612e6c70ce2e7212e327589b8e76913114377af7
[linux-2.6-block.git] / arch / x86 / kvm / pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/kvm_host.h>
16 #include <linux/perf_event.h>
17 #include <linux/bsearch.h>
18 #include <linux/sort.h>
19 #include <asm/perf_event.h>
20 #include <asm/cpu_device_id.h>
21 #include "x86.h"
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "pmu.h"
25
26 /* This is enough to filter the vast majority of currently defined events. */
27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28
29 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
30 EXPORT_SYMBOL_GPL(kvm_pmu_cap);
31
32 /* Precise Distribution of Instructions Retired (PDIR) */
33 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
34         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
35         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
36         /* Instruction-Accurate PDIR (PDIR++) */
37         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
38         {}
39 };
40
41 /* Precise Distribution (PDist) */
42 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
43         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
44         {}
45 };
46
47 /* NOTE:
48  * - Each perf counter is defined as "struct kvm_pmc";
49  * - There are two types of perf counters: general purpose (gp) and fixed.
50  *   gp counters are stored in gp_counters[] and fixed counters are stored
51  *   in fixed_counters[] respectively. Both of them are part of "struct
52  *   kvm_pmu";
53  * - pmu.c understands the difference between gp counters and fixed counters.
54  *   However AMD doesn't support fixed-counters;
55  * - There are three types of index to access perf counters (PMC):
56  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
57  *        has MSR_K7_PERFCTRn and, for families 15H and later,
58  *        MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
59  *        aliased to MSR_K7_PERFCTRn.
60  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
61  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
62  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
63  *        that it also supports fixed counters. idx can be used to as index to
64  *        gp and fixed counters.
65  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
66  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
67  *        all perf counters (both gp and fixed). The mapping relationship
68  *        between pmc and perf counters is as the following:
69  *        * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
70  *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
71  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
72  *          and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
73  */
74
75 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
76
77 #define KVM_X86_PMU_OP(func)                                         \
78         DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func,                          \
79                                 *(((struct kvm_pmu_ops *)0)->func));
80 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
81 #include <asm/kvm-x86-pmu-ops.h>
82
83 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
84 {
85         memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
86
87 #define __KVM_X86_PMU_OP(func) \
88         static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
89 #define KVM_X86_PMU_OP(func) \
90         WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
91 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
92 #include <asm/kvm-x86-pmu-ops.h>
93 #undef __KVM_X86_PMU_OP
94 }
95
96 static inline bool pmc_is_enabled(struct kvm_pmc *pmc)
97 {
98         return static_call(kvm_x86_pmu_pmc_is_enabled)(pmc);
99 }
100
101 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
102 {
103         struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
104         struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
105
106         kvm_pmu_deliver_pmi(vcpu);
107 }
108
109 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
110 {
111         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
112         bool skip_pmi = false;
113
114         if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
115                 if (!in_pmi) {
116                         /*
117                          * TODO: KVM is currently _choosing_ to not generate records
118                          * for emulated instructions, avoiding BUFFER_OVF PMI when
119                          * there are no records. Strictly speaking, it should be done
120                          * as well in the right context to improve sampling accuracy.
121                          */
122                         skip_pmi = true;
123                 } else {
124                         /* Indicate PEBS overflow PMI to guest. */
125                         skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
126                                                       (unsigned long *)&pmu->global_status);
127                 }
128         } else {
129                 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
130         }
131
132         if (!pmc->intr || skip_pmi)
133                 return;
134
135         /*
136          * Inject PMI. If vcpu was in a guest mode during NMI PMI
137          * can be ejected on a guest mode re-entry. Otherwise we can't
138          * be sure that vcpu wasn't executing hlt instruction at the
139          * time of vmexit and is not going to re-enter guest mode until
140          * woken up. So we should wake it, but this is impossible from
141          * NMI context. Do it from irq work instead.
142          */
143         if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu))
144                 irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
145         else
146                 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
147 }
148
149 static void kvm_perf_overflow(struct perf_event *perf_event,
150                               struct perf_sample_data *data,
151                               struct pt_regs *regs)
152 {
153         struct kvm_pmc *pmc = perf_event->overflow_handler_context;
154
155         /*
156          * Ignore overflow events for counters that are scheduled to be
157          * reprogrammed, e.g. if a PMI for the previous event races with KVM's
158          * handling of a related guest WRMSR.
159          */
160         if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
161                 return;
162
163         __kvm_perf_overflow(pmc, true);
164
165         kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
166 }
167
168 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
169 {
170         /*
171          * For some model specific pebs counters with special capabilities
172          * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
173          * level to the maximum value (currently 3, backwards compatible)
174          * so that the perf subsystem would assign specific hardware counter
175          * with that capability for vPMC.
176          */
177         if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
178             (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
179                 return 3;
180
181         /*
182          * The non-zero precision level of guest event makes the ordinary
183          * guest event becomes a guest PEBS event and triggers the host
184          * PEBS PMI handler to determine whether the PEBS overflow PMI
185          * comes from the host counters or the guest.
186          */
187         return 1;
188 }
189
190 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
191                                  bool exclude_user, bool exclude_kernel,
192                                  bool intr)
193 {
194         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
195         struct perf_event *event;
196         struct perf_event_attr attr = {
197                 .type = type,
198                 .size = sizeof(attr),
199                 .pinned = true,
200                 .exclude_idle = true,
201                 .exclude_host = 1,
202                 .exclude_user = exclude_user,
203                 .exclude_kernel = exclude_kernel,
204                 .config = config,
205         };
206         bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
207
208         attr.sample_period = get_sample_period(pmc, pmc->counter);
209
210         if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
211             guest_cpuid_is_intel(pmc->vcpu)) {
212                 /*
213                  * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
214                  * period. Just clear the sample period so at least
215                  * allocating the counter doesn't fail.
216                  */
217                 attr.sample_period = 0;
218         }
219         if (pebs) {
220                 /*
221                  * For most PEBS hardware events, the difference in the software
222                  * precision levels of guest and host PEBS events will not affect
223                  * the accuracy of the PEBS profiling result, because the "event IP"
224                  * in the PEBS record is calibrated on the guest side.
225                  */
226                 attr.precise_ip = pmc_get_pebs_precise_level(pmc);
227         }
228
229         event = perf_event_create_kernel_counter(&attr, -1, current,
230                                                  kvm_perf_overflow, pmc);
231         if (IS_ERR(event)) {
232                 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
233                             PTR_ERR(event), pmc->idx);
234                 return PTR_ERR(event);
235         }
236
237         pmc->perf_event = event;
238         pmc_to_pmu(pmc)->event_count++;
239         pmc->is_paused = false;
240         pmc->intr = intr || pebs;
241         return 0;
242 }
243
244 static void pmc_pause_counter(struct kvm_pmc *pmc)
245 {
246         u64 counter = pmc->counter;
247
248         if (!pmc->perf_event || pmc->is_paused)
249                 return;
250
251         /* update counter, reset event value to avoid redundant accumulation */
252         counter += perf_event_pause(pmc->perf_event, true);
253         pmc->counter = counter & pmc_bitmask(pmc);
254         pmc->is_paused = true;
255 }
256
257 static bool pmc_resume_counter(struct kvm_pmc *pmc)
258 {
259         if (!pmc->perf_event)
260                 return false;
261
262         /* recalibrate sample period and check if it's accepted by perf core */
263         if (is_sampling_event(pmc->perf_event) &&
264             perf_event_period(pmc->perf_event,
265                               get_sample_period(pmc, pmc->counter)))
266                 return false;
267
268         if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
269             (!!pmc->perf_event->attr.precise_ip))
270                 return false;
271
272         /* reuse perf_event to serve as pmc_reprogram_counter() does*/
273         perf_event_enable(pmc->perf_event);
274         pmc->is_paused = false;
275
276         return true;
277 }
278
279 static int filter_cmp(const void *pa, const void *pb, u64 mask)
280 {
281         u64 a = *(u64 *)pa & mask;
282         u64 b = *(u64 *)pb & mask;
283
284         return (a > b) - (a < b);
285 }
286
287
288 static int filter_sort_cmp(const void *pa, const void *pb)
289 {
290         return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
291                                    KVM_PMU_MASKED_ENTRY_EXCLUDE));
292 }
293
294 /*
295  * For the event filter, searching is done on the 'includes' list and
296  * 'excludes' list separately rather than on the 'events' list (which
297  * has both).  As a result the exclude bit can be ignored.
298  */
299 static int filter_event_cmp(const void *pa, const void *pb)
300 {
301         return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
302 }
303
304 static int find_filter_index(u64 *events, u64 nevents, u64 key)
305 {
306         u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
307                           filter_event_cmp);
308
309         if (!fe)
310                 return -1;
311
312         return fe - events;
313 }
314
315 static bool is_filter_entry_match(u64 filter_event, u64 umask)
316 {
317         u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
318         u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
319
320         BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
321                      (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
322                      ARCH_PERFMON_EVENTSEL_UMASK);
323
324         return (umask & mask) == match;
325 }
326
327 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
328 {
329         u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
330         u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
331         int i, index;
332
333         index = find_filter_index(events, nevents, event_select);
334         if (index < 0)
335                 return false;
336
337         /*
338          * Entries are sorted by the event select.  Walk the list in both
339          * directions to process all entries with the targeted event select.
340          */
341         for (i = index; i < nevents; i++) {
342                 if (filter_event_cmp(&events[i], &event_select))
343                         break;
344
345                 if (is_filter_entry_match(events[i], umask))
346                         return true;
347         }
348
349         for (i = index - 1; i >= 0; i--) {
350                 if (filter_event_cmp(&events[i], &event_select))
351                         break;
352
353                 if (is_filter_entry_match(events[i], umask))
354                         return true;
355         }
356
357         return false;
358 }
359
360 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
361                                 u64 eventsel)
362 {
363         if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
364             !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
365                 return f->action == KVM_PMU_EVENT_ALLOW;
366
367         return f->action == KVM_PMU_EVENT_DENY;
368 }
369
370 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
371                                    int idx)
372 {
373         int fixed_idx = idx - INTEL_PMC_IDX_FIXED;
374
375         if (filter->action == KVM_PMU_EVENT_DENY &&
376             test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
377                 return false;
378         if (filter->action == KVM_PMU_EVENT_ALLOW &&
379             !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
380                 return false;
381
382         return true;
383 }
384
385 static bool check_pmu_event_filter(struct kvm_pmc *pmc)
386 {
387         struct kvm_x86_pmu_event_filter *filter;
388         struct kvm *kvm = pmc->vcpu->kvm;
389
390         if (!static_call(kvm_x86_pmu_hw_event_available)(pmc))
391                 return false;
392
393         filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
394         if (!filter)
395                 return true;
396
397         if (pmc_is_gp(pmc))
398                 return is_gp_event_allowed(filter, pmc->eventsel);
399
400         return is_fixed_event_allowed(filter, pmc->idx);
401 }
402
403 static void reprogram_counter(struct kvm_pmc *pmc)
404 {
405         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
406         u64 eventsel = pmc->eventsel;
407         u64 new_config = eventsel;
408         u8 fixed_ctr_ctrl;
409
410         pmc_pause_counter(pmc);
411
412         if (!pmc_speculative_in_use(pmc) || !pmc_is_enabled(pmc))
413                 goto reprogram_complete;
414
415         if (!check_pmu_event_filter(pmc))
416                 goto reprogram_complete;
417
418         if (pmc->counter < pmc->prev_counter)
419                 __kvm_perf_overflow(pmc, false);
420
421         if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
422                 printk_once("kvm pmu: pin control bit is ignored\n");
423
424         if (pmc_is_fixed(pmc)) {
425                 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
426                                                   pmc->idx - INTEL_PMC_IDX_FIXED);
427                 if (fixed_ctr_ctrl & 0x1)
428                         eventsel |= ARCH_PERFMON_EVENTSEL_OS;
429                 if (fixed_ctr_ctrl & 0x2)
430                         eventsel |= ARCH_PERFMON_EVENTSEL_USR;
431                 if (fixed_ctr_ctrl & 0x8)
432                         eventsel |= ARCH_PERFMON_EVENTSEL_INT;
433                 new_config = (u64)fixed_ctr_ctrl;
434         }
435
436         if (pmc->current_config == new_config && pmc_resume_counter(pmc))
437                 goto reprogram_complete;
438
439         pmc_release_perf_event(pmc);
440
441         pmc->current_config = new_config;
442
443         /*
444          * If reprogramming fails, e.g. due to contention, leave the counter's
445          * regprogram bit set, i.e. opportunistically try again on the next PMU
446          * refresh.  Don't make a new request as doing so can stall the guest
447          * if reprogramming repeatedly fails.
448          */
449         if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
450                                   (eventsel & pmu->raw_event_mask),
451                                   !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
452                                   !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
453                                   eventsel & ARCH_PERFMON_EVENTSEL_INT))
454                 return;
455
456 reprogram_complete:
457         clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
458         pmc->prev_counter = 0;
459 }
460
461 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
462 {
463         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
464         int bit;
465
466         for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
467                 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
468
469                 if (unlikely(!pmc)) {
470                         clear_bit(bit, pmu->reprogram_pmi);
471                         continue;
472                 }
473
474                 reprogram_counter(pmc);
475         }
476
477         /*
478          * Unused perf_events are only released if the corresponding MSRs
479          * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
480          * triggers KVM_REQ_PMU if cleanup is needed.
481          */
482         if (unlikely(pmu->need_cleanup))
483                 kvm_pmu_cleanup(vcpu);
484 }
485
486 /* check if idx is a valid index to access PMU */
487 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
488 {
489         return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
490 }
491
492 bool is_vmware_backdoor_pmc(u32 pmc_idx)
493 {
494         switch (pmc_idx) {
495         case VMWARE_BACKDOOR_PMC_HOST_TSC:
496         case VMWARE_BACKDOOR_PMC_REAL_TIME:
497         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
498                 return true;
499         }
500         return false;
501 }
502
503 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
504 {
505         u64 ctr_val;
506
507         switch (idx) {
508         case VMWARE_BACKDOOR_PMC_HOST_TSC:
509                 ctr_val = rdtsc();
510                 break;
511         case VMWARE_BACKDOOR_PMC_REAL_TIME:
512                 ctr_val = ktime_get_boottime_ns();
513                 break;
514         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
515                 ctr_val = ktime_get_boottime_ns() +
516                         vcpu->kvm->arch.kvmclock_offset;
517                 break;
518         default:
519                 return 1;
520         }
521
522         *data = ctr_val;
523         return 0;
524 }
525
526 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
527 {
528         bool fast_mode = idx & (1u << 31);
529         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
530         struct kvm_pmc *pmc;
531         u64 mask = fast_mode ? ~0u : ~0ull;
532
533         if (!pmu->version)
534                 return 1;
535
536         if (is_vmware_backdoor_pmc(idx))
537                 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
538
539         pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
540         if (!pmc)
541                 return 1;
542
543         if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) &&
544             (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
545             (kvm_read_cr0(vcpu) & X86_CR0_PE))
546                 return 1;
547
548         *data = pmc_read_counter(pmc) & mask;
549         return 0;
550 }
551
552 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
553 {
554         if (lapic_in_kernel(vcpu)) {
555                 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
556                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
557         }
558 }
559
560 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
561 {
562         return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
563                 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
564 }
565
566 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
567 {
568         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
569         struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
570
571         if (pmc)
572                 __set_bit(pmc->idx, pmu->pmc_in_use);
573 }
574
575 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
576 {
577         return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
578 }
579
580 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
581 {
582         kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
583         return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
584 }
585
586 /* refresh PMU settings. This function generally is called when underlying
587  * settings are changed (such as changes of PMU CPUID by guest VMs), which
588  * should rarely happen.
589  */
590 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
591 {
592         static_call(kvm_x86_pmu_refresh)(vcpu);
593 }
594
595 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
596 {
597         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
598
599         irq_work_sync(&pmu->irq_work);
600         static_call(kvm_x86_pmu_reset)(vcpu);
601 }
602
603 void kvm_pmu_init(struct kvm_vcpu *vcpu)
604 {
605         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
606
607         memset(pmu, 0, sizeof(*pmu));
608         static_call(kvm_x86_pmu_init)(vcpu);
609         init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
610         pmu->event_count = 0;
611         pmu->need_cleanup = false;
612         kvm_pmu_refresh(vcpu);
613 }
614
615 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
616 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
617 {
618         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
619         struct kvm_pmc *pmc = NULL;
620         DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
621         int i;
622
623         pmu->need_cleanup = false;
624
625         bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
626                       pmu->pmc_in_use, X86_PMC_IDX_MAX);
627
628         for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
629                 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
630
631                 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
632                         pmc_stop_counter(pmc);
633         }
634
635         static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
636
637         bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
638 }
639
640 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
641 {
642         kvm_pmu_reset(vcpu);
643 }
644
645 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
646 {
647         pmc->prev_counter = pmc->counter;
648         pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
649         kvm_pmu_request_counter_reprogam(pmc);
650 }
651
652 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
653         unsigned int perf_hw_id)
654 {
655         return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
656                 AMD64_RAW_EVENT_MASK_NB);
657 }
658
659 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
660 {
661         bool select_os, select_user;
662         u64 config;
663
664         if (pmc_is_gp(pmc)) {
665                 config = pmc->eventsel;
666                 select_os = config & ARCH_PERFMON_EVENTSEL_OS;
667                 select_user = config & ARCH_PERFMON_EVENTSEL_USR;
668         } else {
669                 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
670                                           pmc->idx - INTEL_PMC_IDX_FIXED);
671                 select_os = config & 0x1;
672                 select_user = config & 0x2;
673         }
674
675         return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
676 }
677
678 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
679 {
680         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
681         struct kvm_pmc *pmc;
682         int i;
683
684         for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
685                 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
686
687                 if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc))
688                         continue;
689
690                 /* Ignore checks for edge detect, pin control, invert and CMASK bits */
691                 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
692                         kvm_pmu_incr_counter(pmc);
693         }
694 }
695 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
696
697 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
698 {
699         u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
700                    KVM_PMU_MASKED_ENTRY_UMASK_MASK |
701                    KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
702                    KVM_PMU_MASKED_ENTRY_EXCLUDE;
703         int i;
704
705         for (i = 0; i < filter->nevents; i++) {
706                 if (filter->events[i] & ~mask)
707                         return false;
708         }
709
710         return true;
711 }
712
713 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
714 {
715         int i, j;
716
717         for (i = 0, j = 0; i < filter->nevents; i++) {
718                 /*
719                  * Skip events that are impossible to match against a guest
720                  * event.  When filtering, only the event select + unit mask
721                  * of the guest event is used.  To maintain backwards
722                  * compatibility, impossible filters can't be rejected :-(
723                  */
724                 if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
725                                           ARCH_PERFMON_EVENTSEL_UMASK))
726                         continue;
727                 /*
728                  * Convert userspace events to a common in-kernel event so
729                  * only one code path is needed to support both events.  For
730                  * the in-kernel events use masked events because they are
731                  * flexible enough to handle both cases.  To convert to masked
732                  * events all that's needed is to add an "all ones" umask_mask,
733                  * (unmasked filter events don't support EXCLUDE).
734                  */
735                 filter->events[j++] = filter->events[i] |
736                                       (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
737         }
738
739         filter->nevents = j;
740 }
741
742 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
743 {
744         int i;
745
746         if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
747                 convert_to_masked_filter(filter);
748         else if (!is_masked_filter_valid(filter))
749                 return -EINVAL;
750
751         /*
752          * Sort entries by event select and includes vs. excludes so that all
753          * entries for a given event select can be processed efficiently during
754          * filtering.  The EXCLUDE flag uses a more significant bit than the
755          * event select, and so the sorted list is also effectively split into
756          * includes and excludes sub-lists.
757          */
758         sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
759              filter_sort_cmp, NULL);
760
761         i = filter->nevents;
762         /* Find the first EXCLUDE event (only supported for masked events). */
763         if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
764                 for (i = 0; i < filter->nevents; i++) {
765                         if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
766                                 break;
767                 }
768         }
769
770         filter->nr_includes = i;
771         filter->nr_excludes = filter->nevents - filter->nr_includes;
772         filter->includes = filter->events;
773         filter->excludes = filter->events + filter->nr_includes;
774
775         return 0;
776 }
777
778 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
779 {
780         struct kvm_pmu_event_filter __user *user_filter = argp;
781         struct kvm_x86_pmu_event_filter *filter;
782         struct kvm_pmu_event_filter tmp;
783         struct kvm_vcpu *vcpu;
784         unsigned long i;
785         size_t size;
786         int r;
787
788         if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
789                 return -EFAULT;
790
791         if (tmp.action != KVM_PMU_EVENT_ALLOW &&
792             tmp.action != KVM_PMU_EVENT_DENY)
793                 return -EINVAL;
794
795         if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
796                 return -EINVAL;
797
798         if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
799                 return -E2BIG;
800
801         size = struct_size(filter, events, tmp.nevents);
802         filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
803         if (!filter)
804                 return -ENOMEM;
805
806         filter->action = tmp.action;
807         filter->nevents = tmp.nevents;
808         filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
809         filter->flags = tmp.flags;
810
811         r = -EFAULT;
812         if (copy_from_user(filter->events, user_filter->events,
813                            sizeof(filter->events[0]) * filter->nevents))
814                 goto cleanup;
815
816         r = prepare_filter_lists(filter);
817         if (r)
818                 goto cleanup;
819
820         mutex_lock(&kvm->lock);
821         filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
822                                      mutex_is_locked(&kvm->lock));
823         mutex_unlock(&kvm->lock);
824         synchronize_srcu_expedited(&kvm->srcu);
825
826         BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
827                      sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
828
829         kvm_for_each_vcpu(i, vcpu, kvm)
830                 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
831
832         kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
833
834         r = 0;
835 cleanup:
836         kfree(filter);
837         return r;
838 }