KVM: x86/mmu: Move slot_level_*() helper functions up a few lines
[linux-2.6-block.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43
44 #include <asm/page.h>
45 #include <asm/pat.h>
46 #include <asm/cmpxchg.h>
47 #include <asm/io.h>
48 #include <asm/vmx.h>
49 #include <asm/kvm_page_track.h>
50 #include "trace.h"
51
52 /*
53  * When setting this variable to true it enables Two-Dimensional-Paging
54  * where the hardware walks 2 page tables:
55  * 1. the guest-virtual to guest-physical
56  * 2. while doing 1. it walks guest-physical to host-physical
57  * If the hardware supports that we don't need to do shadow paging.
58  */
59 bool tdp_enabled = false;
60
61 enum {
62         AUDIT_PRE_PAGE_FAULT,
63         AUDIT_POST_PAGE_FAULT,
64         AUDIT_PRE_PTE_WRITE,
65         AUDIT_POST_PTE_WRITE,
66         AUDIT_PRE_SYNC,
67         AUDIT_POST_SYNC
68 };
69
70 #undef MMU_DEBUG
71
72 #ifdef MMU_DEBUG
73 static bool dbg = 0;
74 module_param(dbg, bool, 0644);
75
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78 #define MMU_WARN_ON(x) WARN_ON(x)
79 #else
80 #define pgprintk(x...) do { } while (0)
81 #define rmap_printk(x...) do { } while (0)
82 #define MMU_WARN_ON(x) do { } while (0)
83 #endif
84
85 #define PTE_PREFETCH_NUM                8
86
87 #define PT_FIRST_AVAIL_BITS_SHIFT 10
88 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
90 #define PT64_LEVEL_BITS 9
91
92 #define PT64_LEVEL_SHIFT(level) \
93                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
94
95 #define PT64_INDEX(address, level)\
96         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99 #define PT32_LEVEL_BITS 10
100
101 #define PT32_LEVEL_SHIFT(level) \
102                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
103
104 #define PT32_LVL_OFFSET_MASK(level) \
105         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106                                                 * PT32_LEVEL_BITS))) - 1))
107
108 #define PT32_INDEX(address, level)\
109         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
112 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
113 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
114 #else
115 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
116 #endif
117 #define PT64_LVL_ADDR_MASK(level) \
118         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
119                                                 * PT64_LEVEL_BITS))) - 1))
120 #define PT64_LVL_OFFSET_MASK(level) \
121         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122                                                 * PT64_LEVEL_BITS))) - 1))
123
124 #define PT32_BASE_ADDR_MASK PAGE_MASK
125 #define PT32_DIR_BASE_ADDR_MASK \
126         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
127 #define PT32_LVL_ADDR_MASK(level) \
128         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
129                                             * PT32_LEVEL_BITS))) - 1))
130
131 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
132                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
133
134 #define ACC_EXEC_MASK    1
135 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
136 #define ACC_USER_MASK    PT_USER_MASK
137 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
138
139 /* The mask for the R/X bits in EPT PTEs */
140 #define PT64_EPT_READABLE_MASK                  0x1ull
141 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 /*
157  * Return values of handle_mmio_page_fault and mmu.page_fault:
158  * RET_PF_RETRY: let CPU fault again on the address.
159  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
160  *
161  * For handle_mmio_page_fault only:
162  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
163  */
164 enum {
165         RET_PF_RETRY = 0,
166         RET_PF_EMULATE = 1,
167         RET_PF_INVALID = 2,
168 };
169
170 struct pte_list_desc {
171         u64 *sptes[PTE_LIST_EXT];
172         struct pte_list_desc *more;
173 };
174
175 struct kvm_shadow_walk_iterator {
176         u64 addr;
177         hpa_t shadow_addr;
178         u64 *sptep;
179         int level;
180         unsigned index;
181 };
182
183 static const union kvm_mmu_page_role mmu_base_role_mask = {
184         .cr0_wp = 1,
185         .cr4_pae = 1,
186         .nxe = 1,
187         .smep_andnot_wp = 1,
188         .smap_andnot_wp = 1,
189         .smm = 1,
190         .guest_mode = 1,
191         .ad_disabled = 1,
192 };
193
194 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
195         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
196                                          (_root), (_addr));                \
197              shadow_walk_okay(&(_walker));                                 \
198              shadow_walk_next(&(_walker)))
199
200 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
201         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
202              shadow_walk_okay(&(_walker));                      \
203              shadow_walk_next(&(_walker)))
204
205 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
206         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
207              shadow_walk_okay(&(_walker)) &&                            \
208                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
209              __shadow_walk_next(&(_walker), spte))
210
211 static struct kmem_cache *pte_list_desc_cache;
212 static struct kmem_cache *mmu_page_header_cache;
213 static struct percpu_counter kvm_total_used_mmu_pages;
214
215 static u64 __read_mostly shadow_nx_mask;
216 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
217 static u64 __read_mostly shadow_user_mask;
218 static u64 __read_mostly shadow_accessed_mask;
219 static u64 __read_mostly shadow_dirty_mask;
220 static u64 __read_mostly shadow_mmio_mask;
221 static u64 __read_mostly shadow_mmio_value;
222 static u64 __read_mostly shadow_present_mask;
223 static u64 __read_mostly shadow_me_mask;
224
225 /*
226  * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
227  * Non-present SPTEs with shadow_acc_track_value set are in place for access
228  * tracking.
229  */
230 static u64 __read_mostly shadow_acc_track_mask;
231 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
232
233 /*
234  * The mask/shift to use for saving the original R/X bits when marking the PTE
235  * as not-present for access tracking purposes. We do not save the W bit as the
236  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
237  * restored only when a write is attempted to the page.
238  */
239 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
240                                                     PT64_EPT_EXECUTABLE_MASK;
241 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
242
243 /*
244  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
245  * to guard against L1TF attacks.
246  */
247 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
248
249 /*
250  * The number of high-order 1 bits to use in the mask above.
251  */
252 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
253
254 /*
255  * In some cases, we need to preserve the GFN of a non-present or reserved
256  * SPTE when we usurp the upper five bits of the physical address space to
257  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
258  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
259  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
260  * high and low parts.  This mask covers the lower bits of the GFN.
261  */
262 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
263
264
265 static void mmu_spte_set(u64 *sptep, u64 spte);
266 static union kvm_mmu_page_role
267 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
268
269
270 static inline bool kvm_available_flush_tlb_with_range(void)
271 {
272         return kvm_x86_ops->tlb_remote_flush_with_range;
273 }
274
275 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
276                 struct kvm_tlb_range *range)
277 {
278         int ret = -ENOTSUPP;
279
280         if (range && kvm_x86_ops->tlb_remote_flush_with_range)
281                 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
282
283         if (ret)
284                 kvm_flush_remote_tlbs(kvm);
285 }
286
287 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
288                 u64 start_gfn, u64 pages)
289 {
290         struct kvm_tlb_range range;
291
292         range.start_gfn = start_gfn;
293         range.pages = pages;
294
295         kvm_flush_remote_tlbs_with_range(kvm, &range);
296 }
297
298 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
299 {
300         BUG_ON((mmio_mask & mmio_value) != mmio_value);
301         shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
302         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
303 }
304 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
305
306 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
307 {
308         return sp->role.ad_disabled;
309 }
310
311 static inline bool spte_ad_enabled(u64 spte)
312 {
313         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
314         return !(spte & shadow_acc_track_value);
315 }
316
317 static inline u64 spte_shadow_accessed_mask(u64 spte)
318 {
319         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
320         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
321 }
322
323 static inline u64 spte_shadow_dirty_mask(u64 spte)
324 {
325         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
326         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
327 }
328
329 static inline bool is_access_track_spte(u64 spte)
330 {
331         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
332 }
333
334 /*
335  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
336  * the memslots generation and is derived as follows:
337  *
338  * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
339  * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
340  *
341  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
342  * the MMIO generation number, as doing so would require stealing a bit from
343  * the "real" generation number and thus effectively halve the maximum number
344  * of MMIO generations that can be handled before encountering a wrap (which
345  * requires a full MMU zap).  The flag is instead explicitly queried when
346  * checking for MMIO spte cache hits.
347  */
348 #define MMIO_SPTE_GEN_MASK              GENMASK_ULL(18, 0)
349
350 #define MMIO_SPTE_GEN_LOW_START         3
351 #define MMIO_SPTE_GEN_LOW_END           11
352 #define MMIO_SPTE_GEN_LOW_MASK          GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
353                                                     MMIO_SPTE_GEN_LOW_START)
354
355 #define MMIO_SPTE_GEN_HIGH_START        52
356 #define MMIO_SPTE_GEN_HIGH_END          61
357 #define MMIO_SPTE_GEN_HIGH_MASK         GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
358                                                     MMIO_SPTE_GEN_HIGH_START)
359 static u64 generation_mmio_spte_mask(u64 gen)
360 {
361         u64 mask;
362
363         WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
364
365         mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
366         mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
367         return mask;
368 }
369
370 static u64 get_mmio_spte_generation(u64 spte)
371 {
372         u64 gen;
373
374         spte &= ~shadow_mmio_mask;
375
376         gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
377         gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
378         return gen;
379 }
380
381 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
382                            unsigned access)
383 {
384         u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
385         u64 mask = generation_mmio_spte_mask(gen);
386         u64 gpa = gfn << PAGE_SHIFT;
387
388         access &= ACC_WRITE_MASK | ACC_USER_MASK;
389         mask |= shadow_mmio_value | access;
390         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
391         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
392                 << shadow_nonpresent_or_rsvd_mask_len;
393
394         trace_mark_mmio_spte(sptep, gfn, access, gen);
395         mmu_spte_set(sptep, mask);
396 }
397
398 static bool is_mmio_spte(u64 spte)
399 {
400         return (spte & shadow_mmio_mask) == shadow_mmio_value;
401 }
402
403 static gfn_t get_mmio_spte_gfn(u64 spte)
404 {
405         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
406
407         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
408                & shadow_nonpresent_or_rsvd_mask;
409
410         return gpa >> PAGE_SHIFT;
411 }
412
413 static unsigned get_mmio_spte_access(u64 spte)
414 {
415         u64 mask = generation_mmio_spte_mask(MMIO_SPTE_GEN_MASK) | shadow_mmio_mask;
416         return (spte & ~mask) & ~PAGE_MASK;
417 }
418
419 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
420                           kvm_pfn_t pfn, unsigned access)
421 {
422         if (unlikely(is_noslot_pfn(pfn))) {
423                 mark_mmio_spte(vcpu, sptep, gfn, access);
424                 return true;
425         }
426
427         return false;
428 }
429
430 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
431 {
432         u64 kvm_gen, spte_gen, gen;
433
434         gen = kvm_vcpu_memslots(vcpu)->generation;
435         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
436                 return false;
437
438         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
439         spte_gen = get_mmio_spte_generation(spte);
440
441         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
442         return likely(kvm_gen == spte_gen);
443 }
444
445 /*
446  * Sets the shadow PTE masks used by the MMU.
447  *
448  * Assumptions:
449  *  - Setting either @accessed_mask or @dirty_mask requires setting both
450  *  - At least one of @accessed_mask or @acc_track_mask must be set
451  */
452 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
453                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
454                 u64 acc_track_mask, u64 me_mask)
455 {
456         BUG_ON(!dirty_mask != !accessed_mask);
457         BUG_ON(!accessed_mask && !acc_track_mask);
458         BUG_ON(acc_track_mask & shadow_acc_track_value);
459
460         shadow_user_mask = user_mask;
461         shadow_accessed_mask = accessed_mask;
462         shadow_dirty_mask = dirty_mask;
463         shadow_nx_mask = nx_mask;
464         shadow_x_mask = x_mask;
465         shadow_present_mask = p_mask;
466         shadow_acc_track_mask = acc_track_mask;
467         shadow_me_mask = me_mask;
468 }
469 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
470
471 static void kvm_mmu_reset_all_pte_masks(void)
472 {
473         u8 low_phys_bits;
474
475         shadow_user_mask = 0;
476         shadow_accessed_mask = 0;
477         shadow_dirty_mask = 0;
478         shadow_nx_mask = 0;
479         shadow_x_mask = 0;
480         shadow_mmio_mask = 0;
481         shadow_present_mask = 0;
482         shadow_acc_track_mask = 0;
483
484         /*
485          * If the CPU has 46 or less physical address bits, then set an
486          * appropriate mask to guard against L1TF attacks. Otherwise, it is
487          * assumed that the CPU is not vulnerable to L1TF.
488          */
489         low_phys_bits = boot_cpu_data.x86_phys_bits;
490         if (boot_cpu_data.x86_phys_bits <
491             52 - shadow_nonpresent_or_rsvd_mask_len) {
492                 shadow_nonpresent_or_rsvd_mask =
493                         rsvd_bits(boot_cpu_data.x86_phys_bits -
494                                   shadow_nonpresent_or_rsvd_mask_len,
495                                   boot_cpu_data.x86_phys_bits - 1);
496                 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
497         }
498         shadow_nonpresent_or_rsvd_lower_gfn_mask =
499                 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
500 }
501
502 static int is_cpuid_PSE36(void)
503 {
504         return 1;
505 }
506
507 static int is_nx(struct kvm_vcpu *vcpu)
508 {
509         return vcpu->arch.efer & EFER_NX;
510 }
511
512 static int is_shadow_present_pte(u64 pte)
513 {
514         return (pte != 0) && !is_mmio_spte(pte);
515 }
516
517 static int is_large_pte(u64 pte)
518 {
519         return pte & PT_PAGE_SIZE_MASK;
520 }
521
522 static int is_last_spte(u64 pte, int level)
523 {
524         if (level == PT_PAGE_TABLE_LEVEL)
525                 return 1;
526         if (is_large_pte(pte))
527                 return 1;
528         return 0;
529 }
530
531 static bool is_executable_pte(u64 spte)
532 {
533         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
534 }
535
536 static kvm_pfn_t spte_to_pfn(u64 pte)
537 {
538         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
539 }
540
541 static gfn_t pse36_gfn_delta(u32 gpte)
542 {
543         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
544
545         return (gpte & PT32_DIR_PSE36_MASK) << shift;
546 }
547
548 #ifdef CONFIG_X86_64
549 static void __set_spte(u64 *sptep, u64 spte)
550 {
551         WRITE_ONCE(*sptep, spte);
552 }
553
554 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
555 {
556         WRITE_ONCE(*sptep, spte);
557 }
558
559 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
560 {
561         return xchg(sptep, spte);
562 }
563
564 static u64 __get_spte_lockless(u64 *sptep)
565 {
566         return READ_ONCE(*sptep);
567 }
568 #else
569 union split_spte {
570         struct {
571                 u32 spte_low;
572                 u32 spte_high;
573         };
574         u64 spte;
575 };
576
577 static void count_spte_clear(u64 *sptep, u64 spte)
578 {
579         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
580
581         if (is_shadow_present_pte(spte))
582                 return;
583
584         /* Ensure the spte is completely set before we increase the count */
585         smp_wmb();
586         sp->clear_spte_count++;
587 }
588
589 static void __set_spte(u64 *sptep, u64 spte)
590 {
591         union split_spte *ssptep, sspte;
592
593         ssptep = (union split_spte *)sptep;
594         sspte = (union split_spte)spte;
595
596         ssptep->spte_high = sspte.spte_high;
597
598         /*
599          * If we map the spte from nonpresent to present, We should store
600          * the high bits firstly, then set present bit, so cpu can not
601          * fetch this spte while we are setting the spte.
602          */
603         smp_wmb();
604
605         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
606 }
607
608 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
609 {
610         union split_spte *ssptep, sspte;
611
612         ssptep = (union split_spte *)sptep;
613         sspte = (union split_spte)spte;
614
615         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
616
617         /*
618          * If we map the spte from present to nonpresent, we should clear
619          * present bit firstly to avoid vcpu fetch the old high bits.
620          */
621         smp_wmb();
622
623         ssptep->spte_high = sspte.spte_high;
624         count_spte_clear(sptep, spte);
625 }
626
627 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
628 {
629         union split_spte *ssptep, sspte, orig;
630
631         ssptep = (union split_spte *)sptep;
632         sspte = (union split_spte)spte;
633
634         /* xchg acts as a barrier before the setting of the high bits */
635         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
636         orig.spte_high = ssptep->spte_high;
637         ssptep->spte_high = sspte.spte_high;
638         count_spte_clear(sptep, spte);
639
640         return orig.spte;
641 }
642
643 /*
644  * The idea using the light way get the spte on x86_32 guest is from
645  * gup_get_pte(arch/x86/mm/gup.c).
646  *
647  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
648  * coalesces them and we are running out of the MMU lock.  Therefore
649  * we need to protect against in-progress updates of the spte.
650  *
651  * Reading the spte while an update is in progress may get the old value
652  * for the high part of the spte.  The race is fine for a present->non-present
653  * change (because the high part of the spte is ignored for non-present spte),
654  * but for a present->present change we must reread the spte.
655  *
656  * All such changes are done in two steps (present->non-present and
657  * non-present->present), hence it is enough to count the number of
658  * present->non-present updates: if it changed while reading the spte,
659  * we might have hit the race.  This is done using clear_spte_count.
660  */
661 static u64 __get_spte_lockless(u64 *sptep)
662 {
663         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
664         union split_spte spte, *orig = (union split_spte *)sptep;
665         int count;
666
667 retry:
668         count = sp->clear_spte_count;
669         smp_rmb();
670
671         spte.spte_low = orig->spte_low;
672         smp_rmb();
673
674         spte.spte_high = orig->spte_high;
675         smp_rmb();
676
677         if (unlikely(spte.spte_low != orig->spte_low ||
678               count != sp->clear_spte_count))
679                 goto retry;
680
681         return spte.spte;
682 }
683 #endif
684
685 static bool spte_can_locklessly_be_made_writable(u64 spte)
686 {
687         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
688                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
689 }
690
691 static bool spte_has_volatile_bits(u64 spte)
692 {
693         if (!is_shadow_present_pte(spte))
694                 return false;
695
696         /*
697          * Always atomically update spte if it can be updated
698          * out of mmu-lock, it can ensure dirty bit is not lost,
699          * also, it can help us to get a stable is_writable_pte()
700          * to ensure tlb flush is not missed.
701          */
702         if (spte_can_locklessly_be_made_writable(spte) ||
703             is_access_track_spte(spte))
704                 return true;
705
706         if (spte_ad_enabled(spte)) {
707                 if ((spte & shadow_accessed_mask) == 0 ||
708                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
709                         return true;
710         }
711
712         return false;
713 }
714
715 static bool is_accessed_spte(u64 spte)
716 {
717         u64 accessed_mask = spte_shadow_accessed_mask(spte);
718
719         return accessed_mask ? spte & accessed_mask
720                              : !is_access_track_spte(spte);
721 }
722
723 static bool is_dirty_spte(u64 spte)
724 {
725         u64 dirty_mask = spte_shadow_dirty_mask(spte);
726
727         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
728 }
729
730 /* Rules for using mmu_spte_set:
731  * Set the sptep from nonpresent to present.
732  * Note: the sptep being assigned *must* be either not present
733  * or in a state where the hardware will not attempt to update
734  * the spte.
735  */
736 static void mmu_spte_set(u64 *sptep, u64 new_spte)
737 {
738         WARN_ON(is_shadow_present_pte(*sptep));
739         __set_spte(sptep, new_spte);
740 }
741
742 /*
743  * Update the SPTE (excluding the PFN), but do not track changes in its
744  * accessed/dirty status.
745  */
746 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
747 {
748         u64 old_spte = *sptep;
749
750         WARN_ON(!is_shadow_present_pte(new_spte));
751
752         if (!is_shadow_present_pte(old_spte)) {
753                 mmu_spte_set(sptep, new_spte);
754                 return old_spte;
755         }
756
757         if (!spte_has_volatile_bits(old_spte))
758                 __update_clear_spte_fast(sptep, new_spte);
759         else
760                 old_spte = __update_clear_spte_slow(sptep, new_spte);
761
762         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
763
764         return old_spte;
765 }
766
767 /* Rules for using mmu_spte_update:
768  * Update the state bits, it means the mapped pfn is not changed.
769  *
770  * Whenever we overwrite a writable spte with a read-only one we
771  * should flush remote TLBs. Otherwise rmap_write_protect
772  * will find a read-only spte, even though the writable spte
773  * might be cached on a CPU's TLB, the return value indicates this
774  * case.
775  *
776  * Returns true if the TLB needs to be flushed
777  */
778 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
779 {
780         bool flush = false;
781         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
782
783         if (!is_shadow_present_pte(old_spte))
784                 return false;
785
786         /*
787          * For the spte updated out of mmu-lock is safe, since
788          * we always atomically update it, see the comments in
789          * spte_has_volatile_bits().
790          */
791         if (spte_can_locklessly_be_made_writable(old_spte) &&
792               !is_writable_pte(new_spte))
793                 flush = true;
794
795         /*
796          * Flush TLB when accessed/dirty states are changed in the page tables,
797          * to guarantee consistency between TLB and page tables.
798          */
799
800         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
801                 flush = true;
802                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
803         }
804
805         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
806                 flush = true;
807                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
808         }
809
810         return flush;
811 }
812
813 /*
814  * Rules for using mmu_spte_clear_track_bits:
815  * It sets the sptep from present to nonpresent, and track the
816  * state bits, it is used to clear the last level sptep.
817  * Returns non-zero if the PTE was previously valid.
818  */
819 static int mmu_spte_clear_track_bits(u64 *sptep)
820 {
821         kvm_pfn_t pfn;
822         u64 old_spte = *sptep;
823
824         if (!spte_has_volatile_bits(old_spte))
825                 __update_clear_spte_fast(sptep, 0ull);
826         else
827                 old_spte = __update_clear_spte_slow(sptep, 0ull);
828
829         if (!is_shadow_present_pte(old_spte))
830                 return 0;
831
832         pfn = spte_to_pfn(old_spte);
833
834         /*
835          * KVM does not hold the refcount of the page used by
836          * kvm mmu, before reclaiming the page, we should
837          * unmap it from mmu first.
838          */
839         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
840
841         if (is_accessed_spte(old_spte))
842                 kvm_set_pfn_accessed(pfn);
843
844         if (is_dirty_spte(old_spte))
845                 kvm_set_pfn_dirty(pfn);
846
847         return 1;
848 }
849
850 /*
851  * Rules for using mmu_spte_clear_no_track:
852  * Directly clear spte without caring the state bits of sptep,
853  * it is used to set the upper level spte.
854  */
855 static void mmu_spte_clear_no_track(u64 *sptep)
856 {
857         __update_clear_spte_fast(sptep, 0ull);
858 }
859
860 static u64 mmu_spte_get_lockless(u64 *sptep)
861 {
862         return __get_spte_lockless(sptep);
863 }
864
865 static u64 mark_spte_for_access_track(u64 spte)
866 {
867         if (spte_ad_enabled(spte))
868                 return spte & ~shadow_accessed_mask;
869
870         if (is_access_track_spte(spte))
871                 return spte;
872
873         /*
874          * Making an Access Tracking PTE will result in removal of write access
875          * from the PTE. So, verify that we will be able to restore the write
876          * access in the fast page fault path later on.
877          */
878         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
879                   !spte_can_locklessly_be_made_writable(spte),
880                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
881
882         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
883                           shadow_acc_track_saved_bits_shift),
884                   "kvm: Access Tracking saved bit locations are not zero\n");
885
886         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
887                 shadow_acc_track_saved_bits_shift;
888         spte &= ~shadow_acc_track_mask;
889
890         return spte;
891 }
892
893 /* Restore an acc-track PTE back to a regular PTE */
894 static u64 restore_acc_track_spte(u64 spte)
895 {
896         u64 new_spte = spte;
897         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
898                          & shadow_acc_track_saved_bits_mask;
899
900         WARN_ON_ONCE(spte_ad_enabled(spte));
901         WARN_ON_ONCE(!is_access_track_spte(spte));
902
903         new_spte &= ~shadow_acc_track_mask;
904         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
905                       shadow_acc_track_saved_bits_shift);
906         new_spte |= saved_bits;
907
908         return new_spte;
909 }
910
911 /* Returns the Accessed status of the PTE and resets it at the same time. */
912 static bool mmu_spte_age(u64 *sptep)
913 {
914         u64 spte = mmu_spte_get_lockless(sptep);
915
916         if (!is_accessed_spte(spte))
917                 return false;
918
919         if (spte_ad_enabled(spte)) {
920                 clear_bit((ffs(shadow_accessed_mask) - 1),
921                           (unsigned long *)sptep);
922         } else {
923                 /*
924                  * Capture the dirty status of the page, so that it doesn't get
925                  * lost when the SPTE is marked for access tracking.
926                  */
927                 if (is_writable_pte(spte))
928                         kvm_set_pfn_dirty(spte_to_pfn(spte));
929
930                 spte = mark_spte_for_access_track(spte);
931                 mmu_spte_update_no_track(sptep, spte);
932         }
933
934         return true;
935 }
936
937 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
938 {
939         /*
940          * Prevent page table teardown by making any free-er wait during
941          * kvm_flush_remote_tlbs() IPI to all active vcpus.
942          */
943         local_irq_disable();
944
945         /*
946          * Make sure a following spte read is not reordered ahead of the write
947          * to vcpu->mode.
948          */
949         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
950 }
951
952 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
953 {
954         /*
955          * Make sure the write to vcpu->mode is not reordered in front of
956          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
957          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
958          */
959         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
960         local_irq_enable();
961 }
962
963 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
964                                   struct kmem_cache *base_cache, int min)
965 {
966         void *obj;
967
968         if (cache->nobjs >= min)
969                 return 0;
970         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
971                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
972                 if (!obj)
973                         return cache->nobjs >= min ? 0 : -ENOMEM;
974                 cache->objects[cache->nobjs++] = obj;
975         }
976         return 0;
977 }
978
979 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
980 {
981         return cache->nobjs;
982 }
983
984 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
985                                   struct kmem_cache *cache)
986 {
987         while (mc->nobjs)
988                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
989 }
990
991 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
992                                        int min)
993 {
994         void *page;
995
996         if (cache->nobjs >= min)
997                 return 0;
998         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
999                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1000                 if (!page)
1001                         return cache->nobjs >= min ? 0 : -ENOMEM;
1002                 cache->objects[cache->nobjs++] = page;
1003         }
1004         return 0;
1005 }
1006
1007 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1008 {
1009         while (mc->nobjs)
1010                 free_page((unsigned long)mc->objects[--mc->nobjs]);
1011 }
1012
1013 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1014 {
1015         int r;
1016
1017         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1018                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1019         if (r)
1020                 goto out;
1021         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1022         if (r)
1023                 goto out;
1024         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1025                                    mmu_page_header_cache, 4);
1026 out:
1027         return r;
1028 }
1029
1030 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1031 {
1032         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1033                                 pte_list_desc_cache);
1034         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1035         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1036                                 mmu_page_header_cache);
1037 }
1038
1039 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1040 {
1041         void *p;
1042
1043         BUG_ON(!mc->nobjs);
1044         p = mc->objects[--mc->nobjs];
1045         return p;
1046 }
1047
1048 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1049 {
1050         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1051 }
1052
1053 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1054 {
1055         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1056 }
1057
1058 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1059 {
1060         if (!sp->role.direct)
1061                 return sp->gfns[index];
1062
1063         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1064 }
1065
1066 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1067 {
1068         if (sp->role.direct)
1069                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
1070         else
1071                 sp->gfns[index] = gfn;
1072 }
1073
1074 /*
1075  * Return the pointer to the large page information for a given gfn,
1076  * handling slots that are not large page aligned.
1077  */
1078 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1079                                               struct kvm_memory_slot *slot,
1080                                               int level)
1081 {
1082         unsigned long idx;
1083
1084         idx = gfn_to_index(gfn, slot->base_gfn, level);
1085         return &slot->arch.lpage_info[level - 2][idx];
1086 }
1087
1088 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1089                                             gfn_t gfn, int count)
1090 {
1091         struct kvm_lpage_info *linfo;
1092         int i;
1093
1094         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1095                 linfo = lpage_info_slot(gfn, slot, i);
1096                 linfo->disallow_lpage += count;
1097                 WARN_ON(linfo->disallow_lpage < 0);
1098         }
1099 }
1100
1101 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1102 {
1103         update_gfn_disallow_lpage_count(slot, gfn, 1);
1104 }
1105
1106 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1107 {
1108         update_gfn_disallow_lpage_count(slot, gfn, -1);
1109 }
1110
1111 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1112 {
1113         struct kvm_memslots *slots;
1114         struct kvm_memory_slot *slot;
1115         gfn_t gfn;
1116
1117         kvm->arch.indirect_shadow_pages++;
1118         gfn = sp->gfn;
1119         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1120         slot = __gfn_to_memslot(slots, gfn);
1121
1122         /* the non-leaf shadow pages are keeping readonly. */
1123         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1124                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1125                                                     KVM_PAGE_TRACK_WRITE);
1126
1127         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1128 }
1129
1130 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1131 {
1132         struct kvm_memslots *slots;
1133         struct kvm_memory_slot *slot;
1134         gfn_t gfn;
1135
1136         kvm->arch.indirect_shadow_pages--;
1137         gfn = sp->gfn;
1138         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1139         slot = __gfn_to_memslot(slots, gfn);
1140         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1141                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1142                                                        KVM_PAGE_TRACK_WRITE);
1143
1144         kvm_mmu_gfn_allow_lpage(slot, gfn);
1145 }
1146
1147 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1148                                           struct kvm_memory_slot *slot)
1149 {
1150         struct kvm_lpage_info *linfo;
1151
1152         if (slot) {
1153                 linfo = lpage_info_slot(gfn, slot, level);
1154                 return !!linfo->disallow_lpage;
1155         }
1156
1157         return true;
1158 }
1159
1160 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1161                                         int level)
1162 {
1163         struct kvm_memory_slot *slot;
1164
1165         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1166         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1167 }
1168
1169 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1170 {
1171         unsigned long page_size;
1172         int i, ret = 0;
1173
1174         page_size = kvm_host_page_size(kvm, gfn);
1175
1176         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1177                 if (page_size >= KVM_HPAGE_SIZE(i))
1178                         ret = i;
1179                 else
1180                         break;
1181         }
1182
1183         return ret;
1184 }
1185
1186 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1187                                           bool no_dirty_log)
1188 {
1189         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1190                 return false;
1191         if (no_dirty_log && slot->dirty_bitmap)
1192                 return false;
1193
1194         return true;
1195 }
1196
1197 static struct kvm_memory_slot *
1198 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1199                             bool no_dirty_log)
1200 {
1201         struct kvm_memory_slot *slot;
1202
1203         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1204         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1205                 slot = NULL;
1206
1207         return slot;
1208 }
1209
1210 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1211                          bool *force_pt_level)
1212 {
1213         int host_level, level, max_level;
1214         struct kvm_memory_slot *slot;
1215
1216         if (unlikely(*force_pt_level))
1217                 return PT_PAGE_TABLE_LEVEL;
1218
1219         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1220         *force_pt_level = !memslot_valid_for_gpte(slot, true);
1221         if (unlikely(*force_pt_level))
1222                 return PT_PAGE_TABLE_LEVEL;
1223
1224         host_level = host_mapping_level(vcpu->kvm, large_gfn);
1225
1226         if (host_level == PT_PAGE_TABLE_LEVEL)
1227                 return host_level;
1228
1229         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1230
1231         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1232                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1233                         break;
1234
1235         return level - 1;
1236 }
1237
1238 /*
1239  * About rmap_head encoding:
1240  *
1241  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1242  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1243  * pte_list_desc containing more mappings.
1244  */
1245
1246 /*
1247  * Returns the number of pointers in the rmap chain, not counting the new one.
1248  */
1249 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1250                         struct kvm_rmap_head *rmap_head)
1251 {
1252         struct pte_list_desc *desc;
1253         int i, count = 0;
1254
1255         if (!rmap_head->val) {
1256                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1257                 rmap_head->val = (unsigned long)spte;
1258         } else if (!(rmap_head->val & 1)) {
1259                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1260                 desc = mmu_alloc_pte_list_desc(vcpu);
1261                 desc->sptes[0] = (u64 *)rmap_head->val;
1262                 desc->sptes[1] = spte;
1263                 rmap_head->val = (unsigned long)desc | 1;
1264                 ++count;
1265         } else {
1266                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1267                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1268                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1269                         desc = desc->more;
1270                         count += PTE_LIST_EXT;
1271                 }
1272                 if (desc->sptes[PTE_LIST_EXT-1]) {
1273                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1274                         desc = desc->more;
1275                 }
1276                 for (i = 0; desc->sptes[i]; ++i)
1277                         ++count;
1278                 desc->sptes[i] = spte;
1279         }
1280         return count;
1281 }
1282
1283 static void
1284 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1285                            struct pte_list_desc *desc, int i,
1286                            struct pte_list_desc *prev_desc)
1287 {
1288         int j;
1289
1290         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1291                 ;
1292         desc->sptes[i] = desc->sptes[j];
1293         desc->sptes[j] = NULL;
1294         if (j != 0)
1295                 return;
1296         if (!prev_desc && !desc->more)
1297                 rmap_head->val = (unsigned long)desc->sptes[0];
1298         else
1299                 if (prev_desc)
1300                         prev_desc->more = desc->more;
1301                 else
1302                         rmap_head->val = (unsigned long)desc->more | 1;
1303         mmu_free_pte_list_desc(desc);
1304 }
1305
1306 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1307 {
1308         struct pte_list_desc *desc;
1309         struct pte_list_desc *prev_desc;
1310         int i;
1311
1312         if (!rmap_head->val) {
1313                 pr_err("%s: %p 0->BUG\n", __func__, spte);
1314                 BUG();
1315         } else if (!(rmap_head->val & 1)) {
1316                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
1317                 if ((u64 *)rmap_head->val != spte) {
1318                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
1319                         BUG();
1320                 }
1321                 rmap_head->val = 0;
1322         } else {
1323                 rmap_printk("%s:  %p many->many\n", __func__, spte);
1324                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1325                 prev_desc = NULL;
1326                 while (desc) {
1327                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1328                                 if (desc->sptes[i] == spte) {
1329                                         pte_list_desc_remove_entry(rmap_head,
1330                                                         desc, i, prev_desc);
1331                                         return;
1332                                 }
1333                         }
1334                         prev_desc = desc;
1335                         desc = desc->more;
1336                 }
1337                 pr_err("%s: %p many->many\n", __func__, spte);
1338                 BUG();
1339         }
1340 }
1341
1342 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1343 {
1344         mmu_spte_clear_track_bits(sptep);
1345         __pte_list_remove(sptep, rmap_head);
1346 }
1347
1348 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1349                                            struct kvm_memory_slot *slot)
1350 {
1351         unsigned long idx;
1352
1353         idx = gfn_to_index(gfn, slot->base_gfn, level);
1354         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1355 }
1356
1357 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1358                                          struct kvm_mmu_page *sp)
1359 {
1360         struct kvm_memslots *slots;
1361         struct kvm_memory_slot *slot;
1362
1363         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1364         slot = __gfn_to_memslot(slots, gfn);
1365         return __gfn_to_rmap(gfn, sp->role.level, slot);
1366 }
1367
1368 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1369 {
1370         struct kvm_mmu_memory_cache *cache;
1371
1372         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1373         return mmu_memory_cache_free_objects(cache);
1374 }
1375
1376 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1377 {
1378         struct kvm_mmu_page *sp;
1379         struct kvm_rmap_head *rmap_head;
1380
1381         sp = page_header(__pa(spte));
1382         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1383         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1384         return pte_list_add(vcpu, spte, rmap_head);
1385 }
1386
1387 static void rmap_remove(struct kvm *kvm, u64 *spte)
1388 {
1389         struct kvm_mmu_page *sp;
1390         gfn_t gfn;
1391         struct kvm_rmap_head *rmap_head;
1392
1393         sp = page_header(__pa(spte));
1394         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1395         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1396         __pte_list_remove(spte, rmap_head);
1397 }
1398
1399 /*
1400  * Used by the following functions to iterate through the sptes linked by a
1401  * rmap.  All fields are private and not assumed to be used outside.
1402  */
1403 struct rmap_iterator {
1404         /* private fields */
1405         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1406         int pos;                        /* index of the sptep */
1407 };
1408
1409 /*
1410  * Iteration must be started by this function.  This should also be used after
1411  * removing/dropping sptes from the rmap link because in such cases the
1412  * information in the itererator may not be valid.
1413  *
1414  * Returns sptep if found, NULL otherwise.
1415  */
1416 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1417                            struct rmap_iterator *iter)
1418 {
1419         u64 *sptep;
1420
1421         if (!rmap_head->val)
1422                 return NULL;
1423
1424         if (!(rmap_head->val & 1)) {
1425                 iter->desc = NULL;
1426                 sptep = (u64 *)rmap_head->val;
1427                 goto out;
1428         }
1429
1430         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1431         iter->pos = 0;
1432         sptep = iter->desc->sptes[iter->pos];
1433 out:
1434         BUG_ON(!is_shadow_present_pte(*sptep));
1435         return sptep;
1436 }
1437
1438 /*
1439  * Must be used with a valid iterator: e.g. after rmap_get_first().
1440  *
1441  * Returns sptep if found, NULL otherwise.
1442  */
1443 static u64 *rmap_get_next(struct rmap_iterator *iter)
1444 {
1445         u64 *sptep;
1446
1447         if (iter->desc) {
1448                 if (iter->pos < PTE_LIST_EXT - 1) {
1449                         ++iter->pos;
1450                         sptep = iter->desc->sptes[iter->pos];
1451                         if (sptep)
1452                                 goto out;
1453                 }
1454
1455                 iter->desc = iter->desc->more;
1456
1457                 if (iter->desc) {
1458                         iter->pos = 0;
1459                         /* desc->sptes[0] cannot be NULL */
1460                         sptep = iter->desc->sptes[iter->pos];
1461                         goto out;
1462                 }
1463         }
1464
1465         return NULL;
1466 out:
1467         BUG_ON(!is_shadow_present_pte(*sptep));
1468         return sptep;
1469 }
1470
1471 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1472         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1473              _spte_; _spte_ = rmap_get_next(_iter_))
1474
1475 static void drop_spte(struct kvm *kvm, u64 *sptep)
1476 {
1477         if (mmu_spte_clear_track_bits(sptep))
1478                 rmap_remove(kvm, sptep);
1479 }
1480
1481
1482 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1483 {
1484         if (is_large_pte(*sptep)) {
1485                 WARN_ON(page_header(__pa(sptep))->role.level ==
1486                         PT_PAGE_TABLE_LEVEL);
1487                 drop_spte(kvm, sptep);
1488                 --kvm->stat.lpages;
1489                 return true;
1490         }
1491
1492         return false;
1493 }
1494
1495 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1496 {
1497         if (__drop_large_spte(vcpu->kvm, sptep)) {
1498                 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1499
1500                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1501                         KVM_PAGES_PER_HPAGE(sp->role.level));
1502         }
1503 }
1504
1505 /*
1506  * Write-protect on the specified @sptep, @pt_protect indicates whether
1507  * spte write-protection is caused by protecting shadow page table.
1508  *
1509  * Note: write protection is difference between dirty logging and spte
1510  * protection:
1511  * - for dirty logging, the spte can be set to writable at anytime if
1512  *   its dirty bitmap is properly set.
1513  * - for spte protection, the spte can be writable only after unsync-ing
1514  *   shadow page.
1515  *
1516  * Return true if tlb need be flushed.
1517  */
1518 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1519 {
1520         u64 spte = *sptep;
1521
1522         if (!is_writable_pte(spte) &&
1523               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1524                 return false;
1525
1526         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1527
1528         if (pt_protect)
1529                 spte &= ~SPTE_MMU_WRITEABLE;
1530         spte = spte & ~PT_WRITABLE_MASK;
1531
1532         return mmu_spte_update(sptep, spte);
1533 }
1534
1535 static bool __rmap_write_protect(struct kvm *kvm,
1536                                  struct kvm_rmap_head *rmap_head,
1537                                  bool pt_protect)
1538 {
1539         u64 *sptep;
1540         struct rmap_iterator iter;
1541         bool flush = false;
1542
1543         for_each_rmap_spte(rmap_head, &iter, sptep)
1544                 flush |= spte_write_protect(sptep, pt_protect);
1545
1546         return flush;
1547 }
1548
1549 static bool spte_clear_dirty(u64 *sptep)
1550 {
1551         u64 spte = *sptep;
1552
1553         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1554
1555         spte &= ~shadow_dirty_mask;
1556
1557         return mmu_spte_update(sptep, spte);
1558 }
1559
1560 static bool wrprot_ad_disabled_spte(u64 *sptep)
1561 {
1562         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1563                                                (unsigned long *)sptep);
1564         if (was_writable)
1565                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1566
1567         return was_writable;
1568 }
1569
1570 /*
1571  * Gets the GFN ready for another round of dirty logging by clearing the
1572  *      - D bit on ad-enabled SPTEs, and
1573  *      - W bit on ad-disabled SPTEs.
1574  * Returns true iff any D or W bits were cleared.
1575  */
1576 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1577 {
1578         u64 *sptep;
1579         struct rmap_iterator iter;
1580         bool flush = false;
1581
1582         for_each_rmap_spte(rmap_head, &iter, sptep)
1583                 if (spte_ad_enabled(*sptep))
1584                         flush |= spte_clear_dirty(sptep);
1585                 else
1586                         flush |= wrprot_ad_disabled_spte(sptep);
1587
1588         return flush;
1589 }
1590
1591 static bool spte_set_dirty(u64 *sptep)
1592 {
1593         u64 spte = *sptep;
1594
1595         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1596
1597         spte |= shadow_dirty_mask;
1598
1599         return mmu_spte_update(sptep, spte);
1600 }
1601
1602 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1603 {
1604         u64 *sptep;
1605         struct rmap_iterator iter;
1606         bool flush = false;
1607
1608         for_each_rmap_spte(rmap_head, &iter, sptep)
1609                 if (spte_ad_enabled(*sptep))
1610                         flush |= spte_set_dirty(sptep);
1611
1612         return flush;
1613 }
1614
1615 /**
1616  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1617  * @kvm: kvm instance
1618  * @slot: slot to protect
1619  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1620  * @mask: indicates which pages we should protect
1621  *
1622  * Used when we do not need to care about huge page mappings: e.g. during dirty
1623  * logging we do not have any such mappings.
1624  */
1625 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1626                                      struct kvm_memory_slot *slot,
1627                                      gfn_t gfn_offset, unsigned long mask)
1628 {
1629         struct kvm_rmap_head *rmap_head;
1630
1631         while (mask) {
1632                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1633                                           PT_PAGE_TABLE_LEVEL, slot);
1634                 __rmap_write_protect(kvm, rmap_head, false);
1635
1636                 /* clear the first set bit */
1637                 mask &= mask - 1;
1638         }
1639 }
1640
1641 /**
1642  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1643  * protect the page if the D-bit isn't supported.
1644  * @kvm: kvm instance
1645  * @slot: slot to clear D-bit
1646  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1647  * @mask: indicates which pages we should clear D-bit
1648  *
1649  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1650  */
1651 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1652                                      struct kvm_memory_slot *slot,
1653                                      gfn_t gfn_offset, unsigned long mask)
1654 {
1655         struct kvm_rmap_head *rmap_head;
1656
1657         while (mask) {
1658                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1659                                           PT_PAGE_TABLE_LEVEL, slot);
1660                 __rmap_clear_dirty(kvm, rmap_head);
1661
1662                 /* clear the first set bit */
1663                 mask &= mask - 1;
1664         }
1665 }
1666 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1667
1668 /**
1669  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1670  * PT level pages.
1671  *
1672  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1673  * enable dirty logging for them.
1674  *
1675  * Used when we do not need to care about huge page mappings: e.g. during dirty
1676  * logging we do not have any such mappings.
1677  */
1678 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1679                                 struct kvm_memory_slot *slot,
1680                                 gfn_t gfn_offset, unsigned long mask)
1681 {
1682         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1683                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1684                                 mask);
1685         else
1686                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1687 }
1688
1689 /**
1690  * kvm_arch_write_log_dirty - emulate dirty page logging
1691  * @vcpu: Guest mode vcpu
1692  *
1693  * Emulate arch specific page modification logging for the
1694  * nested hypervisor
1695  */
1696 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1697 {
1698         if (kvm_x86_ops->write_log_dirty)
1699                 return kvm_x86_ops->write_log_dirty(vcpu);
1700
1701         return 0;
1702 }
1703
1704 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1705                                     struct kvm_memory_slot *slot, u64 gfn)
1706 {
1707         struct kvm_rmap_head *rmap_head;
1708         int i;
1709         bool write_protected = false;
1710
1711         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1712                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1713                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1714         }
1715
1716         return write_protected;
1717 }
1718
1719 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1720 {
1721         struct kvm_memory_slot *slot;
1722
1723         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1724         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1725 }
1726
1727 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1728 {
1729         u64 *sptep;
1730         struct rmap_iterator iter;
1731         bool flush = false;
1732
1733         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1734                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1735
1736                 pte_list_remove(rmap_head, sptep);
1737                 flush = true;
1738         }
1739
1740         return flush;
1741 }
1742
1743 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1744                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1745                            unsigned long data)
1746 {
1747         return kvm_zap_rmapp(kvm, rmap_head);
1748 }
1749
1750 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1751                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1752                              unsigned long data)
1753 {
1754         u64 *sptep;
1755         struct rmap_iterator iter;
1756         int need_flush = 0;
1757         u64 new_spte;
1758         pte_t *ptep = (pte_t *)data;
1759         kvm_pfn_t new_pfn;
1760
1761         WARN_ON(pte_huge(*ptep));
1762         new_pfn = pte_pfn(*ptep);
1763
1764 restart:
1765         for_each_rmap_spte(rmap_head, &iter, sptep) {
1766                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1767                             sptep, *sptep, gfn, level);
1768
1769                 need_flush = 1;
1770
1771                 if (pte_write(*ptep)) {
1772                         pte_list_remove(rmap_head, sptep);
1773                         goto restart;
1774                 } else {
1775                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1776                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1777
1778                         new_spte &= ~PT_WRITABLE_MASK;
1779                         new_spte &= ~SPTE_HOST_WRITEABLE;
1780
1781                         new_spte = mark_spte_for_access_track(new_spte);
1782
1783                         mmu_spte_clear_track_bits(sptep);
1784                         mmu_spte_set(sptep, new_spte);
1785                 }
1786         }
1787
1788         if (need_flush && kvm_available_flush_tlb_with_range()) {
1789                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1790                 return 0;
1791         }
1792
1793         return need_flush;
1794 }
1795
1796 struct slot_rmap_walk_iterator {
1797         /* input fields. */
1798         struct kvm_memory_slot *slot;
1799         gfn_t start_gfn;
1800         gfn_t end_gfn;
1801         int start_level;
1802         int end_level;
1803
1804         /* output fields. */
1805         gfn_t gfn;
1806         struct kvm_rmap_head *rmap;
1807         int level;
1808
1809         /* private field. */
1810         struct kvm_rmap_head *end_rmap;
1811 };
1812
1813 static void
1814 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1815 {
1816         iterator->level = level;
1817         iterator->gfn = iterator->start_gfn;
1818         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1819         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1820                                            iterator->slot);
1821 }
1822
1823 static void
1824 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1825                     struct kvm_memory_slot *slot, int start_level,
1826                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1827 {
1828         iterator->slot = slot;
1829         iterator->start_level = start_level;
1830         iterator->end_level = end_level;
1831         iterator->start_gfn = start_gfn;
1832         iterator->end_gfn = end_gfn;
1833
1834         rmap_walk_init_level(iterator, iterator->start_level);
1835 }
1836
1837 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1838 {
1839         return !!iterator->rmap;
1840 }
1841
1842 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1843 {
1844         if (++iterator->rmap <= iterator->end_rmap) {
1845                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1846                 return;
1847         }
1848
1849         if (++iterator->level > iterator->end_level) {
1850                 iterator->rmap = NULL;
1851                 return;
1852         }
1853
1854         rmap_walk_init_level(iterator, iterator->level);
1855 }
1856
1857 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1858            _start_gfn, _end_gfn, _iter_)                                \
1859         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1860                                  _end_level_, _start_gfn, _end_gfn);    \
1861              slot_rmap_walk_okay(_iter_);                               \
1862              slot_rmap_walk_next(_iter_))
1863
1864 static int kvm_handle_hva_range(struct kvm *kvm,
1865                                 unsigned long start,
1866                                 unsigned long end,
1867                                 unsigned long data,
1868                                 int (*handler)(struct kvm *kvm,
1869                                                struct kvm_rmap_head *rmap_head,
1870                                                struct kvm_memory_slot *slot,
1871                                                gfn_t gfn,
1872                                                int level,
1873                                                unsigned long data))
1874 {
1875         struct kvm_memslots *slots;
1876         struct kvm_memory_slot *memslot;
1877         struct slot_rmap_walk_iterator iterator;
1878         int ret = 0;
1879         int i;
1880
1881         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1882                 slots = __kvm_memslots(kvm, i);
1883                 kvm_for_each_memslot(memslot, slots) {
1884                         unsigned long hva_start, hva_end;
1885                         gfn_t gfn_start, gfn_end;
1886
1887                         hva_start = max(start, memslot->userspace_addr);
1888                         hva_end = min(end, memslot->userspace_addr +
1889                                       (memslot->npages << PAGE_SHIFT));
1890                         if (hva_start >= hva_end)
1891                                 continue;
1892                         /*
1893                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1894                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1895                          */
1896                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1897                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1898
1899                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1900                                                  PT_MAX_HUGEPAGE_LEVEL,
1901                                                  gfn_start, gfn_end - 1,
1902                                                  &iterator)
1903                                 ret |= handler(kvm, iterator.rmap, memslot,
1904                                                iterator.gfn, iterator.level, data);
1905                 }
1906         }
1907
1908         return ret;
1909 }
1910
1911 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1912                           unsigned long data,
1913                           int (*handler)(struct kvm *kvm,
1914                                          struct kvm_rmap_head *rmap_head,
1915                                          struct kvm_memory_slot *slot,
1916                                          gfn_t gfn, int level,
1917                                          unsigned long data))
1918 {
1919         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1920 }
1921
1922 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1923 {
1924         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1925 }
1926
1927 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1928 {
1929         return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1930 }
1931
1932 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1933                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1934                          unsigned long data)
1935 {
1936         u64 *sptep;
1937         struct rmap_iterator uninitialized_var(iter);
1938         int young = 0;
1939
1940         for_each_rmap_spte(rmap_head, &iter, sptep)
1941                 young |= mmu_spte_age(sptep);
1942
1943         trace_kvm_age_page(gfn, level, slot, young);
1944         return young;
1945 }
1946
1947 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1948                               struct kvm_memory_slot *slot, gfn_t gfn,
1949                               int level, unsigned long data)
1950 {
1951         u64 *sptep;
1952         struct rmap_iterator iter;
1953
1954         for_each_rmap_spte(rmap_head, &iter, sptep)
1955                 if (is_accessed_spte(*sptep))
1956                         return 1;
1957         return 0;
1958 }
1959
1960 #define RMAP_RECYCLE_THRESHOLD 1000
1961
1962 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1963 {
1964         struct kvm_rmap_head *rmap_head;
1965         struct kvm_mmu_page *sp;
1966
1967         sp = page_header(__pa(spte));
1968
1969         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1970
1971         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1972         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1973                         KVM_PAGES_PER_HPAGE(sp->role.level));
1974 }
1975
1976 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1977 {
1978         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1979 }
1980
1981 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1982 {
1983         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1984 }
1985
1986 #ifdef MMU_DEBUG
1987 static int is_empty_shadow_page(u64 *spt)
1988 {
1989         u64 *pos;
1990         u64 *end;
1991
1992         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1993                 if (is_shadow_present_pte(*pos)) {
1994                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1995                                pos, *pos);
1996                         return 0;
1997                 }
1998         return 1;
1999 }
2000 #endif
2001
2002 /*
2003  * This value is the sum of all of the kvm instances's
2004  * kvm->arch.n_used_mmu_pages values.  We need a global,
2005  * aggregate version in order to make the slab shrinker
2006  * faster
2007  */
2008 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
2009 {
2010         kvm->arch.n_used_mmu_pages += nr;
2011         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2012 }
2013
2014 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2015 {
2016         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2017         hlist_del(&sp->hash_link);
2018         list_del(&sp->link);
2019         free_page((unsigned long)sp->spt);
2020         if (!sp->role.direct)
2021                 free_page((unsigned long)sp->gfns);
2022         kmem_cache_free(mmu_page_header_cache, sp);
2023 }
2024
2025 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2026 {
2027         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2028 }
2029
2030 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2031                                     struct kvm_mmu_page *sp, u64 *parent_pte)
2032 {
2033         if (!parent_pte)
2034                 return;
2035
2036         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2037 }
2038
2039 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2040                                        u64 *parent_pte)
2041 {
2042         __pte_list_remove(parent_pte, &sp->parent_ptes);
2043 }
2044
2045 static void drop_parent_pte(struct kvm_mmu_page *sp,
2046                             u64 *parent_pte)
2047 {
2048         mmu_page_remove_parent_pte(sp, parent_pte);
2049         mmu_spte_clear_no_track(parent_pte);
2050 }
2051
2052 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2053 {
2054         struct kvm_mmu_page *sp;
2055
2056         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2057         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2058         if (!direct)
2059                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2060         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2061
2062         /*
2063          * The active_mmu_pages list is the FIFO list, do not move the
2064          * page until it is zapped. kvm_zap_obsolete_pages depends on
2065          * this feature. See the comments in kvm_zap_obsolete_pages().
2066          */
2067         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2068         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2069         return sp;
2070 }
2071
2072 static void mark_unsync(u64 *spte);
2073 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2074 {
2075         u64 *sptep;
2076         struct rmap_iterator iter;
2077
2078         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2079                 mark_unsync(sptep);
2080         }
2081 }
2082
2083 static void mark_unsync(u64 *spte)
2084 {
2085         struct kvm_mmu_page *sp;
2086         unsigned int index;
2087
2088         sp = page_header(__pa(spte));
2089         index = spte - sp->spt;
2090         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2091                 return;
2092         if (sp->unsync_children++)
2093                 return;
2094         kvm_mmu_mark_parents_unsync(sp);
2095 }
2096
2097 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2098                                struct kvm_mmu_page *sp)
2099 {
2100         return 0;
2101 }
2102
2103 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2104 {
2105 }
2106
2107 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2108                                  struct kvm_mmu_page *sp, u64 *spte,
2109                                  const void *pte)
2110 {
2111         WARN_ON(1);
2112 }
2113
2114 #define KVM_PAGE_ARRAY_NR 16
2115
2116 struct kvm_mmu_pages {
2117         struct mmu_page_and_offset {
2118                 struct kvm_mmu_page *sp;
2119                 unsigned int idx;
2120         } page[KVM_PAGE_ARRAY_NR];
2121         unsigned int nr;
2122 };
2123
2124 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2125                          int idx)
2126 {
2127         int i;
2128
2129         if (sp->unsync)
2130                 for (i=0; i < pvec->nr; i++)
2131                         if (pvec->page[i].sp == sp)
2132                                 return 0;
2133
2134         pvec->page[pvec->nr].sp = sp;
2135         pvec->page[pvec->nr].idx = idx;
2136         pvec->nr++;
2137         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2138 }
2139
2140 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2141 {
2142         --sp->unsync_children;
2143         WARN_ON((int)sp->unsync_children < 0);
2144         __clear_bit(idx, sp->unsync_child_bitmap);
2145 }
2146
2147 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2148                            struct kvm_mmu_pages *pvec)
2149 {
2150         int i, ret, nr_unsync_leaf = 0;
2151
2152         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2153                 struct kvm_mmu_page *child;
2154                 u64 ent = sp->spt[i];
2155
2156                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2157                         clear_unsync_child_bit(sp, i);
2158                         continue;
2159                 }
2160
2161                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2162
2163                 if (child->unsync_children) {
2164                         if (mmu_pages_add(pvec, child, i))
2165                                 return -ENOSPC;
2166
2167                         ret = __mmu_unsync_walk(child, pvec);
2168                         if (!ret) {
2169                                 clear_unsync_child_bit(sp, i);
2170                                 continue;
2171                         } else if (ret > 0) {
2172                                 nr_unsync_leaf += ret;
2173                         } else
2174                                 return ret;
2175                 } else if (child->unsync) {
2176                         nr_unsync_leaf++;
2177                         if (mmu_pages_add(pvec, child, i))
2178                                 return -ENOSPC;
2179                 } else
2180                         clear_unsync_child_bit(sp, i);
2181         }
2182
2183         return nr_unsync_leaf;
2184 }
2185
2186 #define INVALID_INDEX (-1)
2187
2188 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2189                            struct kvm_mmu_pages *pvec)
2190 {
2191         pvec->nr = 0;
2192         if (!sp->unsync_children)
2193                 return 0;
2194
2195         mmu_pages_add(pvec, sp, INVALID_INDEX);
2196         return __mmu_unsync_walk(sp, pvec);
2197 }
2198
2199 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2200 {
2201         WARN_ON(!sp->unsync);
2202         trace_kvm_mmu_sync_page(sp);
2203         sp->unsync = 0;
2204         --kvm->stat.mmu_unsync;
2205 }
2206
2207 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2208                                     struct list_head *invalid_list);
2209 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2210                                     struct list_head *invalid_list);
2211
2212 /*
2213  * NOTE: we should pay more attention on the zapped-obsolete page
2214  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2215  * since it has been deleted from active_mmu_pages but still can be found
2216  * at hast list.
2217  *
2218  * for_each_valid_sp() has skipped that kind of pages.
2219  */
2220 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2221         hlist_for_each_entry(_sp,                                       \
2222           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2223                 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
2224                 } else
2225
2226 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2227         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2228                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2229
2230 /* @sp->gfn should be write-protected at the call site */
2231 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2232                             struct list_head *invalid_list)
2233 {
2234         if (sp->role.cr4_pae != !!is_pae(vcpu)
2235             || vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2236                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2237                 return false;
2238         }
2239
2240         return true;
2241 }
2242
2243 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2244                                  struct list_head *invalid_list,
2245                                  bool remote_flush, bool local_flush)
2246 {
2247         if (!list_empty(invalid_list)) {
2248                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2249                 return;
2250         }
2251
2252         if (remote_flush)
2253                 kvm_flush_remote_tlbs(vcpu->kvm);
2254         else if (local_flush)
2255                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2256 }
2257
2258 #ifdef CONFIG_KVM_MMU_AUDIT
2259 #include "mmu_audit.c"
2260 #else
2261 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2262 static void mmu_audit_disable(void) { }
2263 #endif
2264
2265 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2266 {
2267         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2268 }
2269
2270 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2271                          struct list_head *invalid_list)
2272 {
2273         kvm_unlink_unsync_page(vcpu->kvm, sp);
2274         return __kvm_sync_page(vcpu, sp, invalid_list);
2275 }
2276
2277 /* @gfn should be write-protected at the call site */
2278 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2279                            struct list_head *invalid_list)
2280 {
2281         struct kvm_mmu_page *s;
2282         bool ret = false;
2283
2284         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2285                 if (!s->unsync)
2286                         continue;
2287
2288                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2289                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2290         }
2291
2292         return ret;
2293 }
2294
2295 struct mmu_page_path {
2296         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2297         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2298 };
2299
2300 #define for_each_sp(pvec, sp, parents, i)                       \
2301                 for (i = mmu_pages_first(&pvec, &parents);      \
2302                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2303                         i = mmu_pages_next(&pvec, &parents, i))
2304
2305 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2306                           struct mmu_page_path *parents,
2307                           int i)
2308 {
2309         int n;
2310
2311         for (n = i+1; n < pvec->nr; n++) {
2312                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2313                 unsigned idx = pvec->page[n].idx;
2314                 int level = sp->role.level;
2315
2316                 parents->idx[level-1] = idx;
2317                 if (level == PT_PAGE_TABLE_LEVEL)
2318                         break;
2319
2320                 parents->parent[level-2] = sp;
2321         }
2322
2323         return n;
2324 }
2325
2326 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2327                            struct mmu_page_path *parents)
2328 {
2329         struct kvm_mmu_page *sp;
2330         int level;
2331
2332         if (pvec->nr == 0)
2333                 return 0;
2334
2335         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2336
2337         sp = pvec->page[0].sp;
2338         level = sp->role.level;
2339         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2340
2341         parents->parent[level-2] = sp;
2342
2343         /* Also set up a sentinel.  Further entries in pvec are all
2344          * children of sp, so this element is never overwritten.
2345          */
2346         parents->parent[level-1] = NULL;
2347         return mmu_pages_next(pvec, parents, 0);
2348 }
2349
2350 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2351 {
2352         struct kvm_mmu_page *sp;
2353         unsigned int level = 0;
2354
2355         do {
2356                 unsigned int idx = parents->idx[level];
2357                 sp = parents->parent[level];
2358                 if (!sp)
2359                         return;
2360
2361                 WARN_ON(idx == INVALID_INDEX);
2362                 clear_unsync_child_bit(sp, idx);
2363                 level++;
2364         } while (!sp->unsync_children);
2365 }
2366
2367 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2368                               struct kvm_mmu_page *parent)
2369 {
2370         int i;
2371         struct kvm_mmu_page *sp;
2372         struct mmu_page_path parents;
2373         struct kvm_mmu_pages pages;
2374         LIST_HEAD(invalid_list);
2375         bool flush = false;
2376
2377         while (mmu_unsync_walk(parent, &pages)) {
2378                 bool protected = false;
2379
2380                 for_each_sp(pages, sp, parents, i)
2381                         protected |= rmap_write_protect(vcpu, sp->gfn);
2382
2383                 if (protected) {
2384                         kvm_flush_remote_tlbs(vcpu->kvm);
2385                         flush = false;
2386                 }
2387
2388                 for_each_sp(pages, sp, parents, i) {
2389                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2390                         mmu_pages_clear_parents(&parents);
2391                 }
2392                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2393                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2394                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2395                         flush = false;
2396                 }
2397         }
2398
2399         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2400 }
2401
2402 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2403 {
2404         atomic_set(&sp->write_flooding_count,  0);
2405 }
2406
2407 static void clear_sp_write_flooding_count(u64 *spte)
2408 {
2409         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2410
2411         __clear_sp_write_flooding_count(sp);
2412 }
2413
2414 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2415                                              gfn_t gfn,
2416                                              gva_t gaddr,
2417                                              unsigned level,
2418                                              int direct,
2419                                              unsigned access)
2420 {
2421         union kvm_mmu_page_role role;
2422         unsigned quadrant;
2423         struct kvm_mmu_page *sp;
2424         bool need_sync = false;
2425         bool flush = false;
2426         int collisions = 0;
2427         LIST_HEAD(invalid_list);
2428
2429         role = vcpu->arch.mmu->mmu_role.base;
2430         role.level = level;
2431         role.direct = direct;
2432         if (role.direct)
2433                 role.cr4_pae = 0;
2434         role.access = access;
2435         if (!vcpu->arch.mmu->direct_map
2436             && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2437                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2438                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2439                 role.quadrant = quadrant;
2440         }
2441         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2442                 if (sp->gfn != gfn) {
2443                         collisions++;
2444                         continue;
2445                 }
2446
2447                 if (!need_sync && sp->unsync)
2448                         need_sync = true;
2449
2450                 if (sp->role.word != role.word)
2451                         continue;
2452
2453                 if (sp->unsync) {
2454                         /* The page is good, but __kvm_sync_page might still end
2455                          * up zapping it.  If so, break in order to rebuild it.
2456                          */
2457                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2458                                 break;
2459
2460                         WARN_ON(!list_empty(&invalid_list));
2461                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2462                 }
2463
2464                 if (sp->unsync_children)
2465                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2466
2467                 __clear_sp_write_flooding_count(sp);
2468                 trace_kvm_mmu_get_page(sp, false);
2469                 goto out;
2470         }
2471
2472         ++vcpu->kvm->stat.mmu_cache_miss;
2473
2474         sp = kvm_mmu_alloc_page(vcpu, direct);
2475
2476         sp->gfn = gfn;
2477         sp->role = role;
2478         hlist_add_head(&sp->hash_link,
2479                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2480         if (!direct) {
2481                 /*
2482                  * we should do write protection before syncing pages
2483                  * otherwise the content of the synced shadow page may
2484                  * be inconsistent with guest page table.
2485                  */
2486                 account_shadowed(vcpu->kvm, sp);
2487                 if (level == PT_PAGE_TABLE_LEVEL &&
2488                       rmap_write_protect(vcpu, gfn))
2489                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2490
2491                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2492                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2493         }
2494         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2495         clear_page(sp->spt);
2496         trace_kvm_mmu_get_page(sp, true);
2497
2498         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2499 out:
2500         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2501                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2502         return sp;
2503 }
2504
2505 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2506                                         struct kvm_vcpu *vcpu, hpa_t root,
2507                                         u64 addr)
2508 {
2509         iterator->addr = addr;
2510         iterator->shadow_addr = root;
2511         iterator->level = vcpu->arch.mmu->shadow_root_level;
2512
2513         if (iterator->level == PT64_ROOT_4LEVEL &&
2514             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2515             !vcpu->arch.mmu->direct_map)
2516                 --iterator->level;
2517
2518         if (iterator->level == PT32E_ROOT_LEVEL) {
2519                 /*
2520                  * prev_root is currently only used for 64-bit hosts. So only
2521                  * the active root_hpa is valid here.
2522                  */
2523                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2524
2525                 iterator->shadow_addr
2526                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2527                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2528                 --iterator->level;
2529                 if (!iterator->shadow_addr)
2530                         iterator->level = 0;
2531         }
2532 }
2533
2534 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2535                              struct kvm_vcpu *vcpu, u64 addr)
2536 {
2537         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2538                                     addr);
2539 }
2540
2541 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2542 {
2543         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2544                 return false;
2545
2546         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2547         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2548         return true;
2549 }
2550
2551 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2552                                u64 spte)
2553 {
2554         if (is_last_spte(spte, iterator->level)) {
2555                 iterator->level = 0;
2556                 return;
2557         }
2558
2559         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2560         --iterator->level;
2561 }
2562
2563 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2564 {
2565         __shadow_walk_next(iterator, *iterator->sptep);
2566 }
2567
2568 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2569                              struct kvm_mmu_page *sp)
2570 {
2571         u64 spte;
2572
2573         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2574
2575         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2576                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2577
2578         if (sp_ad_disabled(sp))
2579                 spte |= shadow_acc_track_value;
2580         else
2581                 spte |= shadow_accessed_mask;
2582
2583         mmu_spte_set(sptep, spte);
2584
2585         mmu_page_add_parent_pte(vcpu, sp, sptep);
2586
2587         if (sp->unsync_children || sp->unsync)
2588                 mark_unsync(sptep);
2589 }
2590
2591 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2592                                    unsigned direct_access)
2593 {
2594         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2595                 struct kvm_mmu_page *child;
2596
2597                 /*
2598                  * For the direct sp, if the guest pte's dirty bit
2599                  * changed form clean to dirty, it will corrupt the
2600                  * sp's access: allow writable in the read-only sp,
2601                  * so we should update the spte at this point to get
2602                  * a new sp with the correct access.
2603                  */
2604                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2605                 if (child->role.access == direct_access)
2606                         return;
2607
2608                 drop_parent_pte(child, sptep);
2609                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2610         }
2611 }
2612
2613 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2614                              u64 *spte)
2615 {
2616         u64 pte;
2617         struct kvm_mmu_page *child;
2618
2619         pte = *spte;
2620         if (is_shadow_present_pte(pte)) {
2621                 if (is_last_spte(pte, sp->role.level)) {
2622                         drop_spte(kvm, spte);
2623                         if (is_large_pte(pte))
2624                                 --kvm->stat.lpages;
2625                 } else {
2626                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2627                         drop_parent_pte(child, spte);
2628                 }
2629                 return true;
2630         }
2631
2632         if (is_mmio_spte(pte))
2633                 mmu_spte_clear_no_track(spte);
2634
2635         return false;
2636 }
2637
2638 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2639                                          struct kvm_mmu_page *sp)
2640 {
2641         unsigned i;
2642
2643         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2644                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2645 }
2646
2647 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2648 {
2649         u64 *sptep;
2650         struct rmap_iterator iter;
2651
2652         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2653                 drop_parent_pte(sp, sptep);
2654 }
2655
2656 static int mmu_zap_unsync_children(struct kvm *kvm,
2657                                    struct kvm_mmu_page *parent,
2658                                    struct list_head *invalid_list)
2659 {
2660         int i, zapped = 0;
2661         struct mmu_page_path parents;
2662         struct kvm_mmu_pages pages;
2663
2664         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2665                 return 0;
2666
2667         while (mmu_unsync_walk(parent, &pages)) {
2668                 struct kvm_mmu_page *sp;
2669
2670                 for_each_sp(pages, sp, parents, i) {
2671                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2672                         mmu_pages_clear_parents(&parents);
2673                         zapped++;
2674                 }
2675         }
2676
2677         return zapped;
2678 }
2679
2680 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2681                                     struct list_head *invalid_list)
2682 {
2683         int ret;
2684
2685         trace_kvm_mmu_prepare_zap_page(sp);
2686         ++kvm->stat.mmu_shadow_zapped;
2687         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2688         kvm_mmu_page_unlink_children(kvm, sp);
2689         kvm_mmu_unlink_parents(kvm, sp);
2690
2691         if (!sp->role.invalid && !sp->role.direct)
2692                 unaccount_shadowed(kvm, sp);
2693
2694         if (sp->unsync)
2695                 kvm_unlink_unsync_page(kvm, sp);
2696         if (!sp->root_count) {
2697                 /* Count self */
2698                 ret++;
2699                 list_move(&sp->link, invalid_list);
2700                 kvm_mod_used_mmu_pages(kvm, -1);
2701         } else {
2702                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2703
2704                 /*
2705                  * The obsolete pages can not be used on any vcpus.
2706                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2707                  */
2708                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2709                         kvm_reload_remote_mmus(kvm);
2710         }
2711
2712         sp->role.invalid = 1;
2713         return ret;
2714 }
2715
2716 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2717                                     struct list_head *invalid_list)
2718 {
2719         struct kvm_mmu_page *sp, *nsp;
2720
2721         if (list_empty(invalid_list))
2722                 return;
2723
2724         /*
2725          * We need to make sure everyone sees our modifications to
2726          * the page tables and see changes to vcpu->mode here. The barrier
2727          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2728          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2729          *
2730          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2731          * guest mode and/or lockless shadow page table walks.
2732          */
2733         kvm_flush_remote_tlbs(kvm);
2734
2735         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2736                 WARN_ON(!sp->role.invalid || sp->root_count);
2737                 kvm_mmu_free_page(sp);
2738         }
2739 }
2740
2741 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2742                                         struct list_head *invalid_list)
2743 {
2744         struct kvm_mmu_page *sp;
2745
2746         if (list_empty(&kvm->arch.active_mmu_pages))
2747                 return false;
2748
2749         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2750                              struct kvm_mmu_page, link);
2751         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2752 }
2753
2754 /*
2755  * Changing the number of mmu pages allocated to the vm
2756  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2757  */
2758 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2759 {
2760         LIST_HEAD(invalid_list);
2761
2762         spin_lock(&kvm->mmu_lock);
2763
2764         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2765                 /* Need to free some mmu pages to achieve the goal. */
2766                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2767                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2768                                 break;
2769
2770                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2771                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2772         }
2773
2774         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2775
2776         spin_unlock(&kvm->mmu_lock);
2777 }
2778
2779 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2780 {
2781         struct kvm_mmu_page *sp;
2782         LIST_HEAD(invalid_list);
2783         int r;
2784
2785         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2786         r = 0;
2787         spin_lock(&kvm->mmu_lock);
2788         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2789                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2790                          sp->role.word);
2791                 r = 1;
2792                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2793         }
2794         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2795         spin_unlock(&kvm->mmu_lock);
2796
2797         return r;
2798 }
2799 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2800
2801 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2802 {
2803         trace_kvm_mmu_unsync_page(sp);
2804         ++vcpu->kvm->stat.mmu_unsync;
2805         sp->unsync = 1;
2806
2807         kvm_mmu_mark_parents_unsync(sp);
2808 }
2809
2810 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2811                                    bool can_unsync)
2812 {
2813         struct kvm_mmu_page *sp;
2814
2815         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2816                 return true;
2817
2818         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2819                 if (!can_unsync)
2820                         return true;
2821
2822                 if (sp->unsync)
2823                         continue;
2824
2825                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2826                 kvm_unsync_page(vcpu, sp);
2827         }
2828
2829         /*
2830          * We need to ensure that the marking of unsync pages is visible
2831          * before the SPTE is updated to allow writes because
2832          * kvm_mmu_sync_roots() checks the unsync flags without holding
2833          * the MMU lock and so can race with this. If the SPTE was updated
2834          * before the page had been marked as unsync-ed, something like the
2835          * following could happen:
2836          *
2837          * CPU 1                    CPU 2
2838          * ---------------------------------------------------------------------
2839          * 1.2 Host updates SPTE
2840          *     to be writable
2841          *                      2.1 Guest writes a GPTE for GVA X.
2842          *                          (GPTE being in the guest page table shadowed
2843          *                           by the SP from CPU 1.)
2844          *                          This reads SPTE during the page table walk.
2845          *                          Since SPTE.W is read as 1, there is no
2846          *                          fault.
2847          *
2848          *                      2.2 Guest issues TLB flush.
2849          *                          That causes a VM Exit.
2850          *
2851          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2852          *                          Since it is false, so it just returns.
2853          *
2854          *                      2.4 Guest accesses GVA X.
2855          *                          Since the mapping in the SP was not updated,
2856          *                          so the old mapping for GVA X incorrectly
2857          *                          gets used.
2858          * 1.1 Host marks SP
2859          *     as unsync
2860          *     (sp->unsync = true)
2861          *
2862          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2863          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2864          * pairs with this write barrier.
2865          */
2866         smp_wmb();
2867
2868         return false;
2869 }
2870
2871 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2872 {
2873         if (pfn_valid(pfn))
2874                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2875                         /*
2876                          * Some reserved pages, such as those from NVDIMM
2877                          * DAX devices, are not for MMIO, and can be mapped
2878                          * with cached memory type for better performance.
2879                          * However, the above check misconceives those pages
2880                          * as MMIO, and results in KVM mapping them with UC
2881                          * memory type, which would hurt the performance.
2882                          * Therefore, we check the host memory type in addition
2883                          * and only treat UC/UC-/WC pages as MMIO.
2884                          */
2885                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2886
2887         return true;
2888 }
2889
2890 /* Bits which may be returned by set_spte() */
2891 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
2892 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
2893
2894 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2895                     unsigned pte_access, int level,
2896                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2897                     bool can_unsync, bool host_writable)
2898 {
2899         u64 spte = 0;
2900         int ret = 0;
2901         struct kvm_mmu_page *sp;
2902
2903         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2904                 return 0;
2905
2906         sp = page_header(__pa(sptep));
2907         if (sp_ad_disabled(sp))
2908                 spte |= shadow_acc_track_value;
2909
2910         /*
2911          * For the EPT case, shadow_present_mask is 0 if hardware
2912          * supports exec-only page table entries.  In that case,
2913          * ACC_USER_MASK and shadow_user_mask are used to represent
2914          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2915          */
2916         spte |= shadow_present_mask;
2917         if (!speculative)
2918                 spte |= spte_shadow_accessed_mask(spte);
2919
2920         if (pte_access & ACC_EXEC_MASK)
2921                 spte |= shadow_x_mask;
2922         else
2923                 spte |= shadow_nx_mask;
2924
2925         if (pte_access & ACC_USER_MASK)
2926                 spte |= shadow_user_mask;
2927
2928         if (level > PT_PAGE_TABLE_LEVEL)
2929                 spte |= PT_PAGE_SIZE_MASK;
2930         if (tdp_enabled)
2931                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2932                         kvm_is_mmio_pfn(pfn));
2933
2934         if (host_writable)
2935                 spte |= SPTE_HOST_WRITEABLE;
2936         else
2937                 pte_access &= ~ACC_WRITE_MASK;
2938
2939         if (!kvm_is_mmio_pfn(pfn))
2940                 spte |= shadow_me_mask;
2941
2942         spte |= (u64)pfn << PAGE_SHIFT;
2943
2944         if (pte_access & ACC_WRITE_MASK) {
2945
2946                 /*
2947                  * Other vcpu creates new sp in the window between
2948                  * mapping_level() and acquiring mmu-lock. We can
2949                  * allow guest to retry the access, the mapping can
2950                  * be fixed if guest refault.
2951                  */
2952                 if (level > PT_PAGE_TABLE_LEVEL &&
2953                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2954                         goto done;
2955
2956                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2957
2958                 /*
2959                  * Optimization: for pte sync, if spte was writable the hash
2960                  * lookup is unnecessary (and expensive). Write protection
2961                  * is responsibility of mmu_get_page / kvm_sync_page.
2962                  * Same reasoning can be applied to dirty page accounting.
2963                  */
2964                 if (!can_unsync && is_writable_pte(*sptep))
2965                         goto set_pte;
2966
2967                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2968                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2969                                  __func__, gfn);
2970                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
2971                         pte_access &= ~ACC_WRITE_MASK;
2972                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2973                 }
2974         }
2975
2976         if (pte_access & ACC_WRITE_MASK) {
2977                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2978                 spte |= spte_shadow_dirty_mask(spte);
2979         }
2980
2981         if (speculative)
2982                 spte = mark_spte_for_access_track(spte);
2983
2984 set_pte:
2985         if (mmu_spte_update(sptep, spte))
2986                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2987 done:
2988         return ret;
2989 }
2990
2991 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2992                         int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2993                         bool speculative, bool host_writable)
2994 {
2995         int was_rmapped = 0;
2996         int rmap_count;
2997         int set_spte_ret;
2998         int ret = RET_PF_RETRY;
2999         bool flush = false;
3000
3001         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3002                  *sptep, write_fault, gfn);
3003
3004         if (is_shadow_present_pte(*sptep)) {
3005                 /*
3006                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3007                  * the parent of the now unreachable PTE.
3008                  */
3009                 if (level > PT_PAGE_TABLE_LEVEL &&
3010                     !is_large_pte(*sptep)) {
3011                         struct kvm_mmu_page *child;
3012                         u64 pte = *sptep;
3013
3014                         child = page_header(pte & PT64_BASE_ADDR_MASK);
3015                         drop_parent_pte(child, sptep);
3016                         flush = true;
3017                 } else if (pfn != spte_to_pfn(*sptep)) {
3018                         pgprintk("hfn old %llx new %llx\n",
3019                                  spte_to_pfn(*sptep), pfn);
3020                         drop_spte(vcpu->kvm, sptep);
3021                         flush = true;
3022                 } else
3023                         was_rmapped = 1;
3024         }
3025
3026         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3027                                 speculative, true, host_writable);
3028         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3029                 if (write_fault)
3030                         ret = RET_PF_EMULATE;
3031                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3032         }
3033
3034         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3035                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3036                                 KVM_PAGES_PER_HPAGE(level));
3037
3038         if (unlikely(is_mmio_spte(*sptep)))
3039                 ret = RET_PF_EMULATE;
3040
3041         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3042         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
3043                  is_large_pte(*sptep)? "2MB" : "4kB",
3044                  *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
3045                  *sptep, sptep);
3046         if (!was_rmapped && is_large_pte(*sptep))
3047                 ++vcpu->kvm->stat.lpages;
3048
3049         if (is_shadow_present_pte(*sptep)) {
3050                 if (!was_rmapped) {
3051                         rmap_count = rmap_add(vcpu, sptep, gfn);
3052                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3053                                 rmap_recycle(vcpu, sptep, gfn);
3054                 }
3055         }
3056
3057         kvm_release_pfn_clean(pfn);
3058
3059         return ret;
3060 }
3061
3062 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3063                                      bool no_dirty_log)
3064 {
3065         struct kvm_memory_slot *slot;
3066
3067         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3068         if (!slot)
3069                 return KVM_PFN_ERR_FAULT;
3070
3071         return gfn_to_pfn_memslot_atomic(slot, gfn);
3072 }
3073
3074 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3075                                     struct kvm_mmu_page *sp,
3076                                     u64 *start, u64 *end)
3077 {
3078         struct page *pages[PTE_PREFETCH_NUM];
3079         struct kvm_memory_slot *slot;
3080         unsigned access = sp->role.access;
3081         int i, ret;
3082         gfn_t gfn;
3083
3084         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3085         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3086         if (!slot)
3087                 return -1;
3088
3089         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3090         if (ret <= 0)
3091                 return -1;
3092
3093         for (i = 0; i < ret; i++, gfn++, start++)
3094                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3095                              page_to_pfn(pages[i]), true, true);
3096
3097         return 0;
3098 }
3099
3100 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3101                                   struct kvm_mmu_page *sp, u64 *sptep)
3102 {
3103         u64 *spte, *start = NULL;
3104         int i;
3105
3106         WARN_ON(!sp->role.direct);
3107
3108         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3109         spte = sp->spt + i;
3110
3111         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3112                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3113                         if (!start)
3114                                 continue;
3115                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3116                                 break;
3117                         start = NULL;
3118                 } else if (!start)
3119                         start = spte;
3120         }
3121 }
3122
3123 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3124 {
3125         struct kvm_mmu_page *sp;
3126
3127         sp = page_header(__pa(sptep));
3128
3129         /*
3130          * Without accessed bits, there's no way to distinguish between
3131          * actually accessed translations and prefetched, so disable pte
3132          * prefetch if accessed bits aren't available.
3133          */
3134         if (sp_ad_disabled(sp))
3135                 return;
3136
3137         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3138                 return;
3139
3140         __direct_pte_prefetch(vcpu, sp, sptep);
3141 }
3142
3143 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
3144                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
3145 {
3146         struct kvm_shadow_walk_iterator iterator;
3147         struct kvm_mmu_page *sp;
3148         int emulate = 0;
3149         gfn_t pseudo_gfn;
3150
3151         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3152                 return 0;
3153
3154         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
3155                 if (iterator.level == level) {
3156                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
3157                                                write, level, gfn, pfn, prefault,
3158                                                map_writable);
3159                         direct_pte_prefetch(vcpu, iterator.sptep);
3160                         ++vcpu->stat.pf_fixed;
3161                         break;
3162                 }
3163
3164                 drop_large_spte(vcpu, iterator.sptep);
3165                 if (!is_shadow_present_pte(*iterator.sptep)) {
3166                         u64 base_addr = iterator.addr;
3167
3168                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
3169                         pseudo_gfn = base_addr >> PAGE_SHIFT;
3170                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
3171                                               iterator.level - 1, 1, ACC_ALL);
3172
3173                         link_shadow_page(vcpu, iterator.sptep, sp);
3174                 }
3175         }
3176         return emulate;
3177 }
3178
3179 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3180 {
3181         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3182 }
3183
3184 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3185 {
3186         /*
3187          * Do not cache the mmio info caused by writing the readonly gfn
3188          * into the spte otherwise read access on readonly gfn also can
3189          * caused mmio page fault and treat it as mmio access.
3190          */
3191         if (pfn == KVM_PFN_ERR_RO_FAULT)
3192                 return RET_PF_EMULATE;
3193
3194         if (pfn == KVM_PFN_ERR_HWPOISON) {
3195                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3196                 return RET_PF_RETRY;
3197         }
3198
3199         return -EFAULT;
3200 }
3201
3202 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3203                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
3204                                         int *levelp)
3205 {
3206         kvm_pfn_t pfn = *pfnp;
3207         gfn_t gfn = *gfnp;
3208         int level = *levelp;
3209
3210         /*
3211          * Check if it's a transparent hugepage. If this would be an
3212          * hugetlbfs page, level wouldn't be set to
3213          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3214          * here.
3215          */
3216         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3217             level == PT_PAGE_TABLE_LEVEL &&
3218             PageTransCompoundMap(pfn_to_page(pfn)) &&
3219             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3220                 unsigned long mask;
3221                 /*
3222                  * mmu_notifier_retry was successful and we hold the
3223                  * mmu_lock here, so the pmd can't become splitting
3224                  * from under us, and in turn
3225                  * __split_huge_page_refcount() can't run from under
3226                  * us and we can safely transfer the refcount from
3227                  * PG_tail to PG_head as we switch the pfn to tail to
3228                  * head.
3229                  */
3230                 *levelp = level = PT_DIRECTORY_LEVEL;
3231                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3232                 VM_BUG_ON((gfn & mask) != (pfn & mask));
3233                 if (pfn & mask) {
3234                         gfn &= ~mask;
3235                         *gfnp = gfn;
3236                         kvm_release_pfn_clean(pfn);
3237                         pfn &= ~mask;
3238                         kvm_get_pfn(pfn);
3239                         *pfnp = pfn;
3240                 }
3241         }
3242 }
3243
3244 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3245                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
3246 {
3247         /* The pfn is invalid, report the error! */
3248         if (unlikely(is_error_pfn(pfn))) {
3249                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3250                 return true;
3251         }
3252
3253         if (unlikely(is_noslot_pfn(pfn)))
3254                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3255
3256         return false;
3257 }
3258
3259 static bool page_fault_can_be_fast(u32 error_code)
3260 {
3261         /*
3262          * Do not fix the mmio spte with invalid generation number which
3263          * need to be updated by slow page fault path.
3264          */
3265         if (unlikely(error_code & PFERR_RSVD_MASK))
3266                 return false;
3267
3268         /* See if the page fault is due to an NX violation */
3269         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3270                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3271                 return false;
3272
3273         /*
3274          * #PF can be fast if:
3275          * 1. The shadow page table entry is not present, which could mean that
3276          *    the fault is potentially caused by access tracking (if enabled).
3277          * 2. The shadow page table entry is present and the fault
3278          *    is caused by write-protect, that means we just need change the W
3279          *    bit of the spte which can be done out of mmu-lock.
3280          *
3281          * However, if access tracking is disabled we know that a non-present
3282          * page must be a genuine page fault where we have to create a new SPTE.
3283          * So, if access tracking is disabled, we return true only for write
3284          * accesses to a present page.
3285          */
3286
3287         return shadow_acc_track_mask != 0 ||
3288                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3289                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3290 }
3291
3292 /*
3293  * Returns true if the SPTE was fixed successfully. Otherwise,
3294  * someone else modified the SPTE from its original value.
3295  */
3296 static bool
3297 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3298                         u64 *sptep, u64 old_spte, u64 new_spte)
3299 {
3300         gfn_t gfn;
3301
3302         WARN_ON(!sp->role.direct);
3303
3304         /*
3305          * Theoretically we could also set dirty bit (and flush TLB) here in
3306          * order to eliminate unnecessary PML logging. See comments in
3307          * set_spte. But fast_page_fault is very unlikely to happen with PML
3308          * enabled, so we do not do this. This might result in the same GPA
3309          * to be logged in PML buffer again when the write really happens, and
3310          * eventually to be called by mark_page_dirty twice. But it's also no
3311          * harm. This also avoids the TLB flush needed after setting dirty bit
3312          * so non-PML cases won't be impacted.
3313          *
3314          * Compare with set_spte where instead shadow_dirty_mask is set.
3315          */
3316         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3317                 return false;
3318
3319         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3320                 /*
3321                  * The gfn of direct spte is stable since it is
3322                  * calculated by sp->gfn.
3323                  */
3324                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3325                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3326         }
3327
3328         return true;
3329 }
3330
3331 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3332 {
3333         if (fault_err_code & PFERR_FETCH_MASK)
3334                 return is_executable_pte(spte);
3335
3336         if (fault_err_code & PFERR_WRITE_MASK)
3337                 return is_writable_pte(spte);
3338
3339         /* Fault was on Read access */
3340         return spte & PT_PRESENT_MASK;
3341 }
3342
3343 /*
3344  * Return value:
3345  * - true: let the vcpu to access on the same address again.
3346  * - false: let the real page fault path to fix it.
3347  */
3348 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3349                             u32 error_code)
3350 {
3351         struct kvm_shadow_walk_iterator iterator;
3352         struct kvm_mmu_page *sp;
3353         bool fault_handled = false;
3354         u64 spte = 0ull;
3355         uint retry_count = 0;
3356
3357         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3358                 return false;
3359
3360         if (!page_fault_can_be_fast(error_code))
3361                 return false;
3362
3363         walk_shadow_page_lockless_begin(vcpu);
3364
3365         do {
3366                 u64 new_spte;
3367
3368                 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3369                         if (!is_shadow_present_pte(spte) ||
3370                             iterator.level < level)
3371                                 break;
3372
3373                 sp = page_header(__pa(iterator.sptep));
3374                 if (!is_last_spte(spte, sp->role.level))
3375                         break;
3376
3377                 /*
3378                  * Check whether the memory access that caused the fault would
3379                  * still cause it if it were to be performed right now. If not,
3380                  * then this is a spurious fault caused by TLB lazily flushed,
3381                  * or some other CPU has already fixed the PTE after the
3382                  * current CPU took the fault.
3383                  *
3384                  * Need not check the access of upper level table entries since
3385                  * they are always ACC_ALL.
3386                  */
3387                 if (is_access_allowed(error_code, spte)) {
3388                         fault_handled = true;
3389                         break;
3390                 }
3391
3392                 new_spte = spte;
3393
3394                 if (is_access_track_spte(spte))
3395                         new_spte = restore_acc_track_spte(new_spte);
3396
3397                 /*
3398                  * Currently, to simplify the code, write-protection can
3399                  * be removed in the fast path only if the SPTE was
3400                  * write-protected for dirty-logging or access tracking.
3401                  */
3402                 if ((error_code & PFERR_WRITE_MASK) &&
3403                     spte_can_locklessly_be_made_writable(spte))
3404                 {
3405                         new_spte |= PT_WRITABLE_MASK;
3406
3407                         /*
3408                          * Do not fix write-permission on the large spte.  Since
3409                          * we only dirty the first page into the dirty-bitmap in
3410                          * fast_pf_fix_direct_spte(), other pages are missed
3411                          * if its slot has dirty logging enabled.
3412                          *
3413                          * Instead, we let the slow page fault path create a
3414                          * normal spte to fix the access.
3415                          *
3416                          * See the comments in kvm_arch_commit_memory_region().
3417                          */
3418                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3419                                 break;
3420                 }
3421
3422                 /* Verify that the fault can be handled in the fast path */
3423                 if (new_spte == spte ||
3424                     !is_access_allowed(error_code, new_spte))
3425                         break;
3426
3427                 /*
3428                  * Currently, fast page fault only works for direct mapping
3429                  * since the gfn is not stable for indirect shadow page. See
3430                  * Documentation/virtual/kvm/locking.txt to get more detail.
3431                  */
3432                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3433                                                         iterator.sptep, spte,
3434                                                         new_spte);
3435                 if (fault_handled)
3436                         break;
3437
3438                 if (++retry_count > 4) {
3439                         printk_once(KERN_WARNING
3440                                 "kvm: Fast #PF retrying more than 4 times.\n");
3441                         break;
3442                 }
3443
3444         } while (true);
3445
3446         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3447                               spte, fault_handled);
3448         walk_shadow_page_lockless_end(vcpu);
3449
3450         return fault_handled;
3451 }
3452
3453 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3454                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3455 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3456
3457 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3458                          gfn_t gfn, bool prefault)
3459 {
3460         int r;
3461         int level;
3462         bool force_pt_level = false;
3463         kvm_pfn_t pfn;
3464         unsigned long mmu_seq;
3465         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3466
3467         level = mapping_level(vcpu, gfn, &force_pt_level);
3468         if (likely(!force_pt_level)) {
3469                 /*
3470                  * This path builds a PAE pagetable - so we can map
3471                  * 2mb pages at maximum. Therefore check if the level
3472                  * is larger than that.
3473                  */
3474                 if (level > PT_DIRECTORY_LEVEL)
3475                         level = PT_DIRECTORY_LEVEL;
3476
3477                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3478         }
3479
3480         if (fast_page_fault(vcpu, v, level, error_code))
3481                 return RET_PF_RETRY;
3482
3483         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3484         smp_rmb();
3485
3486         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3487                 return RET_PF_RETRY;
3488
3489         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3490                 return r;
3491
3492         spin_lock(&vcpu->kvm->mmu_lock);
3493         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3494                 goto out_unlock;
3495         if (make_mmu_pages_available(vcpu) < 0)
3496                 goto out_unlock;
3497         if (likely(!force_pt_level))
3498                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3499         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3500         spin_unlock(&vcpu->kvm->mmu_lock);
3501
3502         return r;
3503
3504 out_unlock:
3505         spin_unlock(&vcpu->kvm->mmu_lock);
3506         kvm_release_pfn_clean(pfn);
3507         return RET_PF_RETRY;
3508 }
3509
3510 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3511                                struct list_head *invalid_list)
3512 {
3513         struct kvm_mmu_page *sp;
3514
3515         if (!VALID_PAGE(*root_hpa))
3516                 return;
3517
3518         sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3519         --sp->root_count;
3520         if (!sp->root_count && sp->role.invalid)
3521                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3522
3523         *root_hpa = INVALID_PAGE;
3524 }
3525
3526 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3527 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3528                         ulong roots_to_free)
3529 {
3530         int i;
3531         LIST_HEAD(invalid_list);
3532         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3533
3534         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3535
3536         /* Before acquiring the MMU lock, see if we need to do any real work. */
3537         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3538                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3539                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3540                             VALID_PAGE(mmu->prev_roots[i].hpa))
3541                                 break;
3542
3543                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3544                         return;
3545         }
3546
3547         spin_lock(&vcpu->kvm->mmu_lock);
3548
3549         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3550                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3551                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3552                                            &invalid_list);
3553
3554         if (free_active_root) {
3555                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3556                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3557                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3558                                            &invalid_list);
3559                 } else {
3560                         for (i = 0; i < 4; ++i)
3561                                 if (mmu->pae_root[i] != 0)
3562                                         mmu_free_root_page(vcpu->kvm,
3563                                                            &mmu->pae_root[i],
3564                                                            &invalid_list);
3565                         mmu->root_hpa = INVALID_PAGE;
3566                 }
3567         }
3568
3569         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3570         spin_unlock(&vcpu->kvm->mmu_lock);
3571 }
3572 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3573
3574 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3575 {
3576         int ret = 0;
3577
3578         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3579                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3580                 ret = 1;
3581         }
3582
3583         return ret;
3584 }
3585
3586 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3587 {
3588         struct kvm_mmu_page *sp;
3589         unsigned i;
3590
3591         if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3592                 spin_lock(&vcpu->kvm->mmu_lock);
3593                 if(make_mmu_pages_available(vcpu) < 0) {
3594                         spin_unlock(&vcpu->kvm->mmu_lock);
3595                         return -ENOSPC;
3596                 }
3597                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3598                                 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3599                 ++sp->root_count;
3600                 spin_unlock(&vcpu->kvm->mmu_lock);
3601                 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3602         } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3603                 for (i = 0; i < 4; ++i) {
3604                         hpa_t root = vcpu->arch.mmu->pae_root[i];
3605
3606                         MMU_WARN_ON(VALID_PAGE(root));
3607                         spin_lock(&vcpu->kvm->mmu_lock);
3608                         if (make_mmu_pages_available(vcpu) < 0) {
3609                                 spin_unlock(&vcpu->kvm->mmu_lock);
3610                                 return -ENOSPC;
3611                         }
3612                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3613                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3614                         root = __pa(sp->spt);
3615                         ++sp->root_count;
3616                         spin_unlock(&vcpu->kvm->mmu_lock);
3617                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3618                 }
3619                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3620         } else
3621                 BUG();
3622
3623         return 0;
3624 }
3625
3626 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3627 {
3628         struct kvm_mmu_page *sp;
3629         u64 pdptr, pm_mask;
3630         gfn_t root_gfn;
3631         int i;
3632
3633         root_gfn = vcpu->arch.mmu->get_cr3(vcpu) >> PAGE_SHIFT;
3634
3635         if (mmu_check_root(vcpu, root_gfn))
3636                 return 1;
3637
3638         /*
3639          * Do we shadow a long mode page table? If so we need to
3640          * write-protect the guests page table root.
3641          */
3642         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3643                 hpa_t root = vcpu->arch.mmu->root_hpa;
3644
3645                 MMU_WARN_ON(VALID_PAGE(root));
3646
3647                 spin_lock(&vcpu->kvm->mmu_lock);
3648                 if (make_mmu_pages_available(vcpu) < 0) {
3649                         spin_unlock(&vcpu->kvm->mmu_lock);
3650                         return -ENOSPC;
3651                 }
3652                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3653                                 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3654                 root = __pa(sp->spt);
3655                 ++sp->root_count;
3656                 spin_unlock(&vcpu->kvm->mmu_lock);
3657                 vcpu->arch.mmu->root_hpa = root;
3658                 return 0;
3659         }
3660
3661         /*
3662          * We shadow a 32 bit page table. This may be a legacy 2-level
3663          * or a PAE 3-level page table. In either case we need to be aware that
3664          * the shadow page table may be a PAE or a long mode page table.
3665          */
3666         pm_mask = PT_PRESENT_MASK;
3667         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3668                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3669
3670         for (i = 0; i < 4; ++i) {
3671                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3672
3673                 MMU_WARN_ON(VALID_PAGE(root));
3674                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3675                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3676                         if (!(pdptr & PT_PRESENT_MASK)) {
3677                                 vcpu->arch.mmu->pae_root[i] = 0;
3678                                 continue;
3679                         }
3680                         root_gfn = pdptr >> PAGE_SHIFT;
3681                         if (mmu_check_root(vcpu, root_gfn))
3682                                 return 1;
3683                 }
3684                 spin_lock(&vcpu->kvm->mmu_lock);
3685                 if (make_mmu_pages_available(vcpu) < 0) {
3686                         spin_unlock(&vcpu->kvm->mmu_lock);
3687                         return -ENOSPC;
3688                 }
3689                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3690                                       0, ACC_ALL);
3691                 root = __pa(sp->spt);
3692                 ++sp->root_count;
3693                 spin_unlock(&vcpu->kvm->mmu_lock);
3694
3695                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3696         }
3697         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3698
3699         /*
3700          * If we shadow a 32 bit page table with a long mode page
3701          * table we enter this path.
3702          */
3703         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3704                 if (vcpu->arch.mmu->lm_root == NULL) {
3705                         /*
3706                          * The additional page necessary for this is only
3707                          * allocated on demand.
3708                          */
3709
3710                         u64 *lm_root;
3711
3712                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3713                         if (lm_root == NULL)
3714                                 return 1;
3715
3716                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3717
3718                         vcpu->arch.mmu->lm_root = lm_root;
3719                 }
3720
3721                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3722         }
3723
3724         return 0;
3725 }
3726
3727 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3728 {
3729         if (vcpu->arch.mmu->direct_map)
3730                 return mmu_alloc_direct_roots(vcpu);
3731         else
3732                 return mmu_alloc_shadow_roots(vcpu);
3733 }
3734
3735 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3736 {
3737         int i;
3738         struct kvm_mmu_page *sp;
3739
3740         if (vcpu->arch.mmu->direct_map)
3741                 return;
3742
3743         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3744                 return;
3745
3746         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3747
3748         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3749                 hpa_t root = vcpu->arch.mmu->root_hpa;
3750                 sp = page_header(root);
3751
3752                 /*
3753                  * Even if another CPU was marking the SP as unsync-ed
3754                  * simultaneously, any guest page table changes are not
3755                  * guaranteed to be visible anyway until this VCPU issues a TLB
3756                  * flush strictly after those changes are made. We only need to
3757                  * ensure that the other CPU sets these flags before any actual
3758                  * changes to the page tables are made. The comments in
3759                  * mmu_need_write_protect() describe what could go wrong if this
3760                  * requirement isn't satisfied.
3761                  */
3762                 if (!smp_load_acquire(&sp->unsync) &&
3763                     !smp_load_acquire(&sp->unsync_children))
3764                         return;
3765
3766                 spin_lock(&vcpu->kvm->mmu_lock);
3767                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3768
3769                 mmu_sync_children(vcpu, sp);
3770
3771                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3772                 spin_unlock(&vcpu->kvm->mmu_lock);
3773                 return;
3774         }
3775
3776         spin_lock(&vcpu->kvm->mmu_lock);
3777         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3778
3779         for (i = 0; i < 4; ++i) {
3780                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3781
3782                 if (root && VALID_PAGE(root)) {
3783                         root &= PT64_BASE_ADDR_MASK;
3784                         sp = page_header(root);
3785                         mmu_sync_children(vcpu, sp);
3786                 }
3787         }
3788
3789         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3790         spin_unlock(&vcpu->kvm->mmu_lock);
3791 }
3792 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3793
3794 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3795                                   u32 access, struct x86_exception *exception)
3796 {
3797         if (exception)
3798                 exception->error_code = 0;
3799         return vaddr;
3800 }
3801
3802 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3803                                          u32 access,
3804                                          struct x86_exception *exception)
3805 {
3806         if (exception)
3807                 exception->error_code = 0;
3808         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3809 }
3810
3811 static bool
3812 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3813 {
3814         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3815
3816         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3817                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3818 }
3819
3820 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3821 {
3822         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3823 }
3824
3825 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3826 {
3827         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3828 }
3829
3830 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3831 {
3832         /*
3833          * A nested guest cannot use the MMIO cache if it is using nested
3834          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3835          */
3836         if (mmu_is_nested(vcpu))
3837                 return false;
3838
3839         if (direct)
3840                 return vcpu_match_mmio_gpa(vcpu, addr);
3841
3842         return vcpu_match_mmio_gva(vcpu, addr);
3843 }
3844
3845 /* return true if reserved bit is detected on spte. */
3846 static bool
3847 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3848 {
3849         struct kvm_shadow_walk_iterator iterator;
3850         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3851         int root, leaf;
3852         bool reserved = false;
3853
3854         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3855                 goto exit;
3856
3857         walk_shadow_page_lockless_begin(vcpu);
3858
3859         for (shadow_walk_init(&iterator, vcpu, addr),
3860                  leaf = root = iterator.level;
3861              shadow_walk_okay(&iterator);
3862              __shadow_walk_next(&iterator, spte)) {
3863                 spte = mmu_spte_get_lockless(iterator.sptep);
3864
3865                 sptes[leaf - 1] = spte;
3866                 leaf--;
3867
3868                 if (!is_shadow_present_pte(spte))
3869                         break;
3870
3871                 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
3872                                                     iterator.level);
3873         }
3874
3875         walk_shadow_page_lockless_end(vcpu);
3876
3877         if (reserved) {
3878                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3879                        __func__, addr);
3880                 while (root > leaf) {
3881                         pr_err("------ spte 0x%llx level %d.\n",
3882                                sptes[root - 1], root);
3883                         root--;
3884                 }
3885         }
3886 exit:
3887         *sptep = spte;
3888         return reserved;
3889 }
3890
3891 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3892 {
3893         u64 spte;
3894         bool reserved;
3895
3896         if (mmio_info_in_cache(vcpu, addr, direct))
3897                 return RET_PF_EMULATE;
3898
3899         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3900         if (WARN_ON(reserved))
3901                 return -EINVAL;
3902
3903         if (is_mmio_spte(spte)) {
3904                 gfn_t gfn = get_mmio_spte_gfn(spte);
3905                 unsigned access = get_mmio_spte_access(spte);
3906
3907                 if (!check_mmio_spte(vcpu, spte))
3908                         return RET_PF_INVALID;
3909
3910                 if (direct)
3911                         addr = 0;
3912
3913                 trace_handle_mmio_page_fault(addr, gfn, access);
3914                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3915                 return RET_PF_EMULATE;
3916         }
3917
3918         /*
3919          * If the page table is zapped by other cpus, let CPU fault again on
3920          * the address.
3921          */
3922         return RET_PF_RETRY;
3923 }
3924
3925 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3926                                          u32 error_code, gfn_t gfn)
3927 {
3928         if (unlikely(error_code & PFERR_RSVD_MASK))
3929                 return false;
3930
3931         if (!(error_code & PFERR_PRESENT_MASK) ||
3932               !(error_code & PFERR_WRITE_MASK))
3933                 return false;
3934
3935         /*
3936          * guest is writing the page which is write tracked which can
3937          * not be fixed by page fault handler.
3938          */
3939         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3940                 return true;
3941
3942         return false;
3943 }
3944
3945 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3946 {
3947         struct kvm_shadow_walk_iterator iterator;
3948         u64 spte;
3949
3950         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3951                 return;
3952
3953         walk_shadow_page_lockless_begin(vcpu);
3954         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3955                 clear_sp_write_flooding_count(iterator.sptep);
3956                 if (!is_shadow_present_pte(spte))
3957                         break;
3958         }
3959         walk_shadow_page_lockless_end(vcpu);
3960 }
3961
3962 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3963                                 u32 error_code, bool prefault)
3964 {
3965         gfn_t gfn = gva >> PAGE_SHIFT;
3966         int r;
3967
3968         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3969
3970         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3971                 return RET_PF_EMULATE;
3972
3973         r = mmu_topup_memory_caches(vcpu);
3974         if (r)
3975                 return r;
3976
3977         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
3978
3979
3980         return nonpaging_map(vcpu, gva & PAGE_MASK,
3981                              error_code, gfn, prefault);
3982 }
3983
3984 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3985 {
3986         struct kvm_arch_async_pf arch;
3987
3988         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3989         arch.gfn = gfn;
3990         arch.direct_map = vcpu->arch.mmu->direct_map;
3991         arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3992
3993         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3994 }
3995
3996 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3997 {
3998         if (unlikely(!lapic_in_kernel(vcpu) ||
3999                      kvm_event_needs_reinjection(vcpu) ||
4000                      vcpu->arch.exception.pending))
4001                 return false;
4002
4003         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
4004                 return false;
4005
4006         return kvm_x86_ops->interrupt_allowed(vcpu);
4007 }
4008
4009 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4010                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
4011 {
4012         struct kvm_memory_slot *slot;
4013         bool async;
4014
4015         /*
4016          * Don't expose private memslots to L2.
4017          */
4018         if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4019                 *pfn = KVM_PFN_NOSLOT;
4020                 return false;
4021         }
4022
4023         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4024         async = false;
4025         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4026         if (!async)
4027                 return false; /* *pfn has correct page already */
4028
4029         if (!prefault && kvm_can_do_async_pf(vcpu)) {
4030                 trace_kvm_try_async_get_page(gva, gfn);
4031                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4032                         trace_kvm_async_pf_doublefault(gva, gfn);
4033                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4034                         return true;
4035                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
4036                         return true;
4037         }
4038
4039         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4040         return false;
4041 }
4042
4043 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4044                                 u64 fault_address, char *insn, int insn_len)
4045 {
4046         int r = 1;
4047
4048         vcpu->arch.l1tf_flush_l1d = true;
4049         switch (vcpu->arch.apf.host_apf_reason) {
4050         default:
4051                 trace_kvm_page_fault(fault_address, error_code);
4052
4053                 if (kvm_event_needs_reinjection(vcpu))
4054                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4055                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4056                                 insn_len);
4057                 break;
4058         case KVM_PV_REASON_PAGE_NOT_PRESENT:
4059                 vcpu->arch.apf.host_apf_reason = 0;
4060                 local_irq_disable();
4061                 kvm_async_pf_task_wait(fault_address, 0);
4062                 local_irq_enable();
4063                 break;
4064         case KVM_PV_REASON_PAGE_READY:
4065                 vcpu->arch.apf.host_apf_reason = 0;
4066                 local_irq_disable();
4067                 kvm_async_pf_task_wake(fault_address);
4068                 local_irq_enable();
4069                 break;
4070         }
4071         return r;
4072 }
4073 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4074
4075 static bool
4076 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4077 {
4078         int page_num = KVM_PAGES_PER_HPAGE(level);
4079
4080         gfn &= ~(page_num - 1);
4081
4082         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4083 }
4084
4085 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4086                           bool prefault)
4087 {
4088         kvm_pfn_t pfn;
4089         int r;
4090         int level;
4091         bool force_pt_level;
4092         gfn_t gfn = gpa >> PAGE_SHIFT;
4093         unsigned long mmu_seq;
4094         int write = error_code & PFERR_WRITE_MASK;
4095         bool map_writable;
4096
4097         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4098
4099         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4100                 return RET_PF_EMULATE;
4101
4102         r = mmu_topup_memory_caches(vcpu);
4103         if (r)
4104                 return r;
4105
4106         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4107                                                            PT_DIRECTORY_LEVEL);
4108         level = mapping_level(vcpu, gfn, &force_pt_level);
4109         if (likely(!force_pt_level)) {
4110                 if (level > PT_DIRECTORY_LEVEL &&
4111                     !check_hugepage_cache_consistency(vcpu, gfn, level))
4112                         level = PT_DIRECTORY_LEVEL;
4113                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4114         }
4115
4116         if (fast_page_fault(vcpu, gpa, level, error_code))
4117                 return RET_PF_RETRY;
4118
4119         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4120         smp_rmb();
4121
4122         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4123                 return RET_PF_RETRY;
4124
4125         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4126                 return r;
4127
4128         spin_lock(&vcpu->kvm->mmu_lock);
4129         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4130                 goto out_unlock;
4131         if (make_mmu_pages_available(vcpu) < 0)
4132                 goto out_unlock;
4133         if (likely(!force_pt_level))
4134                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
4135         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
4136         spin_unlock(&vcpu->kvm->mmu_lock);
4137
4138         return r;
4139
4140 out_unlock:
4141         spin_unlock(&vcpu->kvm->mmu_lock);
4142         kvm_release_pfn_clean(pfn);
4143         return RET_PF_RETRY;
4144 }
4145
4146 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4147                                    struct kvm_mmu *context)
4148 {
4149         context->page_fault = nonpaging_page_fault;
4150         context->gva_to_gpa = nonpaging_gva_to_gpa;
4151         context->sync_page = nonpaging_sync_page;
4152         context->invlpg = nonpaging_invlpg;
4153         context->update_pte = nonpaging_update_pte;
4154         context->root_level = 0;
4155         context->shadow_root_level = PT32E_ROOT_LEVEL;
4156         context->direct_map = true;
4157         context->nx = false;
4158 }
4159
4160 /*
4161  * Find out if a previously cached root matching the new CR3/role is available.
4162  * The current root is also inserted into the cache.
4163  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4164  * returned.
4165  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4166  * false is returned. This root should now be freed by the caller.
4167  */
4168 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4169                                   union kvm_mmu_page_role new_role)
4170 {
4171         uint i;
4172         struct kvm_mmu_root_info root;
4173         struct kvm_mmu *mmu = vcpu->arch.mmu;
4174
4175         root.cr3 = mmu->get_cr3(vcpu);
4176         root.hpa = mmu->root_hpa;
4177
4178         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4179                 swap(root, mmu->prev_roots[i]);
4180
4181                 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4182                     page_header(root.hpa) != NULL &&
4183                     new_role.word == page_header(root.hpa)->role.word)
4184                         break;
4185         }
4186
4187         mmu->root_hpa = root.hpa;
4188
4189         return i < KVM_MMU_NUM_PREV_ROOTS;
4190 }
4191
4192 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4193                             union kvm_mmu_page_role new_role,
4194                             bool skip_tlb_flush)
4195 {
4196         struct kvm_mmu *mmu = vcpu->arch.mmu;
4197
4198         /*
4199          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4200          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4201          * later if necessary.
4202          */
4203         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4204             mmu->root_level >= PT64_ROOT_4LEVEL) {
4205                 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4206                         return false;
4207
4208                 if (cached_root_available(vcpu, new_cr3, new_role)) {
4209                         /*
4210                          * It is possible that the cached previous root page is
4211                          * obsolete because of a change in the MMU
4212                          * generation number. However, that is accompanied by
4213                          * KVM_REQ_MMU_RELOAD, which will free the root that we
4214                          * have set here and allocate a new one.
4215                          */
4216
4217                         kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4218                         if (!skip_tlb_flush) {
4219                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4220                                 kvm_x86_ops->tlb_flush(vcpu, true);
4221                         }
4222
4223                         /*
4224                          * The last MMIO access's GVA and GPA are cached in the
4225                          * VCPU. When switching to a new CR3, that GVA->GPA
4226                          * mapping may no longer be valid. So clear any cached
4227                          * MMIO info even when we don't need to sync the shadow
4228                          * page tables.
4229                          */
4230                         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4231
4232                         __clear_sp_write_flooding_count(
4233                                 page_header(mmu->root_hpa));
4234
4235                         return true;
4236                 }
4237         }
4238
4239         return false;
4240 }
4241
4242 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4243                               union kvm_mmu_page_role new_role,
4244                               bool skip_tlb_flush)
4245 {
4246         if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4247                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4248                                    KVM_MMU_ROOT_CURRENT);
4249 }
4250
4251 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4252 {
4253         __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4254                           skip_tlb_flush);
4255 }
4256 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4257
4258 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4259 {
4260         return kvm_read_cr3(vcpu);
4261 }
4262
4263 static void inject_page_fault(struct kvm_vcpu *vcpu,
4264                               struct x86_exception *fault)
4265 {
4266         vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4267 }
4268
4269 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4270                            unsigned access, int *nr_present)
4271 {
4272         if (unlikely(is_mmio_spte(*sptep))) {
4273                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4274                         mmu_spte_clear_no_track(sptep);
4275                         return true;
4276                 }
4277
4278                 (*nr_present)++;
4279                 mark_mmio_spte(vcpu, sptep, gfn, access);
4280                 return true;
4281         }
4282
4283         return false;
4284 }
4285
4286 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4287                                 unsigned level, unsigned gpte)
4288 {
4289         /*
4290          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4291          * If it is clear, there are no large pages at this level, so clear
4292          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4293          */
4294         gpte &= level - mmu->last_nonleaf_level;
4295
4296         /*
4297          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4298          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4299          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4300          */
4301         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4302
4303         return gpte & PT_PAGE_SIZE_MASK;
4304 }
4305
4306 #define PTTYPE_EPT 18 /* arbitrary */
4307 #define PTTYPE PTTYPE_EPT
4308 #include "paging_tmpl.h"
4309 #undef PTTYPE
4310
4311 #define PTTYPE 64
4312 #include "paging_tmpl.h"
4313 #undef PTTYPE
4314
4315 #define PTTYPE 32
4316 #include "paging_tmpl.h"
4317 #undef PTTYPE
4318
4319 static void
4320 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4321                         struct rsvd_bits_validate *rsvd_check,
4322                         int maxphyaddr, int level, bool nx, bool gbpages,
4323                         bool pse, bool amd)
4324 {
4325         u64 exb_bit_rsvd = 0;
4326         u64 gbpages_bit_rsvd = 0;
4327         u64 nonleaf_bit8_rsvd = 0;
4328
4329         rsvd_check->bad_mt_xwr = 0;
4330
4331         if (!nx)
4332                 exb_bit_rsvd = rsvd_bits(63, 63);
4333         if (!gbpages)
4334                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4335
4336         /*
4337          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4338          * leaf entries) on AMD CPUs only.
4339          */
4340         if (amd)
4341                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4342
4343         switch (level) {
4344         case PT32_ROOT_LEVEL:
4345                 /* no rsvd bits for 2 level 4K page table entries */
4346                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4347                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4348                 rsvd_check->rsvd_bits_mask[1][0] =
4349                         rsvd_check->rsvd_bits_mask[0][0];
4350
4351                 if (!pse) {
4352                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4353                         break;
4354                 }
4355
4356                 if (is_cpuid_PSE36())
4357                         /* 36bits PSE 4MB page */
4358                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4359                 else
4360                         /* 32 bits PSE 4MB page */
4361                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4362                 break;
4363         case PT32E_ROOT_LEVEL:
4364                 rsvd_check->rsvd_bits_mask[0][2] =
4365                         rsvd_bits(maxphyaddr, 63) |
4366                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4367                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4368                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4369                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4370                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4371                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4372                         rsvd_bits(maxphyaddr, 62) |
4373                         rsvd_bits(13, 20);              /* large page */
4374                 rsvd_check->rsvd_bits_mask[1][0] =
4375                         rsvd_check->rsvd_bits_mask[0][0];
4376                 break;
4377         case PT64_ROOT_5LEVEL:
4378                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4379                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4380                         rsvd_bits(maxphyaddr, 51);
4381                 rsvd_check->rsvd_bits_mask[1][4] =
4382                         rsvd_check->rsvd_bits_mask[0][4];
4383                 /* fall through */
4384         case PT64_ROOT_4LEVEL:
4385                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4386                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4387                         rsvd_bits(maxphyaddr, 51);
4388                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4389                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4390                         rsvd_bits(maxphyaddr, 51);
4391                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4392                         rsvd_bits(maxphyaddr, 51);
4393                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4394                         rsvd_bits(maxphyaddr, 51);
4395                 rsvd_check->rsvd_bits_mask[1][3] =
4396                         rsvd_check->rsvd_bits_mask[0][3];
4397                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4398                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4399                         rsvd_bits(13, 29);
4400                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4401                         rsvd_bits(maxphyaddr, 51) |
4402                         rsvd_bits(13, 20);              /* large page */
4403                 rsvd_check->rsvd_bits_mask[1][0] =
4404                         rsvd_check->rsvd_bits_mask[0][0];
4405                 break;
4406         }
4407 }
4408
4409 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4410                                   struct kvm_mmu *context)
4411 {
4412         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4413                                 cpuid_maxphyaddr(vcpu), context->root_level,
4414                                 context->nx,
4415                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4416                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4417 }
4418
4419 static void
4420 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4421                             int maxphyaddr, bool execonly)
4422 {
4423         u64 bad_mt_xwr;
4424
4425         rsvd_check->rsvd_bits_mask[0][4] =
4426                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4427         rsvd_check->rsvd_bits_mask[0][3] =
4428                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4429         rsvd_check->rsvd_bits_mask[0][2] =
4430                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4431         rsvd_check->rsvd_bits_mask[0][1] =
4432                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4433         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4434
4435         /* large page */
4436         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4437         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4438         rsvd_check->rsvd_bits_mask[1][2] =
4439                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4440         rsvd_check->rsvd_bits_mask[1][1] =
4441                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4442         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4443
4444         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4445         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4446         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4447         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4448         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4449         if (!execonly) {
4450                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4451                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4452         }
4453         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4454 }
4455
4456 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4457                 struct kvm_mmu *context, bool execonly)
4458 {
4459         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4460                                     cpuid_maxphyaddr(vcpu), execonly);
4461 }
4462
4463 /*
4464  * the page table on host is the shadow page table for the page
4465  * table in guest or amd nested guest, its mmu features completely
4466  * follow the features in guest.
4467  */
4468 void
4469 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4470 {
4471         bool uses_nx = context->nx ||
4472                 context->mmu_role.base.smep_andnot_wp;
4473         struct rsvd_bits_validate *shadow_zero_check;
4474         int i;
4475
4476         /*
4477          * Passing "true" to the last argument is okay; it adds a check
4478          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4479          */
4480         shadow_zero_check = &context->shadow_zero_check;
4481         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4482                                 boot_cpu_data.x86_phys_bits,
4483                                 context->shadow_root_level, uses_nx,
4484                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4485                                 is_pse(vcpu), true);
4486
4487         if (!shadow_me_mask)
4488                 return;
4489
4490         for (i = context->shadow_root_level; --i >= 0;) {
4491                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4492                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4493         }
4494
4495 }
4496 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4497
4498 static inline bool boot_cpu_is_amd(void)
4499 {
4500         WARN_ON_ONCE(!tdp_enabled);
4501         return shadow_x_mask == 0;
4502 }
4503
4504 /*
4505  * the direct page table on host, use as much mmu features as
4506  * possible, however, kvm currently does not do execution-protection.
4507  */
4508 static void
4509 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4510                                 struct kvm_mmu *context)
4511 {
4512         struct rsvd_bits_validate *shadow_zero_check;
4513         int i;
4514
4515         shadow_zero_check = &context->shadow_zero_check;
4516
4517         if (boot_cpu_is_amd())
4518                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4519                                         boot_cpu_data.x86_phys_bits,
4520                                         context->shadow_root_level, false,
4521                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4522                                         true, true);
4523         else
4524                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4525                                             boot_cpu_data.x86_phys_bits,
4526                                             false);
4527
4528         if (!shadow_me_mask)
4529                 return;
4530
4531         for (i = context->shadow_root_level; --i >= 0;) {
4532                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4533                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4534         }
4535 }
4536
4537 /*
4538  * as the comments in reset_shadow_zero_bits_mask() except it
4539  * is the shadow page table for intel nested guest.
4540  */
4541 static void
4542 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4543                                 struct kvm_mmu *context, bool execonly)
4544 {
4545         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4546                                     boot_cpu_data.x86_phys_bits, execonly);
4547 }
4548
4549 #define BYTE_MASK(access) \
4550         ((1 & (access) ? 2 : 0) | \
4551          (2 & (access) ? 4 : 0) | \
4552          (3 & (access) ? 8 : 0) | \
4553          (4 & (access) ? 16 : 0) | \
4554          (5 & (access) ? 32 : 0) | \
4555          (6 & (access) ? 64 : 0) | \
4556          (7 & (access) ? 128 : 0))
4557
4558
4559 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4560                                       struct kvm_mmu *mmu, bool ept)
4561 {
4562         unsigned byte;
4563
4564         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4565         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4566         const u8 u = BYTE_MASK(ACC_USER_MASK);
4567
4568         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4569         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4570         bool cr0_wp = is_write_protection(vcpu);
4571
4572         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4573                 unsigned pfec = byte << 1;
4574
4575                 /*
4576                  * Each "*f" variable has a 1 bit for each UWX value
4577                  * that causes a fault with the given PFEC.
4578                  */
4579
4580                 /* Faults from writes to non-writable pages */
4581                 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4582                 /* Faults from user mode accesses to supervisor pages */
4583                 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4584                 /* Faults from fetches of non-executable pages*/
4585                 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4586                 /* Faults from kernel mode fetches of user pages */
4587                 u8 smepf = 0;
4588                 /* Faults from kernel mode accesses of user pages */
4589                 u8 smapf = 0;
4590
4591                 if (!ept) {
4592                         /* Faults from kernel mode accesses to user pages */
4593                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4594
4595                         /* Not really needed: !nx will cause pte.nx to fault */
4596                         if (!mmu->nx)
4597                                 ff = 0;
4598
4599                         /* Allow supervisor writes if !cr0.wp */
4600                         if (!cr0_wp)
4601                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4602
4603                         /* Disallow supervisor fetches of user code if cr4.smep */
4604                         if (cr4_smep)
4605                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4606
4607                         /*
4608                          * SMAP:kernel-mode data accesses from user-mode
4609                          * mappings should fault. A fault is considered
4610                          * as a SMAP violation if all of the following
4611                          * conditions are true:
4612                          *   - X86_CR4_SMAP is set in CR4
4613                          *   - A user page is accessed
4614                          *   - The access is not a fetch
4615                          *   - Page fault in kernel mode
4616                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4617                          *
4618                          * Here, we cover the first three conditions.
4619                          * The fourth is computed dynamically in permission_fault();
4620                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4621                          * *not* subject to SMAP restrictions.
4622                          */
4623                         if (cr4_smap)
4624                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4625                 }
4626
4627                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4628         }
4629 }
4630
4631 /*
4632 * PKU is an additional mechanism by which the paging controls access to
4633 * user-mode addresses based on the value in the PKRU register.  Protection
4634 * key violations are reported through a bit in the page fault error code.
4635 * Unlike other bits of the error code, the PK bit is not known at the
4636 * call site of e.g. gva_to_gpa; it must be computed directly in
4637 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4638 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4639 *
4640 * In particular the following conditions come from the error code, the
4641 * page tables and the machine state:
4642 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4643 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4644 * - PK is always zero if U=0 in the page tables
4645 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4646 *
4647 * The PKRU bitmask caches the result of these four conditions.  The error
4648 * code (minus the P bit) and the page table's U bit form an index into the
4649 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4650 * with the two bits of the PKRU register corresponding to the protection key.
4651 * For the first three conditions above the bits will be 00, thus masking
4652 * away both AD and WD.  For all reads or if the last condition holds, WD
4653 * only will be masked away.
4654 */
4655 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4656                                 bool ept)
4657 {
4658         unsigned bit;
4659         bool wp;
4660
4661         if (ept) {
4662                 mmu->pkru_mask = 0;
4663                 return;
4664         }
4665
4666         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4667         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4668                 mmu->pkru_mask = 0;
4669                 return;
4670         }
4671
4672         wp = is_write_protection(vcpu);
4673
4674         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4675                 unsigned pfec, pkey_bits;
4676                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4677
4678                 pfec = bit << 1;
4679                 ff = pfec & PFERR_FETCH_MASK;
4680                 uf = pfec & PFERR_USER_MASK;
4681                 wf = pfec & PFERR_WRITE_MASK;
4682
4683                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4684                 pte_user = pfec & PFERR_RSVD_MASK;
4685
4686                 /*
4687                  * Only need to check the access which is not an
4688                  * instruction fetch and is to a user page.
4689                  */
4690                 check_pkey = (!ff && pte_user);
4691                 /*
4692                  * write access is controlled by PKRU if it is a
4693                  * user access or CR0.WP = 1.
4694                  */
4695                 check_write = check_pkey && wf && (uf || wp);
4696
4697                 /* PKRU.AD stops both read and write access. */
4698                 pkey_bits = !!check_pkey;
4699                 /* PKRU.WD stops write access. */
4700                 pkey_bits |= (!!check_write) << 1;
4701
4702                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4703         }
4704 }
4705
4706 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4707 {
4708         unsigned root_level = mmu->root_level;
4709
4710         mmu->last_nonleaf_level = root_level;
4711         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4712                 mmu->last_nonleaf_level++;
4713 }
4714
4715 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4716                                          struct kvm_mmu *context,
4717                                          int level)
4718 {
4719         context->nx = is_nx(vcpu);
4720         context->root_level = level;
4721
4722         reset_rsvds_bits_mask(vcpu, context);
4723         update_permission_bitmask(vcpu, context, false);
4724         update_pkru_bitmask(vcpu, context, false);
4725         update_last_nonleaf_level(vcpu, context);
4726
4727         MMU_WARN_ON(!is_pae(vcpu));
4728         context->page_fault = paging64_page_fault;
4729         context->gva_to_gpa = paging64_gva_to_gpa;
4730         context->sync_page = paging64_sync_page;
4731         context->invlpg = paging64_invlpg;
4732         context->update_pte = paging64_update_pte;
4733         context->shadow_root_level = level;
4734         context->direct_map = false;
4735 }
4736
4737 static void paging64_init_context(struct kvm_vcpu *vcpu,
4738                                   struct kvm_mmu *context)
4739 {
4740         int root_level = is_la57_mode(vcpu) ?
4741                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4742
4743         paging64_init_context_common(vcpu, context, root_level);
4744 }
4745
4746 static void paging32_init_context(struct kvm_vcpu *vcpu,
4747                                   struct kvm_mmu *context)
4748 {
4749         context->nx = false;
4750         context->root_level = PT32_ROOT_LEVEL;
4751
4752         reset_rsvds_bits_mask(vcpu, context);
4753         update_permission_bitmask(vcpu, context, false);
4754         update_pkru_bitmask(vcpu, context, false);
4755         update_last_nonleaf_level(vcpu, context);
4756
4757         context->page_fault = paging32_page_fault;
4758         context->gva_to_gpa = paging32_gva_to_gpa;
4759         context->sync_page = paging32_sync_page;
4760         context->invlpg = paging32_invlpg;
4761         context->update_pte = paging32_update_pte;
4762         context->shadow_root_level = PT32E_ROOT_LEVEL;
4763         context->direct_map = false;
4764 }
4765
4766 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4767                                    struct kvm_mmu *context)
4768 {
4769         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4770 }
4771
4772 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4773 {
4774         union kvm_mmu_extended_role ext = {0};
4775
4776         ext.cr0_pg = !!is_paging(vcpu);
4777         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4778         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4779         ext.cr4_pse = !!is_pse(vcpu);
4780         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4781         ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4782
4783         ext.valid = 1;
4784
4785         return ext;
4786 }
4787
4788 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4789                                                    bool base_only)
4790 {
4791         union kvm_mmu_role role = {0};
4792
4793         role.base.access = ACC_ALL;
4794         role.base.nxe = !!is_nx(vcpu);
4795         role.base.cr4_pae = !!is_pae(vcpu);
4796         role.base.cr0_wp = is_write_protection(vcpu);
4797         role.base.smm = is_smm(vcpu);
4798         role.base.guest_mode = is_guest_mode(vcpu);
4799
4800         if (base_only)
4801                 return role;
4802
4803         role.ext = kvm_calc_mmu_role_ext(vcpu);
4804
4805         return role;
4806 }
4807
4808 static union kvm_mmu_role
4809 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4810 {
4811         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4812
4813         role.base.ad_disabled = (shadow_accessed_mask == 0);
4814         role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4815         role.base.direct = true;
4816
4817         return role;
4818 }
4819
4820 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4821 {
4822         struct kvm_mmu *context = vcpu->arch.mmu;
4823         union kvm_mmu_role new_role =
4824                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4825
4826         new_role.base.word &= mmu_base_role_mask.word;
4827         if (new_role.as_u64 == context->mmu_role.as_u64)
4828                 return;
4829
4830         context->mmu_role.as_u64 = new_role.as_u64;
4831         context->page_fault = tdp_page_fault;
4832         context->sync_page = nonpaging_sync_page;
4833         context->invlpg = nonpaging_invlpg;
4834         context->update_pte = nonpaging_update_pte;
4835         context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4836         context->direct_map = true;
4837         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4838         context->get_cr3 = get_cr3;
4839         context->get_pdptr = kvm_pdptr_read;
4840         context->inject_page_fault = kvm_inject_page_fault;
4841
4842         if (!is_paging(vcpu)) {
4843                 context->nx = false;
4844                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4845                 context->root_level = 0;
4846         } else if (is_long_mode(vcpu)) {
4847                 context->nx = is_nx(vcpu);
4848                 context->root_level = is_la57_mode(vcpu) ?
4849                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4850                 reset_rsvds_bits_mask(vcpu, context);
4851                 context->gva_to_gpa = paging64_gva_to_gpa;
4852         } else if (is_pae(vcpu)) {
4853                 context->nx = is_nx(vcpu);
4854                 context->root_level = PT32E_ROOT_LEVEL;
4855                 reset_rsvds_bits_mask(vcpu, context);
4856                 context->gva_to_gpa = paging64_gva_to_gpa;
4857         } else {
4858                 context->nx = false;
4859                 context->root_level = PT32_ROOT_LEVEL;
4860                 reset_rsvds_bits_mask(vcpu, context);
4861                 context->gva_to_gpa = paging32_gva_to_gpa;
4862         }
4863
4864         update_permission_bitmask(vcpu, context, false);
4865         update_pkru_bitmask(vcpu, context, false);
4866         update_last_nonleaf_level(vcpu, context);
4867         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4868 }
4869
4870 static union kvm_mmu_role
4871 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4872 {
4873         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4874
4875         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4876                 !is_write_protection(vcpu);
4877         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4878                 !is_write_protection(vcpu);
4879         role.base.direct = !is_paging(vcpu);
4880
4881         if (!is_long_mode(vcpu))
4882                 role.base.level = PT32E_ROOT_LEVEL;
4883         else if (is_la57_mode(vcpu))
4884                 role.base.level = PT64_ROOT_5LEVEL;
4885         else
4886                 role.base.level = PT64_ROOT_4LEVEL;
4887
4888         return role;
4889 }
4890
4891 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4892 {
4893         struct kvm_mmu *context = vcpu->arch.mmu;
4894         union kvm_mmu_role new_role =
4895                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4896
4897         new_role.base.word &= mmu_base_role_mask.word;
4898         if (new_role.as_u64 == context->mmu_role.as_u64)
4899                 return;
4900
4901         if (!is_paging(vcpu))
4902                 nonpaging_init_context(vcpu, context);
4903         else if (is_long_mode(vcpu))
4904                 paging64_init_context(vcpu, context);
4905         else if (is_pae(vcpu))
4906                 paging32E_init_context(vcpu, context);
4907         else
4908                 paging32_init_context(vcpu, context);
4909
4910         context->mmu_role.as_u64 = new_role.as_u64;
4911         reset_shadow_zero_bits_mask(vcpu, context);
4912 }
4913 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4914
4915 static union kvm_mmu_role
4916 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4917                                    bool execonly)
4918 {
4919         union kvm_mmu_role role;
4920
4921         /* Base role is inherited from root_mmu */
4922         role.base.word = vcpu->arch.root_mmu.mmu_role.base.word;
4923         role.ext = kvm_calc_mmu_role_ext(vcpu);
4924
4925         role.base.level = PT64_ROOT_4LEVEL;
4926         role.base.direct = false;
4927         role.base.ad_disabled = !accessed_dirty;
4928         role.base.guest_mode = true;
4929         role.base.access = ACC_ALL;
4930
4931         role.ext.execonly = execonly;
4932
4933         return role;
4934 }
4935
4936 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4937                              bool accessed_dirty, gpa_t new_eptp)
4938 {
4939         struct kvm_mmu *context = vcpu->arch.mmu;
4940         union kvm_mmu_role new_role =
4941                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4942                                                    execonly);
4943
4944         __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
4945
4946         new_role.base.word &= mmu_base_role_mask.word;
4947         if (new_role.as_u64 == context->mmu_role.as_u64)
4948                 return;
4949
4950         context->shadow_root_level = PT64_ROOT_4LEVEL;
4951
4952         context->nx = true;
4953         context->ept_ad = accessed_dirty;
4954         context->page_fault = ept_page_fault;
4955         context->gva_to_gpa = ept_gva_to_gpa;
4956         context->sync_page = ept_sync_page;
4957         context->invlpg = ept_invlpg;
4958         context->update_pte = ept_update_pte;
4959         context->root_level = PT64_ROOT_4LEVEL;
4960         context->direct_map = false;
4961         context->mmu_role.as_u64 = new_role.as_u64;
4962
4963         update_permission_bitmask(vcpu, context, true);
4964         update_pkru_bitmask(vcpu, context, true);
4965         update_last_nonleaf_level(vcpu, context);
4966         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4967         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4968 }
4969 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4970
4971 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4972 {
4973         struct kvm_mmu *context = vcpu->arch.mmu;
4974
4975         kvm_init_shadow_mmu(vcpu);
4976         context->set_cr3           = kvm_x86_ops->set_cr3;
4977         context->get_cr3           = get_cr3;
4978         context->get_pdptr         = kvm_pdptr_read;
4979         context->inject_page_fault = kvm_inject_page_fault;
4980 }
4981
4982 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4983 {
4984         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4985         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4986
4987         new_role.base.word &= mmu_base_role_mask.word;
4988         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4989                 return;
4990
4991         g_context->mmu_role.as_u64 = new_role.as_u64;
4992         g_context->get_cr3           = get_cr3;
4993         g_context->get_pdptr         = kvm_pdptr_read;
4994         g_context->inject_page_fault = kvm_inject_page_fault;
4995
4996         /*
4997          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4998          * L1's nested page tables (e.g. EPT12). The nested translation
4999          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5000          * L2's page tables as the first level of translation and L1's
5001          * nested page tables as the second level of translation. Basically
5002          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5003          */
5004         if (!is_paging(vcpu)) {
5005                 g_context->nx = false;
5006                 g_context->root_level = 0;
5007                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5008         } else if (is_long_mode(vcpu)) {
5009                 g_context->nx = is_nx(vcpu);
5010                 g_context->root_level = is_la57_mode(vcpu) ?
5011                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5012                 reset_rsvds_bits_mask(vcpu, g_context);
5013                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5014         } else if (is_pae(vcpu)) {
5015                 g_context->nx = is_nx(vcpu);
5016                 g_context->root_level = PT32E_ROOT_LEVEL;
5017                 reset_rsvds_bits_mask(vcpu, g_context);
5018                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5019         } else {
5020                 g_context->nx = false;
5021                 g_context->root_level = PT32_ROOT_LEVEL;
5022                 reset_rsvds_bits_mask(vcpu, g_context);
5023                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5024         }
5025
5026         update_permission_bitmask(vcpu, g_context, false);
5027         update_pkru_bitmask(vcpu, g_context, false);
5028         update_last_nonleaf_level(vcpu, g_context);
5029 }
5030
5031 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5032 {
5033         if (reset_roots) {
5034                 uint i;
5035
5036                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5037
5038                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5039                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5040         }
5041
5042         if (mmu_is_nested(vcpu))
5043                 init_kvm_nested_mmu(vcpu);
5044         else if (tdp_enabled)
5045                 init_kvm_tdp_mmu(vcpu);
5046         else
5047                 init_kvm_softmmu(vcpu);
5048 }
5049 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5050
5051 static union kvm_mmu_page_role
5052 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5053 {
5054         union kvm_mmu_role role;
5055
5056         if (tdp_enabled)
5057                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5058         else
5059                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5060
5061         return role.base;
5062 }
5063
5064 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5065 {
5066         kvm_mmu_unload(vcpu);
5067         kvm_init_mmu(vcpu, true);
5068 }
5069 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5070
5071 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5072 {
5073         int r;
5074
5075         r = mmu_topup_memory_caches(vcpu);
5076         if (r)
5077                 goto out;
5078         r = mmu_alloc_roots(vcpu);
5079         kvm_mmu_sync_roots(vcpu);
5080         if (r)
5081                 goto out;
5082         kvm_mmu_load_cr3(vcpu);
5083         kvm_x86_ops->tlb_flush(vcpu, true);
5084 out:
5085         return r;
5086 }
5087 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5088
5089 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5090 {
5091         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5092         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5093         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5094         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5095 }
5096 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5097
5098 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5099                                   struct kvm_mmu_page *sp, u64 *spte,
5100                                   const void *new)
5101 {
5102         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5103                 ++vcpu->kvm->stat.mmu_pde_zapped;
5104                 return;
5105         }
5106
5107         ++vcpu->kvm->stat.mmu_pte_updated;
5108         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5109 }
5110
5111 static bool need_remote_flush(u64 old, u64 new)
5112 {
5113         if (!is_shadow_present_pte(old))
5114                 return false;
5115         if (!is_shadow_present_pte(new))
5116                 return true;
5117         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5118                 return true;
5119         old ^= shadow_nx_mask;
5120         new ^= shadow_nx_mask;
5121         return (old & ~new & PT64_PERM_MASK) != 0;
5122 }
5123
5124 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5125                                     int *bytes)
5126 {
5127         u64 gentry = 0;
5128         int r;
5129
5130         /*
5131          * Assume that the pte write on a page table of the same type
5132          * as the current vcpu paging mode since we update the sptes only
5133          * when they have the same mode.
5134          */
5135         if (is_pae(vcpu) && *bytes == 4) {
5136                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5137                 *gpa &= ~(gpa_t)7;
5138                 *bytes = 8;
5139         }
5140
5141         if (*bytes == 4 || *bytes == 8) {
5142                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5143                 if (r)
5144                         gentry = 0;
5145         }
5146
5147         return gentry;
5148 }
5149
5150 /*
5151  * If we're seeing too many writes to a page, it may no longer be a page table,
5152  * or we may be forking, in which case it is better to unmap the page.
5153  */
5154 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5155 {
5156         /*
5157          * Skip write-flooding detected for the sp whose level is 1, because
5158          * it can become unsync, then the guest page is not write-protected.
5159          */
5160         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5161                 return false;
5162
5163         atomic_inc(&sp->write_flooding_count);
5164         return atomic_read(&sp->write_flooding_count) >= 3;
5165 }
5166
5167 /*
5168  * Misaligned accesses are too much trouble to fix up; also, they usually
5169  * indicate a page is not used as a page table.
5170  */
5171 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5172                                     int bytes)
5173 {
5174         unsigned offset, pte_size, misaligned;
5175
5176         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5177                  gpa, bytes, sp->role.word);
5178
5179         offset = offset_in_page(gpa);
5180         pte_size = sp->role.cr4_pae ? 8 : 4;
5181
5182         /*
5183          * Sometimes, the OS only writes the last one bytes to update status
5184          * bits, for example, in linux, andb instruction is used in clear_bit().
5185          */
5186         if (!(offset & (pte_size - 1)) && bytes == 1)
5187                 return false;
5188
5189         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5190         misaligned |= bytes < 4;
5191
5192         return misaligned;
5193 }
5194
5195 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5196 {
5197         unsigned page_offset, quadrant;
5198         u64 *spte;
5199         int level;
5200
5201         page_offset = offset_in_page(gpa);
5202         level = sp->role.level;
5203         *nspte = 1;
5204         if (!sp->role.cr4_pae) {
5205                 page_offset <<= 1;      /* 32->64 */
5206                 /*
5207                  * A 32-bit pde maps 4MB while the shadow pdes map
5208                  * only 2MB.  So we need to double the offset again
5209                  * and zap two pdes instead of one.
5210                  */
5211                 if (level == PT32_ROOT_LEVEL) {
5212                         page_offset &= ~7; /* kill rounding error */
5213                         page_offset <<= 1;
5214                         *nspte = 2;
5215                 }
5216                 quadrant = page_offset >> PAGE_SHIFT;
5217                 page_offset &= ~PAGE_MASK;
5218                 if (quadrant != sp->role.quadrant)
5219                         return NULL;
5220         }
5221
5222         spte = &sp->spt[page_offset / sizeof(*spte)];
5223         return spte;
5224 }
5225
5226 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5227                               const u8 *new, int bytes,
5228                               struct kvm_page_track_notifier_node *node)
5229 {
5230         gfn_t gfn = gpa >> PAGE_SHIFT;
5231         struct kvm_mmu_page *sp;
5232         LIST_HEAD(invalid_list);
5233         u64 entry, gentry, *spte;
5234         int npte;
5235         bool remote_flush, local_flush;
5236
5237         /*
5238          * If we don't have indirect shadow pages, it means no page is
5239          * write-protected, so we can exit simply.
5240          */
5241         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5242                 return;
5243
5244         remote_flush = local_flush = false;
5245
5246         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5247
5248         /*
5249          * No need to care whether allocation memory is successful
5250          * or not since pte prefetch is skiped if it does not have
5251          * enough objects in the cache.
5252          */
5253         mmu_topup_memory_caches(vcpu);
5254
5255         spin_lock(&vcpu->kvm->mmu_lock);
5256
5257         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5258
5259         ++vcpu->kvm->stat.mmu_pte_write;
5260         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5261
5262         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5263                 if (detect_write_misaligned(sp, gpa, bytes) ||
5264                       detect_write_flooding(sp)) {
5265                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5266                         ++vcpu->kvm->stat.mmu_flooded;
5267                         continue;
5268                 }
5269
5270                 spte = get_written_sptes(sp, gpa, &npte);
5271                 if (!spte)
5272                         continue;
5273
5274                 local_flush = true;
5275                 while (npte--) {
5276                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5277
5278                         entry = *spte;
5279                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5280                         if (gentry &&
5281                               !((sp->role.word ^ base_role)
5282                               & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5283                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5284                         if (need_remote_flush(entry, *spte))
5285                                 remote_flush = true;
5286                         ++spte;
5287                 }
5288         }
5289         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5290         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5291         spin_unlock(&vcpu->kvm->mmu_lock);
5292 }
5293
5294 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5295 {
5296         gpa_t gpa;
5297         int r;
5298
5299         if (vcpu->arch.mmu->direct_map)
5300                 return 0;
5301
5302         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5303
5304         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5305
5306         return r;
5307 }
5308 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5309
5310 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5311 {
5312         LIST_HEAD(invalid_list);
5313
5314         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5315                 return 0;
5316
5317         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5318                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5319                         break;
5320
5321                 ++vcpu->kvm->stat.mmu_recycled;
5322         }
5323         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5324
5325         if (!kvm_mmu_available_pages(vcpu->kvm))
5326                 return -ENOSPC;
5327         return 0;
5328 }
5329
5330 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5331                        void *insn, int insn_len)
5332 {
5333         int r, emulation_type = 0;
5334         enum emulation_result er;
5335         bool direct = vcpu->arch.mmu->direct_map;
5336
5337         /* With shadow page tables, fault_address contains a GVA or nGPA.  */
5338         if (vcpu->arch.mmu->direct_map) {
5339                 vcpu->arch.gpa_available = true;
5340                 vcpu->arch.gpa_val = cr2;
5341         }
5342
5343         r = RET_PF_INVALID;
5344         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5345                 r = handle_mmio_page_fault(vcpu, cr2, direct);
5346                 if (r == RET_PF_EMULATE)
5347                         goto emulate;
5348         }
5349
5350         if (r == RET_PF_INVALID) {
5351                 r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5352                                                lower_32_bits(error_code),
5353                                                false);
5354                 WARN_ON(r == RET_PF_INVALID);
5355         }
5356
5357         if (r == RET_PF_RETRY)
5358                 return 1;
5359         if (r < 0)
5360                 return r;
5361
5362         /*
5363          * Before emulating the instruction, check if the error code
5364          * was due to a RO violation while translating the guest page.
5365          * This can occur when using nested virtualization with nested
5366          * paging in both guests. If true, we simply unprotect the page
5367          * and resume the guest.
5368          */
5369         if (vcpu->arch.mmu->direct_map &&
5370             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5371                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5372                 return 1;
5373         }
5374
5375         /*
5376          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5377          * optimistically try to just unprotect the page and let the processor
5378          * re-execute the instruction that caused the page fault.  Do not allow
5379          * retrying MMIO emulation, as it's not only pointless but could also
5380          * cause us to enter an infinite loop because the processor will keep
5381          * faulting on the non-existent MMIO address.  Retrying an instruction
5382          * from a nested guest is also pointless and dangerous as we are only
5383          * explicitly shadowing L1's page tables, i.e. unprotecting something
5384          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5385          */
5386         if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
5387                 emulation_type = EMULTYPE_ALLOW_RETRY;
5388 emulate:
5389         /*
5390          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5391          * This can happen if a guest gets a page-fault on data access but the HW
5392          * table walker is not able to read the instruction page (e.g instruction
5393          * page is not present in memory). In those cases we simply restart the
5394          * guest.
5395          */
5396         if (unlikely(insn && !insn_len))
5397                 return 1;
5398
5399         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
5400
5401         switch (er) {
5402         case EMULATE_DONE:
5403                 return 1;
5404         case EMULATE_USER_EXIT:
5405                 ++vcpu->stat.mmio_exits;
5406                 /* fall through */
5407         case EMULATE_FAIL:
5408                 return 0;
5409         default:
5410                 BUG();
5411         }
5412 }
5413 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5414
5415 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5416 {
5417         struct kvm_mmu *mmu = vcpu->arch.mmu;
5418         int i;
5419
5420         /* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
5421         if (is_noncanonical_address(gva, vcpu))
5422                 return;
5423
5424         mmu->invlpg(vcpu, gva, mmu->root_hpa);
5425
5426         /*
5427          * INVLPG is required to invalidate any global mappings for the VA,
5428          * irrespective of PCID. Since it would take us roughly similar amount
5429          * of work to determine whether any of the prev_root mappings of the VA
5430          * is marked global, or to just sync it blindly, so we might as well
5431          * just always sync it.
5432          *
5433          * Mappings not reachable via the current cr3 or the prev_roots will be
5434          * synced when switching to that cr3, so nothing needs to be done here
5435          * for them.
5436          */
5437         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5438                 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5439                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5440
5441         kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5442         ++vcpu->stat.invlpg;
5443 }
5444 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5445
5446 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5447 {
5448         struct kvm_mmu *mmu = vcpu->arch.mmu;
5449         bool tlb_flush = false;
5450         uint i;
5451
5452         if (pcid == kvm_get_active_pcid(vcpu)) {
5453                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5454                 tlb_flush = true;
5455         }
5456
5457         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5458                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5459                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5460                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5461                         tlb_flush = true;
5462                 }
5463         }
5464
5465         if (tlb_flush)
5466                 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5467
5468         ++vcpu->stat.invlpg;
5469
5470         /*
5471          * Mappings not reachable via the current cr3 or the prev_roots will be
5472          * synced when switching to that cr3, so nothing needs to be done here
5473          * for them.
5474          */
5475 }
5476 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5477
5478 void kvm_enable_tdp(void)
5479 {
5480         tdp_enabled = true;
5481 }
5482 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5483
5484 void kvm_disable_tdp(void)
5485 {
5486         tdp_enabled = false;
5487 }
5488 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5489
5490
5491 /* The return value indicates if tlb flush on all vcpus is needed. */
5492 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5493
5494 /* The caller should hold mmu-lock before calling this function. */
5495 static __always_inline bool
5496 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5497                         slot_level_handler fn, int start_level, int end_level,
5498                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5499 {
5500         struct slot_rmap_walk_iterator iterator;
5501         bool flush = false;
5502
5503         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5504                         end_gfn, &iterator) {
5505                 if (iterator.rmap)
5506                         flush |= fn(kvm, iterator.rmap);
5507
5508                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5509                         if (flush && lock_flush_tlb) {
5510                                 kvm_flush_remote_tlbs(kvm);
5511                                 flush = false;
5512                         }
5513                         cond_resched_lock(&kvm->mmu_lock);
5514                 }
5515         }
5516
5517         if (flush && lock_flush_tlb) {
5518                 kvm_flush_remote_tlbs(kvm);
5519                 flush = false;
5520         }
5521
5522         return flush;
5523 }
5524
5525 static __always_inline bool
5526 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5527                   slot_level_handler fn, int start_level, int end_level,
5528                   bool lock_flush_tlb)
5529 {
5530         return slot_handle_level_range(kvm, memslot, fn, start_level,
5531                         end_level, memslot->base_gfn,
5532                         memslot->base_gfn + memslot->npages - 1,
5533                         lock_flush_tlb);
5534 }
5535
5536 static __always_inline bool
5537 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5538                       slot_level_handler fn, bool lock_flush_tlb)
5539 {
5540         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5541                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5542 }
5543
5544 static __always_inline bool
5545 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5546                         slot_level_handler fn, bool lock_flush_tlb)
5547 {
5548         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5549                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5550 }
5551
5552 static __always_inline bool
5553 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5554                  slot_level_handler fn, bool lock_flush_tlb)
5555 {
5556         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5557                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5558 }
5559
5560 static void free_mmu_pages(struct kvm_vcpu *vcpu)
5561 {
5562         free_page((unsigned long)vcpu->arch.mmu->pae_root);
5563         free_page((unsigned long)vcpu->arch.mmu->lm_root);
5564 }
5565
5566 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5567 {
5568         struct page *page;
5569         int i;
5570
5571         if (tdp_enabled)
5572                 return 0;
5573
5574         /*
5575          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5576          * Therefore we need to allocate shadow page tables in the first
5577          * 4GB of memory, which happens to fit the DMA32 zone.
5578          */
5579         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5580         if (!page)
5581                 return -ENOMEM;
5582
5583         vcpu->arch.mmu->pae_root = page_address(page);
5584         for (i = 0; i < 4; ++i)
5585                 vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
5586
5587         return 0;
5588 }
5589
5590 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5591 {
5592         uint i;
5593
5594         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5595         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5596
5597         vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5598         vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5599         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5600                 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5601
5602         vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5603         vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5604         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5605                 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5606
5607         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5608         return alloc_mmu_pages(vcpu);
5609 }
5610
5611 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5612                         struct kvm_memory_slot *slot,
5613                         struct kvm_page_track_notifier_node *node)
5614 {
5615         kvm_mmu_invalidate_zap_all_pages(kvm);
5616 }
5617
5618 void kvm_mmu_init_vm(struct kvm *kvm)
5619 {
5620         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5621
5622         node->track_write = kvm_mmu_pte_write;
5623         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5624         kvm_page_track_register_notifier(kvm, node);
5625 }
5626
5627 void kvm_mmu_uninit_vm(struct kvm *kvm)
5628 {
5629         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5630
5631         kvm_page_track_unregister_notifier(kvm, node);
5632 }
5633
5634 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5635 {
5636         struct kvm_memslots *slots;
5637         struct kvm_memory_slot *memslot;
5638         bool flush_tlb = true;
5639         bool flush = false;
5640         int i;
5641
5642         if (kvm_available_flush_tlb_with_range())
5643                 flush_tlb = false;
5644
5645         spin_lock(&kvm->mmu_lock);
5646         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5647                 slots = __kvm_memslots(kvm, i);
5648                 kvm_for_each_memslot(memslot, slots) {
5649                         gfn_t start, end;
5650
5651                         start = max(gfn_start, memslot->base_gfn);
5652                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5653                         if (start >= end)
5654                                 continue;
5655
5656                         flush |= slot_handle_level_range(kvm, memslot,
5657                                         kvm_zap_rmapp, PT_PAGE_TABLE_LEVEL,
5658                                         PT_MAX_HUGEPAGE_LEVEL, start,
5659                                         end - 1, flush_tlb);
5660                 }
5661         }
5662
5663         if (flush)
5664                 kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5665                                 gfn_end - gfn_start + 1);
5666
5667         spin_unlock(&kvm->mmu_lock);
5668 }
5669
5670 static bool slot_rmap_write_protect(struct kvm *kvm,
5671                                     struct kvm_rmap_head *rmap_head)
5672 {
5673         return __rmap_write_protect(kvm, rmap_head, false);
5674 }
5675
5676 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5677                                       struct kvm_memory_slot *memslot)
5678 {
5679         bool flush;
5680
5681         spin_lock(&kvm->mmu_lock);
5682         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5683                                       false);
5684         spin_unlock(&kvm->mmu_lock);
5685
5686         /*
5687          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5688          * which do tlb flush out of mmu-lock should be serialized by
5689          * kvm->slots_lock otherwise tlb flush would be missed.
5690          */
5691         lockdep_assert_held(&kvm->slots_lock);
5692
5693         /*
5694          * We can flush all the TLBs out of the mmu lock without TLB
5695          * corruption since we just change the spte from writable to
5696          * readonly so that we only need to care the case of changing
5697          * spte from present to present (changing the spte from present
5698          * to nonpresent will flush all the TLBs immediately), in other
5699          * words, the only case we care is mmu_spte_update() where we
5700          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5701          * instead of PT_WRITABLE_MASK, that means it does not depend
5702          * on PT_WRITABLE_MASK anymore.
5703          */
5704         if (flush)
5705                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5706                         memslot->npages);
5707 }
5708
5709 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5710                                          struct kvm_rmap_head *rmap_head)
5711 {
5712         u64 *sptep;
5713         struct rmap_iterator iter;
5714         int need_tlb_flush = 0;
5715         kvm_pfn_t pfn;
5716         struct kvm_mmu_page *sp;
5717
5718 restart:
5719         for_each_rmap_spte(rmap_head, &iter, sptep) {
5720                 sp = page_header(__pa(sptep));
5721                 pfn = spte_to_pfn(*sptep);
5722
5723                 /*
5724                  * We cannot do huge page mapping for indirect shadow pages,
5725                  * which are found on the last rmap (level = 1) when not using
5726                  * tdp; such shadow pages are synced with the page table in
5727                  * the guest, and the guest page table is using 4K page size
5728                  * mapping if the indirect sp has level = 1.
5729                  */
5730                 if (sp->role.direct &&
5731                         !kvm_is_reserved_pfn(pfn) &&
5732                         PageTransCompoundMap(pfn_to_page(pfn))) {
5733                         pte_list_remove(rmap_head, sptep);
5734
5735                         if (kvm_available_flush_tlb_with_range())
5736                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5737                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5738                         else
5739                                 need_tlb_flush = 1;
5740
5741                         goto restart;
5742                 }
5743         }
5744
5745         return need_tlb_flush;
5746 }
5747
5748 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5749                                    const struct kvm_memory_slot *memslot)
5750 {
5751         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5752         spin_lock(&kvm->mmu_lock);
5753         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5754                          kvm_mmu_zap_collapsible_spte, true);
5755         spin_unlock(&kvm->mmu_lock);
5756 }
5757
5758 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5759                                    struct kvm_memory_slot *memslot)
5760 {
5761         bool flush;
5762
5763         spin_lock(&kvm->mmu_lock);
5764         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5765         spin_unlock(&kvm->mmu_lock);
5766
5767         lockdep_assert_held(&kvm->slots_lock);
5768
5769         /*
5770          * It's also safe to flush TLBs out of mmu lock here as currently this
5771          * function is only used for dirty logging, in which case flushing TLB
5772          * out of mmu lock also guarantees no dirty pages will be lost in
5773          * dirty_bitmap.
5774          */
5775         if (flush)
5776                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5777                                 memslot->npages);
5778 }
5779 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5780
5781 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5782                                         struct kvm_memory_slot *memslot)
5783 {
5784         bool flush;
5785
5786         spin_lock(&kvm->mmu_lock);
5787         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5788                                         false);
5789         spin_unlock(&kvm->mmu_lock);
5790
5791         /* see kvm_mmu_slot_remove_write_access */
5792         lockdep_assert_held(&kvm->slots_lock);
5793
5794         if (flush)
5795                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5796                                 memslot->npages);
5797 }
5798 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5799
5800 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5801                             struct kvm_memory_slot *memslot)
5802 {
5803         bool flush;
5804
5805         spin_lock(&kvm->mmu_lock);
5806         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5807         spin_unlock(&kvm->mmu_lock);
5808
5809         lockdep_assert_held(&kvm->slots_lock);
5810
5811         /* see kvm_mmu_slot_leaf_clear_dirty */
5812         if (flush)
5813                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5814                                 memslot->npages);
5815 }
5816 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5817
5818 #define BATCH_ZAP_PAGES 10
5819 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5820 {
5821         struct kvm_mmu_page *sp, *node;
5822         int batch = 0;
5823
5824 restart:
5825         list_for_each_entry_safe_reverse(sp, node,
5826               &kvm->arch.active_mmu_pages, link) {
5827                 int ret;
5828
5829                 /*
5830                  * No obsolete page exists before new created page since
5831                  * active_mmu_pages is the FIFO list.
5832                  */
5833                 if (!is_obsolete_sp(kvm, sp))
5834                         break;
5835
5836                 /*
5837                  * Since we are reversely walking the list and the invalid
5838                  * list will be moved to the head, skip the invalid page
5839                  * can help us to avoid the infinity list walking.
5840                  */
5841                 if (sp->role.invalid)
5842                         continue;
5843
5844                 /*
5845                  * Need not flush tlb since we only zap the sp with invalid
5846                  * generation number.
5847                  */
5848                 if (batch >= BATCH_ZAP_PAGES &&
5849                       cond_resched_lock(&kvm->mmu_lock)) {
5850                         batch = 0;
5851                         goto restart;
5852                 }
5853
5854                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5855                                 &kvm->arch.zapped_obsolete_pages);
5856                 batch += ret;
5857
5858                 if (ret)
5859                         goto restart;
5860         }
5861
5862         /*
5863          * Should flush tlb before free page tables since lockless-walking
5864          * may use the pages.
5865          */
5866         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5867 }
5868
5869 /*
5870  * Fast invalidate all shadow pages and use lock-break technique
5871  * to zap obsolete pages.
5872  *
5873  * It's required when memslot is being deleted or VM is being
5874  * destroyed, in these cases, we should ensure that KVM MMU does
5875  * not use any resource of the being-deleted slot or all slots
5876  * after calling the function.
5877  */
5878 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5879 {
5880         spin_lock(&kvm->mmu_lock);
5881         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5882         kvm->arch.mmu_valid_gen++;
5883
5884         /*
5885          * Notify all vcpus to reload its shadow page table
5886          * and flush TLB. Then all vcpus will switch to new
5887          * shadow page table with the new mmu_valid_gen.
5888          *
5889          * Note: we should do this under the protection of
5890          * mmu-lock, otherwise, vcpu would purge shadow page
5891          * but miss tlb flush.
5892          */
5893         kvm_reload_remote_mmus(kvm);
5894
5895         kvm_zap_obsolete_pages(kvm);
5896         spin_unlock(&kvm->mmu_lock);
5897 }
5898
5899 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5900 {
5901         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5902 }
5903
5904 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5905 {
5906         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5907
5908         gen &= MMIO_SPTE_GEN_MASK;
5909
5910         /*
5911          * Generation numbers are incremented in multiples of the number of
5912          * address spaces in order to provide unique generations across all
5913          * address spaces.  Strip what is effectively the address space
5914          * modifier prior to checking for a wrap of the MMIO generation so
5915          * that a wrap in any address space is detected.
5916          */
5917         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5918
5919         /*
5920          * The very rare case: if the MMIO generation number has wrapped,
5921          * zap all shadow pages.
5922          */
5923         if (unlikely(gen == 0)) {
5924                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5925                 kvm_mmu_invalidate_zap_all_pages(kvm);
5926         }
5927 }
5928
5929 static unsigned long
5930 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5931 {
5932         struct kvm *kvm;
5933         int nr_to_scan = sc->nr_to_scan;
5934         unsigned long freed = 0;
5935
5936         spin_lock(&kvm_lock);
5937
5938         list_for_each_entry(kvm, &vm_list, vm_list) {
5939                 int idx;
5940                 LIST_HEAD(invalid_list);
5941
5942                 /*
5943                  * Never scan more than sc->nr_to_scan VM instances.
5944                  * Will not hit this condition practically since we do not try
5945                  * to shrink more than one VM and it is very unlikely to see
5946                  * !n_used_mmu_pages so many times.
5947                  */
5948                 if (!nr_to_scan--)
5949                         break;
5950                 /*
5951                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5952                  * here. We may skip a VM instance errorneosly, but we do not
5953                  * want to shrink a VM that only started to populate its MMU
5954                  * anyway.
5955                  */
5956                 if (!kvm->arch.n_used_mmu_pages &&
5957                       !kvm_has_zapped_obsolete_pages(kvm))
5958                         continue;
5959
5960                 idx = srcu_read_lock(&kvm->srcu);
5961                 spin_lock(&kvm->mmu_lock);
5962
5963                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5964                         kvm_mmu_commit_zap_page(kvm,
5965                               &kvm->arch.zapped_obsolete_pages);
5966                         goto unlock;
5967                 }
5968
5969                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5970                         freed++;
5971                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5972
5973 unlock:
5974                 spin_unlock(&kvm->mmu_lock);
5975                 srcu_read_unlock(&kvm->srcu, idx);
5976
5977                 /*
5978                  * unfair on small ones
5979                  * per-vm shrinkers cry out
5980                  * sadness comes quickly
5981                  */
5982                 list_move_tail(&kvm->vm_list, &vm_list);
5983                 break;
5984         }
5985
5986         spin_unlock(&kvm_lock);
5987         return freed;
5988 }
5989
5990 static unsigned long
5991 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5992 {
5993         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5994 }
5995
5996 static struct shrinker mmu_shrinker = {
5997         .count_objects = mmu_shrink_count,
5998         .scan_objects = mmu_shrink_scan,
5999         .seeks = DEFAULT_SEEKS * 10,
6000 };
6001
6002 static void mmu_destroy_caches(void)
6003 {
6004         kmem_cache_destroy(pte_list_desc_cache);
6005         kmem_cache_destroy(mmu_page_header_cache);
6006 }
6007
6008 int kvm_mmu_module_init(void)
6009 {
6010         int ret = -ENOMEM;
6011
6012         /*
6013          * MMU roles use union aliasing which is, generally speaking, an
6014          * undefined behavior. However, we supposedly know how compilers behave
6015          * and the current status quo is unlikely to change. Guardians below are
6016          * supposed to let us know if the assumption becomes false.
6017          */
6018         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6019         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6020         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6021
6022         kvm_mmu_reset_all_pte_masks();
6023
6024         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6025                                             sizeof(struct pte_list_desc),
6026                                             0, SLAB_ACCOUNT, NULL);
6027         if (!pte_list_desc_cache)
6028                 goto out;
6029
6030         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6031                                                   sizeof(struct kvm_mmu_page),
6032                                                   0, SLAB_ACCOUNT, NULL);
6033         if (!mmu_page_header_cache)
6034                 goto out;
6035
6036         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6037                 goto out;
6038
6039         ret = register_shrinker(&mmu_shrinker);
6040         if (ret)
6041                 goto out;
6042
6043         return 0;
6044
6045 out:
6046         mmu_destroy_caches();
6047         return ret;
6048 }
6049
6050 /*
6051  * Calculate mmu pages needed for kvm.
6052  */
6053 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
6054 {
6055         unsigned int nr_mmu_pages;
6056         unsigned int  nr_pages = 0;
6057         struct kvm_memslots *slots;
6058         struct kvm_memory_slot *memslot;
6059         int i;
6060
6061         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6062                 slots = __kvm_memslots(kvm, i);
6063
6064                 kvm_for_each_memslot(memslot, slots)
6065                         nr_pages += memslot->npages;
6066         }
6067
6068         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6069         nr_mmu_pages = max(nr_mmu_pages,
6070                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
6071
6072         return nr_mmu_pages;
6073 }
6074
6075 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6076 {
6077         kvm_mmu_unload(vcpu);
6078         free_mmu_pages(vcpu);
6079         mmu_free_memory_caches(vcpu);
6080 }
6081
6082 void kvm_mmu_module_exit(void)
6083 {
6084         mmu_destroy_caches();
6085         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6086         unregister_shrinker(&mmu_shrinker);
6087         mmu_audit_disable();
6088 }