474                          * read-only data segment or any code segment.
4475                          */
4476                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4477                 else
4478                         /* #GP(0) if the source operand is located in an
4479                          * execute-only code segment
4480                          */
4481                         exn = ((s.type & 0xa) == 8);
4482                 if (exn) {
4483                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4484                         return 1;
4485                 }
4486                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4487                  */
4488                 exn = (s.unusable != 0);
4489
4490                 /*
4491                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4492                  * outside the segment limit.  All CPUs that support VMX ignore
4493                  * limit checks for flat segments, i.e. segments with base==0,
4494                  * limit==0xffffffff and of type expand-up data or code.
4495                  */
4496                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4497                      ((s.type & 8) || !(s.type & 4))))
4498                         exn = exn || ((u64)off + len - 1 > s.limit);
4499         }
4500         if (exn) {
4501                 kvm_queue_exception_e(vcpu,
4502                                       seg_reg == VCPU_SREG_SS ?
4503                                                 SS_VECTOR : GP_VECTOR,
4504                                       0);
4505                 return 1;
4506         }
4507
4508         return 0;
4509 }
4510
4511 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4512 {
4513         struct vcpu_vmx *vmx;
4514
4515         if (!nested_vmx_allowed(vcpu))
4516                 return;
4517
4518         vmx = to_vmx(vcpu);
4519         if (kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4520                 vmx->nested.msrs.entry_ctls_high |=
4521                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4522                 vmx->nested.msrs.exit_ctls_high |=
4523                                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4524         } else {
4525                 vmx->nested.msrs.entry_ctls_high &=
4526                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4527                 vmx->nested.msrs.exit_ctls_high &=
4528                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4529         }
4530 }
4531
4532 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4533 {
4534         gva_t gva;
4535         struct x86_exception e;
4536
4537         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4538                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4539                                 sizeof(*vmpointer), &gva))
4540                 return 1;
4541
4542         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4543                 kvm_inject_page_fault(vcpu, &e);
4544                 return 1;
4545         }
4546
4547         return 0;
4548 }
4549
4550 /*
4551  * Allocate a shadow VMCS and associate it with the currently loaded
4552  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4553  * VMCS is also VMCLEARed, so that it is ready for use.
4554  */
4555 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4556 {
4557         struct vcpu_vmx *vmx = to_vmx(vcpu);
4558         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4559
4560         /*
4561          * We should allocate a shadow vmcs for vmcs01 only when L1
4562          * executes VMXON and free it when L1 executes VMXOFF.
4563          * As it is invalid to execute VMXON twice, we shouldn't reach
4564          * here when vmcs01 already have an allocated shadow vmcs.
4565          */
4566         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4567
4568         if (!loaded_vmcs->shadow_vmcs) {
4569                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4570                 if (loaded_vmcs->shadow_vmcs)
4571                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4572         }
4573         return loaded_vmcs->shadow_vmcs;
4574 }
4575
4576 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4577 {
4578         struct vcpu_vmx *vmx = to_vmx(vcpu);
4579         int r;
4580
4581         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4582         if (r < 0)
4583                 goto out_vmcs02;
4584
4585         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4586         if (!vmx->nested.cached_vmcs12)
4587                 goto out_cached_vmcs12;
4588
4589         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4590         if (!vmx->nested.cached_shadow_vmcs12)
4591                 goto out_cached_shadow_vmcs12;
4592
4593         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4594                 goto out_shadow_vmcs;
4595
4596         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4597                      HRTIMER_MODE_REL_PINNED);
4598         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4599
4600         vmx->nested.vpid02 = allocate_vpid();
4601
4602         vmx->nested.vmcs02_initialized = false;
4603         vmx->nested.vmxon = true;
4604
4605         if (vmx_pt_mode_is_host_guest()) {
4606                 vmx->pt_desc.guest.ctl = 0;
4607                 pt_update_intercept_for_msr(vmx);
4608         }
4609
4610         return 0;
4611
4612 out_shadow_vmcs:
4613         kfree(vmx->nested.cached_shadow_vmcs12);
4614
4615 out_cached_shadow_vmcs12:
4616         kfree(vmx->nested.cached_vmcs12);
4617
4618 out_cached_vmcs12:
4619         free_loaded_vmcs(&vmx->nested.vmcs02);
4620
4621 out_vmcs02:
4622         return -ENOMEM;
4623 }
4624
4625 /*
4626  * Emulate the VMXON instruction.
4627  * Currently, we just remember that VMX is active, and do not save or even
4628  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4629  * do not currently need to store anything in that guest-allocated memory
4630  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4631  * argument is different from the VMXON pointer (which the spec says they do).
4632  */
4633 static int handle_vmon(struct kvm_vcpu *vcpu)
4634 {
4635         int ret;
4636         gpa_t vmptr;
4637         uint32_t revision;
4638         struct vcpu_vmx *vmx = to_vmx(vcpu);
4639         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4640                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4641
4642         /*
4643          * The Intel VMX Instruction Reference lists a bunch of bits that are
4644          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4645          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4646          * Otherwise, we should fail with #UD.  But most faulting conditions
4647          * have already been checked by hardware, prior to the VM-exit for
4648          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4649          * that bit set to 1 in non-root mode.
4650          */
4651         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4652                 kvm_queue_exception(vcpu, UD_VECTOR);
4653                 return 1;
4654         }
4655
4656         /* CPL=0 must be checked manually. */
4657         if (vmx_get_cpl(vcpu)) {
4658                 kvm_inject_gp(vcpu, 0);
4659                 return 1;
4660         }
4661
4662         if (vmx->nested.vmxon)
4663                 return nested_vmx_failValid(vcpu,
4664                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4665
4666         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4667                         != VMXON_NEEDED_FEATURES) {
4668                 kvm_inject_gp(vcpu, 0);
4669                 return 1;
4670         }
4671
4672         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4673                 return 1;
4674
4675         /*
4676          * SDM 3: 24.11.5
4677          * The first 4 bytes of VMXON region contain the supported
4678          * VMCS revision identifier
4679          *
4680          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4681          * which replaces physical address width with 32
4682          */
4683         if (!page_address_valid(vcpu, vmptr))
4684                 return nested_vmx_failInvalid(vcpu);
4685
4686         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4687             revision != VMCS12_REVISION)
4688                 return nested_vmx_failInvalid(vcpu);
4689
4690         vmx->nested.vmxon_ptr = vmptr;
4691         ret = enter_vmx_operation(vcpu);
4692         if (ret)
4693                 return ret;
4694
4695         return nested_vmx_succeed(vcpu);
4696 }
4697
4698 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4699 {
4700         struct vcpu_vmx *vmx = to_vmx(vcpu);
4701
4702         if (vmx->nested.current_vmptr == -1ull)
4703                 return;
4704
4705         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4706
4707         if (enable_shadow_vmcs) {
4708                 /* copy to memory all shadowed fields in case
4709                    they were modified */
4710                 copy_shadow_to_vmcs12(vmx);
4711                 vmx_disable_shadow_vmcs(vmx);
4712         }
4713         vmx->nested.posted_intr_nv = -1;
4714
4715         /* Flush VMCS12 to guest memory */
4716         kvm_vcpu_write_guest_page(vcpu,
4717                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4718                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4719
4720         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4721
4722         vmx->nested.current_vmptr = -1ull;
4723 }
4724
4725 /* Emulate the VMXOFF instruction */
4726 static int handle_vmoff(struct kvm_vcpu *vcpu)
4727 {
4728         if (!nested_vmx_check_permission(vcpu))
4729                 return 1;
4730
4731         free_nested(vcpu);
4732
4733         /* Process a latched INIT during time CPU was in VMX operation */
4734         kvm_make_request(KVM_REQ_EVENT, vcpu);
4735
4736         return nested_vmx_succeed(vcpu);
4737 }
4738
4739 /* Emulate the VMCLEAR instruction */
4740 static int handle_vmclear(struct kvm_vcpu *vcpu)
4741 {
4742         struct vcpu_vmx *vmx = to_vmx(vcpu);
4743         u32 zero = 0;
4744         gpa_t vmptr;
4745         u64 evmcs_gpa;
4746
4747         if (!nested_vmx_check_permission(vcpu))
4748                 return 1;
4749
4750         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4751                 return 1;
4752
4753         if (!page_address_valid(vcpu, vmptr))
4754                 return nested_vmx_failValid(vcpu,
4755                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4756
4757         if (vmptr == vmx->nested.vmxon_ptr)
4758                 return nested_vmx_failValid(vcpu,
4759                         VMXERR_VMCLEAR_VMXON_POINTER);
4760
4761         /*
4762          * When Enlightened VMEntry is enabled on the calling CPU we treat
4763          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4764          * way to distinguish it from VMCS12) and we must not corrupt it by
4765          * writing to the non-existent 'launch_state' field. The area doesn't
4766          * have to be the currently active EVMCS on the calling CPU and there's
4767          * nothing KVM has to do to transition it from 'active' to 'non-active'
4768          * state. It is possible that the area will stay mapped as
4769          * vmx->nested.hv_evmcs but this shouldn't be a problem.
4770          */
4771         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4772                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4773                 if (vmptr == vmx->nested.current_vmptr)
4774                         nested_release_vmcs12(vcpu);
4775
4776                 kvm_vcpu_write_guest(vcpu,
4777                                      vmptr + offsetof(struct vmcs12,
4778                                                       launch_state),
4779                                      &zero, sizeof(zero));
4780         }
4781
4782         return nested_vmx_succeed(vcpu);
4783 }
4784
4785 /* Emulate the VMLAUNCH instruction */
4786 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4787 {
4788         return nested_vmx_run(vcpu, true);
4789 }
4790
4791 /* Emulate the VMRESUME instruction */
4792 static int handle_vmresume(struct kvm_vcpu *vcpu)
4793 {
4794
4795         return nested_vmx_run(vcpu, false);
4796 }
4797
4798 static int handle_vmread(struct kvm_vcpu *vcpu)
4799 {
4800         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4801                                                     : get_vmcs12(vcpu);
4802         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4803         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4804         struct vcpu_vmx *vmx = to_vmx(vcpu);
4805         struct x86_exception e;
4806         unsigned long field;
4807         u64 value;
4808         gva_t gva = 0;
4809         short offset;
4810         int len;
4811
4812         if (!nested_vmx_check_permission(vcpu))
4813                 return 1;
4814
4815         /*
4816          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4817          * any VMREAD sets the ALU flags for VMfailInvalid.
4818          */
4819         if (vmx->nested.current_vmptr == -1ull ||
4820             (is_guest_mode(vcpu) &&
4821              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4822                 return nested_vmx_failInvalid(vcpu);
4823
4824         /* Decode instruction info and find the field to read */
4825         field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
4826
4827         offset = vmcs_field_to_offset(field);
4828         if (offset < 0)
4829                 return nested_vmx_failValid(vcpu,
4830                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4831
4832         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4833                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4834
4835         /* Read the field, zero-extended to a u64 value */
4836         value = vmcs12_read_any(vmcs12, field, offset);
4837
4838         /*
4839          * Now copy part of this value to register or memory, as requested.
4840          * Note that the number of bits actually copied is 32 or 64 depending
4841          * on the guest's mode (32 or 64 bit), not on the given field's length.
4842          */
4843         if (instr_info & BIT(10)) {
4844                 kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
4845         } else {
4846                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4847                 if (get_vmx_mem_address(vcpu, exit_qualification,
4848                                         instr_info, true, len, &gva))
4849                         return 1;
4850                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4851                 if (kvm_write_guest_virt_system(vcpu, gva, &value, len, &e)) {
4852                         kvm_inject_page_fault(vcpu, &e);
4853                         return 1;
4854                 }
4855         }
4856
4857         return nested_vmx_succeed(vcpu);
4858 }
4859
4860 static bool is_shadow_field_rw(unsigned long field)
4861 {
4862         switch (field) {
4863 #define SHADOW_FIELD_RW(x, y) case x:
4864 #include "vmcs_shadow_fields.h"
4865                 return true;
4866         default:
4867                 break;
4868         }
4869         return false;
4870 }
4871
4872 static bool is_shadow_field_ro(unsigned long field)
4873 {
4874         switch (field) {
4875 #define SHADOW_FIELD_RO(x, y) case x:
4876 #include "vmcs_shadow_fields.h"
4877                 return true;
4878         default:
4879                 break;
4880         }
4881         return false;
4882 }
4883
4884 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4885 {
4886         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4887                                                     : get_vmcs12(vcpu);
4888         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4889         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4890         struct vcpu_vmx *vmx = to_vmx(vcpu);
4891         struct x86_exception e;
4892         unsigned long field;
4893         short offset;
4894         gva_t gva;
4895         int len;
4896
4897         /*
4898          * The value to write might be 32 or 64 bits, depending on L1's long
4899          * mode, and eventually we need to write that into a field of several
4900          * possible lengths. The code below first zero-extends the value to 64
4901          * bit (value), and then copies only the appropriate number of
4902          * bits into the vmcs12 field.
4903          */
4904         u64 value = 0;
4905
4906         if (!nested_vmx_check_permission(vcpu))
4907                 return 1;
4908
4909         /*
4910          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4911          * any VMWRITE sets the ALU flags for VMfailInvalid.
4912          */
4913         if (vmx->nested.current_vmptr == -1ull ||
4914             (is_guest_mode(vcpu) &&
4915              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4916                 return nested_vmx_failInvalid(vcpu);
4917
4918         if (instr_info & BIT(10))
4919                 value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
4920         else {
4921                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4922                 if (get_vmx_mem_address(vcpu, exit_qualification,
4923                                         instr_info, false, len, &gva))
4924                         return 1;
4925                 if (kvm_read_guest_virt(vcpu, gva, &value, len, &e)) {
4926                         kvm_inject_page_fault(vcpu, &e);
4927                         return 1;
4928                 }
4929         }
4930
4931         field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
4932
4933         offset = vmcs_field_to_offset(field);
4934         if (offset < 0)
4935                 return nested_vmx_failValid(vcpu,
4936                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4937
4938         /*
4939          * If the vCPU supports "VMWRITE to any supported field in the
4940          * VMCS," then the "read-only" fields are actually read/write.
4941          */
4942         if (vmcs_field_readonly(field) &&
4943             !nested_cpu_has_vmwrite_any_field(vcpu))
4944                 return nested_vmx_failValid(vcpu,
4945                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4946
4947         /*
4948          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
4949          * vmcs12, else we may crush a field or consume a stale value.
4950          */
4951         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
4952                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4953
4954         /*
4955          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
4956          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
4957          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
4958          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
4959          * from L1 will return a different value than VMREAD from L2 (L1 sees
4960          * the stripped down value, L2 sees the full value as stored by KVM).
4961          */
4962         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
4963                 value &= 0x1f0ff;
4964
4965         vmcs12_write_any(vmcs12, field, offset, value);
4966
4967         /*
4968          * Do not track vmcs12 dirty-state if in guest-mode as we actually
4969          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
4970          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
4971          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
4972          */
4973         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
4974                 /*
4975                  * L1 can read these fields without exiting, ensure the
4976                  * shadow VMCS is up-to-date.
4977                  */
4978                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
4979                         preempt_disable();
4980                         vmcs_load(vmx->vmcs01.shadow_vmcs);
4981
4982                         __vmcs_writel(field, value);
4983
4984                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
4985                         vmcs_load(vmx->loaded_vmcs->vmcs);
4986                         preempt_enable();
4987                 }
4988                 vmx->nested.dirty_vmcs12 = true;
4989         }
4990
4991         return nested_vmx_succeed(vcpu);
4992 }
4993
4994 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4995 {
4996         vmx->nested.current_vmptr = vmptr;
4997         if (enable_shadow_vmcs) {
4998                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
4999                 vmcs_write64(VMCS_LINK_POINTER,
5000                              __pa(vmx->vmcs01.shadow_vmcs));
5001                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5002         }
5003         vmx->nested.dirty_vmcs12 = true;
5004 }
5005
5006 /* Emulate the VMPTRLD instruction */
5007 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5008 {
5009         struct vcpu_vmx *vmx = to_vmx(vcpu);
5010         gpa_t vmptr;
5011
5012         if (!nested_vmx_check_permission(vcpu))
5013                 return 1;
5014
5015         if (nested_vmx_get_vmptr(vcpu, &vmptr))
5016                 return 1;
5017
5018         if (!page_address_valid(vcpu, vmptr))
5019                 return nested_vmx_failValid(vcpu,
5020                         VMXERR_VMPTRLD_INVALID_ADDRESS);
5021
5022         if (vmptr == vmx->nested.vmxon_ptr)
5023                 return nested_vmx_failValid(vcpu,
5024                         VMXERR_VMPTRLD_VMXON_POINTER);
5025
5026         /* Forbid normal VMPTRLD if Enlightened version was used */
5027         if (vmx->nested.hv_evmcs)
5028                 return 1;
5029
5030         if (vmx->nested.current_vmptr != vmptr) {
5031                 struct kvm_host_map map;
5032                 struct vmcs12 *new_vmcs12;
5033
5034                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5035                         /*
5036                          * Reads from an unbacked page return all 1s,
5037                          * which means that the 32 bits located at the
5038                          * given physical address won't match the required
5039                          * VMCS12_REVISION identifier.
5040                          */
5041                         return nested_vmx_failValid(vcpu,
5042                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5043                 }
5044
5045                 new_vmcs12 = map.hva;
5046
5047                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5048                     (new_vmcs12->hdr.shadow_vmcs &&
5049                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5050                         kvm_vcpu_unmap(vcpu, &map, false);
5051                         return nested_vmx_failValid(vcpu,
5052                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5053                 }
5054
5055                 nested_release_vmcs12(vcpu);
5056
5057                 /*
5058                  * Load VMCS12 from guest memory since it is not already
5059                  * cached.
5060                  */
5061                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5062                 kvm_vcpu_unmap(vcpu, &map, false);
5063
5064                 set_current_vmptr(vmx, vmptr);
5065         }
5066
5067         return nested_vmx_succeed(vcpu);
5068 }
5069
5070 /* Emulate the VMPTRST instruction */
5071 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5072 {
5073         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
5074         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5075         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5076         struct x86_exception e;
5077         gva_t gva;
5078
5079         if (!nested_vmx_check_permission(vcpu))
5080                 return 1;
5081
5082         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5083                 return 1;
5084
5085         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5086                                 true, sizeof(gpa_t), &gva))
5087                 return 1;
5088         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5089         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5090                                         sizeof(gpa_t), &e)) {
5091                 kvm_inject_page_fault(vcpu, &e);
5092                 return 1;
5093         }
5094         return nested_vmx_succeed(vcpu);
5095 }
5096
5097 /* Emulate the INVEPT instruction */
5098 static int handle_invept(struct kvm_vcpu *vcpu)
5099 {
5100         struct vcpu_vmx *vmx = to_vmx(vcpu);
5101         u32 vmx_instruction_info, types;
5102         unsigned long type;
5103         gva_t gva;
5104         struct x86_exception e;
5105         struct {
5106                 u64 eptp, gpa;
5107         } operand;
5108
5109         if (!(vmx->nested.msrs.secondary_ctls_high &
5110               SECONDARY_EXEC_ENABLE_EPT) ||
5111             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5112                 kvm_queue_exception(vcpu, UD_VECTOR);
5113                 return 1;
5114         }
5115
5116         if (!nested_vmx_check_permission(vcpu))
5117                 return 1;
5118
5119         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5120         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5121
5122         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5123
5124         if (type >= 32 || !(types & (1 << type)))
5125                 return nested_vmx_failValid(vcpu,
5126                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5127
5128         /* According to the Intel VMX instruction reference, the memory
5129          * operand is read even if it isn't needed (e.g., for type==global)
5130          */
5131         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5132                         vmx_instruction_info, false, sizeof(operand), &gva))
5133                 return 1;
5134         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5135                 kvm_inject_page_fault(vcpu, &e);
5136                 return 1;
5137         }
5138
5139         switch (type) {
5140         case VMX_EPT_EXTENT_GLOBAL:
5141         case VMX_EPT_EXTENT_CONTEXT:
5142         /*
5143          * TODO: Sync the necessary shadow EPT roots here, rather than
5144          * at the next emulated VM-entry.
5145          */
5146                 break;
5147         default:
5148                 BUG_ON(1);
5149                 break;
5150         }
5151
5152         return nested_vmx_succeed(vcpu);
5153 }
5154
5155 static int handle_invvpid(struct kvm_vcpu *vcpu)
5156 {
5157         struct vcpu_vmx *vmx = to_vmx(vcpu);
5158         u32 vmx_instruction_info;
5159         unsigned long type, types;
5160         gva_t gva;
5161         struct x86_exception e;
5162         struct {
5163                 u64 vpid;
5164                 u64 gla;
5165         } operand;
5166         u16 vpid02;
5167
5168         if (!(vmx->nested.msrs.secondary_ctls_high &
5169               SECONDARY_EXEC_ENABLE_VPID) ||
5170                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5171                 kvm_queue_exception(vcpu, UD_VECTOR);
5172                 return 1;
5173         }
5174
5175         if (!nested_vmx_check_permission(vcpu))
5176                 return 1;
5177
5178         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5179         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5180
5181         types = (vmx->nested.msrs.vpid_caps &
5182                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5183
5184         if (type >= 32 || !(types & (1 << type)))
5185                 return nested_vmx_failValid(vcpu,
5186                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5187
5188         /* according to the intel vmx instruction reference, the memory
5189          * operand is read even if it isn't needed (e.g., for type==global)
5190          */
5191         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5192                         vmx_instruction_info, false, sizeof(operand), &gva))
5193                 return 1;
5194         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5195                 kvm_inject_page_fault(vcpu, &e);
5196                 return 1;
5197         }
5198         if (operand.vpid >> 16)
5199                 return nested_vmx_failValid(vcpu,
5200                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5201
5202         vpid02 = nested_get_vpid02(vcpu);
5203         switch (type) {
5204         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5205                 if (!operand.vpid ||
5206                     is_noncanonical_address(operand.gla, vcpu))
5207                         return nested_vmx_failValid(vcpu,
5208                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5209                 if (cpu_has_vmx_invvpid_individual_addr()) {
5210                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
5211                                 vpid02, operand.gla);
5212                 } else
5213                         __vmx_flush_tlb(vcpu, vpid02, false);
5214                 break;
5215         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5216         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5217                 if (!operand.vpid)
5218                         return nested_vmx_failValid(vcpu,
5219                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5220                 __vmx_flush_tlb(vcpu, vpid02, false);
5221                 break;
5222         case VMX_VPID_EXTENT_ALL_CONTEXT:
5223                 __vmx_flush_tlb(vcpu, vpid02, false);
5224                 break;
5225         default:
5226                 WARN_ON_ONCE(1);
5227                 return kvm_skip_emulated_instruction(vcpu);
5228         }
5229
5230         return nested_vmx_succeed(vcpu);
5231 }
5232
5233 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5234                                      struct vmcs12 *vmcs12)
5235 {
5236         u32 index = kvm_rcx_read(vcpu);
5237         u64 new_eptp;
5238         bool accessed_dirty;
5239         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5240
5241         if (!nested_cpu_has_eptp_switching(vmcs12) ||
5242             !nested_cpu_has_ept(vmcs12))
5243                 return 1;
5244
5245         if (index >= VMFUNC_EPTP_ENTRIES)
5246                 return 1;
5247
5248
5249         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5250                                      &new_eptp, index * 8, 8))
5251                 return 1;
5252
5253         accessed_dirty = !!(new_eptp & VMX_EPTP_AD_ENABLE_BIT);
5254
5255         /*
5256          * If the (L2) guest does a vmfunc to the currently
5257          * active ept pointer, we don't have to do anything else
5258          */
5259         if (vmcs12->ept_pointer != new_eptp) {
5260                 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5261                         return 1;
5262
5263                 kvm_mmu_unload(vcpu);
5264                 mmu->ept_ad = accessed_dirty;
5265                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5266                 vmcs12->ept_pointer = new_eptp;
5267                 /*
5268                  * TODO: Check what's the correct approach in case
5269                  * mmu reload fails. Currently, we just let the next
5270                  * reload potentially fail
5271                  */
5272                 kvm_mmu_reload(vcpu);
5273         }
5274
5275         return 0;
5276 }
5277
5278 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5279 {
5280         struct vcpu_vmx *vmx = to_vmx(vcpu);
5281         struct vmcs12 *vmcs12;
5282         u32 function = kvm_rax_read(vcpu);
5283
5284         /*
5285          * VMFUNC is only supported for nested guests, but we always enable the
5286          * secondary control for simplicity; for non-nested mode, fake that we
5287          * didn't by injecting #UD.
5288          */
5289         if (!is_guest_mode(vcpu)) {
5290                 kvm_queue_exception(vcpu, UD_VECTOR);
5291                 return 1;
5292         }
5293
5294         vmcs12 = get_vmcs12(vcpu);
5295         if ((vmcs12->vm_function_control & (1 << function)) == 0)
5296                 goto fail;
5297
5298         switch (function) {
5299         case 0:
5300                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5301                         goto fail;
5302                 break;
5303         default:
5304                 goto fail;
5305         }
5306         return kvm_skip_emulated_instruction(vcpu);
5307
5308 fail:
5309         nested_vmx_vmexit(vcpu, vmx->exit_reason,
5310                           vmcs_read32(VM_EXIT_INTR_INFO),
5311                           vmcs_readl(EXIT_QUALIFICATION));
5312         return 1;
5313 }
5314
5315 /*
5316  * Return true if an IO instruction with the specified port and size should cause
5317  * a VM-exit into L1.
5318  */
5319 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5320                                  int size)
5321 {
5322         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5323         gpa_t bitmap, last_bitmap;
5324         u8 b;
5325
5326         last_bitmap = (gpa_t)-1;
5327         b = -1;
5328
5329         while (size > 0) {
5330                 if (port < 0x8000)
5331                         bitmap = vmcs12->io_bitmap_a;
5332                 else if (port < 0x10000)
5333                         bitmap = vmcs12->io_bitmap_b;
5334                 else
5335                         return true;
5336                 bitmap += (port & 0x7fff) / 8;
5337
5338                 if (last_bitmap != bitmap)
5339                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5340                                 return true;
5341                 if (b & (1 << (port & 7)))
5342                         return true;
5343
5344                 port++;
5345                 size--;
5346                 last_bitmap = bitmap;
5347         }
5348
5349         return false;
5350 }
5351
5352 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5353                                        struct vmcs12 *vmcs12)
5354 {
5355         unsigned long exit_qualification;
5356         unsigned short port;
5357         int size;
5358
5359         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5360                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5361
5362         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5363
5364         port = exit_qualification >> 16;
5365         size = (exit_qualification & 7) + 1;
5366
5367         return nested_vmx_check_io_bitmaps(vcpu, port, size);
5368 }
5369
5370 /*
5371  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5372  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5373  * disinterest in the current event (read or write a specific MSR) by using an
5374  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5375  */
5376 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5377         struct vmcs12 *vmcs12, u32 exit_reason)
5378 {
5379         u32 msr_index = kvm_rcx_read(vcpu);
5380         gpa_t bitmap;
5381
5382         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5383                 return true;
5384
5385         /*
5386          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5387          * for the four combinations of read/write and low/high MSR numbers.
5388          * First we need to figure out which of the four to use:
5389          */
5390         bitmap = vmcs12->msr_bitmap;
5391         if (exit_reason == EXIT_REASON_MSR_WRITE)
5392                 bitmap += 2048;
5393         if (msr_index >= 0xc0000000) {
5394                 msr_index -= 0xc0000000;
5395                 bitmap += 1024;
5396         }
5397
5398         /* Then read the msr_index'th bit from this bitmap: */
5399         if (msr_index < 1024*8) {
5400                 unsigned char b;
5401                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5402                         return true;
5403                 return 1 & (b >> (msr_index & 7));
5404         } else
5405                 return true; /* let L1 handle the wrong parameter */
5406 }
5407
5408 /*
5409  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5410  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5411  * intercept (via guest_host_mask etc.) the current event.
5412  */
5413 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5414         struct vmcs12 *vmcs12)
5415 {
5416         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5417         int cr = exit_qualification & 15;
5418         int reg;
5419         unsigned long val;
5420
5421         switch ((exit_qualification >> 4) & 3) {
5422         case 0: /* mov to cr */
5423                 reg = (exit_qualification >> 8) & 15;
5424                 val = kvm_register_readl(vcpu, reg);
5425                 switch (cr) {
5426                 case 0:
5427                         if (vmcs12->cr0_guest_host_mask &
5428                             (val ^ vmcs12->cr0_read_shadow))
5429                                 return true;
5430                         break;
5431                 case 3:
5432                         if ((vmcs12->cr3_target_count >= 1 &&
5433                                         vmcs12->cr3_target_value0 == val) ||
5434                                 (vmcs12->cr3_target_count >= 2 &&
5435                                         vmcs12->cr3_target_value1 == val) ||
5436                                 (vmcs12->cr3_target_count >= 3 &&
5437                                         vmcs12->cr3_target_value2 == val) ||
5438                                 (vmcs12->cr3_target_count >= 4 &&
5439                                         vmcs12->cr3_target_value3 == val))
5440                                 return false;
5441                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5442                                 return true;
5443                         break;
5444                 case 4:
5445                         if (vmcs12->cr4_guest_host_mask &
5446                             (vmcs12->cr4_read_shadow ^ val))
5447                                 return true;
5448                         break;
5449                 case 8:
5450                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5451                                 return true;
5452                         break;
5453                 }
5454                 break;
5455         case 2: /* clts */
5456                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5457                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5458                         return true;
5459                 break;
5460         case 1: /* mov from cr */
5461                 switch (cr) {
5462                 case 3:
5463                         if (vmcs12->cpu_based_vm_exec_control &
5464                             CPU_BASED_CR3_STORE_EXITING)
5465                                 return true;
5466                         break;
5467                 case 8:
5468                         if (vmcs12->cpu_based_vm_exec_control &
5469                             CPU_BASED_CR8_STORE_EXITING)
5470                                 return true;
5471                         break;
5472                 }
5473                 break;
5474         case 3: /* lmsw */
5475                 /*
5476                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5477                  * cr0. Other attempted changes are ignored, with no exit.
5478                  */
5479                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5480                 if (vmcs12->cr0_guest_host_mask & 0xe &
5481                     (val ^ vmcs12->cr0_read_shadow))
5482                         return true;
5483                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5484                     !(vmcs12->cr0_read_shadow & 0x1) &&
5485                     (val & 0x1))
5486                         return true;
5487                 break;
5488         }
5489         return false;
5490 }
5491
5492 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5493         struct vmcs12 *vmcs12, gpa_t bitmap)
5494 {
5495         u32 vmx_instruction_info;
5496         unsigned long field;
5497         u8 b;
5498
5499         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5500                 return true;
5501
5502         /* Decode instruction info and find the field to access */
5503         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5504         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5505
5506         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5507         if (field >> 15)
5508                 return true;
5509
5510         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5511                 return true;
5512
5513         return 1 & (b >> (field & 7));
5514 }
5515
5516 /*
5517  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5518  * should handle it ourselves in L0 (and then continue L2). Only call this
5519  * when in is_guest_mode (L2).
5520  */
5521 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5522 {
5523         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5524         struct vcpu_vmx *vmx = to_vmx(vcpu);
5525         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5526
5527         if (vmx->nested.nested_run_pending)
5528                 return false;
5529
5530         if (unlikely(vmx->fail)) {
5531                 trace_kvm_nested_vmenter_failed(
5532                         "hardware VM-instruction error: ",
5533                         vmcs_read32(VM_INSTRUCTION_ERROR));
5534                 return true;
5535         }
5536
5537         /*
5538          * The host physical addresses of some pages of guest memory
5539          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5540          * Page). The CPU may write to these pages via their host
5541          * physical address while L2 is running, bypassing any
5542          * address-translation-based dirty tracking (e.g. EPT write
5543          * protection).
5544          *
5545          * Mark them dirty on every exit from L2 to prevent them from
5546          * getting out of sync with dirty tracking.
5547          */
5548         nested_mark_vmcs12_pages_dirty(vcpu);
5549
5550         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5551                                 vmcs_readl(EXIT_QUALIFICATION),
5552                                 vmx->idt_vectoring_info,
5553                                 intr_info,
5554                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5555                                 KVM_ISA_VMX);
5556
5557         switch (exit_reason) {
5558         case EXIT_REASON_EXCEPTION_NMI:
5559                 if (is_nmi(intr_info))
5560                         return false;
5561                 else if (is_page_fault(intr_info))
5562                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5563                 else if (is_debug(intr_info) &&
5564                          vcpu->guest_debug &
5565                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5566                         return false;
5567                 else if (is_breakpoint(intr_info) &&
5568                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5569                         return false;
5570                 return vmcs12->exception_bitmap &
5571                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5572         case EXIT_REASON_EXTERNAL_INTERRUPT:
5573                 return false;
5574         case EXIT_REASON_TRIPLE_FAULT:
5575                 return true;
5576         case EXIT_REASON_INTERRUPT_WINDOW:
5577                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5578         case EXIT_REASON_NMI_WINDOW:
5579                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5580         case EXIT_REASON_TASK_SWITCH:
5581                 return true;
5582         case EXIT_REASON_CPUID:
5583                 return true;
5584         case EXIT_REASON_HLT:
5585                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5586         case EXIT_REASON_INVD:
5587                 return true;
5588         case EXIT_REASON_INVLPG:
5589                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5590         case EXIT_REASON_RDPMC:
5591                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5592         case EXIT_REASON_RDRAND:
5593                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5594         case EXIT_REASON_RDSEED:
5595                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5596         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5597                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5598         case EXIT_REASON_VMREAD:
5599                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5600                         vmcs12->vmread_bitmap);
5601         case EXIT_REASON_VMWRITE:
5602                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5603                         vmcs12->vmwrite_bitmap);
5604         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5605         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5606         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5607         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5608         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5609                 /*
5610                  * VMX instructions trap unconditionally. This allows L1 to
5611                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5612                  */
5613                 return true;
5614         case EXIT_REASON_CR_ACCESS:
5615                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5616         case EXIT_REASON_DR_ACCESS:
5617                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5618         case EXIT_REASON_IO_INSTRUCTION:
5619                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5620         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5621                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5622         case EXIT_REASON_MSR_READ:
5623         case EXIT_REASON_MSR_WRITE:
5624                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5625         case EXIT_REASON_INVALID_STATE:
5626                 return true;
5627         case EXIT_REASON_MWAIT_INSTRUCTION:
5628                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5629         case EXIT_REASON_MONITOR_TRAP_FLAG:
5630                 return nested_cpu_has_mtf(vmcs12);
5631         case EXIT_REASON_MONITOR_INSTRUCTION:
5632                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5633         case EXIT_REASON_PAUSE_INSTRUCTION:
5634                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5635                         nested_cpu_has2(vmcs12,
5636                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5637         case EXIT_REASON_MCE_DURING_VMENTRY:
5638                 return false;
5639         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5640                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5641         case EXIT_REASON_APIC_ACCESS:
5642         case EXIT_REASON_APIC_WRITE:
5643         case EXIT_REASON_EOI_INDUCED:
5644                 /*
5645                  * The controls for "virtualize APIC accesses," "APIC-
5646                  * register virtualization," and "virtual-interrupt
5647                  * delivery" only come from vmcs12.
5648                  */
5649                 return true;
5650         case EXIT_REASON_EPT_VIOLATION:
5651                 /*
5652                  * L0 always deals with the EPT violation. If nested EPT is
5653                  * used, and the nested mmu code discovers that the address is
5654                  * missing in the guest EPT table (EPT12), the EPT violation
5655                  * will be injected with nested_ept_inject_page_fault()
5656                  */
5657                 return false;
5658         case EXIT_REASON_EPT_MISCONFIG:
5659                 /*
5660                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5661                  * table (shadow on EPT) or a merged EPT table that L0 built
5662                  * (EPT on EPT). So any problems with the structure of the
5663                  * table is L0's fault.
5664                  */
5665                 return false;
5666         case EXIT_REASON_INVPCID:
5667                 return
5668                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5669                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5670         case EXIT_REASON_WBINVD:
5671                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5672         case EXIT_REASON_XSETBV:
5673                 return true;
5674         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5675                 /*
5676                  * This should never happen, since it is not possible to
5677                  * set XSS to a non-zero value---neither in L1 nor in L2.
5678                  * If if it were, XSS would have to be checked against
5679                  * the XSS exit bitmap in vmcs12.
5680                  */
5681                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5682         case EXIT_REASON_PREEMPTION_TIMER:
5683                 return false;
5684         case EXIT_REASON_PML_FULL:
5685                 /* We emulate PML support to L1. */
5686                 return false;
5687         case EXIT_REASON_VMFUNC:
5688                 /* VM functions are emulated through L2->L0 vmexits. */
5689                 return false;
5690         case EXIT_REASON_ENCLS:
5691                 /* SGX is never exposed to L1 */
5692                 return false;
5693         case EXIT_REASON_UMWAIT:
5694         case EXIT_REASON_TPAUSE:
5695                 return nested_cpu_has2(vmcs12,
5696                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5697         default:
5698                 return true;
5699         }
5700 }
5701
5702
5703 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5704                                 struct kvm_nested_state __user *user_kvm_nested_state,
5705                                 u32 user_data_size)
5706 {
5707         struct vcpu_vmx *vmx;
5708         struct vmcs12 *vmcs12;
5709         struct kvm_nested_state kvm_state = {
5710                 .flags = 0,
5711                 .format = KVM_STATE_NESTED_FORMAT_VMX,
5712                 .size = sizeof(kvm_state),
5713                 .hdr.vmx.vmxon_pa = -1ull,
5714                 .hdr.vmx.vmcs12_pa = -1ull,
5715         };
5716         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5717                 &user_kvm_nested_state->data.vmx[0];
5718
5719         if (!vcpu)
5720                 return kvm_state.size + sizeof(*user_vmx_nested_state);
5721
5722         vmx = to_vmx(vcpu);
5723         vmcs12 = get_vmcs12(vcpu);
5724
5725         if (nested_vmx_allowed(vcpu) &&
5726             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5727                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5728                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5729
5730                 if (vmx_has_valid_vmcs12(vcpu)) {
5731                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5732
5733                         if (vmx->nested.hv_evmcs)
5734                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5735
5736                         if (is_guest_mode(vcpu) &&
5737                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5738                             vmcs12->vmcs_link_pointer != -1ull)
5739                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5740                 }
5741
5742                 if (vmx->nested.smm.vmxon)
5743                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5744
5745                 if (vmx->nested.smm.guest_mode)
5746                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5747
5748                 if (is_guest_mode(vcpu)) {
5749                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5750
5751                         if (vmx->nested.nested_run_pending)
5752                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5753
5754                         if (vmx->nested.mtf_pending)
5755                                 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
5756                 }
5757         }
5758
5759         if (user_data_size < kvm_state.size)
5760                 goto out;
5761
5762         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5763                 return -EFAULT;
5764
5765         if (!vmx_has_valid_vmcs12(vcpu))
5766                 goto out;
5767
5768         /*
5769          * When running L2, the authoritative vmcs12 state is in the
5770          * vmcs02. When running L1, the authoritative vmcs12 state is
5771          * in the shadow or enlightened vmcs linked to vmcs01, unless
5772          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5773          * vmcs12 state is in the vmcs12 already.
5774          */
5775         if (is_guest_mode(vcpu)) {
5776                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5777                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5778         } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5779                 if (vmx->nested.hv_evmcs)
5780                         copy_enlightened_to_vmcs12(vmx);
5781                 else if (enable_shadow_vmcs)
5782                         copy_shadow_to_vmcs12(vmx);
5783         }
5784
5785         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5786         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5787
5788         /*
5789          * Copy over the full allocated size of vmcs12 rather than just the size
5790          * of the struct.
5791          */
5792         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5793                 return -EFAULT;
5794
5795         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5796             vmcs12->vmcs_link_pointer != -1ull) {
5797                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5798                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5799                         return -EFAULT;
5800         }
5801
5802 out:
5803         return kvm_state.size;
5804 }
5805
5806 /*
5807  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5808  */
5809 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5810 {
5811         if (is_guest_mode(vcpu)) {
5812                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5813                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5814         }
5815         free_nested(vcpu);
5816 }
5817
5818 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5819                                 struct kvm_nested_state __user *user_kvm_nested_state,
5820                                 struct kvm_nested_state *kvm_state)
5821 {
5822         struct vcpu_vmx *vmx = to_vmx(vcpu);
5823         struct vmcs12 *vmcs12;
5824         u32 exit_qual;
5825         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5826                 &user_kvm_nested_state->data.vmx[0];
5827         int ret;
5828
5829         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
5830                 return -EINVAL;
5831
5832         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5833                 if (kvm_state->hdr.vmx.smm.flags)
5834                         return -EINVAL;
5835
5836                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
5837                         return -EINVAL;
5838
5839                 /*
5840                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
5841                  * enable eVMCS capability on vCPU. However, since then
5842                  * code was changed such that flag signals vmcs12 should
5843                  * be copied into eVMCS in guest memory.
5844                  *
5845                  * To preserve backwards compatability, allow user
5846                  * to set this flag even when there is no VMXON region.
5847                  */
5848                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
5849                         return -EINVAL;
5850         } else {
5851                 if (!nested_vmx_allowed(vcpu))
5852                         return -EINVAL;
5853
5854                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5855                         return -EINVAL;
5856         }
5857
5858         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5859             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5860                 return -EINVAL;
5861
5862         if (kvm_state->hdr.vmx.smm.flags &
5863             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5864                 return -EINVAL;
5865
5866         /*
5867          * SMM temporarily disables VMX, so we cannot be in guest mode,
5868          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5869          * must be zero.
5870          */
5871         if (is_smm(vcpu) ?
5872                 (kvm_state->flags &
5873                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
5874                 : kvm_state->hdr.vmx.smm.flags)
5875                 return -EINVAL;
5876
5877         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5878             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5879                 return -EINVAL;
5880
5881         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
5882                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
5883                         return -EINVAL;
5884
5885         vmx_leave_nested(vcpu);
5886
5887         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5888                 return 0;
5889
5890         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
5891         ret = enter_vmx_operation(vcpu);
5892         if (ret)
5893                 return ret;
5894
5895         /* Empty 'VMXON' state is permitted */
5896         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5897                 return 0;
5898
5899         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5900                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5901                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
5902                         return -EINVAL;
5903
5904                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
5905         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5906                 /*
5907                  * nested_vmx_handle_enlightened_vmptrld() cannot be called
5908                  * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
5909                  * restored yet. EVMCS will be mapped from
5910                  * nested_get_vmcs12_pages().
5911                  */
5912                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
5913         } else {
5914                 return -EINVAL;
5915         }
5916
5917         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5918                 vmx->nested.smm.vmxon = true;
5919                 vmx->nested.vmxon = false;
5920
5921                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5922                         vmx->nested.smm.guest_mode = true;
5923         }
5924
5925         vmcs12 = get_vmcs12(vcpu);
5926         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
5927                 return -EFAULT;
5928
5929         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5930                 return -EINVAL;
5931
5932         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5933                 return 0;
5934
5935         vmx->nested.nested_run_pending =
5936                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5937
5938         vmx->nested.mtf_pending =
5939                 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
5940
5941         ret = -EINVAL;
5942         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5943             vmcs12->vmcs_link_pointer != -1ull) {
5944                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5945
5946                 if (kvm_state->size <
5947                     sizeof(*kvm_state) +
5948                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
5949                         goto error_guest_mode;
5950
5951                 if (copy_from_user(shadow_vmcs12,
5952                                    user_vmx_nested_state->shadow_vmcs12,
5953                                    sizeof(*shadow_vmcs12))) {
5954                         ret = -EFAULT;
5955                         goto error_guest_mode;
5956                 }
5957
5958                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5959                     !shadow_vmcs12->hdr.shadow_vmcs)
5960                         goto error_guest_mode;
5961         }
5962
5963         if (nested_vmx_check_controls(vcpu, vmcs12) ||
5964             nested_vmx_check_host_state(vcpu, vmcs12) ||
5965             nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5966                 goto error_guest_mode;
5967
5968         vmx->nested.dirty_vmcs12 = true;
5969         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5970         if (ret)
5971                 goto error_guest_mode;
5972
5973         return 0;
5974
5975 error_guest_mode:
5976         vmx->nested.nested_run_pending = 0;
5977         return ret;
5978 }
5979
5980 void nested_vmx_set_vmcs_shadowing_bitmap(void)
5981 {
5982         if (enable_shadow_vmcs) {
5983                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5984                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5985         }
5986 }
5987
5988 /*
5989  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5990  * returned for the various VMX controls MSRs when nested VMX is enabled.
5991  * The same values should also be used to verify that vmcs12 control fields are
5992  * valid during nested entry from L1 to L2.
5993  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5994  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5995  * bit in the high half is on if the corresponding bit in the control field
5996  * may be on. See also vmx_control_verify().
5997  */
5998 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
5999 {
6000         /*
6001          * Note that as a general rule, the high half of the MSRs (bits in
6002          * the control fields which may be 1) should be initialized by the
6003          * intersection of the underlying hardware's MSR (i.e., features which
6004          * can be supported) and the list of features we want to expose -
6005          * because they are known to be properly supported in our code.
6006          * Also, usually, the low half of the MSRs (bits which must be 1) can
6007          * be set to 0, meaning that L1 may turn off any of these bits. The
6008          * reason is that if one of these bits is necessary, it will appear
6009          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6010          * fields of vmcs01 and vmcs02, will turn these bits off - and
6011          * nested_vmx_exit_reflected() will not pass related exits to L1.
6012          * These rules have exceptions below.
6013          */
6014
6015         /* pin-based controls */
6016         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6017                 msrs->pinbased_ctls_low,
6018                 msrs->pinbased_ctls_high);
6019         msrs->pinbased_ctls_low |=
6020                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6021         msrs->pinbased_ctls_high &=
6022                 PIN_BASED_EXT_INTR_MASK |
6023                 PIN_BASED_NMI_EXITING |
6024                 PIN_BASED_VIRTUAL_NMIS |
6025                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6026         msrs->pinbased_ctls_high |=
6027                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6028                 PIN_BASED_VMX_PREEMPTION_TIMER;
6029
6030         /* exit controls */
6031         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6032                 msrs->exit_ctls_low,
6033                 msrs->exit_ctls_high);
6034         msrs->exit_ctls_low =
6035                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6036
6037         msrs->exit_ctls_high &=
6038 #ifdef CONFIG_X86_64
6039                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6040 #endif
6041                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
6042         msrs->exit_ctls_high |=
6043                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6044                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6045                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6046
6047         /* We support free control of debug control saving. */
6048         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6049
6050         /* entry controls */
6051         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6052                 msrs->entry_ctls_low,
6053                 msrs->entry_ctls_high);
6054         msrs->entry_ctls_low =
6055                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6056         msrs->entry_ctls_high &=
6057 #ifdef CONFIG_X86_64
6058                 VM_ENTRY_IA32E_MODE |
6059 #endif
6060                 VM_ENTRY_LOAD_IA32_PAT;
6061         msrs->entry_ctls_high |=
6062                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6063
6064         /* We support free control of debug control loading. */
6065         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6066
6067         /* cpu-based controls */
6068         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6069                 msrs->procbased_ctls_low,
6070                 msrs->procbased_ctls_high);
6071         msrs->procbased_ctls_low =
6072                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6073         msrs->procbased_ctls_high &=
6074                 CPU_BASED_INTR_WINDOW_EXITING |
6075                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6076                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6077                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6078                 CPU_BASED_CR3_STORE_EXITING |
6079 #ifdef CONFIG_X86_64
6080                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6081 #endif
6082                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6083                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6084                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6085                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6086                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6087         /*
6088          * We can allow some features even when not supported by the
6089          * hardware. For example, L1 can specify an MSR bitmap - and we
6090          * can use it to avoid exits to L1 - even when L0 runs L2
6091          * without MSR bitmaps.
6092          */
6093         msrs->procbased_ctls_high |=
6094                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6095                 CPU_BASED_USE_MSR_BITMAPS;
6096
6097         /* We support free control of CR3 access interception. */
6098         msrs->procbased_ctls_low &=
6099                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6100
6101         /*
6102          * secondary cpu-based controls.  Do not include those that
6103          * depend on CPUID bits, they are added later by vmx_cpuid_update.
6104          */
6105         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6106                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6107                       msrs->secondary_ctls_low,
6108                       msrs->secondary_ctls_high);
6109
6110         msrs->secondary_ctls_low = 0;
6111         msrs->secondary_ctls_high &=
6112                 SECONDARY_EXEC_DESC |
6113                 SECONDARY_EXEC_RDTSCP |
6114                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6115                 SECONDARY_EXEC_WBINVD_EXITING |
6116                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6117                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6118                 SECONDARY_EXEC_RDRAND_EXITING |
6119                 SECONDARY_EXEC_ENABLE_INVPCID |
6120                 SECONDARY_EXEC_RDSEED_EXITING |
6121                 SECONDARY_EXEC_XSAVES;
6122
6123         /*
6124          * We can emulate "VMCS shadowing," even if the hardware
6125          * doesn't support it.
6126          */
6127         msrs->secondary_ctls_high |=
6128                 SECONDARY_EXEC_SHADOW_VMCS;
6129
6130         if (enable_ept) {
6131                 /* nested EPT: emulate EPT also to L1 */
6132                 msrs->secondary_ctls_high |=
6133                         SECONDARY_EXEC_ENABLE_EPT;
6134                 msrs->ept_caps =
6135                         VMX_EPT_PAGE_WALK_4_BIT |
6136                         VMX_EPT_PAGE_WALK_5_BIT |
6137                         VMX_EPTP_WB_BIT |
6138                         VMX_EPT_INVEPT_BIT |
6139                         VMX_EPT_EXECUTE_ONLY_BIT;
6140
6141                 msrs->ept_caps &= ept_caps;
6142                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6143                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6144                         VMX_EPT_1GB_PAGE_BIT;
6145                 if (enable_ept_ad_bits) {
6146                         msrs->secondary_ctls_high |=
6147                                 SECONDARY_EXEC_ENABLE_PML;
6148                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6149                 }
6150         }
6151
6152         if (cpu_has_vmx_vmfunc()) {
6153                 msrs->secondary_ctls_high |=
6154                         SECONDARY_EXEC_ENABLE_VMFUNC;
6155                 /*
6156                  * Advertise EPTP switching unconditionally
6157                  * since we emulate it
6158                  */
6159                 if (enable_ept)
6160                         msrs->vmfunc_controls =
6161                                 VMX_VMFUNC_EPTP_SWITCHING;
6162         }
6163
6164         /*
6165          * Old versions of KVM use the single-context version without
6166          * checking for support, so declare that it is supported even
6167          * though it is treated as global context.  The alternative is
6168          * not failing the single-context invvpid, and it is worse.
6169          */
6170         if (enable_vpid) {
6171                 msrs->secondary_ctls_high |=
6172                         SECONDARY_EXEC_ENABLE_VPID;
6173                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6174                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6175         }
6176
6177         if (enable_unrestricted_guest)
6178                 msrs->secondary_ctls_high |=
6179                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6180
6181         if (flexpriority_enabled)
6182                 msrs->secondary_ctls_high |=
6183                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6184
6185         /* miscellaneous data */
6186         rdmsr(MSR_IA32_VMX_MISC,
6187                 msrs->misc_low,
6188                 msrs->misc_high);
6189         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6190         msrs->misc_low |=
6191                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6192                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6193                 VMX_MISC_ACTIVITY_HLT;
6194         msrs->misc_high = 0;
6195
6196         /*
6197          * This MSR reports some information about VMX support. We
6198          * should return information about the VMX we emulate for the
6199          * guest, and the VMCS structure we give it - not about the
6200          * VMX support of the underlying hardware.
6201          */
6202         msrs->basic =
6203                 VMCS12_REVISION |
6204                 VMX_BASIC_TRUE_CTLS |
6205                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6206                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6207
6208         if (cpu_has_vmx_basic_inout())
6209                 msrs->basic |= VMX_BASIC_INOUT;
6210
6211         /*
6212          * These MSRs specify bits which the guest must keep fixed on
6213          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6214          * We picked the standard core2 setting.
6215          */
6216 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6217 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6218         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6219         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6220
6221         /* These MSRs specify bits which the guest must keep fixed off. */
6222         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6223         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6224
6225         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6226         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6227 }
6228
6229 void nested_vmx_hardware_unsetup(void)
6230 {
6231         int i;
6232
6233         if (enable_shadow_vmcs) {
6234                 for (i = 0; i < VMX_BITMAP_NR; i++)
6235                         free_page((unsigned long)vmx_bitmap[i]);
6236         }
6237 }
6238
6239 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6240 {
6241         int i;
6242
6243         if (!cpu_has_vmx_shadow_vmcs())
6244                 enable_shadow_vmcs = 0;
6245         if (enable_shadow_vmcs) {
6246                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6247                         /*
6248                          * The vmx_bitmap is not tied to a VM and so should
6249                          * not be charged to a memcg.
6250                          */
6251                         vmx_bitmap[i] = (unsigned long *)
6252                                 __get_free_page(GFP_KERNEL);
6253                         if (!vmx_bitmap[i]) {
6254                                 nested_vmx_hardware_unsetup();
6255                                 return -ENOMEM;
6256                         }
6257                 }
6258
6259                 init_vmcs_shadow_fields();
6260         }
6261
6262         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6263         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6264         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6265         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6266         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6267         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6268         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6269         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6270         exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6271         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6272         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6273         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6274
6275         kvm_x86_ops->check_nested_events = vmx_check_nested_events;
6276         kvm_x86_ops->get_nested_state = vmx_get_nested_state;
6277         kvm_x86_ops->set_nested_state = vmx_set_nested_state;
6278         kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages;
6279         kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
6280         kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
6281
6282         return 0;
6283 }