KVM: VMX: Require KVM_SET_TSS_ADDR being called prior to running a VCPU
[linux-block.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
36 #include <asm/desc.h>
37 #include <asm/kvm_para.h>
38
39 #include <asm/virtext.h>
40 #include "trace.h"
41
42 #define __ex(x) __kvm_handle_fault_on_reboot(x)
43
44 MODULE_AUTHOR("Qumranet");
45 MODULE_LICENSE("GPL");
46
47 static const struct x86_cpu_id svm_cpu_id[] = {
48         X86_FEATURE_MATCH(X86_FEATURE_SVM),
49         {}
50 };
51 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
52
53 #define IOPM_ALLOC_ORDER 2
54 #define MSRPM_ALLOC_ORDER 1
55
56 #define SEG_TYPE_LDT 2
57 #define SEG_TYPE_BUSY_TSS16 3
58
59 #define SVM_FEATURE_NPT            (1 <<  0)
60 #define SVM_FEATURE_LBRV           (1 <<  1)
61 #define SVM_FEATURE_SVML           (1 <<  2)
62 #define SVM_FEATURE_NRIP           (1 <<  3)
63 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
64 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
65 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
66 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
67 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
68
69 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
70 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
71 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
72
73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
74
75 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
76 #define TSC_RATIO_MIN           0x0000000000000001ULL
77 #define TSC_RATIO_MAX           0x000000ffffffffffULL
78
79 static bool erratum_383_found __read_mostly;
80
81 static const u32 host_save_user_msrs[] = {
82 #ifdef CONFIG_X86_64
83         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
84         MSR_FS_BASE,
85 #endif
86         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
87 };
88
89 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
90
91 struct kvm_vcpu;
92
93 struct nested_state {
94         struct vmcb *hsave;
95         u64 hsave_msr;
96         u64 vm_cr_msr;
97         u64 vmcb;
98
99         /* These are the merged vectors */
100         u32 *msrpm;
101
102         /* gpa pointers to the real vectors */
103         u64 vmcb_msrpm;
104         u64 vmcb_iopm;
105
106         /* A VMEXIT is required but not yet emulated */
107         bool exit_required;
108
109         /* cache for intercepts of the guest */
110         u32 intercept_cr;
111         u32 intercept_dr;
112         u32 intercept_exceptions;
113         u64 intercept;
114
115         /* Nested Paging related state */
116         u64 nested_cr3;
117 };
118
119 #define MSRPM_OFFSETS   16
120 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
121
122 /*
123  * Set osvw_len to higher value when updated Revision Guides
124  * are published and we know what the new status bits are
125  */
126 static uint64_t osvw_len = 4, osvw_status;
127
128 struct vcpu_svm {
129         struct kvm_vcpu vcpu;
130         struct vmcb *vmcb;
131         unsigned long vmcb_pa;
132         struct svm_cpu_data *svm_data;
133         uint64_t asid_generation;
134         uint64_t sysenter_esp;
135         uint64_t sysenter_eip;
136
137         u64 next_rip;
138
139         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
140         struct {
141                 u16 fs;
142                 u16 gs;
143                 u16 ldt;
144                 u64 gs_base;
145         } host;
146
147         u32 *msrpm;
148
149         ulong nmi_iret_rip;
150
151         struct nested_state nested;
152
153         bool nmi_singlestep;
154
155         unsigned int3_injected;
156         unsigned long int3_rip;
157         u32 apf_reason;
158
159         u64  tsc_ratio;
160 };
161
162 static DEFINE_PER_CPU(u64, current_tsc_ratio);
163 #define TSC_RATIO_DEFAULT       0x0100000000ULL
164
165 #define MSR_INVALID                     0xffffffffU
166
167 static const struct svm_direct_access_msrs {
168         u32 index;   /* Index of the MSR */
169         bool always; /* True if intercept is always on */
170 } direct_access_msrs[] = {
171         { .index = MSR_STAR,                            .always = true  },
172         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
173 #ifdef CONFIG_X86_64
174         { .index = MSR_GS_BASE,                         .always = true  },
175         { .index = MSR_FS_BASE,                         .always = true  },
176         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
177         { .index = MSR_LSTAR,                           .always = true  },
178         { .index = MSR_CSTAR,                           .always = true  },
179         { .index = MSR_SYSCALL_MASK,                    .always = true  },
180 #endif
181         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
182         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
183         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
184         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
185         { .index = MSR_INVALID,                         .always = false },
186 };
187
188 /* enable NPT for AMD64 and X86 with PAE */
189 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
190 static bool npt_enabled = true;
191 #else
192 static bool npt_enabled;
193 #endif
194
195 /* allow nested paging (virtualized MMU) for all guests */
196 static int npt = true;
197 module_param(npt, int, S_IRUGO);
198
199 /* allow nested virtualization in KVM/SVM */
200 static int nested = true;
201 module_param(nested, int, S_IRUGO);
202
203 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
204 static void svm_complete_interrupts(struct vcpu_svm *svm);
205
206 static int nested_svm_exit_handled(struct vcpu_svm *svm);
207 static int nested_svm_intercept(struct vcpu_svm *svm);
208 static int nested_svm_vmexit(struct vcpu_svm *svm);
209 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
210                                       bool has_error_code, u32 error_code);
211 static u64 __scale_tsc(u64 ratio, u64 tsc);
212
213 enum {
214         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
215                             pause filter count */
216         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
217         VMCB_ASID,       /* ASID */
218         VMCB_INTR,       /* int_ctl, int_vector */
219         VMCB_NPT,        /* npt_en, nCR3, gPAT */
220         VMCB_CR,         /* CR0, CR3, CR4, EFER */
221         VMCB_DR,         /* DR6, DR7 */
222         VMCB_DT,         /* GDT, IDT */
223         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
224         VMCB_CR2,        /* CR2 only */
225         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
226         VMCB_DIRTY_MAX,
227 };
228
229 /* TPR and CR2 are always written before VMRUN */
230 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
231
232 static inline void mark_all_dirty(struct vmcb *vmcb)
233 {
234         vmcb->control.clean = 0;
235 }
236
237 static inline void mark_all_clean(struct vmcb *vmcb)
238 {
239         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
240                                & ~VMCB_ALWAYS_DIRTY_MASK;
241 }
242
243 static inline void mark_dirty(struct vmcb *vmcb, int bit)
244 {
245         vmcb->control.clean &= ~(1 << bit);
246 }
247
248 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
249 {
250         return container_of(vcpu, struct vcpu_svm, vcpu);
251 }
252
253 static void recalc_intercepts(struct vcpu_svm *svm)
254 {
255         struct vmcb_control_area *c, *h;
256         struct nested_state *g;
257
258         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
259
260         if (!is_guest_mode(&svm->vcpu))
261                 return;
262
263         c = &svm->vmcb->control;
264         h = &svm->nested.hsave->control;
265         g = &svm->nested;
266
267         c->intercept_cr = h->intercept_cr | g->intercept_cr;
268         c->intercept_dr = h->intercept_dr | g->intercept_dr;
269         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
270         c->intercept = h->intercept | g->intercept;
271 }
272
273 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
274 {
275         if (is_guest_mode(&svm->vcpu))
276                 return svm->nested.hsave;
277         else
278                 return svm->vmcb;
279 }
280
281 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
282 {
283         struct vmcb *vmcb = get_host_vmcb(svm);
284
285         vmcb->control.intercept_cr |= (1U << bit);
286
287         recalc_intercepts(svm);
288 }
289
290 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
291 {
292         struct vmcb *vmcb = get_host_vmcb(svm);
293
294         vmcb->control.intercept_cr &= ~(1U << bit);
295
296         recalc_intercepts(svm);
297 }
298
299 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
300 {
301         struct vmcb *vmcb = get_host_vmcb(svm);
302
303         return vmcb->control.intercept_cr & (1U << bit);
304 }
305
306 static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
307 {
308         struct vmcb *vmcb = get_host_vmcb(svm);
309
310         vmcb->control.intercept_dr |= (1U << bit);
311
312         recalc_intercepts(svm);
313 }
314
315 static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
316 {
317         struct vmcb *vmcb = get_host_vmcb(svm);
318
319         vmcb->control.intercept_dr &= ~(1U << bit);
320
321         recalc_intercepts(svm);
322 }
323
324 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
325 {
326         struct vmcb *vmcb = get_host_vmcb(svm);
327
328         vmcb->control.intercept_exceptions |= (1U << bit);
329
330         recalc_intercepts(svm);
331 }
332
333 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
334 {
335         struct vmcb *vmcb = get_host_vmcb(svm);
336
337         vmcb->control.intercept_exceptions &= ~(1U << bit);
338
339         recalc_intercepts(svm);
340 }
341
342 static inline void set_intercept(struct vcpu_svm *svm, int bit)
343 {
344         struct vmcb *vmcb = get_host_vmcb(svm);
345
346         vmcb->control.intercept |= (1ULL << bit);
347
348         recalc_intercepts(svm);
349 }
350
351 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
352 {
353         struct vmcb *vmcb = get_host_vmcb(svm);
354
355         vmcb->control.intercept &= ~(1ULL << bit);
356
357         recalc_intercepts(svm);
358 }
359
360 static inline void enable_gif(struct vcpu_svm *svm)
361 {
362         svm->vcpu.arch.hflags |= HF_GIF_MASK;
363 }
364
365 static inline void disable_gif(struct vcpu_svm *svm)
366 {
367         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
368 }
369
370 static inline bool gif_set(struct vcpu_svm *svm)
371 {
372         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
373 }
374
375 static unsigned long iopm_base;
376
377 struct kvm_ldttss_desc {
378         u16 limit0;
379         u16 base0;
380         unsigned base1:8, type:5, dpl:2, p:1;
381         unsigned limit1:4, zero0:3, g:1, base2:8;
382         u32 base3;
383         u32 zero1;
384 } __attribute__((packed));
385
386 struct svm_cpu_data {
387         int cpu;
388
389         u64 asid_generation;
390         u32 max_asid;
391         u32 next_asid;
392         struct kvm_ldttss_desc *tss_desc;
393
394         struct page *save_area;
395 };
396
397 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
398
399 struct svm_init_data {
400         int cpu;
401         int r;
402 };
403
404 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
405
406 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
407 #define MSRS_RANGE_SIZE 2048
408 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
409
410 static u32 svm_msrpm_offset(u32 msr)
411 {
412         u32 offset;
413         int i;
414
415         for (i = 0; i < NUM_MSR_MAPS; i++) {
416                 if (msr < msrpm_ranges[i] ||
417                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
418                         continue;
419
420                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
421                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
422
423                 /* Now we have the u8 offset - but need the u32 offset */
424                 return offset / 4;
425         }
426
427         /* MSR not in any range */
428         return MSR_INVALID;
429 }
430
431 #define MAX_INST_SIZE 15
432
433 static inline void clgi(void)
434 {
435         asm volatile (__ex(SVM_CLGI));
436 }
437
438 static inline void stgi(void)
439 {
440         asm volatile (__ex(SVM_STGI));
441 }
442
443 static inline void invlpga(unsigned long addr, u32 asid)
444 {
445         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
446 }
447
448 static int get_npt_level(void)
449 {
450 #ifdef CONFIG_X86_64
451         return PT64_ROOT_LEVEL;
452 #else
453         return PT32E_ROOT_LEVEL;
454 #endif
455 }
456
457 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
458 {
459         vcpu->arch.efer = efer;
460         if (!npt_enabled && !(efer & EFER_LMA))
461                 efer &= ~EFER_LME;
462
463         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
464         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
465 }
466
467 static int is_external_interrupt(u32 info)
468 {
469         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
470         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
471 }
472
473 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
474 {
475         struct vcpu_svm *svm = to_svm(vcpu);
476         u32 ret = 0;
477
478         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
479                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
480         return ret & mask;
481 }
482
483 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
484 {
485         struct vcpu_svm *svm = to_svm(vcpu);
486
487         if (mask == 0)
488                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
489         else
490                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
491
492 }
493
494 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
495 {
496         struct vcpu_svm *svm = to_svm(vcpu);
497
498         if (svm->vmcb->control.next_rip != 0)
499                 svm->next_rip = svm->vmcb->control.next_rip;
500
501         if (!svm->next_rip) {
502                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
503                                 EMULATE_DONE)
504                         printk(KERN_DEBUG "%s: NOP\n", __func__);
505                 return;
506         }
507         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
508                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
509                        __func__, kvm_rip_read(vcpu), svm->next_rip);
510
511         kvm_rip_write(vcpu, svm->next_rip);
512         svm_set_interrupt_shadow(vcpu, 0);
513 }
514
515 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
516                                 bool has_error_code, u32 error_code,
517                                 bool reinject)
518 {
519         struct vcpu_svm *svm = to_svm(vcpu);
520
521         /*
522          * If we are within a nested VM we'd better #VMEXIT and let the guest
523          * handle the exception
524          */
525         if (!reinject &&
526             nested_svm_check_exception(svm, nr, has_error_code, error_code))
527                 return;
528
529         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
530                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
531
532                 /*
533                  * For guest debugging where we have to reinject #BP if some
534                  * INT3 is guest-owned:
535                  * Emulate nRIP by moving RIP forward. Will fail if injection
536                  * raises a fault that is not intercepted. Still better than
537                  * failing in all cases.
538                  */
539                 skip_emulated_instruction(&svm->vcpu);
540                 rip = kvm_rip_read(&svm->vcpu);
541                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
542                 svm->int3_injected = rip - old_rip;
543         }
544
545         svm->vmcb->control.event_inj = nr
546                 | SVM_EVTINJ_VALID
547                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
548                 | SVM_EVTINJ_TYPE_EXEPT;
549         svm->vmcb->control.event_inj_err = error_code;
550 }
551
552 static void svm_init_erratum_383(void)
553 {
554         u32 low, high;
555         int err;
556         u64 val;
557
558         if (!cpu_has_amd_erratum(amd_erratum_383))
559                 return;
560
561         /* Use _safe variants to not break nested virtualization */
562         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
563         if (err)
564                 return;
565
566         val |= (1ULL << 47);
567
568         low  = lower_32_bits(val);
569         high = upper_32_bits(val);
570
571         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
572
573         erratum_383_found = true;
574 }
575
576 static void svm_init_osvw(struct kvm_vcpu *vcpu)
577 {
578         /*
579          * Guests should see errata 400 and 415 as fixed (assuming that
580          * HLT and IO instructions are intercepted).
581          */
582         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
583         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
584
585         /*
586          * By increasing VCPU's osvw.length to 3 we are telling the guest that
587          * all osvw.status bits inside that length, including bit 0 (which is
588          * reserved for erratum 298), are valid. However, if host processor's
589          * osvw_len is 0 then osvw_status[0] carries no information. We need to
590          * be conservative here and therefore we tell the guest that erratum 298
591          * is present (because we really don't know).
592          */
593         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
594                 vcpu->arch.osvw.status |= 1;
595 }
596
597 static int has_svm(void)
598 {
599         const char *msg;
600
601         if (!cpu_has_svm(&msg)) {
602                 printk(KERN_INFO "has_svm: %s\n", msg);
603                 return 0;
604         }
605
606         return 1;
607 }
608
609 static void svm_hardware_disable(void *garbage)
610 {
611         /* Make sure we clean up behind us */
612         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
613                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
614
615         cpu_svm_disable();
616
617         amd_pmu_disable_virt();
618 }
619
620 static int svm_hardware_enable(void *garbage)
621 {
622
623         struct svm_cpu_data *sd;
624         uint64_t efer;
625         struct desc_ptr gdt_descr;
626         struct desc_struct *gdt;
627         int me = raw_smp_processor_id();
628
629         rdmsrl(MSR_EFER, efer);
630         if (efer & EFER_SVME)
631                 return -EBUSY;
632
633         if (!has_svm()) {
634                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
635                 return -EINVAL;
636         }
637         sd = per_cpu(svm_data, me);
638         if (!sd) {
639                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
640                 return -EINVAL;
641         }
642
643         sd->asid_generation = 1;
644         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
645         sd->next_asid = sd->max_asid + 1;
646
647         native_store_gdt(&gdt_descr);
648         gdt = (struct desc_struct *)gdt_descr.address;
649         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
650
651         wrmsrl(MSR_EFER, efer | EFER_SVME);
652
653         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
654
655         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
656                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
657                 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
658         }
659
660
661         /*
662          * Get OSVW bits.
663          *
664          * Note that it is possible to have a system with mixed processor
665          * revisions and therefore different OSVW bits. If bits are not the same
666          * on different processors then choose the worst case (i.e. if erratum
667          * is present on one processor and not on another then assume that the
668          * erratum is present everywhere).
669          */
670         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
671                 uint64_t len, status = 0;
672                 int err;
673
674                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
675                 if (!err)
676                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
677                                                       &err);
678
679                 if (err)
680                         osvw_status = osvw_len = 0;
681                 else {
682                         if (len < osvw_len)
683                                 osvw_len = len;
684                         osvw_status |= status;
685                         osvw_status &= (1ULL << osvw_len) - 1;
686                 }
687         } else
688                 osvw_status = osvw_len = 0;
689
690         svm_init_erratum_383();
691
692         amd_pmu_enable_virt();
693
694         return 0;
695 }
696
697 static void svm_cpu_uninit(int cpu)
698 {
699         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
700
701         if (!sd)
702                 return;
703
704         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
705         __free_page(sd->save_area);
706         kfree(sd);
707 }
708
709 static int svm_cpu_init(int cpu)
710 {
711         struct svm_cpu_data *sd;
712         int r;
713
714         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
715         if (!sd)
716                 return -ENOMEM;
717         sd->cpu = cpu;
718         sd->save_area = alloc_page(GFP_KERNEL);
719         r = -ENOMEM;
720         if (!sd->save_area)
721                 goto err_1;
722
723         per_cpu(svm_data, cpu) = sd;
724
725         return 0;
726
727 err_1:
728         kfree(sd);
729         return r;
730
731 }
732
733 static bool valid_msr_intercept(u32 index)
734 {
735         int i;
736
737         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
738                 if (direct_access_msrs[i].index == index)
739                         return true;
740
741         return false;
742 }
743
744 static void set_msr_interception(u32 *msrpm, unsigned msr,
745                                  int read, int write)
746 {
747         u8 bit_read, bit_write;
748         unsigned long tmp;
749         u32 offset;
750
751         /*
752          * If this warning triggers extend the direct_access_msrs list at the
753          * beginning of the file
754          */
755         WARN_ON(!valid_msr_intercept(msr));
756
757         offset    = svm_msrpm_offset(msr);
758         bit_read  = 2 * (msr & 0x0f);
759         bit_write = 2 * (msr & 0x0f) + 1;
760         tmp       = msrpm[offset];
761
762         BUG_ON(offset == MSR_INVALID);
763
764         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
765         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
766
767         msrpm[offset] = tmp;
768 }
769
770 static void svm_vcpu_init_msrpm(u32 *msrpm)
771 {
772         int i;
773
774         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
775
776         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
777                 if (!direct_access_msrs[i].always)
778                         continue;
779
780                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
781         }
782 }
783
784 static void add_msr_offset(u32 offset)
785 {
786         int i;
787
788         for (i = 0; i < MSRPM_OFFSETS; ++i) {
789
790                 /* Offset already in list? */
791                 if (msrpm_offsets[i] == offset)
792                         return;
793
794                 /* Slot used by another offset? */
795                 if (msrpm_offsets[i] != MSR_INVALID)
796                         continue;
797
798                 /* Add offset to list */
799                 msrpm_offsets[i] = offset;
800
801                 return;
802         }
803
804         /*
805          * If this BUG triggers the msrpm_offsets table has an overflow. Just
806          * increase MSRPM_OFFSETS in this case.
807          */
808         BUG();
809 }
810
811 static void init_msrpm_offsets(void)
812 {
813         int i;
814
815         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
816
817         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
818                 u32 offset;
819
820                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
821                 BUG_ON(offset == MSR_INVALID);
822
823                 add_msr_offset(offset);
824         }
825 }
826
827 static void svm_enable_lbrv(struct vcpu_svm *svm)
828 {
829         u32 *msrpm = svm->msrpm;
830
831         svm->vmcb->control.lbr_ctl = 1;
832         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
833         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
834         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
835         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
836 }
837
838 static void svm_disable_lbrv(struct vcpu_svm *svm)
839 {
840         u32 *msrpm = svm->msrpm;
841
842         svm->vmcb->control.lbr_ctl = 0;
843         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
844         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
845         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
846         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
847 }
848
849 static __init int svm_hardware_setup(void)
850 {
851         int cpu;
852         struct page *iopm_pages;
853         void *iopm_va;
854         int r;
855
856         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
857
858         if (!iopm_pages)
859                 return -ENOMEM;
860
861         iopm_va = page_address(iopm_pages);
862         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
863         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
864
865         init_msrpm_offsets();
866
867         if (boot_cpu_has(X86_FEATURE_NX))
868                 kvm_enable_efer_bits(EFER_NX);
869
870         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
871                 kvm_enable_efer_bits(EFER_FFXSR);
872
873         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
874                 u64 max;
875
876                 kvm_has_tsc_control = true;
877
878                 /*
879                  * Make sure the user can only configure tsc_khz values that
880                  * fit into a signed integer.
881                  * A min value is not calculated needed because it will always
882                  * be 1 on all machines and a value of 0 is used to disable
883                  * tsc-scaling for the vcpu.
884                  */
885                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
886
887                 kvm_max_guest_tsc_khz = max;
888         }
889
890         if (nested) {
891                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
892                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
893         }
894
895         for_each_possible_cpu(cpu) {
896                 r = svm_cpu_init(cpu);
897                 if (r)
898                         goto err;
899         }
900
901         if (!boot_cpu_has(X86_FEATURE_NPT))
902                 npt_enabled = false;
903
904         if (npt_enabled && !npt) {
905                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
906                 npt_enabled = false;
907         }
908
909         if (npt_enabled) {
910                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
911                 kvm_enable_tdp();
912         } else
913                 kvm_disable_tdp();
914
915         return 0;
916
917 err:
918         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
919         iopm_base = 0;
920         return r;
921 }
922
923 static __exit void svm_hardware_unsetup(void)
924 {
925         int cpu;
926
927         for_each_possible_cpu(cpu)
928                 svm_cpu_uninit(cpu);
929
930         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
931         iopm_base = 0;
932 }
933
934 static void init_seg(struct vmcb_seg *seg)
935 {
936         seg->selector = 0;
937         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
938                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
939         seg->limit = 0xffff;
940         seg->base = 0;
941 }
942
943 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
944 {
945         seg->selector = 0;
946         seg->attrib = SVM_SELECTOR_P_MASK | type;
947         seg->limit = 0xffff;
948         seg->base = 0;
949 }
950
951 static u64 __scale_tsc(u64 ratio, u64 tsc)
952 {
953         u64 mult, frac, _tsc;
954
955         mult  = ratio >> 32;
956         frac  = ratio & ((1ULL << 32) - 1);
957
958         _tsc  = tsc;
959         _tsc *= mult;
960         _tsc += (tsc >> 32) * frac;
961         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
962
963         return _tsc;
964 }
965
966 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
967 {
968         struct vcpu_svm *svm = to_svm(vcpu);
969         u64 _tsc = tsc;
970
971         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
972                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
973
974         return _tsc;
975 }
976
977 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
978 {
979         struct vcpu_svm *svm = to_svm(vcpu);
980         u64 ratio;
981         u64 khz;
982
983         /* Guest TSC same frequency as host TSC? */
984         if (!scale) {
985                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
986                 return;
987         }
988
989         /* TSC scaling supported? */
990         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
991                 if (user_tsc_khz > tsc_khz) {
992                         vcpu->arch.tsc_catchup = 1;
993                         vcpu->arch.tsc_always_catchup = 1;
994                 } else
995                         WARN(1, "user requested TSC rate below hardware speed\n");
996                 return;
997         }
998
999         khz = user_tsc_khz;
1000
1001         /* TSC scaling required  - calculate ratio */
1002         ratio = khz << 32;
1003         do_div(ratio, tsc_khz);
1004
1005         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1006                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1007                                 user_tsc_khz);
1008                 return;
1009         }
1010         svm->tsc_ratio             = ratio;
1011 }
1012
1013 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1014 {
1015         struct vcpu_svm *svm = to_svm(vcpu);
1016
1017         return svm->vmcb->control.tsc_offset;
1018 }
1019
1020 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1021 {
1022         struct vcpu_svm *svm = to_svm(vcpu);
1023         u64 g_tsc_offset = 0;
1024
1025         if (is_guest_mode(vcpu)) {
1026                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1027                                svm->nested.hsave->control.tsc_offset;
1028                 svm->nested.hsave->control.tsc_offset = offset;
1029         }
1030
1031         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1032
1033         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1034 }
1035
1036 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1037 {
1038         struct vcpu_svm *svm = to_svm(vcpu);
1039
1040         WARN_ON(adjustment < 0);
1041         if (host)
1042                 adjustment = svm_scale_tsc(vcpu, adjustment);
1043
1044         svm->vmcb->control.tsc_offset += adjustment;
1045         if (is_guest_mode(vcpu))
1046                 svm->nested.hsave->control.tsc_offset += adjustment;
1047         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1048 }
1049
1050 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1051 {
1052         u64 tsc;
1053
1054         tsc = svm_scale_tsc(vcpu, native_read_tsc());
1055
1056         return target_tsc - tsc;
1057 }
1058
1059 static void init_vmcb(struct vcpu_svm *svm)
1060 {
1061         struct vmcb_control_area *control = &svm->vmcb->control;
1062         struct vmcb_save_area *save = &svm->vmcb->save;
1063
1064         svm->vcpu.fpu_active = 1;
1065         svm->vcpu.arch.hflags = 0;
1066
1067         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1068         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1069         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1070         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1071         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1072         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1073         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1074
1075         set_dr_intercept(svm, INTERCEPT_DR0_READ);
1076         set_dr_intercept(svm, INTERCEPT_DR1_READ);
1077         set_dr_intercept(svm, INTERCEPT_DR2_READ);
1078         set_dr_intercept(svm, INTERCEPT_DR3_READ);
1079         set_dr_intercept(svm, INTERCEPT_DR4_READ);
1080         set_dr_intercept(svm, INTERCEPT_DR5_READ);
1081         set_dr_intercept(svm, INTERCEPT_DR6_READ);
1082         set_dr_intercept(svm, INTERCEPT_DR7_READ);
1083
1084         set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
1085         set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
1086         set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
1087         set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
1088         set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
1089         set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
1090         set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
1091         set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
1092
1093         set_exception_intercept(svm, PF_VECTOR);
1094         set_exception_intercept(svm, UD_VECTOR);
1095         set_exception_intercept(svm, MC_VECTOR);
1096
1097         set_intercept(svm, INTERCEPT_INTR);
1098         set_intercept(svm, INTERCEPT_NMI);
1099         set_intercept(svm, INTERCEPT_SMI);
1100         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1101         set_intercept(svm, INTERCEPT_RDPMC);
1102         set_intercept(svm, INTERCEPT_CPUID);
1103         set_intercept(svm, INTERCEPT_INVD);
1104         set_intercept(svm, INTERCEPT_HLT);
1105         set_intercept(svm, INTERCEPT_INVLPG);
1106         set_intercept(svm, INTERCEPT_INVLPGA);
1107         set_intercept(svm, INTERCEPT_IOIO_PROT);
1108         set_intercept(svm, INTERCEPT_MSR_PROT);
1109         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1110         set_intercept(svm, INTERCEPT_SHUTDOWN);
1111         set_intercept(svm, INTERCEPT_VMRUN);
1112         set_intercept(svm, INTERCEPT_VMMCALL);
1113         set_intercept(svm, INTERCEPT_VMLOAD);
1114         set_intercept(svm, INTERCEPT_VMSAVE);
1115         set_intercept(svm, INTERCEPT_STGI);
1116         set_intercept(svm, INTERCEPT_CLGI);
1117         set_intercept(svm, INTERCEPT_SKINIT);
1118         set_intercept(svm, INTERCEPT_WBINVD);
1119         set_intercept(svm, INTERCEPT_MONITOR);
1120         set_intercept(svm, INTERCEPT_MWAIT);
1121         set_intercept(svm, INTERCEPT_XSETBV);
1122
1123         control->iopm_base_pa = iopm_base;
1124         control->msrpm_base_pa = __pa(svm->msrpm);
1125         control->int_ctl = V_INTR_MASKING_MASK;
1126
1127         init_seg(&save->es);
1128         init_seg(&save->ss);
1129         init_seg(&save->ds);
1130         init_seg(&save->fs);
1131         init_seg(&save->gs);
1132
1133         save->cs.selector = 0xf000;
1134         /* Executable/Readable Code Segment */
1135         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1136                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1137         save->cs.limit = 0xffff;
1138         /*
1139          * cs.base should really be 0xffff0000, but vmx can't handle that, so
1140          * be consistent with it.
1141          *
1142          * Replace when we have real mode working for vmx.
1143          */
1144         save->cs.base = 0xf0000;
1145
1146         save->gdtr.limit = 0xffff;
1147         save->idtr.limit = 0xffff;
1148
1149         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1150         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1151
1152         svm_set_efer(&svm->vcpu, 0);
1153         save->dr6 = 0xffff0ff0;
1154         kvm_set_rflags(&svm->vcpu, 2);
1155         save->rip = 0x0000fff0;
1156         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1157
1158         /*
1159          * This is the guest-visible cr0 value.
1160          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1161          */
1162         svm->vcpu.arch.cr0 = 0;
1163         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1164
1165         save->cr4 = X86_CR4_PAE;
1166         /* rdx = ?? */
1167
1168         if (npt_enabled) {
1169                 /* Setup VMCB for Nested Paging */
1170                 control->nested_ctl = 1;
1171                 clr_intercept(svm, INTERCEPT_INVLPG);
1172                 clr_exception_intercept(svm, PF_VECTOR);
1173                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1174                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1175                 save->g_pat = 0x0007040600070406ULL;
1176                 save->cr3 = 0;
1177                 save->cr4 = 0;
1178         }
1179         svm->asid_generation = 0;
1180
1181         svm->nested.vmcb = 0;
1182         svm->vcpu.arch.hflags = 0;
1183
1184         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1185                 control->pause_filter_count = 3000;
1186                 set_intercept(svm, INTERCEPT_PAUSE);
1187         }
1188
1189         mark_all_dirty(svm->vmcb);
1190
1191         enable_gif(svm);
1192 }
1193
1194 static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
1195 {
1196         struct vcpu_svm *svm = to_svm(vcpu);
1197         u32 dummy;
1198         u32 eax = 1;
1199
1200         init_vmcb(svm);
1201
1202         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1203         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1204 }
1205
1206 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1207 {
1208         struct vcpu_svm *svm;
1209         struct page *page;
1210         struct page *msrpm_pages;
1211         struct page *hsave_page;
1212         struct page *nested_msrpm_pages;
1213         int err;
1214
1215         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1216         if (!svm) {
1217                 err = -ENOMEM;
1218                 goto out;
1219         }
1220
1221         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1222
1223         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1224         if (err)
1225                 goto free_svm;
1226
1227         err = -ENOMEM;
1228         page = alloc_page(GFP_KERNEL);
1229         if (!page)
1230                 goto uninit;
1231
1232         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1233         if (!msrpm_pages)
1234                 goto free_page1;
1235
1236         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1237         if (!nested_msrpm_pages)
1238                 goto free_page2;
1239
1240         hsave_page = alloc_page(GFP_KERNEL);
1241         if (!hsave_page)
1242                 goto free_page3;
1243
1244         svm->nested.hsave = page_address(hsave_page);
1245
1246         svm->msrpm = page_address(msrpm_pages);
1247         svm_vcpu_init_msrpm(svm->msrpm);
1248
1249         svm->nested.msrpm = page_address(nested_msrpm_pages);
1250         svm_vcpu_init_msrpm(svm->nested.msrpm);
1251
1252         svm->vmcb = page_address(page);
1253         clear_page(svm->vmcb);
1254         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1255         svm->asid_generation = 0;
1256         init_vmcb(svm);
1257
1258         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1259         if (kvm_vcpu_is_bsp(&svm->vcpu))
1260                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1261
1262         svm_init_osvw(&svm->vcpu);
1263
1264         return &svm->vcpu;
1265
1266 free_page3:
1267         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1268 free_page2:
1269         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1270 free_page1:
1271         __free_page(page);
1272 uninit:
1273         kvm_vcpu_uninit(&svm->vcpu);
1274 free_svm:
1275         kmem_cache_free(kvm_vcpu_cache, svm);
1276 out:
1277         return ERR_PTR(err);
1278 }
1279
1280 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1281 {
1282         struct vcpu_svm *svm = to_svm(vcpu);
1283
1284         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1285         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1286         __free_page(virt_to_page(svm->nested.hsave));
1287         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1288         kvm_vcpu_uninit(vcpu);
1289         kmem_cache_free(kvm_vcpu_cache, svm);
1290 }
1291
1292 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1293 {
1294         struct vcpu_svm *svm = to_svm(vcpu);
1295         int i;
1296
1297         if (unlikely(cpu != vcpu->cpu)) {
1298                 svm->asid_generation = 0;
1299                 mark_all_dirty(svm->vmcb);
1300         }
1301
1302 #ifdef CONFIG_X86_64
1303         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1304 #endif
1305         savesegment(fs, svm->host.fs);
1306         savesegment(gs, svm->host.gs);
1307         svm->host.ldt = kvm_read_ldt();
1308
1309         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1310                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1311
1312         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1313             svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1314                 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1315                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1316         }
1317 }
1318
1319 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1320 {
1321         struct vcpu_svm *svm = to_svm(vcpu);
1322         int i;
1323
1324         ++vcpu->stat.host_state_reload;
1325         kvm_load_ldt(svm->host.ldt);
1326 #ifdef CONFIG_X86_64
1327         loadsegment(fs, svm->host.fs);
1328         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1329         load_gs_index(svm->host.gs);
1330 #else
1331 #ifdef CONFIG_X86_32_LAZY_GS
1332         loadsegment(gs, svm->host.gs);
1333 #endif
1334 #endif
1335         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1336                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1337 }
1338
1339 static void svm_update_cpl(struct kvm_vcpu *vcpu)
1340 {
1341         struct vcpu_svm *svm = to_svm(vcpu);
1342         int cpl;
1343
1344         if (!is_protmode(vcpu))
1345                 cpl = 0;
1346         else if (svm->vmcb->save.rflags & X86_EFLAGS_VM)
1347                 cpl = 3;
1348         else
1349                 cpl = svm->vmcb->save.cs.selector & 0x3;
1350
1351         svm->vmcb->save.cpl = cpl;
1352 }
1353
1354 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1355 {
1356         return to_svm(vcpu)->vmcb->save.rflags;
1357 }
1358
1359 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1360 {
1361         unsigned long old_rflags = to_svm(vcpu)->vmcb->save.rflags;
1362
1363         to_svm(vcpu)->vmcb->save.rflags = rflags;
1364         if ((old_rflags ^ rflags) & X86_EFLAGS_VM)
1365                 svm_update_cpl(vcpu);
1366 }
1367
1368 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1369 {
1370         switch (reg) {
1371         case VCPU_EXREG_PDPTR:
1372                 BUG_ON(!npt_enabled);
1373                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1374                 break;
1375         default:
1376                 BUG();
1377         }
1378 }
1379
1380 static void svm_set_vintr(struct vcpu_svm *svm)
1381 {
1382         set_intercept(svm, INTERCEPT_VINTR);
1383 }
1384
1385 static void svm_clear_vintr(struct vcpu_svm *svm)
1386 {
1387         clr_intercept(svm, INTERCEPT_VINTR);
1388 }
1389
1390 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1391 {
1392         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1393
1394         switch (seg) {
1395         case VCPU_SREG_CS: return &save->cs;
1396         case VCPU_SREG_DS: return &save->ds;
1397         case VCPU_SREG_ES: return &save->es;
1398         case VCPU_SREG_FS: return &save->fs;
1399         case VCPU_SREG_GS: return &save->gs;
1400         case VCPU_SREG_SS: return &save->ss;
1401         case VCPU_SREG_TR: return &save->tr;
1402         case VCPU_SREG_LDTR: return &save->ldtr;
1403         }
1404         BUG();
1405         return NULL;
1406 }
1407
1408 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1409 {
1410         struct vmcb_seg *s = svm_seg(vcpu, seg);
1411
1412         return s->base;
1413 }
1414
1415 static void svm_get_segment(struct kvm_vcpu *vcpu,
1416                             struct kvm_segment *var, int seg)
1417 {
1418         struct vmcb_seg *s = svm_seg(vcpu, seg);
1419
1420         var->base = s->base;
1421         var->limit = s->limit;
1422         var->selector = s->selector;
1423         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1424         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1425         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1426         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1427         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1428         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1429         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1430         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1431
1432         /*
1433          * AMD's VMCB does not have an explicit unusable field, so emulate it
1434          * for cross vendor migration purposes by "not present"
1435          */
1436         var->unusable = !var->present || (var->type == 0);
1437
1438         switch (seg) {
1439         case VCPU_SREG_CS:
1440                 /*
1441                  * SVM always stores 0 for the 'G' bit in the CS selector in
1442                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1443                  * Intel's VMENTRY has a check on the 'G' bit.
1444                  */
1445                 var->g = s->limit > 0xfffff;
1446                 break;
1447         case VCPU_SREG_TR:
1448                 /*
1449                  * Work around a bug where the busy flag in the tr selector
1450                  * isn't exposed
1451                  */
1452                 var->type |= 0x2;
1453                 break;
1454         case VCPU_SREG_DS:
1455         case VCPU_SREG_ES:
1456         case VCPU_SREG_FS:
1457         case VCPU_SREG_GS:
1458                 /*
1459                  * The accessed bit must always be set in the segment
1460                  * descriptor cache, although it can be cleared in the
1461                  * descriptor, the cached bit always remains at 1. Since
1462                  * Intel has a check on this, set it here to support
1463                  * cross-vendor migration.
1464                  */
1465                 if (!var->unusable)
1466                         var->type |= 0x1;
1467                 break;
1468         case VCPU_SREG_SS:
1469                 /*
1470                  * On AMD CPUs sometimes the DB bit in the segment
1471                  * descriptor is left as 1, although the whole segment has
1472                  * been made unusable. Clear it here to pass an Intel VMX
1473                  * entry check when cross vendor migrating.
1474                  */
1475                 if (var->unusable)
1476                         var->db = 0;
1477                 break;
1478         }
1479 }
1480
1481 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1482 {
1483         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1484
1485         return save->cpl;
1486 }
1487
1488 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1489 {
1490         struct vcpu_svm *svm = to_svm(vcpu);
1491
1492         dt->size = svm->vmcb->save.idtr.limit;
1493         dt->address = svm->vmcb->save.idtr.base;
1494 }
1495
1496 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1497 {
1498         struct vcpu_svm *svm = to_svm(vcpu);
1499
1500         svm->vmcb->save.idtr.limit = dt->size;
1501         svm->vmcb->save.idtr.base = dt->address ;
1502         mark_dirty(svm->vmcb, VMCB_DT);
1503 }
1504
1505 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1506 {
1507         struct vcpu_svm *svm = to_svm(vcpu);
1508
1509         dt->size = svm->vmcb->save.gdtr.limit;
1510         dt->address = svm->vmcb->save.gdtr.base;
1511 }
1512
1513 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1514 {
1515         struct vcpu_svm *svm = to_svm(vcpu);
1516
1517         svm->vmcb->save.gdtr.limit = dt->size;
1518         svm->vmcb->save.gdtr.base = dt->address ;
1519         mark_dirty(svm->vmcb, VMCB_DT);
1520 }
1521
1522 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1523 {
1524 }
1525
1526 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1527 {
1528 }
1529
1530 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1531 {
1532 }
1533
1534 static void update_cr0_intercept(struct vcpu_svm *svm)
1535 {
1536         ulong gcr0 = svm->vcpu.arch.cr0;
1537         u64 *hcr0 = &svm->vmcb->save.cr0;
1538
1539         if (!svm->vcpu.fpu_active)
1540                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1541         else
1542                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1543                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1544
1545         mark_dirty(svm->vmcb, VMCB_CR);
1546
1547         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1548                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1549                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1550         } else {
1551                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1552                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1553         }
1554 }
1555
1556 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1557 {
1558         struct vcpu_svm *svm = to_svm(vcpu);
1559
1560 #ifdef CONFIG_X86_64
1561         if (vcpu->arch.efer & EFER_LME) {
1562                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1563                         vcpu->arch.efer |= EFER_LMA;
1564                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1565                 }
1566
1567                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1568                         vcpu->arch.efer &= ~EFER_LMA;
1569                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1570                 }
1571         }
1572 #endif
1573         vcpu->arch.cr0 = cr0;
1574
1575         if (!npt_enabled)
1576                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1577
1578         if (!vcpu->fpu_active)
1579                 cr0 |= X86_CR0_TS;
1580         /*
1581          * re-enable caching here because the QEMU bios
1582          * does not do it - this results in some delay at
1583          * reboot
1584          */
1585         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1586         svm->vmcb->save.cr0 = cr0;
1587         mark_dirty(svm->vmcb, VMCB_CR);
1588         update_cr0_intercept(svm);
1589 }
1590
1591 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1592 {
1593         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1594         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1595
1596         if (cr4 & X86_CR4_VMXE)
1597                 return 1;
1598
1599         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1600                 svm_flush_tlb(vcpu);
1601
1602         vcpu->arch.cr4 = cr4;
1603         if (!npt_enabled)
1604                 cr4 |= X86_CR4_PAE;
1605         cr4 |= host_cr4_mce;
1606         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1607         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1608         return 0;
1609 }
1610
1611 static void svm_set_segment(struct kvm_vcpu *vcpu,
1612                             struct kvm_segment *var, int seg)
1613 {
1614         struct vcpu_svm *svm = to_svm(vcpu);
1615         struct vmcb_seg *s = svm_seg(vcpu, seg);
1616
1617         s->base = var->base;
1618         s->limit = var->limit;
1619         s->selector = var->selector;
1620         if (var->unusable)
1621                 s->attrib = 0;
1622         else {
1623                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1624                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1625                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1626                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1627                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1628                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1629                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1630                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1631         }
1632         if (seg == VCPU_SREG_CS)
1633                 svm_update_cpl(vcpu);
1634
1635         mark_dirty(svm->vmcb, VMCB_SEG);
1636 }
1637
1638 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1639 {
1640         struct vcpu_svm *svm = to_svm(vcpu);
1641
1642         clr_exception_intercept(svm, DB_VECTOR);
1643         clr_exception_intercept(svm, BP_VECTOR);
1644
1645         if (svm->nmi_singlestep)
1646                 set_exception_intercept(svm, DB_VECTOR);
1647
1648         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1649                 if (vcpu->guest_debug &
1650                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1651                         set_exception_intercept(svm, DB_VECTOR);
1652                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1653                         set_exception_intercept(svm, BP_VECTOR);
1654         } else
1655                 vcpu->guest_debug = 0;
1656 }
1657
1658 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1659 {
1660         if (sd->next_asid > sd->max_asid) {
1661                 ++sd->asid_generation;
1662                 sd->next_asid = 1;
1663                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1664         }
1665
1666         svm->asid_generation = sd->asid_generation;
1667         svm->vmcb->control.asid = sd->next_asid++;
1668
1669         mark_dirty(svm->vmcb, VMCB_ASID);
1670 }
1671
1672 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1673 {
1674         struct vcpu_svm *svm = to_svm(vcpu);
1675
1676         svm->vmcb->save.dr7 = value;
1677         mark_dirty(svm->vmcb, VMCB_DR);
1678 }
1679
1680 static int pf_interception(struct vcpu_svm *svm)
1681 {
1682         u64 fault_address = svm->vmcb->control.exit_info_2;
1683         u32 error_code;
1684         int r = 1;
1685
1686         switch (svm->apf_reason) {
1687         default:
1688                 error_code = svm->vmcb->control.exit_info_1;
1689
1690                 trace_kvm_page_fault(fault_address, error_code);
1691                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1692                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1693                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1694                         svm->vmcb->control.insn_bytes,
1695                         svm->vmcb->control.insn_len);
1696                 break;
1697         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1698                 svm->apf_reason = 0;
1699                 local_irq_disable();
1700                 kvm_async_pf_task_wait(fault_address);
1701                 local_irq_enable();
1702                 break;
1703         case KVM_PV_REASON_PAGE_READY:
1704                 svm->apf_reason = 0;
1705                 local_irq_disable();
1706                 kvm_async_pf_task_wake(fault_address);
1707                 local_irq_enable();
1708                 break;
1709         }
1710         return r;
1711 }
1712
1713 static int db_interception(struct vcpu_svm *svm)
1714 {
1715         struct kvm_run *kvm_run = svm->vcpu.run;
1716
1717         if (!(svm->vcpu.guest_debug &
1718               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1719                 !svm->nmi_singlestep) {
1720                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1721                 return 1;
1722         }
1723
1724         if (svm->nmi_singlestep) {
1725                 svm->nmi_singlestep = false;
1726                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1727                         svm->vmcb->save.rflags &=
1728                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1729                 update_db_bp_intercept(&svm->vcpu);
1730         }
1731
1732         if (svm->vcpu.guest_debug &
1733             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1734                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1735                 kvm_run->debug.arch.pc =
1736                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1737                 kvm_run->debug.arch.exception = DB_VECTOR;
1738                 return 0;
1739         }
1740
1741         return 1;
1742 }
1743
1744 static int bp_interception(struct vcpu_svm *svm)
1745 {
1746         struct kvm_run *kvm_run = svm->vcpu.run;
1747
1748         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1749         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1750         kvm_run->debug.arch.exception = BP_VECTOR;
1751         return 0;
1752 }
1753
1754 static int ud_interception(struct vcpu_svm *svm)
1755 {
1756         int er;
1757
1758         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1759         if (er != EMULATE_DONE)
1760                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1761         return 1;
1762 }
1763
1764 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1765 {
1766         struct vcpu_svm *svm = to_svm(vcpu);
1767
1768         clr_exception_intercept(svm, NM_VECTOR);
1769
1770         svm->vcpu.fpu_active = 1;
1771         update_cr0_intercept(svm);
1772 }
1773
1774 static int nm_interception(struct vcpu_svm *svm)
1775 {
1776         svm_fpu_activate(&svm->vcpu);
1777         return 1;
1778 }
1779
1780 static bool is_erratum_383(void)
1781 {
1782         int err, i;
1783         u64 value;
1784
1785         if (!erratum_383_found)
1786                 return false;
1787
1788         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1789         if (err)
1790                 return false;
1791
1792         /* Bit 62 may or may not be set for this mce */
1793         value &= ~(1ULL << 62);
1794
1795         if (value != 0xb600000000010015ULL)
1796                 return false;
1797
1798         /* Clear MCi_STATUS registers */
1799         for (i = 0; i < 6; ++i)
1800                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1801
1802         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1803         if (!err) {
1804                 u32 low, high;
1805
1806                 value &= ~(1ULL << 2);
1807                 low    = lower_32_bits(value);
1808                 high   = upper_32_bits(value);
1809
1810                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1811         }
1812
1813         /* Flush tlb to evict multi-match entries */
1814         __flush_tlb_all();
1815
1816         return true;
1817 }
1818
1819 static void svm_handle_mce(struct vcpu_svm *svm)
1820 {
1821         if (is_erratum_383()) {
1822                 /*
1823                  * Erratum 383 triggered. Guest state is corrupt so kill the
1824                  * guest.
1825                  */
1826                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1827
1828                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1829
1830                 return;
1831         }
1832
1833         /*
1834          * On an #MC intercept the MCE handler is not called automatically in
1835          * the host. So do it by hand here.
1836          */
1837         asm volatile (
1838                 "int $0x12\n");
1839         /* not sure if we ever come back to this point */
1840
1841         return;
1842 }
1843
1844 static int mc_interception(struct vcpu_svm *svm)
1845 {
1846         return 1;
1847 }
1848
1849 static int shutdown_interception(struct vcpu_svm *svm)
1850 {
1851         struct kvm_run *kvm_run = svm->vcpu.run;
1852
1853         /*
1854          * VMCB is undefined after a SHUTDOWN intercept
1855          * so reinitialize it.
1856          */
1857         clear_page(svm->vmcb);
1858         init_vmcb(svm);
1859
1860         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1861         return 0;
1862 }
1863
1864 static int io_interception(struct vcpu_svm *svm)
1865 {
1866         struct kvm_vcpu *vcpu = &svm->vcpu;
1867         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1868         int size, in, string;
1869         unsigned port;
1870
1871         ++svm->vcpu.stat.io_exits;
1872         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1873         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1874         if (string || in)
1875                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1876
1877         port = io_info >> 16;
1878         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1879         svm->next_rip = svm->vmcb->control.exit_info_2;
1880         skip_emulated_instruction(&svm->vcpu);
1881
1882         return kvm_fast_pio_out(vcpu, size, port);
1883 }
1884
1885 static int nmi_interception(struct vcpu_svm *svm)
1886 {
1887         return 1;
1888 }
1889
1890 static int intr_interception(struct vcpu_svm *svm)
1891 {
1892         ++svm->vcpu.stat.irq_exits;
1893         return 1;
1894 }
1895
1896 static int nop_on_interception(struct vcpu_svm *svm)
1897 {
1898         return 1;
1899 }
1900
1901 static int halt_interception(struct vcpu_svm *svm)
1902 {
1903         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1904         skip_emulated_instruction(&svm->vcpu);
1905         return kvm_emulate_halt(&svm->vcpu);
1906 }
1907
1908 static int vmmcall_interception(struct vcpu_svm *svm)
1909 {
1910         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1911         skip_emulated_instruction(&svm->vcpu);
1912         kvm_emulate_hypercall(&svm->vcpu);
1913         return 1;
1914 }
1915
1916 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1917 {
1918         struct vcpu_svm *svm = to_svm(vcpu);
1919
1920         return svm->nested.nested_cr3;
1921 }
1922
1923 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1924 {
1925         struct vcpu_svm *svm = to_svm(vcpu);
1926         u64 cr3 = svm->nested.nested_cr3;
1927         u64 pdpte;
1928         int ret;
1929
1930         ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1931                                   offset_in_page(cr3) + index * 8, 8);
1932         if (ret)
1933                 return 0;
1934         return pdpte;
1935 }
1936
1937 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1938                                    unsigned long root)
1939 {
1940         struct vcpu_svm *svm = to_svm(vcpu);
1941
1942         svm->vmcb->control.nested_cr3 = root;
1943         mark_dirty(svm->vmcb, VMCB_NPT);
1944         svm_flush_tlb(vcpu);
1945 }
1946
1947 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1948                                        struct x86_exception *fault)
1949 {
1950         struct vcpu_svm *svm = to_svm(vcpu);
1951
1952         svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1953         svm->vmcb->control.exit_code_hi = 0;
1954         svm->vmcb->control.exit_info_1 = fault->error_code;
1955         svm->vmcb->control.exit_info_2 = fault->address;
1956
1957         nested_svm_vmexit(svm);
1958 }
1959
1960 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1961 {
1962         int r;
1963
1964         r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1965
1966         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1967         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1968         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
1969         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1970         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1971         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1972
1973         return r;
1974 }
1975
1976 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1977 {
1978         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1979 }
1980
1981 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1982 {
1983         if (!(svm->vcpu.arch.efer & EFER_SVME)
1984             || !is_paging(&svm->vcpu)) {
1985                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1986                 return 1;
1987         }
1988
1989         if (svm->vmcb->save.cpl) {
1990                 kvm_inject_gp(&svm->vcpu, 0);
1991                 return 1;
1992         }
1993
1994        return 0;
1995 }
1996
1997 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1998                                       bool has_error_code, u32 error_code)
1999 {
2000         int vmexit;
2001
2002         if (!is_guest_mode(&svm->vcpu))
2003                 return 0;
2004
2005         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2006         svm->vmcb->control.exit_code_hi = 0;
2007         svm->vmcb->control.exit_info_1 = error_code;
2008         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2009
2010         vmexit = nested_svm_intercept(svm);
2011         if (vmexit == NESTED_EXIT_DONE)
2012                 svm->nested.exit_required = true;
2013
2014         return vmexit;
2015 }
2016
2017 /* This function returns true if it is save to enable the irq window */
2018 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2019 {
2020         if (!is_guest_mode(&svm->vcpu))
2021                 return true;
2022
2023         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2024                 return true;
2025
2026         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2027                 return false;
2028
2029         /*
2030          * if vmexit was already requested (by intercepted exception
2031          * for instance) do not overwrite it with "external interrupt"
2032          * vmexit.
2033          */
2034         if (svm->nested.exit_required)
2035                 return false;
2036
2037         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2038         svm->vmcb->control.exit_info_1 = 0;
2039         svm->vmcb->control.exit_info_2 = 0;
2040
2041         if (svm->nested.intercept & 1ULL) {
2042                 /*
2043                  * The #vmexit can't be emulated here directly because this
2044                  * code path runs with irqs and preemption disabled. A
2045                  * #vmexit emulation might sleep. Only signal request for
2046                  * the #vmexit here.
2047                  */
2048                 svm->nested.exit_required = true;
2049                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2050                 return false;
2051         }
2052
2053         return true;
2054 }
2055
2056 /* This function returns true if it is save to enable the nmi window */
2057 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2058 {
2059         if (!is_guest_mode(&svm->vcpu))
2060                 return true;
2061
2062         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2063                 return true;
2064
2065         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2066         svm->nested.exit_required = true;
2067
2068         return false;
2069 }
2070
2071 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2072 {
2073         struct page *page;
2074
2075         might_sleep();
2076
2077         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2078         if (is_error_page(page))
2079                 goto error;
2080
2081         *_page = page;
2082
2083         return kmap(page);
2084
2085 error:
2086         kvm_inject_gp(&svm->vcpu, 0);
2087
2088         return NULL;
2089 }
2090
2091 static void nested_svm_unmap(struct page *page)
2092 {
2093         kunmap(page);
2094         kvm_release_page_dirty(page);
2095 }
2096
2097 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2098 {
2099         unsigned port;
2100         u8 val, bit;
2101         u64 gpa;
2102
2103         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2104                 return NESTED_EXIT_HOST;
2105
2106         port = svm->vmcb->control.exit_info_1 >> 16;
2107         gpa  = svm->nested.vmcb_iopm + (port / 8);
2108         bit  = port % 8;
2109         val  = 0;
2110
2111         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2112                 val &= (1 << bit);
2113
2114         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2115 }
2116
2117 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2118 {
2119         u32 offset, msr, value;
2120         int write, mask;
2121
2122         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2123                 return NESTED_EXIT_HOST;
2124
2125         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2126         offset = svm_msrpm_offset(msr);
2127         write  = svm->vmcb->control.exit_info_1 & 1;
2128         mask   = 1 << ((2 * (msr & 0xf)) + write);
2129
2130         if (offset == MSR_INVALID)
2131                 return NESTED_EXIT_DONE;
2132
2133         /* Offset is in 32 bit units but need in 8 bit units */
2134         offset *= 4;
2135
2136         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2137                 return NESTED_EXIT_DONE;
2138
2139         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2140 }
2141
2142 static int nested_svm_exit_special(struct vcpu_svm *svm)
2143 {
2144         u32 exit_code = svm->vmcb->control.exit_code;
2145
2146         switch (exit_code) {
2147         case SVM_EXIT_INTR:
2148         case SVM_EXIT_NMI:
2149         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2150                 return NESTED_EXIT_HOST;
2151         case SVM_EXIT_NPF:
2152                 /* For now we are always handling NPFs when using them */
2153                 if (npt_enabled)
2154                         return NESTED_EXIT_HOST;
2155                 break;
2156         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2157                 /* When we're shadowing, trap PFs, but not async PF */
2158                 if (!npt_enabled && svm->apf_reason == 0)
2159                         return NESTED_EXIT_HOST;
2160                 break;
2161         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2162                 nm_interception(svm);
2163                 break;
2164         default:
2165                 break;
2166         }
2167
2168         return NESTED_EXIT_CONTINUE;
2169 }
2170
2171 /*
2172  * If this function returns true, this #vmexit was already handled
2173  */
2174 static int nested_svm_intercept(struct vcpu_svm *svm)
2175 {
2176         u32 exit_code = svm->vmcb->control.exit_code;
2177         int vmexit = NESTED_EXIT_HOST;
2178
2179         switch (exit_code) {
2180         case SVM_EXIT_MSR:
2181                 vmexit = nested_svm_exit_handled_msr(svm);
2182                 break;
2183         case SVM_EXIT_IOIO:
2184                 vmexit = nested_svm_intercept_ioio(svm);
2185                 break;
2186         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2187                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2188                 if (svm->nested.intercept_cr & bit)
2189                         vmexit = NESTED_EXIT_DONE;
2190                 break;
2191         }
2192         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2193                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2194                 if (svm->nested.intercept_dr & bit)
2195                         vmexit = NESTED_EXIT_DONE;
2196                 break;
2197         }
2198         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2199                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2200                 if (svm->nested.intercept_exceptions & excp_bits)
2201                         vmexit = NESTED_EXIT_DONE;
2202                 /* async page fault always cause vmexit */
2203                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2204                          svm->apf_reason != 0)
2205                         vmexit = NESTED_EXIT_DONE;
2206                 break;
2207         }
2208         case SVM_EXIT_ERR: {
2209                 vmexit = NESTED_EXIT_DONE;
2210                 break;
2211         }
2212         default: {
2213                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2214                 if (svm->nested.intercept & exit_bits)
2215                         vmexit = NESTED_EXIT_DONE;
2216         }
2217         }
2218
2219         return vmexit;
2220 }
2221
2222 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2223 {
2224         int vmexit;
2225
2226         vmexit = nested_svm_intercept(svm);
2227
2228         if (vmexit == NESTED_EXIT_DONE)
2229                 nested_svm_vmexit(svm);
2230
2231         return vmexit;
2232 }
2233
2234 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2235 {
2236         struct vmcb_control_area *dst  = &dst_vmcb->control;
2237         struct vmcb_control_area *from = &from_vmcb->control;
2238
2239         dst->intercept_cr         = from->intercept_cr;
2240         dst->intercept_dr         = from->intercept_dr;
2241         dst->intercept_exceptions = from->intercept_exceptions;
2242         dst->intercept            = from->intercept;
2243         dst->iopm_base_pa         = from->iopm_base_pa;
2244         dst->msrpm_base_pa        = from->msrpm_base_pa;
2245         dst->tsc_offset           = from->tsc_offset;
2246         dst->asid                 = from->asid;
2247         dst->tlb_ctl              = from->tlb_ctl;
2248         dst->int_ctl              = from->int_ctl;
2249         dst->int_vector           = from->int_vector;
2250         dst->int_state            = from->int_state;
2251         dst->exit_code            = from->exit_code;
2252         dst->exit_code_hi         = from->exit_code_hi;
2253         dst->exit_info_1          = from->exit_info_1;
2254         dst->exit_info_2          = from->exit_info_2;
2255         dst->exit_int_info        = from->exit_int_info;
2256         dst->exit_int_info_err    = from->exit_int_info_err;
2257         dst->nested_ctl           = from->nested_ctl;
2258         dst->event_inj            = from->event_inj;
2259         dst->event_inj_err        = from->event_inj_err;
2260         dst->nested_cr3           = from->nested_cr3;
2261         dst->lbr_ctl              = from->lbr_ctl;
2262 }
2263
2264 static int nested_svm_vmexit(struct vcpu_svm *svm)
2265 {
2266         struct vmcb *nested_vmcb;
2267         struct vmcb *hsave = svm->nested.hsave;
2268         struct vmcb *vmcb = svm->vmcb;
2269         struct page *page;
2270
2271         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2272                                        vmcb->control.exit_info_1,
2273                                        vmcb->control.exit_info_2,
2274                                        vmcb->control.exit_int_info,
2275                                        vmcb->control.exit_int_info_err,
2276                                        KVM_ISA_SVM);
2277
2278         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2279         if (!nested_vmcb)
2280                 return 1;
2281
2282         /* Exit Guest-Mode */
2283         leave_guest_mode(&svm->vcpu);
2284         svm->nested.vmcb = 0;
2285
2286         /* Give the current vmcb to the guest */
2287         disable_gif(svm);
2288
2289         nested_vmcb->save.es     = vmcb->save.es;
2290         nested_vmcb->save.cs     = vmcb->save.cs;
2291         nested_vmcb->save.ss     = vmcb->save.ss;
2292         nested_vmcb->save.ds     = vmcb->save.ds;
2293         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2294         nested_vmcb->save.idtr   = vmcb->save.idtr;
2295         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2296         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2297         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2298         nested_vmcb->save.cr2    = vmcb->save.cr2;
2299         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2300         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2301         nested_vmcb->save.rip    = vmcb->save.rip;
2302         nested_vmcb->save.rsp    = vmcb->save.rsp;
2303         nested_vmcb->save.rax    = vmcb->save.rax;
2304         nested_vmcb->save.dr7    = vmcb->save.dr7;
2305         nested_vmcb->save.dr6    = vmcb->save.dr6;
2306         nested_vmcb->save.cpl    = vmcb->save.cpl;
2307
2308         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2309         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2310         nested_vmcb->control.int_state         = vmcb->control.int_state;
2311         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2312         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2313         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2314         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2315         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2316         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2317         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2318
2319         /*
2320          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2321          * to make sure that we do not lose injected events. So check event_inj
2322          * here and copy it to exit_int_info if it is valid.
2323          * Exit_int_info and event_inj can't be both valid because the case
2324          * below only happens on a VMRUN instruction intercept which has
2325          * no valid exit_int_info set.
2326          */
2327         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2328                 struct vmcb_control_area *nc = &nested_vmcb->control;
2329
2330                 nc->exit_int_info     = vmcb->control.event_inj;
2331                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2332         }
2333
2334         nested_vmcb->control.tlb_ctl           = 0;
2335         nested_vmcb->control.event_inj         = 0;
2336         nested_vmcb->control.event_inj_err     = 0;
2337
2338         /* We always set V_INTR_MASKING and remember the old value in hflags */
2339         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2340                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2341
2342         /* Restore the original control entries */
2343         copy_vmcb_control_area(vmcb, hsave);
2344
2345         kvm_clear_exception_queue(&svm->vcpu);
2346         kvm_clear_interrupt_queue(&svm->vcpu);
2347
2348         svm->nested.nested_cr3 = 0;
2349
2350         /* Restore selected save entries */
2351         svm->vmcb->save.es = hsave->save.es;
2352         svm->vmcb->save.cs = hsave->save.cs;
2353         svm->vmcb->save.ss = hsave->save.ss;
2354         svm->vmcb->save.ds = hsave->save.ds;
2355         svm->vmcb->save.gdtr = hsave->save.gdtr;
2356         svm->vmcb->save.idtr = hsave->save.idtr;
2357         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2358         svm_set_efer(&svm->vcpu, hsave->save.efer);
2359         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2360         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2361         if (npt_enabled) {
2362                 svm->vmcb->save.cr3 = hsave->save.cr3;
2363                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2364         } else {
2365                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2366         }
2367         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2368         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2369         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2370         svm->vmcb->save.dr7 = 0;
2371         svm->vmcb->save.cpl = 0;
2372         svm->vmcb->control.exit_int_info = 0;
2373
2374         mark_all_dirty(svm->vmcb);
2375
2376         nested_svm_unmap(page);
2377
2378         nested_svm_uninit_mmu_context(&svm->vcpu);
2379         kvm_mmu_reset_context(&svm->vcpu);
2380         kvm_mmu_load(&svm->vcpu);
2381
2382         return 0;
2383 }
2384
2385 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2386 {
2387         /*
2388          * This function merges the msr permission bitmaps of kvm and the
2389          * nested vmcb. It is optimized in that it only merges the parts where
2390          * the kvm msr permission bitmap may contain zero bits
2391          */
2392         int i;
2393
2394         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2395                 return true;
2396
2397         for (i = 0; i < MSRPM_OFFSETS; i++) {
2398                 u32 value, p;
2399                 u64 offset;
2400
2401                 if (msrpm_offsets[i] == 0xffffffff)
2402                         break;
2403
2404                 p      = msrpm_offsets[i];
2405                 offset = svm->nested.vmcb_msrpm + (p * 4);
2406
2407                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2408                         return false;
2409
2410                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2411         }
2412
2413         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2414
2415         return true;
2416 }
2417
2418 static bool nested_vmcb_checks(struct vmcb *vmcb)
2419 {
2420         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2421                 return false;
2422
2423         if (vmcb->control.asid == 0)
2424                 return false;
2425
2426         if (vmcb->control.nested_ctl && !npt_enabled)
2427                 return false;
2428
2429         return true;
2430 }
2431
2432 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2433 {
2434         struct vmcb *nested_vmcb;
2435         struct vmcb *hsave = svm->nested.hsave;
2436         struct vmcb *vmcb = svm->vmcb;
2437         struct page *page;
2438         u64 vmcb_gpa;
2439
2440         vmcb_gpa = svm->vmcb->save.rax;
2441
2442         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2443         if (!nested_vmcb)
2444                 return false;
2445
2446         if (!nested_vmcb_checks(nested_vmcb)) {
2447                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2448                 nested_vmcb->control.exit_code_hi = 0;
2449                 nested_vmcb->control.exit_info_1  = 0;
2450                 nested_vmcb->control.exit_info_2  = 0;
2451
2452                 nested_svm_unmap(page);
2453
2454                 return false;
2455         }
2456
2457         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2458                                nested_vmcb->save.rip,
2459                                nested_vmcb->control.int_ctl,
2460                                nested_vmcb->control.event_inj,
2461                                nested_vmcb->control.nested_ctl);
2462
2463         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2464                                     nested_vmcb->control.intercept_cr >> 16,
2465                                     nested_vmcb->control.intercept_exceptions,
2466                                     nested_vmcb->control.intercept);
2467
2468         /* Clear internal status */
2469         kvm_clear_exception_queue(&svm->vcpu);
2470         kvm_clear_interrupt_queue(&svm->vcpu);
2471
2472         /*
2473          * Save the old vmcb, so we don't need to pick what we save, but can
2474          * restore everything when a VMEXIT occurs
2475          */
2476         hsave->save.es     = vmcb->save.es;
2477         hsave->save.cs     = vmcb->save.cs;
2478         hsave->save.ss     = vmcb->save.ss;
2479         hsave->save.ds     = vmcb->save.ds;
2480         hsave->save.gdtr   = vmcb->save.gdtr;
2481         hsave->save.idtr   = vmcb->save.idtr;
2482         hsave->save.efer   = svm->vcpu.arch.efer;
2483         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2484         hsave->save.cr4    = svm->vcpu.arch.cr4;
2485         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2486         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2487         hsave->save.rsp    = vmcb->save.rsp;
2488         hsave->save.rax    = vmcb->save.rax;
2489         if (npt_enabled)
2490                 hsave->save.cr3    = vmcb->save.cr3;
2491         else
2492                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2493
2494         copy_vmcb_control_area(hsave, vmcb);
2495
2496         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2497                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2498         else
2499                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2500
2501         if (nested_vmcb->control.nested_ctl) {
2502                 kvm_mmu_unload(&svm->vcpu);
2503                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2504                 nested_svm_init_mmu_context(&svm->vcpu);
2505         }
2506
2507         /* Load the nested guest state */
2508         svm->vmcb->save.es = nested_vmcb->save.es;
2509         svm->vmcb->save.cs = nested_vmcb->save.cs;
2510         svm->vmcb->save.ss = nested_vmcb->save.ss;
2511         svm->vmcb->save.ds = nested_vmcb->save.ds;
2512         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2513         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2514         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2515         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2516         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2517         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2518         if (npt_enabled) {
2519                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2520                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2521         } else
2522                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2523
2524         /* Guest paging mode is active - reset mmu */
2525         kvm_mmu_reset_context(&svm->vcpu);
2526
2527         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2528         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2529         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2530         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2531
2532         /* In case we don't even reach vcpu_run, the fields are not updated */
2533         svm->vmcb->save.rax = nested_vmcb->save.rax;
2534         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2535         svm->vmcb->save.rip = nested_vmcb->save.rip;
2536         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2537         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2538         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2539
2540         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2541         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2542
2543         /* cache intercepts */
2544         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2545         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2546         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2547         svm->nested.intercept            = nested_vmcb->control.intercept;
2548
2549         svm_flush_tlb(&svm->vcpu);
2550         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2551         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2552                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2553         else
2554                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2555
2556         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2557                 /* We only want the cr8 intercept bits of the guest */
2558                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2559                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2560         }
2561
2562         /* We don't want to see VMMCALLs from a nested guest */
2563         clr_intercept(svm, INTERCEPT_VMMCALL);
2564
2565         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2566         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2567         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2568         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2569         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2570         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2571
2572         nested_svm_unmap(page);
2573
2574         /* Enter Guest-Mode */
2575         enter_guest_mode(&svm->vcpu);
2576
2577         /*
2578          * Merge guest and host intercepts - must be called  with vcpu in
2579          * guest-mode to take affect here
2580          */
2581         recalc_intercepts(svm);
2582
2583         svm->nested.vmcb = vmcb_gpa;
2584
2585         enable_gif(svm);
2586
2587         mark_all_dirty(svm->vmcb);
2588
2589         return true;
2590 }
2591
2592 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2593 {
2594         to_vmcb->save.fs = from_vmcb->save.fs;
2595         to_vmcb->save.gs = from_vmcb->save.gs;
2596         to_vmcb->save.tr = from_vmcb->save.tr;
2597         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2598         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2599         to_vmcb->save.star = from_vmcb->save.star;
2600         to_vmcb->save.lstar = from_vmcb->save.lstar;
2601         to_vmcb->save.cstar = from_vmcb->save.cstar;
2602         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2603         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2604         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2605         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2606 }
2607
2608 static int vmload_interception(struct vcpu_svm *svm)
2609 {
2610         struct vmcb *nested_vmcb;
2611         struct page *page;
2612
2613         if (nested_svm_check_permissions(svm))
2614                 return 1;
2615
2616         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2617         if (!nested_vmcb)
2618                 return 1;
2619
2620         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2621         skip_emulated_instruction(&svm->vcpu);
2622
2623         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2624         nested_svm_unmap(page);
2625
2626         return 1;
2627 }
2628
2629 static int vmsave_interception(struct vcpu_svm *svm)
2630 {
2631         struct vmcb *nested_vmcb;
2632         struct page *page;
2633
2634         if (nested_svm_check_permissions(svm))
2635                 return 1;
2636
2637         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2638         if (!nested_vmcb)
2639                 return 1;
2640
2641         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2642         skip_emulated_instruction(&svm->vcpu);
2643
2644         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2645         nested_svm_unmap(page);
2646
2647         return 1;
2648 }
2649
2650 static int vmrun_interception(struct vcpu_svm *svm)
2651 {
2652         if (nested_svm_check_permissions(svm))
2653                 return 1;
2654
2655         /* Save rip after vmrun instruction */
2656         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2657
2658         if (!nested_svm_vmrun(svm))
2659                 return 1;
2660
2661         if (!nested_svm_vmrun_msrpm(svm))
2662                 goto failed;
2663
2664         return 1;
2665
2666 failed:
2667
2668         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2669         svm->vmcb->control.exit_code_hi = 0;
2670         svm->vmcb->control.exit_info_1  = 0;
2671         svm->vmcb->control.exit_info_2  = 0;
2672
2673         nested_svm_vmexit(svm);
2674
2675         return 1;
2676 }
2677
2678 static int stgi_interception(struct vcpu_svm *svm)
2679 {
2680         if (nested_svm_check_permissions(svm))
2681                 return 1;
2682
2683         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2684         skip_emulated_instruction(&svm->vcpu);
2685         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2686
2687         enable_gif(svm);
2688
2689         return 1;
2690 }
2691
2692 static int clgi_interception(struct vcpu_svm *svm)
2693 {
2694         if (nested_svm_check_permissions(svm))
2695                 return 1;
2696
2697         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2698         skip_emulated_instruction(&svm->vcpu);
2699
2700         disable_gif(svm);
2701
2702         /* After a CLGI no interrupts should come */
2703         svm_clear_vintr(svm);
2704         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2705
2706         mark_dirty(svm->vmcb, VMCB_INTR);
2707
2708         return 1;
2709 }
2710
2711 static int invlpga_interception(struct vcpu_svm *svm)
2712 {
2713         struct kvm_vcpu *vcpu = &svm->vcpu;
2714
2715         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2716                           vcpu->arch.regs[VCPU_REGS_RAX]);
2717
2718         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2719         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2720
2721         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2722         skip_emulated_instruction(&svm->vcpu);
2723         return 1;
2724 }
2725
2726 static int skinit_interception(struct vcpu_svm *svm)
2727 {
2728         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2729
2730         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2731         return 1;
2732 }
2733
2734 static int xsetbv_interception(struct vcpu_svm *svm)
2735 {
2736         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2737         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2738
2739         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2740                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2741                 skip_emulated_instruction(&svm->vcpu);
2742         }
2743
2744         return 1;
2745 }
2746
2747 static int invalid_op_interception(struct vcpu_svm *svm)
2748 {
2749         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2750         return 1;
2751 }
2752
2753 static int task_switch_interception(struct vcpu_svm *svm)
2754 {
2755         u16 tss_selector;
2756         int reason;
2757         int int_type = svm->vmcb->control.exit_int_info &
2758                 SVM_EXITINTINFO_TYPE_MASK;
2759         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2760         uint32_t type =
2761                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2762         uint32_t idt_v =
2763                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2764         bool has_error_code = false;
2765         u32 error_code = 0;
2766
2767         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2768
2769         if (svm->vmcb->control.exit_info_2 &
2770             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2771                 reason = TASK_SWITCH_IRET;
2772         else if (svm->vmcb->control.exit_info_2 &
2773                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2774                 reason = TASK_SWITCH_JMP;
2775         else if (idt_v)
2776                 reason = TASK_SWITCH_GATE;
2777         else
2778                 reason = TASK_SWITCH_CALL;
2779
2780         if (reason == TASK_SWITCH_GATE) {
2781                 switch (type) {
2782                 case SVM_EXITINTINFO_TYPE_NMI:
2783                         svm->vcpu.arch.nmi_injected = false;
2784                         break;
2785                 case SVM_EXITINTINFO_TYPE_EXEPT:
2786                         if (svm->vmcb->control.exit_info_2 &
2787                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2788                                 has_error_code = true;
2789                                 error_code =
2790                                         (u32)svm->vmcb->control.exit_info_2;
2791                         }
2792                         kvm_clear_exception_queue(&svm->vcpu);
2793                         break;
2794                 case SVM_EXITINTINFO_TYPE_INTR:
2795                         kvm_clear_interrupt_queue(&svm->vcpu);
2796                         break;
2797                 default:
2798                         break;
2799                 }
2800         }
2801
2802         if (reason != TASK_SWITCH_GATE ||
2803             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2804             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2805              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2806                 skip_emulated_instruction(&svm->vcpu);
2807
2808         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2809                 int_vec = -1;
2810
2811         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2812                                 has_error_code, error_code) == EMULATE_FAIL) {
2813                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2814                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2815                 svm->vcpu.run->internal.ndata = 0;
2816                 return 0;
2817         }
2818         return 1;
2819 }
2820
2821 static int cpuid_interception(struct vcpu_svm *svm)
2822 {
2823         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2824         kvm_emulate_cpuid(&svm->vcpu);
2825         return 1;
2826 }
2827
2828 static int iret_interception(struct vcpu_svm *svm)
2829 {
2830         ++svm->vcpu.stat.nmi_window_exits;
2831         clr_intercept(svm, INTERCEPT_IRET);
2832         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2833         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2834         return 1;
2835 }
2836
2837 static int invlpg_interception(struct vcpu_svm *svm)
2838 {
2839         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2840                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2841
2842         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2843         skip_emulated_instruction(&svm->vcpu);
2844         return 1;
2845 }
2846
2847 static int emulate_on_interception(struct vcpu_svm *svm)
2848 {
2849         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2850 }
2851
2852 static int rdpmc_interception(struct vcpu_svm *svm)
2853 {
2854         int err;
2855
2856         if (!static_cpu_has(X86_FEATURE_NRIPS))
2857                 return emulate_on_interception(svm);
2858
2859         err = kvm_rdpmc(&svm->vcpu);
2860         kvm_complete_insn_gp(&svm->vcpu, err);
2861
2862         return 1;
2863 }
2864
2865 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2866 {
2867         unsigned long cr0 = svm->vcpu.arch.cr0;
2868         bool ret = false;
2869         u64 intercept;
2870
2871         intercept = svm->nested.intercept;
2872
2873         if (!is_guest_mode(&svm->vcpu) ||
2874             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2875                 return false;
2876
2877         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2878         val &= ~SVM_CR0_SELECTIVE_MASK;
2879
2880         if (cr0 ^ val) {
2881                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2882                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2883         }
2884
2885         return ret;
2886 }
2887
2888 #define CR_VALID (1ULL << 63)
2889
2890 static int cr_interception(struct vcpu_svm *svm)
2891 {
2892         int reg, cr;
2893         unsigned long val;
2894         int err;
2895
2896         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2897                 return emulate_on_interception(svm);
2898
2899         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2900                 return emulate_on_interception(svm);
2901
2902         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2903         cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2904
2905         err = 0;
2906         if (cr >= 16) { /* mov to cr */
2907                 cr -= 16;
2908                 val = kvm_register_read(&svm->vcpu, reg);
2909                 switch (cr) {
2910                 case 0:
2911                         if (!check_selective_cr0_intercepted(svm, val))
2912                                 err = kvm_set_cr0(&svm->vcpu, val);
2913                         else
2914                                 return 1;
2915
2916                         break;
2917                 case 3:
2918                         err = kvm_set_cr3(&svm->vcpu, val);
2919                         break;
2920                 case 4:
2921                         err = kvm_set_cr4(&svm->vcpu, val);
2922                         break;
2923                 case 8:
2924                         err = kvm_set_cr8(&svm->vcpu, val);
2925                         break;
2926                 default:
2927                         WARN(1, "unhandled write to CR%d", cr);
2928                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2929                         return 1;
2930                 }
2931         } else { /* mov from cr */
2932                 switch (cr) {
2933                 case 0:
2934                         val = kvm_read_cr0(&svm->vcpu);
2935                         break;
2936                 case 2:
2937                         val = svm->vcpu.arch.cr2;
2938                         break;
2939                 case 3:
2940                         val = kvm_read_cr3(&svm->vcpu);
2941                         break;
2942                 case 4:
2943                         val = kvm_read_cr4(&svm->vcpu);
2944                         break;
2945                 case 8:
2946                         val = kvm_get_cr8(&svm->vcpu);
2947                         break;
2948                 default:
2949                         WARN(1, "unhandled read from CR%d", cr);
2950                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2951                         return 1;
2952                 }
2953                 kvm_register_write(&svm->vcpu, reg, val);
2954         }
2955         kvm_complete_insn_gp(&svm->vcpu, err);
2956
2957         return 1;
2958 }
2959
2960 static int dr_interception(struct vcpu_svm *svm)
2961 {
2962         int reg, dr;
2963         unsigned long val;
2964         int err;
2965
2966         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2967                 return emulate_on_interception(svm);
2968
2969         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2970         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2971
2972         if (dr >= 16) { /* mov to DRn */
2973                 val = kvm_register_read(&svm->vcpu, reg);
2974                 kvm_set_dr(&svm->vcpu, dr - 16, val);
2975         } else {
2976                 err = kvm_get_dr(&svm->vcpu, dr, &val);
2977                 if (!err)
2978                         kvm_register_write(&svm->vcpu, reg, val);
2979         }
2980
2981         skip_emulated_instruction(&svm->vcpu);
2982
2983         return 1;
2984 }
2985
2986 static int cr8_write_interception(struct vcpu_svm *svm)
2987 {
2988         struct kvm_run *kvm_run = svm->vcpu.run;
2989         int r;
2990
2991         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2992         /* instruction emulation calls kvm_set_cr8() */
2993         r = cr_interception(svm);
2994         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2995                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2996                 return r;
2997         }
2998         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2999                 return r;
3000         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3001         return 0;
3002 }
3003
3004 u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3005 {
3006         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3007         return vmcb->control.tsc_offset +
3008                 svm_scale_tsc(vcpu, host_tsc);
3009 }
3010
3011 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3012 {
3013         struct vcpu_svm *svm = to_svm(vcpu);
3014
3015         switch (ecx) {
3016         case MSR_IA32_TSC: {
3017                 *data = svm->vmcb->control.tsc_offset +
3018                         svm_scale_tsc(vcpu, native_read_tsc());
3019
3020                 break;
3021         }
3022         case MSR_STAR:
3023                 *data = svm->vmcb->save.star;
3024                 break;
3025 #ifdef CONFIG_X86_64
3026         case MSR_LSTAR:
3027                 *data = svm->vmcb->save.lstar;
3028                 break;
3029         case MSR_CSTAR:
3030                 *data = svm->vmcb->save.cstar;
3031                 break;
3032         case MSR_KERNEL_GS_BASE:
3033                 *data = svm->vmcb->save.kernel_gs_base;
3034                 break;
3035         case MSR_SYSCALL_MASK:
3036                 *data = svm->vmcb->save.sfmask;
3037                 break;
3038 #endif
3039         case MSR_IA32_SYSENTER_CS:
3040                 *data = svm->vmcb->save.sysenter_cs;
3041                 break;
3042         case MSR_IA32_SYSENTER_EIP:
3043                 *data = svm->sysenter_eip;
3044                 break;
3045         case MSR_IA32_SYSENTER_ESP:
3046                 *data = svm->sysenter_esp;
3047                 break;
3048         /*
3049          * Nobody will change the following 5 values in the VMCB so we can
3050          * safely return them on rdmsr. They will always be 0 until LBRV is
3051          * implemented.
3052          */
3053         case MSR_IA32_DEBUGCTLMSR:
3054                 *data = svm->vmcb->save.dbgctl;
3055                 break;
3056         case MSR_IA32_LASTBRANCHFROMIP:
3057                 *data = svm->vmcb->save.br_from;
3058                 break;
3059         case MSR_IA32_LASTBRANCHTOIP:
3060                 *data = svm->vmcb->save.br_to;
3061                 break;
3062         case MSR_IA32_LASTINTFROMIP:
3063                 *data = svm->vmcb->save.last_excp_from;
3064                 break;
3065         case MSR_IA32_LASTINTTOIP:
3066                 *data = svm->vmcb->save.last_excp_to;
3067                 break;
3068         case MSR_VM_HSAVE_PA:
3069                 *data = svm->nested.hsave_msr;
3070                 break;
3071         case MSR_VM_CR:
3072                 *data = svm->nested.vm_cr_msr;
3073                 break;
3074         case MSR_IA32_UCODE_REV:
3075                 *data = 0x01000065;
3076                 break;
3077         default:
3078                 return kvm_get_msr_common(vcpu, ecx, data);
3079         }
3080         return 0;
3081 }
3082
3083 static int rdmsr_interception(struct vcpu_svm *svm)
3084 {
3085         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3086         u64 data;
3087
3088         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3089                 trace_kvm_msr_read_ex(ecx);
3090                 kvm_inject_gp(&svm->vcpu, 0);
3091         } else {
3092                 trace_kvm_msr_read(ecx, data);
3093
3094                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3095                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3096                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3097                 skip_emulated_instruction(&svm->vcpu);
3098         }
3099         return 1;
3100 }
3101
3102 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3103 {
3104         struct vcpu_svm *svm = to_svm(vcpu);
3105         int svm_dis, chg_mask;
3106
3107         if (data & ~SVM_VM_CR_VALID_MASK)
3108                 return 1;
3109
3110         chg_mask = SVM_VM_CR_VALID_MASK;
3111
3112         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3113                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3114
3115         svm->nested.vm_cr_msr &= ~chg_mask;
3116         svm->nested.vm_cr_msr |= (data & chg_mask);
3117
3118         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3119
3120         /* check for svm_disable while efer.svme is set */
3121         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3122                 return 1;
3123
3124         return 0;
3125 }
3126
3127 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3128 {
3129         struct vcpu_svm *svm = to_svm(vcpu);
3130
3131         u32 ecx = msr->index;
3132         u64 data = msr->data;
3133         switch (ecx) {
3134         case MSR_IA32_TSC:
3135                 kvm_write_tsc(vcpu, msr);
3136                 break;
3137         case MSR_STAR:
3138                 svm->vmcb->save.star = data;
3139                 break;
3140 #ifdef CONFIG_X86_64
3141         case MSR_LSTAR:
3142                 svm->vmcb->save.lstar = data;
3143                 break;
3144         case MSR_CSTAR:
3145                 svm->vmcb->save.cstar = data;
3146                 break;
3147         case MSR_KERNEL_GS_BASE:
3148                 svm->vmcb->save.kernel_gs_base = data;
3149                 break;
3150         case MSR_SYSCALL_MASK:
3151                 svm->vmcb->save.sfmask = data;
3152                 break;
3153 #endif
3154         case MSR_IA32_SYSENTER_CS:
3155                 svm->vmcb->save.sysenter_cs = data;
3156                 break;
3157         case MSR_IA32_SYSENTER_EIP:
3158                 svm->sysenter_eip = data;
3159                 svm->vmcb->save.sysenter_eip = data;
3160                 break;
3161         case MSR_IA32_SYSENTER_ESP:
3162                 svm->sysenter_esp = data;
3163                 svm->vmcb->save.sysenter_esp = data;
3164                 break;
3165         case MSR_IA32_DEBUGCTLMSR:
3166                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3167                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3168                                     __func__, data);
3169                         break;
3170                 }
3171                 if (data & DEBUGCTL_RESERVED_BITS)
3172                         return 1;
3173
3174                 svm->vmcb->save.dbgctl = data;
3175                 mark_dirty(svm->vmcb, VMCB_LBR);
3176                 if (data & (1ULL<<0))
3177                         svm_enable_lbrv(svm);
3178                 else
3179                         svm_disable_lbrv(svm);
3180                 break;
3181         case MSR_VM_HSAVE_PA:
3182                 svm->nested.hsave_msr = data;
3183                 break;
3184         case MSR_VM_CR:
3185                 return svm_set_vm_cr(vcpu, data);
3186         case MSR_VM_IGNNE:
3187                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3188                 break;
3189         default:
3190                 return kvm_set_msr_common(vcpu, msr);
3191         }
3192         return 0;
3193 }
3194
3195 static int wrmsr_interception(struct vcpu_svm *svm)
3196 {
3197         struct msr_data msr;
3198         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3199         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3200                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3201
3202         msr.data = data;
3203         msr.index = ecx;
3204         msr.host_initiated = false;
3205
3206         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3207         if (svm_set_msr(&svm->vcpu, &msr)) {
3208                 trace_kvm_msr_write_ex(ecx, data);
3209                 kvm_inject_gp(&svm->vcpu, 0);
3210         } else {
3211                 trace_kvm_msr_write(ecx, data);
3212                 skip_emulated_instruction(&svm->vcpu);
3213         }
3214         return 1;
3215 }
3216
3217 static int msr_interception(struct vcpu_svm *svm)
3218 {
3219         if (svm->vmcb->control.exit_info_1)
3220                 return wrmsr_interception(svm);
3221         else
3222                 return rdmsr_interception(svm);
3223 }
3224
3225 static int interrupt_window_interception(struct vcpu_svm *svm)
3226 {
3227         struct kvm_run *kvm_run = svm->vcpu.run;
3228
3229         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3230         svm_clear_vintr(svm);
3231         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3232         mark_dirty(svm->vmcb, VMCB_INTR);
3233         ++svm->vcpu.stat.irq_window_exits;
3234         /*
3235          * If the user space waits to inject interrupts, exit as soon as
3236          * possible
3237          */
3238         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3239             kvm_run->request_interrupt_window &&
3240             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3241                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3242                 return 0;
3243         }
3244
3245         return 1;
3246 }
3247
3248 static int pause_interception(struct vcpu_svm *svm)
3249 {
3250         kvm_vcpu_on_spin(&(svm->vcpu));
3251         return 1;
3252 }
3253
3254 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3255         [SVM_EXIT_READ_CR0]                     = cr_interception,
3256         [SVM_EXIT_READ_CR3]                     = cr_interception,
3257         [SVM_EXIT_READ_CR4]                     = cr_interception,
3258         [SVM_EXIT_READ_CR8]                     = cr_interception,
3259         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
3260         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3261         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3262         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3263         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3264         [SVM_EXIT_READ_DR0]                     = dr_interception,
3265         [SVM_EXIT_READ_DR1]                     = dr_interception,
3266         [SVM_EXIT_READ_DR2]                     = dr_interception,
3267         [SVM_EXIT_READ_DR3]                     = dr_interception,
3268         [SVM_EXIT_READ_DR4]                     = dr_interception,
3269         [SVM_EXIT_READ_DR5]                     = dr_interception,
3270         [SVM_EXIT_READ_DR6]                     = dr_interception,
3271         [SVM_EXIT_READ_DR7]                     = dr_interception,
3272         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3273         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3274         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3275         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3276         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3277         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3278         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3279         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3280         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3281         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3282         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3283         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3284         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3285         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3286         [SVM_EXIT_INTR]                         = intr_interception,
3287         [SVM_EXIT_NMI]                          = nmi_interception,
3288         [SVM_EXIT_SMI]                          = nop_on_interception,
3289         [SVM_EXIT_INIT]                         = nop_on_interception,
3290         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3291         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3292         [SVM_EXIT_CPUID]                        = cpuid_interception,
3293         [SVM_EXIT_IRET]                         = iret_interception,
3294         [SVM_EXIT_INVD]                         = emulate_on_interception,
3295         [SVM_EXIT_PAUSE]                        = pause_interception,
3296         [SVM_EXIT_HLT]                          = halt_interception,
3297         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3298         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3299         [SVM_EXIT_IOIO]                         = io_interception,
3300         [SVM_EXIT_MSR]                          = msr_interception,
3301         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3302         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3303         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3304         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3305         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3306         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3307         [SVM_EXIT_STGI]                         = stgi_interception,
3308         [SVM_EXIT_CLGI]                         = clgi_interception,
3309         [SVM_EXIT_SKINIT]                       = skinit_interception,
3310         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
3311         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
3312         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
3313         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3314         [SVM_EXIT_NPF]                          = pf_interception,
3315 };
3316
3317 static void dump_vmcb(struct kvm_vcpu *vcpu)
3318 {
3319         struct vcpu_svm *svm = to_svm(vcpu);
3320         struct vmcb_control_area *control = &svm->vmcb->control;
3321         struct vmcb_save_area *save = &svm->vmcb->save;
3322
3323         pr_err("VMCB Control Area:\n");
3324         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3325         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3326         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3327         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3328         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3329         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3330         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3331         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3332         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3333         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3334         pr_err("%-20s%d\n", "asid:", control->asid);
3335         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3336         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3337         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3338         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3339         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3340         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3341         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3342         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3343         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3344         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3345         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3346         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3347         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3348         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3349         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3350         pr_err("VMCB State Save Area:\n");
3351         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3352                "es:",
3353                save->es.selector, save->es.attrib,
3354                save->es.limit, save->es.base);
3355         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3356                "cs:",
3357                save->cs.selector, save->cs.attrib,
3358                save->cs.limit, save->cs.base);
3359         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3360                "ss:",
3361                save->ss.selector, save->ss.attrib,
3362                save->ss.limit, save->ss.base);
3363         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3364                "ds:",
3365                save->ds.selector, save->ds.attrib,
3366                save->ds.limit, save->ds.base);
3367         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3368                "fs:",
3369                save->fs.selector, save->fs.attrib,
3370                save->fs.limit, save->fs.base);
3371         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3372                "gs:",
3373                save->gs.selector, save->gs.attrib,
3374                save->gs.limit, save->gs.base);
3375         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3376                "gdtr:",
3377                save->gdtr.selector, save->gdtr.attrib,
3378                save->gdtr.limit, save->gdtr.base);
3379         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3380                "ldtr:",
3381                save->ldtr.selector, save->ldtr.attrib,
3382                save->ldtr.limit, save->ldtr.base);
3383         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3384                "idtr:",
3385                save->idtr.selector, save->idtr.attrib,
3386                save->idtr.limit, save->idtr.base);
3387         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3388                "tr:",
3389                save->tr.selector, save->tr.attrib,
3390                save->tr.limit, save->tr.base);
3391         pr_err("cpl:            %d                efer:         %016llx\n",
3392                 save->cpl, save->efer);
3393         pr_err("%-15s %016llx %-13s %016llx\n",
3394                "cr0:", save->cr0, "cr2:", save->cr2);
3395         pr_err("%-15s %016llx %-13s %016llx\n",
3396                "cr3:", save->cr3, "cr4:", save->cr4);
3397         pr_err("%-15s %016llx %-13s %016llx\n",
3398                "dr6:", save->dr6, "dr7:", save->dr7);
3399         pr_err("%-15s %016llx %-13s %016llx\n",
3400                "rip:", save->rip, "rflags:", save->rflags);
3401         pr_err("%-15s %016llx %-13s %016llx\n",
3402                "rsp:", save->rsp, "rax:", save->rax);
3403         pr_err("%-15s %016llx %-13s %016llx\n",
3404                "star:", save->star, "lstar:", save->lstar);
3405         pr_err("%-15s %016llx %-13s %016llx\n",
3406                "cstar:", save->cstar, "sfmask:", save->sfmask);
3407         pr_err("%-15s %016llx %-13s %016llx\n",
3408                "kernel_gs_base:", save->kernel_gs_base,
3409                "sysenter_cs:", save->sysenter_cs);
3410         pr_err("%-15s %016llx %-13s %016llx\n",
3411                "sysenter_esp:", save->sysenter_esp,
3412                "sysenter_eip:", save->sysenter_eip);
3413         pr_err("%-15s %016llx %-13s %016llx\n",
3414                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3415         pr_err("%-15s %016llx %-13s %016llx\n",
3416                "br_from:", save->br_from, "br_to:", save->br_to);
3417         pr_err("%-15s %016llx %-13s %016llx\n",
3418                "excp_from:", save->last_excp_from,
3419                "excp_to:", save->last_excp_to);
3420 }
3421
3422 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3423 {
3424         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3425
3426         *info1 = control->exit_info_1;
3427         *info2 = control->exit_info_2;
3428 }
3429
3430 static int handle_exit(struct kvm_vcpu *vcpu)
3431 {
3432         struct vcpu_svm *svm = to_svm(vcpu);
3433         struct kvm_run *kvm_run = vcpu->run;
3434         u32 exit_code = svm->vmcb->control.exit_code;
3435
3436         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3437                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3438         if (npt_enabled)
3439                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3440
3441         if (unlikely(svm->nested.exit_required)) {
3442                 nested_svm_vmexit(svm);
3443                 svm->nested.exit_required = false;
3444
3445                 return 1;
3446         }
3447
3448         if (is_guest_mode(vcpu)) {
3449                 int vmexit;
3450
3451                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3452                                         svm->vmcb->control.exit_info_1,
3453                                         svm->vmcb->control.exit_info_2,
3454                                         svm->vmcb->control.exit_int_info,
3455                                         svm->vmcb->control.exit_int_info_err,
3456                                         KVM_ISA_SVM);
3457
3458                 vmexit = nested_svm_exit_special(svm);
3459
3460                 if (vmexit == NESTED_EXIT_CONTINUE)
3461                         vmexit = nested_svm_exit_handled(svm);
3462
3463                 if (vmexit == NESTED_EXIT_DONE)
3464                         return 1;
3465         }
3466
3467         svm_complete_interrupts(svm);
3468
3469         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3470                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3471                 kvm_run->fail_entry.hardware_entry_failure_reason
3472                         = svm->vmcb->control.exit_code;
3473                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3474                 dump_vmcb(vcpu);
3475                 return 0;
3476         }
3477
3478         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3479             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3480             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3481             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3482                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3483                        "exit_code 0x%x\n",
3484                        __func__, svm->vmcb->control.exit_int_info,
3485                        exit_code);
3486
3487         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3488             || !svm_exit_handlers[exit_code]) {
3489                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3490                 kvm_run->hw.hardware_exit_reason = exit_code;
3491                 return 0;
3492         }
3493
3494         return svm_exit_handlers[exit_code](svm);
3495 }
3496
3497 static void reload_tss(struct kvm_vcpu *vcpu)
3498 {
3499         int cpu = raw_smp_processor_id();
3500
3501         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3502         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3503         load_TR_desc();
3504 }
3505
3506 static void pre_svm_run(struct vcpu_svm *svm)
3507 {
3508         int cpu = raw_smp_processor_id();
3509
3510         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3511
3512         /* FIXME: handle wraparound of asid_generation */
3513         if (svm->asid_generation != sd->asid_generation)
3514                 new_asid(svm, sd);
3515 }
3516
3517 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3518 {
3519         struct vcpu_svm *svm = to_svm(vcpu);
3520
3521         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3522         vcpu->arch.hflags |= HF_NMI_MASK;
3523         set_intercept(svm, INTERCEPT_IRET);
3524         ++vcpu->stat.nmi_injections;
3525 }
3526
3527 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3528 {
3529         struct vmcb_control_area *control;
3530
3531         control = &svm->vmcb->control;
3532         control->int_vector = irq;
3533         control->int_ctl &= ~V_INTR_PRIO_MASK;
3534         control->int_ctl |= V_IRQ_MASK |
3535                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3536         mark_dirty(svm->vmcb, VMCB_INTR);
3537 }
3538
3539 static void svm_set_irq(struct kvm_vcpu *vcpu)
3540 {
3541         struct vcpu_svm *svm = to_svm(vcpu);
3542
3543         BUG_ON(!(gif_set(svm)));
3544
3545         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3546         ++vcpu->stat.irq_injections;
3547
3548         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3549                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3550 }
3551
3552 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3553 {
3554         struct vcpu_svm *svm = to_svm(vcpu);
3555
3556         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3557                 return;
3558
3559         if (irr == -1)
3560                 return;
3561
3562         if (tpr >= irr)
3563                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3564 }
3565
3566 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3567 {
3568         return;
3569 }
3570
3571 static int svm_vm_has_apicv(struct kvm *kvm)
3572 {
3573         return 0;
3574 }
3575
3576 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3577 {
3578         return;
3579 }
3580
3581 static void svm_hwapic_isr_update(struct kvm *kvm, int isr)
3582 {
3583         return;
3584 }
3585
3586 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3587 {
3588         struct vcpu_svm *svm = to_svm(vcpu);
3589         struct vmcb *vmcb = svm->vmcb;
3590         int ret;
3591         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3592               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3593         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3594
3595         return ret;
3596 }
3597
3598 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3599 {
3600         struct vcpu_svm *svm = to_svm(vcpu);
3601
3602         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3603 }
3604
3605 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3606 {
3607         struct vcpu_svm *svm = to_svm(vcpu);
3608
3609         if (masked) {
3610                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3611                 set_intercept(svm, INTERCEPT_IRET);
3612         } else {
3613                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3614                 clr_intercept(svm, INTERCEPT_IRET);
3615         }
3616 }
3617
3618 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3619 {
3620         struct vcpu_svm *svm = to_svm(vcpu);
3621         struct vmcb *vmcb = svm->vmcb;
3622         int ret;
3623
3624         if (!gif_set(svm) ||
3625              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3626                 return 0;
3627
3628         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3629
3630         if (is_guest_mode(vcpu))
3631                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3632
3633         return ret;
3634 }
3635
3636 static void enable_irq_window(struct kvm_vcpu *vcpu)
3637 {
3638         struct vcpu_svm *svm = to_svm(vcpu);
3639
3640         /*
3641          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3642          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3643          * get that intercept, this function will be called again though and
3644          * we'll get the vintr intercept.
3645          */
3646         if (gif_set(svm) && nested_svm_intr(svm)) {
3647                 svm_set_vintr(svm);
3648                 svm_inject_irq(svm, 0x0);
3649         }
3650 }
3651
3652 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3653 {
3654         struct vcpu_svm *svm = to_svm(vcpu);
3655
3656         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3657             == HF_NMI_MASK)
3658                 return; /* IRET will cause a vm exit */
3659
3660         /*
3661          * Something prevents NMI from been injected. Single step over possible
3662          * problem (IRET or exception injection or interrupt shadow)
3663          */
3664         svm->nmi_singlestep = true;
3665         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3666         update_db_bp_intercept(vcpu);
3667 }
3668
3669 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3670 {
3671         return 0;
3672 }
3673
3674 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3675 {
3676         struct vcpu_svm *svm = to_svm(vcpu);
3677
3678         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3679                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3680         else
3681                 svm->asid_generation--;
3682 }
3683
3684 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3685 {
3686 }
3687
3688 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3689 {
3690         struct vcpu_svm *svm = to_svm(vcpu);
3691
3692         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3693                 return;
3694
3695         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3696                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3697                 kvm_set_cr8(vcpu, cr8);
3698         }
3699 }
3700
3701 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3702 {
3703         struct vcpu_svm *svm = to_svm(vcpu);
3704         u64 cr8;
3705
3706         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3707                 return;
3708
3709         cr8 = kvm_get_cr8(vcpu);
3710         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3711         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3712 }
3713
3714 static void svm_complete_interrupts(struct vcpu_svm *svm)
3715 {
3716         u8 vector;
3717         int type;
3718         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3719         unsigned int3_injected = svm->int3_injected;
3720
3721         svm->int3_injected = 0;
3722
3723         /*
3724          * If we've made progress since setting HF_IRET_MASK, we've
3725          * executed an IRET and can allow NMI injection.
3726          */
3727         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3728             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3729                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3730                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3731         }
3732
3733         svm->vcpu.arch.nmi_injected = false;
3734         kvm_clear_exception_queue(&svm->vcpu);
3735         kvm_clear_interrupt_queue(&svm->vcpu);
3736
3737         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3738                 return;
3739
3740         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3741
3742         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3743         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3744
3745         switch (type) {
3746         case SVM_EXITINTINFO_TYPE_NMI:
3747                 svm->vcpu.arch.nmi_injected = true;
3748                 break;
3749         case SVM_EXITINTINFO_TYPE_EXEPT:
3750                 /*
3751                  * In case of software exceptions, do not reinject the vector,
3752                  * but re-execute the instruction instead. Rewind RIP first
3753                  * if we emulated INT3 before.
3754                  */
3755                 if (kvm_exception_is_soft(vector)) {
3756                         if (vector == BP_VECTOR && int3_injected &&
3757                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3758                                 kvm_rip_write(&svm->vcpu,
3759                                               kvm_rip_read(&svm->vcpu) -
3760                                               int3_injected);
3761                         break;
3762                 }
3763                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3764                         u32 err = svm->vmcb->control.exit_int_info_err;
3765                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3766
3767                 } else
3768                         kvm_requeue_exception(&svm->vcpu, vector);
3769                 break;
3770         case SVM_EXITINTINFO_TYPE_INTR:
3771                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3772                 break;
3773         default:
3774                 break;
3775         }
3776 }
3777
3778 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3779 {
3780         struct vcpu_svm *svm = to_svm(vcpu);
3781         struct vmcb_control_area *control = &svm->vmcb->control;
3782
3783         control->exit_int_info = control->event_inj;
3784         control->exit_int_info_err = control->event_inj_err;
3785         control->event_inj = 0;
3786         svm_complete_interrupts(svm);
3787 }
3788
3789 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3790 {
3791         struct vcpu_svm *svm = to_svm(vcpu);
3792
3793         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3794         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3795         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3796
3797         /*
3798          * A vmexit emulation is required before the vcpu can be executed
3799          * again.
3800          */
3801         if (unlikely(svm->nested.exit_required))
3802                 return;
3803
3804         pre_svm_run(svm);
3805
3806         sync_lapic_to_cr8(vcpu);
3807
3808         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3809
3810         clgi();
3811
3812         local_irq_enable();
3813
3814         asm volatile (
3815                 "push %%" _ASM_BP "; \n\t"
3816                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3817                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3818                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3819                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3820                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3821                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3822 #ifdef CONFIG_X86_64
3823                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3824                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3825                 "mov %c[r10](%[svm]), %%r10 \n\t"
3826                 "mov %c[r11](%[svm]), %%r11 \n\t"
3827                 "mov %c[r12](%[svm]), %%r12 \n\t"
3828                 "mov %c[r13](%[svm]), %%r13 \n\t"
3829                 "mov %c[r14](%[svm]), %%r14 \n\t"
3830                 "mov %c[r15](%[svm]), %%r15 \n\t"
3831 #endif
3832
3833                 /* Enter guest mode */
3834                 "push %%" _ASM_AX " \n\t"
3835                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3836                 __ex(SVM_VMLOAD) "\n\t"
3837                 __ex(SVM_VMRUN) "\n\t"
3838                 __ex(SVM_VMSAVE) "\n\t"
3839                 "pop %%" _ASM_AX " \n\t"
3840
3841                 /* Save guest registers, load host registers */
3842                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3843                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3844                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3845                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3846                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3847                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3848 #ifdef CONFIG_X86_64
3849                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3850                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3851                 "mov %%r10, %c[r10](%[svm]) \n\t"
3852                 "mov %%r11, %c[r11](%[svm]) \n\t"
3853                 "mov %%r12, %c[r12](%[svm]) \n\t"
3854                 "mov %%r13, %c[r13](%[svm]) \n\t"
3855                 "mov %%r14, %c[r14](%[svm]) \n\t"
3856                 "mov %%r15, %c[r15](%[svm]) \n\t"
3857 #endif
3858                 "pop %%" _ASM_BP
3859                 :
3860                 : [svm]"a"(svm),
3861                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3862                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3863                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3864                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3865                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3866                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3867                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3868 #ifdef CONFIG_X86_64
3869                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3870                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3871                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3872                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3873                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3874                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3875                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3876                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3877 #endif
3878                 : "cc", "memory"
3879 #ifdef CONFIG_X86_64
3880                 , "rbx", "rcx", "rdx", "rsi", "rdi"
3881                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3882 #else
3883                 , "ebx", "ecx", "edx", "esi", "edi"
3884 #endif
3885                 );
3886
3887 #ifdef CONFIG_X86_64
3888         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3889 #else
3890         loadsegment(fs, svm->host.fs);
3891 #ifndef CONFIG_X86_32_LAZY_GS
3892         loadsegment(gs, svm->host.gs);
3893 #endif
3894 #endif
3895
3896         reload_tss(vcpu);
3897
3898         local_irq_disable();
3899
3900         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3901         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3902         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3903         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3904
3905         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3906
3907         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3908                 kvm_before_handle_nmi(&svm->vcpu);
3909
3910         stgi();
3911
3912         /* Any pending NMI will happen here */
3913
3914         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3915                 kvm_after_handle_nmi(&svm->vcpu);
3916
3917         sync_cr8_to_lapic(vcpu);
3918
3919         svm->next_rip = 0;
3920
3921         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3922
3923         /* if exit due to PF check for async PF */
3924         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3925                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3926
3927         if (npt_enabled) {
3928                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3929                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3930         }
3931
3932         /*
3933          * We need to handle MC intercepts here before the vcpu has a chance to
3934          * change the physical cpu
3935          */
3936         if (unlikely(svm->vmcb->control.exit_code ==
3937                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3938                 svm_handle_mce(svm);
3939
3940         mark_all_clean(svm->vmcb);
3941 }
3942
3943 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3944 {
3945         struct vcpu_svm *svm = to_svm(vcpu);
3946
3947         svm->vmcb->save.cr3 = root;
3948         mark_dirty(svm->vmcb, VMCB_CR);
3949         svm_flush_tlb(vcpu);
3950 }
3951
3952 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3953 {
3954         struct vcpu_svm *svm = to_svm(vcpu);
3955
3956         svm->vmcb->control.nested_cr3 = root;
3957         mark_dirty(svm->vmcb, VMCB_NPT);
3958
3959         /* Also sync guest cr3 here in case we live migrate */
3960         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3961         mark_dirty(svm->vmcb, VMCB_CR);
3962
3963         svm_flush_tlb(vcpu);
3964 }
3965
3966 static int is_disabled(void)
3967 {
3968         u64 vm_cr;
3969
3970         rdmsrl(MSR_VM_CR, vm_cr);
3971         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3972                 return 1;
3973
3974         return 0;
3975 }
3976
3977 static void
3978 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3979 {
3980         /*
3981          * Patch in the VMMCALL instruction:
3982          */
3983         hypercall[0] = 0x0f;
3984         hypercall[1] = 0x01;
3985         hypercall[2] = 0xd9;
3986 }
3987
3988 static void svm_check_processor_compat(void *rtn)
3989 {
3990         *(int *)rtn = 0;
3991 }
3992
3993 static bool svm_cpu_has_accelerated_tpr(void)
3994 {
3995         return false;
3996 }
3997
3998 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3999 {
4000         return 0;
4001 }
4002
4003 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4004 {
4005 }
4006
4007 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4008 {
4009         switch (func) {
4010         case 0x80000001:
4011                 if (nested)
4012                         entry->ecx |= (1 << 2); /* Set SVM bit */
4013                 break;
4014         case 0x8000000A:
4015                 entry->eax = 1; /* SVM revision 1 */
4016                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4017                                    ASID emulation to nested SVM */
4018                 entry->ecx = 0; /* Reserved */
4019                 entry->edx = 0; /* Per default do not support any
4020                                    additional features */
4021
4022                 /* Support next_rip if host supports it */
4023                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4024                         entry->edx |= SVM_FEATURE_NRIP;
4025
4026                 /* Support NPT for the guest if enabled */
4027                 if (npt_enabled)
4028                         entry->edx |= SVM_FEATURE_NPT;
4029
4030                 break;
4031         }
4032 }
4033
4034 static int svm_get_lpage_level(void)
4035 {
4036         return PT_PDPE_LEVEL;
4037 }
4038
4039 static bool svm_rdtscp_supported(void)
4040 {
4041         return false;
4042 }
4043
4044 static bool svm_invpcid_supported(void)
4045 {
4046         return false;
4047 }
4048
4049 static bool svm_has_wbinvd_exit(void)
4050 {
4051         return true;
4052 }
4053
4054 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4055 {
4056         struct vcpu_svm *svm = to_svm(vcpu);
4057
4058         set_exception_intercept(svm, NM_VECTOR);
4059         update_cr0_intercept(svm);
4060 }
4061
4062 #define PRE_EX(exit)  { .exit_code = (exit), \
4063                         .stage = X86_ICPT_PRE_EXCEPT, }
4064 #define POST_EX(exit) { .exit_code = (exit), \
4065                         .stage = X86_ICPT_POST_EXCEPT, }
4066 #define POST_MEM(exit) { .exit_code = (exit), \
4067                         .stage = X86_ICPT_POST_MEMACCESS, }
4068
4069 static const struct __x86_intercept {
4070         u32 exit_code;
4071         enum x86_intercept_stage stage;
4072 } x86_intercept_map[] = {
4073         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4074         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4075         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4076         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4077         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4078         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4079         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4080         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4081         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4082         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4083         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4084         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4085         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4086         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4087         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4088         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4089         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4090         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4091         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4092         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4093         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4094         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4095         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4096         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4097         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4098         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4099         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4100         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4101         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4102         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4103         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4104         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4105         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4106         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4107         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4108         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4109         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4110         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4111         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4112         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4113         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4114         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4115         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4116         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4117         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4118         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4119 };
4120
4121 #undef PRE_EX
4122 #undef POST_EX
4123 #undef POST_MEM
4124
4125 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4126                                struct x86_instruction_info *info,
4127                                enum x86_intercept_stage stage)
4128 {
4129         struct vcpu_svm *svm = to_svm(vcpu);
4130         int vmexit, ret = X86EMUL_CONTINUE;
4131         struct __x86_intercept icpt_info;
4132         struct vmcb *vmcb = svm->vmcb;
4133
4134         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4135                 goto out;
4136
4137         icpt_info = x86_intercept_map[info->intercept];
4138
4139         if (stage != icpt_info.stage)
4140                 goto out;
4141
4142         switch (icpt_info.exit_code) {
4143         case SVM_EXIT_READ_CR0:
4144                 if (info->intercept == x86_intercept_cr_read)
4145                         icpt_info.exit_code += info->modrm_reg;
4146                 break;
4147         case SVM_EXIT_WRITE_CR0: {
4148                 unsigned long cr0, val;
4149                 u64 intercept;
4150
4151                 if (info->intercept == x86_intercept_cr_write)
4152                         icpt_info.exit_code += info->modrm_reg;
4153
4154                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4155                         break;
4156
4157                 intercept = svm->nested.intercept;
4158
4159                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4160                         break;
4161
4162                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4163                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4164
4165                 if (info->intercept == x86_intercept_lmsw) {
4166                         cr0 &= 0xfUL;
4167                         val &= 0xfUL;
4168                         /* lmsw can't clear PE - catch this here */
4169                         if (cr0 & X86_CR0_PE)
4170                                 val |= X86_CR0_PE;
4171                 }
4172
4173                 if (cr0 ^ val)
4174                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4175
4176                 break;
4177         }
4178         case SVM_EXIT_READ_DR0:
4179         case SVM_EXIT_WRITE_DR0:
4180                 icpt_info.exit_code += info->modrm_reg;
4181                 break;
4182         case SVM_EXIT_MSR:
4183                 if (info->intercept == x86_intercept_wrmsr)
4184                         vmcb->control.exit_info_1 = 1;
4185                 else
4186                         vmcb->control.exit_info_1 = 0;
4187                 break;
4188         case SVM_EXIT_PAUSE:
4189                 /*
4190                  * We get this for NOP only, but pause
4191                  * is rep not, check this here
4192                  */
4193                 if (info->rep_prefix != REPE_PREFIX)
4194                         goto out;
4195         case SVM_EXIT_IOIO: {
4196                 u64 exit_info;
4197                 u32 bytes;
4198
4199                 exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4200
4201                 if (info->intercept == x86_intercept_in ||
4202                     info->intercept == x86_intercept_ins) {
4203                         exit_info |= SVM_IOIO_TYPE_MASK;
4204                         bytes = info->src_bytes;
4205                 } else {
4206                         bytes = info->dst_bytes;
4207                 }
4208
4209                 if (info->intercept == x86_intercept_outs ||
4210                     info->intercept == x86_intercept_ins)
4211                         exit_info |= SVM_IOIO_STR_MASK;
4212
4213                 if (info->rep_prefix)
4214                         exit_info |= SVM_IOIO_REP_MASK;
4215
4216                 bytes = min(bytes, 4u);
4217
4218                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4219
4220                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4221
4222                 vmcb->control.exit_info_1 = exit_info;
4223                 vmcb->control.exit_info_2 = info->next_rip;
4224
4225                 break;
4226         }
4227         default:
4228                 break;
4229         }
4230
4231         vmcb->control.next_rip  = info->next_rip;
4232         vmcb->control.exit_code = icpt_info.exit_code;
4233         vmexit = nested_svm_exit_handled(svm);
4234
4235         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4236                                            : X86EMUL_CONTINUE;
4237
4238 out:
4239         return ret;
4240 }
4241
4242 static struct kvm_x86_ops svm_x86_ops = {
4243         .cpu_has_kvm_support = has_svm,
4244         .disabled_by_bios = is_disabled,
4245         .hardware_setup = svm_hardware_setup,
4246         .hardware_unsetup = svm_hardware_unsetup,
4247         .check_processor_compatibility = svm_check_processor_compat,
4248         .hardware_enable = svm_hardware_enable,
4249         .hardware_disable = svm_hardware_disable,
4250         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4251
4252         .vcpu_create = svm_create_vcpu,
4253         .vcpu_free = svm_free_vcpu,
4254         .vcpu_reset = svm_vcpu_reset,
4255
4256         .prepare_guest_switch = svm_prepare_guest_switch,
4257         .vcpu_load = svm_vcpu_load,
4258         .vcpu_put = svm_vcpu_put,
4259
4260         .update_db_bp_intercept = update_db_bp_intercept,
4261         .get_msr = svm_get_msr,
4262         .set_msr = svm_set_msr,
4263         .get_segment_base = svm_get_segment_base,
4264         .get_segment = svm_get_segment,
4265         .set_segment = svm_set_segment,
4266         .get_cpl = svm_get_cpl,
4267         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4268         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4269         .decache_cr3 = svm_decache_cr3,
4270         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4271         .set_cr0 = svm_set_cr0,
4272         .set_cr3 = svm_set_cr3,
4273         .set_cr4 = svm_set_cr4,
4274         .set_efer = svm_set_efer,
4275         .get_idt = svm_get_idt,
4276         .set_idt = svm_set_idt,
4277         .get_gdt = svm_get_gdt,
4278         .set_gdt = svm_set_gdt,
4279         .set_dr7 = svm_set_dr7,
4280         .cache_reg = svm_cache_reg,
4281         .get_rflags = svm_get_rflags,
4282         .set_rflags = svm_set_rflags,
4283         .fpu_activate = svm_fpu_activate,
4284         .fpu_deactivate = svm_fpu_deactivate,
4285
4286         .tlb_flush = svm_flush_tlb,
4287
4288         .run = svm_vcpu_run,
4289         .handle_exit = handle_exit,
4290         .skip_emulated_instruction = skip_emulated_instruction,
4291         .set_interrupt_shadow = svm_set_interrupt_shadow,
4292         .get_interrupt_shadow = svm_get_interrupt_shadow,
4293         .patch_hypercall = svm_patch_hypercall,
4294         .set_irq = svm_set_irq,
4295         .set_nmi = svm_inject_nmi,
4296         .queue_exception = svm_queue_exception,
4297         .cancel_injection = svm_cancel_injection,
4298         .interrupt_allowed = svm_interrupt_allowed,
4299         .nmi_allowed = svm_nmi_allowed,
4300         .get_nmi_mask = svm_get_nmi_mask,
4301         .set_nmi_mask = svm_set_nmi_mask,
4302         .enable_nmi_window = enable_nmi_window,
4303         .enable_irq_window = enable_irq_window,
4304         .update_cr8_intercept = update_cr8_intercept,
4305         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4306         .vm_has_apicv = svm_vm_has_apicv,
4307         .load_eoi_exitmap = svm_load_eoi_exitmap,
4308         .hwapic_isr_update = svm_hwapic_isr_update,
4309
4310         .set_tss_addr = svm_set_tss_addr,
4311         .get_tdp_level = get_npt_level,
4312         .get_mt_mask = svm_get_mt_mask,
4313
4314         .get_exit_info = svm_get_exit_info,
4315
4316         .get_lpage_level = svm_get_lpage_level,
4317
4318         .cpuid_update = svm_cpuid_update,
4319
4320         .rdtscp_supported = svm_rdtscp_supported,
4321         .invpcid_supported = svm_invpcid_supported,
4322
4323         .set_supported_cpuid = svm_set_supported_cpuid,
4324
4325         .has_wbinvd_exit = svm_has_wbinvd_exit,
4326
4327         .set_tsc_khz = svm_set_tsc_khz,
4328         .read_tsc_offset = svm_read_tsc_offset,
4329         .write_tsc_offset = svm_write_tsc_offset,
4330         .adjust_tsc_offset = svm_adjust_tsc_offset,
4331         .compute_tsc_offset = svm_compute_tsc_offset,
4332         .read_l1_tsc = svm_read_l1_tsc,
4333
4334         .set_tdp_cr3 = set_tdp_cr3,
4335
4336         .check_intercept = svm_check_intercept,
4337 };
4338
4339 static int __init svm_init(void)
4340 {
4341         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4342                         __alignof__(struct vcpu_svm), THIS_MODULE);
4343 }
4344
4345 static void __exit svm_exit(void)
4346 {
4347         kvm_exit();
4348 }
4349
4350 module_init(svm_init)
4351 module_exit(svm_exit)