KVM: x86: Fix guest debug across vcpu INIT reset
[linux-2.6-block.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/mod_devicetable.h>
26 #include <linux/kernel.h>
27 #include <linux/vmalloc.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/ftrace_event.h>
31 #include <linux/slab.h>
32
33 #include <asm/perf_event.h>
34 #include <asm/tlbflush.h>
35 #include <asm/desc.h>
36 #include <asm/kvm_para.h>
37
38 #include <asm/virtext.h>
39 #include "trace.h"
40
41 #define __ex(x) __kvm_handle_fault_on_reboot(x)
42
43 MODULE_AUTHOR("Qumranet");
44 MODULE_LICENSE("GPL");
45
46 static const struct x86_cpu_id svm_cpu_id[] = {
47         X86_FEATURE_MATCH(X86_FEATURE_SVM),
48         {}
49 };
50 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
51
52 #define IOPM_ALLOC_ORDER 2
53 #define MSRPM_ALLOC_ORDER 1
54
55 #define SEG_TYPE_LDT 2
56 #define SEG_TYPE_BUSY_TSS16 3
57
58 #define SVM_FEATURE_NPT            (1 <<  0)
59 #define SVM_FEATURE_LBRV           (1 <<  1)
60 #define SVM_FEATURE_SVML           (1 <<  2)
61 #define SVM_FEATURE_NRIP           (1 <<  3)
62 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
63 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
64 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
65 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
66 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
67
68 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
69 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
70 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
71
72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
73
74 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
75 #define TSC_RATIO_MIN           0x0000000000000001ULL
76 #define TSC_RATIO_MAX           0x000000ffffffffffULL
77
78 static bool erratum_383_found __read_mostly;
79
80 static const u32 host_save_user_msrs[] = {
81 #ifdef CONFIG_X86_64
82         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
83         MSR_FS_BASE,
84 #endif
85         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
86 };
87
88 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
89
90 struct kvm_vcpu;
91
92 struct nested_state {
93         struct vmcb *hsave;
94         u64 hsave_msr;
95         u64 vm_cr_msr;
96         u64 vmcb;
97
98         /* These are the merged vectors */
99         u32 *msrpm;
100
101         /* gpa pointers to the real vectors */
102         u64 vmcb_msrpm;
103         u64 vmcb_iopm;
104
105         /* A VMEXIT is required but not yet emulated */
106         bool exit_required;
107
108         /* cache for intercepts of the guest */
109         u32 intercept_cr;
110         u32 intercept_dr;
111         u32 intercept_exceptions;
112         u64 intercept;
113
114         /* Nested Paging related state */
115         u64 nested_cr3;
116 };
117
118 #define MSRPM_OFFSETS   16
119 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
120
121 /*
122  * Set osvw_len to higher value when updated Revision Guides
123  * are published and we know what the new status bits are
124  */
125 static uint64_t osvw_len = 4, osvw_status;
126
127 struct vcpu_svm {
128         struct kvm_vcpu vcpu;
129         struct vmcb *vmcb;
130         unsigned long vmcb_pa;
131         struct svm_cpu_data *svm_data;
132         uint64_t asid_generation;
133         uint64_t sysenter_esp;
134         uint64_t sysenter_eip;
135
136         u64 next_rip;
137
138         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
139         struct {
140                 u16 fs;
141                 u16 gs;
142                 u16 ldt;
143                 u64 gs_base;
144         } host;
145
146         u32 *msrpm;
147
148         ulong nmi_iret_rip;
149
150         struct nested_state nested;
151
152         bool nmi_singlestep;
153
154         unsigned int3_injected;
155         unsigned long int3_rip;
156         u32 apf_reason;
157
158         u64  tsc_ratio;
159 };
160
161 static DEFINE_PER_CPU(u64, current_tsc_ratio);
162 #define TSC_RATIO_DEFAULT       0x0100000000ULL
163
164 #define MSR_INVALID                     0xffffffffU
165
166 static const struct svm_direct_access_msrs {
167         u32 index;   /* Index of the MSR */
168         bool always; /* True if intercept is always on */
169 } direct_access_msrs[] = {
170         { .index = MSR_STAR,                            .always = true  },
171         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
172 #ifdef CONFIG_X86_64
173         { .index = MSR_GS_BASE,                         .always = true  },
174         { .index = MSR_FS_BASE,                         .always = true  },
175         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
176         { .index = MSR_LSTAR,                           .always = true  },
177         { .index = MSR_CSTAR,                           .always = true  },
178         { .index = MSR_SYSCALL_MASK,                    .always = true  },
179 #endif
180         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
181         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
182         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
183         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
184         { .index = MSR_INVALID,                         .always = false },
185 };
186
187 /* enable NPT for AMD64 and X86 with PAE */
188 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
189 static bool npt_enabled = true;
190 #else
191 static bool npt_enabled;
192 #endif
193
194 /* allow nested paging (virtualized MMU) for all guests */
195 static int npt = true;
196 module_param(npt, int, S_IRUGO);
197
198 /* allow nested virtualization in KVM/SVM */
199 static int nested = true;
200 module_param(nested, int, S_IRUGO);
201
202 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
203 static void svm_complete_interrupts(struct vcpu_svm *svm);
204
205 static int nested_svm_exit_handled(struct vcpu_svm *svm);
206 static int nested_svm_intercept(struct vcpu_svm *svm);
207 static int nested_svm_vmexit(struct vcpu_svm *svm);
208 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
209                                       bool has_error_code, u32 error_code);
210 static u64 __scale_tsc(u64 ratio, u64 tsc);
211
212 enum {
213         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
214                             pause filter count */
215         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
216         VMCB_ASID,       /* ASID */
217         VMCB_INTR,       /* int_ctl, int_vector */
218         VMCB_NPT,        /* npt_en, nCR3, gPAT */
219         VMCB_CR,         /* CR0, CR3, CR4, EFER */
220         VMCB_DR,         /* DR6, DR7 */
221         VMCB_DT,         /* GDT, IDT */
222         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
223         VMCB_CR2,        /* CR2 only */
224         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
225         VMCB_DIRTY_MAX,
226 };
227
228 /* TPR and CR2 are always written before VMRUN */
229 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
230
231 static inline void mark_all_dirty(struct vmcb *vmcb)
232 {
233         vmcb->control.clean = 0;
234 }
235
236 static inline void mark_all_clean(struct vmcb *vmcb)
237 {
238         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
239                                & ~VMCB_ALWAYS_DIRTY_MASK;
240 }
241
242 static inline void mark_dirty(struct vmcb *vmcb, int bit)
243 {
244         vmcb->control.clean &= ~(1 << bit);
245 }
246
247 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
248 {
249         return container_of(vcpu, struct vcpu_svm, vcpu);
250 }
251
252 static void recalc_intercepts(struct vcpu_svm *svm)
253 {
254         struct vmcb_control_area *c, *h;
255         struct nested_state *g;
256
257         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
258
259         if (!is_guest_mode(&svm->vcpu))
260                 return;
261
262         c = &svm->vmcb->control;
263         h = &svm->nested.hsave->control;
264         g = &svm->nested;
265
266         c->intercept_cr = h->intercept_cr | g->intercept_cr;
267         c->intercept_dr = h->intercept_dr | g->intercept_dr;
268         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
269         c->intercept = h->intercept | g->intercept;
270 }
271
272 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
273 {
274         if (is_guest_mode(&svm->vcpu))
275                 return svm->nested.hsave;
276         else
277                 return svm->vmcb;
278 }
279
280 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
281 {
282         struct vmcb *vmcb = get_host_vmcb(svm);
283
284         vmcb->control.intercept_cr |= (1U << bit);
285
286         recalc_intercepts(svm);
287 }
288
289 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
290 {
291         struct vmcb *vmcb = get_host_vmcb(svm);
292
293         vmcb->control.intercept_cr &= ~(1U << bit);
294
295         recalc_intercepts(svm);
296 }
297
298 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
299 {
300         struct vmcb *vmcb = get_host_vmcb(svm);
301
302         return vmcb->control.intercept_cr & (1U << bit);
303 }
304
305 static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
306 {
307         struct vmcb *vmcb = get_host_vmcb(svm);
308
309         vmcb->control.intercept_dr |= (1U << bit);
310
311         recalc_intercepts(svm);
312 }
313
314 static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
315 {
316         struct vmcb *vmcb = get_host_vmcb(svm);
317
318         vmcb->control.intercept_dr &= ~(1U << bit);
319
320         recalc_intercepts(svm);
321 }
322
323 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
324 {
325         struct vmcb *vmcb = get_host_vmcb(svm);
326
327         vmcb->control.intercept_exceptions |= (1U << bit);
328
329         recalc_intercepts(svm);
330 }
331
332 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
333 {
334         struct vmcb *vmcb = get_host_vmcb(svm);
335
336         vmcb->control.intercept_exceptions &= ~(1U << bit);
337
338         recalc_intercepts(svm);
339 }
340
341 static inline void set_intercept(struct vcpu_svm *svm, int bit)
342 {
343         struct vmcb *vmcb = get_host_vmcb(svm);
344
345         vmcb->control.intercept |= (1ULL << bit);
346
347         recalc_intercepts(svm);
348 }
349
350 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
351 {
352         struct vmcb *vmcb = get_host_vmcb(svm);
353
354         vmcb->control.intercept &= ~(1ULL << bit);
355
356         recalc_intercepts(svm);
357 }
358
359 static inline void enable_gif(struct vcpu_svm *svm)
360 {
361         svm->vcpu.arch.hflags |= HF_GIF_MASK;
362 }
363
364 static inline void disable_gif(struct vcpu_svm *svm)
365 {
366         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
367 }
368
369 static inline bool gif_set(struct vcpu_svm *svm)
370 {
371         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
372 }
373
374 static unsigned long iopm_base;
375
376 struct kvm_ldttss_desc {
377         u16 limit0;
378         u16 base0;
379         unsigned base1:8, type:5, dpl:2, p:1;
380         unsigned limit1:4, zero0:3, g:1, base2:8;
381         u32 base3;
382         u32 zero1;
383 } __attribute__((packed));
384
385 struct svm_cpu_data {
386         int cpu;
387
388         u64 asid_generation;
389         u32 max_asid;
390         u32 next_asid;
391         struct kvm_ldttss_desc *tss_desc;
392
393         struct page *save_area;
394 };
395
396 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
397
398 struct svm_init_data {
399         int cpu;
400         int r;
401 };
402
403 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
404
405 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
406 #define MSRS_RANGE_SIZE 2048
407 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
408
409 static u32 svm_msrpm_offset(u32 msr)
410 {
411         u32 offset;
412         int i;
413
414         for (i = 0; i < NUM_MSR_MAPS; i++) {
415                 if (msr < msrpm_ranges[i] ||
416                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
417                         continue;
418
419                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
420                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
421
422                 /* Now we have the u8 offset - but need the u32 offset */
423                 return offset / 4;
424         }
425
426         /* MSR not in any range */
427         return MSR_INVALID;
428 }
429
430 #define MAX_INST_SIZE 15
431
432 static inline void clgi(void)
433 {
434         asm volatile (__ex(SVM_CLGI));
435 }
436
437 static inline void stgi(void)
438 {
439         asm volatile (__ex(SVM_STGI));
440 }
441
442 static inline void invlpga(unsigned long addr, u32 asid)
443 {
444         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
445 }
446
447 static int get_npt_level(void)
448 {
449 #ifdef CONFIG_X86_64
450         return PT64_ROOT_LEVEL;
451 #else
452         return PT32E_ROOT_LEVEL;
453 #endif
454 }
455
456 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
457 {
458         vcpu->arch.efer = efer;
459         if (!npt_enabled && !(efer & EFER_LMA))
460                 efer &= ~EFER_LME;
461
462         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
463         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
464 }
465
466 static int is_external_interrupt(u32 info)
467 {
468         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
469         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
470 }
471
472 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
473 {
474         struct vcpu_svm *svm = to_svm(vcpu);
475         u32 ret = 0;
476
477         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
478                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
479         return ret & mask;
480 }
481
482 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
483 {
484         struct vcpu_svm *svm = to_svm(vcpu);
485
486         if (mask == 0)
487                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
488         else
489                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
490
491 }
492
493 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
494 {
495         struct vcpu_svm *svm = to_svm(vcpu);
496
497         if (svm->vmcb->control.next_rip != 0)
498                 svm->next_rip = svm->vmcb->control.next_rip;
499
500         if (!svm->next_rip) {
501                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
502                                 EMULATE_DONE)
503                         printk(KERN_DEBUG "%s: NOP\n", __func__);
504                 return;
505         }
506         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
507                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
508                        __func__, kvm_rip_read(vcpu), svm->next_rip);
509
510         kvm_rip_write(vcpu, svm->next_rip);
511         svm_set_interrupt_shadow(vcpu, 0);
512 }
513
514 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
515                                 bool has_error_code, u32 error_code,
516                                 bool reinject)
517 {
518         struct vcpu_svm *svm = to_svm(vcpu);
519
520         /*
521          * If we are within a nested VM we'd better #VMEXIT and let the guest
522          * handle the exception
523          */
524         if (!reinject &&
525             nested_svm_check_exception(svm, nr, has_error_code, error_code))
526                 return;
527
528         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
529                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
530
531                 /*
532                  * For guest debugging where we have to reinject #BP if some
533                  * INT3 is guest-owned:
534                  * Emulate nRIP by moving RIP forward. Will fail if injection
535                  * raises a fault that is not intercepted. Still better than
536                  * failing in all cases.
537                  */
538                 skip_emulated_instruction(&svm->vcpu);
539                 rip = kvm_rip_read(&svm->vcpu);
540                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
541                 svm->int3_injected = rip - old_rip;
542         }
543
544         svm->vmcb->control.event_inj = nr
545                 | SVM_EVTINJ_VALID
546                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
547                 | SVM_EVTINJ_TYPE_EXEPT;
548         svm->vmcb->control.event_inj_err = error_code;
549 }
550
551 static void svm_init_erratum_383(void)
552 {
553         u32 low, high;
554         int err;
555         u64 val;
556
557         if (!cpu_has_amd_erratum(amd_erratum_383))
558                 return;
559
560         /* Use _safe variants to not break nested virtualization */
561         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
562         if (err)
563                 return;
564
565         val |= (1ULL << 47);
566
567         low  = lower_32_bits(val);
568         high = upper_32_bits(val);
569
570         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
571
572         erratum_383_found = true;
573 }
574
575 static void svm_init_osvw(struct kvm_vcpu *vcpu)
576 {
577         /*
578          * Guests should see errata 400 and 415 as fixed (assuming that
579          * HLT and IO instructions are intercepted).
580          */
581         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
582         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
583
584         /*
585          * By increasing VCPU's osvw.length to 3 we are telling the guest that
586          * all osvw.status bits inside that length, including bit 0 (which is
587          * reserved for erratum 298), are valid. However, if host processor's
588          * osvw_len is 0 then osvw_status[0] carries no information. We need to
589          * be conservative here and therefore we tell the guest that erratum 298
590          * is present (because we really don't know).
591          */
592         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
593                 vcpu->arch.osvw.status |= 1;
594 }
595
596 static int has_svm(void)
597 {
598         const char *msg;
599
600         if (!cpu_has_svm(&msg)) {
601                 printk(KERN_INFO "has_svm: %s\n", msg);
602                 return 0;
603         }
604
605         return 1;
606 }
607
608 static void svm_hardware_disable(void *garbage)
609 {
610         /* Make sure we clean up behind us */
611         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
612                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
613
614         cpu_svm_disable();
615
616         amd_pmu_disable_virt();
617 }
618
619 static int svm_hardware_enable(void *garbage)
620 {
621
622         struct svm_cpu_data *sd;
623         uint64_t efer;
624         struct desc_ptr gdt_descr;
625         struct desc_struct *gdt;
626         int me = raw_smp_processor_id();
627
628         rdmsrl(MSR_EFER, efer);
629         if (efer & EFER_SVME)
630                 return -EBUSY;
631
632         if (!has_svm()) {
633                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
634                        me);
635                 return -EINVAL;
636         }
637         sd = per_cpu(svm_data, me);
638
639         if (!sd) {
640                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
641                        me);
642                 return -EINVAL;
643         }
644
645         sd->asid_generation = 1;
646         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
647         sd->next_asid = sd->max_asid + 1;
648
649         native_store_gdt(&gdt_descr);
650         gdt = (struct desc_struct *)gdt_descr.address;
651         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
652
653         wrmsrl(MSR_EFER, efer | EFER_SVME);
654
655         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
656
657         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
658                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
659                 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
660         }
661
662
663         /*
664          * Get OSVW bits.
665          *
666          * Note that it is possible to have a system with mixed processor
667          * revisions and therefore different OSVW bits. If bits are not the same
668          * on different processors then choose the worst case (i.e. if erratum
669          * is present on one processor and not on another then assume that the
670          * erratum is present everywhere).
671          */
672         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
673                 uint64_t len, status = 0;
674                 int err;
675
676                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
677                 if (!err)
678                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
679                                                       &err);
680
681                 if (err)
682                         osvw_status = osvw_len = 0;
683                 else {
684                         if (len < osvw_len)
685                                 osvw_len = len;
686                         osvw_status |= status;
687                         osvw_status &= (1ULL << osvw_len) - 1;
688                 }
689         } else
690                 osvw_status = osvw_len = 0;
691
692         svm_init_erratum_383();
693
694         amd_pmu_enable_virt();
695
696         return 0;
697 }
698
699 static void svm_cpu_uninit(int cpu)
700 {
701         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
702
703         if (!sd)
704                 return;
705
706         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
707         __free_page(sd->save_area);
708         kfree(sd);
709 }
710
711 static int svm_cpu_init(int cpu)
712 {
713         struct svm_cpu_data *sd;
714         int r;
715
716         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
717         if (!sd)
718                 return -ENOMEM;
719         sd->cpu = cpu;
720         sd->save_area = alloc_page(GFP_KERNEL);
721         r = -ENOMEM;
722         if (!sd->save_area)
723                 goto err_1;
724
725         per_cpu(svm_data, cpu) = sd;
726
727         return 0;
728
729 err_1:
730         kfree(sd);
731         return r;
732
733 }
734
735 static bool valid_msr_intercept(u32 index)
736 {
737         int i;
738
739         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
740                 if (direct_access_msrs[i].index == index)
741                         return true;
742
743         return false;
744 }
745
746 static void set_msr_interception(u32 *msrpm, unsigned msr,
747                                  int read, int write)
748 {
749         u8 bit_read, bit_write;
750         unsigned long tmp;
751         u32 offset;
752
753         /*
754          * If this warning triggers extend the direct_access_msrs list at the
755          * beginning of the file
756          */
757         WARN_ON(!valid_msr_intercept(msr));
758
759         offset    = svm_msrpm_offset(msr);
760         bit_read  = 2 * (msr & 0x0f);
761         bit_write = 2 * (msr & 0x0f) + 1;
762         tmp       = msrpm[offset];
763
764         BUG_ON(offset == MSR_INVALID);
765
766         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
767         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
768
769         msrpm[offset] = tmp;
770 }
771
772 static void svm_vcpu_init_msrpm(u32 *msrpm)
773 {
774         int i;
775
776         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
777
778         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
779                 if (!direct_access_msrs[i].always)
780                         continue;
781
782                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
783         }
784 }
785
786 static void add_msr_offset(u32 offset)
787 {
788         int i;
789
790         for (i = 0; i < MSRPM_OFFSETS; ++i) {
791
792                 /* Offset already in list? */
793                 if (msrpm_offsets[i] == offset)
794                         return;
795
796                 /* Slot used by another offset? */
797                 if (msrpm_offsets[i] != MSR_INVALID)
798                         continue;
799
800                 /* Add offset to list */
801                 msrpm_offsets[i] = offset;
802
803                 return;
804         }
805
806         /*
807          * If this BUG triggers the msrpm_offsets table has an overflow. Just
808          * increase MSRPM_OFFSETS in this case.
809          */
810         BUG();
811 }
812
813 static void init_msrpm_offsets(void)
814 {
815         int i;
816
817         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
818
819         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
820                 u32 offset;
821
822                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
823                 BUG_ON(offset == MSR_INVALID);
824
825                 add_msr_offset(offset);
826         }
827 }
828
829 static void svm_enable_lbrv(struct vcpu_svm *svm)
830 {
831         u32 *msrpm = svm->msrpm;
832
833         svm->vmcb->control.lbr_ctl = 1;
834         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
835         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
836         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
837         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
838 }
839
840 static void svm_disable_lbrv(struct vcpu_svm *svm)
841 {
842         u32 *msrpm = svm->msrpm;
843
844         svm->vmcb->control.lbr_ctl = 0;
845         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
846         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
847         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
848         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
849 }
850
851 static __init int svm_hardware_setup(void)
852 {
853         int cpu;
854         struct page *iopm_pages;
855         void *iopm_va;
856         int r;
857
858         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
859
860         if (!iopm_pages)
861                 return -ENOMEM;
862
863         iopm_va = page_address(iopm_pages);
864         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
865         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
866
867         init_msrpm_offsets();
868
869         if (boot_cpu_has(X86_FEATURE_NX))
870                 kvm_enable_efer_bits(EFER_NX);
871
872         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
873                 kvm_enable_efer_bits(EFER_FFXSR);
874
875         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
876                 u64 max;
877
878                 kvm_has_tsc_control = true;
879
880                 /*
881                  * Make sure the user can only configure tsc_khz values that
882                  * fit into a signed integer.
883                  * A min value is not calculated needed because it will always
884                  * be 1 on all machines and a value of 0 is used to disable
885                  * tsc-scaling for the vcpu.
886                  */
887                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
888
889                 kvm_max_guest_tsc_khz = max;
890         }
891
892         if (nested) {
893                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
894                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
895         }
896
897         for_each_possible_cpu(cpu) {
898                 r = svm_cpu_init(cpu);
899                 if (r)
900                         goto err;
901         }
902
903         if (!boot_cpu_has(X86_FEATURE_NPT))
904                 npt_enabled = false;
905
906         if (npt_enabled && !npt) {
907                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
908                 npt_enabled = false;
909         }
910
911         if (npt_enabled) {
912                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
913                 kvm_enable_tdp();
914         } else
915                 kvm_disable_tdp();
916
917         return 0;
918
919 err:
920         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
921         iopm_base = 0;
922         return r;
923 }
924
925 static __exit void svm_hardware_unsetup(void)
926 {
927         int cpu;
928
929         for_each_possible_cpu(cpu)
930                 svm_cpu_uninit(cpu);
931
932         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
933         iopm_base = 0;
934 }
935
936 static void init_seg(struct vmcb_seg *seg)
937 {
938         seg->selector = 0;
939         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
940                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
941         seg->limit = 0xffff;
942         seg->base = 0;
943 }
944
945 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
946 {
947         seg->selector = 0;
948         seg->attrib = SVM_SELECTOR_P_MASK | type;
949         seg->limit = 0xffff;
950         seg->base = 0;
951 }
952
953 static u64 __scale_tsc(u64 ratio, u64 tsc)
954 {
955         u64 mult, frac, _tsc;
956
957         mult  = ratio >> 32;
958         frac  = ratio & ((1ULL << 32) - 1);
959
960         _tsc  = tsc;
961         _tsc *= mult;
962         _tsc += (tsc >> 32) * frac;
963         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
964
965         return _tsc;
966 }
967
968 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
969 {
970         struct vcpu_svm *svm = to_svm(vcpu);
971         u64 _tsc = tsc;
972
973         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
974                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
975
976         return _tsc;
977 }
978
979 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
980 {
981         struct vcpu_svm *svm = to_svm(vcpu);
982         u64 ratio;
983         u64 khz;
984
985         /* Guest TSC same frequency as host TSC? */
986         if (!scale) {
987                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
988                 return;
989         }
990
991         /* TSC scaling supported? */
992         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
993                 if (user_tsc_khz > tsc_khz) {
994                         vcpu->arch.tsc_catchup = 1;
995                         vcpu->arch.tsc_always_catchup = 1;
996                 } else
997                         WARN(1, "user requested TSC rate below hardware speed\n");
998                 return;
999         }
1000
1001         khz = user_tsc_khz;
1002
1003         /* TSC scaling required  - calculate ratio */
1004         ratio = khz << 32;
1005         do_div(ratio, tsc_khz);
1006
1007         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1008                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1009                                 user_tsc_khz);
1010                 return;
1011         }
1012         svm->tsc_ratio             = ratio;
1013 }
1014
1015 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1016 {
1017         struct vcpu_svm *svm = to_svm(vcpu);
1018         u64 g_tsc_offset = 0;
1019
1020         if (is_guest_mode(vcpu)) {
1021                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1022                                svm->nested.hsave->control.tsc_offset;
1023                 svm->nested.hsave->control.tsc_offset = offset;
1024         }
1025
1026         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1027
1028         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1029 }
1030
1031 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1032 {
1033         struct vcpu_svm *svm = to_svm(vcpu);
1034
1035         WARN_ON(adjustment < 0);
1036         if (host)
1037                 adjustment = svm_scale_tsc(vcpu, adjustment);
1038
1039         svm->vmcb->control.tsc_offset += adjustment;
1040         if (is_guest_mode(vcpu))
1041                 svm->nested.hsave->control.tsc_offset += adjustment;
1042         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1043 }
1044
1045 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1046 {
1047         u64 tsc;
1048
1049         tsc = svm_scale_tsc(vcpu, native_read_tsc());
1050
1051         return target_tsc - tsc;
1052 }
1053
1054 static void init_vmcb(struct vcpu_svm *svm)
1055 {
1056         struct vmcb_control_area *control = &svm->vmcb->control;
1057         struct vmcb_save_area *save = &svm->vmcb->save;
1058
1059         svm->vcpu.fpu_active = 1;
1060         svm->vcpu.arch.hflags = 0;
1061
1062         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1063         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1064         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1065         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1066         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1067         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1068         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1069
1070         set_dr_intercept(svm, INTERCEPT_DR0_READ);
1071         set_dr_intercept(svm, INTERCEPT_DR1_READ);
1072         set_dr_intercept(svm, INTERCEPT_DR2_READ);
1073         set_dr_intercept(svm, INTERCEPT_DR3_READ);
1074         set_dr_intercept(svm, INTERCEPT_DR4_READ);
1075         set_dr_intercept(svm, INTERCEPT_DR5_READ);
1076         set_dr_intercept(svm, INTERCEPT_DR6_READ);
1077         set_dr_intercept(svm, INTERCEPT_DR7_READ);
1078
1079         set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
1080         set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
1081         set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
1082         set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
1083         set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
1084         set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
1085         set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
1086         set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
1087
1088         set_exception_intercept(svm, PF_VECTOR);
1089         set_exception_intercept(svm, UD_VECTOR);
1090         set_exception_intercept(svm, MC_VECTOR);
1091
1092         set_intercept(svm, INTERCEPT_INTR);
1093         set_intercept(svm, INTERCEPT_NMI);
1094         set_intercept(svm, INTERCEPT_SMI);
1095         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1096         set_intercept(svm, INTERCEPT_RDPMC);
1097         set_intercept(svm, INTERCEPT_CPUID);
1098         set_intercept(svm, INTERCEPT_INVD);
1099         set_intercept(svm, INTERCEPT_HLT);
1100         set_intercept(svm, INTERCEPT_INVLPG);
1101         set_intercept(svm, INTERCEPT_INVLPGA);
1102         set_intercept(svm, INTERCEPT_IOIO_PROT);
1103         set_intercept(svm, INTERCEPT_MSR_PROT);
1104         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1105         set_intercept(svm, INTERCEPT_SHUTDOWN);
1106         set_intercept(svm, INTERCEPT_VMRUN);
1107         set_intercept(svm, INTERCEPT_VMMCALL);
1108         set_intercept(svm, INTERCEPT_VMLOAD);
1109         set_intercept(svm, INTERCEPT_VMSAVE);
1110         set_intercept(svm, INTERCEPT_STGI);
1111         set_intercept(svm, INTERCEPT_CLGI);
1112         set_intercept(svm, INTERCEPT_SKINIT);
1113         set_intercept(svm, INTERCEPT_WBINVD);
1114         set_intercept(svm, INTERCEPT_MONITOR);
1115         set_intercept(svm, INTERCEPT_MWAIT);
1116         set_intercept(svm, INTERCEPT_XSETBV);
1117
1118         control->iopm_base_pa = iopm_base;
1119         control->msrpm_base_pa = __pa(svm->msrpm);
1120         control->int_ctl = V_INTR_MASKING_MASK;
1121
1122         init_seg(&save->es);
1123         init_seg(&save->ss);
1124         init_seg(&save->ds);
1125         init_seg(&save->fs);
1126         init_seg(&save->gs);
1127
1128         save->cs.selector = 0xf000;
1129         /* Executable/Readable Code Segment */
1130         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1131                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1132         save->cs.limit = 0xffff;
1133         /*
1134          * cs.base should really be 0xffff0000, but vmx can't handle that, so
1135          * be consistent with it.
1136          *
1137          * Replace when we have real mode working for vmx.
1138          */
1139         save->cs.base = 0xf0000;
1140
1141         save->gdtr.limit = 0xffff;
1142         save->idtr.limit = 0xffff;
1143
1144         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1145         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1146
1147         svm_set_efer(&svm->vcpu, 0);
1148         save->dr6 = 0xffff0ff0;
1149         kvm_set_rflags(&svm->vcpu, 2);
1150         save->rip = 0x0000fff0;
1151         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1152
1153         /*
1154          * This is the guest-visible cr0 value.
1155          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1156          */
1157         svm->vcpu.arch.cr0 = 0;
1158         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1159
1160         save->cr4 = X86_CR4_PAE;
1161         /* rdx = ?? */
1162
1163         if (npt_enabled) {
1164                 /* Setup VMCB for Nested Paging */
1165                 control->nested_ctl = 1;
1166                 clr_intercept(svm, INTERCEPT_INVLPG);
1167                 clr_exception_intercept(svm, PF_VECTOR);
1168                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1169                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1170                 save->g_pat = 0x0007040600070406ULL;
1171                 save->cr3 = 0;
1172                 save->cr4 = 0;
1173         }
1174         svm->asid_generation = 0;
1175
1176         svm->nested.vmcb = 0;
1177         svm->vcpu.arch.hflags = 0;
1178
1179         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1180                 control->pause_filter_count = 3000;
1181                 set_intercept(svm, INTERCEPT_PAUSE);
1182         }
1183
1184         mark_all_dirty(svm->vmcb);
1185
1186         enable_gif(svm);
1187 }
1188
1189 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
1190 {
1191         struct vcpu_svm *svm = to_svm(vcpu);
1192
1193         init_vmcb(svm);
1194
1195         if (!kvm_vcpu_is_bsp(vcpu)) {
1196                 kvm_rip_write(vcpu, 0);
1197                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
1198                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
1199         }
1200         vcpu->arch.regs_avail = ~0;
1201         vcpu->arch.regs_dirty = ~0;
1202
1203         return 0;
1204 }
1205
1206 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1207 {
1208         struct vcpu_svm *svm;
1209         struct page *page;
1210         struct page *msrpm_pages;
1211         struct page *hsave_page;
1212         struct page *nested_msrpm_pages;
1213         int err;
1214
1215         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1216         if (!svm) {
1217                 err = -ENOMEM;
1218                 goto out;
1219         }
1220
1221         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1222
1223         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1224         if (err)
1225                 goto free_svm;
1226
1227         err = -ENOMEM;
1228         page = alloc_page(GFP_KERNEL);
1229         if (!page)
1230                 goto uninit;
1231
1232         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1233         if (!msrpm_pages)
1234                 goto free_page1;
1235
1236         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1237         if (!nested_msrpm_pages)
1238                 goto free_page2;
1239
1240         hsave_page = alloc_page(GFP_KERNEL);
1241         if (!hsave_page)
1242                 goto free_page3;
1243
1244         svm->nested.hsave = page_address(hsave_page);
1245
1246         svm->msrpm = page_address(msrpm_pages);
1247         svm_vcpu_init_msrpm(svm->msrpm);
1248
1249         svm->nested.msrpm = page_address(nested_msrpm_pages);
1250         svm_vcpu_init_msrpm(svm->nested.msrpm);
1251
1252         svm->vmcb = page_address(page);
1253         clear_page(svm->vmcb);
1254         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1255         svm->asid_generation = 0;
1256         init_vmcb(svm);
1257         kvm_write_tsc(&svm->vcpu, 0);
1258
1259         err = fx_init(&svm->vcpu);
1260         if (err)
1261                 goto free_page4;
1262
1263         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1264         if (kvm_vcpu_is_bsp(&svm->vcpu))
1265                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1266
1267         svm_init_osvw(&svm->vcpu);
1268
1269         return &svm->vcpu;
1270
1271 free_page4:
1272         __free_page(hsave_page);
1273 free_page3:
1274         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1275 free_page2:
1276         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1277 free_page1:
1278         __free_page(page);
1279 uninit:
1280         kvm_vcpu_uninit(&svm->vcpu);
1281 free_svm:
1282         kmem_cache_free(kvm_vcpu_cache, svm);
1283 out:
1284         return ERR_PTR(err);
1285 }
1286
1287 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1288 {
1289         struct vcpu_svm *svm = to_svm(vcpu);
1290
1291         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1292         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1293         __free_page(virt_to_page(svm->nested.hsave));
1294         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1295         kvm_vcpu_uninit(vcpu);
1296         kmem_cache_free(kvm_vcpu_cache, svm);
1297 }
1298
1299 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1300 {
1301         struct vcpu_svm *svm = to_svm(vcpu);
1302         int i;
1303
1304         if (unlikely(cpu != vcpu->cpu)) {
1305                 svm->asid_generation = 0;
1306                 mark_all_dirty(svm->vmcb);
1307         }
1308
1309 #ifdef CONFIG_X86_64
1310         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1311 #endif
1312         savesegment(fs, svm->host.fs);
1313         savesegment(gs, svm->host.gs);
1314         svm->host.ldt = kvm_read_ldt();
1315
1316         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1317                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1318
1319         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1320             svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1321                 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1322                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1323         }
1324 }
1325
1326 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1327 {
1328         struct vcpu_svm *svm = to_svm(vcpu);
1329         int i;
1330
1331         ++vcpu->stat.host_state_reload;
1332         kvm_load_ldt(svm->host.ldt);
1333 #ifdef CONFIG_X86_64
1334         loadsegment(fs, svm->host.fs);
1335         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1336         load_gs_index(svm->host.gs);
1337 #else
1338 #ifdef CONFIG_X86_32_LAZY_GS
1339         loadsegment(gs, svm->host.gs);
1340 #endif
1341 #endif
1342         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1343                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1344 }
1345
1346 static void svm_update_cpl(struct kvm_vcpu *vcpu)
1347 {
1348         struct vcpu_svm *svm = to_svm(vcpu);
1349         int cpl;
1350
1351         if (!is_protmode(vcpu))
1352                 cpl = 0;
1353         else if (svm->vmcb->save.rflags & X86_EFLAGS_VM)
1354                 cpl = 3;
1355         else
1356                 cpl = svm->vmcb->save.cs.selector & 0x3;
1357
1358         svm->vmcb->save.cpl = cpl;
1359 }
1360
1361 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1362 {
1363         return to_svm(vcpu)->vmcb->save.rflags;
1364 }
1365
1366 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1367 {
1368         unsigned long old_rflags = to_svm(vcpu)->vmcb->save.rflags;
1369
1370         to_svm(vcpu)->vmcb->save.rflags = rflags;
1371         if ((old_rflags ^ rflags) & X86_EFLAGS_VM)
1372                 svm_update_cpl(vcpu);
1373 }
1374
1375 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1376 {
1377         switch (reg) {
1378         case VCPU_EXREG_PDPTR:
1379                 BUG_ON(!npt_enabled);
1380                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1381                 break;
1382         default:
1383                 BUG();
1384         }
1385 }
1386
1387 static void svm_set_vintr(struct vcpu_svm *svm)
1388 {
1389         set_intercept(svm, INTERCEPT_VINTR);
1390 }
1391
1392 static void svm_clear_vintr(struct vcpu_svm *svm)
1393 {
1394         clr_intercept(svm, INTERCEPT_VINTR);
1395 }
1396
1397 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1398 {
1399         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1400
1401         switch (seg) {
1402         case VCPU_SREG_CS: return &save->cs;
1403         case VCPU_SREG_DS: return &save->ds;
1404         case VCPU_SREG_ES: return &save->es;
1405         case VCPU_SREG_FS: return &save->fs;
1406         case VCPU_SREG_GS: return &save->gs;
1407         case VCPU_SREG_SS: return &save->ss;
1408         case VCPU_SREG_TR: return &save->tr;
1409         case VCPU_SREG_LDTR: return &save->ldtr;
1410         }
1411         BUG();
1412         return NULL;
1413 }
1414
1415 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1416 {
1417         struct vmcb_seg *s = svm_seg(vcpu, seg);
1418
1419         return s->base;
1420 }
1421
1422 static void svm_get_segment(struct kvm_vcpu *vcpu,
1423                             struct kvm_segment *var, int seg)
1424 {
1425         struct vmcb_seg *s = svm_seg(vcpu, seg);
1426
1427         var->base = s->base;
1428         var->limit = s->limit;
1429         var->selector = s->selector;
1430         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1431         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1432         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1433         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1434         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1435         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1436         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1437         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1438
1439         /*
1440          * AMD's VMCB does not have an explicit unusable field, so emulate it
1441          * for cross vendor migration purposes by "not present"
1442          */
1443         var->unusable = !var->present || (var->type == 0);
1444
1445         switch (seg) {
1446         case VCPU_SREG_CS:
1447                 /*
1448                  * SVM always stores 0 for the 'G' bit in the CS selector in
1449                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1450                  * Intel's VMENTRY has a check on the 'G' bit.
1451                  */
1452                 var->g = s->limit > 0xfffff;
1453                 break;
1454         case VCPU_SREG_TR:
1455                 /*
1456                  * Work around a bug where the busy flag in the tr selector
1457                  * isn't exposed
1458                  */
1459                 var->type |= 0x2;
1460                 break;
1461         case VCPU_SREG_DS:
1462         case VCPU_SREG_ES:
1463         case VCPU_SREG_FS:
1464         case VCPU_SREG_GS:
1465                 /*
1466                  * The accessed bit must always be set in the segment
1467                  * descriptor cache, although it can be cleared in the
1468                  * descriptor, the cached bit always remains at 1. Since
1469                  * Intel has a check on this, set it here to support
1470                  * cross-vendor migration.
1471                  */
1472                 if (!var->unusable)
1473                         var->type |= 0x1;
1474                 break;
1475         case VCPU_SREG_SS:
1476                 /*
1477                  * On AMD CPUs sometimes the DB bit in the segment
1478                  * descriptor is left as 1, although the whole segment has
1479                  * been made unusable. Clear it here to pass an Intel VMX
1480                  * entry check when cross vendor migrating.
1481                  */
1482                 if (var->unusable)
1483                         var->db = 0;
1484                 break;
1485         }
1486 }
1487
1488 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1489 {
1490         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1491
1492         return save->cpl;
1493 }
1494
1495 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1496 {
1497         struct vcpu_svm *svm = to_svm(vcpu);
1498
1499         dt->size = svm->vmcb->save.idtr.limit;
1500         dt->address = svm->vmcb->save.idtr.base;
1501 }
1502
1503 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1504 {
1505         struct vcpu_svm *svm = to_svm(vcpu);
1506
1507         svm->vmcb->save.idtr.limit = dt->size;
1508         svm->vmcb->save.idtr.base = dt->address ;
1509         mark_dirty(svm->vmcb, VMCB_DT);
1510 }
1511
1512 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1513 {
1514         struct vcpu_svm *svm = to_svm(vcpu);
1515
1516         dt->size = svm->vmcb->save.gdtr.limit;
1517         dt->address = svm->vmcb->save.gdtr.base;
1518 }
1519
1520 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1521 {
1522         struct vcpu_svm *svm = to_svm(vcpu);
1523
1524         svm->vmcb->save.gdtr.limit = dt->size;
1525         svm->vmcb->save.gdtr.base = dt->address ;
1526         mark_dirty(svm->vmcb, VMCB_DT);
1527 }
1528
1529 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1530 {
1531 }
1532
1533 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1534 {
1535 }
1536
1537 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1538 {
1539 }
1540
1541 static void update_cr0_intercept(struct vcpu_svm *svm)
1542 {
1543         ulong gcr0 = svm->vcpu.arch.cr0;
1544         u64 *hcr0 = &svm->vmcb->save.cr0;
1545
1546         if (!svm->vcpu.fpu_active)
1547                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1548         else
1549                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1550                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1551
1552         mark_dirty(svm->vmcb, VMCB_CR);
1553
1554         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1555                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1556                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1557         } else {
1558                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1559                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1560         }
1561 }
1562
1563 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1564 {
1565         struct vcpu_svm *svm = to_svm(vcpu);
1566
1567 #ifdef CONFIG_X86_64
1568         if (vcpu->arch.efer & EFER_LME) {
1569                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1570                         vcpu->arch.efer |= EFER_LMA;
1571                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1572                 }
1573
1574                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1575                         vcpu->arch.efer &= ~EFER_LMA;
1576                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1577                 }
1578         }
1579 #endif
1580         vcpu->arch.cr0 = cr0;
1581
1582         if (!npt_enabled)
1583                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1584
1585         if (!vcpu->fpu_active)
1586                 cr0 |= X86_CR0_TS;
1587         /*
1588          * re-enable caching here because the QEMU bios
1589          * does not do it - this results in some delay at
1590          * reboot
1591          */
1592         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1593         svm->vmcb->save.cr0 = cr0;
1594         mark_dirty(svm->vmcb, VMCB_CR);
1595         update_cr0_intercept(svm);
1596 }
1597
1598 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1599 {
1600         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1601         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1602
1603         if (cr4 & X86_CR4_VMXE)
1604                 return 1;
1605
1606         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1607                 svm_flush_tlb(vcpu);
1608
1609         vcpu->arch.cr4 = cr4;
1610         if (!npt_enabled)
1611                 cr4 |= X86_CR4_PAE;
1612         cr4 |= host_cr4_mce;
1613         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1614         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1615         return 0;
1616 }
1617
1618 static void svm_set_segment(struct kvm_vcpu *vcpu,
1619                             struct kvm_segment *var, int seg)
1620 {
1621         struct vcpu_svm *svm = to_svm(vcpu);
1622         struct vmcb_seg *s = svm_seg(vcpu, seg);
1623
1624         s->base = var->base;
1625         s->limit = var->limit;
1626         s->selector = var->selector;
1627         if (var->unusable)
1628                 s->attrib = 0;
1629         else {
1630                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1631                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1632                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1633                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1634                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1635                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1636                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1637                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1638         }
1639         if (seg == VCPU_SREG_CS)
1640                 svm_update_cpl(vcpu);
1641
1642         mark_dirty(svm->vmcb, VMCB_SEG);
1643 }
1644
1645 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1646 {
1647         struct vcpu_svm *svm = to_svm(vcpu);
1648
1649         clr_exception_intercept(svm, DB_VECTOR);
1650         clr_exception_intercept(svm, BP_VECTOR);
1651
1652         if (svm->nmi_singlestep)
1653                 set_exception_intercept(svm, DB_VECTOR);
1654
1655         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1656                 if (vcpu->guest_debug &
1657                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1658                         set_exception_intercept(svm, DB_VECTOR);
1659                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1660                         set_exception_intercept(svm, BP_VECTOR);
1661         } else
1662                 vcpu->guest_debug = 0;
1663 }
1664
1665 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1666 {
1667         if (sd->next_asid > sd->max_asid) {
1668                 ++sd->asid_generation;
1669                 sd->next_asid = 1;
1670                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1671         }
1672
1673         svm->asid_generation = sd->asid_generation;
1674         svm->vmcb->control.asid = sd->next_asid++;
1675
1676         mark_dirty(svm->vmcb, VMCB_ASID);
1677 }
1678
1679 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1680 {
1681         struct vcpu_svm *svm = to_svm(vcpu);
1682
1683         svm->vmcb->save.dr7 = value;
1684         mark_dirty(svm->vmcb, VMCB_DR);
1685 }
1686
1687 static int pf_interception(struct vcpu_svm *svm)
1688 {
1689         u64 fault_address = svm->vmcb->control.exit_info_2;
1690         u32 error_code;
1691         int r = 1;
1692
1693         switch (svm->apf_reason) {
1694         default:
1695                 error_code = svm->vmcb->control.exit_info_1;
1696
1697                 trace_kvm_page_fault(fault_address, error_code);
1698                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1699                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1700                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1701                         svm->vmcb->control.insn_bytes,
1702                         svm->vmcb->control.insn_len);
1703                 break;
1704         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1705                 svm->apf_reason = 0;
1706                 local_irq_disable();
1707                 kvm_async_pf_task_wait(fault_address);
1708                 local_irq_enable();
1709                 break;
1710         case KVM_PV_REASON_PAGE_READY:
1711                 svm->apf_reason = 0;
1712                 local_irq_disable();
1713                 kvm_async_pf_task_wake(fault_address);
1714                 local_irq_enable();
1715                 break;
1716         }
1717         return r;
1718 }
1719
1720 static int db_interception(struct vcpu_svm *svm)
1721 {
1722         struct kvm_run *kvm_run = svm->vcpu.run;
1723
1724         if (!(svm->vcpu.guest_debug &
1725               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1726                 !svm->nmi_singlestep) {
1727                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1728                 return 1;
1729         }
1730
1731         if (svm->nmi_singlestep) {
1732                 svm->nmi_singlestep = false;
1733                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1734                         svm->vmcb->save.rflags &=
1735                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1736                 update_db_bp_intercept(&svm->vcpu);
1737         }
1738
1739         if (svm->vcpu.guest_debug &
1740             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1741                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1742                 kvm_run->debug.arch.pc =
1743                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1744                 kvm_run->debug.arch.exception = DB_VECTOR;
1745                 return 0;
1746         }
1747
1748         return 1;
1749 }
1750
1751 static int bp_interception(struct vcpu_svm *svm)
1752 {
1753         struct kvm_run *kvm_run = svm->vcpu.run;
1754
1755         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1756         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1757         kvm_run->debug.arch.exception = BP_VECTOR;
1758         return 0;
1759 }
1760
1761 static int ud_interception(struct vcpu_svm *svm)
1762 {
1763         int er;
1764
1765         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1766         if (er != EMULATE_DONE)
1767                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1768         return 1;
1769 }
1770
1771 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1772 {
1773         struct vcpu_svm *svm = to_svm(vcpu);
1774
1775         clr_exception_intercept(svm, NM_VECTOR);
1776
1777         svm->vcpu.fpu_active = 1;
1778         update_cr0_intercept(svm);
1779 }
1780
1781 static int nm_interception(struct vcpu_svm *svm)
1782 {
1783         svm_fpu_activate(&svm->vcpu);
1784         return 1;
1785 }
1786
1787 static bool is_erratum_383(void)
1788 {
1789         int err, i;
1790         u64 value;
1791
1792         if (!erratum_383_found)
1793                 return false;
1794
1795         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1796         if (err)
1797                 return false;
1798
1799         /* Bit 62 may or may not be set for this mce */
1800         value &= ~(1ULL << 62);
1801
1802         if (value != 0xb600000000010015ULL)
1803                 return false;
1804
1805         /* Clear MCi_STATUS registers */
1806         for (i = 0; i < 6; ++i)
1807                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1808
1809         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1810         if (!err) {
1811                 u32 low, high;
1812
1813                 value &= ~(1ULL << 2);
1814                 low    = lower_32_bits(value);
1815                 high   = upper_32_bits(value);
1816
1817                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1818         }
1819
1820         /* Flush tlb to evict multi-match entries */
1821         __flush_tlb_all();
1822
1823         return true;
1824 }
1825
1826 static void svm_handle_mce(struct vcpu_svm *svm)
1827 {
1828         if (is_erratum_383()) {
1829                 /*
1830                  * Erratum 383 triggered. Guest state is corrupt so kill the
1831                  * guest.
1832                  */
1833                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1834
1835                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1836
1837                 return;
1838         }
1839
1840         /*
1841          * On an #MC intercept the MCE handler is not called automatically in
1842          * the host. So do it by hand here.
1843          */
1844         asm volatile (
1845                 "int $0x12\n");
1846         /* not sure if we ever come back to this point */
1847
1848         return;
1849 }
1850
1851 static int mc_interception(struct vcpu_svm *svm)
1852 {
1853         return 1;
1854 }
1855
1856 static int shutdown_interception(struct vcpu_svm *svm)
1857 {
1858         struct kvm_run *kvm_run = svm->vcpu.run;
1859
1860         /*
1861          * VMCB is undefined after a SHUTDOWN intercept
1862          * so reinitialize it.
1863          */
1864         clear_page(svm->vmcb);
1865         init_vmcb(svm);
1866
1867         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1868         return 0;
1869 }
1870
1871 static int io_interception(struct vcpu_svm *svm)
1872 {
1873         struct kvm_vcpu *vcpu = &svm->vcpu;
1874         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1875         int size, in, string;
1876         unsigned port;
1877
1878         ++svm->vcpu.stat.io_exits;
1879         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1880         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1881         if (string || in)
1882                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1883
1884         port = io_info >> 16;
1885         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1886         svm->next_rip = svm->vmcb->control.exit_info_2;
1887         skip_emulated_instruction(&svm->vcpu);
1888
1889         return kvm_fast_pio_out(vcpu, size, port);
1890 }
1891
1892 static int nmi_interception(struct vcpu_svm *svm)
1893 {
1894         return 1;
1895 }
1896
1897 static int intr_interception(struct vcpu_svm *svm)
1898 {
1899         ++svm->vcpu.stat.irq_exits;
1900         return 1;
1901 }
1902
1903 static int nop_on_interception(struct vcpu_svm *svm)
1904 {
1905         return 1;
1906 }
1907
1908 static int halt_interception(struct vcpu_svm *svm)
1909 {
1910         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1911         skip_emulated_instruction(&svm->vcpu);
1912         return kvm_emulate_halt(&svm->vcpu);
1913 }
1914
1915 static int vmmcall_interception(struct vcpu_svm *svm)
1916 {
1917         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1918         skip_emulated_instruction(&svm->vcpu);
1919         kvm_emulate_hypercall(&svm->vcpu);
1920         return 1;
1921 }
1922
1923 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1924 {
1925         struct vcpu_svm *svm = to_svm(vcpu);
1926
1927         return svm->nested.nested_cr3;
1928 }
1929
1930 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1931 {
1932         struct vcpu_svm *svm = to_svm(vcpu);
1933         u64 cr3 = svm->nested.nested_cr3;
1934         u64 pdpte;
1935         int ret;
1936
1937         ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1938                                   offset_in_page(cr3) + index * 8, 8);
1939         if (ret)
1940                 return 0;
1941         return pdpte;
1942 }
1943
1944 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1945                                    unsigned long root)
1946 {
1947         struct vcpu_svm *svm = to_svm(vcpu);
1948
1949         svm->vmcb->control.nested_cr3 = root;
1950         mark_dirty(svm->vmcb, VMCB_NPT);
1951         svm_flush_tlb(vcpu);
1952 }
1953
1954 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1955                                        struct x86_exception *fault)
1956 {
1957         struct vcpu_svm *svm = to_svm(vcpu);
1958
1959         svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1960         svm->vmcb->control.exit_code_hi = 0;
1961         svm->vmcb->control.exit_info_1 = fault->error_code;
1962         svm->vmcb->control.exit_info_2 = fault->address;
1963
1964         nested_svm_vmexit(svm);
1965 }
1966
1967 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1968 {
1969         int r;
1970
1971         r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1972
1973         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1974         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1975         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
1976         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1977         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1978         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1979
1980         return r;
1981 }
1982
1983 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1984 {
1985         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1986 }
1987
1988 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1989 {
1990         if (!(svm->vcpu.arch.efer & EFER_SVME)
1991             || !is_paging(&svm->vcpu)) {
1992                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1993                 return 1;
1994         }
1995
1996         if (svm->vmcb->save.cpl) {
1997                 kvm_inject_gp(&svm->vcpu, 0);
1998                 return 1;
1999         }
2000
2001        return 0;
2002 }
2003
2004 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2005                                       bool has_error_code, u32 error_code)
2006 {
2007         int vmexit;
2008
2009         if (!is_guest_mode(&svm->vcpu))
2010                 return 0;
2011
2012         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2013         svm->vmcb->control.exit_code_hi = 0;
2014         svm->vmcb->control.exit_info_1 = error_code;
2015         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2016
2017         vmexit = nested_svm_intercept(svm);
2018         if (vmexit == NESTED_EXIT_DONE)
2019                 svm->nested.exit_required = true;
2020
2021         return vmexit;
2022 }
2023
2024 /* This function returns true if it is save to enable the irq window */
2025 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2026 {
2027         if (!is_guest_mode(&svm->vcpu))
2028                 return true;
2029
2030         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2031                 return true;
2032
2033         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2034                 return false;
2035
2036         /*
2037          * if vmexit was already requested (by intercepted exception
2038          * for instance) do not overwrite it with "external interrupt"
2039          * vmexit.
2040          */
2041         if (svm->nested.exit_required)
2042                 return false;
2043
2044         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2045         svm->vmcb->control.exit_info_1 = 0;
2046         svm->vmcb->control.exit_info_2 = 0;
2047
2048         if (svm->nested.intercept & 1ULL) {
2049                 /*
2050                  * The #vmexit can't be emulated here directly because this
2051                  * code path runs with irqs and preemption disabled. A
2052                  * #vmexit emulation might sleep. Only signal request for
2053                  * the #vmexit here.
2054                  */
2055                 svm->nested.exit_required = true;
2056                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2057                 return false;
2058         }
2059
2060         return true;
2061 }
2062
2063 /* This function returns true if it is save to enable the nmi window */
2064 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2065 {
2066         if (!is_guest_mode(&svm->vcpu))
2067                 return true;
2068
2069         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2070                 return true;
2071
2072         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2073         svm->nested.exit_required = true;
2074
2075         return false;
2076 }
2077
2078 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2079 {
2080         struct page *page;
2081
2082         might_sleep();
2083
2084         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2085         if (is_error_page(page))
2086                 goto error;
2087
2088         *_page = page;
2089
2090         return kmap(page);
2091
2092 error:
2093         kvm_inject_gp(&svm->vcpu, 0);
2094
2095         return NULL;
2096 }
2097
2098 static void nested_svm_unmap(struct page *page)
2099 {
2100         kunmap(page);
2101         kvm_release_page_dirty(page);
2102 }
2103
2104 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2105 {
2106         unsigned port;
2107         u8 val, bit;
2108         u64 gpa;
2109
2110         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2111                 return NESTED_EXIT_HOST;
2112
2113         port = svm->vmcb->control.exit_info_1 >> 16;
2114         gpa  = svm->nested.vmcb_iopm + (port / 8);
2115         bit  = port % 8;
2116         val  = 0;
2117
2118         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2119                 val &= (1 << bit);
2120
2121         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2122 }
2123
2124 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2125 {
2126         u32 offset, msr, value;
2127         int write, mask;
2128
2129         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2130                 return NESTED_EXIT_HOST;
2131
2132         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2133         offset = svm_msrpm_offset(msr);
2134         write  = svm->vmcb->control.exit_info_1 & 1;
2135         mask   = 1 << ((2 * (msr & 0xf)) + write);
2136
2137         if (offset == MSR_INVALID)
2138                 return NESTED_EXIT_DONE;
2139
2140         /* Offset is in 32 bit units but need in 8 bit units */
2141         offset *= 4;
2142
2143         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2144                 return NESTED_EXIT_DONE;
2145
2146         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2147 }
2148
2149 static int nested_svm_exit_special(struct vcpu_svm *svm)
2150 {
2151         u32 exit_code = svm->vmcb->control.exit_code;
2152
2153         switch (exit_code) {
2154         case SVM_EXIT_INTR:
2155         case SVM_EXIT_NMI:
2156         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2157                 return NESTED_EXIT_HOST;
2158         case SVM_EXIT_NPF:
2159                 /* For now we are always handling NPFs when using them */
2160                 if (npt_enabled)
2161                         return NESTED_EXIT_HOST;
2162                 break;
2163         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2164                 /* When we're shadowing, trap PFs, but not async PF */
2165                 if (!npt_enabled && svm->apf_reason == 0)
2166                         return NESTED_EXIT_HOST;
2167                 break;
2168         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2169                 nm_interception(svm);
2170                 break;
2171         default:
2172                 break;
2173         }
2174
2175         return NESTED_EXIT_CONTINUE;
2176 }
2177
2178 /*
2179  * If this function returns true, this #vmexit was already handled
2180  */
2181 static int nested_svm_intercept(struct vcpu_svm *svm)
2182 {
2183         u32 exit_code = svm->vmcb->control.exit_code;
2184         int vmexit = NESTED_EXIT_HOST;
2185
2186         switch (exit_code) {
2187         case SVM_EXIT_MSR:
2188                 vmexit = nested_svm_exit_handled_msr(svm);
2189                 break;
2190         case SVM_EXIT_IOIO:
2191                 vmexit = nested_svm_intercept_ioio(svm);
2192                 break;
2193         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2194                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2195                 if (svm->nested.intercept_cr & bit)
2196                         vmexit = NESTED_EXIT_DONE;
2197                 break;
2198         }
2199         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2200                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2201                 if (svm->nested.intercept_dr & bit)
2202                         vmexit = NESTED_EXIT_DONE;
2203                 break;
2204         }
2205         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2206                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2207                 if (svm->nested.intercept_exceptions & excp_bits)
2208                         vmexit = NESTED_EXIT_DONE;
2209                 /* async page fault always cause vmexit */
2210                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2211                          svm->apf_reason != 0)
2212                         vmexit = NESTED_EXIT_DONE;
2213                 break;
2214         }
2215         case SVM_EXIT_ERR: {
2216                 vmexit = NESTED_EXIT_DONE;
2217                 break;
2218         }
2219         default: {
2220                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2221                 if (svm->nested.intercept & exit_bits)
2222                         vmexit = NESTED_EXIT_DONE;
2223         }
2224         }
2225
2226         return vmexit;
2227 }
2228
2229 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2230 {
2231         int vmexit;
2232
2233         vmexit = nested_svm_intercept(svm);
2234
2235         if (vmexit == NESTED_EXIT_DONE)
2236                 nested_svm_vmexit(svm);
2237
2238         return vmexit;
2239 }
2240
2241 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2242 {
2243         struct vmcb_control_area *dst  = &dst_vmcb->control;
2244         struct vmcb_control_area *from = &from_vmcb->control;
2245
2246         dst->intercept_cr         = from->intercept_cr;
2247         dst->intercept_dr         = from->intercept_dr;
2248         dst->intercept_exceptions = from->intercept_exceptions;
2249         dst->intercept            = from->intercept;
2250         dst->iopm_base_pa         = from->iopm_base_pa;
2251         dst->msrpm_base_pa        = from->msrpm_base_pa;
2252         dst->tsc_offset           = from->tsc_offset;
2253         dst->asid                 = from->asid;
2254         dst->tlb_ctl              = from->tlb_ctl;
2255         dst->int_ctl              = from->int_ctl;
2256         dst->int_vector           = from->int_vector;
2257         dst->int_state            = from->int_state;
2258         dst->exit_code            = from->exit_code;
2259         dst->exit_code_hi         = from->exit_code_hi;
2260         dst->exit_info_1          = from->exit_info_1;
2261         dst->exit_info_2          = from->exit_info_2;
2262         dst->exit_int_info        = from->exit_int_info;
2263         dst->exit_int_info_err    = from->exit_int_info_err;
2264         dst->nested_ctl           = from->nested_ctl;
2265         dst->event_inj            = from->event_inj;
2266         dst->event_inj_err        = from->event_inj_err;
2267         dst->nested_cr3           = from->nested_cr3;
2268         dst->lbr_ctl              = from->lbr_ctl;
2269 }
2270
2271 static int nested_svm_vmexit(struct vcpu_svm *svm)
2272 {
2273         struct vmcb *nested_vmcb;
2274         struct vmcb *hsave = svm->nested.hsave;
2275         struct vmcb *vmcb = svm->vmcb;
2276         struct page *page;
2277
2278         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2279                                        vmcb->control.exit_info_1,
2280                                        vmcb->control.exit_info_2,
2281                                        vmcb->control.exit_int_info,
2282                                        vmcb->control.exit_int_info_err,
2283                                        KVM_ISA_SVM);
2284
2285         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2286         if (!nested_vmcb)
2287                 return 1;
2288
2289         /* Exit Guest-Mode */
2290         leave_guest_mode(&svm->vcpu);
2291         svm->nested.vmcb = 0;
2292
2293         /* Give the current vmcb to the guest */
2294         disable_gif(svm);
2295
2296         nested_vmcb->save.es     = vmcb->save.es;
2297         nested_vmcb->save.cs     = vmcb->save.cs;
2298         nested_vmcb->save.ss     = vmcb->save.ss;
2299         nested_vmcb->save.ds     = vmcb->save.ds;
2300         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2301         nested_vmcb->save.idtr   = vmcb->save.idtr;
2302         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2303         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2304         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2305         nested_vmcb->save.cr2    = vmcb->save.cr2;
2306         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2307         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2308         nested_vmcb->save.rip    = vmcb->save.rip;
2309         nested_vmcb->save.rsp    = vmcb->save.rsp;
2310         nested_vmcb->save.rax    = vmcb->save.rax;
2311         nested_vmcb->save.dr7    = vmcb->save.dr7;
2312         nested_vmcb->save.dr6    = vmcb->save.dr6;
2313         nested_vmcb->save.cpl    = vmcb->save.cpl;
2314
2315         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2316         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2317         nested_vmcb->control.int_state         = vmcb->control.int_state;
2318         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2319         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2320         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2321         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2322         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2323         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2324         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2325
2326         /*
2327          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2328          * to make sure that we do not lose injected events. So check event_inj
2329          * here and copy it to exit_int_info if it is valid.
2330          * Exit_int_info and event_inj can't be both valid because the case
2331          * below only happens on a VMRUN instruction intercept which has
2332          * no valid exit_int_info set.
2333          */
2334         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2335                 struct vmcb_control_area *nc = &nested_vmcb->control;
2336
2337                 nc->exit_int_info     = vmcb->control.event_inj;
2338                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2339         }
2340
2341         nested_vmcb->control.tlb_ctl           = 0;
2342         nested_vmcb->control.event_inj         = 0;
2343         nested_vmcb->control.event_inj_err     = 0;
2344
2345         /* We always set V_INTR_MASKING and remember the old value in hflags */
2346         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2347                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2348
2349         /* Restore the original control entries */
2350         copy_vmcb_control_area(vmcb, hsave);
2351
2352         kvm_clear_exception_queue(&svm->vcpu);
2353         kvm_clear_interrupt_queue(&svm->vcpu);
2354
2355         svm->nested.nested_cr3 = 0;
2356
2357         /* Restore selected save entries */
2358         svm->vmcb->save.es = hsave->save.es;
2359         svm->vmcb->save.cs = hsave->save.cs;
2360         svm->vmcb->save.ss = hsave->save.ss;
2361         svm->vmcb->save.ds = hsave->save.ds;
2362         svm->vmcb->save.gdtr = hsave->save.gdtr;
2363         svm->vmcb->save.idtr = hsave->save.idtr;
2364         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2365         svm_set_efer(&svm->vcpu, hsave->save.efer);
2366         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2367         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2368         if (npt_enabled) {
2369                 svm->vmcb->save.cr3 = hsave->save.cr3;
2370                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2371         } else {
2372                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2373         }
2374         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2375         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2376         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2377         svm->vmcb->save.dr7 = 0;
2378         svm->vmcb->save.cpl = 0;
2379         svm->vmcb->control.exit_int_info = 0;
2380
2381         mark_all_dirty(svm->vmcb);
2382
2383         nested_svm_unmap(page);
2384
2385         nested_svm_uninit_mmu_context(&svm->vcpu);
2386         kvm_mmu_reset_context(&svm->vcpu);
2387         kvm_mmu_load(&svm->vcpu);
2388
2389         return 0;
2390 }
2391
2392 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2393 {
2394         /*
2395          * This function merges the msr permission bitmaps of kvm and the
2396          * nested vmcb. It is optimized in that it only merges the parts where
2397          * the kvm msr permission bitmap may contain zero bits
2398          */
2399         int i;
2400
2401         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2402                 return true;
2403
2404         for (i = 0; i < MSRPM_OFFSETS; i++) {
2405                 u32 value, p;
2406                 u64 offset;
2407
2408                 if (msrpm_offsets[i] == 0xffffffff)
2409                         break;
2410
2411                 p      = msrpm_offsets[i];
2412                 offset = svm->nested.vmcb_msrpm + (p * 4);
2413
2414                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2415                         return false;
2416
2417                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2418         }
2419
2420         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2421
2422         return true;
2423 }
2424
2425 static bool nested_vmcb_checks(struct vmcb *vmcb)
2426 {
2427         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2428                 return false;
2429
2430         if (vmcb->control.asid == 0)
2431                 return false;
2432
2433         if (vmcb->control.nested_ctl && !npt_enabled)
2434                 return false;
2435
2436         return true;
2437 }
2438
2439 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2440 {
2441         struct vmcb *nested_vmcb;
2442         struct vmcb *hsave = svm->nested.hsave;
2443         struct vmcb *vmcb = svm->vmcb;
2444         struct page *page;
2445         u64 vmcb_gpa;
2446
2447         vmcb_gpa = svm->vmcb->save.rax;
2448
2449         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2450         if (!nested_vmcb)
2451                 return false;
2452
2453         if (!nested_vmcb_checks(nested_vmcb)) {
2454                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2455                 nested_vmcb->control.exit_code_hi = 0;
2456                 nested_vmcb->control.exit_info_1  = 0;
2457                 nested_vmcb->control.exit_info_2  = 0;
2458
2459                 nested_svm_unmap(page);
2460
2461                 return false;
2462         }
2463
2464         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2465                                nested_vmcb->save.rip,
2466                                nested_vmcb->control.int_ctl,
2467                                nested_vmcb->control.event_inj,
2468                                nested_vmcb->control.nested_ctl);
2469
2470         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2471                                     nested_vmcb->control.intercept_cr >> 16,
2472                                     nested_vmcb->control.intercept_exceptions,
2473                                     nested_vmcb->control.intercept);
2474
2475         /* Clear internal status */
2476         kvm_clear_exception_queue(&svm->vcpu);
2477         kvm_clear_interrupt_queue(&svm->vcpu);
2478
2479         /*
2480          * Save the old vmcb, so we don't need to pick what we save, but can
2481          * restore everything when a VMEXIT occurs
2482          */
2483         hsave->save.es     = vmcb->save.es;
2484         hsave->save.cs     = vmcb->save.cs;
2485         hsave->save.ss     = vmcb->save.ss;
2486         hsave->save.ds     = vmcb->save.ds;
2487         hsave->save.gdtr   = vmcb->save.gdtr;
2488         hsave->save.idtr   = vmcb->save.idtr;
2489         hsave->save.efer   = svm->vcpu.arch.efer;
2490         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2491         hsave->save.cr4    = svm->vcpu.arch.cr4;
2492         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2493         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2494         hsave->save.rsp    = vmcb->save.rsp;
2495         hsave->save.rax    = vmcb->save.rax;
2496         if (npt_enabled)
2497                 hsave->save.cr3    = vmcb->save.cr3;
2498         else
2499                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2500
2501         copy_vmcb_control_area(hsave, vmcb);
2502
2503         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2504                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2505         else
2506                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2507
2508         if (nested_vmcb->control.nested_ctl) {
2509                 kvm_mmu_unload(&svm->vcpu);
2510                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2511                 nested_svm_init_mmu_context(&svm->vcpu);
2512         }
2513
2514         /* Load the nested guest state */
2515         svm->vmcb->save.es = nested_vmcb->save.es;
2516         svm->vmcb->save.cs = nested_vmcb->save.cs;
2517         svm->vmcb->save.ss = nested_vmcb->save.ss;
2518         svm->vmcb->save.ds = nested_vmcb->save.ds;
2519         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2520         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2521         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2522         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2523         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2524         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2525         if (npt_enabled) {
2526                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2527                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2528         } else
2529                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2530
2531         /* Guest paging mode is active - reset mmu */
2532         kvm_mmu_reset_context(&svm->vcpu);
2533
2534         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2535         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2536         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2537         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2538
2539         /* In case we don't even reach vcpu_run, the fields are not updated */
2540         svm->vmcb->save.rax = nested_vmcb->save.rax;
2541         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2542         svm->vmcb->save.rip = nested_vmcb->save.rip;
2543         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2544         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2545         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2546
2547         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2548         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2549
2550         /* cache intercepts */
2551         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2552         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2553         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2554         svm->nested.intercept            = nested_vmcb->control.intercept;
2555
2556         svm_flush_tlb(&svm->vcpu);
2557         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2558         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2559                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2560         else
2561                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2562
2563         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2564                 /* We only want the cr8 intercept bits of the guest */
2565                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2566                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2567         }
2568
2569         /* We don't want to see VMMCALLs from a nested guest */
2570         clr_intercept(svm, INTERCEPT_VMMCALL);
2571
2572         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2573         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2574         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2575         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2576         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2577         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2578
2579         nested_svm_unmap(page);
2580
2581         /* Enter Guest-Mode */
2582         enter_guest_mode(&svm->vcpu);
2583
2584         /*
2585          * Merge guest and host intercepts - must be called  with vcpu in
2586          * guest-mode to take affect here
2587          */
2588         recalc_intercepts(svm);
2589
2590         svm->nested.vmcb = vmcb_gpa;
2591
2592         enable_gif(svm);
2593
2594         mark_all_dirty(svm->vmcb);
2595
2596         return true;
2597 }
2598
2599 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2600 {
2601         to_vmcb->save.fs = from_vmcb->save.fs;
2602         to_vmcb->save.gs = from_vmcb->save.gs;
2603         to_vmcb->save.tr = from_vmcb->save.tr;
2604         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2605         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2606         to_vmcb->save.star = from_vmcb->save.star;
2607         to_vmcb->save.lstar = from_vmcb->save.lstar;
2608         to_vmcb->save.cstar = from_vmcb->save.cstar;
2609         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2610         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2611         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2612         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2613 }
2614
2615 static int vmload_interception(struct vcpu_svm *svm)
2616 {
2617         struct vmcb *nested_vmcb;
2618         struct page *page;
2619
2620         if (nested_svm_check_permissions(svm))
2621                 return 1;
2622
2623         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2624         if (!nested_vmcb)
2625                 return 1;
2626
2627         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2628         skip_emulated_instruction(&svm->vcpu);
2629
2630         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2631         nested_svm_unmap(page);
2632
2633         return 1;
2634 }
2635
2636 static int vmsave_interception(struct vcpu_svm *svm)
2637 {
2638         struct vmcb *nested_vmcb;
2639         struct page *page;
2640
2641         if (nested_svm_check_permissions(svm))
2642                 return 1;
2643
2644         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2645         if (!nested_vmcb)
2646                 return 1;
2647
2648         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2649         skip_emulated_instruction(&svm->vcpu);
2650
2651         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2652         nested_svm_unmap(page);
2653
2654         return 1;
2655 }
2656
2657 static int vmrun_interception(struct vcpu_svm *svm)
2658 {
2659         if (nested_svm_check_permissions(svm))
2660                 return 1;
2661
2662         /* Save rip after vmrun instruction */
2663         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2664
2665         if (!nested_svm_vmrun(svm))
2666                 return 1;
2667
2668         if (!nested_svm_vmrun_msrpm(svm))
2669                 goto failed;
2670
2671         return 1;
2672
2673 failed:
2674
2675         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2676         svm->vmcb->control.exit_code_hi = 0;
2677         svm->vmcb->control.exit_info_1  = 0;
2678         svm->vmcb->control.exit_info_2  = 0;
2679
2680         nested_svm_vmexit(svm);
2681
2682         return 1;
2683 }
2684
2685 static int stgi_interception(struct vcpu_svm *svm)
2686 {
2687         if (nested_svm_check_permissions(svm))
2688                 return 1;
2689
2690         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2691         skip_emulated_instruction(&svm->vcpu);
2692         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2693
2694         enable_gif(svm);
2695
2696         return 1;
2697 }
2698
2699 static int clgi_interception(struct vcpu_svm *svm)
2700 {
2701         if (nested_svm_check_permissions(svm))
2702                 return 1;
2703
2704         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2705         skip_emulated_instruction(&svm->vcpu);
2706
2707         disable_gif(svm);
2708
2709         /* After a CLGI no interrupts should come */
2710         svm_clear_vintr(svm);
2711         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2712
2713         mark_dirty(svm->vmcb, VMCB_INTR);
2714
2715         return 1;
2716 }
2717
2718 static int invlpga_interception(struct vcpu_svm *svm)
2719 {
2720         struct kvm_vcpu *vcpu = &svm->vcpu;
2721
2722         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2723                           vcpu->arch.regs[VCPU_REGS_RAX]);
2724
2725         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2726         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2727
2728         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2729         skip_emulated_instruction(&svm->vcpu);
2730         return 1;
2731 }
2732
2733 static int skinit_interception(struct vcpu_svm *svm)
2734 {
2735         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2736
2737         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2738         return 1;
2739 }
2740
2741 static int xsetbv_interception(struct vcpu_svm *svm)
2742 {
2743         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2744         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2745
2746         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2747                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2748                 skip_emulated_instruction(&svm->vcpu);
2749         }
2750
2751         return 1;
2752 }
2753
2754 static int invalid_op_interception(struct vcpu_svm *svm)
2755 {
2756         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2757         return 1;
2758 }
2759
2760 static int task_switch_interception(struct vcpu_svm *svm)
2761 {
2762         u16 tss_selector;
2763         int reason;
2764         int int_type = svm->vmcb->control.exit_int_info &
2765                 SVM_EXITINTINFO_TYPE_MASK;
2766         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2767         uint32_t type =
2768                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2769         uint32_t idt_v =
2770                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2771         bool has_error_code = false;
2772         u32 error_code = 0;
2773
2774         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2775
2776         if (svm->vmcb->control.exit_info_2 &
2777             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2778                 reason = TASK_SWITCH_IRET;
2779         else if (svm->vmcb->control.exit_info_2 &
2780                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2781                 reason = TASK_SWITCH_JMP;
2782         else if (idt_v)
2783                 reason = TASK_SWITCH_GATE;
2784         else
2785                 reason = TASK_SWITCH_CALL;
2786
2787         if (reason == TASK_SWITCH_GATE) {
2788                 switch (type) {
2789                 case SVM_EXITINTINFO_TYPE_NMI:
2790                         svm->vcpu.arch.nmi_injected = false;
2791                         break;
2792                 case SVM_EXITINTINFO_TYPE_EXEPT:
2793                         if (svm->vmcb->control.exit_info_2 &
2794                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2795                                 has_error_code = true;
2796                                 error_code =
2797                                         (u32)svm->vmcb->control.exit_info_2;
2798                         }
2799                         kvm_clear_exception_queue(&svm->vcpu);
2800                         break;
2801                 case SVM_EXITINTINFO_TYPE_INTR:
2802                         kvm_clear_interrupt_queue(&svm->vcpu);
2803                         break;
2804                 default:
2805                         break;
2806                 }
2807         }
2808
2809         if (reason != TASK_SWITCH_GATE ||
2810             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2811             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2812              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2813                 skip_emulated_instruction(&svm->vcpu);
2814
2815         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2816                 int_vec = -1;
2817
2818         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2819                                 has_error_code, error_code) == EMULATE_FAIL) {
2820                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2821                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2822                 svm->vcpu.run->internal.ndata = 0;
2823                 return 0;
2824         }
2825         return 1;
2826 }
2827
2828 static int cpuid_interception(struct vcpu_svm *svm)
2829 {
2830         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2831         kvm_emulate_cpuid(&svm->vcpu);
2832         return 1;
2833 }
2834
2835 static int iret_interception(struct vcpu_svm *svm)
2836 {
2837         ++svm->vcpu.stat.nmi_window_exits;
2838         clr_intercept(svm, INTERCEPT_IRET);
2839         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2840         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2841         return 1;
2842 }
2843
2844 static int invlpg_interception(struct vcpu_svm *svm)
2845 {
2846         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2847                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2848
2849         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2850         skip_emulated_instruction(&svm->vcpu);
2851         return 1;
2852 }
2853
2854 static int emulate_on_interception(struct vcpu_svm *svm)
2855 {
2856         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2857 }
2858
2859 static int rdpmc_interception(struct vcpu_svm *svm)
2860 {
2861         int err;
2862
2863         if (!static_cpu_has(X86_FEATURE_NRIPS))
2864                 return emulate_on_interception(svm);
2865
2866         err = kvm_rdpmc(&svm->vcpu);
2867         kvm_complete_insn_gp(&svm->vcpu, err);
2868
2869         return 1;
2870 }
2871
2872 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2873 {
2874         unsigned long cr0 = svm->vcpu.arch.cr0;
2875         bool ret = false;
2876         u64 intercept;
2877
2878         intercept = svm->nested.intercept;
2879
2880         if (!is_guest_mode(&svm->vcpu) ||
2881             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2882                 return false;
2883
2884         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2885         val &= ~SVM_CR0_SELECTIVE_MASK;
2886
2887         if (cr0 ^ val) {
2888                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2889                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2890         }
2891
2892         return ret;
2893 }
2894
2895 #define CR_VALID (1ULL << 63)
2896
2897 static int cr_interception(struct vcpu_svm *svm)
2898 {
2899         int reg, cr;
2900         unsigned long val;
2901         int err;
2902
2903         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2904                 return emulate_on_interception(svm);
2905
2906         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2907                 return emulate_on_interception(svm);
2908
2909         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2910         cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2911
2912         err = 0;
2913         if (cr >= 16) { /* mov to cr */
2914                 cr -= 16;
2915                 val = kvm_register_read(&svm->vcpu, reg);
2916                 switch (cr) {
2917                 case 0:
2918                         if (!check_selective_cr0_intercepted(svm, val))
2919                                 err = kvm_set_cr0(&svm->vcpu, val);
2920                         else
2921                                 return 1;
2922
2923                         break;
2924                 case 3:
2925                         err = kvm_set_cr3(&svm->vcpu, val);
2926                         break;
2927                 case 4:
2928                         err = kvm_set_cr4(&svm->vcpu, val);
2929                         break;
2930                 case 8:
2931                         err = kvm_set_cr8(&svm->vcpu, val);
2932                         break;
2933                 default:
2934                         WARN(1, "unhandled write to CR%d", cr);
2935                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2936                         return 1;
2937                 }
2938         } else { /* mov from cr */
2939                 switch (cr) {
2940                 case 0:
2941                         val = kvm_read_cr0(&svm->vcpu);
2942                         break;
2943                 case 2:
2944                         val = svm->vcpu.arch.cr2;
2945                         break;
2946                 case 3:
2947                         val = kvm_read_cr3(&svm->vcpu);
2948                         break;
2949                 case 4:
2950                         val = kvm_read_cr4(&svm->vcpu);
2951                         break;
2952                 case 8:
2953                         val = kvm_get_cr8(&svm->vcpu);
2954                         break;
2955                 default:
2956                         WARN(1, "unhandled read from CR%d", cr);
2957                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2958                         return 1;
2959                 }
2960                 kvm_register_write(&svm->vcpu, reg, val);
2961         }
2962         kvm_complete_insn_gp(&svm->vcpu, err);
2963
2964         return 1;
2965 }
2966
2967 static int dr_interception(struct vcpu_svm *svm)
2968 {
2969         int reg, dr;
2970         unsigned long val;
2971         int err;
2972
2973         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2974                 return emulate_on_interception(svm);
2975
2976         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2977         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2978
2979         if (dr >= 16) { /* mov to DRn */
2980                 val = kvm_register_read(&svm->vcpu, reg);
2981                 kvm_set_dr(&svm->vcpu, dr - 16, val);
2982         } else {
2983                 err = kvm_get_dr(&svm->vcpu, dr, &val);
2984                 if (!err)
2985                         kvm_register_write(&svm->vcpu, reg, val);
2986         }
2987
2988         skip_emulated_instruction(&svm->vcpu);
2989
2990         return 1;
2991 }
2992
2993 static int cr8_write_interception(struct vcpu_svm *svm)
2994 {
2995         struct kvm_run *kvm_run = svm->vcpu.run;
2996         int r;
2997
2998         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2999         /* instruction emulation calls kvm_set_cr8() */
3000         r = cr_interception(svm);
3001         if (irqchip_in_kernel(svm->vcpu.kvm)) {
3002                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3003                 return r;
3004         }
3005         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3006                 return r;
3007         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3008         return 0;
3009 }
3010
3011 u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu)
3012 {
3013         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3014         return vmcb->control.tsc_offset +
3015                 svm_scale_tsc(vcpu, native_read_tsc());
3016 }
3017
3018 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3019 {
3020         struct vcpu_svm *svm = to_svm(vcpu);
3021
3022         switch (ecx) {
3023         case MSR_IA32_TSC: {
3024                 *data = svm->vmcb->control.tsc_offset +
3025                         svm_scale_tsc(vcpu, native_read_tsc());
3026
3027                 break;
3028         }
3029         case MSR_STAR:
3030                 *data = svm->vmcb->save.star;
3031                 break;
3032 #ifdef CONFIG_X86_64
3033         case MSR_LSTAR:
3034                 *data = svm->vmcb->save.lstar;
3035                 break;
3036         case MSR_CSTAR:
3037                 *data = svm->vmcb->save.cstar;
3038                 break;
3039         case MSR_KERNEL_GS_BASE:
3040                 *data = svm->vmcb->save.kernel_gs_base;
3041                 break;
3042         case MSR_SYSCALL_MASK:
3043                 *data = svm->vmcb->save.sfmask;
3044                 break;
3045 #endif
3046         case MSR_IA32_SYSENTER_CS:
3047                 *data = svm->vmcb->save.sysenter_cs;
3048                 break;
3049         case MSR_IA32_SYSENTER_EIP:
3050                 *data = svm->sysenter_eip;
3051                 break;
3052         case MSR_IA32_SYSENTER_ESP:
3053                 *data = svm->sysenter_esp;
3054                 break;
3055         /*
3056          * Nobody will change the following 5 values in the VMCB so we can
3057          * safely return them on rdmsr. They will always be 0 until LBRV is
3058          * implemented.
3059          */
3060         case MSR_IA32_DEBUGCTLMSR:
3061                 *data = svm->vmcb->save.dbgctl;
3062                 break;
3063         case MSR_IA32_LASTBRANCHFROMIP:
3064                 *data = svm->vmcb->save.br_from;
3065                 break;
3066         case MSR_IA32_LASTBRANCHTOIP:
3067                 *data = svm->vmcb->save.br_to;
3068                 break;
3069         case MSR_IA32_LASTINTFROMIP:
3070                 *data = svm->vmcb->save.last_excp_from;
3071                 break;
3072         case MSR_IA32_LASTINTTOIP:
3073                 *data = svm->vmcb->save.last_excp_to;
3074                 break;
3075         case MSR_VM_HSAVE_PA:
3076                 *data = svm->nested.hsave_msr;
3077                 break;
3078         case MSR_VM_CR:
3079                 *data = svm->nested.vm_cr_msr;
3080                 break;
3081         case MSR_IA32_UCODE_REV:
3082                 *data = 0x01000065;
3083                 break;
3084         default:
3085                 return kvm_get_msr_common(vcpu, ecx, data);
3086         }
3087         return 0;
3088 }
3089
3090 static int rdmsr_interception(struct vcpu_svm *svm)
3091 {
3092         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3093         u64 data;
3094
3095         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3096                 trace_kvm_msr_read_ex(ecx);
3097                 kvm_inject_gp(&svm->vcpu, 0);
3098         } else {
3099                 trace_kvm_msr_read(ecx, data);
3100
3101                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3102                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3103                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3104                 skip_emulated_instruction(&svm->vcpu);
3105         }
3106         return 1;
3107 }
3108
3109 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3110 {
3111         struct vcpu_svm *svm = to_svm(vcpu);
3112         int svm_dis, chg_mask;
3113
3114         if (data & ~SVM_VM_CR_VALID_MASK)
3115                 return 1;
3116
3117         chg_mask = SVM_VM_CR_VALID_MASK;
3118
3119         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3120                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3121
3122         svm->nested.vm_cr_msr &= ~chg_mask;
3123         svm->nested.vm_cr_msr |= (data & chg_mask);
3124
3125         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3126
3127         /* check for svm_disable while efer.svme is set */
3128         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3129                 return 1;
3130
3131         return 0;
3132 }
3133
3134 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
3135 {
3136         struct vcpu_svm *svm = to_svm(vcpu);
3137
3138         switch (ecx) {
3139         case MSR_IA32_TSC:
3140                 kvm_write_tsc(vcpu, data);
3141                 break;
3142         case MSR_STAR:
3143                 svm->vmcb->save.star = data;
3144                 break;
3145 #ifdef CONFIG_X86_64
3146         case MSR_LSTAR:
3147                 svm->vmcb->save.lstar = data;
3148                 break;
3149         case MSR_CSTAR:
3150                 svm->vmcb->save.cstar = data;
3151                 break;
3152         case MSR_KERNEL_GS_BASE:
3153                 svm->vmcb->save.kernel_gs_base = data;
3154                 break;
3155         case MSR_SYSCALL_MASK:
3156                 svm->vmcb->save.sfmask = data;
3157                 break;
3158 #endif
3159         case MSR_IA32_SYSENTER_CS:
3160                 svm->vmcb->save.sysenter_cs = data;
3161                 break;
3162         case MSR_IA32_SYSENTER_EIP:
3163                 svm->sysenter_eip = data;
3164                 svm->vmcb->save.sysenter_eip = data;
3165                 break;
3166         case MSR_IA32_SYSENTER_ESP:
3167                 svm->sysenter_esp = data;
3168                 svm->vmcb->save.sysenter_esp = data;
3169                 break;
3170         case MSR_IA32_DEBUGCTLMSR:
3171                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3172                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3173                                     __func__, data);
3174                         break;
3175                 }
3176                 if (data & DEBUGCTL_RESERVED_BITS)
3177                         return 1;
3178
3179                 svm->vmcb->save.dbgctl = data;
3180                 mark_dirty(svm->vmcb, VMCB_LBR);
3181                 if (data & (1ULL<<0))
3182                         svm_enable_lbrv(svm);
3183                 else
3184                         svm_disable_lbrv(svm);
3185                 break;
3186         case MSR_VM_HSAVE_PA:
3187                 svm->nested.hsave_msr = data;
3188                 break;
3189         case MSR_VM_CR:
3190                 return svm_set_vm_cr(vcpu, data);
3191         case MSR_VM_IGNNE:
3192                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3193                 break;
3194         default:
3195                 return kvm_set_msr_common(vcpu, ecx, data);
3196         }
3197         return 0;
3198 }
3199
3200 static int wrmsr_interception(struct vcpu_svm *svm)
3201 {
3202         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3203         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3204                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3205
3206
3207         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3208         if (svm_set_msr(&svm->vcpu, ecx, data)) {
3209                 trace_kvm_msr_write_ex(ecx, data);
3210                 kvm_inject_gp(&svm->vcpu, 0);
3211         } else {
3212                 trace_kvm_msr_write(ecx, data);
3213                 skip_emulated_instruction(&svm->vcpu);
3214         }
3215         return 1;
3216 }
3217
3218 static int msr_interception(struct vcpu_svm *svm)
3219 {
3220         if (svm->vmcb->control.exit_info_1)
3221                 return wrmsr_interception(svm);
3222         else
3223                 return rdmsr_interception(svm);
3224 }
3225
3226 static int interrupt_window_interception(struct vcpu_svm *svm)
3227 {
3228         struct kvm_run *kvm_run = svm->vcpu.run;
3229
3230         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3231         svm_clear_vintr(svm);
3232         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3233         mark_dirty(svm->vmcb, VMCB_INTR);
3234         ++svm->vcpu.stat.irq_window_exits;
3235         /*
3236          * If the user space waits to inject interrupts, exit as soon as
3237          * possible
3238          */
3239         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3240             kvm_run->request_interrupt_window &&
3241             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3242                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3243                 return 0;
3244         }
3245
3246         return 1;
3247 }
3248
3249 static int pause_interception(struct vcpu_svm *svm)
3250 {
3251         kvm_vcpu_on_spin(&(svm->vcpu));
3252         return 1;
3253 }
3254
3255 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3256         [SVM_EXIT_READ_CR0]                     = cr_interception,
3257         [SVM_EXIT_READ_CR3]                     = cr_interception,
3258         [SVM_EXIT_READ_CR4]                     = cr_interception,
3259         [SVM_EXIT_READ_CR8]                     = cr_interception,
3260         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
3261         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3262         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3263         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3264         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3265         [SVM_EXIT_READ_DR0]                     = dr_interception,
3266         [SVM_EXIT_READ_DR1]                     = dr_interception,
3267         [SVM_EXIT_READ_DR2]                     = dr_interception,
3268         [SVM_EXIT_READ_DR3]                     = dr_interception,
3269         [SVM_EXIT_READ_DR4]                     = dr_interception,
3270         [SVM_EXIT_READ_DR5]                     = dr_interception,
3271         [SVM_EXIT_READ_DR6]                     = dr_interception,
3272         [SVM_EXIT_READ_DR7]                     = dr_interception,
3273         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3274         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3275         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3276         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3277         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3278         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3279         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3280         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3281         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3282         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3283         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3284         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3285         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3286         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3287         [SVM_EXIT_INTR]                         = intr_interception,
3288         [SVM_EXIT_NMI]                          = nmi_interception,
3289         [SVM_EXIT_SMI]                          = nop_on_interception,
3290         [SVM_EXIT_INIT]                         = nop_on_interception,
3291         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3292         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3293         [SVM_EXIT_CPUID]                        = cpuid_interception,
3294         [SVM_EXIT_IRET]                         = iret_interception,
3295         [SVM_EXIT_INVD]                         = emulate_on_interception,
3296         [SVM_EXIT_PAUSE]                        = pause_interception,
3297         [SVM_EXIT_HLT]                          = halt_interception,
3298         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3299         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3300         [SVM_EXIT_IOIO]                         = io_interception,
3301         [SVM_EXIT_MSR]                          = msr_interception,
3302         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3303         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3304         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3305         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3306         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3307         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3308         [SVM_EXIT_STGI]                         = stgi_interception,
3309         [SVM_EXIT_CLGI]                         = clgi_interception,
3310         [SVM_EXIT_SKINIT]                       = skinit_interception,
3311         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
3312         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
3313         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
3314         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3315         [SVM_EXIT_NPF]                          = pf_interception,
3316 };
3317
3318 static void dump_vmcb(struct kvm_vcpu *vcpu)
3319 {
3320         struct vcpu_svm *svm = to_svm(vcpu);
3321         struct vmcb_control_area *control = &svm->vmcb->control;
3322         struct vmcb_save_area *save = &svm->vmcb->save;
3323
3324         pr_err("VMCB Control Area:\n");
3325         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3326         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3327         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3328         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3329         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3330         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3331         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3332         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3333         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3334         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3335         pr_err("%-20s%d\n", "asid:", control->asid);
3336         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3337         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3338         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3339         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3340         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3341         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3342         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3343         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3344         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3345         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3346         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3347         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3348         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3349         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3350         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3351         pr_err("VMCB State Save Area:\n");
3352         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3353                "es:",
3354                save->es.selector, save->es.attrib,
3355                save->es.limit, save->es.base);
3356         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3357                "cs:",
3358                save->cs.selector, save->cs.attrib,
3359                save->cs.limit, save->cs.base);
3360         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3361                "ss:",
3362                save->ss.selector, save->ss.attrib,
3363                save->ss.limit, save->ss.base);
3364         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3365                "ds:",
3366                save->ds.selector, save->ds.attrib,
3367                save->ds.limit, save->ds.base);
3368         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3369                "fs:",
3370                save->fs.selector, save->fs.attrib,
3371                save->fs.limit, save->fs.base);
3372         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3373                "gs:",
3374                save->gs.selector, save->gs.attrib,
3375                save->gs.limit, save->gs.base);
3376         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3377                "gdtr:",
3378                save->gdtr.selector, save->gdtr.attrib,
3379                save->gdtr.limit, save->gdtr.base);
3380         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3381                "ldtr:",
3382                save->ldtr.selector, save->ldtr.attrib,
3383                save->ldtr.limit, save->ldtr.base);
3384         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3385                "idtr:",
3386                save->idtr.selector, save->idtr.attrib,
3387                save->idtr.limit, save->idtr.base);
3388         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3389                "tr:",
3390                save->tr.selector, save->tr.attrib,
3391                save->tr.limit, save->tr.base);
3392         pr_err("cpl:            %d                efer:         %016llx\n",
3393                 save->cpl, save->efer);
3394         pr_err("%-15s %016llx %-13s %016llx\n",
3395                "cr0:", save->cr0, "cr2:", save->cr2);
3396         pr_err("%-15s %016llx %-13s %016llx\n",
3397                "cr3:", save->cr3, "cr4:", save->cr4);
3398         pr_err("%-15s %016llx %-13s %016llx\n",
3399                "dr6:", save->dr6, "dr7:", save->dr7);
3400         pr_err("%-15s %016llx %-13s %016llx\n",
3401                "rip:", save->rip, "rflags:", save->rflags);
3402         pr_err("%-15s %016llx %-13s %016llx\n",
3403                "rsp:", save->rsp, "rax:", save->rax);
3404         pr_err("%-15s %016llx %-13s %016llx\n",
3405                "star:", save->star, "lstar:", save->lstar);
3406         pr_err("%-15s %016llx %-13s %016llx\n",
3407                "cstar:", save->cstar, "sfmask:", save->sfmask);
3408         pr_err("%-15s %016llx %-13s %016llx\n",
3409                "kernel_gs_base:", save->kernel_gs_base,
3410                "sysenter_cs:", save->sysenter_cs);
3411         pr_err("%-15s %016llx %-13s %016llx\n",
3412                "sysenter_esp:", save->sysenter_esp,
3413                "sysenter_eip:", save->sysenter_eip);
3414         pr_err("%-15s %016llx %-13s %016llx\n",
3415                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3416         pr_err("%-15s %016llx %-13s %016llx\n",
3417                "br_from:", save->br_from, "br_to:", save->br_to);
3418         pr_err("%-15s %016llx %-13s %016llx\n",
3419                "excp_from:", save->last_excp_from,
3420                "excp_to:", save->last_excp_to);
3421 }
3422
3423 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3424 {
3425         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3426
3427         *info1 = control->exit_info_1;
3428         *info2 = control->exit_info_2;
3429 }
3430
3431 static int handle_exit(struct kvm_vcpu *vcpu)
3432 {
3433         struct vcpu_svm *svm = to_svm(vcpu);
3434         struct kvm_run *kvm_run = vcpu->run;
3435         u32 exit_code = svm->vmcb->control.exit_code;
3436
3437         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3438                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3439         if (npt_enabled)
3440                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3441
3442         if (unlikely(svm->nested.exit_required)) {
3443                 nested_svm_vmexit(svm);
3444                 svm->nested.exit_required = false;
3445
3446                 return 1;
3447         }
3448
3449         if (is_guest_mode(vcpu)) {
3450                 int vmexit;
3451
3452                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3453                                         svm->vmcb->control.exit_info_1,
3454                                         svm->vmcb->control.exit_info_2,
3455                                         svm->vmcb->control.exit_int_info,
3456                                         svm->vmcb->control.exit_int_info_err,
3457                                         KVM_ISA_SVM);
3458
3459                 vmexit = nested_svm_exit_special(svm);
3460
3461                 if (vmexit == NESTED_EXIT_CONTINUE)
3462                         vmexit = nested_svm_exit_handled(svm);
3463
3464                 if (vmexit == NESTED_EXIT_DONE)
3465                         return 1;
3466         }
3467
3468         svm_complete_interrupts(svm);
3469
3470         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3471                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3472                 kvm_run->fail_entry.hardware_entry_failure_reason
3473                         = svm->vmcb->control.exit_code;
3474                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3475                 dump_vmcb(vcpu);
3476                 return 0;
3477         }
3478
3479         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3480             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3481             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3482             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3483                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3484                        "exit_code 0x%x\n",
3485                        __func__, svm->vmcb->control.exit_int_info,
3486                        exit_code);
3487
3488         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3489             || !svm_exit_handlers[exit_code]) {
3490                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3491                 kvm_run->hw.hardware_exit_reason = exit_code;
3492                 return 0;
3493         }
3494
3495         return svm_exit_handlers[exit_code](svm);
3496 }
3497
3498 static void reload_tss(struct kvm_vcpu *vcpu)
3499 {
3500         int cpu = raw_smp_processor_id();
3501
3502         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3503         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3504         load_TR_desc();
3505 }
3506
3507 static void pre_svm_run(struct vcpu_svm *svm)
3508 {
3509         int cpu = raw_smp_processor_id();
3510
3511         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3512
3513         /* FIXME: handle wraparound of asid_generation */
3514         if (svm->asid_generation != sd->asid_generation)
3515                 new_asid(svm, sd);
3516 }
3517
3518 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3519 {
3520         struct vcpu_svm *svm = to_svm(vcpu);
3521
3522         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3523         vcpu->arch.hflags |= HF_NMI_MASK;
3524         set_intercept(svm, INTERCEPT_IRET);
3525         ++vcpu->stat.nmi_injections;
3526 }
3527
3528 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3529 {
3530         struct vmcb_control_area *control;
3531
3532         control = &svm->vmcb->control;
3533         control->int_vector = irq;
3534         control->int_ctl &= ~V_INTR_PRIO_MASK;
3535         control->int_ctl |= V_IRQ_MASK |
3536                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3537         mark_dirty(svm->vmcb, VMCB_INTR);
3538 }
3539
3540 static void svm_set_irq(struct kvm_vcpu *vcpu)
3541 {
3542         struct vcpu_svm *svm = to_svm(vcpu);
3543
3544         BUG_ON(!(gif_set(svm)));
3545
3546         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3547         ++vcpu->stat.irq_injections;
3548
3549         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3550                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3551 }
3552
3553 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3554 {
3555         struct vcpu_svm *svm = to_svm(vcpu);
3556
3557         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3558                 return;
3559
3560         if (irr == -1)
3561                 return;
3562
3563         if (tpr >= irr)
3564                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3565 }
3566
3567 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3568 {
3569         struct vcpu_svm *svm = to_svm(vcpu);
3570         struct vmcb *vmcb = svm->vmcb;
3571         int ret;
3572         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3573               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3574         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3575
3576         return ret;
3577 }
3578
3579 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3580 {
3581         struct vcpu_svm *svm = to_svm(vcpu);
3582
3583         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3584 }
3585
3586 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3587 {
3588         struct vcpu_svm *svm = to_svm(vcpu);
3589
3590         if (masked) {
3591                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3592                 set_intercept(svm, INTERCEPT_IRET);
3593         } else {
3594                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3595                 clr_intercept(svm, INTERCEPT_IRET);
3596         }
3597 }
3598
3599 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3600 {
3601         struct vcpu_svm *svm = to_svm(vcpu);
3602         struct vmcb *vmcb = svm->vmcb;
3603         int ret;
3604
3605         if (!gif_set(svm) ||
3606              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3607                 return 0;
3608
3609         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3610
3611         if (is_guest_mode(vcpu))
3612                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3613
3614         return ret;
3615 }
3616
3617 static void enable_irq_window(struct kvm_vcpu *vcpu)
3618 {
3619         struct vcpu_svm *svm = to_svm(vcpu);
3620
3621         /*
3622          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3623          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3624          * get that intercept, this function will be called again though and
3625          * we'll get the vintr intercept.
3626          */
3627         if (gif_set(svm) && nested_svm_intr(svm)) {
3628                 svm_set_vintr(svm);
3629                 svm_inject_irq(svm, 0x0);
3630         }
3631 }
3632
3633 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3634 {
3635         struct vcpu_svm *svm = to_svm(vcpu);
3636
3637         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3638             == HF_NMI_MASK)
3639                 return; /* IRET will cause a vm exit */
3640
3641         /*
3642          * Something prevents NMI from been injected. Single step over possible
3643          * problem (IRET or exception injection or interrupt shadow)
3644          */
3645         svm->nmi_singlestep = true;
3646         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3647         update_db_bp_intercept(vcpu);
3648 }
3649
3650 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3651 {
3652         return 0;
3653 }
3654
3655 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3656 {
3657         struct vcpu_svm *svm = to_svm(vcpu);
3658
3659         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3660                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3661         else
3662                 svm->asid_generation--;
3663 }
3664
3665 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3666 {
3667 }
3668
3669 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3670 {
3671         struct vcpu_svm *svm = to_svm(vcpu);
3672
3673         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3674                 return;
3675
3676         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3677                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3678                 kvm_set_cr8(vcpu, cr8);
3679         }
3680 }
3681
3682 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3683 {
3684         struct vcpu_svm *svm = to_svm(vcpu);
3685         u64 cr8;
3686
3687         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3688                 return;
3689
3690         cr8 = kvm_get_cr8(vcpu);
3691         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3692         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3693 }
3694
3695 static void svm_complete_interrupts(struct vcpu_svm *svm)
3696 {
3697         u8 vector;
3698         int type;
3699         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3700         unsigned int3_injected = svm->int3_injected;
3701
3702         svm->int3_injected = 0;
3703
3704         /*
3705          * If we've made progress since setting HF_IRET_MASK, we've
3706          * executed an IRET and can allow NMI injection.
3707          */
3708         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3709             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3710                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3711                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3712         }
3713
3714         svm->vcpu.arch.nmi_injected = false;
3715         kvm_clear_exception_queue(&svm->vcpu);
3716         kvm_clear_interrupt_queue(&svm->vcpu);
3717
3718         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3719                 return;
3720
3721         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3722
3723         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3724         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3725
3726         switch (type) {
3727         case SVM_EXITINTINFO_TYPE_NMI:
3728                 svm->vcpu.arch.nmi_injected = true;
3729                 break;
3730         case SVM_EXITINTINFO_TYPE_EXEPT:
3731                 /*
3732                  * In case of software exceptions, do not reinject the vector,
3733                  * but re-execute the instruction instead. Rewind RIP first
3734                  * if we emulated INT3 before.
3735                  */
3736                 if (kvm_exception_is_soft(vector)) {
3737                         if (vector == BP_VECTOR && int3_injected &&
3738                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3739                                 kvm_rip_write(&svm->vcpu,
3740                                               kvm_rip_read(&svm->vcpu) -
3741                                               int3_injected);
3742                         break;
3743                 }
3744                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3745                         u32 err = svm->vmcb->control.exit_int_info_err;
3746                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3747
3748                 } else
3749                         kvm_requeue_exception(&svm->vcpu, vector);
3750                 break;
3751         case SVM_EXITINTINFO_TYPE_INTR:
3752                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3753                 break;
3754         default:
3755                 break;
3756         }
3757 }
3758
3759 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3760 {
3761         struct vcpu_svm *svm = to_svm(vcpu);
3762         struct vmcb_control_area *control = &svm->vmcb->control;
3763
3764         control->exit_int_info = control->event_inj;
3765         control->exit_int_info_err = control->event_inj_err;
3766         control->event_inj = 0;
3767         svm_complete_interrupts(svm);
3768 }
3769
3770 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3771 {
3772         struct vcpu_svm *svm = to_svm(vcpu);
3773
3774         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3775         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3776         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3777
3778         /*
3779          * A vmexit emulation is required before the vcpu can be executed
3780          * again.
3781          */
3782         if (unlikely(svm->nested.exit_required))
3783                 return;
3784
3785         pre_svm_run(svm);
3786
3787         sync_lapic_to_cr8(vcpu);
3788
3789         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3790
3791         clgi();
3792
3793         local_irq_enable();
3794
3795         asm volatile (
3796                 "push %%" _ASM_BP "; \n\t"
3797                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3798                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3799                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3800                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3801                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3802                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3803 #ifdef CONFIG_X86_64
3804                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3805                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3806                 "mov %c[r10](%[svm]), %%r10 \n\t"
3807                 "mov %c[r11](%[svm]), %%r11 \n\t"
3808                 "mov %c[r12](%[svm]), %%r12 \n\t"
3809                 "mov %c[r13](%[svm]), %%r13 \n\t"
3810                 "mov %c[r14](%[svm]), %%r14 \n\t"
3811                 "mov %c[r15](%[svm]), %%r15 \n\t"
3812 #endif
3813
3814                 /* Enter guest mode */
3815                 "push %%" _ASM_AX " \n\t"
3816                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3817                 __ex(SVM_VMLOAD) "\n\t"
3818                 __ex(SVM_VMRUN) "\n\t"
3819                 __ex(SVM_VMSAVE) "\n\t"
3820                 "pop %%" _ASM_AX " \n\t"
3821
3822                 /* Save guest registers, load host registers */
3823                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3824                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3825                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3826                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3827                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3828                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3829 #ifdef CONFIG_X86_64
3830                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3831                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3832                 "mov %%r10, %c[r10](%[svm]) \n\t"
3833                 "mov %%r11, %c[r11](%[svm]) \n\t"
3834                 "mov %%r12, %c[r12](%[svm]) \n\t"
3835                 "mov %%r13, %c[r13](%[svm]) \n\t"
3836                 "mov %%r14, %c[r14](%[svm]) \n\t"
3837                 "mov %%r15, %c[r15](%[svm]) \n\t"
3838 #endif
3839                 "pop %%" _ASM_BP
3840                 :
3841                 : [svm]"a"(svm),
3842                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3843                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3844                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3845                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3846                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3847                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3848                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3849 #ifdef CONFIG_X86_64
3850                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3851                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3852                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3853                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3854                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3855                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3856                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3857                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3858 #endif
3859                 : "cc", "memory"
3860 #ifdef CONFIG_X86_64
3861                 , "rbx", "rcx", "rdx", "rsi", "rdi"
3862                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3863 #else
3864                 , "ebx", "ecx", "edx", "esi", "edi"
3865 #endif
3866                 );
3867
3868 #ifdef CONFIG_X86_64
3869         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3870 #else
3871         loadsegment(fs, svm->host.fs);
3872 #ifndef CONFIG_X86_32_LAZY_GS
3873         loadsegment(gs, svm->host.gs);
3874 #endif
3875 #endif
3876
3877         reload_tss(vcpu);
3878
3879         local_irq_disable();
3880
3881         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3882         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3883         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3884         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3885
3886         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3887
3888         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3889                 kvm_before_handle_nmi(&svm->vcpu);
3890
3891         stgi();
3892
3893         /* Any pending NMI will happen here */
3894
3895         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3896                 kvm_after_handle_nmi(&svm->vcpu);
3897
3898         sync_cr8_to_lapic(vcpu);
3899
3900         svm->next_rip = 0;
3901
3902         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3903
3904         /* if exit due to PF check for async PF */
3905         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3906                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3907
3908         if (npt_enabled) {
3909                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3910                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3911         }
3912
3913         /*
3914          * We need to handle MC intercepts here before the vcpu has a chance to
3915          * change the physical cpu
3916          */
3917         if (unlikely(svm->vmcb->control.exit_code ==
3918                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3919                 svm_handle_mce(svm);
3920
3921         mark_all_clean(svm->vmcb);
3922 }
3923
3924 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3925 {
3926         struct vcpu_svm *svm = to_svm(vcpu);
3927
3928         svm->vmcb->save.cr3 = root;
3929         mark_dirty(svm->vmcb, VMCB_CR);
3930         svm_flush_tlb(vcpu);
3931 }
3932
3933 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3934 {
3935         struct vcpu_svm *svm = to_svm(vcpu);
3936
3937         svm->vmcb->control.nested_cr3 = root;
3938         mark_dirty(svm->vmcb, VMCB_NPT);
3939
3940         /* Also sync guest cr3 here in case we live migrate */
3941         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3942         mark_dirty(svm->vmcb, VMCB_CR);
3943
3944         svm_flush_tlb(vcpu);
3945 }
3946
3947 static int is_disabled(void)
3948 {
3949         u64 vm_cr;
3950
3951         rdmsrl(MSR_VM_CR, vm_cr);
3952         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3953                 return 1;
3954
3955         return 0;
3956 }
3957
3958 static void
3959 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3960 {
3961         /*
3962          * Patch in the VMMCALL instruction:
3963          */
3964         hypercall[0] = 0x0f;
3965         hypercall[1] = 0x01;
3966         hypercall[2] = 0xd9;
3967 }
3968
3969 static void svm_check_processor_compat(void *rtn)
3970 {
3971         *(int *)rtn = 0;
3972 }
3973
3974 static bool svm_cpu_has_accelerated_tpr(void)
3975 {
3976         return false;
3977 }
3978
3979 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3980 {
3981         return 0;
3982 }
3983
3984 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3985 {
3986 }
3987
3988 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3989 {
3990         switch (func) {
3991         case 0x80000001:
3992                 if (nested)
3993                         entry->ecx |= (1 << 2); /* Set SVM bit */
3994                 break;
3995         case 0x8000000A:
3996                 entry->eax = 1; /* SVM revision 1 */
3997                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3998                                    ASID emulation to nested SVM */
3999                 entry->ecx = 0; /* Reserved */
4000                 entry->edx = 0; /* Per default do not support any
4001                                    additional features */
4002
4003                 /* Support next_rip if host supports it */
4004                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4005                         entry->edx |= SVM_FEATURE_NRIP;
4006
4007                 /* Support NPT for the guest if enabled */
4008                 if (npt_enabled)
4009                         entry->edx |= SVM_FEATURE_NPT;
4010
4011                 break;
4012         }
4013 }
4014
4015 static int svm_get_lpage_level(void)
4016 {
4017         return PT_PDPE_LEVEL;
4018 }
4019
4020 static bool svm_rdtscp_supported(void)
4021 {
4022         return false;
4023 }
4024
4025 static bool svm_invpcid_supported(void)
4026 {
4027         return false;
4028 }
4029
4030 static bool svm_has_wbinvd_exit(void)
4031 {
4032         return true;
4033 }
4034
4035 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4036 {
4037         struct vcpu_svm *svm = to_svm(vcpu);
4038
4039         set_exception_intercept(svm, NM_VECTOR);
4040         update_cr0_intercept(svm);
4041 }
4042
4043 #define PRE_EX(exit)  { .exit_code = (exit), \
4044                         .stage = X86_ICPT_PRE_EXCEPT, }
4045 #define POST_EX(exit) { .exit_code = (exit), \
4046                         .stage = X86_ICPT_POST_EXCEPT, }
4047 #define POST_MEM(exit) { .exit_code = (exit), \
4048                         .stage = X86_ICPT_POST_MEMACCESS, }
4049
4050 static const struct __x86_intercept {
4051         u32 exit_code;
4052         enum x86_intercept_stage stage;
4053 } x86_intercept_map[] = {
4054         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4055         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4056         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4057         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4058         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4059         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4060         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4061         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4062         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4063         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4064         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4065         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4066         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4067         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4068         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4069         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4070         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4071         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4072         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4073         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4074         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4075         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4076         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4077         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4078         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4079         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4080         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4081         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4082         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4083         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4084         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4085         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4086         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4087         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4088         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4089         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4090         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4091         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4092         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4093         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4094         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4095         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4096         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4097         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4098         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4099         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4100 };
4101
4102 #undef PRE_EX
4103 #undef POST_EX
4104 #undef POST_MEM
4105
4106 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4107                                struct x86_instruction_info *info,
4108                                enum x86_intercept_stage stage)
4109 {
4110         struct vcpu_svm *svm = to_svm(vcpu);
4111         int vmexit, ret = X86EMUL_CONTINUE;
4112         struct __x86_intercept icpt_info;
4113         struct vmcb *vmcb = svm->vmcb;
4114
4115         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4116                 goto out;
4117
4118         icpt_info = x86_intercept_map[info->intercept];
4119
4120         if (stage != icpt_info.stage)
4121                 goto out;
4122
4123         switch (icpt_info.exit_code) {
4124         case SVM_EXIT_READ_CR0:
4125                 if (info->intercept == x86_intercept_cr_read)
4126                         icpt_info.exit_code += info->modrm_reg;
4127                 break;
4128         case SVM_EXIT_WRITE_CR0: {
4129                 unsigned long cr0, val;
4130                 u64 intercept;
4131
4132                 if (info->intercept == x86_intercept_cr_write)
4133                         icpt_info.exit_code += info->modrm_reg;
4134
4135                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4136                         break;
4137
4138                 intercept = svm->nested.intercept;
4139
4140                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4141                         break;
4142
4143                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4144                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4145
4146                 if (info->intercept == x86_intercept_lmsw) {
4147                         cr0 &= 0xfUL;
4148                         val &= 0xfUL;
4149                         /* lmsw can't clear PE - catch this here */
4150                         if (cr0 & X86_CR0_PE)
4151                                 val |= X86_CR0_PE;
4152                 }
4153
4154                 if (cr0 ^ val)
4155                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4156
4157                 break;
4158         }
4159         case SVM_EXIT_READ_DR0:
4160         case SVM_EXIT_WRITE_DR0:
4161                 icpt_info.exit_code += info->modrm_reg;
4162                 break;
4163         case SVM_EXIT_MSR:
4164                 if (info->intercept == x86_intercept_wrmsr)
4165                         vmcb->control.exit_info_1 = 1;
4166                 else
4167                         vmcb->control.exit_info_1 = 0;
4168                 break;
4169         case SVM_EXIT_PAUSE:
4170                 /*
4171                  * We get this for NOP only, but pause
4172                  * is rep not, check this here
4173                  */
4174                 if (info->rep_prefix != REPE_PREFIX)
4175                         goto out;
4176         case SVM_EXIT_IOIO: {
4177                 u64 exit_info;
4178                 u32 bytes;
4179
4180                 exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4181
4182                 if (info->intercept == x86_intercept_in ||
4183                     info->intercept == x86_intercept_ins) {
4184                         exit_info |= SVM_IOIO_TYPE_MASK;
4185                         bytes = info->src_bytes;
4186                 } else {
4187                         bytes = info->dst_bytes;
4188                 }
4189
4190                 if (info->intercept == x86_intercept_outs ||
4191                     info->intercept == x86_intercept_ins)
4192                         exit_info |= SVM_IOIO_STR_MASK;
4193
4194                 if (info->rep_prefix)
4195                         exit_info |= SVM_IOIO_REP_MASK;
4196
4197                 bytes = min(bytes, 4u);
4198
4199                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4200
4201                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4202
4203                 vmcb->control.exit_info_1 = exit_info;
4204                 vmcb->control.exit_info_2 = info->next_rip;
4205
4206                 break;
4207         }
4208         default:
4209                 break;
4210         }
4211
4212         vmcb->control.next_rip  = info->next_rip;
4213         vmcb->control.exit_code = icpt_info.exit_code;
4214         vmexit = nested_svm_exit_handled(svm);
4215
4216         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4217                                            : X86EMUL_CONTINUE;
4218
4219 out:
4220         return ret;
4221 }
4222
4223 static struct kvm_x86_ops svm_x86_ops = {
4224         .cpu_has_kvm_support = has_svm,
4225         .disabled_by_bios = is_disabled,
4226         .hardware_setup = svm_hardware_setup,
4227         .hardware_unsetup = svm_hardware_unsetup,
4228         .check_processor_compatibility = svm_check_processor_compat,
4229         .hardware_enable = svm_hardware_enable,
4230         .hardware_disable = svm_hardware_disable,
4231         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4232
4233         .vcpu_create = svm_create_vcpu,
4234         .vcpu_free = svm_free_vcpu,
4235         .vcpu_reset = svm_vcpu_reset,
4236
4237         .prepare_guest_switch = svm_prepare_guest_switch,
4238         .vcpu_load = svm_vcpu_load,
4239         .vcpu_put = svm_vcpu_put,
4240
4241         .update_db_bp_intercept = update_db_bp_intercept,
4242         .get_msr = svm_get_msr,
4243         .set_msr = svm_set_msr,
4244         .get_segment_base = svm_get_segment_base,
4245         .get_segment = svm_get_segment,
4246         .set_segment = svm_set_segment,
4247         .get_cpl = svm_get_cpl,
4248         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4249         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4250         .decache_cr3 = svm_decache_cr3,
4251         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4252         .set_cr0 = svm_set_cr0,
4253         .set_cr3 = svm_set_cr3,
4254         .set_cr4 = svm_set_cr4,
4255         .set_efer = svm_set_efer,
4256         .get_idt = svm_get_idt,
4257         .set_idt = svm_set_idt,
4258         .get_gdt = svm_get_gdt,
4259         .set_gdt = svm_set_gdt,
4260         .set_dr7 = svm_set_dr7,
4261         .cache_reg = svm_cache_reg,
4262         .get_rflags = svm_get_rflags,
4263         .set_rflags = svm_set_rflags,
4264         .fpu_activate = svm_fpu_activate,
4265         .fpu_deactivate = svm_fpu_deactivate,
4266
4267         .tlb_flush = svm_flush_tlb,
4268
4269         .run = svm_vcpu_run,
4270         .handle_exit = handle_exit,
4271         .skip_emulated_instruction = skip_emulated_instruction,
4272         .set_interrupt_shadow = svm_set_interrupt_shadow,
4273         .get_interrupt_shadow = svm_get_interrupt_shadow,
4274         .patch_hypercall = svm_patch_hypercall,
4275         .set_irq = svm_set_irq,
4276         .set_nmi = svm_inject_nmi,
4277         .queue_exception = svm_queue_exception,
4278         .cancel_injection = svm_cancel_injection,
4279         .interrupt_allowed = svm_interrupt_allowed,
4280         .nmi_allowed = svm_nmi_allowed,
4281         .get_nmi_mask = svm_get_nmi_mask,
4282         .set_nmi_mask = svm_set_nmi_mask,
4283         .enable_nmi_window = enable_nmi_window,
4284         .enable_irq_window = enable_irq_window,
4285         .update_cr8_intercept = update_cr8_intercept,
4286
4287         .set_tss_addr = svm_set_tss_addr,
4288         .get_tdp_level = get_npt_level,
4289         .get_mt_mask = svm_get_mt_mask,
4290
4291         .get_exit_info = svm_get_exit_info,
4292
4293         .get_lpage_level = svm_get_lpage_level,
4294
4295         .cpuid_update = svm_cpuid_update,
4296
4297         .rdtscp_supported = svm_rdtscp_supported,
4298         .invpcid_supported = svm_invpcid_supported,
4299
4300         .set_supported_cpuid = svm_set_supported_cpuid,
4301
4302         .has_wbinvd_exit = svm_has_wbinvd_exit,
4303
4304         .set_tsc_khz = svm_set_tsc_khz,
4305         .write_tsc_offset = svm_write_tsc_offset,
4306         .adjust_tsc_offset = svm_adjust_tsc_offset,
4307         .compute_tsc_offset = svm_compute_tsc_offset,
4308         .read_l1_tsc = svm_read_l1_tsc,
4309
4310         .set_tdp_cr3 = set_tdp_cr3,
4311
4312         .check_intercept = svm_check_intercept,
4313 };
4314
4315 static int __init svm_init(void)
4316 {
4317         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4318                         __alignof__(struct vcpu_svm), THIS_MODULE);
4319 }
4320
4321 static void __exit svm_exit(void)
4322 {
4323         kvm_exit();
4324 }
4325
4326 module_init(svm_init)
4327 module_exit(svm_exit)