Merge tag 'pinctrl-v6.9-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-block.git] / arch / x86 / kvm / pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/kvm_host.h>
16 #include <linux/perf_event.h>
17 #include <linux/bsearch.h>
18 #include <linux/sort.h>
19 #include <asm/perf_event.h>
20 #include <asm/cpu_device_id.h>
21 #include "x86.h"
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "pmu.h"
25
26 /* This is enough to filter the vast majority of currently defined events. */
27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28
29 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
30 EXPORT_SYMBOL_GPL(kvm_pmu_cap);
31
32 struct kvm_pmu_emulated_event_selectors __read_mostly kvm_pmu_eventsel;
33 EXPORT_SYMBOL_GPL(kvm_pmu_eventsel);
34
35 /* Precise Distribution of Instructions Retired (PDIR) */
36 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
37         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
38         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
39         /* Instruction-Accurate PDIR (PDIR++) */
40         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
41         {}
42 };
43
44 /* Precise Distribution (PDist) */
45 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
46         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
47         {}
48 };
49
50 /* NOTE:
51  * - Each perf counter is defined as "struct kvm_pmc";
52  * - There are two types of perf counters: general purpose (gp) and fixed.
53  *   gp counters are stored in gp_counters[] and fixed counters are stored
54  *   in fixed_counters[] respectively. Both of them are part of "struct
55  *   kvm_pmu";
56  * - pmu.c understands the difference between gp counters and fixed counters.
57  *   However AMD doesn't support fixed-counters;
58  * - There are three types of index to access perf counters (PMC):
59  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
60  *        has MSR_K7_PERFCTRn and, for families 15H and later,
61  *        MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
62  *        aliased to MSR_K7_PERFCTRn.
63  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
64  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
65  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
66  *        that it also supports fixed counters. idx can be used to as index to
67  *        gp and fixed counters.
68  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
69  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
70  *        all perf counters (both gp and fixed). The mapping relationship
71  *        between pmc and perf counters is as the following:
72  *        * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
73  *                 [KVM_FIXED_PMC_BASE_IDX .. KVM_FIXED_PMC_BASE_IDX + 2] <=> fixed
74  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
75  *          and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
76  */
77
78 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
79
80 #define KVM_X86_PMU_OP(func)                                         \
81         DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func,                          \
82                                 *(((struct kvm_pmu_ops *)0)->func));
83 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
84 #include <asm/kvm-x86-pmu-ops.h>
85
86 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
87 {
88         memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
89
90 #define __KVM_X86_PMU_OP(func) \
91         static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
92 #define KVM_X86_PMU_OP(func) \
93         WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
94 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
95 #include <asm/kvm-x86-pmu-ops.h>
96 #undef __KVM_X86_PMU_OP
97 }
98
99 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
100 {
101         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
102         bool skip_pmi = false;
103
104         if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
105                 if (!in_pmi) {
106                         /*
107                          * TODO: KVM is currently _choosing_ to not generate records
108                          * for emulated instructions, avoiding BUFFER_OVF PMI when
109                          * there are no records. Strictly speaking, it should be done
110                          * as well in the right context to improve sampling accuracy.
111                          */
112                         skip_pmi = true;
113                 } else {
114                         /* Indicate PEBS overflow PMI to guest. */
115                         skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
116                                                       (unsigned long *)&pmu->global_status);
117                 }
118         } else {
119                 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
120         }
121
122         if (pmc->intr && !skip_pmi)
123                 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
124 }
125
126 static void kvm_perf_overflow(struct perf_event *perf_event,
127                               struct perf_sample_data *data,
128                               struct pt_regs *regs)
129 {
130         struct kvm_pmc *pmc = perf_event->overflow_handler_context;
131
132         /*
133          * Ignore asynchronous overflow events for counters that are scheduled
134          * to be reprogrammed, e.g. if a PMI for the previous event races with
135          * KVM's handling of a related guest WRMSR.
136          */
137         if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
138                 return;
139
140         __kvm_perf_overflow(pmc, true);
141
142         kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
143 }
144
145 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
146 {
147         /*
148          * For some model specific pebs counters with special capabilities
149          * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
150          * level to the maximum value (currently 3, backwards compatible)
151          * so that the perf subsystem would assign specific hardware counter
152          * with that capability for vPMC.
153          */
154         if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
155             (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
156                 return 3;
157
158         /*
159          * The non-zero precision level of guest event makes the ordinary
160          * guest event becomes a guest PEBS event and triggers the host
161          * PEBS PMI handler to determine whether the PEBS overflow PMI
162          * comes from the host counters or the guest.
163          */
164         return 1;
165 }
166
167 static u64 get_sample_period(struct kvm_pmc *pmc, u64 counter_value)
168 {
169         u64 sample_period = (-counter_value) & pmc_bitmask(pmc);
170
171         if (!sample_period)
172                 sample_period = pmc_bitmask(pmc) + 1;
173         return sample_period;
174 }
175
176 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
177                                  bool exclude_user, bool exclude_kernel,
178                                  bool intr)
179 {
180         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
181         struct perf_event *event;
182         struct perf_event_attr attr = {
183                 .type = type,
184                 .size = sizeof(attr),
185                 .pinned = true,
186                 .exclude_idle = true,
187                 .exclude_host = 1,
188                 .exclude_user = exclude_user,
189                 .exclude_kernel = exclude_kernel,
190                 .config = config,
191         };
192         bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
193
194         attr.sample_period = get_sample_period(pmc, pmc->counter);
195
196         if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
197             guest_cpuid_is_intel(pmc->vcpu)) {
198                 /*
199                  * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
200                  * period. Just clear the sample period so at least
201                  * allocating the counter doesn't fail.
202                  */
203                 attr.sample_period = 0;
204         }
205         if (pebs) {
206                 /*
207                  * For most PEBS hardware events, the difference in the software
208                  * precision levels of guest and host PEBS events will not affect
209                  * the accuracy of the PEBS profiling result, because the "event IP"
210                  * in the PEBS record is calibrated on the guest side.
211                  */
212                 attr.precise_ip = pmc_get_pebs_precise_level(pmc);
213         }
214
215         event = perf_event_create_kernel_counter(&attr, -1, current,
216                                                  kvm_perf_overflow, pmc);
217         if (IS_ERR(event)) {
218                 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
219                             PTR_ERR(event), pmc->idx);
220                 return PTR_ERR(event);
221         }
222
223         pmc->perf_event = event;
224         pmc_to_pmu(pmc)->event_count++;
225         pmc->is_paused = false;
226         pmc->intr = intr || pebs;
227         return 0;
228 }
229
230 static bool pmc_pause_counter(struct kvm_pmc *pmc)
231 {
232         u64 counter = pmc->counter;
233         u64 prev_counter;
234
235         /* update counter, reset event value to avoid redundant accumulation */
236         if (pmc->perf_event && !pmc->is_paused)
237                 counter += perf_event_pause(pmc->perf_event, true);
238
239         /*
240          * Snapshot the previous counter *after* accumulating state from perf.
241          * If overflow already happened, hardware (via perf) is responsible for
242          * generating a PMI.  KVM just needs to detect overflow on emulated
243          * counter events that haven't yet been processed.
244          */
245         prev_counter = counter & pmc_bitmask(pmc);
246
247         counter += pmc->emulated_counter;
248         pmc->counter = counter & pmc_bitmask(pmc);
249
250         pmc->emulated_counter = 0;
251         pmc->is_paused = true;
252
253         return pmc->counter < prev_counter;
254 }
255
256 static bool pmc_resume_counter(struct kvm_pmc *pmc)
257 {
258         if (!pmc->perf_event)
259                 return false;
260
261         /* recalibrate sample period and check if it's accepted by perf core */
262         if (is_sampling_event(pmc->perf_event) &&
263             perf_event_period(pmc->perf_event,
264                               get_sample_period(pmc, pmc->counter)))
265                 return false;
266
267         if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
268             (!!pmc->perf_event->attr.precise_ip))
269                 return false;
270
271         /* reuse perf_event to serve as pmc_reprogram_counter() does*/
272         perf_event_enable(pmc->perf_event);
273         pmc->is_paused = false;
274
275         return true;
276 }
277
278 static void pmc_release_perf_event(struct kvm_pmc *pmc)
279 {
280         if (pmc->perf_event) {
281                 perf_event_release_kernel(pmc->perf_event);
282                 pmc->perf_event = NULL;
283                 pmc->current_config = 0;
284                 pmc_to_pmu(pmc)->event_count--;
285         }
286 }
287
288 static void pmc_stop_counter(struct kvm_pmc *pmc)
289 {
290         if (pmc->perf_event) {
291                 pmc->counter = pmc_read_counter(pmc);
292                 pmc_release_perf_event(pmc);
293         }
294 }
295
296 static void pmc_update_sample_period(struct kvm_pmc *pmc)
297 {
298         if (!pmc->perf_event || pmc->is_paused ||
299             !is_sampling_event(pmc->perf_event))
300                 return;
301
302         perf_event_period(pmc->perf_event,
303                           get_sample_period(pmc, pmc->counter));
304 }
305
306 void pmc_write_counter(struct kvm_pmc *pmc, u64 val)
307 {
308         /*
309          * Drop any unconsumed accumulated counts, the WRMSR is a write, not a
310          * read-modify-write.  Adjust the counter value so that its value is
311          * relative to the current count, as reading the current count from
312          * perf is faster than pausing and repgrogramming the event in order to
313          * reset it to '0'.  Note, this very sneakily offsets the accumulated
314          * emulated count too, by using pmc_read_counter()!
315          */
316         pmc->emulated_counter = 0;
317         pmc->counter += val - pmc_read_counter(pmc);
318         pmc->counter &= pmc_bitmask(pmc);
319         pmc_update_sample_period(pmc);
320 }
321 EXPORT_SYMBOL_GPL(pmc_write_counter);
322
323 static int filter_cmp(const void *pa, const void *pb, u64 mask)
324 {
325         u64 a = *(u64 *)pa & mask;
326         u64 b = *(u64 *)pb & mask;
327
328         return (a > b) - (a < b);
329 }
330
331
332 static int filter_sort_cmp(const void *pa, const void *pb)
333 {
334         return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
335                                    KVM_PMU_MASKED_ENTRY_EXCLUDE));
336 }
337
338 /*
339  * For the event filter, searching is done on the 'includes' list and
340  * 'excludes' list separately rather than on the 'events' list (which
341  * has both).  As a result the exclude bit can be ignored.
342  */
343 static int filter_event_cmp(const void *pa, const void *pb)
344 {
345         return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
346 }
347
348 static int find_filter_index(u64 *events, u64 nevents, u64 key)
349 {
350         u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
351                           filter_event_cmp);
352
353         if (!fe)
354                 return -1;
355
356         return fe - events;
357 }
358
359 static bool is_filter_entry_match(u64 filter_event, u64 umask)
360 {
361         u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
362         u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
363
364         BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
365                      (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
366                      ARCH_PERFMON_EVENTSEL_UMASK);
367
368         return (umask & mask) == match;
369 }
370
371 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
372 {
373         u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
374         u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
375         int i, index;
376
377         index = find_filter_index(events, nevents, event_select);
378         if (index < 0)
379                 return false;
380
381         /*
382          * Entries are sorted by the event select.  Walk the list in both
383          * directions to process all entries with the targeted event select.
384          */
385         for (i = index; i < nevents; i++) {
386                 if (filter_event_cmp(&events[i], &event_select))
387                         break;
388
389                 if (is_filter_entry_match(events[i], umask))
390                         return true;
391         }
392
393         for (i = index - 1; i >= 0; i--) {
394                 if (filter_event_cmp(&events[i], &event_select))
395                         break;
396
397                 if (is_filter_entry_match(events[i], umask))
398                         return true;
399         }
400
401         return false;
402 }
403
404 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
405                                 u64 eventsel)
406 {
407         if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
408             !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
409                 return f->action == KVM_PMU_EVENT_ALLOW;
410
411         return f->action == KVM_PMU_EVENT_DENY;
412 }
413
414 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
415                                    int idx)
416 {
417         int fixed_idx = idx - KVM_FIXED_PMC_BASE_IDX;
418
419         if (filter->action == KVM_PMU_EVENT_DENY &&
420             test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
421                 return false;
422         if (filter->action == KVM_PMU_EVENT_ALLOW &&
423             !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
424                 return false;
425
426         return true;
427 }
428
429 static bool check_pmu_event_filter(struct kvm_pmc *pmc)
430 {
431         struct kvm_x86_pmu_event_filter *filter;
432         struct kvm *kvm = pmc->vcpu->kvm;
433
434         filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
435         if (!filter)
436                 return true;
437
438         if (pmc_is_gp(pmc))
439                 return is_gp_event_allowed(filter, pmc->eventsel);
440
441         return is_fixed_event_allowed(filter, pmc->idx);
442 }
443
444 static bool pmc_event_is_allowed(struct kvm_pmc *pmc)
445 {
446         return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) &&
447                check_pmu_event_filter(pmc);
448 }
449
450 static int reprogram_counter(struct kvm_pmc *pmc)
451 {
452         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
453         u64 eventsel = pmc->eventsel;
454         u64 new_config = eventsel;
455         bool emulate_overflow;
456         u8 fixed_ctr_ctrl;
457
458         emulate_overflow = pmc_pause_counter(pmc);
459
460         if (!pmc_event_is_allowed(pmc))
461                 return 0;
462
463         if (emulate_overflow)
464                 __kvm_perf_overflow(pmc, false);
465
466         if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
467                 printk_once("kvm pmu: pin control bit is ignored\n");
468
469         if (pmc_is_fixed(pmc)) {
470                 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
471                                                   pmc->idx - KVM_FIXED_PMC_BASE_IDX);
472                 if (fixed_ctr_ctrl & 0x1)
473                         eventsel |= ARCH_PERFMON_EVENTSEL_OS;
474                 if (fixed_ctr_ctrl & 0x2)
475                         eventsel |= ARCH_PERFMON_EVENTSEL_USR;
476                 if (fixed_ctr_ctrl & 0x8)
477                         eventsel |= ARCH_PERFMON_EVENTSEL_INT;
478                 new_config = (u64)fixed_ctr_ctrl;
479         }
480
481         if (pmc->current_config == new_config && pmc_resume_counter(pmc))
482                 return 0;
483
484         pmc_release_perf_event(pmc);
485
486         pmc->current_config = new_config;
487
488         return pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
489                                      (eventsel & pmu->raw_event_mask),
490                                      !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
491                                      !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
492                                      eventsel & ARCH_PERFMON_EVENTSEL_INT);
493 }
494
495 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
496 {
497         DECLARE_BITMAP(bitmap, X86_PMC_IDX_MAX);
498         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
499         struct kvm_pmc *pmc;
500         int bit;
501
502         bitmap_copy(bitmap, pmu->reprogram_pmi, X86_PMC_IDX_MAX);
503
504         /*
505          * The reprogramming bitmap can be written asynchronously by something
506          * other than the task that holds vcpu->mutex, take care to clear only
507          * the bits that will actually processed.
508          */
509         BUILD_BUG_ON(sizeof(bitmap) != sizeof(atomic64_t));
510         atomic64_andnot(*(s64 *)bitmap, &pmu->__reprogram_pmi);
511
512         kvm_for_each_pmc(pmu, pmc, bit, bitmap) {
513                 /*
514                  * If reprogramming fails, e.g. due to contention, re-set the
515                  * regprogram bit set, i.e. opportunistically try again on the
516                  * next PMU refresh.  Don't make a new request as doing so can
517                  * stall the guest if reprogramming repeatedly fails.
518                  */
519                 if (reprogram_counter(pmc))
520                         set_bit(pmc->idx, pmu->reprogram_pmi);
521         }
522
523         /*
524          * Unused perf_events are only released if the corresponding MSRs
525          * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
526          * triggers KVM_REQ_PMU if cleanup is needed.
527          */
528         if (unlikely(pmu->need_cleanup))
529                 kvm_pmu_cleanup(vcpu);
530 }
531
532 int kvm_pmu_check_rdpmc_early(struct kvm_vcpu *vcpu, unsigned int idx)
533 {
534         /*
535          * On Intel, VMX interception has priority over RDPMC exceptions that
536          * aren't already handled by the emulator, i.e. there are no additional
537          * check needed for Intel PMUs.
538          *
539          * On AMD, _all_ exceptions on RDPMC have priority over SVM intercepts,
540          * i.e. an invalid PMC results in a #GP, not #VMEXIT.
541          */
542         if (!kvm_pmu_ops.check_rdpmc_early)
543                 return 0;
544
545         return static_call(kvm_x86_pmu_check_rdpmc_early)(vcpu, idx);
546 }
547
548 bool is_vmware_backdoor_pmc(u32 pmc_idx)
549 {
550         switch (pmc_idx) {
551         case VMWARE_BACKDOOR_PMC_HOST_TSC:
552         case VMWARE_BACKDOOR_PMC_REAL_TIME:
553         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
554                 return true;
555         }
556         return false;
557 }
558
559 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
560 {
561         u64 ctr_val;
562
563         switch (idx) {
564         case VMWARE_BACKDOOR_PMC_HOST_TSC:
565                 ctr_val = rdtsc();
566                 break;
567         case VMWARE_BACKDOOR_PMC_REAL_TIME:
568                 ctr_val = ktime_get_boottime_ns();
569                 break;
570         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
571                 ctr_val = ktime_get_boottime_ns() +
572                         vcpu->kvm->arch.kvmclock_offset;
573                 break;
574         default:
575                 return 1;
576         }
577
578         *data = ctr_val;
579         return 0;
580 }
581
582 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
583 {
584         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
585         struct kvm_pmc *pmc;
586         u64 mask = ~0ull;
587
588         if (!pmu->version)
589                 return 1;
590
591         if (is_vmware_backdoor_pmc(idx))
592                 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
593
594         pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
595         if (!pmc)
596                 return 1;
597
598         if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
599             (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
600             kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
601                 return 1;
602
603         *data = pmc_read_counter(pmc) & mask;
604         return 0;
605 }
606
607 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
608 {
609         if (lapic_in_kernel(vcpu)) {
610                 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
611                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
612         }
613 }
614
615 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
616 {
617         switch (msr) {
618         case MSR_CORE_PERF_GLOBAL_STATUS:
619         case MSR_CORE_PERF_GLOBAL_CTRL:
620         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
621                 return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu));
622         default:
623                 break;
624         }
625         return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
626                 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
627 }
628
629 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
630 {
631         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
632         struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
633
634         if (pmc)
635                 __set_bit(pmc->idx, pmu->pmc_in_use);
636 }
637
638 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
639 {
640         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
641         u32 msr = msr_info->index;
642
643         switch (msr) {
644         case MSR_CORE_PERF_GLOBAL_STATUS:
645         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
646                 msr_info->data = pmu->global_status;
647                 break;
648         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
649         case MSR_CORE_PERF_GLOBAL_CTRL:
650                 msr_info->data = pmu->global_ctrl;
651                 break;
652         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
653         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
654                 msr_info->data = 0;
655                 break;
656         default:
657                 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
658         }
659
660         return 0;
661 }
662
663 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
664 {
665         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
666         u32 msr = msr_info->index;
667         u64 data = msr_info->data;
668         u64 diff;
669
670         /*
671          * Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
672          * whereas Intel generates #GP on attempts to write reserved/RO MSRs.
673          */
674         switch (msr) {
675         case MSR_CORE_PERF_GLOBAL_STATUS:
676                 if (!msr_info->host_initiated)
677                         return 1; /* RO MSR */
678                 fallthrough;
679         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
680                 /* Per PPR, Read-only MSR. Writes are ignored. */
681                 if (!msr_info->host_initiated)
682                         break;
683
684                 if (data & pmu->global_status_mask)
685                         return 1;
686
687                 pmu->global_status = data;
688                 break;
689         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
690                 data &= ~pmu->global_ctrl_mask;
691                 fallthrough;
692         case MSR_CORE_PERF_GLOBAL_CTRL:
693                 if (!kvm_valid_perf_global_ctrl(pmu, data))
694                         return 1;
695
696                 if (pmu->global_ctrl != data) {
697                         diff = pmu->global_ctrl ^ data;
698                         pmu->global_ctrl = data;
699                         reprogram_counters(pmu, diff);
700                 }
701                 break;
702         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
703                 /*
704                  * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
705                  * GLOBAL_STATUS, and so the set of reserved bits is the same.
706                  */
707                 if (data & pmu->global_status_mask)
708                         return 1;
709                 fallthrough;
710         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
711                 if (!msr_info->host_initiated)
712                         pmu->global_status &= ~data;
713                 break;
714         default:
715                 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
716                 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
717         }
718
719         return 0;
720 }
721
722 static void kvm_pmu_reset(struct kvm_vcpu *vcpu)
723 {
724         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
725         struct kvm_pmc *pmc;
726         int i;
727
728         pmu->need_cleanup = false;
729
730         bitmap_zero(pmu->reprogram_pmi, X86_PMC_IDX_MAX);
731
732         kvm_for_each_pmc(pmu, pmc, i, pmu->all_valid_pmc_idx) {
733                 pmc_stop_counter(pmc);
734                 pmc->counter = 0;
735                 pmc->emulated_counter = 0;
736
737                 if (pmc_is_gp(pmc))
738                         pmc->eventsel = 0;
739         }
740
741         pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0;
742
743         static_call_cond(kvm_x86_pmu_reset)(vcpu);
744 }
745
746
747 /*
748  * Refresh the PMU configuration for the vCPU, e.g. if userspace changes CPUID
749  * and/or PERF_CAPABILITIES.
750  */
751 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
752 {
753         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
754
755         if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
756                 return;
757
758         /*
759          * Stop/release all existing counters/events before realizing the new
760          * vPMU model.
761          */
762         kvm_pmu_reset(vcpu);
763
764         pmu->version = 0;
765         pmu->nr_arch_gp_counters = 0;
766         pmu->nr_arch_fixed_counters = 0;
767         pmu->counter_bitmask[KVM_PMC_GP] = 0;
768         pmu->counter_bitmask[KVM_PMC_FIXED] = 0;
769         pmu->reserved_bits = 0xffffffff00200000ull;
770         pmu->raw_event_mask = X86_RAW_EVENT_MASK;
771         pmu->global_ctrl_mask = ~0ull;
772         pmu->global_status_mask = ~0ull;
773         pmu->fixed_ctr_ctrl_mask = ~0ull;
774         pmu->pebs_enable_mask = ~0ull;
775         pmu->pebs_data_cfg_mask = ~0ull;
776         bitmap_zero(pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX);
777
778         if (!vcpu->kvm->arch.enable_pmu)
779                 return;
780
781         static_call(kvm_x86_pmu_refresh)(vcpu);
782
783         /*
784          * At RESET, both Intel and AMD CPUs set all enable bits for general
785          * purpose counters in IA32_PERF_GLOBAL_CTRL (so that software that
786          * was written for v1 PMUs don't unknowingly leave GP counters disabled
787          * in the global controls).  Emulate that behavior when refreshing the
788          * PMU so that userspace doesn't need to manually set PERF_GLOBAL_CTRL.
789          */
790         if (kvm_pmu_has_perf_global_ctrl(pmu) && pmu->nr_arch_gp_counters)
791                 pmu->global_ctrl = GENMASK_ULL(pmu->nr_arch_gp_counters - 1, 0);
792 }
793
794 void kvm_pmu_init(struct kvm_vcpu *vcpu)
795 {
796         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
797
798         memset(pmu, 0, sizeof(*pmu));
799         static_call(kvm_x86_pmu_init)(vcpu);
800         kvm_pmu_refresh(vcpu);
801 }
802
803 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
804 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
805 {
806         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
807         struct kvm_pmc *pmc = NULL;
808         DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
809         int i;
810
811         pmu->need_cleanup = false;
812
813         bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
814                       pmu->pmc_in_use, X86_PMC_IDX_MAX);
815
816         kvm_for_each_pmc(pmu, pmc, i, bitmask) {
817                 if (pmc->perf_event && !pmc_speculative_in_use(pmc))
818                         pmc_stop_counter(pmc);
819         }
820
821         static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
822
823         bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
824 }
825
826 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
827 {
828         kvm_pmu_reset(vcpu);
829 }
830
831 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
832 {
833         pmc->emulated_counter++;
834         kvm_pmu_request_counter_reprogram(pmc);
835 }
836
837 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
838 {
839         bool select_os, select_user;
840         u64 config;
841
842         if (pmc_is_gp(pmc)) {
843                 config = pmc->eventsel;
844                 select_os = config & ARCH_PERFMON_EVENTSEL_OS;
845                 select_user = config & ARCH_PERFMON_EVENTSEL_USR;
846         } else {
847                 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
848                                           pmc->idx - KVM_FIXED_PMC_BASE_IDX);
849                 select_os = config & 0x1;
850                 select_user = config & 0x2;
851         }
852
853         /*
854          * Skip the CPL lookup, which isn't free on Intel, if the result will
855          * be the same regardless of the CPL.
856          */
857         if (select_os == select_user)
858                 return select_os;
859
860         return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
861 }
862
863 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 eventsel)
864 {
865         DECLARE_BITMAP(bitmap, X86_PMC_IDX_MAX);
866         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
867         struct kvm_pmc *pmc;
868         int i;
869
870         BUILD_BUG_ON(sizeof(pmu->global_ctrl) * BITS_PER_BYTE != X86_PMC_IDX_MAX);
871
872         if (!kvm_pmu_has_perf_global_ctrl(pmu))
873                 bitmap_copy(bitmap, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX);
874         else if (!bitmap_and(bitmap, pmu->all_valid_pmc_idx,
875                              (unsigned long *)&pmu->global_ctrl, X86_PMC_IDX_MAX))
876                 return;
877
878         kvm_for_each_pmc(pmu, pmc, i, bitmap) {
879                 /*
880                  * Ignore checks for edge detect (all events currently emulated
881                  * but KVM are always rising edges), pin control (unsupported
882                  * by modern CPUs), and counter mask and its invert flag (KVM
883                  * doesn't emulate multiple events in a single clock cycle).
884                  *
885                  * Note, the uppermost nibble of AMD's mask overlaps Intel's
886                  * IN_TX (bit 32) and IN_TXCP (bit 33), as well as two reserved
887                  * bits (bits 35:34).  Checking the "in HLE/RTM transaction"
888                  * flags is correct as the vCPU can't be in a transaction if
889                  * KVM is emulating an instruction.  Checking the reserved bits
890                  * might be wrong if they are defined in the future, but so
891                  * could ignoring them, so do the simple thing for now.
892                  */
893                 if (((pmc->eventsel ^ eventsel) & AMD64_RAW_EVENT_MASK_NB) ||
894                     !pmc_event_is_allowed(pmc) || !cpl_is_matched(pmc))
895                         continue;
896
897                 kvm_pmu_incr_counter(pmc);
898         }
899 }
900 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
901
902 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
903 {
904         u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
905                    KVM_PMU_MASKED_ENTRY_UMASK_MASK |
906                    KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
907                    KVM_PMU_MASKED_ENTRY_EXCLUDE;
908         int i;
909
910         for (i = 0; i < filter->nevents; i++) {
911                 if (filter->events[i] & ~mask)
912                         return false;
913         }
914
915         return true;
916 }
917
918 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
919 {
920         int i, j;
921
922         for (i = 0, j = 0; i < filter->nevents; i++) {
923                 /*
924                  * Skip events that are impossible to match against a guest
925                  * event.  When filtering, only the event select + unit mask
926                  * of the guest event is used.  To maintain backwards
927                  * compatibility, impossible filters can't be rejected :-(
928                  */
929                 if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
930                                           ARCH_PERFMON_EVENTSEL_UMASK))
931                         continue;
932                 /*
933                  * Convert userspace events to a common in-kernel event so
934                  * only one code path is needed to support both events.  For
935                  * the in-kernel events use masked events because they are
936                  * flexible enough to handle both cases.  To convert to masked
937                  * events all that's needed is to add an "all ones" umask_mask,
938                  * (unmasked filter events don't support EXCLUDE).
939                  */
940                 filter->events[j++] = filter->events[i] |
941                                       (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
942         }
943
944         filter->nevents = j;
945 }
946
947 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
948 {
949         int i;
950
951         if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
952                 convert_to_masked_filter(filter);
953         else if (!is_masked_filter_valid(filter))
954                 return -EINVAL;
955
956         /*
957          * Sort entries by event select and includes vs. excludes so that all
958          * entries for a given event select can be processed efficiently during
959          * filtering.  The EXCLUDE flag uses a more significant bit than the
960          * event select, and so the sorted list is also effectively split into
961          * includes and excludes sub-lists.
962          */
963         sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
964              filter_sort_cmp, NULL);
965
966         i = filter->nevents;
967         /* Find the first EXCLUDE event (only supported for masked events). */
968         if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
969                 for (i = 0; i < filter->nevents; i++) {
970                         if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
971                                 break;
972                 }
973         }
974
975         filter->nr_includes = i;
976         filter->nr_excludes = filter->nevents - filter->nr_includes;
977         filter->includes = filter->events;
978         filter->excludes = filter->events + filter->nr_includes;
979
980         return 0;
981 }
982
983 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
984 {
985         struct kvm_pmu_event_filter __user *user_filter = argp;
986         struct kvm_x86_pmu_event_filter *filter;
987         struct kvm_pmu_event_filter tmp;
988         struct kvm_vcpu *vcpu;
989         unsigned long i;
990         size_t size;
991         int r;
992
993         if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
994                 return -EFAULT;
995
996         if (tmp.action != KVM_PMU_EVENT_ALLOW &&
997             tmp.action != KVM_PMU_EVENT_DENY)
998                 return -EINVAL;
999
1000         if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
1001                 return -EINVAL;
1002
1003         if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
1004                 return -E2BIG;
1005
1006         size = struct_size(filter, events, tmp.nevents);
1007         filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
1008         if (!filter)
1009                 return -ENOMEM;
1010
1011         filter->action = tmp.action;
1012         filter->nevents = tmp.nevents;
1013         filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
1014         filter->flags = tmp.flags;
1015
1016         r = -EFAULT;
1017         if (copy_from_user(filter->events, user_filter->events,
1018                            sizeof(filter->events[0]) * filter->nevents))
1019                 goto cleanup;
1020
1021         r = prepare_filter_lists(filter);
1022         if (r)
1023                 goto cleanup;
1024
1025         mutex_lock(&kvm->lock);
1026         filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
1027                                      mutex_is_locked(&kvm->lock));
1028         mutex_unlock(&kvm->lock);
1029         synchronize_srcu_expedited(&kvm->srcu);
1030
1031         BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
1032                      sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
1033
1034         kvm_for_each_vcpu(i, vcpu, kvm)
1035                 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
1036
1037         kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
1038
1039         r = 0;
1040 cleanup:
1041         kfree(filter);
1042         return r;
1043 }