09ae841ff462d49cf1b69cc8f4e01102fad99cea
[linux-2.6-block.git] / arch / x86 / kvm / i8254.c
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  *
27  * Authors:
28  *   Sheng Yang <sheng.yang@intel.com>
29  *   Based on QEMU and Xen.
30  */
31
32 #include <linux/kvm_host.h>
33
34 #include "irq.h"
35 #include "i8254.h"
36
37 #ifndef CONFIG_X86_64
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
39 #else
40 #define mod_64(x, y) ((x) % (y))
41 #endif
42
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
47
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64 muldiv64(u64 a, u32 b, u32 c)
50 {
51         union {
52                 u64 ll;
53                 struct {
54                         u32 low, high;
55                 } l;
56         } u, res;
57         u64 rl, rh;
58
59         u.ll = a;
60         rl = (u64)u.l.low * (u64)b;
61         rh = (u64)u.l.high * (u64)b;
62         rh += (rl >> 32);
63         res.l.high = div64_u64(rh, c);
64         res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
65         return res.ll;
66 }
67
68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69 {
70         struct kvm_kpit_channel_state *c =
71                 &kvm->arch.vpit->pit_state.channels[channel];
72
73         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74
75         switch (c->mode) {
76         default:
77         case 0:
78         case 4:
79                 /* XXX: just disable/enable counting */
80                 break;
81         case 1:
82         case 2:
83         case 3:
84         case 5:
85                 /* Restart counting on rising edge. */
86                 if (c->gate < val)
87                         c->count_load_time = ktime_get();
88                 break;
89         }
90
91         c->gate = val;
92 }
93
94 static int pit_get_gate(struct kvm *kvm, int channel)
95 {
96         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97
98         return kvm->arch.vpit->pit_state.channels[channel].gate;
99 }
100
101 static s64 __kpit_elapsed(struct kvm *kvm)
102 {
103         s64 elapsed;
104         ktime_t remaining;
105         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
106
107         remaining = hrtimer_expires_remaining(&ps->pit_timer.timer);
108         if (ktime_to_ns(remaining) < 0)
109                 remaining = ktime_set(0, 0);
110
111         elapsed = ps->pit_timer.period;
112         if (ktime_to_ns(remaining) <= ps->pit_timer.period)
113                 elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
114
115         return elapsed;
116 }
117
118 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
119                         int channel)
120 {
121         if (channel == 0)
122                 return __kpit_elapsed(kvm);
123
124         return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
125 }
126
127 static int pit_get_count(struct kvm *kvm, int channel)
128 {
129         struct kvm_kpit_channel_state *c =
130                 &kvm->arch.vpit->pit_state.channels[channel];
131         s64 d, t;
132         int counter;
133
134         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
135
136         t = kpit_elapsed(kvm, c, channel);
137         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
138
139         switch (c->mode) {
140         case 0:
141         case 1:
142         case 4:
143         case 5:
144                 counter = (c->count - d) & 0xffff;
145                 break;
146         case 3:
147                 /* XXX: may be incorrect for odd counts */
148                 counter = c->count - (mod_64((2 * d), c->count));
149                 break;
150         default:
151                 counter = c->count - mod_64(d, c->count);
152                 break;
153         }
154         return counter;
155 }
156
157 static int pit_get_out(struct kvm *kvm, int channel)
158 {
159         struct kvm_kpit_channel_state *c =
160                 &kvm->arch.vpit->pit_state.channels[channel];
161         s64 d, t;
162         int out;
163
164         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
165
166         t = kpit_elapsed(kvm, c, channel);
167         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
168
169         switch (c->mode) {
170         default:
171         case 0:
172                 out = (d >= c->count);
173                 break;
174         case 1:
175                 out = (d < c->count);
176                 break;
177         case 2:
178                 out = ((mod_64(d, c->count) == 0) && (d != 0));
179                 break;
180         case 3:
181                 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
182                 break;
183         case 4:
184         case 5:
185                 out = (d == c->count);
186                 break;
187         }
188
189         return out;
190 }
191
192 static void pit_latch_count(struct kvm *kvm, int channel)
193 {
194         struct kvm_kpit_channel_state *c =
195                 &kvm->arch.vpit->pit_state.channels[channel];
196
197         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
198
199         if (!c->count_latched) {
200                 c->latched_count = pit_get_count(kvm, channel);
201                 c->count_latched = c->rw_mode;
202         }
203 }
204
205 static void pit_latch_status(struct kvm *kvm, int channel)
206 {
207         struct kvm_kpit_channel_state *c =
208                 &kvm->arch.vpit->pit_state.channels[channel];
209
210         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
211
212         if (!c->status_latched) {
213                 /* TODO: Return NULL COUNT (bit 6). */
214                 c->status = ((pit_get_out(kvm, channel) << 7) |
215                                 (c->rw_mode << 4) |
216                                 (c->mode << 1) |
217                                 c->bcd);
218                 c->status_latched = 1;
219         }
220 }
221
222 static int __pit_timer_fn(struct kvm_kpit_state *ps)
223 {
224         struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
225         struct kvm_kpit_timer *pt = &ps->pit_timer;
226
227         if (!atomic_inc_and_test(&pt->pending))
228                 set_bit(KVM_REQ_PENDING_TIMER, &vcpu0->requests);
229
230         if (!pt->reinject)
231                 atomic_set(&pt->pending, 1);
232
233         if (vcpu0 && waitqueue_active(&vcpu0->wq))
234                 wake_up_interruptible(&vcpu0->wq);
235
236         hrtimer_add_expires_ns(&pt->timer, pt->period);
237
238         return (pt->period == 0 ? 0 : 1);
239 }
240
241 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
242 {
243         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
244
245         if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
246                 return atomic_read(&pit->pit_state.pit_timer.pending);
247         return 0;
248 }
249
250 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
251 {
252         struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
253                                                  irq_ack_notifier);
254         spin_lock(&ps->inject_lock);
255         if (atomic_dec_return(&ps->pit_timer.pending) < 0)
256                 atomic_inc(&ps->pit_timer.pending);
257         ps->irq_ack = 1;
258         spin_unlock(&ps->inject_lock);
259 }
260
261 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
262 {
263         struct kvm_kpit_state *ps;
264         int restart_timer = 0;
265
266         ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
267
268         restart_timer = __pit_timer_fn(ps);
269
270         if (restart_timer)
271                 return HRTIMER_RESTART;
272         else
273                 return HRTIMER_NORESTART;
274 }
275
276 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
277 {
278         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
279         struct hrtimer *timer;
280
281         if (vcpu->vcpu_id != 0 || !pit)
282                 return;
283
284         timer = &pit->pit_state.pit_timer.timer;
285         if (hrtimer_cancel(timer))
286                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
287 }
288
289 static void destroy_pit_timer(struct kvm_kpit_timer *pt)
290 {
291         pr_debug("pit: execute del timer!\n");
292         hrtimer_cancel(&pt->timer);
293 }
294
295 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
296 {
297         struct kvm_kpit_timer *pt = &ps->pit_timer;
298         s64 interval;
299
300         interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
301
302         pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
303
304         /* TODO The new value only affected after the retriggered */
305         hrtimer_cancel(&pt->timer);
306         pt->period = (is_period == 0) ? 0 : interval;
307         pt->timer.function = pit_timer_fn;
308         atomic_set(&pt->pending, 0);
309         ps->irq_ack = 1;
310
311         hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
312                       HRTIMER_MODE_ABS);
313 }
314
315 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
316 {
317         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
318
319         WARN_ON(!mutex_is_locked(&ps->lock));
320
321         pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
322
323         /*
324          * Though spec said the state of 8254 is undefined after power-up,
325          * seems some tricky OS like Windows XP depends on IRQ0 interrupt
326          * when booting up.
327          * So here setting initialize rate for it, and not a specific number
328          */
329         if (val == 0)
330                 val = 0x10000;
331
332         ps->channels[channel].count = val;
333
334         if (channel != 0) {
335                 ps->channels[channel].count_load_time = ktime_get();
336                 return;
337         }
338
339         /* Two types of timer
340          * mode 1 is one shot, mode 2 is period, otherwise del timer */
341         switch (ps->channels[0].mode) {
342         case 1:
343         /* FIXME: enhance mode 4 precision */
344         case 4:
345                 create_pit_timer(ps, val, 0);
346                 break;
347         case 2:
348         case 3:
349                 create_pit_timer(ps, val, 1);
350                 break;
351         default:
352                 destroy_pit_timer(&ps->pit_timer);
353         }
354 }
355
356 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
357 {
358         mutex_lock(&kvm->arch.vpit->pit_state.lock);
359         pit_load_count(kvm, channel, val);
360         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
361 }
362
363 static void pit_ioport_write(struct kvm_io_device *this,
364                              gpa_t addr, int len, const void *data)
365 {
366         struct kvm_pit *pit = (struct kvm_pit *)this->private;
367         struct kvm_kpit_state *pit_state = &pit->pit_state;
368         struct kvm *kvm = pit->kvm;
369         int channel, access;
370         struct kvm_kpit_channel_state *s;
371         u32 val = *(u32 *) data;
372
373         val  &= 0xff;
374         addr &= KVM_PIT_CHANNEL_MASK;
375
376         mutex_lock(&pit_state->lock);
377
378         if (val != 0)
379                 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
380                           (unsigned int)addr, len, val);
381
382         if (addr == 3) {
383                 channel = val >> 6;
384                 if (channel == 3) {
385                         /* Read-Back Command. */
386                         for (channel = 0; channel < 3; channel++) {
387                                 s = &pit_state->channels[channel];
388                                 if (val & (2 << channel)) {
389                                         if (!(val & 0x20))
390                                                 pit_latch_count(kvm, channel);
391                                         if (!(val & 0x10))
392                                                 pit_latch_status(kvm, channel);
393                                 }
394                         }
395                 } else {
396                         /* Select Counter <channel>. */
397                         s = &pit_state->channels[channel];
398                         access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
399                         if (access == 0) {
400                                 pit_latch_count(kvm, channel);
401                         } else {
402                                 s->rw_mode = access;
403                                 s->read_state = access;
404                                 s->write_state = access;
405                                 s->mode = (val >> 1) & 7;
406                                 if (s->mode > 5)
407                                         s->mode -= 4;
408                                 s->bcd = val & 1;
409                         }
410                 }
411         } else {
412                 /* Write Count. */
413                 s = &pit_state->channels[addr];
414                 switch (s->write_state) {
415                 default:
416                 case RW_STATE_LSB:
417                         pit_load_count(kvm, addr, val);
418                         break;
419                 case RW_STATE_MSB:
420                         pit_load_count(kvm, addr, val << 8);
421                         break;
422                 case RW_STATE_WORD0:
423                         s->write_latch = val;
424                         s->write_state = RW_STATE_WORD1;
425                         break;
426                 case RW_STATE_WORD1:
427                         pit_load_count(kvm, addr, s->write_latch | (val << 8));
428                         s->write_state = RW_STATE_WORD0;
429                         break;
430                 }
431         }
432
433         mutex_unlock(&pit_state->lock);
434 }
435
436 static void pit_ioport_read(struct kvm_io_device *this,
437                             gpa_t addr, int len, void *data)
438 {
439         struct kvm_pit *pit = (struct kvm_pit *)this->private;
440         struct kvm_kpit_state *pit_state = &pit->pit_state;
441         struct kvm *kvm = pit->kvm;
442         int ret, count;
443         struct kvm_kpit_channel_state *s;
444
445         addr &= KVM_PIT_CHANNEL_MASK;
446         s = &pit_state->channels[addr];
447
448         mutex_lock(&pit_state->lock);
449
450         if (s->status_latched) {
451                 s->status_latched = 0;
452                 ret = s->status;
453         } else if (s->count_latched) {
454                 switch (s->count_latched) {
455                 default:
456                 case RW_STATE_LSB:
457                         ret = s->latched_count & 0xff;
458                         s->count_latched = 0;
459                         break;
460                 case RW_STATE_MSB:
461                         ret = s->latched_count >> 8;
462                         s->count_latched = 0;
463                         break;
464                 case RW_STATE_WORD0:
465                         ret = s->latched_count & 0xff;
466                         s->count_latched = RW_STATE_MSB;
467                         break;
468                 }
469         } else {
470                 switch (s->read_state) {
471                 default:
472                 case RW_STATE_LSB:
473                         count = pit_get_count(kvm, addr);
474                         ret = count & 0xff;
475                         break;
476                 case RW_STATE_MSB:
477                         count = pit_get_count(kvm, addr);
478                         ret = (count >> 8) & 0xff;
479                         break;
480                 case RW_STATE_WORD0:
481                         count = pit_get_count(kvm, addr);
482                         ret = count & 0xff;
483                         s->read_state = RW_STATE_WORD1;
484                         break;
485                 case RW_STATE_WORD1:
486                         count = pit_get_count(kvm, addr);
487                         ret = (count >> 8) & 0xff;
488                         s->read_state = RW_STATE_WORD0;
489                         break;
490                 }
491         }
492
493         if (len > sizeof(ret))
494                 len = sizeof(ret);
495         memcpy(data, (char *)&ret, len);
496
497         mutex_unlock(&pit_state->lock);
498 }
499
500 static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
501                         int len, int is_write)
502 {
503         return ((addr >= KVM_PIT_BASE_ADDRESS) &&
504                 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
505 }
506
507 static void speaker_ioport_write(struct kvm_io_device *this,
508                                  gpa_t addr, int len, const void *data)
509 {
510         struct kvm_pit *pit = (struct kvm_pit *)this->private;
511         struct kvm_kpit_state *pit_state = &pit->pit_state;
512         struct kvm *kvm = pit->kvm;
513         u32 val = *(u32 *) data;
514
515         mutex_lock(&pit_state->lock);
516         pit_state->speaker_data_on = (val >> 1) & 1;
517         pit_set_gate(kvm, 2, val & 1);
518         mutex_unlock(&pit_state->lock);
519 }
520
521 static void speaker_ioport_read(struct kvm_io_device *this,
522                                 gpa_t addr, int len, void *data)
523 {
524         struct kvm_pit *pit = (struct kvm_pit *)this->private;
525         struct kvm_kpit_state *pit_state = &pit->pit_state;
526         struct kvm *kvm = pit->kvm;
527         unsigned int refresh_clock;
528         int ret;
529
530         /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
531         refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
532
533         mutex_lock(&pit_state->lock);
534         ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
535                 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
536         if (len > sizeof(ret))
537                 len = sizeof(ret);
538         memcpy(data, (char *)&ret, len);
539         mutex_unlock(&pit_state->lock);
540 }
541
542 static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
543                             int len, int is_write)
544 {
545         return (addr == KVM_SPEAKER_BASE_ADDRESS);
546 }
547
548 void kvm_pit_reset(struct kvm_pit *pit)
549 {
550         int i;
551         struct kvm_kpit_channel_state *c;
552
553         mutex_lock(&pit->pit_state.lock);
554         for (i = 0; i < 3; i++) {
555                 c = &pit->pit_state.channels[i];
556                 c->mode = 0xff;
557                 c->gate = (i != 2);
558                 pit_load_count(pit->kvm, i, 0);
559         }
560         mutex_unlock(&pit->pit_state.lock);
561
562         atomic_set(&pit->pit_state.pit_timer.pending, 0);
563         pit->pit_state.irq_ack = 1;
564 }
565
566 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
567 {
568         struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
569
570         if (!mask) {
571                 atomic_set(&pit->pit_state.pit_timer.pending, 0);
572                 pit->pit_state.irq_ack = 1;
573         }
574 }
575
576 struct kvm_pit *kvm_create_pit(struct kvm *kvm)
577 {
578         struct kvm_pit *pit;
579         struct kvm_kpit_state *pit_state;
580
581         pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
582         if (!pit)
583                 return NULL;
584
585         pit->irq_source_id = kvm_request_irq_source_id(kvm);
586         if (pit->irq_source_id < 0) {
587                 kfree(pit);
588                 return NULL;
589         }
590
591         mutex_init(&pit->pit_state.lock);
592         mutex_lock(&pit->pit_state.lock);
593         spin_lock_init(&pit->pit_state.inject_lock);
594
595         /* Initialize PIO device */
596         pit->dev.read = pit_ioport_read;
597         pit->dev.write = pit_ioport_write;
598         pit->dev.in_range = pit_in_range;
599         pit->dev.private = pit;
600         kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
601
602         pit->speaker_dev.read = speaker_ioport_read;
603         pit->speaker_dev.write = speaker_ioport_write;
604         pit->speaker_dev.in_range = speaker_in_range;
605         pit->speaker_dev.private = pit;
606         kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
607
608         kvm->arch.vpit = pit;
609         pit->kvm = kvm;
610
611         pit_state = &pit->pit_state;
612         pit_state->pit = pit;
613         hrtimer_init(&pit_state->pit_timer.timer,
614                      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
615         pit_state->irq_ack_notifier.gsi = 0;
616         pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
617         kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
618         pit_state->pit_timer.reinject = true;
619         mutex_unlock(&pit->pit_state.lock);
620
621         kvm_pit_reset(pit);
622
623         pit->mask_notifier.func = pit_mask_notifer;
624         kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
625
626         return pit;
627 }
628
629 void kvm_free_pit(struct kvm *kvm)
630 {
631         struct hrtimer *timer;
632
633         if (kvm->arch.vpit) {
634                 kvm_unregister_irq_mask_notifier(kvm, 0,
635                                                &kvm->arch.vpit->mask_notifier);
636                 mutex_lock(&kvm->arch.vpit->pit_state.lock);
637                 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
638                 hrtimer_cancel(timer);
639                 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
640                 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
641                 kfree(kvm->arch.vpit);
642         }
643 }
644
645 static void __inject_pit_timer_intr(struct kvm *kvm)
646 {
647         struct kvm_vcpu *vcpu;
648         int i;
649
650         mutex_lock(&kvm->lock);
651         kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
652         kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
653         mutex_unlock(&kvm->lock);
654
655         /*
656          * Provides NMI watchdog support via Virtual Wire mode.
657          * The route is: PIT -> PIC -> LVT0 in NMI mode.
658          *
659          * Note: Our Virtual Wire implementation is simplified, only
660          * propagating PIT interrupts to all VCPUs when they have set
661          * LVT0 to NMI delivery. Other PIC interrupts are just sent to
662          * VCPU0, and only if its LVT0 is in EXTINT mode.
663          */
664         if (kvm->arch.vapics_in_nmi_mode > 0)
665                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
666                         vcpu = kvm->vcpus[i];
667                         if (vcpu)
668                                 kvm_apic_nmi_wd_deliver(vcpu);
669                 }
670 }
671
672 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
673 {
674         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
675         struct kvm *kvm = vcpu->kvm;
676         struct kvm_kpit_state *ps;
677
678         if (vcpu && pit) {
679                 int inject = 0;
680                 ps = &pit->pit_state;
681
682                 /* Try to inject pending interrupts when
683                  * last one has been acked.
684                  */
685                 spin_lock(&ps->inject_lock);
686                 if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
687                         ps->irq_ack = 0;
688                         inject = 1;
689                 }
690                 spin_unlock(&ps->inject_lock);
691                 if (inject)
692                         __inject_pit_timer_intr(kvm);
693         }
694 }