Merge tag 'kvm-arm-fixes-for-v4.19-v2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43
44 #include <asm/page.h>
45 #include <asm/pat.h>
46 #include <asm/cmpxchg.h>
47 #include <asm/io.h>
48 #include <asm/vmx.h>
49 #include <asm/kvm_page_track.h>
50 #include "trace.h"
51
52 /*
53  * When setting this variable to true it enables Two-Dimensional-Paging
54  * where the hardware walks 2 page tables:
55  * 1. the guest-virtual to guest-physical
56  * 2. while doing 1. it walks guest-physical to host-physical
57  * If the hardware supports that we don't need to do shadow paging.
58  */
59 bool tdp_enabled = false;
60
61 enum {
62         AUDIT_PRE_PAGE_FAULT,
63         AUDIT_POST_PAGE_FAULT,
64         AUDIT_PRE_PTE_WRITE,
65         AUDIT_POST_PTE_WRITE,
66         AUDIT_PRE_SYNC,
67         AUDIT_POST_SYNC
68 };
69
70 #undef MMU_DEBUG
71
72 #ifdef MMU_DEBUG
73 static bool dbg = 0;
74 module_param(dbg, bool, 0644);
75
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78 #define MMU_WARN_ON(x) WARN_ON(x)
79 #else
80 #define pgprintk(x...) do { } while (0)
81 #define rmap_printk(x...) do { } while (0)
82 #define MMU_WARN_ON(x) do { } while (0)
83 #endif
84
85 #define PTE_PREFETCH_NUM                8
86
87 #define PT_FIRST_AVAIL_BITS_SHIFT 10
88 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
90 #define PT64_LEVEL_BITS 9
91
92 #define PT64_LEVEL_SHIFT(level) \
93                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
94
95 #define PT64_INDEX(address, level)\
96         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99 #define PT32_LEVEL_BITS 10
100
101 #define PT32_LEVEL_SHIFT(level) \
102                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
103
104 #define PT32_LVL_OFFSET_MASK(level) \
105         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106                                                 * PT32_LEVEL_BITS))) - 1))
107
108 #define PT32_INDEX(address, level)\
109         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
112 #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
113 #define PT64_DIR_BASE_ADDR_MASK \
114         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115 #define PT64_LVL_ADDR_MASK(level) \
116         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117                                                 * PT64_LEVEL_BITS))) - 1))
118 #define PT64_LVL_OFFSET_MASK(level) \
119         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120                                                 * PT64_LEVEL_BITS))) - 1))
121
122 #define PT32_BASE_ADDR_MASK PAGE_MASK
123 #define PT32_DIR_BASE_ADDR_MASK \
124         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
125 #define PT32_LVL_ADDR_MASK(level) \
126         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127                                             * PT32_LEVEL_BITS))) - 1))
128
129 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
130                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
131
132 #define ACC_EXEC_MASK    1
133 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
134 #define ACC_USER_MASK    PT_USER_MASK
135 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
136
137 /* The mask for the R/X bits in EPT PTEs */
138 #define PT64_EPT_READABLE_MASK                  0x1ull
139 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
140
141 #include <trace/events/kvm.h>
142
143 #define CREATE_TRACE_POINTS
144 #include "mmutrace.h"
145
146 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
147 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
148
149 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
150
151 /* make pte_list_desc fit well in cache line */
152 #define PTE_LIST_EXT 3
153
154 /*
155  * Return values of handle_mmio_page_fault and mmu.page_fault:
156  * RET_PF_RETRY: let CPU fault again on the address.
157  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
158  *
159  * For handle_mmio_page_fault only:
160  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
161  */
162 enum {
163         RET_PF_RETRY = 0,
164         RET_PF_EMULATE = 1,
165         RET_PF_INVALID = 2,
166 };
167
168 struct pte_list_desc {
169         u64 *sptes[PTE_LIST_EXT];
170         struct pte_list_desc *more;
171 };
172
173 struct kvm_shadow_walk_iterator {
174         u64 addr;
175         hpa_t shadow_addr;
176         u64 *sptep;
177         int level;
178         unsigned index;
179 };
180
181 static const union kvm_mmu_page_role mmu_base_role_mask = {
182         .cr0_wp = 1,
183         .cr4_pae = 1,
184         .nxe = 1,
185         .smep_andnot_wp = 1,
186         .smap_andnot_wp = 1,
187         .smm = 1,
188         .guest_mode = 1,
189         .ad_disabled = 1,
190 };
191
192 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
193         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
194                                          (_root), (_addr));                \
195              shadow_walk_okay(&(_walker));                                 \
196              shadow_walk_next(&(_walker)))
197
198 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
199         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
200              shadow_walk_okay(&(_walker));                      \
201              shadow_walk_next(&(_walker)))
202
203 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
204         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
205              shadow_walk_okay(&(_walker)) &&                            \
206                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
207              __shadow_walk_next(&(_walker), spte))
208
209 static struct kmem_cache *pte_list_desc_cache;
210 static struct kmem_cache *mmu_page_header_cache;
211 static struct percpu_counter kvm_total_used_mmu_pages;
212
213 static u64 __read_mostly shadow_nx_mask;
214 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
215 static u64 __read_mostly shadow_user_mask;
216 static u64 __read_mostly shadow_accessed_mask;
217 static u64 __read_mostly shadow_dirty_mask;
218 static u64 __read_mostly shadow_mmio_mask;
219 static u64 __read_mostly shadow_mmio_value;
220 static u64 __read_mostly shadow_present_mask;
221 static u64 __read_mostly shadow_me_mask;
222
223 /*
224  * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
225  * Non-present SPTEs with shadow_acc_track_value set are in place for access
226  * tracking.
227  */
228 static u64 __read_mostly shadow_acc_track_mask;
229 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
230
231 /*
232  * The mask/shift to use for saving the original R/X bits when marking the PTE
233  * as not-present for access tracking purposes. We do not save the W bit as the
234  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
235  * restored only when a write is attempted to the page.
236  */
237 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
238                                                     PT64_EPT_EXECUTABLE_MASK;
239 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
240
241 /*
242  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
243  * to guard against L1TF attacks.
244  */
245 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
246
247 /*
248  * The number of high-order 1 bits to use in the mask above.
249  */
250 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
251
252 static void mmu_spte_set(u64 *sptep, u64 spte);
253 static union kvm_mmu_page_role
254 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
255
256 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
257 {
258         BUG_ON((mmio_mask & mmio_value) != mmio_value);
259         shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
260         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
261 }
262 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
263
264 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
265 {
266         return sp->role.ad_disabled;
267 }
268
269 static inline bool spte_ad_enabled(u64 spte)
270 {
271         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
272         return !(spte & shadow_acc_track_value);
273 }
274
275 static inline u64 spte_shadow_accessed_mask(u64 spte)
276 {
277         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
278         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
279 }
280
281 static inline u64 spte_shadow_dirty_mask(u64 spte)
282 {
283         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
284         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
285 }
286
287 static inline bool is_access_track_spte(u64 spte)
288 {
289         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
290 }
291
292 /*
293  * the low bit of the generation number is always presumed to be zero.
294  * This disables mmio caching during memslot updates.  The concept is
295  * similar to a seqcount but instead of retrying the access we just punt
296  * and ignore the cache.
297  *
298  * spte bits 3-11 are used as bits 1-9 of the generation number,
299  * the bits 52-61 are used as bits 10-19 of the generation number.
300  */
301 #define MMIO_SPTE_GEN_LOW_SHIFT         2
302 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
303
304 #define MMIO_GEN_SHIFT                  20
305 #define MMIO_GEN_LOW_SHIFT              10
306 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
307 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
308
309 static u64 generation_mmio_spte_mask(unsigned int gen)
310 {
311         u64 mask;
312
313         WARN_ON(gen & ~MMIO_GEN_MASK);
314
315         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
316         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
317         return mask;
318 }
319
320 static unsigned int get_mmio_spte_generation(u64 spte)
321 {
322         unsigned int gen;
323
324         spte &= ~shadow_mmio_mask;
325
326         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
327         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
328         return gen;
329 }
330
331 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
332 {
333         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
334 }
335
336 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
337                            unsigned access)
338 {
339         unsigned int gen = kvm_current_mmio_generation(vcpu);
340         u64 mask = generation_mmio_spte_mask(gen);
341         u64 gpa = gfn << PAGE_SHIFT;
342
343         access &= ACC_WRITE_MASK | ACC_USER_MASK;
344         mask |= shadow_mmio_value | access;
345         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
346         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
347                 << shadow_nonpresent_or_rsvd_mask_len;
348
349         trace_mark_mmio_spte(sptep, gfn, access, gen);
350         mmu_spte_set(sptep, mask);
351 }
352
353 static bool is_mmio_spte(u64 spte)
354 {
355         return (spte & shadow_mmio_mask) == shadow_mmio_value;
356 }
357
358 static gfn_t get_mmio_spte_gfn(u64 spte)
359 {
360         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask |
361                    shadow_nonpresent_or_rsvd_mask;
362         u64 gpa = spte & ~mask;
363
364         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
365                & shadow_nonpresent_or_rsvd_mask;
366
367         return gpa >> PAGE_SHIFT;
368 }
369
370 static unsigned get_mmio_spte_access(u64 spte)
371 {
372         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
373         return (spte & ~mask) & ~PAGE_MASK;
374 }
375
376 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
377                           kvm_pfn_t pfn, unsigned access)
378 {
379         if (unlikely(is_noslot_pfn(pfn))) {
380                 mark_mmio_spte(vcpu, sptep, gfn, access);
381                 return true;
382         }
383
384         return false;
385 }
386
387 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
388 {
389         unsigned int kvm_gen, spte_gen;
390
391         kvm_gen = kvm_current_mmio_generation(vcpu);
392         spte_gen = get_mmio_spte_generation(spte);
393
394         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
395         return likely(kvm_gen == spte_gen);
396 }
397
398 /*
399  * Sets the shadow PTE masks used by the MMU.
400  *
401  * Assumptions:
402  *  - Setting either @accessed_mask or @dirty_mask requires setting both
403  *  - At least one of @accessed_mask or @acc_track_mask must be set
404  */
405 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
406                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
407                 u64 acc_track_mask, u64 me_mask)
408 {
409         BUG_ON(!dirty_mask != !accessed_mask);
410         BUG_ON(!accessed_mask && !acc_track_mask);
411         BUG_ON(acc_track_mask & shadow_acc_track_value);
412
413         shadow_user_mask = user_mask;
414         shadow_accessed_mask = accessed_mask;
415         shadow_dirty_mask = dirty_mask;
416         shadow_nx_mask = nx_mask;
417         shadow_x_mask = x_mask;
418         shadow_present_mask = p_mask;
419         shadow_acc_track_mask = acc_track_mask;
420         shadow_me_mask = me_mask;
421 }
422 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
423
424 static void kvm_mmu_reset_all_pte_masks(void)
425 {
426         shadow_user_mask = 0;
427         shadow_accessed_mask = 0;
428         shadow_dirty_mask = 0;
429         shadow_nx_mask = 0;
430         shadow_x_mask = 0;
431         shadow_mmio_mask = 0;
432         shadow_present_mask = 0;
433         shadow_acc_track_mask = 0;
434
435         /*
436          * If the CPU has 46 or less physical address bits, then set an
437          * appropriate mask to guard against L1TF attacks. Otherwise, it is
438          * assumed that the CPU is not vulnerable to L1TF.
439          */
440         if (boot_cpu_data.x86_phys_bits <
441             52 - shadow_nonpresent_or_rsvd_mask_len)
442                 shadow_nonpresent_or_rsvd_mask =
443                         rsvd_bits(boot_cpu_data.x86_phys_bits -
444                                   shadow_nonpresent_or_rsvd_mask_len,
445                                   boot_cpu_data.x86_phys_bits - 1);
446 }
447
448 static int is_cpuid_PSE36(void)
449 {
450         return 1;
451 }
452
453 static int is_nx(struct kvm_vcpu *vcpu)
454 {
455         return vcpu->arch.efer & EFER_NX;
456 }
457
458 static int is_shadow_present_pte(u64 pte)
459 {
460         return (pte != 0) && !is_mmio_spte(pte);
461 }
462
463 static int is_large_pte(u64 pte)
464 {
465         return pte & PT_PAGE_SIZE_MASK;
466 }
467
468 static int is_last_spte(u64 pte, int level)
469 {
470         if (level == PT_PAGE_TABLE_LEVEL)
471                 return 1;
472         if (is_large_pte(pte))
473                 return 1;
474         return 0;
475 }
476
477 static bool is_executable_pte(u64 spte)
478 {
479         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
480 }
481
482 static kvm_pfn_t spte_to_pfn(u64 pte)
483 {
484         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
485 }
486
487 static gfn_t pse36_gfn_delta(u32 gpte)
488 {
489         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
490
491         return (gpte & PT32_DIR_PSE36_MASK) << shift;
492 }
493
494 #ifdef CONFIG_X86_64
495 static void __set_spte(u64 *sptep, u64 spte)
496 {
497         WRITE_ONCE(*sptep, spte);
498 }
499
500 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
501 {
502         WRITE_ONCE(*sptep, spte);
503 }
504
505 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
506 {
507         return xchg(sptep, spte);
508 }
509
510 static u64 __get_spte_lockless(u64 *sptep)
511 {
512         return READ_ONCE(*sptep);
513 }
514 #else
515 union split_spte {
516         struct {
517                 u32 spte_low;
518                 u32 spte_high;
519         };
520         u64 spte;
521 };
522
523 static void count_spte_clear(u64 *sptep, u64 spte)
524 {
525         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
526
527         if (is_shadow_present_pte(spte))
528                 return;
529
530         /* Ensure the spte is completely set before we increase the count */
531         smp_wmb();
532         sp->clear_spte_count++;
533 }
534
535 static void __set_spte(u64 *sptep, u64 spte)
536 {
537         union split_spte *ssptep, sspte;
538
539         ssptep = (union split_spte *)sptep;
540         sspte = (union split_spte)spte;
541
542         ssptep->spte_high = sspte.spte_high;
543
544         /*
545          * If we map the spte from nonpresent to present, We should store
546          * the high bits firstly, then set present bit, so cpu can not
547          * fetch this spte while we are setting the spte.
548          */
549         smp_wmb();
550
551         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
552 }
553
554 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
555 {
556         union split_spte *ssptep, sspte;
557
558         ssptep = (union split_spte *)sptep;
559         sspte = (union split_spte)spte;
560
561         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
562
563         /*
564          * If we map the spte from present to nonpresent, we should clear
565          * present bit firstly to avoid vcpu fetch the old high bits.
566          */
567         smp_wmb();
568
569         ssptep->spte_high = sspte.spte_high;
570         count_spte_clear(sptep, spte);
571 }
572
573 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
574 {
575         union split_spte *ssptep, sspte, orig;
576
577         ssptep = (union split_spte *)sptep;
578         sspte = (union split_spte)spte;
579
580         /* xchg acts as a barrier before the setting of the high bits */
581         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
582         orig.spte_high = ssptep->spte_high;
583         ssptep->spte_high = sspte.spte_high;
584         count_spte_clear(sptep, spte);
585
586         return orig.spte;
587 }
588
589 /*
590  * The idea using the light way get the spte on x86_32 guest is from
591  * gup_get_pte(arch/x86/mm/gup.c).
592  *
593  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
594  * coalesces them and we are running out of the MMU lock.  Therefore
595  * we need to protect against in-progress updates of the spte.
596  *
597  * Reading the spte while an update is in progress may get the old value
598  * for the high part of the spte.  The race is fine for a present->non-present
599  * change (because the high part of the spte is ignored for non-present spte),
600  * but for a present->present change we must reread the spte.
601  *
602  * All such changes are done in two steps (present->non-present and
603  * non-present->present), hence it is enough to count the number of
604  * present->non-present updates: if it changed while reading the spte,
605  * we might have hit the race.  This is done using clear_spte_count.
606  */
607 static u64 __get_spte_lockless(u64 *sptep)
608 {
609         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
610         union split_spte spte, *orig = (union split_spte *)sptep;
611         int count;
612
613 retry:
614         count = sp->clear_spte_count;
615         smp_rmb();
616
617         spte.spte_low = orig->spte_low;
618         smp_rmb();
619
620         spte.spte_high = orig->spte_high;
621         smp_rmb();
622
623         if (unlikely(spte.spte_low != orig->spte_low ||
624               count != sp->clear_spte_count))
625                 goto retry;
626
627         return spte.spte;
628 }
629 #endif
630
631 static bool spte_can_locklessly_be_made_writable(u64 spte)
632 {
633         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
634                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
635 }
636
637 static bool spte_has_volatile_bits(u64 spte)
638 {
639         if (!is_shadow_present_pte(spte))
640                 return false;
641
642         /*
643          * Always atomically update spte if it can be updated
644          * out of mmu-lock, it can ensure dirty bit is not lost,
645          * also, it can help us to get a stable is_writable_pte()
646          * to ensure tlb flush is not missed.
647          */
648         if (spte_can_locklessly_be_made_writable(spte) ||
649             is_access_track_spte(spte))
650                 return true;
651
652         if (spte_ad_enabled(spte)) {
653                 if ((spte & shadow_accessed_mask) == 0 ||
654                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
655                         return true;
656         }
657
658         return false;
659 }
660
661 static bool is_accessed_spte(u64 spte)
662 {
663         u64 accessed_mask = spte_shadow_accessed_mask(spte);
664
665         return accessed_mask ? spte & accessed_mask
666                              : !is_access_track_spte(spte);
667 }
668
669 static bool is_dirty_spte(u64 spte)
670 {
671         u64 dirty_mask = spte_shadow_dirty_mask(spte);
672
673         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
674 }
675
676 /* Rules for using mmu_spte_set:
677  * Set the sptep from nonpresent to present.
678  * Note: the sptep being assigned *must* be either not present
679  * or in a state where the hardware will not attempt to update
680  * the spte.
681  */
682 static void mmu_spte_set(u64 *sptep, u64 new_spte)
683 {
684         WARN_ON(is_shadow_present_pte(*sptep));
685         __set_spte(sptep, new_spte);
686 }
687
688 /*
689  * Update the SPTE (excluding the PFN), but do not track changes in its
690  * accessed/dirty status.
691  */
692 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
693 {
694         u64 old_spte = *sptep;
695
696         WARN_ON(!is_shadow_present_pte(new_spte));
697
698         if (!is_shadow_present_pte(old_spte)) {
699                 mmu_spte_set(sptep, new_spte);
700                 return old_spte;
701         }
702
703         if (!spte_has_volatile_bits(old_spte))
704                 __update_clear_spte_fast(sptep, new_spte);
705         else
706                 old_spte = __update_clear_spte_slow(sptep, new_spte);
707
708         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
709
710         return old_spte;
711 }
712
713 /* Rules for using mmu_spte_update:
714  * Update the state bits, it means the mapped pfn is not changed.
715  *
716  * Whenever we overwrite a writable spte with a read-only one we
717  * should flush remote TLBs. Otherwise rmap_write_protect
718  * will find a read-only spte, even though the writable spte
719  * might be cached on a CPU's TLB, the return value indicates this
720  * case.
721  *
722  * Returns true if the TLB needs to be flushed
723  */
724 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
725 {
726         bool flush = false;
727         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
728
729         if (!is_shadow_present_pte(old_spte))
730                 return false;
731
732         /*
733          * For the spte updated out of mmu-lock is safe, since
734          * we always atomically update it, see the comments in
735          * spte_has_volatile_bits().
736          */
737         if (spte_can_locklessly_be_made_writable(old_spte) &&
738               !is_writable_pte(new_spte))
739                 flush = true;
740
741         /*
742          * Flush TLB when accessed/dirty states are changed in the page tables,
743          * to guarantee consistency between TLB and page tables.
744          */
745
746         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
747                 flush = true;
748                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
749         }
750
751         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
752                 flush = true;
753                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
754         }
755
756         return flush;
757 }
758
759 /*
760  * Rules for using mmu_spte_clear_track_bits:
761  * It sets the sptep from present to nonpresent, and track the
762  * state bits, it is used to clear the last level sptep.
763  * Returns non-zero if the PTE was previously valid.
764  */
765 static int mmu_spte_clear_track_bits(u64 *sptep)
766 {
767         kvm_pfn_t pfn;
768         u64 old_spte = *sptep;
769
770         if (!spte_has_volatile_bits(old_spte))
771                 __update_clear_spte_fast(sptep, 0ull);
772         else
773                 old_spte = __update_clear_spte_slow(sptep, 0ull);
774
775         if (!is_shadow_present_pte(old_spte))
776                 return 0;
777
778         pfn = spte_to_pfn(old_spte);
779
780         /*
781          * KVM does not hold the refcount of the page used by
782          * kvm mmu, before reclaiming the page, we should
783          * unmap it from mmu first.
784          */
785         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
786
787         if (is_accessed_spte(old_spte))
788                 kvm_set_pfn_accessed(pfn);
789
790         if (is_dirty_spte(old_spte))
791                 kvm_set_pfn_dirty(pfn);
792
793         return 1;
794 }
795
796 /*
797  * Rules for using mmu_spte_clear_no_track:
798  * Directly clear spte without caring the state bits of sptep,
799  * it is used to set the upper level spte.
800  */
801 static void mmu_spte_clear_no_track(u64 *sptep)
802 {
803         __update_clear_spte_fast(sptep, 0ull);
804 }
805
806 static u64 mmu_spte_get_lockless(u64 *sptep)
807 {
808         return __get_spte_lockless(sptep);
809 }
810
811 static u64 mark_spte_for_access_track(u64 spte)
812 {
813         if (spte_ad_enabled(spte))
814                 return spte & ~shadow_accessed_mask;
815
816         if (is_access_track_spte(spte))
817                 return spte;
818
819         /*
820          * Making an Access Tracking PTE will result in removal of write access
821          * from the PTE. So, verify that we will be able to restore the write
822          * access in the fast page fault path later on.
823          */
824         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
825                   !spte_can_locklessly_be_made_writable(spte),
826                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
827
828         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
829                           shadow_acc_track_saved_bits_shift),
830                   "kvm: Access Tracking saved bit locations are not zero\n");
831
832         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
833                 shadow_acc_track_saved_bits_shift;
834         spte &= ~shadow_acc_track_mask;
835
836         return spte;
837 }
838
839 /* Restore an acc-track PTE back to a regular PTE */
840 static u64 restore_acc_track_spte(u64 spte)
841 {
842         u64 new_spte = spte;
843         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
844                          & shadow_acc_track_saved_bits_mask;
845
846         WARN_ON_ONCE(spte_ad_enabled(spte));
847         WARN_ON_ONCE(!is_access_track_spte(spte));
848
849         new_spte &= ~shadow_acc_track_mask;
850         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
851                       shadow_acc_track_saved_bits_shift);
852         new_spte |= saved_bits;
853
854         return new_spte;
855 }
856
857 /* Returns the Accessed status of the PTE and resets it at the same time. */
858 static bool mmu_spte_age(u64 *sptep)
859 {
860         u64 spte = mmu_spte_get_lockless(sptep);
861
862         if (!is_accessed_spte(spte))
863                 return false;
864
865         if (spte_ad_enabled(spte)) {
866                 clear_bit((ffs(shadow_accessed_mask) - 1),
867                           (unsigned long *)sptep);
868         } else {
869                 /*
870                  * Capture the dirty status of the page, so that it doesn't get
871                  * lost when the SPTE is marked for access tracking.
872                  */
873                 if (is_writable_pte(spte))
874                         kvm_set_pfn_dirty(spte_to_pfn(spte));
875
876                 spte = mark_spte_for_access_track(spte);
877                 mmu_spte_update_no_track(sptep, spte);
878         }
879
880         return true;
881 }
882
883 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
884 {
885         /*
886          * Prevent page table teardown by making any free-er wait during
887          * kvm_flush_remote_tlbs() IPI to all active vcpus.
888          */
889         local_irq_disable();
890
891         /*
892          * Make sure a following spte read is not reordered ahead of the write
893          * to vcpu->mode.
894          */
895         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
896 }
897
898 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
899 {
900         /*
901          * Make sure the write to vcpu->mode is not reordered in front of
902          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
903          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
904          */
905         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
906         local_irq_enable();
907 }
908
909 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
910                                   struct kmem_cache *base_cache, int min)
911 {
912         void *obj;
913
914         if (cache->nobjs >= min)
915                 return 0;
916         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
917                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
918                 if (!obj)
919                         return -ENOMEM;
920                 cache->objects[cache->nobjs++] = obj;
921         }
922         return 0;
923 }
924
925 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
926 {
927         return cache->nobjs;
928 }
929
930 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
931                                   struct kmem_cache *cache)
932 {
933         while (mc->nobjs)
934                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
935 }
936
937 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
938                                        int min)
939 {
940         void *page;
941
942         if (cache->nobjs >= min)
943                 return 0;
944         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
945                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
946                 if (!page)
947                         return -ENOMEM;
948                 cache->objects[cache->nobjs++] = page;
949         }
950         return 0;
951 }
952
953 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
954 {
955         while (mc->nobjs)
956                 free_page((unsigned long)mc->objects[--mc->nobjs]);
957 }
958
959 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
960 {
961         int r;
962
963         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
964                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
965         if (r)
966                 goto out;
967         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
968         if (r)
969                 goto out;
970         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
971                                    mmu_page_header_cache, 4);
972 out:
973         return r;
974 }
975
976 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
977 {
978         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
979                                 pte_list_desc_cache);
980         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
981         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
982                                 mmu_page_header_cache);
983 }
984
985 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
986 {
987         void *p;
988
989         BUG_ON(!mc->nobjs);
990         p = mc->objects[--mc->nobjs];
991         return p;
992 }
993
994 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
995 {
996         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
997 }
998
999 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1000 {
1001         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1002 }
1003
1004 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1005 {
1006         if (!sp->role.direct)
1007                 return sp->gfns[index];
1008
1009         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1010 }
1011
1012 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1013 {
1014         if (sp->role.direct)
1015                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
1016         else
1017                 sp->gfns[index] = gfn;
1018 }
1019
1020 /*
1021  * Return the pointer to the large page information for a given gfn,
1022  * handling slots that are not large page aligned.
1023  */
1024 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1025                                               struct kvm_memory_slot *slot,
1026                                               int level)
1027 {
1028         unsigned long idx;
1029
1030         idx = gfn_to_index(gfn, slot->base_gfn, level);
1031         return &slot->arch.lpage_info[level - 2][idx];
1032 }
1033
1034 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1035                                             gfn_t gfn, int count)
1036 {
1037         struct kvm_lpage_info *linfo;
1038         int i;
1039
1040         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1041                 linfo = lpage_info_slot(gfn, slot, i);
1042                 linfo->disallow_lpage += count;
1043                 WARN_ON(linfo->disallow_lpage < 0);
1044         }
1045 }
1046
1047 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1048 {
1049         update_gfn_disallow_lpage_count(slot, gfn, 1);
1050 }
1051
1052 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1053 {
1054         update_gfn_disallow_lpage_count(slot, gfn, -1);
1055 }
1056
1057 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1058 {
1059         struct kvm_memslots *slots;
1060         struct kvm_memory_slot *slot;
1061         gfn_t gfn;
1062
1063         kvm->arch.indirect_shadow_pages++;
1064         gfn = sp->gfn;
1065         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1066         slot = __gfn_to_memslot(slots, gfn);
1067
1068         /* the non-leaf shadow pages are keeping readonly. */
1069         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1070                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1071                                                     KVM_PAGE_TRACK_WRITE);
1072
1073         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1074 }
1075
1076 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1077 {
1078         struct kvm_memslots *slots;
1079         struct kvm_memory_slot *slot;
1080         gfn_t gfn;
1081
1082         kvm->arch.indirect_shadow_pages--;
1083         gfn = sp->gfn;
1084         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1085         slot = __gfn_to_memslot(slots, gfn);
1086         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1087                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1088                                                        KVM_PAGE_TRACK_WRITE);
1089
1090         kvm_mmu_gfn_allow_lpage(slot, gfn);
1091 }
1092
1093 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1094                                           struct kvm_memory_slot *slot)
1095 {
1096         struct kvm_lpage_info *linfo;
1097
1098         if (slot) {
1099                 linfo = lpage_info_slot(gfn, slot, level);
1100                 return !!linfo->disallow_lpage;
1101         }
1102
1103         return true;
1104 }
1105
1106 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1107                                         int level)
1108 {
1109         struct kvm_memory_slot *slot;
1110
1111         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1112         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1113 }
1114
1115 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1116 {
1117         unsigned long page_size;
1118         int i, ret = 0;
1119
1120         page_size = kvm_host_page_size(kvm, gfn);
1121
1122         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1123                 if (page_size >= KVM_HPAGE_SIZE(i))
1124                         ret = i;
1125                 else
1126                         break;
1127         }
1128
1129         return ret;
1130 }
1131
1132 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1133                                           bool no_dirty_log)
1134 {
1135         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1136                 return false;
1137         if (no_dirty_log && slot->dirty_bitmap)
1138                 return false;
1139
1140         return true;
1141 }
1142
1143 static struct kvm_memory_slot *
1144 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1145                             bool no_dirty_log)
1146 {
1147         struct kvm_memory_slot *slot;
1148
1149         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1150         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1151                 slot = NULL;
1152
1153         return slot;
1154 }
1155
1156 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1157                          bool *force_pt_level)
1158 {
1159         int host_level, level, max_level;
1160         struct kvm_memory_slot *slot;
1161
1162         if (unlikely(*force_pt_level))
1163                 return PT_PAGE_TABLE_LEVEL;
1164
1165         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1166         *force_pt_level = !memslot_valid_for_gpte(slot, true);
1167         if (unlikely(*force_pt_level))
1168                 return PT_PAGE_TABLE_LEVEL;
1169
1170         host_level = host_mapping_level(vcpu->kvm, large_gfn);
1171
1172         if (host_level == PT_PAGE_TABLE_LEVEL)
1173                 return host_level;
1174
1175         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1176
1177         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1178                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1179                         break;
1180
1181         return level - 1;
1182 }
1183
1184 /*
1185  * About rmap_head encoding:
1186  *
1187  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1188  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1189  * pte_list_desc containing more mappings.
1190  */
1191
1192 /*
1193  * Returns the number of pointers in the rmap chain, not counting the new one.
1194  */
1195 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1196                         struct kvm_rmap_head *rmap_head)
1197 {
1198         struct pte_list_desc *desc;
1199         int i, count = 0;
1200
1201         if (!rmap_head->val) {
1202                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1203                 rmap_head->val = (unsigned long)spte;
1204         } else if (!(rmap_head->val & 1)) {
1205                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1206                 desc = mmu_alloc_pte_list_desc(vcpu);
1207                 desc->sptes[0] = (u64 *)rmap_head->val;
1208                 desc->sptes[1] = spte;
1209                 rmap_head->val = (unsigned long)desc | 1;
1210                 ++count;
1211         } else {
1212                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1213                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1214                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1215                         desc = desc->more;
1216                         count += PTE_LIST_EXT;
1217                 }
1218                 if (desc->sptes[PTE_LIST_EXT-1]) {
1219                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1220                         desc = desc->more;
1221                 }
1222                 for (i = 0; desc->sptes[i]; ++i)
1223                         ++count;
1224                 desc->sptes[i] = spte;
1225         }
1226         return count;
1227 }
1228
1229 static void
1230 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1231                            struct pte_list_desc *desc, int i,
1232                            struct pte_list_desc *prev_desc)
1233 {
1234         int j;
1235
1236         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1237                 ;
1238         desc->sptes[i] = desc->sptes[j];
1239         desc->sptes[j] = NULL;
1240         if (j != 0)
1241                 return;
1242         if (!prev_desc && !desc->more)
1243                 rmap_head->val = (unsigned long)desc->sptes[0];
1244         else
1245                 if (prev_desc)
1246                         prev_desc->more = desc->more;
1247                 else
1248                         rmap_head->val = (unsigned long)desc->more | 1;
1249         mmu_free_pte_list_desc(desc);
1250 }
1251
1252 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1253 {
1254         struct pte_list_desc *desc;
1255         struct pte_list_desc *prev_desc;
1256         int i;
1257
1258         if (!rmap_head->val) {
1259                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1260                 BUG();
1261         } else if (!(rmap_head->val & 1)) {
1262                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1263                 if ((u64 *)rmap_head->val != spte) {
1264                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1265                         BUG();
1266                 }
1267                 rmap_head->val = 0;
1268         } else {
1269                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1270                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1271                 prev_desc = NULL;
1272                 while (desc) {
1273                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1274                                 if (desc->sptes[i] == spte) {
1275                                         pte_list_desc_remove_entry(rmap_head,
1276                                                         desc, i, prev_desc);
1277                                         return;
1278                                 }
1279                         }
1280                         prev_desc = desc;
1281                         desc = desc->more;
1282                 }
1283                 pr_err("pte_list_remove: %p many->many\n", spte);
1284                 BUG();
1285         }
1286 }
1287
1288 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1289                                            struct kvm_memory_slot *slot)
1290 {
1291         unsigned long idx;
1292
1293         idx = gfn_to_index(gfn, slot->base_gfn, level);
1294         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1295 }
1296
1297 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1298                                          struct kvm_mmu_page *sp)
1299 {
1300         struct kvm_memslots *slots;
1301         struct kvm_memory_slot *slot;
1302
1303         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1304         slot = __gfn_to_memslot(slots, gfn);
1305         return __gfn_to_rmap(gfn, sp->role.level, slot);
1306 }
1307
1308 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1309 {
1310         struct kvm_mmu_memory_cache *cache;
1311
1312         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1313         return mmu_memory_cache_free_objects(cache);
1314 }
1315
1316 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1317 {
1318         struct kvm_mmu_page *sp;
1319         struct kvm_rmap_head *rmap_head;
1320
1321         sp = page_header(__pa(spte));
1322         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1323         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1324         return pte_list_add(vcpu, spte, rmap_head);
1325 }
1326
1327 static void rmap_remove(struct kvm *kvm, u64 *spte)
1328 {
1329         struct kvm_mmu_page *sp;
1330         gfn_t gfn;
1331         struct kvm_rmap_head *rmap_head;
1332
1333         sp = page_header(__pa(spte));
1334         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1335         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1336         pte_list_remove(spte, rmap_head);
1337 }
1338
1339 /*
1340  * Used by the following functions to iterate through the sptes linked by a
1341  * rmap.  All fields are private and not assumed to be used outside.
1342  */
1343 struct rmap_iterator {
1344         /* private fields */
1345         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1346         int pos;                        /* index of the sptep */
1347 };
1348
1349 /*
1350  * Iteration must be started by this function.  This should also be used after
1351  * removing/dropping sptes from the rmap link because in such cases the
1352  * information in the itererator may not be valid.
1353  *
1354  * Returns sptep if found, NULL otherwise.
1355  */
1356 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1357                            struct rmap_iterator *iter)
1358 {
1359         u64 *sptep;
1360
1361         if (!rmap_head->val)
1362                 return NULL;
1363
1364         if (!(rmap_head->val & 1)) {
1365                 iter->desc = NULL;
1366                 sptep = (u64 *)rmap_head->val;
1367                 goto out;
1368         }
1369
1370         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1371         iter->pos = 0;
1372         sptep = iter->desc->sptes[iter->pos];
1373 out:
1374         BUG_ON(!is_shadow_present_pte(*sptep));
1375         return sptep;
1376 }
1377
1378 /*
1379  * Must be used with a valid iterator: e.g. after rmap_get_first().
1380  *
1381  * Returns sptep if found, NULL otherwise.
1382  */
1383 static u64 *rmap_get_next(struct rmap_iterator *iter)
1384 {
1385         u64 *sptep;
1386
1387         if (iter->desc) {
1388                 if (iter->pos < PTE_LIST_EXT - 1) {
1389                         ++iter->pos;
1390                         sptep = iter->desc->sptes[iter->pos];
1391                         if (sptep)
1392                                 goto out;
1393                 }
1394
1395                 iter->desc = iter->desc->more;
1396
1397                 if (iter->desc) {
1398                         iter->pos = 0;
1399                         /* desc->sptes[0] cannot be NULL */
1400                         sptep = iter->desc->sptes[iter->pos];
1401                         goto out;
1402                 }
1403         }
1404
1405         return NULL;
1406 out:
1407         BUG_ON(!is_shadow_present_pte(*sptep));
1408         return sptep;
1409 }
1410
1411 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1412         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1413              _spte_; _spte_ = rmap_get_next(_iter_))
1414
1415 static void drop_spte(struct kvm *kvm, u64 *sptep)
1416 {
1417         if (mmu_spte_clear_track_bits(sptep))
1418                 rmap_remove(kvm, sptep);
1419 }
1420
1421
1422 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1423 {
1424         if (is_large_pte(*sptep)) {
1425                 WARN_ON(page_header(__pa(sptep))->role.level ==
1426                         PT_PAGE_TABLE_LEVEL);
1427                 drop_spte(kvm, sptep);
1428                 --kvm->stat.lpages;
1429                 return true;
1430         }
1431
1432         return false;
1433 }
1434
1435 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1436 {
1437         if (__drop_large_spte(vcpu->kvm, sptep))
1438                 kvm_flush_remote_tlbs(vcpu->kvm);
1439 }
1440
1441 /*
1442  * Write-protect on the specified @sptep, @pt_protect indicates whether
1443  * spte write-protection is caused by protecting shadow page table.
1444  *
1445  * Note: write protection is difference between dirty logging and spte
1446  * protection:
1447  * - for dirty logging, the spte can be set to writable at anytime if
1448  *   its dirty bitmap is properly set.
1449  * - for spte protection, the spte can be writable only after unsync-ing
1450  *   shadow page.
1451  *
1452  * Return true if tlb need be flushed.
1453  */
1454 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1455 {
1456         u64 spte = *sptep;
1457
1458         if (!is_writable_pte(spte) &&
1459               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1460                 return false;
1461
1462         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1463
1464         if (pt_protect)
1465                 spte &= ~SPTE_MMU_WRITEABLE;
1466         spte = spte & ~PT_WRITABLE_MASK;
1467
1468         return mmu_spte_update(sptep, spte);
1469 }
1470
1471 static bool __rmap_write_protect(struct kvm *kvm,
1472                                  struct kvm_rmap_head *rmap_head,
1473                                  bool pt_protect)
1474 {
1475         u64 *sptep;
1476         struct rmap_iterator iter;
1477         bool flush = false;
1478
1479         for_each_rmap_spte(rmap_head, &iter, sptep)
1480                 flush |= spte_write_protect(sptep, pt_protect);
1481
1482         return flush;
1483 }
1484
1485 static bool spte_clear_dirty(u64 *sptep)
1486 {
1487         u64 spte = *sptep;
1488
1489         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1490
1491         spte &= ~shadow_dirty_mask;
1492
1493         return mmu_spte_update(sptep, spte);
1494 }
1495
1496 static bool wrprot_ad_disabled_spte(u64 *sptep)
1497 {
1498         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1499                                                (unsigned long *)sptep);
1500         if (was_writable)
1501                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1502
1503         return was_writable;
1504 }
1505
1506 /*
1507  * Gets the GFN ready for another round of dirty logging by clearing the
1508  *      - D bit on ad-enabled SPTEs, and
1509  *      - W bit on ad-disabled SPTEs.
1510  * Returns true iff any D or W bits were cleared.
1511  */
1512 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1513 {
1514         u64 *sptep;
1515         struct rmap_iterator iter;
1516         bool flush = false;
1517
1518         for_each_rmap_spte(rmap_head, &iter, sptep)
1519                 if (spte_ad_enabled(*sptep))
1520                         flush |= spte_clear_dirty(sptep);
1521                 else
1522                         flush |= wrprot_ad_disabled_spte(sptep);
1523
1524         return flush;
1525 }
1526
1527 static bool spte_set_dirty(u64 *sptep)
1528 {
1529         u64 spte = *sptep;
1530
1531         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1532
1533         spte |= shadow_dirty_mask;
1534
1535         return mmu_spte_update(sptep, spte);
1536 }
1537
1538 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1539 {
1540         u64 *sptep;
1541         struct rmap_iterator iter;
1542         bool flush = false;
1543
1544         for_each_rmap_spte(rmap_head, &iter, sptep)
1545                 if (spte_ad_enabled(*sptep))
1546                         flush |= spte_set_dirty(sptep);
1547
1548         return flush;
1549 }
1550
1551 /**
1552  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1553  * @kvm: kvm instance
1554  * @slot: slot to protect
1555  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1556  * @mask: indicates which pages we should protect
1557  *
1558  * Used when we do not need to care about huge page mappings: e.g. during dirty
1559  * logging we do not have any such mappings.
1560  */
1561 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1562                                      struct kvm_memory_slot *slot,
1563                                      gfn_t gfn_offset, unsigned long mask)
1564 {
1565         struct kvm_rmap_head *rmap_head;
1566
1567         while (mask) {
1568                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1569                                           PT_PAGE_TABLE_LEVEL, slot);
1570                 __rmap_write_protect(kvm, rmap_head, false);
1571
1572                 /* clear the first set bit */
1573                 mask &= mask - 1;
1574         }
1575 }
1576
1577 /**
1578  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1579  * protect the page if the D-bit isn't supported.
1580  * @kvm: kvm instance
1581  * @slot: slot to clear D-bit
1582  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1583  * @mask: indicates which pages we should clear D-bit
1584  *
1585  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1586  */
1587 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1588                                      struct kvm_memory_slot *slot,
1589                                      gfn_t gfn_offset, unsigned long mask)
1590 {
1591         struct kvm_rmap_head *rmap_head;
1592
1593         while (mask) {
1594                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1595                                           PT_PAGE_TABLE_LEVEL, slot);
1596                 __rmap_clear_dirty(kvm, rmap_head);
1597
1598                 /* clear the first set bit */
1599                 mask &= mask - 1;
1600         }
1601 }
1602 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1603
1604 /**
1605  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1606  * PT level pages.
1607  *
1608  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1609  * enable dirty logging for them.
1610  *
1611  * Used when we do not need to care about huge page mappings: e.g. during dirty
1612  * logging we do not have any such mappings.
1613  */
1614 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1615                                 struct kvm_memory_slot *slot,
1616                                 gfn_t gfn_offset, unsigned long mask)
1617 {
1618         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1619                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1620                                 mask);
1621         else
1622                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1623 }
1624
1625 /**
1626  * kvm_arch_write_log_dirty - emulate dirty page logging
1627  * @vcpu: Guest mode vcpu
1628  *
1629  * Emulate arch specific page modification logging for the
1630  * nested hypervisor
1631  */
1632 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1633 {
1634         if (kvm_x86_ops->write_log_dirty)
1635                 return kvm_x86_ops->write_log_dirty(vcpu);
1636
1637         return 0;
1638 }
1639
1640 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1641                                     struct kvm_memory_slot *slot, u64 gfn)
1642 {
1643         struct kvm_rmap_head *rmap_head;
1644         int i;
1645         bool write_protected = false;
1646
1647         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1648                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1649                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1650         }
1651
1652         return write_protected;
1653 }
1654
1655 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1656 {
1657         struct kvm_memory_slot *slot;
1658
1659         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1660         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1661 }
1662
1663 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1664 {
1665         u64 *sptep;
1666         struct rmap_iterator iter;
1667         bool flush = false;
1668
1669         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1670                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1671
1672                 drop_spte(kvm, sptep);
1673                 flush = true;
1674         }
1675
1676         return flush;
1677 }
1678
1679 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1680                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1681                            unsigned long data)
1682 {
1683         return kvm_zap_rmapp(kvm, rmap_head);
1684 }
1685
1686 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1687                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1688                              unsigned long data)
1689 {
1690         u64 *sptep;
1691         struct rmap_iterator iter;
1692         int need_flush = 0;
1693         u64 new_spte;
1694         pte_t *ptep = (pte_t *)data;
1695         kvm_pfn_t new_pfn;
1696
1697         WARN_ON(pte_huge(*ptep));
1698         new_pfn = pte_pfn(*ptep);
1699
1700 restart:
1701         for_each_rmap_spte(rmap_head, &iter, sptep) {
1702                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1703                             sptep, *sptep, gfn, level);
1704
1705                 need_flush = 1;
1706
1707                 if (pte_write(*ptep)) {
1708                         drop_spte(kvm, sptep);
1709                         goto restart;
1710                 } else {
1711                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1712                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1713
1714                         new_spte &= ~PT_WRITABLE_MASK;
1715                         new_spte &= ~SPTE_HOST_WRITEABLE;
1716
1717                         new_spte = mark_spte_for_access_track(new_spte);
1718
1719                         mmu_spte_clear_track_bits(sptep);
1720                         mmu_spte_set(sptep, new_spte);
1721                 }
1722         }
1723
1724         if (need_flush)
1725                 kvm_flush_remote_tlbs(kvm);
1726
1727         return 0;
1728 }
1729
1730 struct slot_rmap_walk_iterator {
1731         /* input fields. */
1732         struct kvm_memory_slot *slot;
1733         gfn_t start_gfn;
1734         gfn_t end_gfn;
1735         int start_level;
1736         int end_level;
1737
1738         /* output fields. */
1739         gfn_t gfn;
1740         struct kvm_rmap_head *rmap;
1741         int level;
1742
1743         /* private field. */
1744         struct kvm_rmap_head *end_rmap;
1745 };
1746
1747 static void
1748 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1749 {
1750         iterator->level = level;
1751         iterator->gfn = iterator->start_gfn;
1752         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1753         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1754                                            iterator->slot);
1755 }
1756
1757 static void
1758 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1759                     struct kvm_memory_slot *slot, int start_level,
1760                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1761 {
1762         iterator->slot = slot;
1763         iterator->start_level = start_level;
1764         iterator->end_level = end_level;
1765         iterator->start_gfn = start_gfn;
1766         iterator->end_gfn = end_gfn;
1767
1768         rmap_walk_init_level(iterator, iterator->start_level);
1769 }
1770
1771 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1772 {
1773         return !!iterator->rmap;
1774 }
1775
1776 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1777 {
1778         if (++iterator->rmap <= iterator->end_rmap) {
1779                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1780                 return;
1781         }
1782
1783         if (++iterator->level > iterator->end_level) {
1784                 iterator->rmap = NULL;
1785                 return;
1786         }
1787
1788         rmap_walk_init_level(iterator, iterator->level);
1789 }
1790
1791 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1792            _start_gfn, _end_gfn, _iter_)                                \
1793         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1794                                  _end_level_, _start_gfn, _end_gfn);    \
1795              slot_rmap_walk_okay(_iter_);                               \
1796              slot_rmap_walk_next(_iter_))
1797
1798 static int kvm_handle_hva_range(struct kvm *kvm,
1799                                 unsigned long start,
1800                                 unsigned long end,
1801                                 unsigned long data,
1802                                 int (*handler)(struct kvm *kvm,
1803                                                struct kvm_rmap_head *rmap_head,
1804                                                struct kvm_memory_slot *slot,
1805                                                gfn_t gfn,
1806                                                int level,
1807                                                unsigned long data))
1808 {
1809         struct kvm_memslots *slots;
1810         struct kvm_memory_slot *memslot;
1811         struct slot_rmap_walk_iterator iterator;
1812         int ret = 0;
1813         int i;
1814
1815         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1816                 slots = __kvm_memslots(kvm, i);
1817                 kvm_for_each_memslot(memslot, slots) {
1818                         unsigned long hva_start, hva_end;
1819                         gfn_t gfn_start, gfn_end;
1820
1821                         hva_start = max(start, memslot->userspace_addr);
1822                         hva_end = min(end, memslot->userspace_addr +
1823                                       (memslot->npages << PAGE_SHIFT));
1824                         if (hva_start >= hva_end)
1825                                 continue;
1826                         /*
1827                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1828                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1829                          */
1830                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1831                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1832
1833                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1834                                                  PT_MAX_HUGEPAGE_LEVEL,
1835                                                  gfn_start, gfn_end - 1,
1836                                                  &iterator)
1837                                 ret |= handler(kvm, iterator.rmap, memslot,
1838                                                iterator.gfn, iterator.level, data);
1839                 }
1840         }
1841
1842         return ret;
1843 }
1844
1845 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1846                           unsigned long data,
1847                           int (*handler)(struct kvm *kvm,
1848                                          struct kvm_rmap_head *rmap_head,
1849                                          struct kvm_memory_slot *slot,
1850                                          gfn_t gfn, int level,
1851                                          unsigned long data))
1852 {
1853         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1854 }
1855
1856 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1857 {
1858         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1859 }
1860
1861 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1862 {
1863         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1864 }
1865
1866 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1867                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1868                          unsigned long data)
1869 {
1870         u64 *sptep;
1871         struct rmap_iterator uninitialized_var(iter);
1872         int young = 0;
1873
1874         for_each_rmap_spte(rmap_head, &iter, sptep)
1875                 young |= mmu_spte_age(sptep);
1876
1877         trace_kvm_age_page(gfn, level, slot, young);
1878         return young;
1879 }
1880
1881 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1882                               struct kvm_memory_slot *slot, gfn_t gfn,
1883                               int level, unsigned long data)
1884 {
1885         u64 *sptep;
1886         struct rmap_iterator iter;
1887
1888         for_each_rmap_spte(rmap_head, &iter, sptep)
1889                 if (is_accessed_spte(*sptep))
1890                         return 1;
1891         return 0;
1892 }
1893
1894 #define RMAP_RECYCLE_THRESHOLD 1000
1895
1896 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1897 {
1898         struct kvm_rmap_head *rmap_head;
1899         struct kvm_mmu_page *sp;
1900
1901         sp = page_header(__pa(spte));
1902
1903         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1904
1905         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1906         kvm_flush_remote_tlbs(vcpu->kvm);
1907 }
1908
1909 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1910 {
1911         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1912 }
1913
1914 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1915 {
1916         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1917 }
1918
1919 #ifdef MMU_DEBUG
1920 static int is_empty_shadow_page(u64 *spt)
1921 {
1922         u64 *pos;
1923         u64 *end;
1924
1925         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1926                 if (is_shadow_present_pte(*pos)) {
1927                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1928                                pos, *pos);
1929                         return 0;
1930                 }
1931         return 1;
1932 }
1933 #endif
1934
1935 /*
1936  * This value is the sum of all of the kvm instances's
1937  * kvm->arch.n_used_mmu_pages values.  We need a global,
1938  * aggregate version in order to make the slab shrinker
1939  * faster
1940  */
1941 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1942 {
1943         kvm->arch.n_used_mmu_pages += nr;
1944         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1945 }
1946
1947 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1948 {
1949         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1950         hlist_del(&sp->hash_link);
1951         list_del(&sp->link);
1952         free_page((unsigned long)sp->spt);
1953         if (!sp->role.direct)
1954                 free_page((unsigned long)sp->gfns);
1955         kmem_cache_free(mmu_page_header_cache, sp);
1956 }
1957
1958 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1959 {
1960         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1961 }
1962
1963 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1964                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1965 {
1966         if (!parent_pte)
1967                 return;
1968
1969         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1970 }
1971
1972 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1973                                        u64 *parent_pte)
1974 {
1975         pte_list_remove(parent_pte, &sp->parent_ptes);
1976 }
1977
1978 static void drop_parent_pte(struct kvm_mmu_page *sp,
1979                             u64 *parent_pte)
1980 {
1981         mmu_page_remove_parent_pte(sp, parent_pte);
1982         mmu_spte_clear_no_track(parent_pte);
1983 }
1984
1985 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1986 {
1987         struct kvm_mmu_page *sp;
1988
1989         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1990         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1991         if (!direct)
1992                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1993         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1994
1995         /*
1996          * The active_mmu_pages list is the FIFO list, do not move the
1997          * page until it is zapped. kvm_zap_obsolete_pages depends on
1998          * this feature. See the comments in kvm_zap_obsolete_pages().
1999          */
2000         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2001         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2002         return sp;
2003 }
2004
2005 static void mark_unsync(u64 *spte);
2006 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2007 {
2008         u64 *sptep;
2009         struct rmap_iterator iter;
2010
2011         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2012                 mark_unsync(sptep);
2013         }
2014 }
2015
2016 static void mark_unsync(u64 *spte)
2017 {
2018         struct kvm_mmu_page *sp;
2019         unsigned int index;
2020
2021         sp = page_header(__pa(spte));
2022         index = spte - sp->spt;
2023         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2024                 return;
2025         if (sp->unsync_children++)
2026                 return;
2027         kvm_mmu_mark_parents_unsync(sp);
2028 }
2029
2030 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2031                                struct kvm_mmu_page *sp)
2032 {
2033         return 0;
2034 }
2035
2036 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2037 {
2038 }
2039
2040 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2041                                  struct kvm_mmu_page *sp, u64 *spte,
2042                                  const void *pte)
2043 {
2044         WARN_ON(1);
2045 }
2046
2047 #define KVM_PAGE_ARRAY_NR 16
2048
2049 struct kvm_mmu_pages {
2050         struct mmu_page_and_offset {
2051                 struct kvm_mmu_page *sp;
2052                 unsigned int idx;
2053         } page[KVM_PAGE_ARRAY_NR];
2054         unsigned int nr;
2055 };
2056
2057 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2058                          int idx)
2059 {
2060         int i;
2061
2062         if (sp->unsync)
2063                 for (i=0; i < pvec->nr; i++)
2064                         if (pvec->page[i].sp == sp)
2065                                 return 0;
2066
2067         pvec->page[pvec->nr].sp = sp;
2068         pvec->page[pvec->nr].idx = idx;
2069         pvec->nr++;
2070         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2071 }
2072
2073 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2074 {
2075         --sp->unsync_children;
2076         WARN_ON((int)sp->unsync_children < 0);
2077         __clear_bit(idx, sp->unsync_child_bitmap);
2078 }
2079
2080 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2081                            struct kvm_mmu_pages *pvec)
2082 {
2083         int i, ret, nr_unsync_leaf = 0;
2084
2085         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2086                 struct kvm_mmu_page *child;
2087                 u64 ent = sp->spt[i];
2088
2089                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2090                         clear_unsync_child_bit(sp, i);
2091                         continue;
2092                 }
2093
2094                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2095
2096                 if (child->unsync_children) {
2097                         if (mmu_pages_add(pvec, child, i))
2098                                 return -ENOSPC;
2099
2100                         ret = __mmu_unsync_walk(child, pvec);
2101                         if (!ret) {
2102                                 clear_unsync_child_bit(sp, i);
2103                                 continue;
2104                         } else if (ret > 0) {
2105                                 nr_unsync_leaf += ret;
2106                         } else
2107                                 return ret;
2108                 } else if (child->unsync) {
2109                         nr_unsync_leaf++;
2110                         if (mmu_pages_add(pvec, child, i))
2111                                 return -ENOSPC;
2112                 } else
2113                         clear_unsync_child_bit(sp, i);
2114         }
2115
2116         return nr_unsync_leaf;
2117 }
2118
2119 #define INVALID_INDEX (-1)
2120
2121 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2122                            struct kvm_mmu_pages *pvec)
2123 {
2124         pvec->nr = 0;
2125         if (!sp->unsync_children)
2126                 return 0;
2127
2128         mmu_pages_add(pvec, sp, INVALID_INDEX);
2129         return __mmu_unsync_walk(sp, pvec);
2130 }
2131
2132 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2133 {
2134         WARN_ON(!sp->unsync);
2135         trace_kvm_mmu_sync_page(sp);
2136         sp->unsync = 0;
2137         --kvm->stat.mmu_unsync;
2138 }
2139
2140 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2141                                     struct list_head *invalid_list);
2142 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2143                                     struct list_head *invalid_list);
2144
2145 /*
2146  * NOTE: we should pay more attention on the zapped-obsolete page
2147  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2148  * since it has been deleted from active_mmu_pages but still can be found
2149  * at hast list.
2150  *
2151  * for_each_valid_sp() has skipped that kind of pages.
2152  */
2153 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2154         hlist_for_each_entry(_sp,                                       \
2155           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2156                 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
2157                 } else
2158
2159 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2160         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2161                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2162
2163 /* @sp->gfn should be write-protected at the call site */
2164 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2165                             struct list_head *invalid_list)
2166 {
2167         if (sp->role.cr4_pae != !!is_pae(vcpu)
2168             || vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2169                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2170                 return false;
2171         }
2172
2173         return true;
2174 }
2175
2176 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2177                                  struct list_head *invalid_list,
2178                                  bool remote_flush, bool local_flush)
2179 {
2180         if (!list_empty(invalid_list)) {
2181                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2182                 return;
2183         }
2184
2185         if (remote_flush)
2186                 kvm_flush_remote_tlbs(vcpu->kvm);
2187         else if (local_flush)
2188                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2189 }
2190
2191 #ifdef CONFIG_KVM_MMU_AUDIT
2192 #include "mmu_audit.c"
2193 #else
2194 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2195 static void mmu_audit_disable(void) { }
2196 #endif
2197
2198 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2199 {
2200         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2201 }
2202
2203 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2204                          struct list_head *invalid_list)
2205 {
2206         kvm_unlink_unsync_page(vcpu->kvm, sp);
2207         return __kvm_sync_page(vcpu, sp, invalid_list);
2208 }
2209
2210 /* @gfn should be write-protected at the call site */
2211 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2212                            struct list_head *invalid_list)
2213 {
2214         struct kvm_mmu_page *s;
2215         bool ret = false;
2216
2217         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2218                 if (!s->unsync)
2219                         continue;
2220
2221                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2222                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2223         }
2224
2225         return ret;
2226 }
2227
2228 struct mmu_page_path {
2229         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2230         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2231 };
2232
2233 #define for_each_sp(pvec, sp, parents, i)                       \
2234                 for (i = mmu_pages_first(&pvec, &parents);      \
2235                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2236                         i = mmu_pages_next(&pvec, &parents, i))
2237
2238 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2239                           struct mmu_page_path *parents,
2240                           int i)
2241 {
2242         int n;
2243
2244         for (n = i+1; n < pvec->nr; n++) {
2245                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2246                 unsigned idx = pvec->page[n].idx;
2247                 int level = sp->role.level;
2248
2249                 parents->idx[level-1] = idx;
2250                 if (level == PT_PAGE_TABLE_LEVEL)
2251                         break;
2252
2253                 parents->parent[level-2] = sp;
2254         }
2255
2256         return n;
2257 }
2258
2259 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2260                            struct mmu_page_path *parents)
2261 {
2262         struct kvm_mmu_page *sp;
2263         int level;
2264
2265         if (pvec->nr == 0)
2266                 return 0;
2267
2268         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2269
2270         sp = pvec->page[0].sp;
2271         level = sp->role.level;
2272         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2273
2274         parents->parent[level-2] = sp;
2275
2276         /* Also set up a sentinel.  Further entries in pvec are all
2277          * children of sp, so this element is never overwritten.
2278          */
2279         parents->parent[level-1] = NULL;
2280         return mmu_pages_next(pvec, parents, 0);
2281 }
2282
2283 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2284 {
2285         struct kvm_mmu_page *sp;
2286         unsigned int level = 0;
2287
2288         do {
2289                 unsigned int idx = parents->idx[level];
2290                 sp = parents->parent[level];
2291                 if (!sp)
2292                         return;
2293
2294                 WARN_ON(idx == INVALID_INDEX);
2295                 clear_unsync_child_bit(sp, idx);
2296                 level++;
2297         } while (!sp->unsync_children);
2298 }
2299
2300 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2301                               struct kvm_mmu_page *parent)
2302 {
2303         int i;
2304         struct kvm_mmu_page *sp;
2305         struct mmu_page_path parents;
2306         struct kvm_mmu_pages pages;
2307         LIST_HEAD(invalid_list);
2308         bool flush = false;
2309
2310         while (mmu_unsync_walk(parent, &pages)) {
2311                 bool protected = false;
2312
2313                 for_each_sp(pages, sp, parents, i)
2314                         protected |= rmap_write_protect(vcpu, sp->gfn);
2315
2316                 if (protected) {
2317                         kvm_flush_remote_tlbs(vcpu->kvm);
2318                         flush = false;
2319                 }
2320
2321                 for_each_sp(pages, sp, parents, i) {
2322                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2323                         mmu_pages_clear_parents(&parents);
2324                 }
2325                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2326                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2327                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2328                         flush = false;
2329                 }
2330         }
2331
2332         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2333 }
2334
2335 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2336 {
2337         atomic_set(&sp->write_flooding_count,  0);
2338 }
2339
2340 static void clear_sp_write_flooding_count(u64 *spte)
2341 {
2342         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2343
2344         __clear_sp_write_flooding_count(sp);
2345 }
2346
2347 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2348                                              gfn_t gfn,
2349                                              gva_t gaddr,
2350                                              unsigned level,
2351                                              int direct,
2352                                              unsigned access)
2353 {
2354         union kvm_mmu_page_role role;
2355         unsigned quadrant;
2356         struct kvm_mmu_page *sp;
2357         bool need_sync = false;
2358         bool flush = false;
2359         int collisions = 0;
2360         LIST_HEAD(invalid_list);
2361
2362         role = vcpu->arch.mmu.base_role;
2363         role.level = level;
2364         role.direct = direct;
2365         if (role.direct)
2366                 role.cr4_pae = 0;
2367         role.access = access;
2368         if (!vcpu->arch.mmu.direct_map
2369             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2370                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2371                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2372                 role.quadrant = quadrant;
2373         }
2374         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2375                 if (sp->gfn != gfn) {
2376                         collisions++;
2377                         continue;
2378                 }
2379
2380                 if (!need_sync && sp->unsync)
2381                         need_sync = true;
2382
2383                 if (sp->role.word != role.word)
2384                         continue;
2385
2386                 if (sp->unsync) {
2387                         /* The page is good, but __kvm_sync_page might still end
2388                          * up zapping it.  If so, break in order to rebuild it.
2389                          */
2390                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2391                                 break;
2392
2393                         WARN_ON(!list_empty(&invalid_list));
2394                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2395                 }
2396
2397                 if (sp->unsync_children)
2398                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2399
2400                 __clear_sp_write_flooding_count(sp);
2401                 trace_kvm_mmu_get_page(sp, false);
2402                 goto out;
2403         }
2404
2405         ++vcpu->kvm->stat.mmu_cache_miss;
2406
2407         sp = kvm_mmu_alloc_page(vcpu, direct);
2408
2409         sp->gfn = gfn;
2410         sp->role = role;
2411         hlist_add_head(&sp->hash_link,
2412                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2413         if (!direct) {
2414                 /*
2415                  * we should do write protection before syncing pages
2416                  * otherwise the content of the synced shadow page may
2417                  * be inconsistent with guest page table.
2418                  */
2419                 account_shadowed(vcpu->kvm, sp);
2420                 if (level == PT_PAGE_TABLE_LEVEL &&
2421                       rmap_write_protect(vcpu, gfn))
2422                         kvm_flush_remote_tlbs(vcpu->kvm);
2423
2424                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2425                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2426         }
2427         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2428         clear_page(sp->spt);
2429         trace_kvm_mmu_get_page(sp, true);
2430
2431         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2432 out:
2433         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2434                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2435         return sp;
2436 }
2437
2438 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2439                                         struct kvm_vcpu *vcpu, hpa_t root,
2440                                         u64 addr)
2441 {
2442         iterator->addr = addr;
2443         iterator->shadow_addr = root;
2444         iterator->level = vcpu->arch.mmu.shadow_root_level;
2445
2446         if (iterator->level == PT64_ROOT_4LEVEL &&
2447             vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2448             !vcpu->arch.mmu.direct_map)
2449                 --iterator->level;
2450
2451         if (iterator->level == PT32E_ROOT_LEVEL) {
2452                 /*
2453                  * prev_root is currently only used for 64-bit hosts. So only
2454                  * the active root_hpa is valid here.
2455                  */
2456                 BUG_ON(root != vcpu->arch.mmu.root_hpa);
2457
2458                 iterator->shadow_addr
2459                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2460                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2461                 --iterator->level;
2462                 if (!iterator->shadow_addr)
2463                         iterator->level = 0;
2464         }
2465 }
2466
2467 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2468                              struct kvm_vcpu *vcpu, u64 addr)
2469 {
2470         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu.root_hpa,
2471                                     addr);
2472 }
2473
2474 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2475 {
2476         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2477                 return false;
2478
2479         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2480         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2481         return true;
2482 }
2483
2484 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2485                                u64 spte)
2486 {
2487         if (is_last_spte(spte, iterator->level)) {
2488                 iterator->level = 0;
2489                 return;
2490         }
2491
2492         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2493         --iterator->level;
2494 }
2495
2496 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2497 {
2498         __shadow_walk_next(iterator, *iterator->sptep);
2499 }
2500
2501 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2502                              struct kvm_mmu_page *sp)
2503 {
2504         u64 spte;
2505
2506         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2507
2508         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2509                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2510
2511         if (sp_ad_disabled(sp))
2512                 spte |= shadow_acc_track_value;
2513         else
2514                 spte |= shadow_accessed_mask;
2515
2516         mmu_spte_set(sptep, spte);
2517
2518         mmu_page_add_parent_pte(vcpu, sp, sptep);
2519
2520         if (sp->unsync_children || sp->unsync)
2521                 mark_unsync(sptep);
2522 }
2523
2524 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2525                                    unsigned direct_access)
2526 {
2527         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2528                 struct kvm_mmu_page *child;
2529
2530                 /*
2531                  * For the direct sp, if the guest pte's dirty bit
2532                  * changed form clean to dirty, it will corrupt the
2533                  * sp's access: allow writable in the read-only sp,
2534                  * so we should update the spte at this point to get
2535                  * a new sp with the correct access.
2536                  */
2537                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2538                 if (child->role.access == direct_access)
2539                         return;
2540
2541                 drop_parent_pte(child, sptep);
2542                 kvm_flush_remote_tlbs(vcpu->kvm);
2543         }
2544 }
2545
2546 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2547                              u64 *spte)
2548 {
2549         u64 pte;
2550         struct kvm_mmu_page *child;
2551
2552         pte = *spte;
2553         if (is_shadow_present_pte(pte)) {
2554                 if (is_last_spte(pte, sp->role.level)) {
2555                         drop_spte(kvm, spte);
2556                         if (is_large_pte(pte))
2557                                 --kvm->stat.lpages;
2558                 } else {
2559                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2560                         drop_parent_pte(child, spte);
2561                 }
2562                 return true;
2563         }
2564
2565         if (is_mmio_spte(pte))
2566                 mmu_spte_clear_no_track(spte);
2567
2568         return false;
2569 }
2570
2571 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2572                                          struct kvm_mmu_page *sp)
2573 {
2574         unsigned i;
2575
2576         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2577                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2578 }
2579
2580 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2581 {
2582         u64 *sptep;
2583         struct rmap_iterator iter;
2584
2585         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2586                 drop_parent_pte(sp, sptep);
2587 }
2588
2589 static int mmu_zap_unsync_children(struct kvm *kvm,
2590                                    struct kvm_mmu_page *parent,
2591                                    struct list_head *invalid_list)
2592 {
2593         int i, zapped = 0;
2594         struct mmu_page_path parents;
2595         struct kvm_mmu_pages pages;
2596
2597         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2598                 return 0;
2599
2600         while (mmu_unsync_walk(parent, &pages)) {
2601                 struct kvm_mmu_page *sp;
2602
2603                 for_each_sp(pages, sp, parents, i) {
2604                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2605                         mmu_pages_clear_parents(&parents);
2606                         zapped++;
2607                 }
2608         }
2609
2610         return zapped;
2611 }
2612
2613 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2614                                     struct list_head *invalid_list)
2615 {
2616         int ret;
2617
2618         trace_kvm_mmu_prepare_zap_page(sp);
2619         ++kvm->stat.mmu_shadow_zapped;
2620         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2621         kvm_mmu_page_unlink_children(kvm, sp);
2622         kvm_mmu_unlink_parents(kvm, sp);
2623
2624         if (!sp->role.invalid && !sp->role.direct)
2625                 unaccount_shadowed(kvm, sp);
2626
2627         if (sp->unsync)
2628                 kvm_unlink_unsync_page(kvm, sp);
2629         if (!sp->root_count) {
2630                 /* Count self */
2631                 ret++;
2632                 list_move(&sp->link, invalid_list);
2633                 kvm_mod_used_mmu_pages(kvm, -1);
2634         } else {
2635                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2636
2637                 /*
2638                  * The obsolete pages can not be used on any vcpus.
2639                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2640                  */
2641                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2642                         kvm_reload_remote_mmus(kvm);
2643         }
2644
2645         sp->role.invalid = 1;
2646         return ret;
2647 }
2648
2649 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2650                                     struct list_head *invalid_list)
2651 {
2652         struct kvm_mmu_page *sp, *nsp;
2653
2654         if (list_empty(invalid_list))
2655                 return;
2656
2657         /*
2658          * We need to make sure everyone sees our modifications to
2659          * the page tables and see changes to vcpu->mode here. The barrier
2660          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2661          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2662          *
2663          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2664          * guest mode and/or lockless shadow page table walks.
2665          */
2666         kvm_flush_remote_tlbs(kvm);
2667
2668         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2669                 WARN_ON(!sp->role.invalid || sp->root_count);
2670                 kvm_mmu_free_page(sp);
2671         }
2672 }
2673
2674 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2675                                         struct list_head *invalid_list)
2676 {
2677         struct kvm_mmu_page *sp;
2678
2679         if (list_empty(&kvm->arch.active_mmu_pages))
2680                 return false;
2681
2682         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2683                              struct kvm_mmu_page, link);
2684         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2685 }
2686
2687 /*
2688  * Changing the number of mmu pages allocated to the vm
2689  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2690  */
2691 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2692 {
2693         LIST_HEAD(invalid_list);
2694
2695         spin_lock(&kvm->mmu_lock);
2696
2697         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2698                 /* Need to free some mmu pages to achieve the goal. */
2699                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2700                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2701                                 break;
2702
2703                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2704                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2705         }
2706
2707         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2708
2709         spin_unlock(&kvm->mmu_lock);
2710 }
2711
2712 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2713 {
2714         struct kvm_mmu_page *sp;
2715         LIST_HEAD(invalid_list);
2716         int r;
2717
2718         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2719         r = 0;
2720         spin_lock(&kvm->mmu_lock);
2721         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2722                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2723                          sp->role.word);
2724                 r = 1;
2725                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2726         }
2727         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2728         spin_unlock(&kvm->mmu_lock);
2729
2730         return r;
2731 }
2732 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2733
2734 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2735 {
2736         trace_kvm_mmu_unsync_page(sp);
2737         ++vcpu->kvm->stat.mmu_unsync;
2738         sp->unsync = 1;
2739
2740         kvm_mmu_mark_parents_unsync(sp);
2741 }
2742
2743 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2744                                    bool can_unsync)
2745 {
2746         struct kvm_mmu_page *sp;
2747
2748         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2749                 return true;
2750
2751         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2752                 if (!can_unsync)
2753                         return true;
2754
2755                 if (sp->unsync)
2756                         continue;
2757
2758                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2759                 kvm_unsync_page(vcpu, sp);
2760         }
2761
2762         /*
2763          * We need to ensure that the marking of unsync pages is visible
2764          * before the SPTE is updated to allow writes because
2765          * kvm_mmu_sync_roots() checks the unsync flags without holding
2766          * the MMU lock and so can race with this. If the SPTE was updated
2767          * before the page had been marked as unsync-ed, something like the
2768          * following could happen:
2769          *
2770          * CPU 1                    CPU 2
2771          * ---------------------------------------------------------------------
2772          * 1.2 Host updates SPTE
2773          *     to be writable
2774          *                      2.1 Guest writes a GPTE for GVA X.
2775          *                          (GPTE being in the guest page table shadowed
2776          *                           by the SP from CPU 1.)
2777          *                          This reads SPTE during the page table walk.
2778          *                          Since SPTE.W is read as 1, there is no
2779          *                          fault.
2780          *
2781          *                      2.2 Guest issues TLB flush.
2782          *                          That causes a VM Exit.
2783          *
2784          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2785          *                          Since it is false, so it just returns.
2786          *
2787          *                      2.4 Guest accesses GVA X.
2788          *                          Since the mapping in the SP was not updated,
2789          *                          so the old mapping for GVA X incorrectly
2790          *                          gets used.
2791          * 1.1 Host marks SP
2792          *     as unsync
2793          *     (sp->unsync = true)
2794          *
2795          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2796          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2797          * pairs with this write barrier.
2798          */
2799         smp_wmb();
2800
2801         return false;
2802 }
2803
2804 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2805 {
2806         if (pfn_valid(pfn))
2807                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2808                         /*
2809                          * Some reserved pages, such as those from NVDIMM
2810                          * DAX devices, are not for MMIO, and can be mapped
2811                          * with cached memory type for better performance.
2812                          * However, the above check misconceives those pages
2813                          * as MMIO, and results in KVM mapping them with UC
2814                          * memory type, which would hurt the performance.
2815                          * Therefore, we check the host memory type in addition
2816                          * and only treat UC/UC-/WC pages as MMIO.
2817                          */
2818                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2819
2820         return true;
2821 }
2822
2823 /* Bits which may be returned by set_spte() */
2824 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
2825 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
2826
2827 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2828                     unsigned pte_access, int level,
2829                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2830                     bool can_unsync, bool host_writable)
2831 {
2832         u64 spte = 0;
2833         int ret = 0;
2834         struct kvm_mmu_page *sp;
2835
2836         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2837                 return 0;
2838
2839         sp = page_header(__pa(sptep));
2840         if (sp_ad_disabled(sp))
2841                 spte |= shadow_acc_track_value;
2842
2843         /*
2844          * For the EPT case, shadow_present_mask is 0 if hardware
2845          * supports exec-only page table entries.  In that case,
2846          * ACC_USER_MASK and shadow_user_mask are used to represent
2847          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2848          */
2849         spte |= shadow_present_mask;
2850         if (!speculative)
2851                 spte |= spte_shadow_accessed_mask(spte);
2852
2853         if (pte_access & ACC_EXEC_MASK)
2854                 spte |= shadow_x_mask;
2855         else
2856                 spte |= shadow_nx_mask;
2857
2858         if (pte_access & ACC_USER_MASK)
2859                 spte |= shadow_user_mask;
2860
2861         if (level > PT_PAGE_TABLE_LEVEL)
2862                 spte |= PT_PAGE_SIZE_MASK;
2863         if (tdp_enabled)
2864                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2865                         kvm_is_mmio_pfn(pfn));
2866
2867         if (host_writable)
2868                 spte |= SPTE_HOST_WRITEABLE;
2869         else
2870                 pte_access &= ~ACC_WRITE_MASK;
2871
2872         if (!kvm_is_mmio_pfn(pfn))
2873                 spte |= shadow_me_mask;
2874
2875         spte |= (u64)pfn << PAGE_SHIFT;
2876
2877         if (pte_access & ACC_WRITE_MASK) {
2878
2879                 /*
2880                  * Other vcpu creates new sp in the window between
2881                  * mapping_level() and acquiring mmu-lock. We can
2882                  * allow guest to retry the access, the mapping can
2883                  * be fixed if guest refault.
2884                  */
2885                 if (level > PT_PAGE_TABLE_LEVEL &&
2886                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2887                         goto done;
2888
2889                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2890
2891                 /*
2892                  * Optimization: for pte sync, if spte was writable the hash
2893                  * lookup is unnecessary (and expensive). Write protection
2894                  * is responsibility of mmu_get_page / kvm_sync_page.
2895                  * Same reasoning can be applied to dirty page accounting.
2896                  */
2897                 if (!can_unsync && is_writable_pte(*sptep))
2898                         goto set_pte;
2899
2900                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2901                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2902                                  __func__, gfn);
2903                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
2904                         pte_access &= ~ACC_WRITE_MASK;
2905                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2906                 }
2907         }
2908
2909         if (pte_access & ACC_WRITE_MASK) {
2910                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2911                 spte |= spte_shadow_dirty_mask(spte);
2912         }
2913
2914         if (speculative)
2915                 spte = mark_spte_for_access_track(spte);
2916
2917 set_pte:
2918         if (mmu_spte_update(sptep, spte))
2919                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2920 done:
2921         return ret;
2922 }
2923
2924 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2925                         int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2926                         bool speculative, bool host_writable)
2927 {
2928         int was_rmapped = 0;
2929         int rmap_count;
2930         int set_spte_ret;
2931         int ret = RET_PF_RETRY;
2932         bool flush = false;
2933
2934         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2935                  *sptep, write_fault, gfn);
2936
2937         if (is_shadow_present_pte(*sptep)) {
2938                 /*
2939                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2940                  * the parent of the now unreachable PTE.
2941                  */
2942                 if (level > PT_PAGE_TABLE_LEVEL &&
2943                     !is_large_pte(*sptep)) {
2944                         struct kvm_mmu_page *child;
2945                         u64 pte = *sptep;
2946
2947                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2948                         drop_parent_pte(child, sptep);
2949                         flush = true;
2950                 } else if (pfn != spte_to_pfn(*sptep)) {
2951                         pgprintk("hfn old %llx new %llx\n",
2952                                  spte_to_pfn(*sptep), pfn);
2953                         drop_spte(vcpu->kvm, sptep);
2954                         flush = true;
2955                 } else
2956                         was_rmapped = 1;
2957         }
2958
2959         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2960                                 speculative, true, host_writable);
2961         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2962                 if (write_fault)
2963                         ret = RET_PF_EMULATE;
2964                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2965         }
2966         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2967                 kvm_flush_remote_tlbs(vcpu->kvm);
2968
2969         if (unlikely(is_mmio_spte(*sptep)))
2970                 ret = RET_PF_EMULATE;
2971
2972         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2973         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2974                  is_large_pte(*sptep)? "2MB" : "4kB",
2975                  *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2976                  *sptep, sptep);
2977         if (!was_rmapped && is_large_pte(*sptep))
2978                 ++vcpu->kvm->stat.lpages;
2979
2980         if (is_shadow_present_pte(*sptep)) {
2981                 if (!was_rmapped) {
2982                         rmap_count = rmap_add(vcpu, sptep, gfn);
2983                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2984                                 rmap_recycle(vcpu, sptep, gfn);
2985                 }
2986         }
2987
2988         kvm_release_pfn_clean(pfn);
2989
2990         return ret;
2991 }
2992
2993 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2994                                      bool no_dirty_log)
2995 {
2996         struct kvm_memory_slot *slot;
2997
2998         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2999         if (!slot)
3000                 return KVM_PFN_ERR_FAULT;
3001
3002         return gfn_to_pfn_memslot_atomic(slot, gfn);
3003 }
3004
3005 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3006                                     struct kvm_mmu_page *sp,
3007                                     u64 *start, u64 *end)
3008 {
3009         struct page *pages[PTE_PREFETCH_NUM];
3010         struct kvm_memory_slot *slot;
3011         unsigned access = sp->role.access;
3012         int i, ret;
3013         gfn_t gfn;
3014
3015         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3016         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3017         if (!slot)
3018                 return -1;
3019
3020         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3021         if (ret <= 0)
3022                 return -1;
3023
3024         for (i = 0; i < ret; i++, gfn++, start++)
3025                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3026                              page_to_pfn(pages[i]), true, true);
3027
3028         return 0;
3029 }
3030
3031 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3032                                   struct kvm_mmu_page *sp, u64 *sptep)
3033 {
3034         u64 *spte, *start = NULL;
3035         int i;
3036
3037         WARN_ON(!sp->role.direct);
3038
3039         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3040         spte = sp->spt + i;
3041
3042         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3043                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3044                         if (!start)
3045                                 continue;
3046                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3047                                 break;
3048                         start = NULL;
3049                 } else if (!start)
3050                         start = spte;
3051         }
3052 }
3053
3054 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3055 {
3056         struct kvm_mmu_page *sp;
3057
3058         sp = page_header(__pa(sptep));
3059
3060         /*
3061          * Without accessed bits, there's no way to distinguish between
3062          * actually accessed translations and prefetched, so disable pte
3063          * prefetch if accessed bits aren't available.
3064          */
3065         if (sp_ad_disabled(sp))
3066                 return;
3067
3068         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3069                 return;
3070
3071         __direct_pte_prefetch(vcpu, sp, sptep);
3072 }
3073
3074 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
3075                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
3076 {
3077         struct kvm_shadow_walk_iterator iterator;
3078         struct kvm_mmu_page *sp;
3079         int emulate = 0;
3080         gfn_t pseudo_gfn;
3081
3082         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3083                 return 0;
3084
3085         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
3086                 if (iterator.level == level) {
3087                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
3088                                                write, level, gfn, pfn, prefault,
3089                                                map_writable);
3090                         direct_pte_prefetch(vcpu, iterator.sptep);
3091                         ++vcpu->stat.pf_fixed;
3092                         break;
3093                 }
3094
3095                 drop_large_spte(vcpu, iterator.sptep);
3096                 if (!is_shadow_present_pte(*iterator.sptep)) {
3097                         u64 base_addr = iterator.addr;
3098
3099                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
3100                         pseudo_gfn = base_addr >> PAGE_SHIFT;
3101                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
3102                                               iterator.level - 1, 1, ACC_ALL);
3103
3104                         link_shadow_page(vcpu, iterator.sptep, sp);
3105                 }
3106         }
3107         return emulate;
3108 }
3109
3110 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3111 {
3112         siginfo_t info;
3113
3114         clear_siginfo(&info);
3115         info.si_signo   = SIGBUS;
3116         info.si_errno   = 0;
3117         info.si_code    = BUS_MCEERR_AR;
3118         info.si_addr    = (void __user *)address;
3119         info.si_addr_lsb = PAGE_SHIFT;
3120
3121         send_sig_info(SIGBUS, &info, tsk);
3122 }
3123
3124 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3125 {
3126         /*
3127          * Do not cache the mmio info caused by writing the readonly gfn
3128          * into the spte otherwise read access on readonly gfn also can
3129          * caused mmio page fault and treat it as mmio access.
3130          */
3131         if (pfn == KVM_PFN_ERR_RO_FAULT)
3132                 return RET_PF_EMULATE;
3133
3134         if (pfn == KVM_PFN_ERR_HWPOISON) {
3135                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3136                 return RET_PF_RETRY;
3137         }
3138
3139         return -EFAULT;
3140 }
3141
3142 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3143                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
3144                                         int *levelp)
3145 {
3146         kvm_pfn_t pfn = *pfnp;
3147         gfn_t gfn = *gfnp;
3148         int level = *levelp;
3149
3150         /*
3151          * Check if it's a transparent hugepage. If this would be an
3152          * hugetlbfs page, level wouldn't be set to
3153          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3154          * here.
3155          */
3156         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3157             level == PT_PAGE_TABLE_LEVEL &&
3158             PageTransCompoundMap(pfn_to_page(pfn)) &&
3159             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3160                 unsigned long mask;
3161                 /*
3162                  * mmu_notifier_retry was successful and we hold the
3163                  * mmu_lock here, so the pmd can't become splitting
3164                  * from under us, and in turn
3165                  * __split_huge_page_refcount() can't run from under
3166                  * us and we can safely transfer the refcount from
3167                  * PG_tail to PG_head as we switch the pfn to tail to
3168                  * head.
3169                  */
3170                 *levelp = level = PT_DIRECTORY_LEVEL;
3171                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3172                 VM_BUG_ON((gfn & mask) != (pfn & mask));
3173                 if (pfn & mask) {
3174                         gfn &= ~mask;
3175                         *gfnp = gfn;
3176                         kvm_release_pfn_clean(pfn);
3177                         pfn &= ~mask;
3178                         kvm_get_pfn(pfn);
3179                         *pfnp = pfn;
3180                 }
3181         }
3182 }
3183
3184 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3185                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
3186 {
3187         /* The pfn is invalid, report the error! */
3188         if (unlikely(is_error_pfn(pfn))) {
3189                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3190                 return true;
3191         }
3192
3193         if (unlikely(is_noslot_pfn(pfn)))
3194                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3195
3196         return false;
3197 }
3198
3199 static bool page_fault_can_be_fast(u32 error_code)
3200 {
3201         /*
3202          * Do not fix the mmio spte with invalid generation number which
3203          * need to be updated by slow page fault path.
3204          */
3205         if (unlikely(error_code & PFERR_RSVD_MASK))
3206                 return false;
3207
3208         /* See if the page fault is due to an NX violation */
3209         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3210                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3211                 return false;
3212
3213         /*
3214          * #PF can be fast if:
3215          * 1. The shadow page table entry is not present, which could mean that
3216          *    the fault is potentially caused by access tracking (if enabled).
3217          * 2. The shadow page table entry is present and the fault
3218          *    is caused by write-protect, that means we just need change the W
3219          *    bit of the spte which can be done out of mmu-lock.
3220          *
3221          * However, if access tracking is disabled we know that a non-present
3222          * page must be a genuine page fault where we have to create a new SPTE.
3223          * So, if access tracking is disabled, we return true only for write
3224          * accesses to a present page.
3225          */
3226
3227         return shadow_acc_track_mask != 0 ||
3228                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3229                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3230 }
3231
3232 /*
3233  * Returns true if the SPTE was fixed successfully. Otherwise,
3234  * someone else modified the SPTE from its original value.
3235  */
3236 static bool
3237 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3238                         u64 *sptep, u64 old_spte, u64 new_spte)
3239 {
3240         gfn_t gfn;
3241
3242         WARN_ON(!sp->role.direct);
3243
3244         /*
3245          * Theoretically we could also set dirty bit (and flush TLB) here in
3246          * order to eliminate unnecessary PML logging. See comments in
3247          * set_spte. But fast_page_fault is very unlikely to happen with PML
3248          * enabled, so we do not do this. This might result in the same GPA
3249          * to be logged in PML buffer again when the write really happens, and
3250          * eventually to be called by mark_page_dirty twice. But it's also no
3251          * harm. This also avoids the TLB flush needed after setting dirty bit
3252          * so non-PML cases won't be impacted.
3253          *
3254          * Compare with set_spte where instead shadow_dirty_mask is set.
3255          */
3256         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3257                 return false;
3258
3259         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3260                 /*
3261                  * The gfn of direct spte is stable since it is
3262                  * calculated by sp->gfn.
3263                  */
3264                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3265                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3266         }
3267
3268         return true;
3269 }
3270
3271 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3272 {
3273         if (fault_err_code & PFERR_FETCH_MASK)
3274                 return is_executable_pte(spte);
3275
3276         if (fault_err_code & PFERR_WRITE_MASK)
3277                 return is_writable_pte(spte);
3278
3279         /* Fault was on Read access */
3280         return spte & PT_PRESENT_MASK;
3281 }
3282
3283 /*
3284  * Return value:
3285  * - true: let the vcpu to access on the same address again.
3286  * - false: let the real page fault path to fix it.
3287  */
3288 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3289                             u32 error_code)
3290 {
3291         struct kvm_shadow_walk_iterator iterator;
3292         struct kvm_mmu_page *sp;
3293         bool fault_handled = false;
3294         u64 spte = 0ull;
3295         uint retry_count = 0;
3296
3297         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3298                 return false;
3299
3300         if (!page_fault_can_be_fast(error_code))
3301                 return false;
3302
3303         walk_shadow_page_lockless_begin(vcpu);
3304
3305         do {
3306                 u64 new_spte;
3307
3308                 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3309                         if (!is_shadow_present_pte(spte) ||
3310                             iterator.level < level)
3311                                 break;
3312
3313                 sp = page_header(__pa(iterator.sptep));
3314                 if (!is_last_spte(spte, sp->role.level))
3315                         break;
3316
3317                 /*
3318                  * Check whether the memory access that caused the fault would
3319                  * still cause it if it were to be performed right now. If not,
3320                  * then this is a spurious fault caused by TLB lazily flushed,
3321                  * or some other CPU has already fixed the PTE after the
3322                  * current CPU took the fault.
3323                  *
3324                  * Need not check the access of upper level table entries since
3325                  * they are always ACC_ALL.
3326                  */
3327                 if (is_access_allowed(error_code, spte)) {
3328                         fault_handled = true;
3329                         break;
3330                 }
3331
3332                 new_spte = spte;
3333
3334                 if (is_access_track_spte(spte))
3335                         new_spte = restore_acc_track_spte(new_spte);
3336
3337                 /*
3338                  * Currently, to simplify the code, write-protection can
3339                  * be removed in the fast path only if the SPTE was
3340                  * write-protected for dirty-logging or access tracking.
3341                  */
3342                 if ((error_code & PFERR_WRITE_MASK) &&
3343                     spte_can_locklessly_be_made_writable(spte))
3344                 {
3345                         new_spte |= PT_WRITABLE_MASK;
3346
3347                         /*
3348                          * Do not fix write-permission on the large spte.  Since
3349                          * we only dirty the first page into the dirty-bitmap in
3350                          * fast_pf_fix_direct_spte(), other pages are missed
3351                          * if its slot has dirty logging enabled.
3352                          *
3353                          * Instead, we let the slow page fault path create a
3354                          * normal spte to fix the access.
3355                          *
3356                          * See the comments in kvm_arch_commit_memory_region().
3357                          */
3358                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3359                                 break;
3360                 }
3361
3362                 /* Verify that the fault can be handled in the fast path */
3363                 if (new_spte == spte ||
3364                     !is_access_allowed(error_code, new_spte))
3365                         break;
3366
3367                 /*
3368                  * Currently, fast page fault only works for direct mapping
3369                  * since the gfn is not stable for indirect shadow page. See
3370                  * Documentation/virtual/kvm/locking.txt to get more detail.
3371                  */
3372                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3373                                                         iterator.sptep, spte,
3374                                                         new_spte);
3375                 if (fault_handled)
3376                         break;
3377
3378                 if (++retry_count > 4) {
3379                         printk_once(KERN_WARNING
3380                                 "kvm: Fast #PF retrying more than 4 times.\n");
3381                         break;
3382                 }
3383
3384         } while (true);
3385
3386         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3387                               spte, fault_handled);
3388         walk_shadow_page_lockless_end(vcpu);
3389
3390         return fault_handled;
3391 }
3392
3393 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3394                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3395 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3396
3397 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3398                          gfn_t gfn, bool prefault)
3399 {
3400         int r;
3401         int level;
3402         bool force_pt_level = false;
3403         kvm_pfn_t pfn;
3404         unsigned long mmu_seq;
3405         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3406
3407         level = mapping_level(vcpu, gfn, &force_pt_level);
3408         if (likely(!force_pt_level)) {
3409                 /*
3410                  * This path builds a PAE pagetable - so we can map
3411                  * 2mb pages at maximum. Therefore check if the level
3412                  * is larger than that.
3413                  */
3414                 if (level > PT_DIRECTORY_LEVEL)
3415                         level = PT_DIRECTORY_LEVEL;
3416
3417                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3418         }
3419
3420         if (fast_page_fault(vcpu, v, level, error_code))
3421                 return RET_PF_RETRY;
3422
3423         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3424         smp_rmb();
3425
3426         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3427                 return RET_PF_RETRY;
3428
3429         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3430                 return r;
3431
3432         spin_lock(&vcpu->kvm->mmu_lock);
3433         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3434                 goto out_unlock;
3435         if (make_mmu_pages_available(vcpu) < 0)
3436                 goto out_unlock;
3437         if (likely(!force_pt_level))
3438                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3439         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3440         spin_unlock(&vcpu->kvm->mmu_lock);
3441
3442         return r;
3443
3444 out_unlock:
3445         spin_unlock(&vcpu->kvm->mmu_lock);
3446         kvm_release_pfn_clean(pfn);
3447         return RET_PF_RETRY;
3448 }
3449
3450 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3451                                struct list_head *invalid_list)
3452 {
3453         struct kvm_mmu_page *sp;
3454
3455         if (!VALID_PAGE(*root_hpa))
3456                 return;
3457
3458         sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3459         --sp->root_count;
3460         if (!sp->root_count && sp->role.invalid)
3461                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3462
3463         *root_hpa = INVALID_PAGE;
3464 }
3465
3466 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3467 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, ulong roots_to_free)
3468 {
3469         int i;
3470         LIST_HEAD(invalid_list);
3471         struct kvm_mmu *mmu = &vcpu->arch.mmu;
3472         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3473
3474         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3475
3476         /* Before acquiring the MMU lock, see if we need to do any real work. */
3477         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3478                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3479                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3480                             VALID_PAGE(mmu->prev_roots[i].hpa))
3481                                 break;
3482
3483                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3484                         return;
3485         }
3486
3487         spin_lock(&vcpu->kvm->mmu_lock);
3488
3489         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3490                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3491                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3492                                            &invalid_list);
3493
3494         if (free_active_root) {
3495                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3496                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3497                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3498                                            &invalid_list);
3499                 } else {
3500                         for (i = 0; i < 4; ++i)
3501                                 if (mmu->pae_root[i] != 0)
3502                                         mmu_free_root_page(vcpu->kvm,
3503                                                            &mmu->pae_root[i],
3504                                                            &invalid_list);
3505                         mmu->root_hpa = INVALID_PAGE;
3506                 }
3507         }
3508
3509         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3510         spin_unlock(&vcpu->kvm->mmu_lock);
3511 }
3512 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3513
3514 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3515 {
3516         int ret = 0;
3517
3518         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3519                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3520                 ret = 1;
3521         }
3522
3523         return ret;
3524 }
3525
3526 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3527 {
3528         struct kvm_mmu_page *sp;
3529         unsigned i;
3530
3531         if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3532                 spin_lock(&vcpu->kvm->mmu_lock);
3533                 if(make_mmu_pages_available(vcpu) < 0) {
3534                         spin_unlock(&vcpu->kvm->mmu_lock);
3535                         return -ENOSPC;
3536                 }
3537                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3538                                 vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3539                 ++sp->root_count;
3540                 spin_unlock(&vcpu->kvm->mmu_lock);
3541                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3542         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3543                 for (i = 0; i < 4; ++i) {
3544                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3545
3546                         MMU_WARN_ON(VALID_PAGE(root));
3547                         spin_lock(&vcpu->kvm->mmu_lock);
3548                         if (make_mmu_pages_available(vcpu) < 0) {
3549                                 spin_unlock(&vcpu->kvm->mmu_lock);
3550                                 return -ENOSPC;
3551                         }
3552                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3553                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3554                         root = __pa(sp->spt);
3555                         ++sp->root_count;
3556                         spin_unlock(&vcpu->kvm->mmu_lock);
3557                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3558                 }
3559                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3560         } else
3561                 BUG();
3562
3563         return 0;
3564 }
3565
3566 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3567 {
3568         struct kvm_mmu_page *sp;
3569         u64 pdptr, pm_mask;
3570         gfn_t root_gfn;
3571         int i;
3572
3573         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3574
3575         if (mmu_check_root(vcpu, root_gfn))
3576                 return 1;
3577
3578         /*
3579          * Do we shadow a long mode page table? If so we need to
3580          * write-protect the guests page table root.
3581          */
3582         if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3583                 hpa_t root = vcpu->arch.mmu.root_hpa;
3584
3585                 MMU_WARN_ON(VALID_PAGE(root));
3586
3587                 spin_lock(&vcpu->kvm->mmu_lock);
3588                 if (make_mmu_pages_available(vcpu) < 0) {
3589                         spin_unlock(&vcpu->kvm->mmu_lock);
3590                         return -ENOSPC;
3591                 }
3592                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3593                                 vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3594                 root = __pa(sp->spt);
3595                 ++sp->root_count;
3596                 spin_unlock(&vcpu->kvm->mmu_lock);
3597                 vcpu->arch.mmu.root_hpa = root;
3598                 return 0;
3599         }
3600
3601         /*
3602          * We shadow a 32 bit page table. This may be a legacy 2-level
3603          * or a PAE 3-level page table. In either case we need to be aware that
3604          * the shadow page table may be a PAE or a long mode page table.
3605          */
3606         pm_mask = PT_PRESENT_MASK;
3607         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3608                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3609
3610         for (i = 0; i < 4; ++i) {
3611                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3612
3613                 MMU_WARN_ON(VALID_PAGE(root));
3614                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3615                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3616                         if (!(pdptr & PT_PRESENT_MASK)) {
3617                                 vcpu->arch.mmu.pae_root[i] = 0;
3618                                 continue;
3619                         }
3620                         root_gfn = pdptr >> PAGE_SHIFT;
3621                         if (mmu_check_root(vcpu, root_gfn))
3622                                 return 1;
3623                 }
3624                 spin_lock(&vcpu->kvm->mmu_lock);
3625                 if (make_mmu_pages_available(vcpu) < 0) {
3626                         spin_unlock(&vcpu->kvm->mmu_lock);
3627                         return -ENOSPC;
3628                 }
3629                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3630                                       0, ACC_ALL);
3631                 root = __pa(sp->spt);
3632                 ++sp->root_count;
3633                 spin_unlock(&vcpu->kvm->mmu_lock);
3634
3635                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3636         }
3637         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3638
3639         /*
3640          * If we shadow a 32 bit page table with a long mode page
3641          * table we enter this path.
3642          */
3643         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3644                 if (vcpu->arch.mmu.lm_root == NULL) {
3645                         /*
3646                          * The additional page necessary for this is only
3647                          * allocated on demand.
3648                          */
3649
3650                         u64 *lm_root;
3651
3652                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3653                         if (lm_root == NULL)
3654                                 return 1;
3655
3656                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3657
3658                         vcpu->arch.mmu.lm_root = lm_root;
3659                 }
3660
3661                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3662         }
3663
3664         return 0;
3665 }
3666
3667 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3668 {
3669         if (vcpu->arch.mmu.direct_map)
3670                 return mmu_alloc_direct_roots(vcpu);
3671         else
3672                 return mmu_alloc_shadow_roots(vcpu);
3673 }
3674
3675 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3676 {
3677         int i;
3678         struct kvm_mmu_page *sp;
3679
3680         if (vcpu->arch.mmu.direct_map)
3681                 return;
3682
3683         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3684                 return;
3685
3686         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3687
3688         if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3689                 hpa_t root = vcpu->arch.mmu.root_hpa;
3690
3691                 sp = page_header(root);
3692
3693                 /*
3694                  * Even if another CPU was marking the SP as unsync-ed
3695                  * simultaneously, any guest page table changes are not
3696                  * guaranteed to be visible anyway until this VCPU issues a TLB
3697                  * flush strictly after those changes are made. We only need to
3698                  * ensure that the other CPU sets these flags before any actual
3699                  * changes to the page tables are made. The comments in
3700                  * mmu_need_write_protect() describe what could go wrong if this
3701                  * requirement isn't satisfied.
3702                  */
3703                 if (!smp_load_acquire(&sp->unsync) &&
3704                     !smp_load_acquire(&sp->unsync_children))
3705                         return;
3706
3707                 spin_lock(&vcpu->kvm->mmu_lock);
3708                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3709
3710                 mmu_sync_children(vcpu, sp);
3711
3712                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3713                 spin_unlock(&vcpu->kvm->mmu_lock);
3714                 return;
3715         }
3716
3717         spin_lock(&vcpu->kvm->mmu_lock);
3718         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3719
3720         for (i = 0; i < 4; ++i) {
3721                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3722
3723                 if (root && VALID_PAGE(root)) {
3724                         root &= PT64_BASE_ADDR_MASK;
3725                         sp = page_header(root);
3726                         mmu_sync_children(vcpu, sp);
3727                 }
3728         }
3729
3730         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3731         spin_unlock(&vcpu->kvm->mmu_lock);
3732 }
3733 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3734
3735 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3736                                   u32 access, struct x86_exception *exception)
3737 {
3738         if (exception)
3739                 exception->error_code = 0;
3740         return vaddr;
3741 }
3742
3743 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3744                                          u32 access,
3745                                          struct x86_exception *exception)
3746 {
3747         if (exception)
3748                 exception->error_code = 0;
3749         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3750 }
3751
3752 static bool
3753 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3754 {
3755         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3756
3757         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3758                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3759 }
3760
3761 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3762 {
3763         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3764 }
3765
3766 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3767 {
3768         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3769 }
3770
3771 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3772 {
3773         /*
3774          * A nested guest cannot use the MMIO cache if it is using nested
3775          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3776          */
3777         if (mmu_is_nested(vcpu))
3778                 return false;
3779
3780         if (direct)
3781                 return vcpu_match_mmio_gpa(vcpu, addr);
3782
3783         return vcpu_match_mmio_gva(vcpu, addr);
3784 }
3785
3786 /* return true if reserved bit is detected on spte. */
3787 static bool
3788 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3789 {
3790         struct kvm_shadow_walk_iterator iterator;
3791         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3792         int root, leaf;
3793         bool reserved = false;
3794
3795         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3796                 goto exit;
3797
3798         walk_shadow_page_lockless_begin(vcpu);
3799
3800         for (shadow_walk_init(&iterator, vcpu, addr),
3801                  leaf = root = iterator.level;
3802              shadow_walk_okay(&iterator);
3803              __shadow_walk_next(&iterator, spte)) {
3804                 spte = mmu_spte_get_lockless(iterator.sptep);
3805
3806                 sptes[leaf - 1] = spte;
3807                 leaf--;
3808
3809                 if (!is_shadow_present_pte(spte))
3810                         break;
3811
3812                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3813                                                     iterator.level);
3814         }
3815
3816         walk_shadow_page_lockless_end(vcpu);
3817
3818         if (reserved) {
3819                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3820                        __func__, addr);
3821                 while (root > leaf) {
3822                         pr_err("------ spte 0x%llx level %d.\n",
3823                                sptes[root - 1], root);
3824                         root--;
3825                 }
3826         }
3827 exit:
3828         *sptep = spte;
3829         return reserved;
3830 }
3831
3832 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3833 {
3834         u64 spte;
3835         bool reserved;
3836
3837         if (mmio_info_in_cache(vcpu, addr, direct))
3838                 return RET_PF_EMULATE;
3839
3840         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3841         if (WARN_ON(reserved))
3842                 return -EINVAL;
3843
3844         if (is_mmio_spte(spte)) {
3845                 gfn_t gfn = get_mmio_spte_gfn(spte);
3846                 unsigned access = get_mmio_spte_access(spte);
3847
3848                 if (!check_mmio_spte(vcpu, spte))
3849                         return RET_PF_INVALID;
3850
3851                 if (direct)
3852                         addr = 0;
3853
3854                 trace_handle_mmio_page_fault(addr, gfn, access);
3855                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3856                 return RET_PF_EMULATE;
3857         }
3858
3859         /*
3860          * If the page table is zapped by other cpus, let CPU fault again on
3861          * the address.
3862          */
3863         return RET_PF_RETRY;
3864 }
3865
3866 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3867                                          u32 error_code, gfn_t gfn)
3868 {
3869         if (unlikely(error_code & PFERR_RSVD_MASK))
3870                 return false;
3871
3872         if (!(error_code & PFERR_PRESENT_MASK) ||
3873               !(error_code & PFERR_WRITE_MASK))
3874                 return false;
3875
3876         /*
3877          * guest is writing the page which is write tracked which can
3878          * not be fixed by page fault handler.
3879          */
3880         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3881                 return true;
3882
3883         return false;
3884 }
3885
3886 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3887 {
3888         struct kvm_shadow_walk_iterator iterator;
3889         u64 spte;
3890
3891         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3892                 return;
3893
3894         walk_shadow_page_lockless_begin(vcpu);
3895         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3896                 clear_sp_write_flooding_count(iterator.sptep);
3897                 if (!is_shadow_present_pte(spte))
3898                         break;
3899         }
3900         walk_shadow_page_lockless_end(vcpu);
3901 }
3902
3903 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3904                                 u32 error_code, bool prefault)
3905 {
3906         gfn_t gfn = gva >> PAGE_SHIFT;
3907         int r;
3908
3909         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3910
3911         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3912                 return RET_PF_EMULATE;
3913
3914         r = mmu_topup_memory_caches(vcpu);
3915         if (r)
3916                 return r;
3917
3918         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3919
3920
3921         return nonpaging_map(vcpu, gva & PAGE_MASK,
3922                              error_code, gfn, prefault);
3923 }
3924
3925 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3926 {
3927         struct kvm_arch_async_pf arch;
3928
3929         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3930         arch.gfn = gfn;
3931         arch.direct_map = vcpu->arch.mmu.direct_map;
3932         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3933
3934         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3935 }
3936
3937 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3938 {
3939         if (unlikely(!lapic_in_kernel(vcpu) ||
3940                      kvm_event_needs_reinjection(vcpu) ||
3941                      vcpu->arch.exception.pending))
3942                 return false;
3943
3944         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3945                 return false;
3946
3947         return kvm_x86_ops->interrupt_allowed(vcpu);
3948 }
3949
3950 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3951                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3952 {
3953         struct kvm_memory_slot *slot;
3954         bool async;
3955
3956         /*
3957          * Don't expose private memslots to L2.
3958          */
3959         if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
3960                 *pfn = KVM_PFN_NOSLOT;
3961                 return false;
3962         }
3963
3964         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3965         async = false;
3966         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3967         if (!async)
3968                 return false; /* *pfn has correct page already */
3969
3970         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3971                 trace_kvm_try_async_get_page(gva, gfn);
3972                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3973                         trace_kvm_async_pf_doublefault(gva, gfn);
3974                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3975                         return true;
3976                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3977                         return true;
3978         }
3979
3980         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3981         return false;
3982 }
3983
3984 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3985                                 u64 fault_address, char *insn, int insn_len)
3986 {
3987         int r = 1;
3988
3989         vcpu->arch.l1tf_flush_l1d = true;
3990         switch (vcpu->arch.apf.host_apf_reason) {
3991         default:
3992                 trace_kvm_page_fault(fault_address, error_code);
3993
3994                 if (kvm_event_needs_reinjection(vcpu))
3995                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3996                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3997                                 insn_len);
3998                 break;
3999         case KVM_PV_REASON_PAGE_NOT_PRESENT:
4000                 vcpu->arch.apf.host_apf_reason = 0;
4001                 local_irq_disable();
4002                 kvm_async_pf_task_wait(fault_address, 0);
4003                 local_irq_enable();
4004                 break;
4005         case KVM_PV_REASON_PAGE_READY:
4006                 vcpu->arch.apf.host_apf_reason = 0;
4007                 local_irq_disable();
4008                 kvm_async_pf_task_wake(fault_address);
4009                 local_irq_enable();
4010                 break;
4011         }
4012         return r;
4013 }
4014 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4015
4016 static bool
4017 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4018 {
4019         int page_num = KVM_PAGES_PER_HPAGE(level);
4020
4021         gfn &= ~(page_num - 1);
4022
4023         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4024 }
4025
4026 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4027                           bool prefault)
4028 {
4029         kvm_pfn_t pfn;
4030         int r;
4031         int level;
4032         bool force_pt_level;
4033         gfn_t gfn = gpa >> PAGE_SHIFT;
4034         unsigned long mmu_seq;
4035         int write = error_code & PFERR_WRITE_MASK;
4036         bool map_writable;
4037
4038         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4039
4040         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4041                 return RET_PF_EMULATE;
4042
4043         r = mmu_topup_memory_caches(vcpu);
4044         if (r)
4045                 return r;
4046
4047         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4048                                                            PT_DIRECTORY_LEVEL);
4049         level = mapping_level(vcpu, gfn, &force_pt_level);
4050         if (likely(!force_pt_level)) {
4051                 if (level > PT_DIRECTORY_LEVEL &&
4052                     !check_hugepage_cache_consistency(vcpu, gfn, level))
4053                         level = PT_DIRECTORY_LEVEL;
4054                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4055         }
4056
4057         if (fast_page_fault(vcpu, gpa, level, error_code))
4058                 return RET_PF_RETRY;
4059
4060         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4061         smp_rmb();
4062
4063         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4064                 return RET_PF_RETRY;
4065
4066         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4067                 return r;
4068
4069         spin_lock(&vcpu->kvm->mmu_lock);
4070         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4071                 goto out_unlock;
4072         if (make_mmu_pages_available(vcpu) < 0)
4073                 goto out_unlock;
4074         if (likely(!force_pt_level))
4075                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
4076         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
4077         spin_unlock(&vcpu->kvm->mmu_lock);
4078
4079         return r;
4080
4081 out_unlock:
4082         spin_unlock(&vcpu->kvm->mmu_lock);
4083         kvm_release_pfn_clean(pfn);
4084         return RET_PF_RETRY;
4085 }
4086
4087 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4088                                    struct kvm_mmu *context)
4089 {
4090         context->page_fault = nonpaging_page_fault;
4091         context->gva_to_gpa = nonpaging_gva_to_gpa;
4092         context->sync_page = nonpaging_sync_page;
4093         context->invlpg = nonpaging_invlpg;
4094         context->update_pte = nonpaging_update_pte;
4095         context->root_level = 0;
4096         context->shadow_root_level = PT32E_ROOT_LEVEL;
4097         context->direct_map = true;
4098         context->nx = false;
4099 }
4100
4101 /*
4102  * Find out if a previously cached root matching the new CR3/role is available.
4103  * The current root is also inserted into the cache.
4104  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4105  * returned.
4106  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4107  * false is returned. This root should now be freed by the caller.
4108  */
4109 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4110                                   union kvm_mmu_page_role new_role)
4111 {
4112         uint i;
4113         struct kvm_mmu_root_info root;
4114         struct kvm_mmu *mmu = &vcpu->arch.mmu;
4115
4116         root.cr3 = mmu->get_cr3(vcpu);
4117         root.hpa = mmu->root_hpa;
4118
4119         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4120                 swap(root, mmu->prev_roots[i]);
4121
4122                 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4123                     page_header(root.hpa) != NULL &&
4124                     new_role.word == page_header(root.hpa)->role.word)
4125                         break;
4126         }
4127
4128         mmu->root_hpa = root.hpa;
4129
4130         return i < KVM_MMU_NUM_PREV_ROOTS;
4131 }
4132
4133 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4134                             union kvm_mmu_page_role new_role,
4135                             bool skip_tlb_flush)
4136 {
4137         struct kvm_mmu *mmu = &vcpu->arch.mmu;
4138
4139         /*
4140          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4141          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4142          * later if necessary.
4143          */
4144         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4145             mmu->root_level >= PT64_ROOT_4LEVEL) {
4146                 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4147                         return false;
4148
4149                 if (cached_root_available(vcpu, new_cr3, new_role)) {
4150                         /*
4151                          * It is possible that the cached previous root page is
4152                          * obsolete because of a change in the MMU
4153                          * generation number. However, that is accompanied by
4154                          * KVM_REQ_MMU_RELOAD, which will free the root that we
4155                          * have set here and allocate a new one.
4156                          */
4157
4158                         kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4159                         if (!skip_tlb_flush) {
4160                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4161                                 kvm_x86_ops->tlb_flush(vcpu, true);
4162                         }
4163
4164                         /*
4165                          * The last MMIO access's GVA and GPA are cached in the
4166                          * VCPU. When switching to a new CR3, that GVA->GPA
4167                          * mapping may no longer be valid. So clear any cached
4168                          * MMIO info even when we don't need to sync the shadow
4169                          * page tables.
4170                          */
4171                         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4172
4173                         __clear_sp_write_flooding_count(
4174                                 page_header(mmu->root_hpa));
4175
4176                         return true;
4177                 }
4178         }
4179
4180         return false;
4181 }
4182
4183 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4184                               union kvm_mmu_page_role new_role,
4185                               bool skip_tlb_flush)
4186 {
4187         if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4188                 kvm_mmu_free_roots(vcpu, KVM_MMU_ROOT_CURRENT);
4189 }
4190
4191 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4192 {
4193         __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4194                           skip_tlb_flush);
4195 }
4196 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4197
4198 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4199 {
4200         return kvm_read_cr3(vcpu);
4201 }
4202
4203 static void inject_page_fault(struct kvm_vcpu *vcpu,
4204                               struct x86_exception *fault)
4205 {
4206         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
4207 }
4208
4209 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4210                            unsigned access, int *nr_present)
4211 {
4212         if (unlikely(is_mmio_spte(*sptep))) {
4213                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4214                         mmu_spte_clear_no_track(sptep);
4215                         return true;
4216                 }
4217
4218                 (*nr_present)++;
4219                 mark_mmio_spte(vcpu, sptep, gfn, access);
4220                 return true;
4221         }
4222
4223         return false;
4224 }
4225
4226 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4227                                 unsigned level, unsigned gpte)
4228 {
4229         /*
4230          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4231          * If it is clear, there are no large pages at this level, so clear
4232          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4233          */
4234         gpte &= level - mmu->last_nonleaf_level;
4235
4236         /*
4237          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4238          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4239          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4240          */
4241         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4242
4243         return gpte & PT_PAGE_SIZE_MASK;
4244 }
4245
4246 #define PTTYPE_EPT 18 /* arbitrary */
4247 #define PTTYPE PTTYPE_EPT
4248 #include "paging_tmpl.h"
4249 #undef PTTYPE
4250
4251 #define PTTYPE 64
4252 #include "paging_tmpl.h"
4253 #undef PTTYPE
4254
4255 #define PTTYPE 32
4256 #include "paging_tmpl.h"
4257 #undef PTTYPE
4258
4259 static void
4260 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4261                         struct rsvd_bits_validate *rsvd_check,
4262                         int maxphyaddr, int level, bool nx, bool gbpages,
4263                         bool pse, bool amd)
4264 {
4265         u64 exb_bit_rsvd = 0;
4266         u64 gbpages_bit_rsvd = 0;
4267         u64 nonleaf_bit8_rsvd = 0;
4268
4269         rsvd_check->bad_mt_xwr = 0;
4270
4271         if (!nx)
4272                 exb_bit_rsvd = rsvd_bits(63, 63);
4273         if (!gbpages)
4274                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4275
4276         /*
4277          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4278          * leaf entries) on AMD CPUs only.
4279          */
4280         if (amd)
4281                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4282
4283         switch (level) {
4284         case PT32_ROOT_LEVEL:
4285                 /* no rsvd bits for 2 level 4K page table entries */
4286                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4287                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4288                 rsvd_check->rsvd_bits_mask[1][0] =
4289                         rsvd_check->rsvd_bits_mask[0][0];
4290
4291                 if (!pse) {
4292                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4293                         break;
4294                 }
4295
4296                 if (is_cpuid_PSE36())
4297                         /* 36bits PSE 4MB page */
4298                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4299                 else
4300                         /* 32 bits PSE 4MB page */
4301                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4302                 break;
4303         case PT32E_ROOT_LEVEL:
4304                 rsvd_check->rsvd_bits_mask[0][2] =
4305                         rsvd_bits(maxphyaddr, 63) |
4306                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4307                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4308                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4309                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4310                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4311                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4312                         rsvd_bits(maxphyaddr, 62) |
4313                         rsvd_bits(13, 20);              /* large page */
4314                 rsvd_check->rsvd_bits_mask[1][0] =
4315                         rsvd_check->rsvd_bits_mask[0][0];
4316                 break;
4317         case PT64_ROOT_5LEVEL:
4318                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4319                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4320                         rsvd_bits(maxphyaddr, 51);
4321                 rsvd_check->rsvd_bits_mask[1][4] =
4322                         rsvd_check->rsvd_bits_mask[0][4];
4323         case PT64_ROOT_4LEVEL:
4324                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4325                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4326                         rsvd_bits(maxphyaddr, 51);
4327                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4328                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4329                         rsvd_bits(maxphyaddr, 51);
4330                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4331                         rsvd_bits(maxphyaddr, 51);
4332                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4333                         rsvd_bits(maxphyaddr, 51);
4334                 rsvd_check->rsvd_bits_mask[1][3] =
4335                         rsvd_check->rsvd_bits_mask[0][3];
4336                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4337                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4338                         rsvd_bits(13, 29);
4339                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4340                         rsvd_bits(maxphyaddr, 51) |
4341                         rsvd_bits(13, 20);              /* large page */
4342                 rsvd_check->rsvd_bits_mask[1][0] =
4343                         rsvd_check->rsvd_bits_mask[0][0];
4344                 break;
4345         }
4346 }
4347
4348 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4349                                   struct kvm_mmu *context)
4350 {
4351         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4352                                 cpuid_maxphyaddr(vcpu), context->root_level,
4353                                 context->nx,
4354                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4355                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4356 }
4357
4358 static void
4359 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4360                             int maxphyaddr, bool execonly)
4361 {
4362         u64 bad_mt_xwr;
4363
4364         rsvd_check->rsvd_bits_mask[0][4] =
4365                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4366         rsvd_check->rsvd_bits_mask[0][3] =
4367                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4368         rsvd_check->rsvd_bits_mask[0][2] =
4369                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4370         rsvd_check->rsvd_bits_mask[0][1] =
4371                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4372         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4373
4374         /* large page */
4375         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4376         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4377         rsvd_check->rsvd_bits_mask[1][2] =
4378                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4379         rsvd_check->rsvd_bits_mask[1][1] =
4380                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4381         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4382
4383         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4384         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4385         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4386         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4387         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4388         if (!execonly) {
4389                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4390                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4391         }
4392         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4393 }
4394
4395 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4396                 struct kvm_mmu *context, bool execonly)
4397 {
4398         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4399                                     cpuid_maxphyaddr(vcpu), execonly);
4400 }
4401
4402 /*
4403  * the page table on host is the shadow page table for the page
4404  * table in guest or amd nested guest, its mmu features completely
4405  * follow the features in guest.
4406  */
4407 void
4408 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4409 {
4410         bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4411         struct rsvd_bits_validate *shadow_zero_check;
4412         int i;
4413
4414         /*
4415          * Passing "true" to the last argument is okay; it adds a check
4416          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4417          */
4418         shadow_zero_check = &context->shadow_zero_check;
4419         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4420                                 boot_cpu_data.x86_phys_bits,
4421                                 context->shadow_root_level, uses_nx,
4422                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4423                                 is_pse(vcpu), true);
4424
4425         if (!shadow_me_mask)
4426                 return;
4427
4428         for (i = context->shadow_root_level; --i >= 0;) {
4429                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4430                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4431         }
4432
4433 }
4434 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4435
4436 static inline bool boot_cpu_is_amd(void)
4437 {
4438         WARN_ON_ONCE(!tdp_enabled);
4439         return shadow_x_mask == 0;
4440 }
4441
4442 /*
4443  * the direct page table on host, use as much mmu features as
4444  * possible, however, kvm currently does not do execution-protection.
4445  */
4446 static void
4447 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4448                                 struct kvm_mmu *context)
4449 {
4450         struct rsvd_bits_validate *shadow_zero_check;
4451         int i;
4452
4453         shadow_zero_check = &context->shadow_zero_check;
4454
4455         if (boot_cpu_is_amd())
4456                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4457                                         boot_cpu_data.x86_phys_bits,
4458                                         context->shadow_root_level, false,
4459                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4460                                         true, true);
4461         else
4462                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4463                                             boot_cpu_data.x86_phys_bits,
4464                                             false);
4465
4466         if (!shadow_me_mask)
4467                 return;
4468
4469         for (i = context->shadow_root_level; --i >= 0;) {
4470                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4471                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4472         }
4473 }
4474
4475 /*
4476  * as the comments in reset_shadow_zero_bits_mask() except it
4477  * is the shadow page table for intel nested guest.
4478  */
4479 static void
4480 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4481                                 struct kvm_mmu *context, bool execonly)
4482 {
4483         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4484                                     boot_cpu_data.x86_phys_bits, execonly);
4485 }
4486
4487 #define BYTE_MASK(access) \
4488         ((1 & (access) ? 2 : 0) | \
4489          (2 & (access) ? 4 : 0) | \
4490          (3 & (access) ? 8 : 0) | \
4491          (4 & (access) ? 16 : 0) | \
4492          (5 & (access) ? 32 : 0) | \
4493          (6 & (access) ? 64 : 0) | \
4494          (7 & (access) ? 128 : 0))
4495
4496
4497 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4498                                       struct kvm_mmu *mmu, bool ept)
4499 {
4500         unsigned byte;
4501
4502         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4503         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4504         const u8 u = BYTE_MASK(ACC_USER_MASK);
4505
4506         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4507         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4508         bool cr0_wp = is_write_protection(vcpu);
4509
4510         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4511                 unsigned pfec = byte << 1;
4512
4513                 /*
4514                  * Each "*f" variable has a 1 bit for each UWX value
4515                  * that causes a fault with the given PFEC.
4516                  */
4517
4518                 /* Faults from writes to non-writable pages */
4519                 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4520                 /* Faults from user mode accesses to supervisor pages */
4521                 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4522                 /* Faults from fetches of non-executable pages*/
4523                 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4524                 /* Faults from kernel mode fetches of user pages */
4525                 u8 smepf = 0;
4526                 /* Faults from kernel mode accesses of user pages */
4527                 u8 smapf = 0;
4528
4529                 if (!ept) {
4530                         /* Faults from kernel mode accesses to user pages */
4531                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4532
4533                         /* Not really needed: !nx will cause pte.nx to fault */
4534                         if (!mmu->nx)
4535                                 ff = 0;
4536
4537                         /* Allow supervisor writes if !cr0.wp */
4538                         if (!cr0_wp)
4539                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4540
4541                         /* Disallow supervisor fetches of user code if cr4.smep */
4542                         if (cr4_smep)
4543                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4544
4545                         /*
4546                          * SMAP:kernel-mode data accesses from user-mode
4547                          * mappings should fault. A fault is considered
4548                          * as a SMAP violation if all of the following
4549                          * conditions are ture:
4550                          *   - X86_CR4_SMAP is set in CR4
4551                          *   - A user page is accessed
4552                          *   - The access is not a fetch
4553                          *   - Page fault in kernel mode
4554                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4555                          *
4556                          * Here, we cover the first three conditions.
4557                          * The fourth is computed dynamically in permission_fault();
4558                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4559                          * *not* subject to SMAP restrictions.
4560                          */
4561                         if (cr4_smap)
4562                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4563                 }
4564
4565                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4566         }
4567 }
4568
4569 /*
4570 * PKU is an additional mechanism by which the paging controls access to
4571 * user-mode addresses based on the value in the PKRU register.  Protection
4572 * key violations are reported through a bit in the page fault error code.
4573 * Unlike other bits of the error code, the PK bit is not known at the
4574 * call site of e.g. gva_to_gpa; it must be computed directly in
4575 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4576 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4577 *
4578 * In particular the following conditions come from the error code, the
4579 * page tables and the machine state:
4580 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4581 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4582 * - PK is always zero if U=0 in the page tables
4583 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4584 *
4585 * The PKRU bitmask caches the result of these four conditions.  The error
4586 * code (minus the P bit) and the page table's U bit form an index into the
4587 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4588 * with the two bits of the PKRU register corresponding to the protection key.
4589 * For the first three conditions above the bits will be 00, thus masking
4590 * away both AD and WD.  For all reads or if the last condition holds, WD
4591 * only will be masked away.
4592 */
4593 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4594                                 bool ept)
4595 {
4596         unsigned bit;
4597         bool wp;
4598
4599         if (ept) {
4600                 mmu->pkru_mask = 0;
4601                 return;
4602         }
4603
4604         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4605         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4606                 mmu->pkru_mask = 0;
4607                 return;
4608         }
4609
4610         wp = is_write_protection(vcpu);
4611
4612         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4613                 unsigned pfec, pkey_bits;
4614                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4615
4616                 pfec = bit << 1;
4617                 ff = pfec & PFERR_FETCH_MASK;
4618                 uf = pfec & PFERR_USER_MASK;
4619                 wf = pfec & PFERR_WRITE_MASK;
4620
4621                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4622                 pte_user = pfec & PFERR_RSVD_MASK;
4623
4624                 /*
4625                  * Only need to check the access which is not an
4626                  * instruction fetch and is to a user page.
4627                  */
4628                 check_pkey = (!ff && pte_user);
4629                 /*
4630                  * write access is controlled by PKRU if it is a
4631                  * user access or CR0.WP = 1.
4632                  */
4633                 check_write = check_pkey && wf && (uf || wp);
4634
4635                 /* PKRU.AD stops both read and write access. */
4636                 pkey_bits = !!check_pkey;
4637                 /* PKRU.WD stops write access. */
4638                 pkey_bits |= (!!check_write) << 1;
4639
4640                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4641         }
4642 }
4643
4644 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4645 {
4646         unsigned root_level = mmu->root_level;
4647
4648         mmu->last_nonleaf_level = root_level;
4649         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4650                 mmu->last_nonleaf_level++;
4651 }
4652
4653 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4654                                          struct kvm_mmu *context,
4655                                          int level)
4656 {
4657         context->nx = is_nx(vcpu);
4658         context->root_level = level;
4659
4660         reset_rsvds_bits_mask(vcpu, context);
4661         update_permission_bitmask(vcpu, context, false);
4662         update_pkru_bitmask(vcpu, context, false);
4663         update_last_nonleaf_level(vcpu, context);
4664
4665         MMU_WARN_ON(!is_pae(vcpu));
4666         context->page_fault = paging64_page_fault;
4667         context->gva_to_gpa = paging64_gva_to_gpa;
4668         context->sync_page = paging64_sync_page;
4669         context->invlpg = paging64_invlpg;
4670         context->update_pte = paging64_update_pte;
4671         context->shadow_root_level = level;
4672         context->direct_map = false;
4673 }
4674
4675 static void paging64_init_context(struct kvm_vcpu *vcpu,
4676                                   struct kvm_mmu *context)
4677 {
4678         int root_level = is_la57_mode(vcpu) ?
4679                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4680
4681         paging64_init_context_common(vcpu, context, root_level);
4682 }
4683
4684 static void paging32_init_context(struct kvm_vcpu *vcpu,
4685                                   struct kvm_mmu *context)
4686 {
4687         context->nx = false;
4688         context->root_level = PT32_ROOT_LEVEL;
4689
4690         reset_rsvds_bits_mask(vcpu, context);
4691         update_permission_bitmask(vcpu, context, false);
4692         update_pkru_bitmask(vcpu, context, false);
4693         update_last_nonleaf_level(vcpu, context);
4694
4695         context->page_fault = paging32_page_fault;
4696         context->gva_to_gpa = paging32_gva_to_gpa;
4697         context->sync_page = paging32_sync_page;
4698         context->invlpg = paging32_invlpg;
4699         context->update_pte = paging32_update_pte;
4700         context->shadow_root_level = PT32E_ROOT_LEVEL;
4701         context->direct_map = false;
4702 }
4703
4704 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4705                                    struct kvm_mmu *context)
4706 {
4707         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4708 }
4709
4710 static union kvm_mmu_page_role
4711 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu)
4712 {
4713         union kvm_mmu_page_role role = {0};
4714
4715         role.guest_mode = is_guest_mode(vcpu);
4716         role.smm = is_smm(vcpu);
4717         role.ad_disabled = (shadow_accessed_mask == 0);
4718         role.level = kvm_x86_ops->get_tdp_level(vcpu);
4719         role.direct = true;
4720         role.access = ACC_ALL;
4721
4722         return role;
4723 }
4724
4725 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4726 {
4727         struct kvm_mmu *context = &vcpu->arch.mmu;
4728
4729         context->base_role.word = mmu_base_role_mask.word &
4730                                   kvm_calc_tdp_mmu_root_page_role(vcpu).word;
4731         context->page_fault = tdp_page_fault;
4732         context->sync_page = nonpaging_sync_page;
4733         context->invlpg = nonpaging_invlpg;
4734         context->update_pte = nonpaging_update_pte;
4735         context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4736         context->direct_map = true;
4737         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4738         context->get_cr3 = get_cr3;
4739         context->get_pdptr = kvm_pdptr_read;
4740         context->inject_page_fault = kvm_inject_page_fault;
4741
4742         if (!is_paging(vcpu)) {
4743                 context->nx = false;
4744                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4745                 context->root_level = 0;
4746         } else if (is_long_mode(vcpu)) {
4747                 context->nx = is_nx(vcpu);
4748                 context->root_level = is_la57_mode(vcpu) ?
4749                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4750                 reset_rsvds_bits_mask(vcpu, context);
4751                 context->gva_to_gpa = paging64_gva_to_gpa;
4752         } else if (is_pae(vcpu)) {
4753                 context->nx = is_nx(vcpu);
4754                 context->root_level = PT32E_ROOT_LEVEL;
4755                 reset_rsvds_bits_mask(vcpu, context);
4756                 context->gva_to_gpa = paging64_gva_to_gpa;
4757         } else {
4758                 context->nx = false;
4759                 context->root_level = PT32_ROOT_LEVEL;
4760                 reset_rsvds_bits_mask(vcpu, context);
4761                 context->gva_to_gpa = paging32_gva_to_gpa;
4762         }
4763
4764         update_permission_bitmask(vcpu, context, false);
4765         update_pkru_bitmask(vcpu, context, false);
4766         update_last_nonleaf_level(vcpu, context);
4767         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4768 }
4769
4770 static union kvm_mmu_page_role
4771 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu)
4772 {
4773         union kvm_mmu_page_role role = {0};
4774         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4775         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4776
4777         role.nxe = is_nx(vcpu);
4778         role.cr4_pae = !!is_pae(vcpu);
4779         role.cr0_wp  = is_write_protection(vcpu);
4780         role.smep_andnot_wp = smep && !is_write_protection(vcpu);
4781         role.smap_andnot_wp = smap && !is_write_protection(vcpu);
4782         role.guest_mode = is_guest_mode(vcpu);
4783         role.smm = is_smm(vcpu);
4784         role.direct = !is_paging(vcpu);
4785         role.access = ACC_ALL;
4786
4787         if (!is_long_mode(vcpu))
4788                 role.level = PT32E_ROOT_LEVEL;
4789         else if (is_la57_mode(vcpu))
4790                 role.level = PT64_ROOT_5LEVEL;
4791         else
4792                 role.level = PT64_ROOT_4LEVEL;
4793
4794         return role;
4795 }
4796
4797 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4798 {
4799         struct kvm_mmu *context = &vcpu->arch.mmu;
4800
4801         if (!is_paging(vcpu))
4802                 nonpaging_init_context(vcpu, context);
4803         else if (is_long_mode(vcpu))
4804                 paging64_init_context(vcpu, context);
4805         else if (is_pae(vcpu))
4806                 paging32E_init_context(vcpu, context);
4807         else
4808                 paging32_init_context(vcpu, context);
4809
4810         context->base_role.word = mmu_base_role_mask.word &
4811                                   kvm_calc_shadow_mmu_root_page_role(vcpu).word;
4812         reset_shadow_zero_bits_mask(vcpu, context);
4813 }
4814 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4815
4816 static union kvm_mmu_page_role
4817 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty)
4818 {
4819         union kvm_mmu_page_role role = vcpu->arch.mmu.base_role;
4820
4821         role.level = PT64_ROOT_4LEVEL;
4822         role.direct = false;
4823         role.ad_disabled = !accessed_dirty;
4824         role.guest_mode = true;
4825         role.access = ACC_ALL;
4826
4827         return role;
4828 }
4829
4830 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4831                              bool accessed_dirty, gpa_t new_eptp)
4832 {
4833         struct kvm_mmu *context = &vcpu->arch.mmu;
4834         union kvm_mmu_page_role root_page_role =
4835                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty);
4836
4837         __kvm_mmu_new_cr3(vcpu, new_eptp, root_page_role, false);
4838         context->shadow_root_level = PT64_ROOT_4LEVEL;
4839
4840         context->nx = true;
4841         context->ept_ad = accessed_dirty;
4842         context->page_fault = ept_page_fault;
4843         context->gva_to_gpa = ept_gva_to_gpa;
4844         context->sync_page = ept_sync_page;
4845         context->invlpg = ept_invlpg;
4846         context->update_pte = ept_update_pte;
4847         context->root_level = PT64_ROOT_4LEVEL;
4848         context->direct_map = false;
4849         context->base_role.word = root_page_role.word & mmu_base_role_mask.word;
4850         update_permission_bitmask(vcpu, context, true);
4851         update_pkru_bitmask(vcpu, context, true);
4852         update_last_nonleaf_level(vcpu, context);
4853         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4854         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4855 }
4856 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4857
4858 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4859 {
4860         struct kvm_mmu *context = &vcpu->arch.mmu;
4861
4862         kvm_init_shadow_mmu(vcpu);
4863         context->set_cr3           = kvm_x86_ops->set_cr3;
4864         context->get_cr3           = get_cr3;
4865         context->get_pdptr         = kvm_pdptr_read;
4866         context->inject_page_fault = kvm_inject_page_fault;
4867 }
4868
4869 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4870 {
4871         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4872
4873         g_context->get_cr3           = get_cr3;
4874         g_context->get_pdptr         = kvm_pdptr_read;
4875         g_context->inject_page_fault = kvm_inject_page_fault;
4876
4877         /*
4878          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4879          * L1's nested page tables (e.g. EPT12). The nested translation
4880          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4881          * L2's page tables as the first level of translation and L1's
4882          * nested page tables as the second level of translation. Basically
4883          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4884          */
4885         if (!is_paging(vcpu)) {
4886                 g_context->nx = false;
4887                 g_context->root_level = 0;
4888                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4889         } else if (is_long_mode(vcpu)) {
4890                 g_context->nx = is_nx(vcpu);
4891                 g_context->root_level = is_la57_mode(vcpu) ?
4892                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4893                 reset_rsvds_bits_mask(vcpu, g_context);
4894                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4895         } else if (is_pae(vcpu)) {
4896                 g_context->nx = is_nx(vcpu);
4897                 g_context->root_level = PT32E_ROOT_LEVEL;
4898                 reset_rsvds_bits_mask(vcpu, g_context);
4899                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4900         } else {
4901                 g_context->nx = false;
4902                 g_context->root_level = PT32_ROOT_LEVEL;
4903                 reset_rsvds_bits_mask(vcpu, g_context);
4904                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4905         }
4906
4907         update_permission_bitmask(vcpu, g_context, false);
4908         update_pkru_bitmask(vcpu, g_context, false);
4909         update_last_nonleaf_level(vcpu, g_context);
4910 }
4911
4912 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4913 {
4914         if (reset_roots) {
4915                 uint i;
4916
4917                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4918
4919                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4920                         vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4921         }
4922
4923         if (mmu_is_nested(vcpu))
4924                 init_kvm_nested_mmu(vcpu);
4925         else if (tdp_enabled)
4926                 init_kvm_tdp_mmu(vcpu);
4927         else
4928                 init_kvm_softmmu(vcpu);
4929 }
4930 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4931
4932 static union kvm_mmu_page_role
4933 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4934 {
4935         if (tdp_enabled)
4936                 return kvm_calc_tdp_mmu_root_page_role(vcpu);
4937         else
4938                 return kvm_calc_shadow_mmu_root_page_role(vcpu);
4939 }
4940
4941 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4942 {
4943         kvm_mmu_unload(vcpu);
4944         kvm_init_mmu(vcpu, true);
4945 }
4946 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4947
4948 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4949 {
4950         int r;
4951
4952         r = mmu_topup_memory_caches(vcpu);
4953         if (r)
4954                 goto out;
4955         r = mmu_alloc_roots(vcpu);
4956         kvm_mmu_sync_roots(vcpu);
4957         if (r)
4958                 goto out;
4959         kvm_mmu_load_cr3(vcpu);
4960         kvm_x86_ops->tlb_flush(vcpu, true);
4961 out:
4962         return r;
4963 }
4964 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4965
4966 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4967 {
4968         kvm_mmu_free_roots(vcpu, KVM_MMU_ROOTS_ALL);
4969         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4970 }
4971 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4972
4973 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4974                                   struct kvm_mmu_page *sp, u64 *spte,
4975                                   const void *new)
4976 {
4977         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4978                 ++vcpu->kvm->stat.mmu_pde_zapped;
4979                 return;
4980         }
4981
4982         ++vcpu->kvm->stat.mmu_pte_updated;
4983         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4984 }
4985
4986 static bool need_remote_flush(u64 old, u64 new)
4987 {
4988         if (!is_shadow_present_pte(old))
4989                 return false;
4990         if (!is_shadow_present_pte(new))
4991                 return true;
4992         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4993                 return true;
4994         old ^= shadow_nx_mask;
4995         new ^= shadow_nx_mask;
4996         return (old & ~new & PT64_PERM_MASK) != 0;
4997 }
4998
4999 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5000                                     const u8 *new, int *bytes)
5001 {
5002         u64 gentry;
5003         int r;
5004
5005         /*
5006          * Assume that the pte write on a page table of the same type
5007          * as the current vcpu paging mode since we update the sptes only
5008          * when they have the same mode.
5009          */
5010         if (is_pae(vcpu) && *bytes == 4) {
5011                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5012                 *gpa &= ~(gpa_t)7;
5013                 *bytes = 8;
5014                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
5015                 if (r)
5016                         gentry = 0;
5017                 new = (const u8 *)&gentry;
5018         }
5019
5020         switch (*bytes) {
5021         case 4:
5022                 gentry = *(const u32 *)new;
5023                 break;
5024         case 8:
5025                 gentry = *(const u64 *)new;
5026                 break;
5027         default:
5028                 gentry = 0;
5029                 break;
5030         }
5031
5032         return gentry;
5033 }
5034
5035 /*
5036  * If we're seeing too many writes to a page, it may no longer be a page table,
5037  * or we may be forking, in which case it is better to unmap the page.
5038  */
5039 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5040 {
5041         /*
5042          * Skip write-flooding detected for the sp whose level is 1, because
5043          * it can become unsync, then the guest page is not write-protected.
5044          */
5045         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5046                 return false;
5047
5048         atomic_inc(&sp->write_flooding_count);
5049         return atomic_read(&sp->write_flooding_count) >= 3;
5050 }
5051
5052 /*
5053  * Misaligned accesses are too much trouble to fix up; also, they usually
5054  * indicate a page is not used as a page table.
5055  */
5056 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5057                                     int bytes)
5058 {
5059         unsigned offset, pte_size, misaligned;
5060
5061         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5062                  gpa, bytes, sp->role.word);
5063
5064         offset = offset_in_page(gpa);
5065         pte_size = sp->role.cr4_pae ? 8 : 4;
5066
5067         /*
5068          * Sometimes, the OS only writes the last one bytes to update status
5069          * bits, for example, in linux, andb instruction is used in clear_bit().
5070          */
5071         if (!(offset & (pte_size - 1)) && bytes == 1)
5072                 return false;
5073
5074         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5075         misaligned |= bytes < 4;
5076
5077         return misaligned;
5078 }
5079
5080 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5081 {
5082         unsigned page_offset, quadrant;
5083         u64 *spte;
5084         int level;
5085
5086         page_offset = offset_in_page(gpa);
5087         level = sp->role.level;
5088         *nspte = 1;
5089         if (!sp->role.cr4_pae) {
5090                 page_offset <<= 1;      /* 32->64 */
5091                 /*
5092                  * A 32-bit pde maps 4MB while the shadow pdes map
5093                  * only 2MB.  So we need to double the offset again
5094                  * and zap two pdes instead of one.
5095                  */
5096                 if (level == PT32_ROOT_LEVEL) {
5097                         page_offset &= ~7; /* kill rounding error */
5098                         page_offset <<= 1;
5099                         *nspte = 2;
5100                 }
5101                 quadrant = page_offset >> PAGE_SHIFT;
5102                 page_offset &= ~PAGE_MASK;
5103                 if (quadrant != sp->role.quadrant)
5104                         return NULL;
5105         }
5106
5107         spte = &sp->spt[page_offset / sizeof(*spte)];
5108         return spte;
5109 }
5110
5111 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5112                               const u8 *new, int bytes,
5113                               struct kvm_page_track_notifier_node *node)
5114 {
5115         gfn_t gfn = gpa >> PAGE_SHIFT;
5116         struct kvm_mmu_page *sp;
5117         LIST_HEAD(invalid_list);
5118         u64 entry, gentry, *spte;
5119         int npte;
5120         bool remote_flush, local_flush;
5121
5122         /*
5123          * If we don't have indirect shadow pages, it means no page is
5124          * write-protected, so we can exit simply.
5125          */
5126         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5127                 return;
5128
5129         remote_flush = local_flush = false;
5130
5131         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5132
5133         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
5134
5135         /*
5136          * No need to care whether allocation memory is successful
5137          * or not since pte prefetch is skiped if it does not have
5138          * enough objects in the cache.
5139          */
5140         mmu_topup_memory_caches(vcpu);
5141
5142         spin_lock(&vcpu->kvm->mmu_lock);
5143         ++vcpu->kvm->stat.mmu_pte_write;
5144         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5145
5146         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5147                 if (detect_write_misaligned(sp, gpa, bytes) ||
5148                       detect_write_flooding(sp)) {
5149                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5150                         ++vcpu->kvm->stat.mmu_flooded;
5151                         continue;
5152                 }
5153
5154                 spte = get_written_sptes(sp, gpa, &npte);
5155                 if (!spte)
5156                         continue;
5157
5158                 local_flush = true;
5159                 while (npte--) {
5160                         entry = *spte;
5161                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5162                         if (gentry &&
5163                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
5164                               & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5165                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5166                         if (need_remote_flush(entry, *spte))
5167                                 remote_flush = true;
5168                         ++spte;
5169                 }
5170         }
5171         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5172         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5173         spin_unlock(&vcpu->kvm->mmu_lock);
5174 }
5175
5176 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5177 {
5178         gpa_t gpa;
5179         int r;
5180
5181         if (vcpu->arch.mmu.direct_map)
5182                 return 0;
5183
5184         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5185
5186         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5187
5188         return r;
5189 }
5190 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5191
5192 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5193 {
5194         LIST_HEAD(invalid_list);
5195
5196         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5197                 return 0;
5198
5199         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5200                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5201                         break;
5202
5203                 ++vcpu->kvm->stat.mmu_recycled;
5204         }
5205         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5206
5207         if (!kvm_mmu_available_pages(vcpu->kvm))
5208                 return -ENOSPC;
5209         return 0;
5210 }
5211
5212 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5213                        void *insn, int insn_len)
5214 {
5215         int r, emulation_type = 0;
5216         enum emulation_result er;
5217         bool direct = vcpu->arch.mmu.direct_map;
5218
5219         /* With shadow page tables, fault_address contains a GVA or nGPA.  */
5220         if (vcpu->arch.mmu.direct_map) {
5221                 vcpu->arch.gpa_available = true;
5222                 vcpu->arch.gpa_val = cr2;
5223         }
5224
5225         r = RET_PF_INVALID;
5226         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5227                 r = handle_mmio_page_fault(vcpu, cr2, direct);
5228                 if (r == RET_PF_EMULATE)
5229                         goto emulate;
5230         }
5231
5232         if (r == RET_PF_INVALID) {
5233                 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
5234                                               false);
5235                 WARN_ON(r == RET_PF_INVALID);
5236         }
5237
5238         if (r == RET_PF_RETRY)
5239                 return 1;
5240         if (r < 0)
5241                 return r;
5242
5243         /*
5244          * Before emulating the instruction, check if the error code
5245          * was due to a RO violation while translating the guest page.
5246          * This can occur when using nested virtualization with nested
5247          * paging in both guests. If true, we simply unprotect the page
5248          * and resume the guest.
5249          */
5250         if (vcpu->arch.mmu.direct_map &&
5251             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5252                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5253                 return 1;
5254         }
5255
5256         /*
5257          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5258          * optimistically try to just unprotect the page and let the processor
5259          * re-execute the instruction that caused the page fault.  Do not allow
5260          * retrying MMIO emulation, as it's not only pointless but could also
5261          * cause us to enter an infinite loop because the processor will keep
5262          * faulting on the non-existent MMIO address.  Retrying an instruction
5263          * from a nested guest is also pointless and dangerous as we are only
5264          * explicitly shadowing L1's page tables, i.e. unprotecting something
5265          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5266          */
5267         if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
5268                 emulation_type = EMULTYPE_ALLOW_RETRY;
5269 emulate:
5270         /*
5271          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5272          * This can happen if a guest gets a page-fault on data access but the HW
5273          * table walker is not able to read the instruction page (e.g instruction
5274          * page is not present in memory). In those cases we simply restart the
5275          * guest.
5276          */
5277         if (unlikely(insn && !insn_len))
5278                 return 1;
5279
5280         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
5281
5282         switch (er) {
5283         case EMULATE_DONE:
5284                 return 1;
5285         case EMULATE_USER_EXIT:
5286                 ++vcpu->stat.mmio_exits;
5287                 /* fall through */
5288         case EMULATE_FAIL:
5289                 return 0;
5290         default:
5291                 BUG();
5292         }
5293 }
5294 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5295
5296 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5297 {
5298         struct kvm_mmu *mmu = &vcpu->arch.mmu;
5299         int i;
5300
5301         /* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
5302         if (is_noncanonical_address(gva, vcpu))
5303                 return;
5304
5305         mmu->invlpg(vcpu, gva, mmu->root_hpa);
5306
5307         /*
5308          * INVLPG is required to invalidate any global mappings for the VA,
5309          * irrespective of PCID. Since it would take us roughly similar amount
5310          * of work to determine whether any of the prev_root mappings of the VA
5311          * is marked global, or to just sync it blindly, so we might as well
5312          * just always sync it.
5313          *
5314          * Mappings not reachable via the current cr3 or the prev_roots will be
5315          * synced when switching to that cr3, so nothing needs to be done here
5316          * for them.
5317          */
5318         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5319                 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5320                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5321
5322         kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5323         ++vcpu->stat.invlpg;
5324 }
5325 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5326
5327 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5328 {
5329         struct kvm_mmu *mmu = &vcpu->arch.mmu;
5330         bool tlb_flush = false;
5331         uint i;
5332
5333         if (pcid == kvm_get_active_pcid(vcpu)) {
5334                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5335                 tlb_flush = true;
5336         }
5337
5338         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5339                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5340                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5341                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5342                         tlb_flush = true;
5343                 }
5344         }
5345
5346         if (tlb_flush)
5347                 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5348
5349         ++vcpu->stat.invlpg;
5350
5351         /*
5352          * Mappings not reachable via the current cr3 or the prev_roots will be
5353          * synced when switching to that cr3, so nothing needs to be done here
5354          * for them.
5355          */
5356 }
5357 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5358
5359 void kvm_enable_tdp(void)
5360 {
5361         tdp_enabled = true;
5362 }
5363 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5364
5365 void kvm_disable_tdp(void)
5366 {
5367         tdp_enabled = false;
5368 }
5369 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5370
5371 static void free_mmu_pages(struct kvm_vcpu *vcpu)
5372 {
5373         free_page((unsigned long)vcpu->arch.mmu.pae_root);
5374         free_page((unsigned long)vcpu->arch.mmu.lm_root);
5375 }
5376
5377 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5378 {
5379         struct page *page;
5380         int i;
5381
5382         if (tdp_enabled)
5383                 return 0;
5384
5385         /*
5386          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5387          * Therefore we need to allocate shadow page tables in the first
5388          * 4GB of memory, which happens to fit the DMA32 zone.
5389          */
5390         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5391         if (!page)
5392                 return -ENOMEM;
5393
5394         vcpu->arch.mmu.pae_root = page_address(page);
5395         for (i = 0; i < 4; ++i)
5396                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5397
5398         return 0;
5399 }
5400
5401 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5402 {
5403         uint i;
5404
5405         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5406         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5407         vcpu->arch.mmu.translate_gpa = translate_gpa;
5408         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5409
5410         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5411                 vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5412
5413         return alloc_mmu_pages(vcpu);
5414 }
5415
5416 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5417 {
5418         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5419
5420         kvm_init_mmu(vcpu, true);
5421 }
5422
5423 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5424                         struct kvm_memory_slot *slot,
5425                         struct kvm_page_track_notifier_node *node)
5426 {
5427         kvm_mmu_invalidate_zap_all_pages(kvm);
5428 }
5429
5430 void kvm_mmu_init_vm(struct kvm *kvm)
5431 {
5432         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5433
5434         node->track_write = kvm_mmu_pte_write;
5435         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5436         kvm_page_track_register_notifier(kvm, node);
5437 }
5438
5439 void kvm_mmu_uninit_vm(struct kvm *kvm)
5440 {
5441         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5442
5443         kvm_page_track_unregister_notifier(kvm, node);
5444 }
5445
5446 /* The return value indicates if tlb flush on all vcpus is needed. */
5447 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5448
5449 /* The caller should hold mmu-lock before calling this function. */
5450 static __always_inline bool
5451 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5452                         slot_level_handler fn, int start_level, int end_level,
5453                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5454 {
5455         struct slot_rmap_walk_iterator iterator;
5456         bool flush = false;
5457
5458         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5459                         end_gfn, &iterator) {
5460                 if (iterator.rmap)
5461                         flush |= fn(kvm, iterator.rmap);
5462
5463                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5464                         if (flush && lock_flush_tlb) {
5465                                 kvm_flush_remote_tlbs(kvm);
5466                                 flush = false;
5467                         }
5468                         cond_resched_lock(&kvm->mmu_lock);
5469                 }
5470         }
5471
5472         if (flush && lock_flush_tlb) {
5473                 kvm_flush_remote_tlbs(kvm);
5474                 flush = false;
5475         }
5476
5477         return flush;
5478 }
5479
5480 static __always_inline bool
5481 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5482                   slot_level_handler fn, int start_level, int end_level,
5483                   bool lock_flush_tlb)
5484 {
5485         return slot_handle_level_range(kvm, memslot, fn, start_level,
5486                         end_level, memslot->base_gfn,
5487                         memslot->base_gfn + memslot->npages - 1,
5488                         lock_flush_tlb);
5489 }
5490
5491 static __always_inline bool
5492 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5493                       slot_level_handler fn, bool lock_flush_tlb)
5494 {
5495         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5496                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5497 }
5498
5499 static __always_inline bool
5500 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5501                         slot_level_handler fn, bool lock_flush_tlb)
5502 {
5503         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5504                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5505 }
5506
5507 static __always_inline bool
5508 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5509                  slot_level_handler fn, bool lock_flush_tlb)
5510 {
5511         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5512                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5513 }
5514
5515 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5516 {
5517         struct kvm_memslots *slots;
5518         struct kvm_memory_slot *memslot;
5519         int i;
5520
5521         spin_lock(&kvm->mmu_lock);
5522         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5523                 slots = __kvm_memslots(kvm, i);
5524                 kvm_for_each_memslot(memslot, slots) {
5525                         gfn_t start, end;
5526
5527                         start = max(gfn_start, memslot->base_gfn);
5528                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5529                         if (start >= end)
5530                                 continue;
5531
5532                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5533                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5534                                                 start, end - 1, true);
5535                 }
5536         }
5537
5538         spin_unlock(&kvm->mmu_lock);
5539 }
5540
5541 static bool slot_rmap_write_protect(struct kvm *kvm,
5542                                     struct kvm_rmap_head *rmap_head)
5543 {
5544         return __rmap_write_protect(kvm, rmap_head, false);
5545 }
5546
5547 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5548                                       struct kvm_memory_slot *memslot)
5549 {
5550         bool flush;
5551
5552         spin_lock(&kvm->mmu_lock);
5553         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5554                                       false);
5555         spin_unlock(&kvm->mmu_lock);
5556
5557         /*
5558          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5559          * which do tlb flush out of mmu-lock should be serialized by
5560          * kvm->slots_lock otherwise tlb flush would be missed.
5561          */
5562         lockdep_assert_held(&kvm->slots_lock);
5563
5564         /*
5565          * We can flush all the TLBs out of the mmu lock without TLB
5566          * corruption since we just change the spte from writable to
5567          * readonly so that we only need to care the case of changing
5568          * spte from present to present (changing the spte from present
5569          * to nonpresent will flush all the TLBs immediately), in other
5570          * words, the only case we care is mmu_spte_update() where we
5571          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5572          * instead of PT_WRITABLE_MASK, that means it does not depend
5573          * on PT_WRITABLE_MASK anymore.
5574          */
5575         if (flush)
5576                 kvm_flush_remote_tlbs(kvm);
5577 }
5578
5579 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5580                                          struct kvm_rmap_head *rmap_head)
5581 {
5582         u64 *sptep;
5583         struct rmap_iterator iter;
5584         int need_tlb_flush = 0;
5585         kvm_pfn_t pfn;
5586         struct kvm_mmu_page *sp;
5587
5588 restart:
5589         for_each_rmap_spte(rmap_head, &iter, sptep) {
5590                 sp = page_header(__pa(sptep));
5591                 pfn = spte_to_pfn(*sptep);
5592
5593                 /*
5594                  * We cannot do huge page mapping for indirect shadow pages,
5595                  * which are found on the last rmap (level = 1) when not using
5596                  * tdp; such shadow pages are synced with the page table in
5597                  * the guest, and the guest page table is using 4K page size
5598                  * mapping if the indirect sp has level = 1.
5599                  */
5600                 if (sp->role.direct &&
5601                         !kvm_is_reserved_pfn(pfn) &&
5602                         PageTransCompoundMap(pfn_to_page(pfn))) {
5603                         drop_spte(kvm, sptep);
5604                         need_tlb_flush = 1;
5605                         goto restart;
5606                 }
5607         }
5608
5609         return need_tlb_flush;
5610 }
5611
5612 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5613                                    const struct kvm_memory_slot *memslot)
5614 {
5615         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5616         spin_lock(&kvm->mmu_lock);
5617         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5618                          kvm_mmu_zap_collapsible_spte, true);
5619         spin_unlock(&kvm->mmu_lock);
5620 }
5621
5622 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5623                                    struct kvm_memory_slot *memslot)
5624 {
5625         bool flush;
5626
5627         spin_lock(&kvm->mmu_lock);
5628         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5629         spin_unlock(&kvm->mmu_lock);
5630
5631         lockdep_assert_held(&kvm->slots_lock);
5632
5633         /*
5634          * It's also safe to flush TLBs out of mmu lock here as currently this
5635          * function is only used for dirty logging, in which case flushing TLB
5636          * out of mmu lock also guarantees no dirty pages will be lost in
5637          * dirty_bitmap.
5638          */
5639         if (flush)
5640                 kvm_flush_remote_tlbs(kvm);
5641 }
5642 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5643
5644 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5645                                         struct kvm_memory_slot *memslot)
5646 {
5647         bool flush;
5648
5649         spin_lock(&kvm->mmu_lock);
5650         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5651                                         false);
5652         spin_unlock(&kvm->mmu_lock);
5653
5654         /* see kvm_mmu_slot_remove_write_access */
5655         lockdep_assert_held(&kvm->slots_lock);
5656
5657         if (flush)
5658                 kvm_flush_remote_tlbs(kvm);
5659 }
5660 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5661
5662 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5663                             struct kvm_memory_slot *memslot)
5664 {
5665         bool flush;
5666
5667         spin_lock(&kvm->mmu_lock);
5668         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5669         spin_unlock(&kvm->mmu_lock);
5670
5671         lockdep_assert_held(&kvm->slots_lock);
5672
5673         /* see kvm_mmu_slot_leaf_clear_dirty */
5674         if (flush)
5675                 kvm_flush_remote_tlbs(kvm);
5676 }
5677 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5678
5679 #define BATCH_ZAP_PAGES 10
5680 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5681 {
5682         struct kvm_mmu_page *sp, *node;
5683         int batch = 0;
5684
5685 restart:
5686         list_for_each_entry_safe_reverse(sp, node,
5687               &kvm->arch.active_mmu_pages, link) {
5688                 int ret;
5689
5690                 /*
5691                  * No obsolete page exists before new created page since
5692                  * active_mmu_pages is the FIFO list.
5693                  */
5694                 if (!is_obsolete_sp(kvm, sp))
5695                         break;
5696
5697                 /*
5698                  * Since we are reversely walking the list and the invalid
5699                  * list will be moved to the head, skip the invalid page
5700                  * can help us to avoid the infinity list walking.
5701                  */
5702                 if (sp->role.invalid)
5703                         continue;
5704
5705                 /*
5706                  * Need not flush tlb since we only zap the sp with invalid
5707                  * generation number.
5708                  */
5709                 if (batch >= BATCH_ZAP_PAGES &&
5710                       cond_resched_lock(&kvm->mmu_lock)) {
5711                         batch = 0;
5712                         goto restart;
5713                 }
5714
5715                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5716                                 &kvm->arch.zapped_obsolete_pages);
5717                 batch += ret;
5718
5719                 if (ret)
5720                         goto restart;
5721         }
5722
5723         /*
5724          * Should flush tlb before free page tables since lockless-walking
5725          * may use the pages.
5726          */
5727         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5728 }
5729
5730 /*
5731  * Fast invalidate all shadow pages and use lock-break technique
5732  * to zap obsolete pages.
5733  *
5734  * It's required when memslot is being deleted or VM is being
5735  * destroyed, in these cases, we should ensure that KVM MMU does
5736  * not use any resource of the being-deleted slot or all slots
5737  * after calling the function.
5738  */
5739 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5740 {
5741         spin_lock(&kvm->mmu_lock);
5742         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5743         kvm->arch.mmu_valid_gen++;
5744
5745         /*
5746          * Notify all vcpus to reload its shadow page table
5747          * and flush TLB. Then all vcpus will switch to new
5748          * shadow page table with the new mmu_valid_gen.
5749          *
5750          * Note: we should do this under the protection of
5751          * mmu-lock, otherwise, vcpu would purge shadow page
5752          * but miss tlb flush.
5753          */
5754         kvm_reload_remote_mmus(kvm);
5755
5756         kvm_zap_obsolete_pages(kvm);
5757         spin_unlock(&kvm->mmu_lock);
5758 }
5759
5760 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5761 {
5762         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5763 }
5764
5765 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5766 {
5767         /*
5768          * The very rare case: if the generation-number is round,
5769          * zap all shadow pages.
5770          */
5771         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5772                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5773                 kvm_mmu_invalidate_zap_all_pages(kvm);
5774         }
5775 }
5776
5777 static unsigned long
5778 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5779 {
5780         struct kvm *kvm;
5781         int nr_to_scan = sc->nr_to_scan;
5782         unsigned long freed = 0;
5783
5784         spin_lock(&kvm_lock);
5785
5786         list_for_each_entry(kvm, &vm_list, vm_list) {
5787                 int idx;
5788                 LIST_HEAD(invalid_list);
5789
5790                 /*
5791                  * Never scan more than sc->nr_to_scan VM instances.
5792                  * Will not hit this condition practically since we do not try
5793                  * to shrink more than one VM and it is very unlikely to see
5794                  * !n_used_mmu_pages so many times.
5795                  */
5796                 if (!nr_to_scan--)
5797                         break;
5798                 /*
5799                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5800                  * here. We may skip a VM instance errorneosly, but we do not
5801                  * want to shrink a VM that only started to populate its MMU
5802                  * anyway.
5803                  */
5804                 if (!kvm->arch.n_used_mmu_pages &&
5805                       !kvm_has_zapped_obsolete_pages(kvm))
5806                         continue;
5807
5808                 idx = srcu_read_lock(&kvm->srcu);
5809                 spin_lock(&kvm->mmu_lock);
5810
5811                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5812                         kvm_mmu_commit_zap_page(kvm,
5813                               &kvm->arch.zapped_obsolete_pages);
5814                         goto unlock;
5815                 }
5816
5817                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5818                         freed++;
5819                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5820
5821 unlock:
5822                 spin_unlock(&kvm->mmu_lock);
5823                 srcu_read_unlock(&kvm->srcu, idx);
5824
5825                 /*
5826                  * unfair on small ones
5827                  * per-vm shrinkers cry out
5828                  * sadness comes quickly
5829                  */
5830                 list_move_tail(&kvm->vm_list, &vm_list);
5831                 break;
5832         }
5833
5834         spin_unlock(&kvm_lock);
5835         return freed;
5836 }
5837
5838 static unsigned long
5839 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5840 {
5841         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5842 }
5843
5844 static struct shrinker mmu_shrinker = {
5845         .count_objects = mmu_shrink_count,
5846         .scan_objects = mmu_shrink_scan,
5847         .seeks = DEFAULT_SEEKS * 10,
5848 };
5849
5850 static void mmu_destroy_caches(void)
5851 {
5852         kmem_cache_destroy(pte_list_desc_cache);
5853         kmem_cache_destroy(mmu_page_header_cache);
5854 }
5855
5856 int kvm_mmu_module_init(void)
5857 {
5858         int ret = -ENOMEM;
5859
5860         kvm_mmu_reset_all_pte_masks();
5861
5862         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5863                                             sizeof(struct pte_list_desc),
5864                                             0, SLAB_ACCOUNT, NULL);
5865         if (!pte_list_desc_cache)
5866                 goto out;
5867
5868         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5869                                                   sizeof(struct kvm_mmu_page),
5870                                                   0, SLAB_ACCOUNT, NULL);
5871         if (!mmu_page_header_cache)
5872                 goto out;
5873
5874         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5875                 goto out;
5876
5877         ret = register_shrinker(&mmu_shrinker);
5878         if (ret)
5879                 goto out;
5880
5881         return 0;
5882
5883 out:
5884         mmu_destroy_caches();
5885         return ret;
5886 }
5887
5888 /*
5889  * Caculate mmu pages needed for kvm.
5890  */
5891 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5892 {
5893         unsigned int nr_mmu_pages;
5894         unsigned int  nr_pages = 0;
5895         struct kvm_memslots *slots;
5896         struct kvm_memory_slot *memslot;
5897         int i;
5898
5899         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5900                 slots = __kvm_memslots(kvm, i);
5901
5902                 kvm_for_each_memslot(memslot, slots)
5903                         nr_pages += memslot->npages;
5904         }
5905
5906         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5907         nr_mmu_pages = max(nr_mmu_pages,
5908                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5909
5910         return nr_mmu_pages;
5911 }
5912
5913 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5914 {
5915         kvm_mmu_unload(vcpu);
5916         free_mmu_pages(vcpu);
5917         mmu_free_memory_caches(vcpu);
5918 }
5919
5920 void kvm_mmu_module_exit(void)
5921 {
5922         mmu_destroy_caches();
5923         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5924         unregister_shrinker(&mmu_shrinker);
5925         mmu_audit_disable();
5926 }