KVM: MMU: return bool in __rmap_write_protect
[linux-block.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149
150 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
151
152 /* make pte_list_desc fit well in cache line */
153 #define PTE_LIST_EXT 3
154
155 struct pte_list_desc {
156         u64 *sptes[PTE_LIST_EXT];
157         struct pte_list_desc *more;
158 };
159
160 struct kvm_shadow_walk_iterator {
161         u64 addr;
162         hpa_t shadow_addr;
163         u64 *sptep;
164         int level;
165         unsigned index;
166 };
167
168 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
169         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
170              shadow_walk_okay(&(_walker));                      \
171              shadow_walk_next(&(_walker)))
172
173 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
174         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
175              shadow_walk_okay(&(_walker)) &&                            \
176                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
177              __shadow_walk_next(&(_walker), spte))
178
179 static struct kmem_cache *pte_list_desc_cache;
180 static struct kmem_cache *mmu_page_header_cache;
181 static struct percpu_counter kvm_total_used_mmu_pages;
182
183 static u64 __read_mostly shadow_nx_mask;
184 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
185 static u64 __read_mostly shadow_user_mask;
186 static u64 __read_mostly shadow_accessed_mask;
187 static u64 __read_mostly shadow_dirty_mask;
188 static u64 __read_mostly shadow_mmio_mask;
189
190 static void mmu_spte_set(u64 *sptep, u64 spte);
191 static void mmu_free_roots(struct kvm_vcpu *vcpu);
192
193 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
194 {
195         shadow_mmio_mask = mmio_mask;
196 }
197 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
198
199 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
200 {
201         access &= ACC_WRITE_MASK | ACC_USER_MASK;
202
203         trace_mark_mmio_spte(sptep, gfn, access);
204         mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
205 }
206
207 static bool is_mmio_spte(u64 spte)
208 {
209         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
210 }
211
212 static gfn_t get_mmio_spte_gfn(u64 spte)
213 {
214         return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
215 }
216
217 static unsigned get_mmio_spte_access(u64 spte)
218 {
219         return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
220 }
221
222 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
223 {
224         if (unlikely(is_noslot_pfn(pfn))) {
225                 mark_mmio_spte(sptep, gfn, access);
226                 return true;
227         }
228
229         return false;
230 }
231
232 static inline u64 rsvd_bits(int s, int e)
233 {
234         return ((1ULL << (e - s + 1)) - 1) << s;
235 }
236
237 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
238                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
239 {
240         shadow_user_mask = user_mask;
241         shadow_accessed_mask = accessed_mask;
242         shadow_dirty_mask = dirty_mask;
243         shadow_nx_mask = nx_mask;
244         shadow_x_mask = x_mask;
245 }
246 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
247
248 static int is_cpuid_PSE36(void)
249 {
250         return 1;
251 }
252
253 static int is_nx(struct kvm_vcpu *vcpu)
254 {
255         return vcpu->arch.efer & EFER_NX;
256 }
257
258 static int is_shadow_present_pte(u64 pte)
259 {
260         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
261 }
262
263 static int is_large_pte(u64 pte)
264 {
265         return pte & PT_PAGE_SIZE_MASK;
266 }
267
268 static int is_dirty_gpte(unsigned long pte)
269 {
270         return pte & PT_DIRTY_MASK;
271 }
272
273 static int is_rmap_spte(u64 pte)
274 {
275         return is_shadow_present_pte(pte);
276 }
277
278 static int is_last_spte(u64 pte, int level)
279 {
280         if (level == PT_PAGE_TABLE_LEVEL)
281                 return 1;
282         if (is_large_pte(pte))
283                 return 1;
284         return 0;
285 }
286
287 static pfn_t spte_to_pfn(u64 pte)
288 {
289         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
290 }
291
292 static gfn_t pse36_gfn_delta(u32 gpte)
293 {
294         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
295
296         return (gpte & PT32_DIR_PSE36_MASK) << shift;
297 }
298
299 #ifdef CONFIG_X86_64
300 static void __set_spte(u64 *sptep, u64 spte)
301 {
302         *sptep = spte;
303 }
304
305 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
306 {
307         *sptep = spte;
308 }
309
310 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
311 {
312         return xchg(sptep, spte);
313 }
314
315 static u64 __get_spte_lockless(u64 *sptep)
316 {
317         return ACCESS_ONCE(*sptep);
318 }
319
320 static bool __check_direct_spte_mmio_pf(u64 spte)
321 {
322         /* It is valid if the spte is zapped. */
323         return spte == 0ull;
324 }
325 #else
326 union split_spte {
327         struct {
328                 u32 spte_low;
329                 u32 spte_high;
330         };
331         u64 spte;
332 };
333
334 static void count_spte_clear(u64 *sptep, u64 spte)
335 {
336         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
337
338         if (is_shadow_present_pte(spte))
339                 return;
340
341         /* Ensure the spte is completely set before we increase the count */
342         smp_wmb();
343         sp->clear_spte_count++;
344 }
345
346 static void __set_spte(u64 *sptep, u64 spte)
347 {
348         union split_spte *ssptep, sspte;
349
350         ssptep = (union split_spte *)sptep;
351         sspte = (union split_spte)spte;
352
353         ssptep->spte_high = sspte.spte_high;
354
355         /*
356          * If we map the spte from nonpresent to present, We should store
357          * the high bits firstly, then set present bit, so cpu can not
358          * fetch this spte while we are setting the spte.
359          */
360         smp_wmb();
361
362         ssptep->spte_low = sspte.spte_low;
363 }
364
365 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
366 {
367         union split_spte *ssptep, sspte;
368
369         ssptep = (union split_spte *)sptep;
370         sspte = (union split_spte)spte;
371
372         ssptep->spte_low = sspte.spte_low;
373
374         /*
375          * If we map the spte from present to nonpresent, we should clear
376          * present bit firstly to avoid vcpu fetch the old high bits.
377          */
378         smp_wmb();
379
380         ssptep->spte_high = sspte.spte_high;
381         count_spte_clear(sptep, spte);
382 }
383
384 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
385 {
386         union split_spte *ssptep, sspte, orig;
387
388         ssptep = (union split_spte *)sptep;
389         sspte = (union split_spte)spte;
390
391         /* xchg acts as a barrier before the setting of the high bits */
392         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
393         orig.spte_high = ssptep->spte_high;
394         ssptep->spte_high = sspte.spte_high;
395         count_spte_clear(sptep, spte);
396
397         return orig.spte;
398 }
399
400 /*
401  * The idea using the light way get the spte on x86_32 guest is from
402  * gup_get_pte(arch/x86/mm/gup.c).
403  * The difference is we can not catch the spte tlb flush if we leave
404  * guest mode, so we emulate it by increase clear_spte_count when spte
405  * is cleared.
406  */
407 static u64 __get_spte_lockless(u64 *sptep)
408 {
409         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
410         union split_spte spte, *orig = (union split_spte *)sptep;
411         int count;
412
413 retry:
414         count = sp->clear_spte_count;
415         smp_rmb();
416
417         spte.spte_low = orig->spte_low;
418         smp_rmb();
419
420         spte.spte_high = orig->spte_high;
421         smp_rmb();
422
423         if (unlikely(spte.spte_low != orig->spte_low ||
424               count != sp->clear_spte_count))
425                 goto retry;
426
427         return spte.spte;
428 }
429
430 static bool __check_direct_spte_mmio_pf(u64 spte)
431 {
432         union split_spte sspte = (union split_spte)spte;
433         u32 high_mmio_mask = shadow_mmio_mask >> 32;
434
435         /* It is valid if the spte is zapped. */
436         if (spte == 0ull)
437                 return true;
438
439         /* It is valid if the spte is being zapped. */
440         if (sspte.spte_low == 0ull &&
441             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
442                 return true;
443
444         return false;
445 }
446 #endif
447
448 static bool spte_has_volatile_bits(u64 spte)
449 {
450         if (!shadow_accessed_mask)
451                 return false;
452
453         if (!is_shadow_present_pte(spte))
454                 return false;
455
456         if ((spte & shadow_accessed_mask) &&
457               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
458                 return false;
459
460         return true;
461 }
462
463 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
464 {
465         return (old_spte & bit_mask) && !(new_spte & bit_mask);
466 }
467
468 /* Rules for using mmu_spte_set:
469  * Set the sptep from nonpresent to present.
470  * Note: the sptep being assigned *must* be either not present
471  * or in a state where the hardware will not attempt to update
472  * the spte.
473  */
474 static void mmu_spte_set(u64 *sptep, u64 new_spte)
475 {
476         WARN_ON(is_shadow_present_pte(*sptep));
477         __set_spte(sptep, new_spte);
478 }
479
480 /* Rules for using mmu_spte_update:
481  * Update the state bits, it means the mapped pfn is not changged.
482  */
483 static void mmu_spte_update(u64 *sptep, u64 new_spte)
484 {
485         u64 mask, old_spte = *sptep;
486
487         WARN_ON(!is_rmap_spte(new_spte));
488
489         if (!is_shadow_present_pte(old_spte))
490                 return mmu_spte_set(sptep, new_spte);
491
492         new_spte |= old_spte & shadow_dirty_mask;
493
494         mask = shadow_accessed_mask;
495         if (is_writable_pte(old_spte))
496                 mask |= shadow_dirty_mask;
497
498         if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
499                 __update_clear_spte_fast(sptep, new_spte);
500         else
501                 old_spte = __update_clear_spte_slow(sptep, new_spte);
502
503         if (!shadow_accessed_mask)
504                 return;
505
506         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
507                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
508         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
509                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
510 }
511
512 /*
513  * Rules for using mmu_spte_clear_track_bits:
514  * It sets the sptep from present to nonpresent, and track the
515  * state bits, it is used to clear the last level sptep.
516  */
517 static int mmu_spte_clear_track_bits(u64 *sptep)
518 {
519         pfn_t pfn;
520         u64 old_spte = *sptep;
521
522         if (!spte_has_volatile_bits(old_spte))
523                 __update_clear_spte_fast(sptep, 0ull);
524         else
525                 old_spte = __update_clear_spte_slow(sptep, 0ull);
526
527         if (!is_rmap_spte(old_spte))
528                 return 0;
529
530         pfn = spte_to_pfn(old_spte);
531         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
532                 kvm_set_pfn_accessed(pfn);
533         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
534                 kvm_set_pfn_dirty(pfn);
535         return 1;
536 }
537
538 /*
539  * Rules for using mmu_spte_clear_no_track:
540  * Directly clear spte without caring the state bits of sptep,
541  * it is used to set the upper level spte.
542  */
543 static void mmu_spte_clear_no_track(u64 *sptep)
544 {
545         __update_clear_spte_fast(sptep, 0ull);
546 }
547
548 static u64 mmu_spte_get_lockless(u64 *sptep)
549 {
550         return __get_spte_lockless(sptep);
551 }
552
553 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
554 {
555         /*
556          * Prevent page table teardown by making any free-er wait during
557          * kvm_flush_remote_tlbs() IPI to all active vcpus.
558          */
559         local_irq_disable();
560         vcpu->mode = READING_SHADOW_PAGE_TABLES;
561         /*
562          * Make sure a following spte read is not reordered ahead of the write
563          * to vcpu->mode.
564          */
565         smp_mb();
566 }
567
568 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
569 {
570         /*
571          * Make sure the write to vcpu->mode is not reordered in front of
572          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
573          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
574          */
575         smp_mb();
576         vcpu->mode = OUTSIDE_GUEST_MODE;
577         local_irq_enable();
578 }
579
580 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
581                                   struct kmem_cache *base_cache, int min)
582 {
583         void *obj;
584
585         if (cache->nobjs >= min)
586                 return 0;
587         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
588                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
589                 if (!obj)
590                         return -ENOMEM;
591                 cache->objects[cache->nobjs++] = obj;
592         }
593         return 0;
594 }
595
596 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
597 {
598         return cache->nobjs;
599 }
600
601 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
602                                   struct kmem_cache *cache)
603 {
604         while (mc->nobjs)
605                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
606 }
607
608 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
609                                        int min)
610 {
611         void *page;
612
613         if (cache->nobjs >= min)
614                 return 0;
615         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
616                 page = (void *)__get_free_page(GFP_KERNEL);
617                 if (!page)
618                         return -ENOMEM;
619                 cache->objects[cache->nobjs++] = page;
620         }
621         return 0;
622 }
623
624 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
625 {
626         while (mc->nobjs)
627                 free_page((unsigned long)mc->objects[--mc->nobjs]);
628 }
629
630 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
631 {
632         int r;
633
634         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
635                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
636         if (r)
637                 goto out;
638         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
639         if (r)
640                 goto out;
641         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
642                                    mmu_page_header_cache, 4);
643 out:
644         return r;
645 }
646
647 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
648 {
649         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
650                                 pte_list_desc_cache);
651         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
652         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
653                                 mmu_page_header_cache);
654 }
655
656 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
657 {
658         void *p;
659
660         BUG_ON(!mc->nobjs);
661         p = mc->objects[--mc->nobjs];
662         return p;
663 }
664
665 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
666 {
667         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
668 }
669
670 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
671 {
672         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
673 }
674
675 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
676 {
677         if (!sp->role.direct)
678                 return sp->gfns[index];
679
680         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
681 }
682
683 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
684 {
685         if (sp->role.direct)
686                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
687         else
688                 sp->gfns[index] = gfn;
689 }
690
691 /*
692  * Return the pointer to the large page information for a given gfn,
693  * handling slots that are not large page aligned.
694  */
695 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
696                                               struct kvm_memory_slot *slot,
697                                               int level)
698 {
699         unsigned long idx;
700
701         idx = gfn_to_index(gfn, slot->base_gfn, level);
702         return &slot->arch.lpage_info[level - 2][idx];
703 }
704
705 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
706 {
707         struct kvm_memory_slot *slot;
708         struct kvm_lpage_info *linfo;
709         int i;
710
711         slot = gfn_to_memslot(kvm, gfn);
712         for (i = PT_DIRECTORY_LEVEL;
713              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
714                 linfo = lpage_info_slot(gfn, slot, i);
715                 linfo->write_count += 1;
716         }
717         kvm->arch.indirect_shadow_pages++;
718 }
719
720 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
721 {
722         struct kvm_memory_slot *slot;
723         struct kvm_lpage_info *linfo;
724         int i;
725
726         slot = gfn_to_memslot(kvm, gfn);
727         for (i = PT_DIRECTORY_LEVEL;
728              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
729                 linfo = lpage_info_slot(gfn, slot, i);
730                 linfo->write_count -= 1;
731                 WARN_ON(linfo->write_count < 0);
732         }
733         kvm->arch.indirect_shadow_pages--;
734 }
735
736 static int has_wrprotected_page(struct kvm *kvm,
737                                 gfn_t gfn,
738                                 int level)
739 {
740         struct kvm_memory_slot *slot;
741         struct kvm_lpage_info *linfo;
742
743         slot = gfn_to_memslot(kvm, gfn);
744         if (slot) {
745                 linfo = lpage_info_slot(gfn, slot, level);
746                 return linfo->write_count;
747         }
748
749         return 1;
750 }
751
752 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
753 {
754         unsigned long page_size;
755         int i, ret = 0;
756
757         page_size = kvm_host_page_size(kvm, gfn);
758
759         for (i = PT_PAGE_TABLE_LEVEL;
760              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
761                 if (page_size >= KVM_HPAGE_SIZE(i))
762                         ret = i;
763                 else
764                         break;
765         }
766
767         return ret;
768 }
769
770 static struct kvm_memory_slot *
771 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
772                             bool no_dirty_log)
773 {
774         struct kvm_memory_slot *slot;
775
776         slot = gfn_to_memslot(vcpu->kvm, gfn);
777         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
778               (no_dirty_log && slot->dirty_bitmap))
779                 slot = NULL;
780
781         return slot;
782 }
783
784 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
785 {
786         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
787 }
788
789 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
790 {
791         int host_level, level, max_level;
792
793         host_level = host_mapping_level(vcpu->kvm, large_gfn);
794
795         if (host_level == PT_PAGE_TABLE_LEVEL)
796                 return host_level;
797
798         max_level = kvm_x86_ops->get_lpage_level() < host_level ?
799                 kvm_x86_ops->get_lpage_level() : host_level;
800
801         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
802                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
803                         break;
804
805         return level - 1;
806 }
807
808 /*
809  * Pte mapping structures:
810  *
811  * If pte_list bit zero is zero, then pte_list point to the spte.
812  *
813  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
814  * pte_list_desc containing more mappings.
815  *
816  * Returns the number of pte entries before the spte was added or zero if
817  * the spte was not added.
818  *
819  */
820 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
821                         unsigned long *pte_list)
822 {
823         struct pte_list_desc *desc;
824         int i, count = 0;
825
826         if (!*pte_list) {
827                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
828                 *pte_list = (unsigned long)spte;
829         } else if (!(*pte_list & 1)) {
830                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
831                 desc = mmu_alloc_pte_list_desc(vcpu);
832                 desc->sptes[0] = (u64 *)*pte_list;
833                 desc->sptes[1] = spte;
834                 *pte_list = (unsigned long)desc | 1;
835                 ++count;
836         } else {
837                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
838                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
839                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
840                         desc = desc->more;
841                         count += PTE_LIST_EXT;
842                 }
843                 if (desc->sptes[PTE_LIST_EXT-1]) {
844                         desc->more = mmu_alloc_pte_list_desc(vcpu);
845                         desc = desc->more;
846                 }
847                 for (i = 0; desc->sptes[i]; ++i)
848                         ++count;
849                 desc->sptes[i] = spte;
850         }
851         return count;
852 }
853
854 static void
855 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
856                            int i, struct pte_list_desc *prev_desc)
857 {
858         int j;
859
860         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
861                 ;
862         desc->sptes[i] = desc->sptes[j];
863         desc->sptes[j] = NULL;
864         if (j != 0)
865                 return;
866         if (!prev_desc && !desc->more)
867                 *pte_list = (unsigned long)desc->sptes[0];
868         else
869                 if (prev_desc)
870                         prev_desc->more = desc->more;
871                 else
872                         *pte_list = (unsigned long)desc->more | 1;
873         mmu_free_pte_list_desc(desc);
874 }
875
876 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
877 {
878         struct pte_list_desc *desc;
879         struct pte_list_desc *prev_desc;
880         int i;
881
882         if (!*pte_list) {
883                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
884                 BUG();
885         } else if (!(*pte_list & 1)) {
886                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
887                 if ((u64 *)*pte_list != spte) {
888                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
889                         BUG();
890                 }
891                 *pte_list = 0;
892         } else {
893                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
894                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
895                 prev_desc = NULL;
896                 while (desc) {
897                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
898                                 if (desc->sptes[i] == spte) {
899                                         pte_list_desc_remove_entry(pte_list,
900                                                                desc, i,
901                                                                prev_desc);
902                                         return;
903                                 }
904                         prev_desc = desc;
905                         desc = desc->more;
906                 }
907                 pr_err("pte_list_remove: %p many->many\n", spte);
908                 BUG();
909         }
910 }
911
912 typedef void (*pte_list_walk_fn) (u64 *spte);
913 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
914 {
915         struct pte_list_desc *desc;
916         int i;
917
918         if (!*pte_list)
919                 return;
920
921         if (!(*pte_list & 1))
922                 return fn((u64 *)*pte_list);
923
924         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
925         while (desc) {
926                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
927                         fn(desc->sptes[i]);
928                 desc = desc->more;
929         }
930 }
931
932 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
933                                     struct kvm_memory_slot *slot)
934 {
935         struct kvm_lpage_info *linfo;
936
937         if (likely(level == PT_PAGE_TABLE_LEVEL))
938                 return &slot->rmap[gfn - slot->base_gfn];
939
940         linfo = lpage_info_slot(gfn, slot, level);
941         return &linfo->rmap_pde;
942 }
943
944 /*
945  * Take gfn and return the reverse mapping to it.
946  */
947 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
948 {
949         struct kvm_memory_slot *slot;
950
951         slot = gfn_to_memslot(kvm, gfn);
952         return __gfn_to_rmap(gfn, level, slot);
953 }
954
955 static bool rmap_can_add(struct kvm_vcpu *vcpu)
956 {
957         struct kvm_mmu_memory_cache *cache;
958
959         cache = &vcpu->arch.mmu_pte_list_desc_cache;
960         return mmu_memory_cache_free_objects(cache);
961 }
962
963 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
964 {
965         struct kvm_mmu_page *sp;
966         unsigned long *rmapp;
967
968         sp = page_header(__pa(spte));
969         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
970         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
971         return pte_list_add(vcpu, spte, rmapp);
972 }
973
974 static void rmap_remove(struct kvm *kvm, u64 *spte)
975 {
976         struct kvm_mmu_page *sp;
977         gfn_t gfn;
978         unsigned long *rmapp;
979
980         sp = page_header(__pa(spte));
981         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
982         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
983         pte_list_remove(spte, rmapp);
984 }
985
986 /*
987  * Used by the following functions to iterate through the sptes linked by a
988  * rmap.  All fields are private and not assumed to be used outside.
989  */
990 struct rmap_iterator {
991         /* private fields */
992         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
993         int pos;                        /* index of the sptep */
994 };
995
996 /*
997  * Iteration must be started by this function.  This should also be used after
998  * removing/dropping sptes from the rmap link because in such cases the
999  * information in the itererator may not be valid.
1000  *
1001  * Returns sptep if found, NULL otherwise.
1002  */
1003 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1004 {
1005         if (!rmap)
1006                 return NULL;
1007
1008         if (!(rmap & 1)) {
1009                 iter->desc = NULL;
1010                 return (u64 *)rmap;
1011         }
1012
1013         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1014         iter->pos = 0;
1015         return iter->desc->sptes[iter->pos];
1016 }
1017
1018 /*
1019  * Must be used with a valid iterator: e.g. after rmap_get_first().
1020  *
1021  * Returns sptep if found, NULL otherwise.
1022  */
1023 static u64 *rmap_get_next(struct rmap_iterator *iter)
1024 {
1025         if (iter->desc) {
1026                 if (iter->pos < PTE_LIST_EXT - 1) {
1027                         u64 *sptep;
1028
1029                         ++iter->pos;
1030                         sptep = iter->desc->sptes[iter->pos];
1031                         if (sptep)
1032                                 return sptep;
1033                 }
1034
1035                 iter->desc = iter->desc->more;
1036
1037                 if (iter->desc) {
1038                         iter->pos = 0;
1039                         /* desc->sptes[0] cannot be NULL */
1040                         return iter->desc->sptes[iter->pos];
1041                 }
1042         }
1043
1044         return NULL;
1045 }
1046
1047 static void drop_spte(struct kvm *kvm, u64 *sptep)
1048 {
1049         if (mmu_spte_clear_track_bits(sptep))
1050                 rmap_remove(kvm, sptep);
1051 }
1052
1053 static bool
1054 __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, int level)
1055 {
1056         u64 *sptep;
1057         struct rmap_iterator iter;
1058         bool write_protected = false;
1059
1060         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1061                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1062                 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1063
1064                 if (!is_writable_pte(*sptep)) {
1065                         sptep = rmap_get_next(&iter);
1066                         continue;
1067                 }
1068
1069                 if (level == PT_PAGE_TABLE_LEVEL) {
1070                         mmu_spte_update(sptep, *sptep & ~PT_WRITABLE_MASK);
1071                         sptep = rmap_get_next(&iter);
1072                 } else {
1073                         BUG_ON(!is_large_pte(*sptep));
1074                         drop_spte(kvm, sptep);
1075                         --kvm->stat.lpages;
1076                         sptep = rmap_get_first(*rmapp, &iter);
1077                 }
1078
1079                 write_protected = true;
1080         }
1081
1082         return write_protected;
1083 }
1084
1085 /**
1086  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1087  * @kvm: kvm instance
1088  * @slot: slot to protect
1089  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1090  * @mask: indicates which pages we should protect
1091  *
1092  * Used when we do not need to care about huge page mappings: e.g. during dirty
1093  * logging we do not have any such mappings.
1094  */
1095 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1096                                      struct kvm_memory_slot *slot,
1097                                      gfn_t gfn_offset, unsigned long mask)
1098 {
1099         unsigned long *rmapp;
1100
1101         while (mask) {
1102                 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
1103                 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL);
1104
1105                 /* clear the first set bit */
1106                 mask &= mask - 1;
1107         }
1108 }
1109
1110 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1111 {
1112         struct kvm_memory_slot *slot;
1113         unsigned long *rmapp;
1114         int i;
1115         bool write_protected = false;
1116
1117         slot = gfn_to_memslot(kvm, gfn);
1118
1119         for (i = PT_PAGE_TABLE_LEVEL;
1120              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1121                 rmapp = __gfn_to_rmap(gfn, i, slot);
1122                 write_protected |= __rmap_write_protect(kvm, rmapp, i);
1123         }
1124
1125         return write_protected;
1126 }
1127
1128 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1129                            unsigned long data)
1130 {
1131         u64 *sptep;
1132         struct rmap_iterator iter;
1133         int need_tlb_flush = 0;
1134
1135         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1136                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1137                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1138
1139                 drop_spte(kvm, sptep);
1140                 need_tlb_flush = 1;
1141         }
1142
1143         return need_tlb_flush;
1144 }
1145
1146 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1147                              unsigned long data)
1148 {
1149         u64 *sptep;
1150         struct rmap_iterator iter;
1151         int need_flush = 0;
1152         u64 new_spte;
1153         pte_t *ptep = (pte_t *)data;
1154         pfn_t new_pfn;
1155
1156         WARN_ON(pte_huge(*ptep));
1157         new_pfn = pte_pfn(*ptep);
1158
1159         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1160                 BUG_ON(!is_shadow_present_pte(*sptep));
1161                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1162
1163                 need_flush = 1;
1164
1165                 if (pte_write(*ptep)) {
1166                         drop_spte(kvm, sptep);
1167                         sptep = rmap_get_first(*rmapp, &iter);
1168                 } else {
1169                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1170                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1171
1172                         new_spte &= ~PT_WRITABLE_MASK;
1173                         new_spte &= ~SPTE_HOST_WRITEABLE;
1174                         new_spte &= ~shadow_accessed_mask;
1175
1176                         mmu_spte_clear_track_bits(sptep);
1177                         mmu_spte_set(sptep, new_spte);
1178                         sptep = rmap_get_next(&iter);
1179                 }
1180         }
1181
1182         if (need_flush)
1183                 kvm_flush_remote_tlbs(kvm);
1184
1185         return 0;
1186 }
1187
1188 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1189                           unsigned long data,
1190                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1191                                          unsigned long data))
1192 {
1193         int j;
1194         int ret;
1195         int retval = 0;
1196         struct kvm_memslots *slots;
1197         struct kvm_memory_slot *memslot;
1198
1199         slots = kvm_memslots(kvm);
1200
1201         kvm_for_each_memslot(memslot, slots) {
1202                 unsigned long start = memslot->userspace_addr;
1203                 unsigned long end;
1204
1205                 end = start + (memslot->npages << PAGE_SHIFT);
1206                 if (hva >= start && hva < end) {
1207                         gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1208                         gfn_t gfn = memslot->base_gfn + gfn_offset;
1209
1210                         ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1211
1212                         for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1213                                 struct kvm_lpage_info *linfo;
1214
1215                                 linfo = lpage_info_slot(gfn, memslot,
1216                                                         PT_DIRECTORY_LEVEL + j);
1217                                 ret |= handler(kvm, &linfo->rmap_pde, data);
1218                         }
1219                         trace_kvm_age_page(hva, memslot, ret);
1220                         retval |= ret;
1221                 }
1222         }
1223
1224         return retval;
1225 }
1226
1227 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1228 {
1229         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1230 }
1231
1232 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1233 {
1234         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1235 }
1236
1237 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1238                          unsigned long data)
1239 {
1240         u64 *sptep;
1241         struct rmap_iterator uninitialized_var(iter);
1242         int young = 0;
1243
1244         /*
1245          * In case of absence of EPT Access and Dirty Bits supports,
1246          * emulate the accessed bit for EPT, by checking if this page has
1247          * an EPT mapping, and clearing it if it does. On the next access,
1248          * a new EPT mapping will be established.
1249          * This has some overhead, but not as much as the cost of swapping
1250          * out actively used pages or breaking up actively used hugepages.
1251          */
1252         if (!shadow_accessed_mask)
1253                 return kvm_unmap_rmapp(kvm, rmapp, data);
1254
1255         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1256              sptep = rmap_get_next(&iter)) {
1257                 BUG_ON(!is_shadow_present_pte(*sptep));
1258
1259                 if (*sptep & shadow_accessed_mask) {
1260                         young = 1;
1261                         clear_bit((ffs(shadow_accessed_mask) - 1),
1262                                  (unsigned long *)sptep);
1263                 }
1264         }
1265
1266         return young;
1267 }
1268
1269 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1270                               unsigned long data)
1271 {
1272         u64 *sptep;
1273         struct rmap_iterator iter;
1274         int young = 0;
1275
1276         /*
1277          * If there's no access bit in the secondary pte set by the
1278          * hardware it's up to gup-fast/gup to set the access bit in
1279          * the primary pte or in the page structure.
1280          */
1281         if (!shadow_accessed_mask)
1282                 goto out;
1283
1284         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1285              sptep = rmap_get_next(&iter)) {
1286                 BUG_ON(!is_shadow_present_pte(*sptep));
1287
1288                 if (*sptep & shadow_accessed_mask) {
1289                         young = 1;
1290                         break;
1291                 }
1292         }
1293 out:
1294         return young;
1295 }
1296
1297 #define RMAP_RECYCLE_THRESHOLD 1000
1298
1299 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1300 {
1301         unsigned long *rmapp;
1302         struct kvm_mmu_page *sp;
1303
1304         sp = page_header(__pa(spte));
1305
1306         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1307
1308         kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1309         kvm_flush_remote_tlbs(vcpu->kvm);
1310 }
1311
1312 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1313 {
1314         return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1315 }
1316
1317 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1318 {
1319         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1320 }
1321
1322 #ifdef MMU_DEBUG
1323 static int is_empty_shadow_page(u64 *spt)
1324 {
1325         u64 *pos;
1326         u64 *end;
1327
1328         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1329                 if (is_shadow_present_pte(*pos)) {
1330                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1331                                pos, *pos);
1332                         return 0;
1333                 }
1334         return 1;
1335 }
1336 #endif
1337
1338 /*
1339  * This value is the sum of all of the kvm instances's
1340  * kvm->arch.n_used_mmu_pages values.  We need a global,
1341  * aggregate version in order to make the slab shrinker
1342  * faster
1343  */
1344 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1345 {
1346         kvm->arch.n_used_mmu_pages += nr;
1347         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1348 }
1349
1350 /*
1351  * Remove the sp from shadow page cache, after call it,
1352  * we can not find this sp from the cache, and the shadow
1353  * page table is still valid.
1354  * It should be under the protection of mmu lock.
1355  */
1356 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1357 {
1358         ASSERT(is_empty_shadow_page(sp->spt));
1359         hlist_del(&sp->hash_link);
1360         if (!sp->role.direct)
1361                 free_page((unsigned long)sp->gfns);
1362 }
1363
1364 /*
1365  * Free the shadow page table and the sp, we can do it
1366  * out of the protection of mmu lock.
1367  */
1368 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1369 {
1370         list_del(&sp->link);
1371         free_page((unsigned long)sp->spt);
1372         kmem_cache_free(mmu_page_header_cache, sp);
1373 }
1374
1375 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1376 {
1377         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1378 }
1379
1380 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1381                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1382 {
1383         if (!parent_pte)
1384                 return;
1385
1386         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1387 }
1388
1389 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1390                                        u64 *parent_pte)
1391 {
1392         pte_list_remove(parent_pte, &sp->parent_ptes);
1393 }
1394
1395 static void drop_parent_pte(struct kvm_mmu_page *sp,
1396                             u64 *parent_pte)
1397 {
1398         mmu_page_remove_parent_pte(sp, parent_pte);
1399         mmu_spte_clear_no_track(parent_pte);
1400 }
1401
1402 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1403                                                u64 *parent_pte, int direct)
1404 {
1405         struct kvm_mmu_page *sp;
1406         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1407         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1408         if (!direct)
1409                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1410         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1411         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1412         bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1413         sp->parent_ptes = 0;
1414         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1415         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1416         return sp;
1417 }
1418
1419 static void mark_unsync(u64 *spte);
1420 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1421 {
1422         pte_list_walk(&sp->parent_ptes, mark_unsync);
1423 }
1424
1425 static void mark_unsync(u64 *spte)
1426 {
1427         struct kvm_mmu_page *sp;
1428         unsigned int index;
1429
1430         sp = page_header(__pa(spte));
1431         index = spte - sp->spt;
1432         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1433                 return;
1434         if (sp->unsync_children++)
1435                 return;
1436         kvm_mmu_mark_parents_unsync(sp);
1437 }
1438
1439 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1440                                struct kvm_mmu_page *sp)
1441 {
1442         return 1;
1443 }
1444
1445 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1446 {
1447 }
1448
1449 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1450                                  struct kvm_mmu_page *sp, u64 *spte,
1451                                  const void *pte)
1452 {
1453         WARN_ON(1);
1454 }
1455
1456 #define KVM_PAGE_ARRAY_NR 16
1457
1458 struct kvm_mmu_pages {
1459         struct mmu_page_and_offset {
1460                 struct kvm_mmu_page *sp;
1461                 unsigned int idx;
1462         } page[KVM_PAGE_ARRAY_NR];
1463         unsigned int nr;
1464 };
1465
1466 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1467                          int idx)
1468 {
1469         int i;
1470
1471         if (sp->unsync)
1472                 for (i=0; i < pvec->nr; i++)
1473                         if (pvec->page[i].sp == sp)
1474                                 return 0;
1475
1476         pvec->page[pvec->nr].sp = sp;
1477         pvec->page[pvec->nr].idx = idx;
1478         pvec->nr++;
1479         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1480 }
1481
1482 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1483                            struct kvm_mmu_pages *pvec)
1484 {
1485         int i, ret, nr_unsync_leaf = 0;
1486
1487         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1488                 struct kvm_mmu_page *child;
1489                 u64 ent = sp->spt[i];
1490
1491                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1492                         goto clear_child_bitmap;
1493
1494                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1495
1496                 if (child->unsync_children) {
1497                         if (mmu_pages_add(pvec, child, i))
1498                                 return -ENOSPC;
1499
1500                         ret = __mmu_unsync_walk(child, pvec);
1501                         if (!ret)
1502                                 goto clear_child_bitmap;
1503                         else if (ret > 0)
1504                                 nr_unsync_leaf += ret;
1505                         else
1506                                 return ret;
1507                 } else if (child->unsync) {
1508                         nr_unsync_leaf++;
1509                         if (mmu_pages_add(pvec, child, i))
1510                                 return -ENOSPC;
1511                 } else
1512                          goto clear_child_bitmap;
1513
1514                 continue;
1515
1516 clear_child_bitmap:
1517                 __clear_bit(i, sp->unsync_child_bitmap);
1518                 sp->unsync_children--;
1519                 WARN_ON((int)sp->unsync_children < 0);
1520         }
1521
1522
1523         return nr_unsync_leaf;
1524 }
1525
1526 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1527                            struct kvm_mmu_pages *pvec)
1528 {
1529         if (!sp->unsync_children)
1530                 return 0;
1531
1532         mmu_pages_add(pvec, sp, 0);
1533         return __mmu_unsync_walk(sp, pvec);
1534 }
1535
1536 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1537 {
1538         WARN_ON(!sp->unsync);
1539         trace_kvm_mmu_sync_page(sp);
1540         sp->unsync = 0;
1541         --kvm->stat.mmu_unsync;
1542 }
1543
1544 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1545                                     struct list_head *invalid_list);
1546 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1547                                     struct list_head *invalid_list);
1548
1549 #define for_each_gfn_sp(kvm, sp, gfn, pos)                              \
1550   hlist_for_each_entry(sp, pos,                                         \
1551    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1552         if ((sp)->gfn != (gfn)) {} else
1553
1554 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)               \
1555   hlist_for_each_entry(sp, pos,                                         \
1556    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1557                 if ((sp)->gfn != (gfn) || (sp)->role.direct ||          \
1558                         (sp)->role.invalid) {} else
1559
1560 /* @sp->gfn should be write-protected at the call site */
1561 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1562                            struct list_head *invalid_list, bool clear_unsync)
1563 {
1564         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1565                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1566                 return 1;
1567         }
1568
1569         if (clear_unsync)
1570                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1571
1572         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1573                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1574                 return 1;
1575         }
1576
1577         kvm_mmu_flush_tlb(vcpu);
1578         return 0;
1579 }
1580
1581 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1582                                    struct kvm_mmu_page *sp)
1583 {
1584         LIST_HEAD(invalid_list);
1585         int ret;
1586
1587         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1588         if (ret)
1589                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1590
1591         return ret;
1592 }
1593
1594 #ifdef CONFIG_KVM_MMU_AUDIT
1595 #include "mmu_audit.c"
1596 #else
1597 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1598 static void mmu_audit_disable(void) { }
1599 #endif
1600
1601 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1602                          struct list_head *invalid_list)
1603 {
1604         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1605 }
1606
1607 /* @gfn should be write-protected at the call site */
1608 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1609 {
1610         struct kvm_mmu_page *s;
1611         struct hlist_node *node;
1612         LIST_HEAD(invalid_list);
1613         bool flush = false;
1614
1615         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1616                 if (!s->unsync)
1617                         continue;
1618
1619                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1620                 kvm_unlink_unsync_page(vcpu->kvm, s);
1621                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1622                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1623                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1624                         continue;
1625                 }
1626                 flush = true;
1627         }
1628
1629         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1630         if (flush)
1631                 kvm_mmu_flush_tlb(vcpu);
1632 }
1633
1634 struct mmu_page_path {
1635         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1636         unsigned int idx[PT64_ROOT_LEVEL-1];
1637 };
1638
1639 #define for_each_sp(pvec, sp, parents, i)                       \
1640                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1641                         sp = pvec.page[i].sp;                   \
1642                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1643                         i = mmu_pages_next(&pvec, &parents, i))
1644
1645 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1646                           struct mmu_page_path *parents,
1647                           int i)
1648 {
1649         int n;
1650
1651         for (n = i+1; n < pvec->nr; n++) {
1652                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1653
1654                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1655                         parents->idx[0] = pvec->page[n].idx;
1656                         return n;
1657                 }
1658
1659                 parents->parent[sp->role.level-2] = sp;
1660                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1661         }
1662
1663         return n;
1664 }
1665
1666 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1667 {
1668         struct kvm_mmu_page *sp;
1669         unsigned int level = 0;
1670
1671         do {
1672                 unsigned int idx = parents->idx[level];
1673
1674                 sp = parents->parent[level];
1675                 if (!sp)
1676                         return;
1677
1678                 --sp->unsync_children;
1679                 WARN_ON((int)sp->unsync_children < 0);
1680                 __clear_bit(idx, sp->unsync_child_bitmap);
1681                 level++;
1682         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1683 }
1684
1685 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1686                                struct mmu_page_path *parents,
1687                                struct kvm_mmu_pages *pvec)
1688 {
1689         parents->parent[parent->role.level-1] = NULL;
1690         pvec->nr = 0;
1691 }
1692
1693 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1694                               struct kvm_mmu_page *parent)
1695 {
1696         int i;
1697         struct kvm_mmu_page *sp;
1698         struct mmu_page_path parents;
1699         struct kvm_mmu_pages pages;
1700         LIST_HEAD(invalid_list);
1701
1702         kvm_mmu_pages_init(parent, &parents, &pages);
1703         while (mmu_unsync_walk(parent, &pages)) {
1704                 bool protected = false;
1705
1706                 for_each_sp(pages, sp, parents, i)
1707                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1708
1709                 if (protected)
1710                         kvm_flush_remote_tlbs(vcpu->kvm);
1711
1712                 for_each_sp(pages, sp, parents, i) {
1713                         kvm_sync_page(vcpu, sp, &invalid_list);
1714                         mmu_pages_clear_parents(&parents);
1715                 }
1716                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1717                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1718                 kvm_mmu_pages_init(parent, &parents, &pages);
1719         }
1720 }
1721
1722 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1723 {
1724         int i;
1725
1726         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1727                 sp->spt[i] = 0ull;
1728 }
1729
1730 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1731 {
1732         sp->write_flooding_count = 0;
1733 }
1734
1735 static void clear_sp_write_flooding_count(u64 *spte)
1736 {
1737         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1738
1739         __clear_sp_write_flooding_count(sp);
1740 }
1741
1742 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1743                                              gfn_t gfn,
1744                                              gva_t gaddr,
1745                                              unsigned level,
1746                                              int direct,
1747                                              unsigned access,
1748                                              u64 *parent_pte)
1749 {
1750         union kvm_mmu_page_role role;
1751         unsigned quadrant;
1752         struct kvm_mmu_page *sp;
1753         struct hlist_node *node;
1754         bool need_sync = false;
1755
1756         role = vcpu->arch.mmu.base_role;
1757         role.level = level;
1758         role.direct = direct;
1759         if (role.direct)
1760                 role.cr4_pae = 0;
1761         role.access = access;
1762         if (!vcpu->arch.mmu.direct_map
1763             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1764                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1765                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1766                 role.quadrant = quadrant;
1767         }
1768         for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1769                 if (!need_sync && sp->unsync)
1770                         need_sync = true;
1771
1772                 if (sp->role.word != role.word)
1773                         continue;
1774
1775                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1776                         break;
1777
1778                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1779                 if (sp->unsync_children) {
1780                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1781                         kvm_mmu_mark_parents_unsync(sp);
1782                 } else if (sp->unsync)
1783                         kvm_mmu_mark_parents_unsync(sp);
1784
1785                 __clear_sp_write_flooding_count(sp);
1786                 trace_kvm_mmu_get_page(sp, false);
1787                 return sp;
1788         }
1789         ++vcpu->kvm->stat.mmu_cache_miss;
1790         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1791         if (!sp)
1792                 return sp;
1793         sp->gfn = gfn;
1794         sp->role = role;
1795         hlist_add_head(&sp->hash_link,
1796                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1797         if (!direct) {
1798                 if (rmap_write_protect(vcpu->kvm, gfn))
1799                         kvm_flush_remote_tlbs(vcpu->kvm);
1800                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1801                         kvm_sync_pages(vcpu, gfn);
1802
1803                 account_shadowed(vcpu->kvm, gfn);
1804         }
1805         init_shadow_page_table(sp);
1806         trace_kvm_mmu_get_page(sp, true);
1807         return sp;
1808 }
1809
1810 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1811                              struct kvm_vcpu *vcpu, u64 addr)
1812 {
1813         iterator->addr = addr;
1814         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1815         iterator->level = vcpu->arch.mmu.shadow_root_level;
1816
1817         if (iterator->level == PT64_ROOT_LEVEL &&
1818             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1819             !vcpu->arch.mmu.direct_map)
1820                 --iterator->level;
1821
1822         if (iterator->level == PT32E_ROOT_LEVEL) {
1823                 iterator->shadow_addr
1824                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1825                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1826                 --iterator->level;
1827                 if (!iterator->shadow_addr)
1828                         iterator->level = 0;
1829         }
1830 }
1831
1832 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1833 {
1834         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1835                 return false;
1836
1837         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1838         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1839         return true;
1840 }
1841
1842 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1843                                u64 spte)
1844 {
1845         if (is_last_spte(spte, iterator->level)) {
1846                 iterator->level = 0;
1847                 return;
1848         }
1849
1850         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1851         --iterator->level;
1852 }
1853
1854 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1855 {
1856         return __shadow_walk_next(iterator, *iterator->sptep);
1857 }
1858
1859 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1860 {
1861         u64 spte;
1862
1863         spte = __pa(sp->spt)
1864                 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1865                 | PT_WRITABLE_MASK | PT_USER_MASK;
1866         mmu_spte_set(sptep, spte);
1867 }
1868
1869 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1870 {
1871         if (is_large_pte(*sptep)) {
1872                 drop_spte(vcpu->kvm, sptep);
1873                 --vcpu->kvm->stat.lpages;
1874                 kvm_flush_remote_tlbs(vcpu->kvm);
1875         }
1876 }
1877
1878 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1879                                    unsigned direct_access)
1880 {
1881         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1882                 struct kvm_mmu_page *child;
1883
1884                 /*
1885                  * For the direct sp, if the guest pte's dirty bit
1886                  * changed form clean to dirty, it will corrupt the
1887                  * sp's access: allow writable in the read-only sp,
1888                  * so we should update the spte at this point to get
1889                  * a new sp with the correct access.
1890                  */
1891                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1892                 if (child->role.access == direct_access)
1893                         return;
1894
1895                 drop_parent_pte(child, sptep);
1896                 kvm_flush_remote_tlbs(vcpu->kvm);
1897         }
1898 }
1899
1900 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1901                              u64 *spte)
1902 {
1903         u64 pte;
1904         struct kvm_mmu_page *child;
1905
1906         pte = *spte;
1907         if (is_shadow_present_pte(pte)) {
1908                 if (is_last_spte(pte, sp->role.level)) {
1909                         drop_spte(kvm, spte);
1910                         if (is_large_pte(pte))
1911                                 --kvm->stat.lpages;
1912                 } else {
1913                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1914                         drop_parent_pte(child, spte);
1915                 }
1916                 return true;
1917         }
1918
1919         if (is_mmio_spte(pte))
1920                 mmu_spte_clear_no_track(spte);
1921
1922         return false;
1923 }
1924
1925 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1926                                          struct kvm_mmu_page *sp)
1927 {
1928         unsigned i;
1929
1930         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1931                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1932 }
1933
1934 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1935 {
1936         mmu_page_remove_parent_pte(sp, parent_pte);
1937 }
1938
1939 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1940 {
1941         u64 *sptep;
1942         struct rmap_iterator iter;
1943
1944         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
1945                 drop_parent_pte(sp, sptep);
1946 }
1947
1948 static int mmu_zap_unsync_children(struct kvm *kvm,
1949                                    struct kvm_mmu_page *parent,
1950                                    struct list_head *invalid_list)
1951 {
1952         int i, zapped = 0;
1953         struct mmu_page_path parents;
1954         struct kvm_mmu_pages pages;
1955
1956         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1957                 return 0;
1958
1959         kvm_mmu_pages_init(parent, &parents, &pages);
1960         while (mmu_unsync_walk(parent, &pages)) {
1961                 struct kvm_mmu_page *sp;
1962
1963                 for_each_sp(pages, sp, parents, i) {
1964                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1965                         mmu_pages_clear_parents(&parents);
1966                         zapped++;
1967                 }
1968                 kvm_mmu_pages_init(parent, &parents, &pages);
1969         }
1970
1971         return zapped;
1972 }
1973
1974 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1975                                     struct list_head *invalid_list)
1976 {
1977         int ret;
1978
1979         trace_kvm_mmu_prepare_zap_page(sp);
1980         ++kvm->stat.mmu_shadow_zapped;
1981         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1982         kvm_mmu_page_unlink_children(kvm, sp);
1983         kvm_mmu_unlink_parents(kvm, sp);
1984         if (!sp->role.invalid && !sp->role.direct)
1985                 unaccount_shadowed(kvm, sp->gfn);
1986         if (sp->unsync)
1987                 kvm_unlink_unsync_page(kvm, sp);
1988         if (!sp->root_count) {
1989                 /* Count self */
1990                 ret++;
1991                 list_move(&sp->link, invalid_list);
1992                 kvm_mod_used_mmu_pages(kvm, -1);
1993         } else {
1994                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1995                 kvm_reload_remote_mmus(kvm);
1996         }
1997
1998         sp->role.invalid = 1;
1999         return ret;
2000 }
2001
2002 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2003                                     struct list_head *invalid_list)
2004 {
2005         struct kvm_mmu_page *sp;
2006
2007         if (list_empty(invalid_list))
2008                 return;
2009
2010         /*
2011          * wmb: make sure everyone sees our modifications to the page tables
2012          * rmb: make sure we see changes to vcpu->mode
2013          */
2014         smp_mb();
2015
2016         /*
2017          * Wait for all vcpus to exit guest mode and/or lockless shadow
2018          * page table walks.
2019          */
2020         kvm_flush_remote_tlbs(kvm);
2021
2022         do {
2023                 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2024                 WARN_ON(!sp->role.invalid || sp->root_count);
2025                 kvm_mmu_isolate_page(sp);
2026                 kvm_mmu_free_page(sp);
2027         } while (!list_empty(invalid_list));
2028 }
2029
2030 /*
2031  * Changing the number of mmu pages allocated to the vm
2032  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2033  */
2034 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2035 {
2036         LIST_HEAD(invalid_list);
2037         /*
2038          * If we set the number of mmu pages to be smaller be than the
2039          * number of actived pages , we must to free some mmu pages before we
2040          * change the value
2041          */
2042
2043         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2044                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2045                         !list_empty(&kvm->arch.active_mmu_pages)) {
2046                         struct kvm_mmu_page *page;
2047
2048                         page = container_of(kvm->arch.active_mmu_pages.prev,
2049                                             struct kvm_mmu_page, link);
2050                         kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2051                 }
2052                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2053                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2054         }
2055
2056         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2057 }
2058
2059 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2060 {
2061         struct kvm_mmu_page *sp;
2062         struct hlist_node *node;
2063         LIST_HEAD(invalid_list);
2064         int r;
2065
2066         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2067         r = 0;
2068         spin_lock(&kvm->mmu_lock);
2069         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2070                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2071                          sp->role.word);
2072                 r = 1;
2073                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2074         }
2075         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2076         spin_unlock(&kvm->mmu_lock);
2077
2078         return r;
2079 }
2080 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2081
2082 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2083 {
2084         int slot = memslot_id(kvm, gfn);
2085         struct kvm_mmu_page *sp = page_header(__pa(pte));
2086
2087         __set_bit(slot, sp->slot_bitmap);
2088 }
2089
2090 /*
2091  * The function is based on mtrr_type_lookup() in
2092  * arch/x86/kernel/cpu/mtrr/generic.c
2093  */
2094 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2095                          u64 start, u64 end)
2096 {
2097         int i;
2098         u64 base, mask;
2099         u8 prev_match, curr_match;
2100         int num_var_ranges = KVM_NR_VAR_MTRR;
2101
2102         if (!mtrr_state->enabled)
2103                 return 0xFF;
2104
2105         /* Make end inclusive end, instead of exclusive */
2106         end--;
2107
2108         /* Look in fixed ranges. Just return the type as per start */
2109         if (mtrr_state->have_fixed && (start < 0x100000)) {
2110                 int idx;
2111
2112                 if (start < 0x80000) {
2113                         idx = 0;
2114                         idx += (start >> 16);
2115                         return mtrr_state->fixed_ranges[idx];
2116                 } else if (start < 0xC0000) {
2117                         idx = 1 * 8;
2118                         idx += ((start - 0x80000) >> 14);
2119                         return mtrr_state->fixed_ranges[idx];
2120                 } else if (start < 0x1000000) {
2121                         idx = 3 * 8;
2122                         idx += ((start - 0xC0000) >> 12);
2123                         return mtrr_state->fixed_ranges[idx];
2124                 }
2125         }
2126
2127         /*
2128          * Look in variable ranges
2129          * Look of multiple ranges matching this address and pick type
2130          * as per MTRR precedence
2131          */
2132         if (!(mtrr_state->enabled & 2))
2133                 return mtrr_state->def_type;
2134
2135         prev_match = 0xFF;
2136         for (i = 0; i < num_var_ranges; ++i) {
2137                 unsigned short start_state, end_state;
2138
2139                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2140                         continue;
2141
2142                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2143                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2144                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2145                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2146
2147                 start_state = ((start & mask) == (base & mask));
2148                 end_state = ((end & mask) == (base & mask));
2149                 if (start_state != end_state)
2150                         return 0xFE;
2151
2152                 if ((start & mask) != (base & mask))
2153                         continue;
2154
2155                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2156                 if (prev_match == 0xFF) {
2157                         prev_match = curr_match;
2158                         continue;
2159                 }
2160
2161                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2162                     curr_match == MTRR_TYPE_UNCACHABLE)
2163                         return MTRR_TYPE_UNCACHABLE;
2164
2165                 if ((prev_match == MTRR_TYPE_WRBACK &&
2166                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2167                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2168                      curr_match == MTRR_TYPE_WRBACK)) {
2169                         prev_match = MTRR_TYPE_WRTHROUGH;
2170                         curr_match = MTRR_TYPE_WRTHROUGH;
2171                 }
2172
2173                 if (prev_match != curr_match)
2174                         return MTRR_TYPE_UNCACHABLE;
2175         }
2176
2177         if (prev_match != 0xFF)
2178                 return prev_match;
2179
2180         return mtrr_state->def_type;
2181 }
2182
2183 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2184 {
2185         u8 mtrr;
2186
2187         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2188                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2189         if (mtrr == 0xfe || mtrr == 0xff)
2190                 mtrr = MTRR_TYPE_WRBACK;
2191         return mtrr;
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2194
2195 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2196 {
2197         trace_kvm_mmu_unsync_page(sp);
2198         ++vcpu->kvm->stat.mmu_unsync;
2199         sp->unsync = 1;
2200
2201         kvm_mmu_mark_parents_unsync(sp);
2202 }
2203
2204 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2205 {
2206         struct kvm_mmu_page *s;
2207         struct hlist_node *node;
2208
2209         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2210                 if (s->unsync)
2211                         continue;
2212                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2213                 __kvm_unsync_page(vcpu, s);
2214         }
2215 }
2216
2217 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2218                                   bool can_unsync)
2219 {
2220         struct kvm_mmu_page *s;
2221         struct hlist_node *node;
2222         bool need_unsync = false;
2223
2224         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2225                 if (!can_unsync)
2226                         return 1;
2227
2228                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2229                         return 1;
2230
2231                 if (!need_unsync && !s->unsync) {
2232                         need_unsync = true;
2233                 }
2234         }
2235         if (need_unsync)
2236                 kvm_unsync_pages(vcpu, gfn);
2237         return 0;
2238 }
2239
2240 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2241                     unsigned pte_access, int user_fault,
2242                     int write_fault, int level,
2243                     gfn_t gfn, pfn_t pfn, bool speculative,
2244                     bool can_unsync, bool host_writable)
2245 {
2246         u64 spte, entry = *sptep;
2247         int ret = 0;
2248
2249         if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2250                 return 0;
2251
2252         spte = PT_PRESENT_MASK;
2253         if (!speculative)
2254                 spte |= shadow_accessed_mask;
2255
2256         if (pte_access & ACC_EXEC_MASK)
2257                 spte |= shadow_x_mask;
2258         else
2259                 spte |= shadow_nx_mask;
2260         if (pte_access & ACC_USER_MASK)
2261                 spte |= shadow_user_mask;
2262         if (level > PT_PAGE_TABLE_LEVEL)
2263                 spte |= PT_PAGE_SIZE_MASK;
2264         if (tdp_enabled)
2265                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2266                         kvm_is_mmio_pfn(pfn));
2267
2268         if (host_writable)
2269                 spte |= SPTE_HOST_WRITEABLE;
2270         else
2271                 pte_access &= ~ACC_WRITE_MASK;
2272
2273         spte |= (u64)pfn << PAGE_SHIFT;
2274
2275         if ((pte_access & ACC_WRITE_MASK)
2276             || (!vcpu->arch.mmu.direct_map && write_fault
2277                 && !is_write_protection(vcpu) && !user_fault)) {
2278
2279                 if (level > PT_PAGE_TABLE_LEVEL &&
2280                     has_wrprotected_page(vcpu->kvm, gfn, level)) {
2281                         ret = 1;
2282                         drop_spte(vcpu->kvm, sptep);
2283                         goto done;
2284                 }
2285
2286                 spte |= PT_WRITABLE_MASK;
2287
2288                 if (!vcpu->arch.mmu.direct_map
2289                     && !(pte_access & ACC_WRITE_MASK)) {
2290                         spte &= ~PT_USER_MASK;
2291                         /*
2292                          * If we converted a user page to a kernel page,
2293                          * so that the kernel can write to it when cr0.wp=0,
2294                          * then we should prevent the kernel from executing it
2295                          * if SMEP is enabled.
2296                          */
2297                         if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2298                                 spte |= PT64_NX_MASK;
2299                 }
2300
2301                 /*
2302                  * Optimization: for pte sync, if spte was writable the hash
2303                  * lookup is unnecessary (and expensive). Write protection
2304                  * is responsibility of mmu_get_page / kvm_sync_page.
2305                  * Same reasoning can be applied to dirty page accounting.
2306                  */
2307                 if (!can_unsync && is_writable_pte(*sptep))
2308                         goto set_pte;
2309
2310                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2311                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2312                                  __func__, gfn);
2313                         ret = 1;
2314                         pte_access &= ~ACC_WRITE_MASK;
2315                         if (is_writable_pte(spte))
2316                                 spte &= ~PT_WRITABLE_MASK;
2317                 }
2318         }
2319
2320         if (pte_access & ACC_WRITE_MASK)
2321                 mark_page_dirty(vcpu->kvm, gfn);
2322
2323 set_pte:
2324         mmu_spte_update(sptep, spte);
2325         /*
2326          * If we overwrite a writable spte with a read-only one we
2327          * should flush remote TLBs. Otherwise rmap_write_protect
2328          * will find a read-only spte, even though the writable spte
2329          * might be cached on a CPU's TLB.
2330          */
2331         if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2332                 kvm_flush_remote_tlbs(vcpu->kvm);
2333 done:
2334         return ret;
2335 }
2336
2337 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2338                          unsigned pt_access, unsigned pte_access,
2339                          int user_fault, int write_fault,
2340                          int *emulate, int level, gfn_t gfn,
2341                          pfn_t pfn, bool speculative,
2342                          bool host_writable)
2343 {
2344         int was_rmapped = 0;
2345         int rmap_count;
2346
2347         pgprintk("%s: spte %llx access %x write_fault %d"
2348                  " user_fault %d gfn %llx\n",
2349                  __func__, *sptep, pt_access,
2350                  write_fault, user_fault, gfn);
2351
2352         if (is_rmap_spte(*sptep)) {
2353                 /*
2354                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2355                  * the parent of the now unreachable PTE.
2356                  */
2357                 if (level > PT_PAGE_TABLE_LEVEL &&
2358                     !is_large_pte(*sptep)) {
2359                         struct kvm_mmu_page *child;
2360                         u64 pte = *sptep;
2361
2362                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2363                         drop_parent_pte(child, sptep);
2364                         kvm_flush_remote_tlbs(vcpu->kvm);
2365                 } else if (pfn != spte_to_pfn(*sptep)) {
2366                         pgprintk("hfn old %llx new %llx\n",
2367                                  spte_to_pfn(*sptep), pfn);
2368                         drop_spte(vcpu->kvm, sptep);
2369                         kvm_flush_remote_tlbs(vcpu->kvm);
2370                 } else
2371                         was_rmapped = 1;
2372         }
2373
2374         if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2375                       level, gfn, pfn, speculative, true,
2376                       host_writable)) {
2377                 if (write_fault)
2378                         *emulate = 1;
2379                 kvm_mmu_flush_tlb(vcpu);
2380         }
2381
2382         if (unlikely(is_mmio_spte(*sptep) && emulate))
2383                 *emulate = 1;
2384
2385         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2386         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2387                  is_large_pte(*sptep)? "2MB" : "4kB",
2388                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2389                  *sptep, sptep);
2390         if (!was_rmapped && is_large_pte(*sptep))
2391                 ++vcpu->kvm->stat.lpages;
2392
2393         if (is_shadow_present_pte(*sptep)) {
2394                 page_header_update_slot(vcpu->kvm, sptep, gfn);
2395                 if (!was_rmapped) {
2396                         rmap_count = rmap_add(vcpu, sptep, gfn);
2397                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2398                                 rmap_recycle(vcpu, sptep, gfn);
2399                 }
2400         }
2401         kvm_release_pfn_clean(pfn);
2402 }
2403
2404 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2405 {
2406         mmu_free_roots(vcpu);
2407 }
2408
2409 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2410                                      bool no_dirty_log)
2411 {
2412         struct kvm_memory_slot *slot;
2413         unsigned long hva;
2414
2415         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2416         if (!slot) {
2417                 get_page(fault_page);
2418                 return page_to_pfn(fault_page);
2419         }
2420
2421         hva = gfn_to_hva_memslot(slot, gfn);
2422
2423         return hva_to_pfn_atomic(vcpu->kvm, hva);
2424 }
2425
2426 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2427                                     struct kvm_mmu_page *sp,
2428                                     u64 *start, u64 *end)
2429 {
2430         struct page *pages[PTE_PREFETCH_NUM];
2431         unsigned access = sp->role.access;
2432         int i, ret;
2433         gfn_t gfn;
2434
2435         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2436         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2437                 return -1;
2438
2439         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2440         if (ret <= 0)
2441                 return -1;
2442
2443         for (i = 0; i < ret; i++, gfn++, start++)
2444                 mmu_set_spte(vcpu, start, ACC_ALL,
2445                              access, 0, 0, NULL,
2446                              sp->role.level, gfn,
2447                              page_to_pfn(pages[i]), true, true);
2448
2449         return 0;
2450 }
2451
2452 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2453                                   struct kvm_mmu_page *sp, u64 *sptep)
2454 {
2455         u64 *spte, *start = NULL;
2456         int i;
2457
2458         WARN_ON(!sp->role.direct);
2459
2460         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2461         spte = sp->spt + i;
2462
2463         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2464                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2465                         if (!start)
2466                                 continue;
2467                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2468                                 break;
2469                         start = NULL;
2470                 } else if (!start)
2471                         start = spte;
2472         }
2473 }
2474
2475 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2476 {
2477         struct kvm_mmu_page *sp;
2478
2479         /*
2480          * Since it's no accessed bit on EPT, it's no way to
2481          * distinguish between actually accessed translations
2482          * and prefetched, so disable pte prefetch if EPT is
2483          * enabled.
2484          */
2485         if (!shadow_accessed_mask)
2486                 return;
2487
2488         sp = page_header(__pa(sptep));
2489         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2490                 return;
2491
2492         __direct_pte_prefetch(vcpu, sp, sptep);
2493 }
2494
2495 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2496                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2497                         bool prefault)
2498 {
2499         struct kvm_shadow_walk_iterator iterator;
2500         struct kvm_mmu_page *sp;
2501         int emulate = 0;
2502         gfn_t pseudo_gfn;
2503
2504         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2505                 if (iterator.level == level) {
2506                         unsigned pte_access = ACC_ALL;
2507
2508                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2509                                      0, write, &emulate,
2510                                      level, gfn, pfn, prefault, map_writable);
2511                         direct_pte_prefetch(vcpu, iterator.sptep);
2512                         ++vcpu->stat.pf_fixed;
2513                         break;
2514                 }
2515
2516                 if (!is_shadow_present_pte(*iterator.sptep)) {
2517                         u64 base_addr = iterator.addr;
2518
2519                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2520                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2521                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2522                                               iterator.level - 1,
2523                                               1, ACC_ALL, iterator.sptep);
2524                         if (!sp) {
2525                                 pgprintk("nonpaging_map: ENOMEM\n");
2526                                 kvm_release_pfn_clean(pfn);
2527                                 return -ENOMEM;
2528                         }
2529
2530                         mmu_spte_set(iterator.sptep,
2531                                      __pa(sp->spt)
2532                                      | PT_PRESENT_MASK | PT_WRITABLE_MASK
2533                                      | shadow_user_mask | shadow_x_mask
2534                                      | shadow_accessed_mask);
2535                 }
2536         }
2537         return emulate;
2538 }
2539
2540 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2541 {
2542         siginfo_t info;
2543
2544         info.si_signo   = SIGBUS;
2545         info.si_errno   = 0;
2546         info.si_code    = BUS_MCEERR_AR;
2547         info.si_addr    = (void __user *)address;
2548         info.si_addr_lsb = PAGE_SHIFT;
2549
2550         send_sig_info(SIGBUS, &info, tsk);
2551 }
2552
2553 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2554 {
2555         kvm_release_pfn_clean(pfn);
2556         if (is_hwpoison_pfn(pfn)) {
2557                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2558                 return 0;
2559         }
2560
2561         return -EFAULT;
2562 }
2563
2564 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2565                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2566 {
2567         pfn_t pfn = *pfnp;
2568         gfn_t gfn = *gfnp;
2569         int level = *levelp;
2570
2571         /*
2572          * Check if it's a transparent hugepage. If this would be an
2573          * hugetlbfs page, level wouldn't be set to
2574          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2575          * here.
2576          */
2577         if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2578             level == PT_PAGE_TABLE_LEVEL &&
2579             PageTransCompound(pfn_to_page(pfn)) &&
2580             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2581                 unsigned long mask;
2582                 /*
2583                  * mmu_notifier_retry was successful and we hold the
2584                  * mmu_lock here, so the pmd can't become splitting
2585                  * from under us, and in turn
2586                  * __split_huge_page_refcount() can't run from under
2587                  * us and we can safely transfer the refcount from
2588                  * PG_tail to PG_head as we switch the pfn to tail to
2589                  * head.
2590                  */
2591                 *levelp = level = PT_DIRECTORY_LEVEL;
2592                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2593                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2594                 if (pfn & mask) {
2595                         gfn &= ~mask;
2596                         *gfnp = gfn;
2597                         kvm_release_pfn_clean(pfn);
2598                         pfn &= ~mask;
2599                         kvm_get_pfn(pfn);
2600                         *pfnp = pfn;
2601                 }
2602         }
2603 }
2604
2605 static bool mmu_invalid_pfn(pfn_t pfn)
2606 {
2607         return unlikely(is_invalid_pfn(pfn));
2608 }
2609
2610 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2611                                 pfn_t pfn, unsigned access, int *ret_val)
2612 {
2613         bool ret = true;
2614
2615         /* The pfn is invalid, report the error! */
2616         if (unlikely(is_invalid_pfn(pfn))) {
2617                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2618                 goto exit;
2619         }
2620
2621         if (unlikely(is_noslot_pfn(pfn)))
2622                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2623
2624         ret = false;
2625 exit:
2626         return ret;
2627 }
2628
2629 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2630                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2631
2632 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2633                          bool prefault)
2634 {
2635         int r;
2636         int level;
2637         int force_pt_level;
2638         pfn_t pfn;
2639         unsigned long mmu_seq;
2640         bool map_writable;
2641
2642         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2643         if (likely(!force_pt_level)) {
2644                 level = mapping_level(vcpu, gfn);
2645                 /*
2646                  * This path builds a PAE pagetable - so we can map
2647                  * 2mb pages at maximum. Therefore check if the level
2648                  * is larger than that.
2649                  */
2650                 if (level > PT_DIRECTORY_LEVEL)
2651                         level = PT_DIRECTORY_LEVEL;
2652
2653                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2654         } else
2655                 level = PT_PAGE_TABLE_LEVEL;
2656
2657         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2658         smp_rmb();
2659
2660         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2661                 return 0;
2662
2663         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2664                 return r;
2665
2666         spin_lock(&vcpu->kvm->mmu_lock);
2667         if (mmu_notifier_retry(vcpu, mmu_seq))
2668                 goto out_unlock;
2669         kvm_mmu_free_some_pages(vcpu);
2670         if (likely(!force_pt_level))
2671                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2672         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2673                          prefault);
2674         spin_unlock(&vcpu->kvm->mmu_lock);
2675
2676
2677         return r;
2678
2679 out_unlock:
2680         spin_unlock(&vcpu->kvm->mmu_lock);
2681         kvm_release_pfn_clean(pfn);
2682         return 0;
2683 }
2684
2685
2686 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2687 {
2688         int i;
2689         struct kvm_mmu_page *sp;
2690         LIST_HEAD(invalid_list);
2691
2692         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2693                 return;
2694         spin_lock(&vcpu->kvm->mmu_lock);
2695         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2696             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2697              vcpu->arch.mmu.direct_map)) {
2698                 hpa_t root = vcpu->arch.mmu.root_hpa;
2699
2700                 sp = page_header(root);
2701                 --sp->root_count;
2702                 if (!sp->root_count && sp->role.invalid) {
2703                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2704                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2705                 }
2706                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2707                 spin_unlock(&vcpu->kvm->mmu_lock);
2708                 return;
2709         }
2710         for (i = 0; i < 4; ++i) {
2711                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2712
2713                 if (root) {
2714                         root &= PT64_BASE_ADDR_MASK;
2715                         sp = page_header(root);
2716                         --sp->root_count;
2717                         if (!sp->root_count && sp->role.invalid)
2718                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2719                                                          &invalid_list);
2720                 }
2721                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2722         }
2723         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2724         spin_unlock(&vcpu->kvm->mmu_lock);
2725         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2726 }
2727
2728 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2729 {
2730         int ret = 0;
2731
2732         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2733                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2734                 ret = 1;
2735         }
2736
2737         return ret;
2738 }
2739
2740 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2741 {
2742         struct kvm_mmu_page *sp;
2743         unsigned i;
2744
2745         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2746                 spin_lock(&vcpu->kvm->mmu_lock);
2747                 kvm_mmu_free_some_pages(vcpu);
2748                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2749                                       1, ACC_ALL, NULL);
2750                 ++sp->root_count;
2751                 spin_unlock(&vcpu->kvm->mmu_lock);
2752                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2753         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2754                 for (i = 0; i < 4; ++i) {
2755                         hpa_t root = vcpu->arch.mmu.pae_root[i];
2756
2757                         ASSERT(!VALID_PAGE(root));
2758                         spin_lock(&vcpu->kvm->mmu_lock);
2759                         kvm_mmu_free_some_pages(vcpu);
2760                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2761                                               i << 30,
2762                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
2763                                               NULL);
2764                         root = __pa(sp->spt);
2765                         ++sp->root_count;
2766                         spin_unlock(&vcpu->kvm->mmu_lock);
2767                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2768                 }
2769                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2770         } else
2771                 BUG();
2772
2773         return 0;
2774 }
2775
2776 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2777 {
2778         struct kvm_mmu_page *sp;
2779         u64 pdptr, pm_mask;
2780         gfn_t root_gfn;
2781         int i;
2782
2783         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2784
2785         if (mmu_check_root(vcpu, root_gfn))
2786                 return 1;
2787
2788         /*
2789          * Do we shadow a long mode page table? If so we need to
2790          * write-protect the guests page table root.
2791          */
2792         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2793                 hpa_t root = vcpu->arch.mmu.root_hpa;
2794
2795                 ASSERT(!VALID_PAGE(root));
2796
2797                 spin_lock(&vcpu->kvm->mmu_lock);
2798                 kvm_mmu_free_some_pages(vcpu);
2799                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2800                                       0, ACC_ALL, NULL);
2801                 root = __pa(sp->spt);
2802                 ++sp->root_count;
2803                 spin_unlock(&vcpu->kvm->mmu_lock);
2804                 vcpu->arch.mmu.root_hpa = root;
2805                 return 0;
2806         }
2807
2808         /*
2809          * We shadow a 32 bit page table. This may be a legacy 2-level
2810          * or a PAE 3-level page table. In either case we need to be aware that
2811          * the shadow page table may be a PAE or a long mode page table.
2812          */
2813         pm_mask = PT_PRESENT_MASK;
2814         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2815                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2816
2817         for (i = 0; i < 4; ++i) {
2818                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2819
2820                 ASSERT(!VALID_PAGE(root));
2821                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2822                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2823                         if (!is_present_gpte(pdptr)) {
2824                                 vcpu->arch.mmu.pae_root[i] = 0;
2825                                 continue;
2826                         }
2827                         root_gfn = pdptr >> PAGE_SHIFT;
2828                         if (mmu_check_root(vcpu, root_gfn))
2829                                 return 1;
2830                 }
2831                 spin_lock(&vcpu->kvm->mmu_lock);
2832                 kvm_mmu_free_some_pages(vcpu);
2833                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2834                                       PT32_ROOT_LEVEL, 0,
2835                                       ACC_ALL, NULL);
2836                 root = __pa(sp->spt);
2837                 ++sp->root_count;
2838                 spin_unlock(&vcpu->kvm->mmu_lock);
2839
2840                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2841         }
2842         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2843
2844         /*
2845          * If we shadow a 32 bit page table with a long mode page
2846          * table we enter this path.
2847          */
2848         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2849                 if (vcpu->arch.mmu.lm_root == NULL) {
2850                         /*
2851                          * The additional page necessary for this is only
2852                          * allocated on demand.
2853                          */
2854
2855                         u64 *lm_root;
2856
2857                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2858                         if (lm_root == NULL)
2859                                 return 1;
2860
2861                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2862
2863                         vcpu->arch.mmu.lm_root = lm_root;
2864                 }
2865
2866                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2867         }
2868
2869         return 0;
2870 }
2871
2872 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2873 {
2874         if (vcpu->arch.mmu.direct_map)
2875                 return mmu_alloc_direct_roots(vcpu);
2876         else
2877                 return mmu_alloc_shadow_roots(vcpu);
2878 }
2879
2880 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2881 {
2882         int i;
2883         struct kvm_mmu_page *sp;
2884
2885         if (vcpu->arch.mmu.direct_map)
2886                 return;
2887
2888         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2889                 return;
2890
2891         vcpu_clear_mmio_info(vcpu, ~0ul);
2892         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2893         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2894                 hpa_t root = vcpu->arch.mmu.root_hpa;
2895                 sp = page_header(root);
2896                 mmu_sync_children(vcpu, sp);
2897                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2898                 return;
2899         }
2900         for (i = 0; i < 4; ++i) {
2901                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2902
2903                 if (root && VALID_PAGE(root)) {
2904                         root &= PT64_BASE_ADDR_MASK;
2905                         sp = page_header(root);
2906                         mmu_sync_children(vcpu, sp);
2907                 }
2908         }
2909         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2910 }
2911
2912 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2913 {
2914         spin_lock(&vcpu->kvm->mmu_lock);
2915         mmu_sync_roots(vcpu);
2916         spin_unlock(&vcpu->kvm->mmu_lock);
2917 }
2918
2919 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2920                                   u32 access, struct x86_exception *exception)
2921 {
2922         if (exception)
2923                 exception->error_code = 0;
2924         return vaddr;
2925 }
2926
2927 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2928                                          u32 access,
2929                                          struct x86_exception *exception)
2930 {
2931         if (exception)
2932                 exception->error_code = 0;
2933         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2934 }
2935
2936 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2937 {
2938         if (direct)
2939                 return vcpu_match_mmio_gpa(vcpu, addr);
2940
2941         return vcpu_match_mmio_gva(vcpu, addr);
2942 }
2943
2944
2945 /*
2946  * On direct hosts, the last spte is only allows two states
2947  * for mmio page fault:
2948  *   - It is the mmio spte
2949  *   - It is zapped or it is being zapped.
2950  *
2951  * This function completely checks the spte when the last spte
2952  * is not the mmio spte.
2953  */
2954 static bool check_direct_spte_mmio_pf(u64 spte)
2955 {
2956         return __check_direct_spte_mmio_pf(spte);
2957 }
2958
2959 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2960 {
2961         struct kvm_shadow_walk_iterator iterator;
2962         u64 spte = 0ull;
2963
2964         walk_shadow_page_lockless_begin(vcpu);
2965         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2966                 if (!is_shadow_present_pte(spte))
2967                         break;
2968         walk_shadow_page_lockless_end(vcpu);
2969
2970         return spte;
2971 }
2972
2973 /*
2974  * If it is a real mmio page fault, return 1 and emulat the instruction
2975  * directly, return 0 to let CPU fault again on the address, -1 is
2976  * returned if bug is detected.
2977  */
2978 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2979 {
2980         u64 spte;
2981
2982         if (quickly_check_mmio_pf(vcpu, addr, direct))
2983                 return 1;
2984
2985         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2986
2987         if (is_mmio_spte(spte)) {
2988                 gfn_t gfn = get_mmio_spte_gfn(spte);
2989                 unsigned access = get_mmio_spte_access(spte);
2990
2991                 if (direct)
2992                         addr = 0;
2993
2994                 trace_handle_mmio_page_fault(addr, gfn, access);
2995                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2996                 return 1;
2997         }
2998
2999         /*
3000          * It's ok if the gva is remapped by other cpus on shadow guest,
3001          * it's a BUG if the gfn is not a mmio page.
3002          */
3003         if (direct && !check_direct_spte_mmio_pf(spte))
3004                 return -1;
3005
3006         /*
3007          * If the page table is zapped by other cpus, let CPU fault again on
3008          * the address.
3009          */
3010         return 0;
3011 }
3012 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3013
3014 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3015                                   u32 error_code, bool direct)
3016 {
3017         int ret;
3018
3019         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3020         WARN_ON(ret < 0);
3021         return ret;
3022 }
3023
3024 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3025                                 u32 error_code, bool prefault)
3026 {
3027         gfn_t gfn;
3028         int r;
3029
3030         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3031
3032         if (unlikely(error_code & PFERR_RSVD_MASK))
3033                 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3034
3035         r = mmu_topup_memory_caches(vcpu);
3036         if (r)
3037                 return r;
3038
3039         ASSERT(vcpu);
3040         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3041
3042         gfn = gva >> PAGE_SHIFT;
3043
3044         return nonpaging_map(vcpu, gva & PAGE_MASK,
3045                              error_code & PFERR_WRITE_MASK, gfn, prefault);
3046 }
3047
3048 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3049 {
3050         struct kvm_arch_async_pf arch;
3051
3052         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3053         arch.gfn = gfn;
3054         arch.direct_map = vcpu->arch.mmu.direct_map;
3055         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3056
3057         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3058 }
3059
3060 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3061 {
3062         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3063                      kvm_event_needs_reinjection(vcpu)))
3064                 return false;
3065
3066         return kvm_x86_ops->interrupt_allowed(vcpu);
3067 }
3068
3069 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3070                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3071 {
3072         bool async;
3073
3074         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3075
3076         if (!async)
3077                 return false; /* *pfn has correct page already */
3078
3079         put_page(pfn_to_page(*pfn));
3080
3081         if (!prefault && can_do_async_pf(vcpu)) {
3082                 trace_kvm_try_async_get_page(gva, gfn);
3083                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3084                         trace_kvm_async_pf_doublefault(gva, gfn);
3085                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3086                         return true;
3087                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3088                         return true;
3089         }
3090
3091         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3092
3093         return false;
3094 }
3095
3096 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3097                           bool prefault)
3098 {
3099         pfn_t pfn;
3100         int r;
3101         int level;
3102         int force_pt_level;
3103         gfn_t gfn = gpa >> PAGE_SHIFT;
3104         unsigned long mmu_seq;
3105         int write = error_code & PFERR_WRITE_MASK;
3106         bool map_writable;
3107
3108         ASSERT(vcpu);
3109         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3110
3111         if (unlikely(error_code & PFERR_RSVD_MASK))
3112                 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3113
3114         r = mmu_topup_memory_caches(vcpu);
3115         if (r)
3116                 return r;
3117
3118         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3119         if (likely(!force_pt_level)) {
3120                 level = mapping_level(vcpu, gfn);
3121                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3122         } else
3123                 level = PT_PAGE_TABLE_LEVEL;
3124
3125         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3126         smp_rmb();
3127
3128         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3129                 return 0;
3130
3131         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3132                 return r;
3133
3134         spin_lock(&vcpu->kvm->mmu_lock);
3135         if (mmu_notifier_retry(vcpu, mmu_seq))
3136                 goto out_unlock;
3137         kvm_mmu_free_some_pages(vcpu);
3138         if (likely(!force_pt_level))
3139                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3140         r = __direct_map(vcpu, gpa, write, map_writable,
3141                          level, gfn, pfn, prefault);
3142         spin_unlock(&vcpu->kvm->mmu_lock);
3143
3144         return r;
3145
3146 out_unlock:
3147         spin_unlock(&vcpu->kvm->mmu_lock);
3148         kvm_release_pfn_clean(pfn);
3149         return 0;
3150 }
3151
3152 static void nonpaging_free(struct kvm_vcpu *vcpu)
3153 {
3154         mmu_free_roots(vcpu);
3155 }
3156
3157 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3158                                   struct kvm_mmu *context)
3159 {
3160         context->new_cr3 = nonpaging_new_cr3;
3161         context->page_fault = nonpaging_page_fault;
3162         context->gva_to_gpa = nonpaging_gva_to_gpa;
3163         context->free = nonpaging_free;
3164         context->sync_page = nonpaging_sync_page;
3165         context->invlpg = nonpaging_invlpg;
3166         context->update_pte = nonpaging_update_pte;
3167         context->root_level = 0;
3168         context->shadow_root_level = PT32E_ROOT_LEVEL;
3169         context->root_hpa = INVALID_PAGE;
3170         context->direct_map = true;
3171         context->nx = false;
3172         return 0;
3173 }
3174
3175 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3176 {
3177         ++vcpu->stat.tlb_flush;
3178         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3179 }
3180
3181 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3182 {
3183         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3184         mmu_free_roots(vcpu);
3185 }
3186
3187 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3188 {
3189         return kvm_read_cr3(vcpu);
3190 }
3191
3192 static void inject_page_fault(struct kvm_vcpu *vcpu,
3193                               struct x86_exception *fault)
3194 {
3195         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3196 }
3197
3198 static void paging_free(struct kvm_vcpu *vcpu)
3199 {
3200         nonpaging_free(vcpu);
3201 }
3202
3203 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3204 {
3205         int bit7;
3206
3207         bit7 = (gpte >> 7) & 1;
3208         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3209 }
3210
3211 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3212                            int *nr_present)
3213 {
3214         if (unlikely(is_mmio_spte(*sptep))) {
3215                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3216                         mmu_spte_clear_no_track(sptep);
3217                         return true;
3218                 }
3219
3220                 (*nr_present)++;
3221                 mark_mmio_spte(sptep, gfn, access);
3222                 return true;
3223         }
3224
3225         return false;
3226 }
3227
3228 #define PTTYPE 64
3229 #include "paging_tmpl.h"
3230 #undef PTTYPE
3231
3232 #define PTTYPE 32
3233 #include "paging_tmpl.h"
3234 #undef PTTYPE
3235
3236 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3237                                   struct kvm_mmu *context)
3238 {
3239         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3240         u64 exb_bit_rsvd = 0;
3241
3242         if (!context->nx)
3243                 exb_bit_rsvd = rsvd_bits(63, 63);
3244         switch (context->root_level) {
3245         case PT32_ROOT_LEVEL:
3246                 /* no rsvd bits for 2 level 4K page table entries */
3247                 context->rsvd_bits_mask[0][1] = 0;
3248                 context->rsvd_bits_mask[0][0] = 0;
3249                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3250
3251                 if (!is_pse(vcpu)) {
3252                         context->rsvd_bits_mask[1][1] = 0;
3253                         break;
3254                 }
3255
3256                 if (is_cpuid_PSE36())
3257                         /* 36bits PSE 4MB page */
3258                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3259                 else
3260                         /* 32 bits PSE 4MB page */
3261                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3262                 break;
3263         case PT32E_ROOT_LEVEL:
3264                 context->rsvd_bits_mask[0][2] =
3265                         rsvd_bits(maxphyaddr, 63) |
3266                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3267                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3268                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3269                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3270                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3271                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3272                         rsvd_bits(maxphyaddr, 62) |
3273                         rsvd_bits(13, 20);              /* large page */
3274                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3275                 break;
3276         case PT64_ROOT_LEVEL:
3277                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3278                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3279                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3280                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3281                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3282                         rsvd_bits(maxphyaddr, 51);
3283                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3284                         rsvd_bits(maxphyaddr, 51);
3285                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3286                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3287                         rsvd_bits(maxphyaddr, 51) |
3288                         rsvd_bits(13, 29);
3289                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3290                         rsvd_bits(maxphyaddr, 51) |
3291                         rsvd_bits(13, 20);              /* large page */
3292                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3293                 break;
3294         }
3295 }
3296
3297 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3298                                         struct kvm_mmu *context,
3299                                         int level)
3300 {
3301         context->nx = is_nx(vcpu);
3302         context->root_level = level;
3303
3304         reset_rsvds_bits_mask(vcpu, context);
3305
3306         ASSERT(is_pae(vcpu));
3307         context->new_cr3 = paging_new_cr3;
3308         context->page_fault = paging64_page_fault;
3309         context->gva_to_gpa = paging64_gva_to_gpa;
3310         context->sync_page = paging64_sync_page;
3311         context->invlpg = paging64_invlpg;
3312         context->update_pte = paging64_update_pte;
3313         context->free = paging_free;
3314         context->shadow_root_level = level;
3315         context->root_hpa = INVALID_PAGE;
3316         context->direct_map = false;
3317         return 0;
3318 }
3319
3320 static int paging64_init_context(struct kvm_vcpu *vcpu,
3321                                  struct kvm_mmu *context)
3322 {
3323         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3324 }
3325
3326 static int paging32_init_context(struct kvm_vcpu *vcpu,
3327                                  struct kvm_mmu *context)
3328 {
3329         context->nx = false;
3330         context->root_level = PT32_ROOT_LEVEL;
3331
3332         reset_rsvds_bits_mask(vcpu, context);
3333
3334         context->new_cr3 = paging_new_cr3;
3335         context->page_fault = paging32_page_fault;
3336         context->gva_to_gpa = paging32_gva_to_gpa;
3337         context->free = paging_free;
3338         context->sync_page = paging32_sync_page;
3339         context->invlpg = paging32_invlpg;
3340         context->update_pte = paging32_update_pte;
3341         context->shadow_root_level = PT32E_ROOT_LEVEL;
3342         context->root_hpa = INVALID_PAGE;
3343         context->direct_map = false;
3344         return 0;
3345 }
3346
3347 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3348                                   struct kvm_mmu *context)
3349 {
3350         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3351 }
3352
3353 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3354 {
3355         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3356
3357         context->base_role.word = 0;
3358         context->new_cr3 = nonpaging_new_cr3;
3359         context->page_fault = tdp_page_fault;
3360         context->free = nonpaging_free;
3361         context->sync_page = nonpaging_sync_page;
3362         context->invlpg = nonpaging_invlpg;
3363         context->update_pte = nonpaging_update_pte;
3364         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3365         context->root_hpa = INVALID_PAGE;
3366         context->direct_map = true;
3367         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3368         context->get_cr3 = get_cr3;
3369         context->get_pdptr = kvm_pdptr_read;
3370         context->inject_page_fault = kvm_inject_page_fault;
3371
3372         if (!is_paging(vcpu)) {
3373                 context->nx = false;
3374                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3375                 context->root_level = 0;
3376         } else if (is_long_mode(vcpu)) {
3377                 context->nx = is_nx(vcpu);
3378                 context->root_level = PT64_ROOT_LEVEL;
3379                 reset_rsvds_bits_mask(vcpu, context);
3380                 context->gva_to_gpa = paging64_gva_to_gpa;
3381         } else if (is_pae(vcpu)) {
3382                 context->nx = is_nx(vcpu);
3383                 context->root_level = PT32E_ROOT_LEVEL;
3384                 reset_rsvds_bits_mask(vcpu, context);
3385                 context->gva_to_gpa = paging64_gva_to_gpa;
3386         } else {
3387                 context->nx = false;
3388                 context->root_level = PT32_ROOT_LEVEL;
3389                 reset_rsvds_bits_mask(vcpu, context);
3390                 context->gva_to_gpa = paging32_gva_to_gpa;
3391         }
3392
3393         return 0;
3394 }
3395
3396 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3397 {
3398         int r;
3399         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3400         ASSERT(vcpu);
3401         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3402
3403         if (!is_paging(vcpu))
3404                 r = nonpaging_init_context(vcpu, context);
3405         else if (is_long_mode(vcpu))
3406                 r = paging64_init_context(vcpu, context);
3407         else if (is_pae(vcpu))
3408                 r = paging32E_init_context(vcpu, context);
3409         else
3410                 r = paging32_init_context(vcpu, context);
3411
3412         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3413         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3414         vcpu->arch.mmu.base_role.smep_andnot_wp
3415                 = smep && !is_write_protection(vcpu);
3416
3417         return r;
3418 }
3419 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3420
3421 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3422 {
3423         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3424
3425         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3426         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3427         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3428         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3429
3430         return r;
3431 }
3432
3433 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3434 {
3435         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3436
3437         g_context->get_cr3           = get_cr3;
3438         g_context->get_pdptr         = kvm_pdptr_read;
3439         g_context->inject_page_fault = kvm_inject_page_fault;
3440
3441         /*
3442          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3443          * translation of l2_gpa to l1_gpa addresses is done using the
3444          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3445          * functions between mmu and nested_mmu are swapped.
3446          */
3447         if (!is_paging(vcpu)) {
3448                 g_context->nx = false;
3449                 g_context->root_level = 0;
3450                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3451         } else if (is_long_mode(vcpu)) {
3452                 g_context->nx = is_nx(vcpu);
3453                 g_context->root_level = PT64_ROOT_LEVEL;
3454                 reset_rsvds_bits_mask(vcpu, g_context);
3455                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3456         } else if (is_pae(vcpu)) {
3457                 g_context->nx = is_nx(vcpu);
3458                 g_context->root_level = PT32E_ROOT_LEVEL;
3459                 reset_rsvds_bits_mask(vcpu, g_context);
3460                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3461         } else {
3462                 g_context->nx = false;
3463                 g_context->root_level = PT32_ROOT_LEVEL;
3464                 reset_rsvds_bits_mask(vcpu, g_context);
3465                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3466         }
3467
3468         return 0;
3469 }
3470
3471 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3472 {
3473         if (mmu_is_nested(vcpu))
3474                 return init_kvm_nested_mmu(vcpu);
3475         else if (tdp_enabled)
3476                 return init_kvm_tdp_mmu(vcpu);
3477         else
3478                 return init_kvm_softmmu(vcpu);
3479 }
3480
3481 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3482 {
3483         ASSERT(vcpu);
3484         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3485                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3486                 vcpu->arch.mmu.free(vcpu);
3487 }
3488
3489 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3490 {
3491         destroy_kvm_mmu(vcpu);
3492         return init_kvm_mmu(vcpu);
3493 }
3494 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3495
3496 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3497 {
3498         int r;
3499
3500         r = mmu_topup_memory_caches(vcpu);
3501         if (r)
3502                 goto out;
3503         r = mmu_alloc_roots(vcpu);
3504         spin_lock(&vcpu->kvm->mmu_lock);
3505         mmu_sync_roots(vcpu);
3506         spin_unlock(&vcpu->kvm->mmu_lock);
3507         if (r)
3508                 goto out;
3509         /* set_cr3() should ensure TLB has been flushed */
3510         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3511 out:
3512         return r;
3513 }
3514 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3515
3516 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3517 {
3518         mmu_free_roots(vcpu);
3519 }
3520 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3521
3522 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3523                                   struct kvm_mmu_page *sp, u64 *spte,
3524                                   const void *new)
3525 {
3526         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3527                 ++vcpu->kvm->stat.mmu_pde_zapped;
3528                 return;
3529         }
3530
3531         ++vcpu->kvm->stat.mmu_pte_updated;
3532         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3533 }
3534
3535 static bool need_remote_flush(u64 old, u64 new)
3536 {
3537         if (!is_shadow_present_pte(old))
3538                 return false;
3539         if (!is_shadow_present_pte(new))
3540                 return true;
3541         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3542                 return true;
3543         old ^= PT64_NX_MASK;
3544         new ^= PT64_NX_MASK;
3545         return (old & ~new & PT64_PERM_MASK) != 0;
3546 }
3547
3548 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3549                                     bool remote_flush, bool local_flush)
3550 {
3551         if (zap_page)
3552                 return;
3553
3554         if (remote_flush)
3555                 kvm_flush_remote_tlbs(vcpu->kvm);
3556         else if (local_flush)
3557                 kvm_mmu_flush_tlb(vcpu);
3558 }
3559
3560 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3561                                     const u8 *new, int *bytes)
3562 {
3563         u64 gentry;
3564         int r;
3565
3566         /*
3567          * Assume that the pte write on a page table of the same type
3568          * as the current vcpu paging mode since we update the sptes only
3569          * when they have the same mode.
3570          */
3571         if (is_pae(vcpu) && *bytes == 4) {
3572                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3573                 *gpa &= ~(gpa_t)7;
3574                 *bytes = 8;
3575                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3576                 if (r)
3577                         gentry = 0;
3578                 new = (const u8 *)&gentry;
3579         }
3580
3581         switch (*bytes) {
3582         case 4:
3583                 gentry = *(const u32 *)new;
3584                 break;
3585         case 8:
3586                 gentry = *(const u64 *)new;
3587                 break;
3588         default:
3589                 gentry = 0;
3590                 break;
3591         }
3592
3593         return gentry;
3594 }
3595
3596 /*
3597  * If we're seeing too many writes to a page, it may no longer be a page table,
3598  * or we may be forking, in which case it is better to unmap the page.
3599  */
3600 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3601 {
3602         /*
3603          * Skip write-flooding detected for the sp whose level is 1, because
3604          * it can become unsync, then the guest page is not write-protected.
3605          */
3606         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3607                 return false;
3608
3609         return ++sp->write_flooding_count >= 3;
3610 }
3611
3612 /*
3613  * Misaligned accesses are too much trouble to fix up; also, they usually
3614  * indicate a page is not used as a page table.
3615  */
3616 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3617                                     int bytes)
3618 {
3619         unsigned offset, pte_size, misaligned;
3620
3621         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3622                  gpa, bytes, sp->role.word);
3623
3624         offset = offset_in_page(gpa);
3625         pte_size = sp->role.cr4_pae ? 8 : 4;
3626
3627         /*
3628          * Sometimes, the OS only writes the last one bytes to update status
3629          * bits, for example, in linux, andb instruction is used in clear_bit().
3630          */
3631         if (!(offset & (pte_size - 1)) && bytes == 1)
3632                 return false;
3633
3634         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3635         misaligned |= bytes < 4;
3636
3637         return misaligned;
3638 }
3639
3640 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3641 {
3642         unsigned page_offset, quadrant;
3643         u64 *spte;
3644         int level;
3645
3646         page_offset = offset_in_page(gpa);
3647         level = sp->role.level;
3648         *nspte = 1;
3649         if (!sp->role.cr4_pae) {
3650                 page_offset <<= 1;      /* 32->64 */
3651                 /*
3652                  * A 32-bit pde maps 4MB while the shadow pdes map
3653                  * only 2MB.  So we need to double the offset again
3654                  * and zap two pdes instead of one.
3655                  */
3656                 if (level == PT32_ROOT_LEVEL) {
3657                         page_offset &= ~7; /* kill rounding error */
3658                         page_offset <<= 1;
3659                         *nspte = 2;
3660                 }
3661                 quadrant = page_offset >> PAGE_SHIFT;
3662                 page_offset &= ~PAGE_MASK;
3663                 if (quadrant != sp->role.quadrant)
3664                         return NULL;
3665         }
3666
3667         spte = &sp->spt[page_offset / sizeof(*spte)];
3668         return spte;
3669 }
3670
3671 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3672                        const u8 *new, int bytes)
3673 {
3674         gfn_t gfn = gpa >> PAGE_SHIFT;
3675         union kvm_mmu_page_role mask = { .word = 0 };
3676         struct kvm_mmu_page *sp;
3677         struct hlist_node *node;
3678         LIST_HEAD(invalid_list);
3679         u64 entry, gentry, *spte;
3680         int npte;
3681         bool remote_flush, local_flush, zap_page;
3682
3683         /*
3684          * If we don't have indirect shadow pages, it means no page is
3685          * write-protected, so we can exit simply.
3686          */
3687         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3688                 return;
3689
3690         zap_page = remote_flush = local_flush = false;
3691
3692         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3693
3694         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3695
3696         /*
3697          * No need to care whether allocation memory is successful
3698          * or not since pte prefetch is skiped if it does not have
3699          * enough objects in the cache.
3700          */
3701         mmu_topup_memory_caches(vcpu);
3702
3703         spin_lock(&vcpu->kvm->mmu_lock);
3704         ++vcpu->kvm->stat.mmu_pte_write;
3705         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3706
3707         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3708         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3709                 if (detect_write_misaligned(sp, gpa, bytes) ||
3710                       detect_write_flooding(sp)) {
3711                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3712                                                      &invalid_list);
3713                         ++vcpu->kvm->stat.mmu_flooded;
3714                         continue;
3715                 }
3716
3717                 spte = get_written_sptes(sp, gpa, &npte);
3718                 if (!spte)
3719                         continue;
3720
3721                 local_flush = true;
3722                 while (npte--) {
3723                         entry = *spte;
3724                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
3725                         if (gentry &&
3726                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3727                               & mask.word) && rmap_can_add(vcpu))
3728                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3729                         if (!remote_flush && need_remote_flush(entry, *spte))
3730                                 remote_flush = true;
3731                         ++spte;
3732                 }
3733         }
3734         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3735         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3736         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3737         spin_unlock(&vcpu->kvm->mmu_lock);
3738 }
3739
3740 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3741 {
3742         gpa_t gpa;
3743         int r;
3744
3745         if (vcpu->arch.mmu.direct_map)
3746                 return 0;
3747
3748         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3749
3750         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3751
3752         return r;
3753 }
3754 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3755
3756 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3757 {
3758         LIST_HEAD(invalid_list);
3759
3760         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3761                !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3762                 struct kvm_mmu_page *sp;
3763
3764                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3765                                   struct kvm_mmu_page, link);
3766                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3767                 ++vcpu->kvm->stat.mmu_recycled;
3768         }
3769         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3770 }
3771
3772 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3773 {
3774         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3775                 return vcpu_match_mmio_gpa(vcpu, addr);
3776
3777         return vcpu_match_mmio_gva(vcpu, addr);
3778 }
3779
3780 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3781                        void *insn, int insn_len)
3782 {
3783         int r, emulation_type = EMULTYPE_RETRY;
3784         enum emulation_result er;
3785
3786         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3787         if (r < 0)
3788                 goto out;
3789
3790         if (!r) {
3791                 r = 1;
3792                 goto out;
3793         }
3794
3795         if (is_mmio_page_fault(vcpu, cr2))
3796                 emulation_type = 0;
3797
3798         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3799
3800         switch (er) {
3801         case EMULATE_DONE:
3802                 return 1;
3803         case EMULATE_DO_MMIO:
3804                 ++vcpu->stat.mmio_exits;
3805                 /* fall through */
3806         case EMULATE_FAIL:
3807                 return 0;
3808         default:
3809                 BUG();
3810         }
3811 out:
3812         return r;
3813 }
3814 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3815
3816 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3817 {
3818         vcpu->arch.mmu.invlpg(vcpu, gva);
3819         kvm_mmu_flush_tlb(vcpu);
3820         ++vcpu->stat.invlpg;
3821 }
3822 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3823
3824 void kvm_enable_tdp(void)
3825 {
3826         tdp_enabled = true;
3827 }
3828 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3829
3830 void kvm_disable_tdp(void)
3831 {
3832         tdp_enabled = false;
3833 }
3834 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3835
3836 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3837 {
3838         free_page((unsigned long)vcpu->arch.mmu.pae_root);
3839         if (vcpu->arch.mmu.lm_root != NULL)
3840                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3841 }
3842
3843 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3844 {
3845         struct page *page;
3846         int i;
3847
3848         ASSERT(vcpu);
3849
3850         /*
3851          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3852          * Therefore we need to allocate shadow page tables in the first
3853          * 4GB of memory, which happens to fit the DMA32 zone.
3854          */
3855         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3856         if (!page)
3857                 return -ENOMEM;
3858
3859         vcpu->arch.mmu.pae_root = page_address(page);
3860         for (i = 0; i < 4; ++i)
3861                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3862
3863         return 0;
3864 }
3865
3866 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3867 {
3868         ASSERT(vcpu);
3869
3870         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3871         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3872         vcpu->arch.mmu.translate_gpa = translate_gpa;
3873         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
3874
3875         return alloc_mmu_pages(vcpu);
3876 }
3877
3878 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3879 {
3880         ASSERT(vcpu);
3881         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3882
3883         return init_kvm_mmu(vcpu);
3884 }
3885
3886 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3887 {
3888         struct kvm_mmu_page *sp;
3889
3890         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3891                 int i;
3892                 u64 *pt;
3893
3894                 if (!test_bit(slot, sp->slot_bitmap))
3895                         continue;
3896
3897                 pt = sp->spt;
3898                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3899                         if (!is_shadow_present_pte(pt[i]) ||
3900                               !is_last_spte(pt[i], sp->role.level))
3901                                 continue;
3902
3903                         if (is_large_pte(pt[i])) {
3904                                 drop_spte(kvm, &pt[i]);
3905                                 --kvm->stat.lpages;
3906                                 continue;
3907                         }
3908
3909                         /* avoid RMW */
3910                         if (is_writable_pte(pt[i]))
3911                                 mmu_spte_update(&pt[i],
3912                                                 pt[i] & ~PT_WRITABLE_MASK);
3913                 }
3914         }
3915         kvm_flush_remote_tlbs(kvm);
3916 }
3917
3918 void kvm_mmu_zap_all(struct kvm *kvm)
3919 {
3920         struct kvm_mmu_page *sp, *node;
3921         LIST_HEAD(invalid_list);
3922
3923         spin_lock(&kvm->mmu_lock);
3924 restart:
3925         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3926                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3927                         goto restart;
3928
3929         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3930         spin_unlock(&kvm->mmu_lock);
3931 }
3932
3933 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3934                                                 struct list_head *invalid_list)
3935 {
3936         struct kvm_mmu_page *page;
3937
3938         page = container_of(kvm->arch.active_mmu_pages.prev,
3939                             struct kvm_mmu_page, link);
3940         kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3941 }
3942
3943 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3944 {
3945         struct kvm *kvm;
3946         int nr_to_scan = sc->nr_to_scan;
3947
3948         if (nr_to_scan == 0)
3949                 goto out;
3950
3951         raw_spin_lock(&kvm_lock);
3952
3953         list_for_each_entry(kvm, &vm_list, vm_list) {
3954                 int idx;
3955                 LIST_HEAD(invalid_list);
3956
3957                 /*
3958                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
3959                  * here. We may skip a VM instance errorneosly, but we do not
3960                  * want to shrink a VM that only started to populate its MMU
3961                  * anyway.
3962                  */
3963                 if (kvm->arch.n_used_mmu_pages > 0) {
3964                         if (!nr_to_scan--)
3965                                 break;
3966                         continue;
3967                 }
3968
3969                 idx = srcu_read_lock(&kvm->srcu);
3970                 spin_lock(&kvm->mmu_lock);
3971
3972                 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
3973                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3974
3975                 spin_unlock(&kvm->mmu_lock);
3976                 srcu_read_unlock(&kvm->srcu, idx);
3977
3978                 list_move_tail(&kvm->vm_list, &vm_list);
3979                 break;
3980         }
3981
3982         raw_spin_unlock(&kvm_lock);
3983
3984 out:
3985         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3986 }
3987
3988 static struct shrinker mmu_shrinker = {
3989         .shrink = mmu_shrink,
3990         .seeks = DEFAULT_SEEKS * 10,
3991 };
3992
3993 static void mmu_destroy_caches(void)
3994 {
3995         if (pte_list_desc_cache)
3996                 kmem_cache_destroy(pte_list_desc_cache);
3997         if (mmu_page_header_cache)
3998                 kmem_cache_destroy(mmu_page_header_cache);
3999 }
4000
4001 int kvm_mmu_module_init(void)
4002 {
4003         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4004                                             sizeof(struct pte_list_desc),
4005                                             0, 0, NULL);
4006         if (!pte_list_desc_cache)
4007                 goto nomem;
4008
4009         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4010                                                   sizeof(struct kvm_mmu_page),
4011                                                   0, 0, NULL);
4012         if (!mmu_page_header_cache)
4013                 goto nomem;
4014
4015         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4016                 goto nomem;
4017
4018         register_shrinker(&mmu_shrinker);
4019
4020         return 0;
4021
4022 nomem:
4023         mmu_destroy_caches();
4024         return -ENOMEM;
4025 }
4026
4027 /*
4028  * Caculate mmu pages needed for kvm.
4029  */
4030 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4031 {
4032         unsigned int nr_mmu_pages;
4033         unsigned int  nr_pages = 0;
4034         struct kvm_memslots *slots;
4035         struct kvm_memory_slot *memslot;
4036
4037         slots = kvm_memslots(kvm);
4038
4039         kvm_for_each_memslot(memslot, slots)
4040                 nr_pages += memslot->npages;
4041
4042         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4043         nr_mmu_pages = max(nr_mmu_pages,
4044                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4045
4046         return nr_mmu_pages;
4047 }
4048
4049 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4050 {
4051         struct kvm_shadow_walk_iterator iterator;
4052         u64 spte;
4053         int nr_sptes = 0;
4054
4055         walk_shadow_page_lockless_begin(vcpu);
4056         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4057                 sptes[iterator.level-1] = spte;
4058                 nr_sptes++;
4059                 if (!is_shadow_present_pte(spte))
4060                         break;
4061         }
4062         walk_shadow_page_lockless_end(vcpu);
4063
4064         return nr_sptes;
4065 }
4066 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4067
4068 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4069 {
4070         ASSERT(vcpu);
4071
4072         destroy_kvm_mmu(vcpu);
4073         free_mmu_pages(vcpu);
4074         mmu_free_memory_caches(vcpu);
4075 }
4076
4077 void kvm_mmu_module_exit(void)
4078 {
4079         mmu_destroy_caches();
4080         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4081         unregister_shrinker(&mmu_shrinker);
4082         mmu_audit_disable();
4083 }