KVM: x86: Add a common TSC scaling function
[linux-2.6-block.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34
35 #include <asm/perf_event.h>
36 #include <asm/tlbflush.h>
37 #include <asm/desc.h>
38 #include <asm/debugreg.h>
39 #include <asm/kvm_para.h>
40
41 #include <asm/virtext.h>
42 #include "trace.h"
43
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
48
49 static const struct x86_cpu_id svm_cpu_id[] = {
50         X86_FEATURE_MATCH(X86_FEATURE_SVM),
51         {}
52 };
53 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
54
55 #define IOPM_ALLOC_ORDER 2
56 #define MSRPM_ALLOC_ORDER 1
57
58 #define SEG_TYPE_LDT 2
59 #define SEG_TYPE_BUSY_TSS16 3
60
61 #define SVM_FEATURE_NPT            (1 <<  0)
62 #define SVM_FEATURE_LBRV           (1 <<  1)
63 #define SVM_FEATURE_SVML           (1 <<  2)
64 #define SVM_FEATURE_NRIP           (1 <<  3)
65 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
66 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
67 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
68 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
69 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
70
71 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
72 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
73 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
74
75 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76
77 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
78 #define TSC_RATIO_MIN           0x0000000000000001ULL
79 #define TSC_RATIO_MAX           0x000000ffffffffffULL
80
81 static bool erratum_383_found __read_mostly;
82
83 static const u32 host_save_user_msrs[] = {
84 #ifdef CONFIG_X86_64
85         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
86         MSR_FS_BASE,
87 #endif
88         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
89 };
90
91 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
92
93 struct kvm_vcpu;
94
95 struct nested_state {
96         struct vmcb *hsave;
97         u64 hsave_msr;
98         u64 vm_cr_msr;
99         u64 vmcb;
100
101         /* These are the merged vectors */
102         u32 *msrpm;
103
104         /* gpa pointers to the real vectors */
105         u64 vmcb_msrpm;
106         u64 vmcb_iopm;
107
108         /* A VMEXIT is required but not yet emulated */
109         bool exit_required;
110
111         /* cache for intercepts of the guest */
112         u32 intercept_cr;
113         u32 intercept_dr;
114         u32 intercept_exceptions;
115         u64 intercept;
116
117         /* Nested Paging related state */
118         u64 nested_cr3;
119 };
120
121 #define MSRPM_OFFSETS   16
122 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
123
124 /*
125  * Set osvw_len to higher value when updated Revision Guides
126  * are published and we know what the new status bits are
127  */
128 static uint64_t osvw_len = 4, osvw_status;
129
130 struct vcpu_svm {
131         struct kvm_vcpu vcpu;
132         struct vmcb *vmcb;
133         unsigned long vmcb_pa;
134         struct svm_cpu_data *svm_data;
135         uint64_t asid_generation;
136         uint64_t sysenter_esp;
137         uint64_t sysenter_eip;
138
139         u64 next_rip;
140
141         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
142         struct {
143                 u16 fs;
144                 u16 gs;
145                 u16 ldt;
146                 u64 gs_base;
147         } host;
148
149         u32 *msrpm;
150
151         ulong nmi_iret_rip;
152
153         struct nested_state nested;
154
155         bool nmi_singlestep;
156
157         unsigned int3_injected;
158         unsigned long int3_rip;
159         u32 apf_reason;
160
161         /* cached guest cpuid flags for faster access */
162         bool nrips_enabled      : 1;
163 };
164
165 static DEFINE_PER_CPU(u64, current_tsc_ratio);
166 #define TSC_RATIO_DEFAULT       0x0100000000ULL
167
168 #define MSR_INVALID                     0xffffffffU
169
170 static const struct svm_direct_access_msrs {
171         u32 index;   /* Index of the MSR */
172         bool always; /* True if intercept is always on */
173 } direct_access_msrs[] = {
174         { .index = MSR_STAR,                            .always = true  },
175         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
176 #ifdef CONFIG_X86_64
177         { .index = MSR_GS_BASE,                         .always = true  },
178         { .index = MSR_FS_BASE,                         .always = true  },
179         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
180         { .index = MSR_LSTAR,                           .always = true  },
181         { .index = MSR_CSTAR,                           .always = true  },
182         { .index = MSR_SYSCALL_MASK,                    .always = true  },
183 #endif
184         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
185         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
186         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
187         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
188         { .index = MSR_INVALID,                         .always = false },
189 };
190
191 /* enable NPT for AMD64 and X86 with PAE */
192 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
193 static bool npt_enabled = true;
194 #else
195 static bool npt_enabled;
196 #endif
197
198 /* allow nested paging (virtualized MMU) for all guests */
199 static int npt = true;
200 module_param(npt, int, S_IRUGO);
201
202 /* allow nested virtualization in KVM/SVM */
203 static int nested = true;
204 module_param(nested, int, S_IRUGO);
205
206 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
207 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
208 static void svm_complete_interrupts(struct vcpu_svm *svm);
209
210 static int nested_svm_exit_handled(struct vcpu_svm *svm);
211 static int nested_svm_intercept(struct vcpu_svm *svm);
212 static int nested_svm_vmexit(struct vcpu_svm *svm);
213 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
214                                       bool has_error_code, u32 error_code);
215
216 enum {
217         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
218                             pause filter count */
219         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
220         VMCB_ASID,       /* ASID */
221         VMCB_INTR,       /* int_ctl, int_vector */
222         VMCB_NPT,        /* npt_en, nCR3, gPAT */
223         VMCB_CR,         /* CR0, CR3, CR4, EFER */
224         VMCB_DR,         /* DR6, DR7 */
225         VMCB_DT,         /* GDT, IDT */
226         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
227         VMCB_CR2,        /* CR2 only */
228         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
229         VMCB_DIRTY_MAX,
230 };
231
232 /* TPR and CR2 are always written before VMRUN */
233 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
234
235 static inline void mark_all_dirty(struct vmcb *vmcb)
236 {
237         vmcb->control.clean = 0;
238 }
239
240 static inline void mark_all_clean(struct vmcb *vmcb)
241 {
242         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
243                                & ~VMCB_ALWAYS_DIRTY_MASK;
244 }
245
246 static inline void mark_dirty(struct vmcb *vmcb, int bit)
247 {
248         vmcb->control.clean &= ~(1 << bit);
249 }
250
251 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
252 {
253         return container_of(vcpu, struct vcpu_svm, vcpu);
254 }
255
256 static void recalc_intercepts(struct vcpu_svm *svm)
257 {
258         struct vmcb_control_area *c, *h;
259         struct nested_state *g;
260
261         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
262
263         if (!is_guest_mode(&svm->vcpu))
264                 return;
265
266         c = &svm->vmcb->control;
267         h = &svm->nested.hsave->control;
268         g = &svm->nested;
269
270         c->intercept_cr = h->intercept_cr | g->intercept_cr;
271         c->intercept_dr = h->intercept_dr | g->intercept_dr;
272         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
273         c->intercept = h->intercept | g->intercept;
274 }
275
276 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
277 {
278         if (is_guest_mode(&svm->vcpu))
279                 return svm->nested.hsave;
280         else
281                 return svm->vmcb;
282 }
283
284 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
285 {
286         struct vmcb *vmcb = get_host_vmcb(svm);
287
288         vmcb->control.intercept_cr |= (1U << bit);
289
290         recalc_intercepts(svm);
291 }
292
293 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
294 {
295         struct vmcb *vmcb = get_host_vmcb(svm);
296
297         vmcb->control.intercept_cr &= ~(1U << bit);
298
299         recalc_intercepts(svm);
300 }
301
302 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
303 {
304         struct vmcb *vmcb = get_host_vmcb(svm);
305
306         return vmcb->control.intercept_cr & (1U << bit);
307 }
308
309 static inline void set_dr_intercepts(struct vcpu_svm *svm)
310 {
311         struct vmcb *vmcb = get_host_vmcb(svm);
312
313         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
314                 | (1 << INTERCEPT_DR1_READ)
315                 | (1 << INTERCEPT_DR2_READ)
316                 | (1 << INTERCEPT_DR3_READ)
317                 | (1 << INTERCEPT_DR4_READ)
318                 | (1 << INTERCEPT_DR5_READ)
319                 | (1 << INTERCEPT_DR6_READ)
320                 | (1 << INTERCEPT_DR7_READ)
321                 | (1 << INTERCEPT_DR0_WRITE)
322                 | (1 << INTERCEPT_DR1_WRITE)
323                 | (1 << INTERCEPT_DR2_WRITE)
324                 | (1 << INTERCEPT_DR3_WRITE)
325                 | (1 << INTERCEPT_DR4_WRITE)
326                 | (1 << INTERCEPT_DR5_WRITE)
327                 | (1 << INTERCEPT_DR6_WRITE)
328                 | (1 << INTERCEPT_DR7_WRITE);
329
330         recalc_intercepts(svm);
331 }
332
333 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
334 {
335         struct vmcb *vmcb = get_host_vmcb(svm);
336
337         vmcb->control.intercept_dr = 0;
338
339         recalc_intercepts(svm);
340 }
341
342 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
343 {
344         struct vmcb *vmcb = get_host_vmcb(svm);
345
346         vmcb->control.intercept_exceptions |= (1U << bit);
347
348         recalc_intercepts(svm);
349 }
350
351 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
352 {
353         struct vmcb *vmcb = get_host_vmcb(svm);
354
355         vmcb->control.intercept_exceptions &= ~(1U << bit);
356
357         recalc_intercepts(svm);
358 }
359
360 static inline void set_intercept(struct vcpu_svm *svm, int bit)
361 {
362         struct vmcb *vmcb = get_host_vmcb(svm);
363
364         vmcb->control.intercept |= (1ULL << bit);
365
366         recalc_intercepts(svm);
367 }
368
369 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
370 {
371         struct vmcb *vmcb = get_host_vmcb(svm);
372
373         vmcb->control.intercept &= ~(1ULL << bit);
374
375         recalc_intercepts(svm);
376 }
377
378 static inline void enable_gif(struct vcpu_svm *svm)
379 {
380         svm->vcpu.arch.hflags |= HF_GIF_MASK;
381 }
382
383 static inline void disable_gif(struct vcpu_svm *svm)
384 {
385         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
386 }
387
388 static inline bool gif_set(struct vcpu_svm *svm)
389 {
390         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
391 }
392
393 static unsigned long iopm_base;
394
395 struct kvm_ldttss_desc {
396         u16 limit0;
397         u16 base0;
398         unsigned base1:8, type:5, dpl:2, p:1;
399         unsigned limit1:4, zero0:3, g:1, base2:8;
400         u32 base3;
401         u32 zero1;
402 } __attribute__((packed));
403
404 struct svm_cpu_data {
405         int cpu;
406
407         u64 asid_generation;
408         u32 max_asid;
409         u32 next_asid;
410         struct kvm_ldttss_desc *tss_desc;
411
412         struct page *save_area;
413 };
414
415 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
416
417 struct svm_init_data {
418         int cpu;
419         int r;
420 };
421
422 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
423
424 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
425 #define MSRS_RANGE_SIZE 2048
426 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
427
428 static u32 svm_msrpm_offset(u32 msr)
429 {
430         u32 offset;
431         int i;
432
433         for (i = 0; i < NUM_MSR_MAPS; i++) {
434                 if (msr < msrpm_ranges[i] ||
435                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
436                         continue;
437
438                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
439                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
440
441                 /* Now we have the u8 offset - but need the u32 offset */
442                 return offset / 4;
443         }
444
445         /* MSR not in any range */
446         return MSR_INVALID;
447 }
448
449 #define MAX_INST_SIZE 15
450
451 static inline void clgi(void)
452 {
453         asm volatile (__ex(SVM_CLGI));
454 }
455
456 static inline void stgi(void)
457 {
458         asm volatile (__ex(SVM_STGI));
459 }
460
461 static inline void invlpga(unsigned long addr, u32 asid)
462 {
463         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
464 }
465
466 static int get_npt_level(void)
467 {
468 #ifdef CONFIG_X86_64
469         return PT64_ROOT_LEVEL;
470 #else
471         return PT32E_ROOT_LEVEL;
472 #endif
473 }
474
475 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
476 {
477         vcpu->arch.efer = efer;
478         if (!npt_enabled && !(efer & EFER_LMA))
479                 efer &= ~EFER_LME;
480
481         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
482         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
483 }
484
485 static int is_external_interrupt(u32 info)
486 {
487         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
488         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
489 }
490
491 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
492 {
493         struct vcpu_svm *svm = to_svm(vcpu);
494         u32 ret = 0;
495
496         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
497                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
498         return ret;
499 }
500
501 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
502 {
503         struct vcpu_svm *svm = to_svm(vcpu);
504
505         if (mask == 0)
506                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
507         else
508                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
509
510 }
511
512 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
513 {
514         struct vcpu_svm *svm = to_svm(vcpu);
515
516         if (svm->vmcb->control.next_rip != 0) {
517                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
518                 svm->next_rip = svm->vmcb->control.next_rip;
519         }
520
521         if (!svm->next_rip) {
522                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
523                                 EMULATE_DONE)
524                         printk(KERN_DEBUG "%s: NOP\n", __func__);
525                 return;
526         }
527         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
528                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
529                        __func__, kvm_rip_read(vcpu), svm->next_rip);
530
531         kvm_rip_write(vcpu, svm->next_rip);
532         svm_set_interrupt_shadow(vcpu, 0);
533 }
534
535 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
536                                 bool has_error_code, u32 error_code,
537                                 bool reinject)
538 {
539         struct vcpu_svm *svm = to_svm(vcpu);
540
541         /*
542          * If we are within a nested VM we'd better #VMEXIT and let the guest
543          * handle the exception
544          */
545         if (!reinject &&
546             nested_svm_check_exception(svm, nr, has_error_code, error_code))
547                 return;
548
549         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
550                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
551
552                 /*
553                  * For guest debugging where we have to reinject #BP if some
554                  * INT3 is guest-owned:
555                  * Emulate nRIP by moving RIP forward. Will fail if injection
556                  * raises a fault that is not intercepted. Still better than
557                  * failing in all cases.
558                  */
559                 skip_emulated_instruction(&svm->vcpu);
560                 rip = kvm_rip_read(&svm->vcpu);
561                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
562                 svm->int3_injected = rip - old_rip;
563         }
564
565         svm->vmcb->control.event_inj = nr
566                 | SVM_EVTINJ_VALID
567                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
568                 | SVM_EVTINJ_TYPE_EXEPT;
569         svm->vmcb->control.event_inj_err = error_code;
570 }
571
572 static void svm_init_erratum_383(void)
573 {
574         u32 low, high;
575         int err;
576         u64 val;
577
578         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
579                 return;
580
581         /* Use _safe variants to not break nested virtualization */
582         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
583         if (err)
584                 return;
585
586         val |= (1ULL << 47);
587
588         low  = lower_32_bits(val);
589         high = upper_32_bits(val);
590
591         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
592
593         erratum_383_found = true;
594 }
595
596 static void svm_init_osvw(struct kvm_vcpu *vcpu)
597 {
598         /*
599          * Guests should see errata 400 and 415 as fixed (assuming that
600          * HLT and IO instructions are intercepted).
601          */
602         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
603         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
604
605         /*
606          * By increasing VCPU's osvw.length to 3 we are telling the guest that
607          * all osvw.status bits inside that length, including bit 0 (which is
608          * reserved for erratum 298), are valid. However, if host processor's
609          * osvw_len is 0 then osvw_status[0] carries no information. We need to
610          * be conservative here and therefore we tell the guest that erratum 298
611          * is present (because we really don't know).
612          */
613         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
614                 vcpu->arch.osvw.status |= 1;
615 }
616
617 static int has_svm(void)
618 {
619         const char *msg;
620
621         if (!cpu_has_svm(&msg)) {
622                 printk(KERN_INFO "has_svm: %s\n", msg);
623                 return 0;
624         }
625
626         return 1;
627 }
628
629 static void svm_hardware_disable(void)
630 {
631         /* Make sure we clean up behind us */
632         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
633                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
634
635         cpu_svm_disable();
636
637         amd_pmu_disable_virt();
638 }
639
640 static int svm_hardware_enable(void)
641 {
642
643         struct svm_cpu_data *sd;
644         uint64_t efer;
645         struct desc_ptr gdt_descr;
646         struct desc_struct *gdt;
647         int me = raw_smp_processor_id();
648
649         rdmsrl(MSR_EFER, efer);
650         if (efer & EFER_SVME)
651                 return -EBUSY;
652
653         if (!has_svm()) {
654                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
655                 return -EINVAL;
656         }
657         sd = per_cpu(svm_data, me);
658         if (!sd) {
659                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
660                 return -EINVAL;
661         }
662
663         sd->asid_generation = 1;
664         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
665         sd->next_asid = sd->max_asid + 1;
666
667         native_store_gdt(&gdt_descr);
668         gdt = (struct desc_struct *)gdt_descr.address;
669         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
670
671         wrmsrl(MSR_EFER, efer | EFER_SVME);
672
673         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
674
675         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
676                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
677                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
678         }
679
680
681         /*
682          * Get OSVW bits.
683          *
684          * Note that it is possible to have a system with mixed processor
685          * revisions and therefore different OSVW bits. If bits are not the same
686          * on different processors then choose the worst case (i.e. if erratum
687          * is present on one processor and not on another then assume that the
688          * erratum is present everywhere).
689          */
690         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
691                 uint64_t len, status = 0;
692                 int err;
693
694                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
695                 if (!err)
696                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
697                                                       &err);
698
699                 if (err)
700                         osvw_status = osvw_len = 0;
701                 else {
702                         if (len < osvw_len)
703                                 osvw_len = len;
704                         osvw_status |= status;
705                         osvw_status &= (1ULL << osvw_len) - 1;
706                 }
707         } else
708                 osvw_status = osvw_len = 0;
709
710         svm_init_erratum_383();
711
712         amd_pmu_enable_virt();
713
714         return 0;
715 }
716
717 static void svm_cpu_uninit(int cpu)
718 {
719         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
720
721         if (!sd)
722                 return;
723
724         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
725         __free_page(sd->save_area);
726         kfree(sd);
727 }
728
729 static int svm_cpu_init(int cpu)
730 {
731         struct svm_cpu_data *sd;
732         int r;
733
734         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
735         if (!sd)
736                 return -ENOMEM;
737         sd->cpu = cpu;
738         sd->save_area = alloc_page(GFP_KERNEL);
739         r = -ENOMEM;
740         if (!sd->save_area)
741                 goto err_1;
742
743         per_cpu(svm_data, cpu) = sd;
744
745         return 0;
746
747 err_1:
748         kfree(sd);
749         return r;
750
751 }
752
753 static bool valid_msr_intercept(u32 index)
754 {
755         int i;
756
757         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
758                 if (direct_access_msrs[i].index == index)
759                         return true;
760
761         return false;
762 }
763
764 static void set_msr_interception(u32 *msrpm, unsigned msr,
765                                  int read, int write)
766 {
767         u8 bit_read, bit_write;
768         unsigned long tmp;
769         u32 offset;
770
771         /*
772          * If this warning triggers extend the direct_access_msrs list at the
773          * beginning of the file
774          */
775         WARN_ON(!valid_msr_intercept(msr));
776
777         offset    = svm_msrpm_offset(msr);
778         bit_read  = 2 * (msr & 0x0f);
779         bit_write = 2 * (msr & 0x0f) + 1;
780         tmp       = msrpm[offset];
781
782         BUG_ON(offset == MSR_INVALID);
783
784         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
785         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
786
787         msrpm[offset] = tmp;
788 }
789
790 static void svm_vcpu_init_msrpm(u32 *msrpm)
791 {
792         int i;
793
794         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
795
796         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
797                 if (!direct_access_msrs[i].always)
798                         continue;
799
800                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
801         }
802 }
803
804 static void add_msr_offset(u32 offset)
805 {
806         int i;
807
808         for (i = 0; i < MSRPM_OFFSETS; ++i) {
809
810                 /* Offset already in list? */
811                 if (msrpm_offsets[i] == offset)
812                         return;
813
814                 /* Slot used by another offset? */
815                 if (msrpm_offsets[i] != MSR_INVALID)
816                         continue;
817
818                 /* Add offset to list */
819                 msrpm_offsets[i] = offset;
820
821                 return;
822         }
823
824         /*
825          * If this BUG triggers the msrpm_offsets table has an overflow. Just
826          * increase MSRPM_OFFSETS in this case.
827          */
828         BUG();
829 }
830
831 static void init_msrpm_offsets(void)
832 {
833         int i;
834
835         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
836
837         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
838                 u32 offset;
839
840                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
841                 BUG_ON(offset == MSR_INVALID);
842
843                 add_msr_offset(offset);
844         }
845 }
846
847 static void svm_enable_lbrv(struct vcpu_svm *svm)
848 {
849         u32 *msrpm = svm->msrpm;
850
851         svm->vmcb->control.lbr_ctl = 1;
852         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
853         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
854         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
855         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
856 }
857
858 static void svm_disable_lbrv(struct vcpu_svm *svm)
859 {
860         u32 *msrpm = svm->msrpm;
861
862         svm->vmcb->control.lbr_ctl = 0;
863         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
864         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
865         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
866         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
867 }
868
869 static __init int svm_hardware_setup(void)
870 {
871         int cpu;
872         struct page *iopm_pages;
873         void *iopm_va;
874         int r;
875
876         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
877
878         if (!iopm_pages)
879                 return -ENOMEM;
880
881         iopm_va = page_address(iopm_pages);
882         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
883         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
884
885         init_msrpm_offsets();
886
887         if (boot_cpu_has(X86_FEATURE_NX))
888                 kvm_enable_efer_bits(EFER_NX);
889
890         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
891                 kvm_enable_efer_bits(EFER_FFXSR);
892
893         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
894                 kvm_has_tsc_control = true;
895                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
896                 kvm_tsc_scaling_ratio_frac_bits = 32;
897         }
898
899         if (nested) {
900                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
901                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
902         }
903
904         for_each_possible_cpu(cpu) {
905                 r = svm_cpu_init(cpu);
906                 if (r)
907                         goto err;
908         }
909
910         if (!boot_cpu_has(X86_FEATURE_NPT))
911                 npt_enabled = false;
912
913         if (npt_enabled && !npt) {
914                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
915                 npt_enabled = false;
916         }
917
918         if (npt_enabled) {
919                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
920                 kvm_enable_tdp();
921         } else
922                 kvm_disable_tdp();
923
924         return 0;
925
926 err:
927         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
928         iopm_base = 0;
929         return r;
930 }
931
932 static __exit void svm_hardware_unsetup(void)
933 {
934         int cpu;
935
936         for_each_possible_cpu(cpu)
937                 svm_cpu_uninit(cpu);
938
939         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
940         iopm_base = 0;
941 }
942
943 static void init_seg(struct vmcb_seg *seg)
944 {
945         seg->selector = 0;
946         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
947                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
948         seg->limit = 0xffff;
949         seg->base = 0;
950 }
951
952 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
953 {
954         seg->selector = 0;
955         seg->attrib = SVM_SELECTOR_P_MASK | type;
956         seg->limit = 0xffff;
957         seg->base = 0;
958 }
959
960 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
961 {
962         u64 ratio;
963         u64 khz;
964
965         /* Guest TSC same frequency as host TSC? */
966         if (!scale) {
967                 vcpu->arch.tsc_scaling_ratio = TSC_RATIO_DEFAULT;
968                 return;
969         }
970
971         /* TSC scaling supported? */
972         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
973                 if (user_tsc_khz > tsc_khz) {
974                         vcpu->arch.tsc_catchup = 1;
975                         vcpu->arch.tsc_always_catchup = 1;
976                 } else
977                         WARN(1, "user requested TSC rate below hardware speed\n");
978                 return;
979         }
980
981         khz = user_tsc_khz;
982
983         /* TSC scaling required  - calculate ratio */
984         ratio = khz << 32;
985         do_div(ratio, tsc_khz);
986
987         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
988                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
989                                 user_tsc_khz);
990                 return;
991         }
992         vcpu->arch.tsc_scaling_ratio = ratio;
993 }
994
995 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
996 {
997         struct vcpu_svm *svm = to_svm(vcpu);
998
999         return svm->vmcb->control.tsc_offset;
1000 }
1001
1002 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1003 {
1004         struct vcpu_svm *svm = to_svm(vcpu);
1005         u64 g_tsc_offset = 0;
1006
1007         if (is_guest_mode(vcpu)) {
1008                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1009                                svm->nested.hsave->control.tsc_offset;
1010                 svm->nested.hsave->control.tsc_offset = offset;
1011         } else
1012                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1013                                            svm->vmcb->control.tsc_offset,
1014                                            offset);
1015
1016         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1017
1018         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1019 }
1020
1021 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1022 {
1023         struct vcpu_svm *svm = to_svm(vcpu);
1024
1025         if (host) {
1026                 if (vcpu->arch.tsc_scaling_ratio != TSC_RATIO_DEFAULT)
1027                         WARN_ON(adjustment < 0);
1028                 adjustment = kvm_scale_tsc(vcpu, (u64)adjustment);
1029         }
1030
1031         svm->vmcb->control.tsc_offset += adjustment;
1032         if (is_guest_mode(vcpu))
1033                 svm->nested.hsave->control.tsc_offset += adjustment;
1034         else
1035                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1036                                      svm->vmcb->control.tsc_offset - adjustment,
1037                                      svm->vmcb->control.tsc_offset);
1038
1039         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1040 }
1041
1042 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1043 {
1044         u64 tsc;
1045
1046         tsc = kvm_scale_tsc(vcpu, rdtsc());
1047
1048         return target_tsc - tsc;
1049 }
1050
1051 static void init_vmcb(struct vcpu_svm *svm)
1052 {
1053         struct vmcb_control_area *control = &svm->vmcb->control;
1054         struct vmcb_save_area *save = &svm->vmcb->save;
1055
1056         svm->vcpu.fpu_active = 1;
1057         svm->vcpu.arch.hflags = 0;
1058
1059         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1060         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1061         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1062         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1063         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1064         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1065         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1066
1067         set_dr_intercepts(svm);
1068
1069         set_exception_intercept(svm, PF_VECTOR);
1070         set_exception_intercept(svm, UD_VECTOR);
1071         set_exception_intercept(svm, MC_VECTOR);
1072
1073         set_intercept(svm, INTERCEPT_INTR);
1074         set_intercept(svm, INTERCEPT_NMI);
1075         set_intercept(svm, INTERCEPT_SMI);
1076         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1077         set_intercept(svm, INTERCEPT_RDPMC);
1078         set_intercept(svm, INTERCEPT_CPUID);
1079         set_intercept(svm, INTERCEPT_INVD);
1080         set_intercept(svm, INTERCEPT_HLT);
1081         set_intercept(svm, INTERCEPT_INVLPG);
1082         set_intercept(svm, INTERCEPT_INVLPGA);
1083         set_intercept(svm, INTERCEPT_IOIO_PROT);
1084         set_intercept(svm, INTERCEPT_MSR_PROT);
1085         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1086         set_intercept(svm, INTERCEPT_SHUTDOWN);
1087         set_intercept(svm, INTERCEPT_VMRUN);
1088         set_intercept(svm, INTERCEPT_VMMCALL);
1089         set_intercept(svm, INTERCEPT_VMLOAD);
1090         set_intercept(svm, INTERCEPT_VMSAVE);
1091         set_intercept(svm, INTERCEPT_STGI);
1092         set_intercept(svm, INTERCEPT_CLGI);
1093         set_intercept(svm, INTERCEPT_SKINIT);
1094         set_intercept(svm, INTERCEPT_WBINVD);
1095         set_intercept(svm, INTERCEPT_MONITOR);
1096         set_intercept(svm, INTERCEPT_MWAIT);
1097         set_intercept(svm, INTERCEPT_XSETBV);
1098
1099         control->iopm_base_pa = iopm_base;
1100         control->msrpm_base_pa = __pa(svm->msrpm);
1101         control->int_ctl = V_INTR_MASKING_MASK;
1102
1103         init_seg(&save->es);
1104         init_seg(&save->ss);
1105         init_seg(&save->ds);
1106         init_seg(&save->fs);
1107         init_seg(&save->gs);
1108
1109         save->cs.selector = 0xf000;
1110         save->cs.base = 0xffff0000;
1111         /* Executable/Readable Code Segment */
1112         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1113                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1114         save->cs.limit = 0xffff;
1115
1116         save->gdtr.limit = 0xffff;
1117         save->idtr.limit = 0xffff;
1118
1119         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1120         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1121
1122         svm_set_efer(&svm->vcpu, 0);
1123         save->dr6 = 0xffff0ff0;
1124         kvm_set_rflags(&svm->vcpu, 2);
1125         save->rip = 0x0000fff0;
1126         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1127
1128         /*
1129          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1130          * It also updates the guest-visible cr0 value.
1131          */
1132         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1133         kvm_mmu_reset_context(&svm->vcpu);
1134
1135         save->cr4 = X86_CR4_PAE;
1136         /* rdx = ?? */
1137
1138         if (npt_enabled) {
1139                 /* Setup VMCB for Nested Paging */
1140                 control->nested_ctl = 1;
1141                 clr_intercept(svm, INTERCEPT_INVLPG);
1142                 clr_exception_intercept(svm, PF_VECTOR);
1143                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1144                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1145                 save->g_pat = svm->vcpu.arch.pat;
1146                 save->cr3 = 0;
1147                 save->cr4 = 0;
1148         }
1149         svm->asid_generation = 0;
1150
1151         svm->nested.vmcb = 0;
1152         svm->vcpu.arch.hflags = 0;
1153
1154         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1155                 control->pause_filter_count = 3000;
1156                 set_intercept(svm, INTERCEPT_PAUSE);
1157         }
1158
1159         mark_all_dirty(svm->vmcb);
1160
1161         enable_gif(svm);
1162 }
1163
1164 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1165 {
1166         struct vcpu_svm *svm = to_svm(vcpu);
1167         u32 dummy;
1168         u32 eax = 1;
1169
1170         if (!init_event) {
1171                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1172                                            MSR_IA32_APICBASE_ENABLE;
1173                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1174                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1175         }
1176         init_vmcb(svm);
1177
1178         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1179         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1180 }
1181
1182 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1183 {
1184         struct vcpu_svm *svm;
1185         struct page *page;
1186         struct page *msrpm_pages;
1187         struct page *hsave_page;
1188         struct page *nested_msrpm_pages;
1189         int err;
1190
1191         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1192         if (!svm) {
1193                 err = -ENOMEM;
1194                 goto out;
1195         }
1196
1197         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1198         if (err)
1199                 goto free_svm;
1200
1201         err = -ENOMEM;
1202         page = alloc_page(GFP_KERNEL);
1203         if (!page)
1204                 goto uninit;
1205
1206         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1207         if (!msrpm_pages)
1208                 goto free_page1;
1209
1210         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1211         if (!nested_msrpm_pages)
1212                 goto free_page2;
1213
1214         hsave_page = alloc_page(GFP_KERNEL);
1215         if (!hsave_page)
1216                 goto free_page3;
1217
1218         svm->nested.hsave = page_address(hsave_page);
1219
1220         svm->msrpm = page_address(msrpm_pages);
1221         svm_vcpu_init_msrpm(svm->msrpm);
1222
1223         svm->nested.msrpm = page_address(nested_msrpm_pages);
1224         svm_vcpu_init_msrpm(svm->nested.msrpm);
1225
1226         svm->vmcb = page_address(page);
1227         clear_page(svm->vmcb);
1228         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1229         svm->asid_generation = 0;
1230         init_vmcb(svm);
1231
1232         svm_init_osvw(&svm->vcpu);
1233
1234         return &svm->vcpu;
1235
1236 free_page3:
1237         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1238 free_page2:
1239         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1240 free_page1:
1241         __free_page(page);
1242 uninit:
1243         kvm_vcpu_uninit(&svm->vcpu);
1244 free_svm:
1245         kmem_cache_free(kvm_vcpu_cache, svm);
1246 out:
1247         return ERR_PTR(err);
1248 }
1249
1250 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1251 {
1252         struct vcpu_svm *svm = to_svm(vcpu);
1253
1254         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1255         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1256         __free_page(virt_to_page(svm->nested.hsave));
1257         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1258         kvm_vcpu_uninit(vcpu);
1259         kmem_cache_free(kvm_vcpu_cache, svm);
1260 }
1261
1262 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1263 {
1264         struct vcpu_svm *svm = to_svm(vcpu);
1265         int i;
1266
1267         if (unlikely(cpu != vcpu->cpu)) {
1268                 svm->asid_generation = 0;
1269                 mark_all_dirty(svm->vmcb);
1270         }
1271
1272 #ifdef CONFIG_X86_64
1273         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1274 #endif
1275         savesegment(fs, svm->host.fs);
1276         savesegment(gs, svm->host.gs);
1277         svm->host.ldt = kvm_read_ldt();
1278
1279         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1280                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1281
1282         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1283                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1284                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1285                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1286                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1287                 }
1288         }
1289 }
1290
1291 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1292 {
1293         struct vcpu_svm *svm = to_svm(vcpu);
1294         int i;
1295
1296         ++vcpu->stat.host_state_reload;
1297         kvm_load_ldt(svm->host.ldt);
1298 #ifdef CONFIG_X86_64
1299         loadsegment(fs, svm->host.fs);
1300         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1301         load_gs_index(svm->host.gs);
1302 #else
1303 #ifdef CONFIG_X86_32_LAZY_GS
1304         loadsegment(gs, svm->host.gs);
1305 #endif
1306 #endif
1307         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1308                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1309 }
1310
1311 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1312 {
1313         return to_svm(vcpu)->vmcb->save.rflags;
1314 }
1315
1316 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1317 {
1318        /*
1319         * Any change of EFLAGS.VM is accompained by a reload of SS
1320         * (caused by either a task switch or an inter-privilege IRET),
1321         * so we do not need to update the CPL here.
1322         */
1323         to_svm(vcpu)->vmcb->save.rflags = rflags;
1324 }
1325
1326 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1327 {
1328         switch (reg) {
1329         case VCPU_EXREG_PDPTR:
1330                 BUG_ON(!npt_enabled);
1331                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1332                 break;
1333         default:
1334                 BUG();
1335         }
1336 }
1337
1338 static void svm_set_vintr(struct vcpu_svm *svm)
1339 {
1340         set_intercept(svm, INTERCEPT_VINTR);
1341 }
1342
1343 static void svm_clear_vintr(struct vcpu_svm *svm)
1344 {
1345         clr_intercept(svm, INTERCEPT_VINTR);
1346 }
1347
1348 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1349 {
1350         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1351
1352         switch (seg) {
1353         case VCPU_SREG_CS: return &save->cs;
1354         case VCPU_SREG_DS: return &save->ds;
1355         case VCPU_SREG_ES: return &save->es;
1356         case VCPU_SREG_FS: return &save->fs;
1357         case VCPU_SREG_GS: return &save->gs;
1358         case VCPU_SREG_SS: return &save->ss;
1359         case VCPU_SREG_TR: return &save->tr;
1360         case VCPU_SREG_LDTR: return &save->ldtr;
1361         }
1362         BUG();
1363         return NULL;
1364 }
1365
1366 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1367 {
1368         struct vmcb_seg *s = svm_seg(vcpu, seg);
1369
1370         return s->base;
1371 }
1372
1373 static void svm_get_segment(struct kvm_vcpu *vcpu,
1374                             struct kvm_segment *var, int seg)
1375 {
1376         struct vmcb_seg *s = svm_seg(vcpu, seg);
1377
1378         var->base = s->base;
1379         var->limit = s->limit;
1380         var->selector = s->selector;
1381         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1382         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1383         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1384         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1385         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1386         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1387         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1388
1389         /*
1390          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1391          * However, the SVM spec states that the G bit is not observed by the
1392          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1393          * So let's synthesize a legal G bit for all segments, this helps
1394          * running KVM nested. It also helps cross-vendor migration, because
1395          * Intel's vmentry has a check on the 'G' bit.
1396          */
1397         var->g = s->limit > 0xfffff;
1398
1399         /*
1400          * AMD's VMCB does not have an explicit unusable field, so emulate it
1401          * for cross vendor migration purposes by "not present"
1402          */
1403         var->unusable = !var->present || (var->type == 0);
1404
1405         switch (seg) {
1406         case VCPU_SREG_TR:
1407                 /*
1408                  * Work around a bug where the busy flag in the tr selector
1409                  * isn't exposed
1410                  */
1411                 var->type |= 0x2;
1412                 break;
1413         case VCPU_SREG_DS:
1414         case VCPU_SREG_ES:
1415         case VCPU_SREG_FS:
1416         case VCPU_SREG_GS:
1417                 /*
1418                  * The accessed bit must always be set in the segment
1419                  * descriptor cache, although it can be cleared in the
1420                  * descriptor, the cached bit always remains at 1. Since
1421                  * Intel has a check on this, set it here to support
1422                  * cross-vendor migration.
1423                  */
1424                 if (!var->unusable)
1425                         var->type |= 0x1;
1426                 break;
1427         case VCPU_SREG_SS:
1428                 /*
1429                  * On AMD CPUs sometimes the DB bit in the segment
1430                  * descriptor is left as 1, although the whole segment has
1431                  * been made unusable. Clear it here to pass an Intel VMX
1432                  * entry check when cross vendor migrating.
1433                  */
1434                 if (var->unusable)
1435                         var->db = 0;
1436                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1437                 break;
1438         }
1439 }
1440
1441 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1442 {
1443         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1444
1445         return save->cpl;
1446 }
1447
1448 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1449 {
1450         struct vcpu_svm *svm = to_svm(vcpu);
1451
1452         dt->size = svm->vmcb->save.idtr.limit;
1453         dt->address = svm->vmcb->save.idtr.base;
1454 }
1455
1456 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1457 {
1458         struct vcpu_svm *svm = to_svm(vcpu);
1459
1460         svm->vmcb->save.idtr.limit = dt->size;
1461         svm->vmcb->save.idtr.base = dt->address ;
1462         mark_dirty(svm->vmcb, VMCB_DT);
1463 }
1464
1465 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1466 {
1467         struct vcpu_svm *svm = to_svm(vcpu);
1468
1469         dt->size = svm->vmcb->save.gdtr.limit;
1470         dt->address = svm->vmcb->save.gdtr.base;
1471 }
1472
1473 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1474 {
1475         struct vcpu_svm *svm = to_svm(vcpu);
1476
1477         svm->vmcb->save.gdtr.limit = dt->size;
1478         svm->vmcb->save.gdtr.base = dt->address ;
1479         mark_dirty(svm->vmcb, VMCB_DT);
1480 }
1481
1482 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1483 {
1484 }
1485
1486 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1487 {
1488 }
1489
1490 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1491 {
1492 }
1493
1494 static void update_cr0_intercept(struct vcpu_svm *svm)
1495 {
1496         ulong gcr0 = svm->vcpu.arch.cr0;
1497         u64 *hcr0 = &svm->vmcb->save.cr0;
1498
1499         if (!svm->vcpu.fpu_active)
1500                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1501         else
1502                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1503                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1504
1505         mark_dirty(svm->vmcb, VMCB_CR);
1506
1507         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1508                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1509                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1510         } else {
1511                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1512                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1513         }
1514 }
1515
1516 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1517 {
1518         struct vcpu_svm *svm = to_svm(vcpu);
1519
1520 #ifdef CONFIG_X86_64
1521         if (vcpu->arch.efer & EFER_LME) {
1522                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1523                         vcpu->arch.efer |= EFER_LMA;
1524                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1525                 }
1526
1527                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1528                         vcpu->arch.efer &= ~EFER_LMA;
1529                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1530                 }
1531         }
1532 #endif
1533         vcpu->arch.cr0 = cr0;
1534
1535         if (!npt_enabled)
1536                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1537
1538         if (!vcpu->fpu_active)
1539                 cr0 |= X86_CR0_TS;
1540         /*
1541          * re-enable caching here because the QEMU bios
1542          * does not do it - this results in some delay at
1543          * reboot
1544          */
1545         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1546                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1547         svm->vmcb->save.cr0 = cr0;
1548         mark_dirty(svm->vmcb, VMCB_CR);
1549         update_cr0_intercept(svm);
1550 }
1551
1552 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1553 {
1554         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1555         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1556
1557         if (cr4 & X86_CR4_VMXE)
1558                 return 1;
1559
1560         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1561                 svm_flush_tlb(vcpu);
1562
1563         vcpu->arch.cr4 = cr4;
1564         if (!npt_enabled)
1565                 cr4 |= X86_CR4_PAE;
1566         cr4 |= host_cr4_mce;
1567         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1568         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1569         return 0;
1570 }
1571
1572 static void svm_set_segment(struct kvm_vcpu *vcpu,
1573                             struct kvm_segment *var, int seg)
1574 {
1575         struct vcpu_svm *svm = to_svm(vcpu);
1576         struct vmcb_seg *s = svm_seg(vcpu, seg);
1577
1578         s->base = var->base;
1579         s->limit = var->limit;
1580         s->selector = var->selector;
1581         if (var->unusable)
1582                 s->attrib = 0;
1583         else {
1584                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1585                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1586                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1587                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1588                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1589                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1590                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1591                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1592         }
1593
1594         /*
1595          * This is always accurate, except if SYSRET returned to a segment
1596          * with SS.DPL != 3.  Intel does not have this quirk, and always
1597          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1598          * would entail passing the CPL to userspace and back.
1599          */
1600         if (seg == VCPU_SREG_SS)
1601                 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1602
1603         mark_dirty(svm->vmcb, VMCB_SEG);
1604 }
1605
1606 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1607 {
1608         struct vcpu_svm *svm = to_svm(vcpu);
1609
1610         clr_exception_intercept(svm, DB_VECTOR);
1611         clr_exception_intercept(svm, BP_VECTOR);
1612
1613         if (svm->nmi_singlestep)
1614                 set_exception_intercept(svm, DB_VECTOR);
1615
1616         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1617                 if (vcpu->guest_debug &
1618                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1619                         set_exception_intercept(svm, DB_VECTOR);
1620                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1621                         set_exception_intercept(svm, BP_VECTOR);
1622         } else
1623                 vcpu->guest_debug = 0;
1624 }
1625
1626 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1627 {
1628         if (sd->next_asid > sd->max_asid) {
1629                 ++sd->asid_generation;
1630                 sd->next_asid = 1;
1631                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1632         }
1633
1634         svm->asid_generation = sd->asid_generation;
1635         svm->vmcb->control.asid = sd->next_asid++;
1636
1637         mark_dirty(svm->vmcb, VMCB_ASID);
1638 }
1639
1640 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1641 {
1642         return to_svm(vcpu)->vmcb->save.dr6;
1643 }
1644
1645 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1646 {
1647         struct vcpu_svm *svm = to_svm(vcpu);
1648
1649         svm->vmcb->save.dr6 = value;
1650         mark_dirty(svm->vmcb, VMCB_DR);
1651 }
1652
1653 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1654 {
1655         struct vcpu_svm *svm = to_svm(vcpu);
1656
1657         get_debugreg(vcpu->arch.db[0], 0);
1658         get_debugreg(vcpu->arch.db[1], 1);
1659         get_debugreg(vcpu->arch.db[2], 2);
1660         get_debugreg(vcpu->arch.db[3], 3);
1661         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1662         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1663
1664         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1665         set_dr_intercepts(svm);
1666 }
1667
1668 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1669 {
1670         struct vcpu_svm *svm = to_svm(vcpu);
1671
1672         svm->vmcb->save.dr7 = value;
1673         mark_dirty(svm->vmcb, VMCB_DR);
1674 }
1675
1676 static int pf_interception(struct vcpu_svm *svm)
1677 {
1678         u64 fault_address = svm->vmcb->control.exit_info_2;
1679         u32 error_code;
1680         int r = 1;
1681
1682         switch (svm->apf_reason) {
1683         default:
1684                 error_code = svm->vmcb->control.exit_info_1;
1685
1686                 trace_kvm_page_fault(fault_address, error_code);
1687                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1688                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1689                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1690                         svm->vmcb->control.insn_bytes,
1691                         svm->vmcb->control.insn_len);
1692                 break;
1693         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1694                 svm->apf_reason = 0;
1695                 local_irq_disable();
1696                 kvm_async_pf_task_wait(fault_address);
1697                 local_irq_enable();
1698                 break;
1699         case KVM_PV_REASON_PAGE_READY:
1700                 svm->apf_reason = 0;
1701                 local_irq_disable();
1702                 kvm_async_pf_task_wake(fault_address);
1703                 local_irq_enable();
1704                 break;
1705         }
1706         return r;
1707 }
1708
1709 static int db_interception(struct vcpu_svm *svm)
1710 {
1711         struct kvm_run *kvm_run = svm->vcpu.run;
1712
1713         if (!(svm->vcpu.guest_debug &
1714               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1715                 !svm->nmi_singlestep) {
1716                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1717                 return 1;
1718         }
1719
1720         if (svm->nmi_singlestep) {
1721                 svm->nmi_singlestep = false;
1722                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1723                         svm->vmcb->save.rflags &=
1724                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1725                 update_db_bp_intercept(&svm->vcpu);
1726         }
1727
1728         if (svm->vcpu.guest_debug &
1729             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1730                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1731                 kvm_run->debug.arch.pc =
1732                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1733                 kvm_run->debug.arch.exception = DB_VECTOR;
1734                 return 0;
1735         }
1736
1737         return 1;
1738 }
1739
1740 static int bp_interception(struct vcpu_svm *svm)
1741 {
1742         struct kvm_run *kvm_run = svm->vcpu.run;
1743
1744         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1745         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1746         kvm_run->debug.arch.exception = BP_VECTOR;
1747         return 0;
1748 }
1749
1750 static int ud_interception(struct vcpu_svm *svm)
1751 {
1752         int er;
1753
1754         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1755         if (er != EMULATE_DONE)
1756                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1757         return 1;
1758 }
1759
1760 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1761 {
1762         struct vcpu_svm *svm = to_svm(vcpu);
1763
1764         clr_exception_intercept(svm, NM_VECTOR);
1765
1766         svm->vcpu.fpu_active = 1;
1767         update_cr0_intercept(svm);
1768 }
1769
1770 static int nm_interception(struct vcpu_svm *svm)
1771 {
1772         svm_fpu_activate(&svm->vcpu);
1773         return 1;
1774 }
1775
1776 static bool is_erratum_383(void)
1777 {
1778         int err, i;
1779         u64 value;
1780
1781         if (!erratum_383_found)
1782                 return false;
1783
1784         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1785         if (err)
1786                 return false;
1787
1788         /* Bit 62 may or may not be set for this mce */
1789         value &= ~(1ULL << 62);
1790
1791         if (value != 0xb600000000010015ULL)
1792                 return false;
1793
1794         /* Clear MCi_STATUS registers */
1795         for (i = 0; i < 6; ++i)
1796                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1797
1798         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1799         if (!err) {
1800                 u32 low, high;
1801
1802                 value &= ~(1ULL << 2);
1803                 low    = lower_32_bits(value);
1804                 high   = upper_32_bits(value);
1805
1806                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1807         }
1808
1809         /* Flush tlb to evict multi-match entries */
1810         __flush_tlb_all();
1811
1812         return true;
1813 }
1814
1815 static void svm_handle_mce(struct vcpu_svm *svm)
1816 {
1817         if (is_erratum_383()) {
1818                 /*
1819                  * Erratum 383 triggered. Guest state is corrupt so kill the
1820                  * guest.
1821                  */
1822                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1823
1824                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1825
1826                 return;
1827         }
1828
1829         /*
1830          * On an #MC intercept the MCE handler is not called automatically in
1831          * the host. So do it by hand here.
1832          */
1833         asm volatile (
1834                 "int $0x12\n");
1835         /* not sure if we ever come back to this point */
1836
1837         return;
1838 }
1839
1840 static int mc_interception(struct vcpu_svm *svm)
1841 {
1842         return 1;
1843 }
1844
1845 static int shutdown_interception(struct vcpu_svm *svm)
1846 {
1847         struct kvm_run *kvm_run = svm->vcpu.run;
1848
1849         /*
1850          * VMCB is undefined after a SHUTDOWN intercept
1851          * so reinitialize it.
1852          */
1853         clear_page(svm->vmcb);
1854         init_vmcb(svm);
1855
1856         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1857         return 0;
1858 }
1859
1860 static int io_interception(struct vcpu_svm *svm)
1861 {
1862         struct kvm_vcpu *vcpu = &svm->vcpu;
1863         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1864         int size, in, string;
1865         unsigned port;
1866
1867         ++svm->vcpu.stat.io_exits;
1868         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1869         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1870         if (string || in)
1871                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1872
1873         port = io_info >> 16;
1874         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1875         svm->next_rip = svm->vmcb->control.exit_info_2;
1876         skip_emulated_instruction(&svm->vcpu);
1877
1878         return kvm_fast_pio_out(vcpu, size, port);
1879 }
1880
1881 static int nmi_interception(struct vcpu_svm *svm)
1882 {
1883         return 1;
1884 }
1885
1886 static int intr_interception(struct vcpu_svm *svm)
1887 {
1888         ++svm->vcpu.stat.irq_exits;
1889         return 1;
1890 }
1891
1892 static int nop_on_interception(struct vcpu_svm *svm)
1893 {
1894         return 1;
1895 }
1896
1897 static int halt_interception(struct vcpu_svm *svm)
1898 {
1899         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1900         return kvm_emulate_halt(&svm->vcpu);
1901 }
1902
1903 static int vmmcall_interception(struct vcpu_svm *svm)
1904 {
1905         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1906         kvm_emulate_hypercall(&svm->vcpu);
1907         return 1;
1908 }
1909
1910 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1911 {
1912         struct vcpu_svm *svm = to_svm(vcpu);
1913
1914         return svm->nested.nested_cr3;
1915 }
1916
1917 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1918 {
1919         struct vcpu_svm *svm = to_svm(vcpu);
1920         u64 cr3 = svm->nested.nested_cr3;
1921         u64 pdpte;
1922         int ret;
1923
1924         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
1925                                        offset_in_page(cr3) + index * 8, 8);
1926         if (ret)
1927                 return 0;
1928         return pdpte;
1929 }
1930
1931 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1932                                    unsigned long root)
1933 {
1934         struct vcpu_svm *svm = to_svm(vcpu);
1935
1936         svm->vmcb->control.nested_cr3 = root;
1937         mark_dirty(svm->vmcb, VMCB_NPT);
1938         svm_flush_tlb(vcpu);
1939 }
1940
1941 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1942                                        struct x86_exception *fault)
1943 {
1944         struct vcpu_svm *svm = to_svm(vcpu);
1945
1946         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1947                 /*
1948                  * TODO: track the cause of the nested page fault, and
1949                  * correctly fill in the high bits of exit_info_1.
1950                  */
1951                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1952                 svm->vmcb->control.exit_code_hi = 0;
1953                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
1954                 svm->vmcb->control.exit_info_2 = fault->address;
1955         }
1956
1957         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1958         svm->vmcb->control.exit_info_1 |= fault->error_code;
1959
1960         /*
1961          * The present bit is always zero for page structure faults on real
1962          * hardware.
1963          */
1964         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
1965                 svm->vmcb->control.exit_info_1 &= ~1;
1966
1967         nested_svm_vmexit(svm);
1968 }
1969
1970 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1971 {
1972         WARN_ON(mmu_is_nested(vcpu));
1973         kvm_init_shadow_mmu(vcpu);
1974         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1975         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1976         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
1977         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1978         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1979         reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
1980         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1981 }
1982
1983 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1984 {
1985         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1986 }
1987
1988 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1989 {
1990         if (!(svm->vcpu.arch.efer & EFER_SVME)
1991             || !is_paging(&svm->vcpu)) {
1992                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1993                 return 1;
1994         }
1995
1996         if (svm->vmcb->save.cpl) {
1997                 kvm_inject_gp(&svm->vcpu, 0);
1998                 return 1;
1999         }
2000
2001        return 0;
2002 }
2003
2004 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2005                                       bool has_error_code, u32 error_code)
2006 {
2007         int vmexit;
2008
2009         if (!is_guest_mode(&svm->vcpu))
2010                 return 0;
2011
2012         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2013         svm->vmcb->control.exit_code_hi = 0;
2014         svm->vmcb->control.exit_info_1 = error_code;
2015         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2016
2017         vmexit = nested_svm_intercept(svm);
2018         if (vmexit == NESTED_EXIT_DONE)
2019                 svm->nested.exit_required = true;
2020
2021         return vmexit;
2022 }
2023
2024 /* This function returns true if it is save to enable the irq window */
2025 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2026 {
2027         if (!is_guest_mode(&svm->vcpu))
2028                 return true;
2029
2030         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2031                 return true;
2032
2033         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2034                 return false;
2035
2036         /*
2037          * if vmexit was already requested (by intercepted exception
2038          * for instance) do not overwrite it with "external interrupt"
2039          * vmexit.
2040          */
2041         if (svm->nested.exit_required)
2042                 return false;
2043
2044         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2045         svm->vmcb->control.exit_info_1 = 0;
2046         svm->vmcb->control.exit_info_2 = 0;
2047
2048         if (svm->nested.intercept & 1ULL) {
2049                 /*
2050                  * The #vmexit can't be emulated here directly because this
2051                  * code path runs with irqs and preemption disabled. A
2052                  * #vmexit emulation might sleep. Only signal request for
2053                  * the #vmexit here.
2054                  */
2055                 svm->nested.exit_required = true;
2056                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2057                 return false;
2058         }
2059
2060         return true;
2061 }
2062
2063 /* This function returns true if it is save to enable the nmi window */
2064 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2065 {
2066         if (!is_guest_mode(&svm->vcpu))
2067                 return true;
2068
2069         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2070                 return true;
2071
2072         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2073         svm->nested.exit_required = true;
2074
2075         return false;
2076 }
2077
2078 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2079 {
2080         struct page *page;
2081
2082         might_sleep();
2083
2084         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2085         if (is_error_page(page))
2086                 goto error;
2087
2088         *_page = page;
2089
2090         return kmap(page);
2091
2092 error:
2093         kvm_inject_gp(&svm->vcpu, 0);
2094
2095         return NULL;
2096 }
2097
2098 static void nested_svm_unmap(struct page *page)
2099 {
2100         kunmap(page);
2101         kvm_release_page_dirty(page);
2102 }
2103
2104 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2105 {
2106         unsigned port, size, iopm_len;
2107         u16 val, mask;
2108         u8 start_bit;
2109         u64 gpa;
2110
2111         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2112                 return NESTED_EXIT_HOST;
2113
2114         port = svm->vmcb->control.exit_info_1 >> 16;
2115         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2116                 SVM_IOIO_SIZE_SHIFT;
2117         gpa  = svm->nested.vmcb_iopm + (port / 8);
2118         start_bit = port % 8;
2119         iopm_len = (start_bit + size > 8) ? 2 : 1;
2120         mask = (0xf >> (4 - size)) << start_bit;
2121         val = 0;
2122
2123         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2124                 return NESTED_EXIT_DONE;
2125
2126         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2127 }
2128
2129 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2130 {
2131         u32 offset, msr, value;
2132         int write, mask;
2133
2134         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2135                 return NESTED_EXIT_HOST;
2136
2137         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2138         offset = svm_msrpm_offset(msr);
2139         write  = svm->vmcb->control.exit_info_1 & 1;
2140         mask   = 1 << ((2 * (msr & 0xf)) + write);
2141
2142         if (offset == MSR_INVALID)
2143                 return NESTED_EXIT_DONE;
2144
2145         /* Offset is in 32 bit units but need in 8 bit units */
2146         offset *= 4;
2147
2148         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2149                 return NESTED_EXIT_DONE;
2150
2151         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2152 }
2153
2154 static int nested_svm_exit_special(struct vcpu_svm *svm)
2155 {
2156         u32 exit_code = svm->vmcb->control.exit_code;
2157
2158         switch (exit_code) {
2159         case SVM_EXIT_INTR:
2160         case SVM_EXIT_NMI:
2161         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2162                 return NESTED_EXIT_HOST;
2163         case SVM_EXIT_NPF:
2164                 /* For now we are always handling NPFs when using them */
2165                 if (npt_enabled)
2166                         return NESTED_EXIT_HOST;
2167                 break;
2168         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2169                 /* When we're shadowing, trap PFs, but not async PF */
2170                 if (!npt_enabled && svm->apf_reason == 0)
2171                         return NESTED_EXIT_HOST;
2172                 break;
2173         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2174                 nm_interception(svm);
2175                 break;
2176         default:
2177                 break;
2178         }
2179
2180         return NESTED_EXIT_CONTINUE;
2181 }
2182
2183 /*
2184  * If this function returns true, this #vmexit was already handled
2185  */
2186 static int nested_svm_intercept(struct vcpu_svm *svm)
2187 {
2188         u32 exit_code = svm->vmcb->control.exit_code;
2189         int vmexit = NESTED_EXIT_HOST;
2190
2191         switch (exit_code) {
2192         case SVM_EXIT_MSR:
2193                 vmexit = nested_svm_exit_handled_msr(svm);
2194                 break;
2195         case SVM_EXIT_IOIO:
2196                 vmexit = nested_svm_intercept_ioio(svm);
2197                 break;
2198         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2199                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2200                 if (svm->nested.intercept_cr & bit)
2201                         vmexit = NESTED_EXIT_DONE;
2202                 break;
2203         }
2204         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2205                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2206                 if (svm->nested.intercept_dr & bit)
2207                         vmexit = NESTED_EXIT_DONE;
2208                 break;
2209         }
2210         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2211                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2212                 if (svm->nested.intercept_exceptions & excp_bits)
2213                         vmexit = NESTED_EXIT_DONE;
2214                 /* async page fault always cause vmexit */
2215                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2216                          svm->apf_reason != 0)
2217                         vmexit = NESTED_EXIT_DONE;
2218                 break;
2219         }
2220         case SVM_EXIT_ERR: {
2221                 vmexit = NESTED_EXIT_DONE;
2222                 break;
2223         }
2224         default: {
2225                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2226                 if (svm->nested.intercept & exit_bits)
2227                         vmexit = NESTED_EXIT_DONE;
2228         }
2229         }
2230
2231         return vmexit;
2232 }
2233
2234 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2235 {
2236         int vmexit;
2237
2238         vmexit = nested_svm_intercept(svm);
2239
2240         if (vmexit == NESTED_EXIT_DONE)
2241                 nested_svm_vmexit(svm);
2242
2243         return vmexit;
2244 }
2245
2246 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2247 {
2248         struct vmcb_control_area *dst  = &dst_vmcb->control;
2249         struct vmcb_control_area *from = &from_vmcb->control;
2250
2251         dst->intercept_cr         = from->intercept_cr;
2252         dst->intercept_dr         = from->intercept_dr;
2253         dst->intercept_exceptions = from->intercept_exceptions;
2254         dst->intercept            = from->intercept;
2255         dst->iopm_base_pa         = from->iopm_base_pa;
2256         dst->msrpm_base_pa        = from->msrpm_base_pa;
2257         dst->tsc_offset           = from->tsc_offset;
2258         dst->asid                 = from->asid;
2259         dst->tlb_ctl              = from->tlb_ctl;
2260         dst->int_ctl              = from->int_ctl;
2261         dst->int_vector           = from->int_vector;
2262         dst->int_state            = from->int_state;
2263         dst->exit_code            = from->exit_code;
2264         dst->exit_code_hi         = from->exit_code_hi;
2265         dst->exit_info_1          = from->exit_info_1;
2266         dst->exit_info_2          = from->exit_info_2;
2267         dst->exit_int_info        = from->exit_int_info;
2268         dst->exit_int_info_err    = from->exit_int_info_err;
2269         dst->nested_ctl           = from->nested_ctl;
2270         dst->event_inj            = from->event_inj;
2271         dst->event_inj_err        = from->event_inj_err;
2272         dst->nested_cr3           = from->nested_cr3;
2273         dst->lbr_ctl              = from->lbr_ctl;
2274 }
2275
2276 static int nested_svm_vmexit(struct vcpu_svm *svm)
2277 {
2278         struct vmcb *nested_vmcb;
2279         struct vmcb *hsave = svm->nested.hsave;
2280         struct vmcb *vmcb = svm->vmcb;
2281         struct page *page;
2282
2283         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2284                                        vmcb->control.exit_info_1,
2285                                        vmcb->control.exit_info_2,
2286                                        vmcb->control.exit_int_info,
2287                                        vmcb->control.exit_int_info_err,
2288                                        KVM_ISA_SVM);
2289
2290         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2291         if (!nested_vmcb)
2292                 return 1;
2293
2294         /* Exit Guest-Mode */
2295         leave_guest_mode(&svm->vcpu);
2296         svm->nested.vmcb = 0;
2297
2298         /* Give the current vmcb to the guest */
2299         disable_gif(svm);
2300
2301         nested_vmcb->save.es     = vmcb->save.es;
2302         nested_vmcb->save.cs     = vmcb->save.cs;
2303         nested_vmcb->save.ss     = vmcb->save.ss;
2304         nested_vmcb->save.ds     = vmcb->save.ds;
2305         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2306         nested_vmcb->save.idtr   = vmcb->save.idtr;
2307         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2308         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2309         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2310         nested_vmcb->save.cr2    = vmcb->save.cr2;
2311         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2312         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2313         nested_vmcb->save.rip    = vmcb->save.rip;
2314         nested_vmcb->save.rsp    = vmcb->save.rsp;
2315         nested_vmcb->save.rax    = vmcb->save.rax;
2316         nested_vmcb->save.dr7    = vmcb->save.dr7;
2317         nested_vmcb->save.dr6    = vmcb->save.dr6;
2318         nested_vmcb->save.cpl    = vmcb->save.cpl;
2319
2320         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2321         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2322         nested_vmcb->control.int_state         = vmcb->control.int_state;
2323         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2324         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2325         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2326         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2327         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2328         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2329
2330         if (svm->nrips_enabled)
2331                 nested_vmcb->control.next_rip  = vmcb->control.next_rip;
2332
2333         /*
2334          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2335          * to make sure that we do not lose injected events. So check event_inj
2336          * here and copy it to exit_int_info if it is valid.
2337          * Exit_int_info and event_inj can't be both valid because the case
2338          * below only happens on a VMRUN instruction intercept which has
2339          * no valid exit_int_info set.
2340          */
2341         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2342                 struct vmcb_control_area *nc = &nested_vmcb->control;
2343
2344                 nc->exit_int_info     = vmcb->control.event_inj;
2345                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2346         }
2347
2348         nested_vmcb->control.tlb_ctl           = 0;
2349         nested_vmcb->control.event_inj         = 0;
2350         nested_vmcb->control.event_inj_err     = 0;
2351
2352         /* We always set V_INTR_MASKING and remember the old value in hflags */
2353         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2354                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2355
2356         /* Restore the original control entries */
2357         copy_vmcb_control_area(vmcb, hsave);
2358
2359         kvm_clear_exception_queue(&svm->vcpu);
2360         kvm_clear_interrupt_queue(&svm->vcpu);
2361
2362         svm->nested.nested_cr3 = 0;
2363
2364         /* Restore selected save entries */
2365         svm->vmcb->save.es = hsave->save.es;
2366         svm->vmcb->save.cs = hsave->save.cs;
2367         svm->vmcb->save.ss = hsave->save.ss;
2368         svm->vmcb->save.ds = hsave->save.ds;
2369         svm->vmcb->save.gdtr = hsave->save.gdtr;
2370         svm->vmcb->save.idtr = hsave->save.idtr;
2371         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2372         svm_set_efer(&svm->vcpu, hsave->save.efer);
2373         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2374         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2375         if (npt_enabled) {
2376                 svm->vmcb->save.cr3 = hsave->save.cr3;
2377                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2378         } else {
2379                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2380         }
2381         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2382         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2383         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2384         svm->vmcb->save.dr7 = 0;
2385         svm->vmcb->save.cpl = 0;
2386         svm->vmcb->control.exit_int_info = 0;
2387
2388         mark_all_dirty(svm->vmcb);
2389
2390         nested_svm_unmap(page);
2391
2392         nested_svm_uninit_mmu_context(&svm->vcpu);
2393         kvm_mmu_reset_context(&svm->vcpu);
2394         kvm_mmu_load(&svm->vcpu);
2395
2396         return 0;
2397 }
2398
2399 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2400 {
2401         /*
2402          * This function merges the msr permission bitmaps of kvm and the
2403          * nested vmcb. It is optimized in that it only merges the parts where
2404          * the kvm msr permission bitmap may contain zero bits
2405          */
2406         int i;
2407
2408         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2409                 return true;
2410
2411         for (i = 0; i < MSRPM_OFFSETS; i++) {
2412                 u32 value, p;
2413                 u64 offset;
2414
2415                 if (msrpm_offsets[i] == 0xffffffff)
2416                         break;
2417
2418                 p      = msrpm_offsets[i];
2419                 offset = svm->nested.vmcb_msrpm + (p * 4);
2420
2421                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2422                         return false;
2423
2424                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2425         }
2426
2427         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2428
2429         return true;
2430 }
2431
2432 static bool nested_vmcb_checks(struct vmcb *vmcb)
2433 {
2434         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2435                 return false;
2436
2437         if (vmcb->control.asid == 0)
2438                 return false;
2439
2440         if (vmcb->control.nested_ctl && !npt_enabled)
2441                 return false;
2442
2443         return true;
2444 }
2445
2446 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2447 {
2448         struct vmcb *nested_vmcb;
2449         struct vmcb *hsave = svm->nested.hsave;
2450         struct vmcb *vmcb = svm->vmcb;
2451         struct page *page;
2452         u64 vmcb_gpa;
2453
2454         vmcb_gpa = svm->vmcb->save.rax;
2455
2456         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2457         if (!nested_vmcb)
2458                 return false;
2459
2460         if (!nested_vmcb_checks(nested_vmcb)) {
2461                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2462                 nested_vmcb->control.exit_code_hi = 0;
2463                 nested_vmcb->control.exit_info_1  = 0;
2464                 nested_vmcb->control.exit_info_2  = 0;
2465
2466                 nested_svm_unmap(page);
2467
2468                 return false;
2469         }
2470
2471         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2472                                nested_vmcb->save.rip,
2473                                nested_vmcb->control.int_ctl,
2474                                nested_vmcb->control.event_inj,
2475                                nested_vmcb->control.nested_ctl);
2476
2477         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2478                                     nested_vmcb->control.intercept_cr >> 16,
2479                                     nested_vmcb->control.intercept_exceptions,
2480                                     nested_vmcb->control.intercept);
2481
2482         /* Clear internal status */
2483         kvm_clear_exception_queue(&svm->vcpu);
2484         kvm_clear_interrupt_queue(&svm->vcpu);
2485
2486         /*
2487          * Save the old vmcb, so we don't need to pick what we save, but can
2488          * restore everything when a VMEXIT occurs
2489          */
2490         hsave->save.es     = vmcb->save.es;
2491         hsave->save.cs     = vmcb->save.cs;
2492         hsave->save.ss     = vmcb->save.ss;
2493         hsave->save.ds     = vmcb->save.ds;
2494         hsave->save.gdtr   = vmcb->save.gdtr;
2495         hsave->save.idtr   = vmcb->save.idtr;
2496         hsave->save.efer   = svm->vcpu.arch.efer;
2497         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2498         hsave->save.cr4    = svm->vcpu.arch.cr4;
2499         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2500         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2501         hsave->save.rsp    = vmcb->save.rsp;
2502         hsave->save.rax    = vmcb->save.rax;
2503         if (npt_enabled)
2504                 hsave->save.cr3    = vmcb->save.cr3;
2505         else
2506                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2507
2508         copy_vmcb_control_area(hsave, vmcb);
2509
2510         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2511                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2512         else
2513                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2514
2515         if (nested_vmcb->control.nested_ctl) {
2516                 kvm_mmu_unload(&svm->vcpu);
2517                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2518                 nested_svm_init_mmu_context(&svm->vcpu);
2519         }
2520
2521         /* Load the nested guest state */
2522         svm->vmcb->save.es = nested_vmcb->save.es;
2523         svm->vmcb->save.cs = nested_vmcb->save.cs;
2524         svm->vmcb->save.ss = nested_vmcb->save.ss;
2525         svm->vmcb->save.ds = nested_vmcb->save.ds;
2526         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2527         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2528         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2529         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2530         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2531         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2532         if (npt_enabled) {
2533                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2534                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2535         } else
2536                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2537
2538         /* Guest paging mode is active - reset mmu */
2539         kvm_mmu_reset_context(&svm->vcpu);
2540
2541         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2542         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2543         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2544         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2545
2546         /* In case we don't even reach vcpu_run, the fields are not updated */
2547         svm->vmcb->save.rax = nested_vmcb->save.rax;
2548         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2549         svm->vmcb->save.rip = nested_vmcb->save.rip;
2550         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2551         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2552         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2553
2554         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2555         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2556
2557         /* cache intercepts */
2558         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2559         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2560         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2561         svm->nested.intercept            = nested_vmcb->control.intercept;
2562
2563         svm_flush_tlb(&svm->vcpu);
2564         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2565         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2566                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2567         else
2568                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2569
2570         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2571                 /* We only want the cr8 intercept bits of the guest */
2572                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2573                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2574         }
2575
2576         /* We don't want to see VMMCALLs from a nested guest */
2577         clr_intercept(svm, INTERCEPT_VMMCALL);
2578
2579         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2580         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2581         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2582         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2583         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2584         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2585
2586         nested_svm_unmap(page);
2587
2588         /* Enter Guest-Mode */
2589         enter_guest_mode(&svm->vcpu);
2590
2591         /*
2592          * Merge guest and host intercepts - must be called  with vcpu in
2593          * guest-mode to take affect here
2594          */
2595         recalc_intercepts(svm);
2596
2597         svm->nested.vmcb = vmcb_gpa;
2598
2599         enable_gif(svm);
2600
2601         mark_all_dirty(svm->vmcb);
2602
2603         return true;
2604 }
2605
2606 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2607 {
2608         to_vmcb->save.fs = from_vmcb->save.fs;
2609         to_vmcb->save.gs = from_vmcb->save.gs;
2610         to_vmcb->save.tr = from_vmcb->save.tr;
2611         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2612         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2613         to_vmcb->save.star = from_vmcb->save.star;
2614         to_vmcb->save.lstar = from_vmcb->save.lstar;
2615         to_vmcb->save.cstar = from_vmcb->save.cstar;
2616         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2617         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2618         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2619         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2620 }
2621
2622 static int vmload_interception(struct vcpu_svm *svm)
2623 {
2624         struct vmcb *nested_vmcb;
2625         struct page *page;
2626
2627         if (nested_svm_check_permissions(svm))
2628                 return 1;
2629
2630         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2631         if (!nested_vmcb)
2632                 return 1;
2633
2634         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2635         skip_emulated_instruction(&svm->vcpu);
2636
2637         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2638         nested_svm_unmap(page);
2639
2640         return 1;
2641 }
2642
2643 static int vmsave_interception(struct vcpu_svm *svm)
2644 {
2645         struct vmcb *nested_vmcb;
2646         struct page *page;
2647
2648         if (nested_svm_check_permissions(svm))
2649                 return 1;
2650
2651         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2652         if (!nested_vmcb)
2653                 return 1;
2654
2655         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2656         skip_emulated_instruction(&svm->vcpu);
2657
2658         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2659         nested_svm_unmap(page);
2660
2661         return 1;
2662 }
2663
2664 static int vmrun_interception(struct vcpu_svm *svm)
2665 {
2666         if (nested_svm_check_permissions(svm))
2667                 return 1;
2668
2669         /* Save rip after vmrun instruction */
2670         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2671
2672         if (!nested_svm_vmrun(svm))
2673                 return 1;
2674
2675         if (!nested_svm_vmrun_msrpm(svm))
2676                 goto failed;
2677
2678         return 1;
2679
2680 failed:
2681
2682         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2683         svm->vmcb->control.exit_code_hi = 0;
2684         svm->vmcb->control.exit_info_1  = 0;
2685         svm->vmcb->control.exit_info_2  = 0;
2686
2687         nested_svm_vmexit(svm);
2688
2689         return 1;
2690 }
2691
2692 static int stgi_interception(struct vcpu_svm *svm)
2693 {
2694         if (nested_svm_check_permissions(svm))
2695                 return 1;
2696
2697         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2698         skip_emulated_instruction(&svm->vcpu);
2699         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2700
2701         enable_gif(svm);
2702
2703         return 1;
2704 }
2705
2706 static int clgi_interception(struct vcpu_svm *svm)
2707 {
2708         if (nested_svm_check_permissions(svm))
2709                 return 1;
2710
2711         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2712         skip_emulated_instruction(&svm->vcpu);
2713
2714         disable_gif(svm);
2715
2716         /* After a CLGI no interrupts should come */
2717         svm_clear_vintr(svm);
2718         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2719
2720         mark_dirty(svm->vmcb, VMCB_INTR);
2721
2722         return 1;
2723 }
2724
2725 static int invlpga_interception(struct vcpu_svm *svm)
2726 {
2727         struct kvm_vcpu *vcpu = &svm->vcpu;
2728
2729         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2730                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2731
2732         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2733         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2734
2735         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2736         skip_emulated_instruction(&svm->vcpu);
2737         return 1;
2738 }
2739
2740 static int skinit_interception(struct vcpu_svm *svm)
2741 {
2742         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2743
2744         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2745         return 1;
2746 }
2747
2748 static int wbinvd_interception(struct vcpu_svm *svm)
2749 {
2750         kvm_emulate_wbinvd(&svm->vcpu);
2751         return 1;
2752 }
2753
2754 static int xsetbv_interception(struct vcpu_svm *svm)
2755 {
2756         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2757         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2758
2759         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2760                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2761                 skip_emulated_instruction(&svm->vcpu);
2762         }
2763
2764         return 1;
2765 }
2766
2767 static int task_switch_interception(struct vcpu_svm *svm)
2768 {
2769         u16 tss_selector;
2770         int reason;
2771         int int_type = svm->vmcb->control.exit_int_info &
2772                 SVM_EXITINTINFO_TYPE_MASK;
2773         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2774         uint32_t type =
2775                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2776         uint32_t idt_v =
2777                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2778         bool has_error_code = false;
2779         u32 error_code = 0;
2780
2781         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2782
2783         if (svm->vmcb->control.exit_info_2 &
2784             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2785                 reason = TASK_SWITCH_IRET;
2786         else if (svm->vmcb->control.exit_info_2 &
2787                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2788                 reason = TASK_SWITCH_JMP;
2789         else if (idt_v)
2790                 reason = TASK_SWITCH_GATE;
2791         else
2792                 reason = TASK_SWITCH_CALL;
2793
2794         if (reason == TASK_SWITCH_GATE) {
2795                 switch (type) {
2796                 case SVM_EXITINTINFO_TYPE_NMI:
2797                         svm->vcpu.arch.nmi_injected = false;
2798                         break;
2799                 case SVM_EXITINTINFO_TYPE_EXEPT:
2800                         if (svm->vmcb->control.exit_info_2 &
2801                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2802                                 has_error_code = true;
2803                                 error_code =
2804                                         (u32)svm->vmcb->control.exit_info_2;
2805                         }
2806                         kvm_clear_exception_queue(&svm->vcpu);
2807                         break;
2808                 case SVM_EXITINTINFO_TYPE_INTR:
2809                         kvm_clear_interrupt_queue(&svm->vcpu);
2810                         break;
2811                 default:
2812                         break;
2813                 }
2814         }
2815
2816         if (reason != TASK_SWITCH_GATE ||
2817             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2818             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2819              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2820                 skip_emulated_instruction(&svm->vcpu);
2821
2822         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2823                 int_vec = -1;
2824
2825         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2826                                 has_error_code, error_code) == EMULATE_FAIL) {
2827                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2828                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2829                 svm->vcpu.run->internal.ndata = 0;
2830                 return 0;
2831         }
2832         return 1;
2833 }
2834
2835 static int cpuid_interception(struct vcpu_svm *svm)
2836 {
2837         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2838         kvm_emulate_cpuid(&svm->vcpu);
2839         return 1;
2840 }
2841
2842 static int iret_interception(struct vcpu_svm *svm)
2843 {
2844         ++svm->vcpu.stat.nmi_window_exits;
2845         clr_intercept(svm, INTERCEPT_IRET);
2846         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2847         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2848         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2849         return 1;
2850 }
2851
2852 static int invlpg_interception(struct vcpu_svm *svm)
2853 {
2854         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2855                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2856
2857         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2858         skip_emulated_instruction(&svm->vcpu);
2859         return 1;
2860 }
2861
2862 static int emulate_on_interception(struct vcpu_svm *svm)
2863 {
2864         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2865 }
2866
2867 static int rdpmc_interception(struct vcpu_svm *svm)
2868 {
2869         int err;
2870
2871         if (!static_cpu_has(X86_FEATURE_NRIPS))
2872                 return emulate_on_interception(svm);
2873
2874         err = kvm_rdpmc(&svm->vcpu);
2875         kvm_complete_insn_gp(&svm->vcpu, err);
2876
2877         return 1;
2878 }
2879
2880 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2881                                             unsigned long val)
2882 {
2883         unsigned long cr0 = svm->vcpu.arch.cr0;
2884         bool ret = false;
2885         u64 intercept;
2886
2887         intercept = svm->nested.intercept;
2888
2889         if (!is_guest_mode(&svm->vcpu) ||
2890             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2891                 return false;
2892
2893         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2894         val &= ~SVM_CR0_SELECTIVE_MASK;
2895
2896         if (cr0 ^ val) {
2897                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2898                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2899         }
2900
2901         return ret;
2902 }
2903
2904 #define CR_VALID (1ULL << 63)
2905
2906 static int cr_interception(struct vcpu_svm *svm)
2907 {
2908         int reg, cr;
2909         unsigned long val;
2910         int err;
2911
2912         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2913                 return emulate_on_interception(svm);
2914
2915         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2916                 return emulate_on_interception(svm);
2917
2918         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2919         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2920                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2921         else
2922                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2923
2924         err = 0;
2925         if (cr >= 16) { /* mov to cr */
2926                 cr -= 16;
2927                 val = kvm_register_read(&svm->vcpu, reg);
2928                 switch (cr) {
2929                 case 0:
2930                         if (!check_selective_cr0_intercepted(svm, val))
2931                                 err = kvm_set_cr0(&svm->vcpu, val);
2932                         else
2933                                 return 1;
2934
2935                         break;
2936                 case 3:
2937                         err = kvm_set_cr3(&svm->vcpu, val);
2938                         break;
2939                 case 4:
2940                         err = kvm_set_cr4(&svm->vcpu, val);
2941                         break;
2942                 case 8:
2943                         err = kvm_set_cr8(&svm->vcpu, val);
2944                         break;
2945                 default:
2946                         WARN(1, "unhandled write to CR%d", cr);
2947                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2948                         return 1;
2949                 }
2950         } else { /* mov from cr */
2951                 switch (cr) {
2952                 case 0:
2953                         val = kvm_read_cr0(&svm->vcpu);
2954                         break;
2955                 case 2:
2956                         val = svm->vcpu.arch.cr2;
2957                         break;
2958                 case 3:
2959                         val = kvm_read_cr3(&svm->vcpu);
2960                         break;
2961                 case 4:
2962                         val = kvm_read_cr4(&svm->vcpu);
2963                         break;
2964                 case 8:
2965                         val = kvm_get_cr8(&svm->vcpu);
2966                         break;
2967                 default:
2968                         WARN(1, "unhandled read from CR%d", cr);
2969                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2970                         return 1;
2971                 }
2972                 kvm_register_write(&svm->vcpu, reg, val);
2973         }
2974         kvm_complete_insn_gp(&svm->vcpu, err);
2975
2976         return 1;
2977 }
2978
2979 static int dr_interception(struct vcpu_svm *svm)
2980 {
2981         int reg, dr;
2982         unsigned long val;
2983
2984         if (svm->vcpu.guest_debug == 0) {
2985                 /*
2986                  * No more DR vmexits; force a reload of the debug registers
2987                  * and reenter on this instruction.  The next vmexit will
2988                  * retrieve the full state of the debug registers.
2989                  */
2990                 clr_dr_intercepts(svm);
2991                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2992                 return 1;
2993         }
2994
2995         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2996                 return emulate_on_interception(svm);
2997
2998         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2999         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3000
3001         if (dr >= 16) { /* mov to DRn */
3002                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3003                         return 1;
3004                 val = kvm_register_read(&svm->vcpu, reg);
3005                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3006         } else {
3007                 if (!kvm_require_dr(&svm->vcpu, dr))
3008                         return 1;
3009                 kvm_get_dr(&svm->vcpu, dr, &val);
3010                 kvm_register_write(&svm->vcpu, reg, val);
3011         }
3012
3013         skip_emulated_instruction(&svm->vcpu);
3014
3015         return 1;
3016 }
3017
3018 static int cr8_write_interception(struct vcpu_svm *svm)
3019 {
3020         struct kvm_run *kvm_run = svm->vcpu.run;
3021         int r;
3022
3023         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3024         /* instruction emulation calls kvm_set_cr8() */
3025         r = cr_interception(svm);
3026         if (lapic_in_kernel(&svm->vcpu))
3027                 return r;
3028         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3029                 return r;
3030         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3031         return 0;
3032 }
3033
3034 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3035 {
3036         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3037         return vmcb->control.tsc_offset +
3038                 kvm_scale_tsc(vcpu, host_tsc);
3039 }
3040
3041 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3042 {
3043         struct vcpu_svm *svm = to_svm(vcpu);
3044
3045         switch (msr_info->index) {
3046         case MSR_IA32_TSC: {
3047                 msr_info->data = svm->vmcb->control.tsc_offset +
3048                         kvm_scale_tsc(vcpu, rdtsc());
3049
3050                 break;
3051         }
3052         case MSR_STAR:
3053                 msr_info->data = svm->vmcb->save.star;
3054                 break;
3055 #ifdef CONFIG_X86_64
3056         case MSR_LSTAR:
3057                 msr_info->data = svm->vmcb->save.lstar;
3058                 break;
3059         case MSR_CSTAR:
3060                 msr_info->data = svm->vmcb->save.cstar;
3061                 break;
3062         case MSR_KERNEL_GS_BASE:
3063                 msr_info->data = svm->vmcb->save.kernel_gs_base;
3064                 break;
3065         case MSR_SYSCALL_MASK:
3066                 msr_info->data = svm->vmcb->save.sfmask;
3067                 break;
3068 #endif
3069         case MSR_IA32_SYSENTER_CS:
3070                 msr_info->data = svm->vmcb->save.sysenter_cs;
3071                 break;
3072         case MSR_IA32_SYSENTER_EIP:
3073                 msr_info->data = svm->sysenter_eip;
3074                 break;
3075         case MSR_IA32_SYSENTER_ESP:
3076                 msr_info->data = svm->sysenter_esp;
3077                 break;
3078         /*
3079          * Nobody will change the following 5 values in the VMCB so we can
3080          * safely return them on rdmsr. They will always be 0 until LBRV is
3081          * implemented.
3082          */
3083         case MSR_IA32_DEBUGCTLMSR:
3084                 msr_info->data = svm->vmcb->save.dbgctl;
3085                 break;
3086         case MSR_IA32_LASTBRANCHFROMIP:
3087                 msr_info->data = svm->vmcb->save.br_from;
3088                 break;
3089         case MSR_IA32_LASTBRANCHTOIP:
3090                 msr_info->data = svm->vmcb->save.br_to;
3091                 break;
3092         case MSR_IA32_LASTINTFROMIP:
3093                 msr_info->data = svm->vmcb->save.last_excp_from;
3094                 break;
3095         case MSR_IA32_LASTINTTOIP:
3096                 msr_info->data = svm->vmcb->save.last_excp_to;
3097                 break;
3098         case MSR_VM_HSAVE_PA:
3099                 msr_info->data = svm->nested.hsave_msr;
3100                 break;
3101         case MSR_VM_CR:
3102                 msr_info->data = svm->nested.vm_cr_msr;
3103                 break;
3104         case MSR_IA32_UCODE_REV:
3105                 msr_info->data = 0x01000065;
3106                 break;
3107         default:
3108                 return kvm_get_msr_common(vcpu, msr_info);
3109         }
3110         return 0;
3111 }
3112
3113 static int rdmsr_interception(struct vcpu_svm *svm)
3114 {
3115         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3116         struct msr_data msr_info;
3117
3118         msr_info.index = ecx;
3119         msr_info.host_initiated = false;
3120         if (svm_get_msr(&svm->vcpu, &msr_info)) {
3121                 trace_kvm_msr_read_ex(ecx);
3122                 kvm_inject_gp(&svm->vcpu, 0);
3123         } else {
3124                 trace_kvm_msr_read(ecx, msr_info.data);
3125
3126                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3127                                    msr_info.data & 0xffffffff);
3128                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3129                                    msr_info.data >> 32);
3130                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3131                 skip_emulated_instruction(&svm->vcpu);
3132         }
3133         return 1;
3134 }
3135
3136 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3137 {
3138         struct vcpu_svm *svm = to_svm(vcpu);
3139         int svm_dis, chg_mask;
3140
3141         if (data & ~SVM_VM_CR_VALID_MASK)
3142                 return 1;
3143
3144         chg_mask = SVM_VM_CR_VALID_MASK;
3145
3146         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3147                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3148
3149         svm->nested.vm_cr_msr &= ~chg_mask;
3150         svm->nested.vm_cr_msr |= (data & chg_mask);
3151
3152         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3153
3154         /* check for svm_disable while efer.svme is set */
3155         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3156                 return 1;
3157
3158         return 0;
3159 }
3160
3161 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3162 {
3163         struct vcpu_svm *svm = to_svm(vcpu);
3164
3165         u32 ecx = msr->index;
3166         u64 data = msr->data;
3167         switch (ecx) {
3168         case MSR_IA32_TSC:
3169                 kvm_write_tsc(vcpu, msr);
3170                 break;
3171         case MSR_STAR:
3172                 svm->vmcb->save.star = data;
3173                 break;
3174 #ifdef CONFIG_X86_64
3175         case MSR_LSTAR:
3176                 svm->vmcb->save.lstar = data;
3177                 break;
3178         case MSR_CSTAR:
3179                 svm->vmcb->save.cstar = data;
3180                 break;
3181         case MSR_KERNEL_GS_BASE:
3182                 svm->vmcb->save.kernel_gs_base = data;
3183                 break;
3184         case MSR_SYSCALL_MASK:
3185                 svm->vmcb->save.sfmask = data;
3186                 break;
3187 #endif
3188         case MSR_IA32_SYSENTER_CS:
3189                 svm->vmcb->save.sysenter_cs = data;
3190                 break;
3191         case MSR_IA32_SYSENTER_EIP:
3192                 svm->sysenter_eip = data;
3193                 svm->vmcb->save.sysenter_eip = data;
3194                 break;
3195         case MSR_IA32_SYSENTER_ESP:
3196                 svm->sysenter_esp = data;
3197                 svm->vmcb->save.sysenter_esp = data;
3198                 break;
3199         case MSR_IA32_DEBUGCTLMSR:
3200                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3201                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3202                                     __func__, data);
3203                         break;
3204                 }
3205                 if (data & DEBUGCTL_RESERVED_BITS)
3206                         return 1;
3207
3208                 svm->vmcb->save.dbgctl = data;
3209                 mark_dirty(svm->vmcb, VMCB_LBR);
3210                 if (data & (1ULL<<0))
3211                         svm_enable_lbrv(svm);
3212                 else
3213                         svm_disable_lbrv(svm);
3214                 break;
3215         case MSR_VM_HSAVE_PA:
3216                 svm->nested.hsave_msr = data;
3217                 break;
3218         case MSR_VM_CR:
3219                 return svm_set_vm_cr(vcpu, data);
3220         case MSR_VM_IGNNE:
3221                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3222                 break;
3223         default:
3224                 return kvm_set_msr_common(vcpu, msr);
3225         }
3226         return 0;
3227 }
3228
3229 static int wrmsr_interception(struct vcpu_svm *svm)
3230 {
3231         struct msr_data msr;
3232         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3233         u64 data = kvm_read_edx_eax(&svm->vcpu);
3234
3235         msr.data = data;
3236         msr.index = ecx;
3237         msr.host_initiated = false;
3238
3239         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3240         if (kvm_set_msr(&svm->vcpu, &msr)) {
3241                 trace_kvm_msr_write_ex(ecx, data);
3242                 kvm_inject_gp(&svm->vcpu, 0);
3243         } else {
3244                 trace_kvm_msr_write(ecx, data);
3245                 skip_emulated_instruction(&svm->vcpu);
3246         }
3247         return 1;
3248 }
3249
3250 static int msr_interception(struct vcpu_svm *svm)
3251 {
3252         if (svm->vmcb->control.exit_info_1)
3253                 return wrmsr_interception(svm);
3254         else
3255                 return rdmsr_interception(svm);
3256 }
3257
3258 static int interrupt_window_interception(struct vcpu_svm *svm)
3259 {
3260         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3261         svm_clear_vintr(svm);
3262         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3263         mark_dirty(svm->vmcb, VMCB_INTR);
3264         ++svm->vcpu.stat.irq_window_exits;
3265         return 1;
3266 }
3267
3268 static int pause_interception(struct vcpu_svm *svm)
3269 {
3270         kvm_vcpu_on_spin(&(svm->vcpu));
3271         return 1;
3272 }
3273
3274 static int nop_interception(struct vcpu_svm *svm)
3275 {
3276         skip_emulated_instruction(&(svm->vcpu));
3277         return 1;
3278 }
3279
3280 static int monitor_interception(struct vcpu_svm *svm)
3281 {
3282         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3283         return nop_interception(svm);
3284 }
3285
3286 static int mwait_interception(struct vcpu_svm *svm)
3287 {
3288         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3289         return nop_interception(svm);
3290 }
3291
3292 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3293         [SVM_EXIT_READ_CR0]                     = cr_interception,
3294         [SVM_EXIT_READ_CR3]                     = cr_interception,
3295         [SVM_EXIT_READ_CR4]                     = cr_interception,
3296         [SVM_EXIT_READ_CR8]                     = cr_interception,
3297         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3298         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3299         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3300         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3301         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3302         [SVM_EXIT_READ_DR0]                     = dr_interception,
3303         [SVM_EXIT_READ_DR1]                     = dr_interception,
3304         [SVM_EXIT_READ_DR2]                     = dr_interception,
3305         [SVM_EXIT_READ_DR3]                     = dr_interception,
3306         [SVM_EXIT_READ_DR4]                     = dr_interception,
3307         [SVM_EXIT_READ_DR5]                     = dr_interception,
3308         [SVM_EXIT_READ_DR6]                     = dr_interception,
3309         [SVM_EXIT_READ_DR7]                     = dr_interception,
3310         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3311         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3312         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3313         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3314         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3315         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3316         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3317         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3318         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3319         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3320         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3321         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3322         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3323         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3324         [SVM_EXIT_INTR]                         = intr_interception,
3325         [SVM_EXIT_NMI]                          = nmi_interception,
3326         [SVM_EXIT_SMI]                          = nop_on_interception,
3327         [SVM_EXIT_INIT]                         = nop_on_interception,
3328         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3329         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3330         [SVM_EXIT_CPUID]                        = cpuid_interception,
3331         [SVM_EXIT_IRET]                         = iret_interception,
3332         [SVM_EXIT_INVD]                         = emulate_on_interception,
3333         [SVM_EXIT_PAUSE]                        = pause_interception,
3334         [SVM_EXIT_HLT]                          = halt_interception,
3335         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3336         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3337         [SVM_EXIT_IOIO]                         = io_interception,
3338         [SVM_EXIT_MSR]                          = msr_interception,
3339         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3340         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3341         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3342         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3343         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3344         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3345         [SVM_EXIT_STGI]                         = stgi_interception,
3346         [SVM_EXIT_CLGI]                         = clgi_interception,
3347         [SVM_EXIT_SKINIT]                       = skinit_interception,
3348         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
3349         [SVM_EXIT_MONITOR]                      = monitor_interception,
3350         [SVM_EXIT_MWAIT]                        = mwait_interception,
3351         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3352         [SVM_EXIT_NPF]                          = pf_interception,
3353         [SVM_EXIT_RSM]                          = emulate_on_interception,
3354 };
3355
3356 static void dump_vmcb(struct kvm_vcpu *vcpu)
3357 {
3358         struct vcpu_svm *svm = to_svm(vcpu);
3359         struct vmcb_control_area *control = &svm->vmcb->control;
3360         struct vmcb_save_area *save = &svm->vmcb->save;
3361
3362         pr_err("VMCB Control Area:\n");
3363         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3364         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3365         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3366         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3367         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3368         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3369         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3370         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3371         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3372         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3373         pr_err("%-20s%d\n", "asid:", control->asid);
3374         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3375         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3376         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3377         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3378         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3379         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3380         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3381         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3382         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3383         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3384         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3385         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3386         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3387         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3388         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3389         pr_err("VMCB State Save Area:\n");
3390         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3391                "es:",
3392                save->es.selector, save->es.attrib,
3393                save->es.limit, save->es.base);
3394         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3395                "cs:",
3396                save->cs.selector, save->cs.attrib,
3397                save->cs.limit, save->cs.base);
3398         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3399                "ss:",
3400                save->ss.selector, save->ss.attrib,
3401                save->ss.limit, save->ss.base);
3402         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3403                "ds:",
3404                save->ds.selector, save->ds.attrib,
3405                save->ds.limit, save->ds.base);
3406         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3407                "fs:",
3408                save->fs.selector, save->fs.attrib,
3409                save->fs.limit, save->fs.base);
3410         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3411                "gs:",
3412                save->gs.selector, save->gs.attrib,
3413                save->gs.limit, save->gs.base);
3414         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3415                "gdtr:",
3416                save->gdtr.selector, save->gdtr.attrib,
3417                save->gdtr.limit, save->gdtr.base);
3418         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3419                "ldtr:",
3420                save->ldtr.selector, save->ldtr.attrib,
3421                save->ldtr.limit, save->ldtr.base);
3422         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3423                "idtr:",
3424                save->idtr.selector, save->idtr.attrib,
3425                save->idtr.limit, save->idtr.base);
3426         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3427                "tr:",
3428                save->tr.selector, save->tr.attrib,
3429                save->tr.limit, save->tr.base);
3430         pr_err("cpl:            %d                efer:         %016llx\n",
3431                 save->cpl, save->efer);
3432         pr_err("%-15s %016llx %-13s %016llx\n",
3433                "cr0:", save->cr0, "cr2:", save->cr2);
3434         pr_err("%-15s %016llx %-13s %016llx\n",
3435                "cr3:", save->cr3, "cr4:", save->cr4);
3436         pr_err("%-15s %016llx %-13s %016llx\n",
3437                "dr6:", save->dr6, "dr7:", save->dr7);
3438         pr_err("%-15s %016llx %-13s %016llx\n",
3439                "rip:", save->rip, "rflags:", save->rflags);
3440         pr_err("%-15s %016llx %-13s %016llx\n",
3441                "rsp:", save->rsp, "rax:", save->rax);
3442         pr_err("%-15s %016llx %-13s %016llx\n",
3443                "star:", save->star, "lstar:", save->lstar);
3444         pr_err("%-15s %016llx %-13s %016llx\n",
3445                "cstar:", save->cstar, "sfmask:", save->sfmask);
3446         pr_err("%-15s %016llx %-13s %016llx\n",
3447                "kernel_gs_base:", save->kernel_gs_base,
3448                "sysenter_cs:", save->sysenter_cs);
3449         pr_err("%-15s %016llx %-13s %016llx\n",
3450                "sysenter_esp:", save->sysenter_esp,
3451                "sysenter_eip:", save->sysenter_eip);
3452         pr_err("%-15s %016llx %-13s %016llx\n",
3453                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3454         pr_err("%-15s %016llx %-13s %016llx\n",
3455                "br_from:", save->br_from, "br_to:", save->br_to);
3456         pr_err("%-15s %016llx %-13s %016llx\n",
3457                "excp_from:", save->last_excp_from,
3458                "excp_to:", save->last_excp_to);
3459 }
3460
3461 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3462 {
3463         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3464
3465         *info1 = control->exit_info_1;
3466         *info2 = control->exit_info_2;
3467 }
3468
3469 static int handle_exit(struct kvm_vcpu *vcpu)
3470 {
3471         struct vcpu_svm *svm = to_svm(vcpu);
3472         struct kvm_run *kvm_run = vcpu->run;
3473         u32 exit_code = svm->vmcb->control.exit_code;
3474
3475         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3476                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3477         if (npt_enabled)
3478                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3479
3480         if (unlikely(svm->nested.exit_required)) {
3481                 nested_svm_vmexit(svm);
3482                 svm->nested.exit_required = false;
3483
3484                 return 1;
3485         }
3486
3487         if (is_guest_mode(vcpu)) {
3488                 int vmexit;
3489
3490                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3491                                         svm->vmcb->control.exit_info_1,
3492                                         svm->vmcb->control.exit_info_2,
3493                                         svm->vmcb->control.exit_int_info,
3494                                         svm->vmcb->control.exit_int_info_err,
3495                                         KVM_ISA_SVM);
3496
3497                 vmexit = nested_svm_exit_special(svm);
3498
3499                 if (vmexit == NESTED_EXIT_CONTINUE)
3500                         vmexit = nested_svm_exit_handled(svm);
3501
3502                 if (vmexit == NESTED_EXIT_DONE)
3503                         return 1;
3504         }
3505
3506         svm_complete_interrupts(svm);
3507
3508         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3509                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3510                 kvm_run->fail_entry.hardware_entry_failure_reason
3511                         = svm->vmcb->control.exit_code;
3512                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3513                 dump_vmcb(vcpu);
3514                 return 0;
3515         }
3516
3517         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3518             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3519             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3520             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3521                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3522                        "exit_code 0x%x\n",
3523                        __func__, svm->vmcb->control.exit_int_info,
3524                        exit_code);
3525
3526         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3527             || !svm_exit_handlers[exit_code]) {
3528                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3529                 kvm_queue_exception(vcpu, UD_VECTOR);
3530                 return 1;
3531         }
3532
3533         return svm_exit_handlers[exit_code](svm);
3534 }
3535
3536 static void reload_tss(struct kvm_vcpu *vcpu)
3537 {
3538         int cpu = raw_smp_processor_id();
3539
3540         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3541         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3542         load_TR_desc();
3543 }
3544
3545 static void pre_svm_run(struct vcpu_svm *svm)
3546 {
3547         int cpu = raw_smp_processor_id();
3548
3549         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3550
3551         /* FIXME: handle wraparound of asid_generation */
3552         if (svm->asid_generation != sd->asid_generation)
3553                 new_asid(svm, sd);
3554 }
3555
3556 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3557 {
3558         struct vcpu_svm *svm = to_svm(vcpu);
3559
3560         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3561         vcpu->arch.hflags |= HF_NMI_MASK;
3562         set_intercept(svm, INTERCEPT_IRET);
3563         ++vcpu->stat.nmi_injections;
3564 }
3565
3566 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3567 {
3568         struct vmcb_control_area *control;
3569
3570         control = &svm->vmcb->control;
3571         control->int_vector = irq;
3572         control->int_ctl &= ~V_INTR_PRIO_MASK;
3573         control->int_ctl |= V_IRQ_MASK |
3574                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3575         mark_dirty(svm->vmcb, VMCB_INTR);
3576 }
3577
3578 static void svm_set_irq(struct kvm_vcpu *vcpu)
3579 {
3580         struct vcpu_svm *svm = to_svm(vcpu);
3581
3582         BUG_ON(!(gif_set(svm)));
3583
3584         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3585         ++vcpu->stat.irq_injections;
3586
3587         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3588                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3589 }
3590
3591 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3592 {
3593         struct vcpu_svm *svm = to_svm(vcpu);
3594
3595         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3596                 return;
3597
3598         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3599
3600         if (irr == -1)
3601                 return;
3602
3603         if (tpr >= irr)
3604                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3605 }
3606
3607 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3608 {
3609         return;
3610 }
3611
3612 static int svm_cpu_uses_apicv(struct kvm_vcpu *vcpu)
3613 {
3614         return 0;
3615 }
3616
3617 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu)
3618 {
3619         return;
3620 }
3621
3622 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3623 {
3624         return;
3625 }
3626
3627 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3628 {
3629         struct vcpu_svm *svm = to_svm(vcpu);
3630         struct vmcb *vmcb = svm->vmcb;
3631         int ret;
3632         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3633               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3634         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3635
3636         return ret;
3637 }
3638
3639 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3640 {
3641         struct vcpu_svm *svm = to_svm(vcpu);
3642
3643         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3644 }
3645
3646 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3647 {
3648         struct vcpu_svm *svm = to_svm(vcpu);
3649
3650         if (masked) {
3651                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3652                 set_intercept(svm, INTERCEPT_IRET);
3653         } else {
3654                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3655                 clr_intercept(svm, INTERCEPT_IRET);
3656         }
3657 }
3658
3659 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3660 {
3661         struct vcpu_svm *svm = to_svm(vcpu);
3662         struct vmcb *vmcb = svm->vmcb;
3663         int ret;
3664
3665         if (!gif_set(svm) ||
3666              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3667                 return 0;
3668
3669         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3670
3671         if (is_guest_mode(vcpu))
3672                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3673
3674         return ret;
3675 }
3676
3677 static void enable_irq_window(struct kvm_vcpu *vcpu)
3678 {
3679         struct vcpu_svm *svm = to_svm(vcpu);
3680
3681         /*
3682          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3683          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3684          * get that intercept, this function will be called again though and
3685          * we'll get the vintr intercept.
3686          */
3687         if (gif_set(svm) && nested_svm_intr(svm)) {
3688                 svm_set_vintr(svm);
3689                 svm_inject_irq(svm, 0x0);
3690         }
3691 }
3692
3693 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3694 {
3695         struct vcpu_svm *svm = to_svm(vcpu);
3696
3697         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3698             == HF_NMI_MASK)
3699                 return; /* IRET will cause a vm exit */
3700
3701         /*
3702          * Something prevents NMI from been injected. Single step over possible
3703          * problem (IRET or exception injection or interrupt shadow)
3704          */
3705         svm->nmi_singlestep = true;
3706         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3707         update_db_bp_intercept(vcpu);
3708 }
3709
3710 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3711 {
3712         return 0;
3713 }
3714
3715 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3716 {
3717         struct vcpu_svm *svm = to_svm(vcpu);
3718
3719         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3720                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3721         else
3722                 svm->asid_generation--;
3723 }
3724
3725 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3726 {
3727 }
3728
3729 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3730 {
3731         struct vcpu_svm *svm = to_svm(vcpu);
3732
3733         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3734                 return;
3735
3736         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3737                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3738                 kvm_set_cr8(vcpu, cr8);
3739         }
3740 }
3741
3742 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3743 {
3744         struct vcpu_svm *svm = to_svm(vcpu);
3745         u64 cr8;
3746
3747         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3748                 return;
3749
3750         cr8 = kvm_get_cr8(vcpu);
3751         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3752         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3753 }
3754
3755 static void svm_complete_interrupts(struct vcpu_svm *svm)
3756 {
3757         u8 vector;
3758         int type;
3759         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3760         unsigned int3_injected = svm->int3_injected;
3761
3762         svm->int3_injected = 0;
3763
3764         /*
3765          * If we've made progress since setting HF_IRET_MASK, we've
3766          * executed an IRET and can allow NMI injection.
3767          */
3768         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3769             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3770                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3771                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3772         }
3773
3774         svm->vcpu.arch.nmi_injected = false;
3775         kvm_clear_exception_queue(&svm->vcpu);
3776         kvm_clear_interrupt_queue(&svm->vcpu);
3777
3778         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3779                 return;
3780
3781         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3782
3783         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3784         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3785
3786         switch (type) {
3787         case SVM_EXITINTINFO_TYPE_NMI:
3788                 svm->vcpu.arch.nmi_injected = true;
3789                 break;
3790         case SVM_EXITINTINFO_TYPE_EXEPT:
3791                 /*
3792                  * In case of software exceptions, do not reinject the vector,
3793                  * but re-execute the instruction instead. Rewind RIP first
3794                  * if we emulated INT3 before.
3795                  */
3796                 if (kvm_exception_is_soft(vector)) {
3797                         if (vector == BP_VECTOR && int3_injected &&
3798                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3799                                 kvm_rip_write(&svm->vcpu,
3800                                               kvm_rip_read(&svm->vcpu) -
3801                                               int3_injected);
3802                         break;
3803                 }
3804                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3805                         u32 err = svm->vmcb->control.exit_int_info_err;
3806                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3807
3808                 } else
3809                         kvm_requeue_exception(&svm->vcpu, vector);
3810                 break;
3811         case SVM_EXITINTINFO_TYPE_INTR:
3812                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3813                 break;
3814         default:
3815                 break;
3816         }
3817 }
3818
3819 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3820 {
3821         struct vcpu_svm *svm = to_svm(vcpu);
3822         struct vmcb_control_area *control = &svm->vmcb->control;
3823
3824         control->exit_int_info = control->event_inj;
3825         control->exit_int_info_err = control->event_inj_err;
3826         control->event_inj = 0;
3827         svm_complete_interrupts(svm);
3828 }
3829
3830 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3831 {
3832         struct vcpu_svm *svm = to_svm(vcpu);
3833
3834         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3835         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3836         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3837
3838         /*
3839          * A vmexit emulation is required before the vcpu can be executed
3840          * again.
3841          */
3842         if (unlikely(svm->nested.exit_required))
3843                 return;
3844
3845         pre_svm_run(svm);
3846
3847         sync_lapic_to_cr8(vcpu);
3848
3849         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3850
3851         clgi();
3852
3853         local_irq_enable();
3854
3855         asm volatile (
3856                 "push %%" _ASM_BP "; \n\t"
3857                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3858                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3859                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3860                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3861                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3862                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3863 #ifdef CONFIG_X86_64
3864                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3865                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3866                 "mov %c[r10](%[svm]), %%r10 \n\t"
3867                 "mov %c[r11](%[svm]), %%r11 \n\t"
3868                 "mov %c[r12](%[svm]), %%r12 \n\t"
3869                 "mov %c[r13](%[svm]), %%r13 \n\t"
3870                 "mov %c[r14](%[svm]), %%r14 \n\t"
3871                 "mov %c[r15](%[svm]), %%r15 \n\t"
3872 #endif
3873
3874                 /* Enter guest mode */
3875                 "push %%" _ASM_AX " \n\t"
3876                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3877                 __ex(SVM_VMLOAD) "\n\t"
3878                 __ex(SVM_VMRUN) "\n\t"
3879                 __ex(SVM_VMSAVE) "\n\t"
3880                 "pop %%" _ASM_AX " \n\t"
3881
3882                 /* Save guest registers, load host registers */
3883                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3884                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3885                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3886                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3887                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3888                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3889 #ifdef CONFIG_X86_64
3890                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3891                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3892                 "mov %%r10, %c[r10](%[svm]) \n\t"
3893                 "mov %%r11, %c[r11](%[svm]) \n\t"
3894                 "mov %%r12, %c[r12](%[svm]) \n\t"
3895                 "mov %%r13, %c[r13](%[svm]) \n\t"
3896                 "mov %%r14, %c[r14](%[svm]) \n\t"
3897                 "mov %%r15, %c[r15](%[svm]) \n\t"
3898 #endif
3899                 "pop %%" _ASM_BP
3900                 :
3901                 : [svm]"a"(svm),
3902                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3903                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3904                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3905                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3906                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3907                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3908                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3909 #ifdef CONFIG_X86_64
3910                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3911                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3912                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3913                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3914                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3915                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3916                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3917                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3918 #endif
3919                 : "cc", "memory"
3920 #ifdef CONFIG_X86_64
3921                 , "rbx", "rcx", "rdx", "rsi", "rdi"
3922                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3923 #else
3924                 , "ebx", "ecx", "edx", "esi", "edi"
3925 #endif
3926                 );
3927
3928 #ifdef CONFIG_X86_64
3929         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3930 #else
3931         loadsegment(fs, svm->host.fs);
3932 #ifndef CONFIG_X86_32_LAZY_GS
3933         loadsegment(gs, svm->host.gs);
3934 #endif
3935 #endif
3936
3937         reload_tss(vcpu);
3938
3939         local_irq_disable();
3940
3941         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3942         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3943         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3944         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3945
3946         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3947
3948         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3949                 kvm_before_handle_nmi(&svm->vcpu);
3950
3951         stgi();
3952
3953         /* Any pending NMI will happen here */
3954
3955         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3956                 kvm_after_handle_nmi(&svm->vcpu);
3957
3958         sync_cr8_to_lapic(vcpu);
3959
3960         svm->next_rip = 0;
3961
3962         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3963
3964         /* if exit due to PF check for async PF */
3965         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3966                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3967
3968         if (npt_enabled) {
3969                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3970                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3971         }
3972
3973         /*
3974          * We need to handle MC intercepts here before the vcpu has a chance to
3975          * change the physical cpu
3976          */
3977         if (unlikely(svm->vmcb->control.exit_code ==
3978                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3979                 svm_handle_mce(svm);
3980
3981         mark_all_clean(svm->vmcb);
3982 }
3983
3984 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3985 {
3986         struct vcpu_svm *svm = to_svm(vcpu);
3987
3988         svm->vmcb->save.cr3 = root;
3989         mark_dirty(svm->vmcb, VMCB_CR);
3990         svm_flush_tlb(vcpu);
3991 }
3992
3993 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3994 {
3995         struct vcpu_svm *svm = to_svm(vcpu);
3996
3997         svm->vmcb->control.nested_cr3 = root;
3998         mark_dirty(svm->vmcb, VMCB_NPT);
3999
4000         /* Also sync guest cr3 here in case we live migrate */
4001         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4002         mark_dirty(svm->vmcb, VMCB_CR);
4003
4004         svm_flush_tlb(vcpu);
4005 }
4006
4007 static int is_disabled(void)
4008 {
4009         u64 vm_cr;
4010
4011         rdmsrl(MSR_VM_CR, vm_cr);
4012         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4013                 return 1;
4014
4015         return 0;
4016 }
4017
4018 static void
4019 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4020 {
4021         /*
4022          * Patch in the VMMCALL instruction:
4023          */
4024         hypercall[0] = 0x0f;
4025         hypercall[1] = 0x01;
4026         hypercall[2] = 0xd9;
4027 }
4028
4029 static void svm_check_processor_compat(void *rtn)
4030 {
4031         *(int *)rtn = 0;
4032 }
4033
4034 static bool svm_cpu_has_accelerated_tpr(void)
4035 {
4036         return false;
4037 }
4038
4039 static bool svm_has_high_real_mode_segbase(void)
4040 {
4041         return true;
4042 }
4043
4044 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4045 {
4046         return 0;
4047 }
4048
4049 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4050 {
4051         struct vcpu_svm *svm = to_svm(vcpu);
4052
4053         /* Update nrips enabled cache */
4054         svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
4055 }
4056
4057 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4058 {
4059         switch (func) {
4060         case 0x80000001:
4061                 if (nested)
4062                         entry->ecx |= (1 << 2); /* Set SVM bit */
4063                 break;
4064         case 0x8000000A:
4065                 entry->eax = 1; /* SVM revision 1 */
4066                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4067                                    ASID emulation to nested SVM */
4068                 entry->ecx = 0; /* Reserved */
4069                 entry->edx = 0; /* Per default do not support any
4070                                    additional features */
4071
4072                 /* Support next_rip if host supports it */
4073                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4074                         entry->edx |= SVM_FEATURE_NRIP;
4075
4076                 /* Support NPT for the guest if enabled */
4077                 if (npt_enabled)
4078                         entry->edx |= SVM_FEATURE_NPT;
4079
4080                 break;
4081         }
4082 }
4083
4084 static int svm_get_lpage_level(void)
4085 {
4086         return PT_PDPE_LEVEL;
4087 }
4088
4089 static bool svm_rdtscp_supported(void)
4090 {
4091         return false;
4092 }
4093
4094 static bool svm_invpcid_supported(void)
4095 {
4096         return false;
4097 }
4098
4099 static bool svm_mpx_supported(void)
4100 {
4101         return false;
4102 }
4103
4104 static bool svm_xsaves_supported(void)
4105 {
4106         return false;
4107 }
4108
4109 static bool svm_has_wbinvd_exit(void)
4110 {
4111         return true;
4112 }
4113
4114 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4115 {
4116         struct vcpu_svm *svm = to_svm(vcpu);
4117
4118         set_exception_intercept(svm, NM_VECTOR);
4119         update_cr0_intercept(svm);
4120 }
4121
4122 #define PRE_EX(exit)  { .exit_code = (exit), \
4123                         .stage = X86_ICPT_PRE_EXCEPT, }
4124 #define POST_EX(exit) { .exit_code = (exit), \
4125                         .stage = X86_ICPT_POST_EXCEPT, }
4126 #define POST_MEM(exit) { .exit_code = (exit), \
4127                         .stage = X86_ICPT_POST_MEMACCESS, }
4128
4129 static const struct __x86_intercept {
4130         u32 exit_code;
4131         enum x86_intercept_stage stage;
4132 } x86_intercept_map[] = {
4133         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4134         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4135         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4136         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4137         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4138         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4139         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4140         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4141         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4142         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4143         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4144         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4145         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4146         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4147         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4148         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4149         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4150         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4151         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4152         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4153         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4154         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4155         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4156         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4157         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4158         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4159         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4160         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4161         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4162         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4163         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4164         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4165         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4166         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4167         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4168         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4169         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4170         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4171         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4172         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4173         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4174         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4175         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4176         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4177         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4178         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4179 };
4180
4181 #undef PRE_EX
4182 #undef POST_EX
4183 #undef POST_MEM
4184
4185 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4186                                struct x86_instruction_info *info,
4187                                enum x86_intercept_stage stage)
4188 {
4189         struct vcpu_svm *svm = to_svm(vcpu);
4190         int vmexit, ret = X86EMUL_CONTINUE;
4191         struct __x86_intercept icpt_info;
4192         struct vmcb *vmcb = svm->vmcb;
4193
4194         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4195                 goto out;
4196
4197         icpt_info = x86_intercept_map[info->intercept];
4198
4199         if (stage != icpt_info.stage)
4200                 goto out;
4201
4202         switch (icpt_info.exit_code) {
4203         case SVM_EXIT_READ_CR0:
4204                 if (info->intercept == x86_intercept_cr_read)
4205                         icpt_info.exit_code += info->modrm_reg;
4206                 break;
4207         case SVM_EXIT_WRITE_CR0: {
4208                 unsigned long cr0, val;
4209                 u64 intercept;
4210
4211                 if (info->intercept == x86_intercept_cr_write)
4212                         icpt_info.exit_code += info->modrm_reg;
4213
4214                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4215                     info->intercept == x86_intercept_clts)
4216                         break;
4217
4218                 intercept = svm->nested.intercept;
4219
4220                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4221                         break;
4222
4223                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4224                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4225
4226                 if (info->intercept == x86_intercept_lmsw) {
4227                         cr0 &= 0xfUL;
4228                         val &= 0xfUL;
4229                         /* lmsw can't clear PE - catch this here */
4230                         if (cr0 & X86_CR0_PE)
4231                                 val |= X86_CR0_PE;
4232                 }
4233
4234                 if (cr0 ^ val)
4235                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4236
4237                 break;
4238         }
4239         case SVM_EXIT_READ_DR0:
4240         case SVM_EXIT_WRITE_DR0:
4241                 icpt_info.exit_code += info->modrm_reg;
4242                 break;
4243         case SVM_EXIT_MSR:
4244                 if (info->intercept == x86_intercept_wrmsr)
4245                         vmcb->control.exit_info_1 = 1;
4246                 else
4247                         vmcb->control.exit_info_1 = 0;
4248                 break;
4249         case SVM_EXIT_PAUSE:
4250                 /*
4251                  * We get this for NOP only, but pause
4252                  * is rep not, check this here
4253                  */
4254                 if (info->rep_prefix != REPE_PREFIX)
4255                         goto out;
4256         case SVM_EXIT_IOIO: {
4257                 u64 exit_info;
4258                 u32 bytes;
4259
4260                 if (info->intercept == x86_intercept_in ||
4261                     info->intercept == x86_intercept_ins) {
4262                         exit_info = ((info->src_val & 0xffff) << 16) |
4263                                 SVM_IOIO_TYPE_MASK;
4264                         bytes = info->dst_bytes;
4265                 } else {
4266                         exit_info = (info->dst_val & 0xffff) << 16;
4267                         bytes = info->src_bytes;
4268                 }
4269
4270                 if (info->intercept == x86_intercept_outs ||
4271                     info->intercept == x86_intercept_ins)
4272                         exit_info |= SVM_IOIO_STR_MASK;
4273
4274                 if (info->rep_prefix)
4275                         exit_info |= SVM_IOIO_REP_MASK;
4276
4277                 bytes = min(bytes, 4u);
4278
4279                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4280
4281                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4282
4283                 vmcb->control.exit_info_1 = exit_info;
4284                 vmcb->control.exit_info_2 = info->next_rip;
4285
4286                 break;
4287         }
4288         default:
4289                 break;
4290         }
4291
4292         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4293         if (static_cpu_has(X86_FEATURE_NRIPS))
4294                 vmcb->control.next_rip  = info->next_rip;
4295         vmcb->control.exit_code = icpt_info.exit_code;
4296         vmexit = nested_svm_exit_handled(svm);
4297
4298         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4299                                            : X86EMUL_CONTINUE;
4300
4301 out:
4302         return ret;
4303 }
4304
4305 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4306 {
4307         local_irq_enable();
4308 }
4309
4310 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4311 {
4312 }
4313
4314 static struct kvm_x86_ops svm_x86_ops = {
4315         .cpu_has_kvm_support = has_svm,
4316         .disabled_by_bios = is_disabled,
4317         .hardware_setup = svm_hardware_setup,
4318         .hardware_unsetup = svm_hardware_unsetup,
4319         .check_processor_compatibility = svm_check_processor_compat,
4320         .hardware_enable = svm_hardware_enable,
4321         .hardware_disable = svm_hardware_disable,
4322         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4323         .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4324
4325         .vcpu_create = svm_create_vcpu,
4326         .vcpu_free = svm_free_vcpu,
4327         .vcpu_reset = svm_vcpu_reset,
4328
4329         .prepare_guest_switch = svm_prepare_guest_switch,
4330         .vcpu_load = svm_vcpu_load,
4331         .vcpu_put = svm_vcpu_put,
4332
4333         .update_db_bp_intercept = update_db_bp_intercept,
4334         .get_msr = svm_get_msr,
4335         .set_msr = svm_set_msr,
4336         .get_segment_base = svm_get_segment_base,
4337         .get_segment = svm_get_segment,
4338         .set_segment = svm_set_segment,
4339         .get_cpl = svm_get_cpl,
4340         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4341         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4342         .decache_cr3 = svm_decache_cr3,
4343         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4344         .set_cr0 = svm_set_cr0,
4345         .set_cr3 = svm_set_cr3,
4346         .set_cr4 = svm_set_cr4,
4347         .set_efer = svm_set_efer,
4348         .get_idt = svm_get_idt,
4349         .set_idt = svm_set_idt,
4350         .get_gdt = svm_get_gdt,
4351         .set_gdt = svm_set_gdt,
4352         .get_dr6 = svm_get_dr6,
4353         .set_dr6 = svm_set_dr6,
4354         .set_dr7 = svm_set_dr7,
4355         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4356         .cache_reg = svm_cache_reg,
4357         .get_rflags = svm_get_rflags,
4358         .set_rflags = svm_set_rflags,
4359         .fpu_activate = svm_fpu_activate,
4360         .fpu_deactivate = svm_fpu_deactivate,
4361
4362         .tlb_flush = svm_flush_tlb,
4363
4364         .run = svm_vcpu_run,
4365         .handle_exit = handle_exit,
4366         .skip_emulated_instruction = skip_emulated_instruction,
4367         .set_interrupt_shadow = svm_set_interrupt_shadow,
4368         .get_interrupt_shadow = svm_get_interrupt_shadow,
4369         .patch_hypercall = svm_patch_hypercall,
4370         .set_irq = svm_set_irq,
4371         .set_nmi = svm_inject_nmi,
4372         .queue_exception = svm_queue_exception,
4373         .cancel_injection = svm_cancel_injection,
4374         .interrupt_allowed = svm_interrupt_allowed,
4375         .nmi_allowed = svm_nmi_allowed,
4376         .get_nmi_mask = svm_get_nmi_mask,
4377         .set_nmi_mask = svm_set_nmi_mask,
4378         .enable_nmi_window = enable_nmi_window,
4379         .enable_irq_window = enable_irq_window,
4380         .update_cr8_intercept = update_cr8_intercept,
4381         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4382         .cpu_uses_apicv = svm_cpu_uses_apicv,
4383         .load_eoi_exitmap = svm_load_eoi_exitmap,
4384         .sync_pir_to_irr = svm_sync_pir_to_irr,
4385
4386         .set_tss_addr = svm_set_tss_addr,
4387         .get_tdp_level = get_npt_level,
4388         .get_mt_mask = svm_get_mt_mask,
4389
4390         .get_exit_info = svm_get_exit_info,
4391
4392         .get_lpage_level = svm_get_lpage_level,
4393
4394         .cpuid_update = svm_cpuid_update,
4395
4396         .rdtscp_supported = svm_rdtscp_supported,
4397         .invpcid_supported = svm_invpcid_supported,
4398         .mpx_supported = svm_mpx_supported,
4399         .xsaves_supported = svm_xsaves_supported,
4400
4401         .set_supported_cpuid = svm_set_supported_cpuid,
4402
4403         .has_wbinvd_exit = svm_has_wbinvd_exit,
4404
4405         .set_tsc_khz = svm_set_tsc_khz,
4406         .read_tsc_offset = svm_read_tsc_offset,
4407         .write_tsc_offset = svm_write_tsc_offset,
4408         .adjust_tsc_offset = svm_adjust_tsc_offset,
4409         .compute_tsc_offset = svm_compute_tsc_offset,
4410         .read_l1_tsc = svm_read_l1_tsc,
4411
4412         .set_tdp_cr3 = set_tdp_cr3,
4413
4414         .check_intercept = svm_check_intercept,
4415         .handle_external_intr = svm_handle_external_intr,
4416
4417         .sched_in = svm_sched_in,
4418
4419         .pmu_ops = &amd_pmu_ops,
4420 };
4421
4422 static int __init svm_init(void)
4423 {
4424         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4425                         __alignof__(struct vcpu_svm), THIS_MODULE);
4426 }
4427
4428 static void __exit svm_exit(void)
4429 {
4430         kvm_exit();
4431 }
4432
4433 module_init(svm_init)
4434 module_exit(svm_exit)