Merge tag 'qcom-drivers-for-6.9-2' of https://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / arch / x86 / kvm / hyperv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * KVM Microsoft Hyper-V emulation
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
12  *
13  * Authors:
14  *   Avi Kivity   <avi@qumranet.com>
15  *   Yaniv Kamay  <yaniv@qumranet.com>
16  *   Amit Shah    <amit.shah@qumranet.com>
17  *   Ben-Ami Yassour <benami@il.ibm.com>
18  *   Andrey Smetanin <asmetanin@virtuozzo.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include "x86.h"
23 #include "lapic.h"
24 #include "ioapic.h"
25 #include "cpuid.h"
26 #include "hyperv.h"
27 #include "mmu.h"
28 #include "xen.h"
29
30 #include <linux/cpu.h>
31 #include <linux/kvm_host.h>
32 #include <linux/highmem.h>
33 #include <linux/sched/cputime.h>
34 #include <linux/spinlock.h>
35 #include <linux/eventfd.h>
36
37 #include <asm/apicdef.h>
38 #include <asm/mshyperv.h>
39 #include <trace/events/kvm.h>
40
41 #include "trace.h"
42 #include "irq.h"
43 #include "fpu.h"
44
45 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, HV_VCPUS_PER_SPARSE_BANK)
46
47 /*
48  * As per Hyper-V TLFS, extended hypercalls start from 0x8001
49  * (HvExtCallQueryCapabilities). Response of this hypercalls is a 64 bit value
50  * where each bit tells which extended hypercall is available besides
51  * HvExtCallQueryCapabilities.
52  *
53  * 0x8001 - First extended hypercall, HvExtCallQueryCapabilities, no bit
54  * assigned.
55  *
56  * 0x8002 - Bit 0
57  * 0x8003 - Bit 1
58  * ..
59  * 0x8041 - Bit 63
60  *
61  * Therefore, HV_EXT_CALL_MAX = 0x8001 + 64
62  */
63 #define HV_EXT_CALL_MAX (HV_EXT_CALL_QUERY_CAPABILITIES + 64)
64
65 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
66                                 bool vcpu_kick);
67
68 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
69 {
70         return atomic64_read(&synic->sint[sint]);
71 }
72
73 static inline int synic_get_sint_vector(u64 sint_value)
74 {
75         if (sint_value & HV_SYNIC_SINT_MASKED)
76                 return -1;
77         return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
78 }
79
80 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
81                                       int vector)
82 {
83         int i;
84
85         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
86                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
87                         return true;
88         }
89         return false;
90 }
91
92 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
93                                      int vector)
94 {
95         int i;
96         u64 sint_value;
97
98         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
99                 sint_value = synic_read_sint(synic, i);
100                 if (synic_get_sint_vector(sint_value) == vector &&
101                     sint_value & HV_SYNIC_SINT_AUTO_EOI)
102                         return true;
103         }
104         return false;
105 }
106
107 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
108                                 int vector)
109 {
110         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
111         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
112         bool auto_eoi_old, auto_eoi_new;
113
114         if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
115                 return;
116
117         if (synic_has_vector_connected(synic, vector))
118                 __set_bit(vector, synic->vec_bitmap);
119         else
120                 __clear_bit(vector, synic->vec_bitmap);
121
122         auto_eoi_old = !bitmap_empty(synic->auto_eoi_bitmap, 256);
123
124         if (synic_has_vector_auto_eoi(synic, vector))
125                 __set_bit(vector, synic->auto_eoi_bitmap);
126         else
127                 __clear_bit(vector, synic->auto_eoi_bitmap);
128
129         auto_eoi_new = !bitmap_empty(synic->auto_eoi_bitmap, 256);
130
131         if (auto_eoi_old == auto_eoi_new)
132                 return;
133
134         if (!enable_apicv)
135                 return;
136
137         down_write(&vcpu->kvm->arch.apicv_update_lock);
138
139         if (auto_eoi_new)
140                 hv->synic_auto_eoi_used++;
141         else
142                 hv->synic_auto_eoi_used--;
143
144         /*
145          * Inhibit APICv if any vCPU is using SynIC's AutoEOI, which relies on
146          * the hypervisor to manually inject IRQs.
147          */
148         __kvm_set_or_clear_apicv_inhibit(vcpu->kvm,
149                                          APICV_INHIBIT_REASON_HYPERV,
150                                          !!hv->synic_auto_eoi_used);
151
152         up_write(&vcpu->kvm->arch.apicv_update_lock);
153 }
154
155 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
156                           u64 data, bool host)
157 {
158         int vector, old_vector;
159         bool masked;
160
161         vector = data & HV_SYNIC_SINT_VECTOR_MASK;
162         masked = data & HV_SYNIC_SINT_MASKED;
163
164         /*
165          * Valid vectors are 16-255, however, nested Hyper-V attempts to write
166          * default '0x10000' value on boot and this should not #GP. We need to
167          * allow zero-initing the register from host as well.
168          */
169         if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
170                 return 1;
171         /*
172          * Guest may configure multiple SINTs to use the same vector, so
173          * we maintain a bitmap of vectors handled by synic, and a
174          * bitmap of vectors with auto-eoi behavior.  The bitmaps are
175          * updated here, and atomically queried on fast paths.
176          */
177         old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
178
179         atomic64_set(&synic->sint[sint], data);
180
181         synic_update_vector(synic, old_vector);
182
183         synic_update_vector(synic, vector);
184
185         /* Load SynIC vectors into EOI exit bitmap */
186         kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
187         return 0;
188 }
189
190 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
191 {
192         struct kvm_vcpu *vcpu = NULL;
193         unsigned long i;
194
195         if (vpidx >= KVM_MAX_VCPUS)
196                 return NULL;
197
198         vcpu = kvm_get_vcpu(kvm, vpidx);
199         if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
200                 return vcpu;
201         kvm_for_each_vcpu(i, vcpu, kvm)
202                 if (kvm_hv_get_vpindex(vcpu) == vpidx)
203                         return vcpu;
204         return NULL;
205 }
206
207 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
208 {
209         struct kvm_vcpu *vcpu;
210         struct kvm_vcpu_hv_synic *synic;
211
212         vcpu = get_vcpu_by_vpidx(kvm, vpidx);
213         if (!vcpu || !to_hv_vcpu(vcpu))
214                 return NULL;
215         synic = to_hv_synic(vcpu);
216         return (synic->active) ? synic : NULL;
217 }
218
219 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
220 {
221         struct kvm *kvm = vcpu->kvm;
222         struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
223         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
224         struct kvm_vcpu_hv_stimer *stimer;
225         int gsi, idx;
226
227         trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
228
229         /* Try to deliver pending Hyper-V SynIC timers messages */
230         for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
231                 stimer = &hv_vcpu->stimer[idx];
232                 if (stimer->msg_pending && stimer->config.enable &&
233                     !stimer->config.direct_mode &&
234                     stimer->config.sintx == sint)
235                         stimer_mark_pending(stimer, false);
236         }
237
238         idx = srcu_read_lock(&kvm->irq_srcu);
239         gsi = atomic_read(&synic->sint_to_gsi[sint]);
240         if (gsi != -1)
241                 kvm_notify_acked_gsi(kvm, gsi);
242         srcu_read_unlock(&kvm->irq_srcu, idx);
243 }
244
245 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
246 {
247         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
248         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
249
250         hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
251         hv_vcpu->exit.u.synic.msr = msr;
252         hv_vcpu->exit.u.synic.control = synic->control;
253         hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
254         hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
255
256         kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
257 }
258
259 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
260                          u32 msr, u64 data, bool host)
261 {
262         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
263         int ret;
264
265         if (!synic->active && (!host || data))
266                 return 1;
267
268         trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
269
270         ret = 0;
271         switch (msr) {
272         case HV_X64_MSR_SCONTROL:
273                 synic->control = data;
274                 if (!host)
275                         synic_exit(synic, msr);
276                 break;
277         case HV_X64_MSR_SVERSION:
278                 if (!host) {
279                         ret = 1;
280                         break;
281                 }
282                 synic->version = data;
283                 break;
284         case HV_X64_MSR_SIEFP:
285                 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
286                     !synic->dont_zero_synic_pages)
287                         if (kvm_clear_guest(vcpu->kvm,
288                                             data & PAGE_MASK, PAGE_SIZE)) {
289                                 ret = 1;
290                                 break;
291                         }
292                 synic->evt_page = data;
293                 if (!host)
294                         synic_exit(synic, msr);
295                 break;
296         case HV_X64_MSR_SIMP:
297                 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
298                     !synic->dont_zero_synic_pages)
299                         if (kvm_clear_guest(vcpu->kvm,
300                                             data & PAGE_MASK, PAGE_SIZE)) {
301                                 ret = 1;
302                                 break;
303                         }
304                 synic->msg_page = data;
305                 if (!host)
306                         synic_exit(synic, msr);
307                 break;
308         case HV_X64_MSR_EOM: {
309                 int i;
310
311                 if (!synic->active)
312                         break;
313
314                 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
315                         kvm_hv_notify_acked_sint(vcpu, i);
316                 break;
317         }
318         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
319                 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
320                 break;
321         default:
322                 ret = 1;
323                 break;
324         }
325         return ret;
326 }
327
328 static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
329 {
330         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
331
332         return hv_vcpu->cpuid_cache.syndbg_cap_eax &
333                 HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
334 }
335
336 static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
337 {
338         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
339
340         if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
341                 hv->hv_syndbg.control.status =
342                         vcpu->run->hyperv.u.syndbg.status;
343         return 1;
344 }
345
346 static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
347 {
348         struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
349         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
350
351         hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
352         hv_vcpu->exit.u.syndbg.msr = msr;
353         hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
354         hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
355         hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
356         hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
357         vcpu->arch.complete_userspace_io =
358                         kvm_hv_syndbg_complete_userspace;
359
360         kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
361 }
362
363 static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
364 {
365         struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
366
367         if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
368                 return 1;
369
370         trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
371                                     to_hv_vcpu(vcpu)->vp_index, msr, data);
372         switch (msr) {
373         case HV_X64_MSR_SYNDBG_CONTROL:
374                 syndbg->control.control = data;
375                 if (!host)
376                         syndbg_exit(vcpu, msr);
377                 break;
378         case HV_X64_MSR_SYNDBG_STATUS:
379                 syndbg->control.status = data;
380                 break;
381         case HV_X64_MSR_SYNDBG_SEND_BUFFER:
382                 syndbg->control.send_page = data;
383                 break;
384         case HV_X64_MSR_SYNDBG_RECV_BUFFER:
385                 syndbg->control.recv_page = data;
386                 break;
387         case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
388                 syndbg->control.pending_page = data;
389                 if (!host)
390                         syndbg_exit(vcpu, msr);
391                 break;
392         case HV_X64_MSR_SYNDBG_OPTIONS:
393                 syndbg->options = data;
394                 break;
395         default:
396                 break;
397         }
398
399         return 0;
400 }
401
402 static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
403 {
404         struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
405
406         if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
407                 return 1;
408
409         switch (msr) {
410         case HV_X64_MSR_SYNDBG_CONTROL:
411                 *pdata = syndbg->control.control;
412                 break;
413         case HV_X64_MSR_SYNDBG_STATUS:
414                 *pdata = syndbg->control.status;
415                 break;
416         case HV_X64_MSR_SYNDBG_SEND_BUFFER:
417                 *pdata = syndbg->control.send_page;
418                 break;
419         case HV_X64_MSR_SYNDBG_RECV_BUFFER:
420                 *pdata = syndbg->control.recv_page;
421                 break;
422         case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
423                 *pdata = syndbg->control.pending_page;
424                 break;
425         case HV_X64_MSR_SYNDBG_OPTIONS:
426                 *pdata = syndbg->options;
427                 break;
428         default:
429                 break;
430         }
431
432         trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);
433
434         return 0;
435 }
436
437 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
438                          bool host)
439 {
440         int ret;
441
442         if (!synic->active && !host)
443                 return 1;
444
445         ret = 0;
446         switch (msr) {
447         case HV_X64_MSR_SCONTROL:
448                 *pdata = synic->control;
449                 break;
450         case HV_X64_MSR_SVERSION:
451                 *pdata = synic->version;
452                 break;
453         case HV_X64_MSR_SIEFP:
454                 *pdata = synic->evt_page;
455                 break;
456         case HV_X64_MSR_SIMP:
457                 *pdata = synic->msg_page;
458                 break;
459         case HV_X64_MSR_EOM:
460                 *pdata = 0;
461                 break;
462         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
463                 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
464                 break;
465         default:
466                 ret = 1;
467                 break;
468         }
469         return ret;
470 }
471
472 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
473 {
474         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
475         struct kvm_lapic_irq irq;
476         int ret, vector;
477
478         if (KVM_BUG_ON(!lapic_in_kernel(vcpu), vcpu->kvm))
479                 return -EINVAL;
480
481         if (sint >= ARRAY_SIZE(synic->sint))
482                 return -EINVAL;
483
484         vector = synic_get_sint_vector(synic_read_sint(synic, sint));
485         if (vector < 0)
486                 return -ENOENT;
487
488         memset(&irq, 0, sizeof(irq));
489         irq.shorthand = APIC_DEST_SELF;
490         irq.dest_mode = APIC_DEST_PHYSICAL;
491         irq.delivery_mode = APIC_DM_FIXED;
492         irq.vector = vector;
493         irq.level = 1;
494
495         ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
496         trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
497         return ret;
498 }
499
500 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
501 {
502         struct kvm_vcpu_hv_synic *synic;
503
504         synic = synic_get(kvm, vpidx);
505         if (!synic)
506                 return -EINVAL;
507
508         return synic_set_irq(synic, sint);
509 }
510
511 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
512 {
513         struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
514         int i;
515
516         trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
517
518         for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
519                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
520                         kvm_hv_notify_acked_sint(vcpu, i);
521 }
522
523 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
524 {
525         struct kvm_vcpu_hv_synic *synic;
526
527         synic = synic_get(kvm, vpidx);
528         if (!synic)
529                 return -EINVAL;
530
531         if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
532                 return -EINVAL;
533
534         atomic_set(&synic->sint_to_gsi[sint], gsi);
535         return 0;
536 }
537
538 void kvm_hv_irq_routing_update(struct kvm *kvm)
539 {
540         struct kvm_irq_routing_table *irq_rt;
541         struct kvm_kernel_irq_routing_entry *e;
542         u32 gsi;
543
544         irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
545                                         lockdep_is_held(&kvm->irq_lock));
546
547         for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
548                 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
549                         if (e->type == KVM_IRQ_ROUTING_HV_SINT)
550                                 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
551                                                     e->hv_sint.sint, gsi);
552                 }
553         }
554 }
555
556 static void synic_init(struct kvm_vcpu_hv_synic *synic)
557 {
558         int i;
559
560         memset(synic, 0, sizeof(*synic));
561         synic->version = HV_SYNIC_VERSION_1;
562         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
563                 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
564                 atomic_set(&synic->sint_to_gsi[i], -1);
565         }
566 }
567
568 static u64 get_time_ref_counter(struct kvm *kvm)
569 {
570         struct kvm_hv *hv = to_kvm_hv(kvm);
571         struct kvm_vcpu *vcpu;
572         u64 tsc;
573
574         /*
575          * Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
576          * is broken, disabled or being updated.
577          */
578         if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET)
579                 return div_u64(get_kvmclock_ns(kvm), 100);
580
581         vcpu = kvm_get_vcpu(kvm, 0);
582         tsc = kvm_read_l1_tsc(vcpu, rdtsc());
583         return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
584                 + hv->tsc_ref.tsc_offset;
585 }
586
587 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
588                                 bool vcpu_kick)
589 {
590         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
591
592         set_bit(stimer->index,
593                 to_hv_vcpu(vcpu)->stimer_pending_bitmap);
594         kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
595         if (vcpu_kick)
596                 kvm_vcpu_kick(vcpu);
597 }
598
599 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
600 {
601         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
602
603         trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
604                                     stimer->index);
605
606         hrtimer_cancel(&stimer->timer);
607         clear_bit(stimer->index,
608                   to_hv_vcpu(vcpu)->stimer_pending_bitmap);
609         stimer->msg_pending = false;
610         stimer->exp_time = 0;
611 }
612
613 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
614 {
615         struct kvm_vcpu_hv_stimer *stimer;
616
617         stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
618         trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
619                                      stimer->index);
620         stimer_mark_pending(stimer, true);
621
622         return HRTIMER_NORESTART;
623 }
624
625 /*
626  * stimer_start() assumptions:
627  * a) stimer->count is not equal to 0
628  * b) stimer->config has HV_STIMER_ENABLE flag
629  */
630 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
631 {
632         u64 time_now;
633         ktime_t ktime_now;
634
635         time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
636         ktime_now = ktime_get();
637
638         if (stimer->config.periodic) {
639                 if (stimer->exp_time) {
640                         if (time_now >= stimer->exp_time) {
641                                 u64 remainder;
642
643                                 div64_u64_rem(time_now - stimer->exp_time,
644                                               stimer->count, &remainder);
645                                 stimer->exp_time =
646                                         time_now + (stimer->count - remainder);
647                         }
648                 } else
649                         stimer->exp_time = time_now + stimer->count;
650
651                 trace_kvm_hv_stimer_start_periodic(
652                                         hv_stimer_to_vcpu(stimer)->vcpu_id,
653                                         stimer->index,
654                                         time_now, stimer->exp_time);
655
656                 hrtimer_start(&stimer->timer,
657                               ktime_add_ns(ktime_now,
658                                            100 * (stimer->exp_time - time_now)),
659                               HRTIMER_MODE_ABS);
660                 return 0;
661         }
662         stimer->exp_time = stimer->count;
663         if (time_now >= stimer->count) {
664                 /*
665                  * Expire timer according to Hypervisor Top-Level Functional
666                  * specification v4(15.3.1):
667                  * "If a one shot is enabled and the specified count is in
668                  * the past, it will expire immediately."
669                  */
670                 stimer_mark_pending(stimer, false);
671                 return 0;
672         }
673
674         trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
675                                            stimer->index,
676                                            time_now, stimer->count);
677
678         hrtimer_start(&stimer->timer,
679                       ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
680                       HRTIMER_MODE_ABS);
681         return 0;
682 }
683
684 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
685                              bool host)
686 {
687         union hv_stimer_config new_config = {.as_uint64 = config},
688                 old_config = {.as_uint64 = stimer->config.as_uint64};
689         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
690         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
691         struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
692
693         if (!synic->active && (!host || config))
694                 return 1;
695
696         if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode &&
697                      !(hv_vcpu->cpuid_cache.features_edx &
698                        HV_STIMER_DIRECT_MODE_AVAILABLE)))
699                 return 1;
700
701         trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
702                                        stimer->index, config, host);
703
704         stimer_cleanup(stimer);
705         if (old_config.enable &&
706             !new_config.direct_mode && new_config.sintx == 0)
707                 new_config.enable = 0;
708         stimer->config.as_uint64 = new_config.as_uint64;
709
710         if (stimer->config.enable)
711                 stimer_mark_pending(stimer, false);
712
713         return 0;
714 }
715
716 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
717                             bool host)
718 {
719         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
720         struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
721
722         if (!synic->active && (!host || count))
723                 return 1;
724
725         trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
726                                       stimer->index, count, host);
727
728         stimer_cleanup(stimer);
729         stimer->count = count;
730         if (!host) {
731                 if (stimer->count == 0)
732                         stimer->config.enable = 0;
733                 else if (stimer->config.auto_enable)
734                         stimer->config.enable = 1;
735         }
736
737         if (stimer->config.enable)
738                 stimer_mark_pending(stimer, false);
739
740         return 0;
741 }
742
743 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
744 {
745         *pconfig = stimer->config.as_uint64;
746         return 0;
747 }
748
749 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
750 {
751         *pcount = stimer->count;
752         return 0;
753 }
754
755 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
756                              struct hv_message *src_msg, bool no_retry)
757 {
758         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
759         int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
760         gfn_t msg_page_gfn;
761         struct hv_message_header hv_hdr;
762         int r;
763
764         if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
765                 return -ENOENT;
766
767         msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
768
769         /*
770          * Strictly following the spec-mandated ordering would assume setting
771          * .msg_pending before checking .message_type.  However, this function
772          * is only called in vcpu context so the entire update is atomic from
773          * guest POV and thus the exact order here doesn't matter.
774          */
775         r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
776                                      msg_off + offsetof(struct hv_message,
777                                                         header.message_type),
778                                      sizeof(hv_hdr.message_type));
779         if (r < 0)
780                 return r;
781
782         if (hv_hdr.message_type != HVMSG_NONE) {
783                 if (no_retry)
784                         return 0;
785
786                 hv_hdr.message_flags.msg_pending = 1;
787                 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
788                                               &hv_hdr.message_flags,
789                                               msg_off +
790                                               offsetof(struct hv_message,
791                                                        header.message_flags),
792                                               sizeof(hv_hdr.message_flags));
793                 if (r < 0)
794                         return r;
795                 return -EAGAIN;
796         }
797
798         r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
799                                       sizeof(src_msg->header) +
800                                       src_msg->header.payload_size);
801         if (r < 0)
802                 return r;
803
804         r = synic_set_irq(synic, sint);
805         if (r < 0)
806                 return r;
807         if (r == 0)
808                 return -EFAULT;
809         return 0;
810 }
811
812 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
813 {
814         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
815         struct hv_message *msg = &stimer->msg;
816         struct hv_timer_message_payload *payload =
817                         (struct hv_timer_message_payload *)&msg->u.payload;
818
819         /*
820          * To avoid piling up periodic ticks, don't retry message
821          * delivery for them (within "lazy" lost ticks policy).
822          */
823         bool no_retry = stimer->config.periodic;
824
825         payload->expiration_time = stimer->exp_time;
826         payload->delivery_time = get_time_ref_counter(vcpu->kvm);
827         return synic_deliver_msg(to_hv_synic(vcpu),
828                                  stimer->config.sintx, msg,
829                                  no_retry);
830 }
831
832 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
833 {
834         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
835         struct kvm_lapic_irq irq = {
836                 .delivery_mode = APIC_DM_FIXED,
837                 .vector = stimer->config.apic_vector
838         };
839
840         if (lapic_in_kernel(vcpu))
841                 return !kvm_apic_set_irq(vcpu, &irq, NULL);
842         return 0;
843 }
844
845 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
846 {
847         int r, direct = stimer->config.direct_mode;
848
849         stimer->msg_pending = true;
850         if (!direct)
851                 r = stimer_send_msg(stimer);
852         else
853                 r = stimer_notify_direct(stimer);
854         trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
855                                        stimer->index, direct, r);
856         if (!r) {
857                 stimer->msg_pending = false;
858                 if (!(stimer->config.periodic))
859                         stimer->config.enable = 0;
860         }
861 }
862
863 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
864 {
865         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
866         struct kvm_vcpu_hv_stimer *stimer;
867         u64 time_now, exp_time;
868         int i;
869
870         if (!hv_vcpu)
871                 return;
872
873         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
874                 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
875                         stimer = &hv_vcpu->stimer[i];
876                         if (stimer->config.enable) {
877                                 exp_time = stimer->exp_time;
878
879                                 if (exp_time) {
880                                         time_now =
881                                                 get_time_ref_counter(vcpu->kvm);
882                                         if (time_now >= exp_time)
883                                                 stimer_expiration(stimer);
884                                 }
885
886                                 if ((stimer->config.enable) &&
887                                     stimer->count) {
888                                         if (!stimer->msg_pending)
889                                                 stimer_start(stimer);
890                                 } else
891                                         stimer_cleanup(stimer);
892                         }
893                 }
894 }
895
896 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
897 {
898         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
899         int i;
900
901         if (!hv_vcpu)
902                 return;
903
904         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
905                 stimer_cleanup(&hv_vcpu->stimer[i]);
906
907         kfree(hv_vcpu);
908         vcpu->arch.hyperv = NULL;
909 }
910
911 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
912 {
913         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
914
915         if (!hv_vcpu)
916                 return false;
917
918         if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
919                 return false;
920         return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
921 }
922 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
923
924 int kvm_hv_get_assist_page(struct kvm_vcpu *vcpu)
925 {
926         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
927
928         if (!hv_vcpu || !kvm_hv_assist_page_enabled(vcpu))
929                 return -EFAULT;
930
931         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
932                                      &hv_vcpu->vp_assist_page, sizeof(struct hv_vp_assist_page));
933 }
934 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
935
936 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
937 {
938         struct hv_message *msg = &stimer->msg;
939         struct hv_timer_message_payload *payload =
940                         (struct hv_timer_message_payload *)&msg->u.payload;
941
942         memset(&msg->header, 0, sizeof(msg->header));
943         msg->header.message_type = HVMSG_TIMER_EXPIRED;
944         msg->header.payload_size = sizeof(*payload);
945
946         payload->timer_index = stimer->index;
947         payload->expiration_time = 0;
948         payload->delivery_time = 0;
949 }
950
951 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
952 {
953         memset(stimer, 0, sizeof(*stimer));
954         stimer->index = timer_index;
955         hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
956         stimer->timer.function = stimer_timer_callback;
957         stimer_prepare_msg(stimer);
958 }
959
960 int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
961 {
962         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
963         int i;
964
965         if (hv_vcpu)
966                 return 0;
967
968         hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
969         if (!hv_vcpu)
970                 return -ENOMEM;
971
972         vcpu->arch.hyperv = hv_vcpu;
973         hv_vcpu->vcpu = vcpu;
974
975         synic_init(&hv_vcpu->synic);
976
977         bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
978         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
979                 stimer_init(&hv_vcpu->stimer[i], i);
980
981         hv_vcpu->vp_index = vcpu->vcpu_idx;
982
983         for (i = 0; i < HV_NR_TLB_FLUSH_FIFOS; i++) {
984                 INIT_KFIFO(hv_vcpu->tlb_flush_fifo[i].entries);
985                 spin_lock_init(&hv_vcpu->tlb_flush_fifo[i].write_lock);
986         }
987
988         return 0;
989 }
990
991 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
992 {
993         struct kvm_vcpu_hv_synic *synic;
994         int r;
995
996         r = kvm_hv_vcpu_init(vcpu);
997         if (r)
998                 return r;
999
1000         synic = to_hv_synic(vcpu);
1001
1002         synic->active = true;
1003         synic->dont_zero_synic_pages = dont_zero_synic_pages;
1004         synic->control = HV_SYNIC_CONTROL_ENABLE;
1005         return 0;
1006 }
1007
1008 static bool kvm_hv_msr_partition_wide(u32 msr)
1009 {
1010         bool r = false;
1011
1012         switch (msr) {
1013         case HV_X64_MSR_GUEST_OS_ID:
1014         case HV_X64_MSR_HYPERCALL:
1015         case HV_X64_MSR_REFERENCE_TSC:
1016         case HV_X64_MSR_TIME_REF_COUNT:
1017         case HV_X64_MSR_CRASH_CTL:
1018         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1019         case HV_X64_MSR_RESET:
1020         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1021         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1022         case HV_X64_MSR_TSC_EMULATION_STATUS:
1023         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1024         case HV_X64_MSR_SYNDBG_OPTIONS:
1025         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1026                 r = true;
1027                 break;
1028         }
1029
1030         return r;
1031 }
1032
1033 static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
1034 {
1035         struct kvm_hv *hv = to_kvm_hv(kvm);
1036         size_t size = ARRAY_SIZE(hv->hv_crash_param);
1037
1038         if (WARN_ON_ONCE(index >= size))
1039                 return -EINVAL;
1040
1041         *pdata = hv->hv_crash_param[array_index_nospec(index, size)];
1042         return 0;
1043 }
1044
1045 static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
1046 {
1047         struct kvm_hv *hv = to_kvm_hv(kvm);
1048
1049         *pdata = hv->hv_crash_ctl;
1050         return 0;
1051 }
1052
1053 static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
1054 {
1055         struct kvm_hv *hv = to_kvm_hv(kvm);
1056
1057         hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
1058
1059         return 0;
1060 }
1061
1062 static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
1063 {
1064         struct kvm_hv *hv = to_kvm_hv(kvm);
1065         size_t size = ARRAY_SIZE(hv->hv_crash_param);
1066
1067         if (WARN_ON_ONCE(index >= size))
1068                 return -EINVAL;
1069
1070         hv->hv_crash_param[array_index_nospec(index, size)] = data;
1071         return 0;
1072 }
1073
1074 /*
1075  * The kvmclock and Hyper-V TSC page use similar formulas, and converting
1076  * between them is possible:
1077  *
1078  * kvmclock formula:
1079  *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
1080  *           + system_time
1081  *
1082  * Hyper-V formula:
1083  *    nsec/100 = ticks * scale / 2^64 + offset
1084  *
1085  * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
1086  * By dividing the kvmclock formula by 100 and equating what's left we get:
1087  *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1088  *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
1089  *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
1090  *
1091  * Now expand the kvmclock formula and divide by 100:
1092  *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
1093  *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
1094  *           + system_time
1095  *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1096  *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1097  *               + system_time / 100
1098  *
1099  * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
1100  *    nsec/100 = ticks * scale / 2^64
1101  *               - tsc_timestamp * scale / 2^64
1102  *               + system_time / 100
1103  *
1104  * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
1105  *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
1106  *
1107  * These two equivalencies are implemented in this function.
1108  */
1109 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
1110                                         struct ms_hyperv_tsc_page *tsc_ref)
1111 {
1112         u64 max_mul;
1113
1114         if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
1115                 return false;
1116
1117         /*
1118          * check if scale would overflow, if so we use the time ref counter
1119          *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
1120          *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
1121          *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
1122          */
1123         max_mul = 100ull << (32 - hv_clock->tsc_shift);
1124         if (hv_clock->tsc_to_system_mul >= max_mul)
1125                 return false;
1126
1127         /*
1128          * Otherwise compute the scale and offset according to the formulas
1129          * derived above.
1130          */
1131         tsc_ref->tsc_scale =
1132                 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
1133                                 hv_clock->tsc_to_system_mul,
1134                                 100);
1135
1136         tsc_ref->tsc_offset = hv_clock->system_time;
1137         do_div(tsc_ref->tsc_offset, 100);
1138         tsc_ref->tsc_offset -=
1139                 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
1140         return true;
1141 }
1142
1143 /*
1144  * Don't touch TSC page values if the guest has opted for TSC emulation after
1145  * migration. KVM doesn't fully support reenlightenment notifications and TSC
1146  * access emulation and Hyper-V is known to expect the values in TSC page to
1147  * stay constant before TSC access emulation is disabled from guest side
1148  * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
1149  * frequency and guest visible TSC value across migration (and prevent it when
1150  * TSC scaling is unsupported).
1151  */
1152 static inline bool tsc_page_update_unsafe(struct kvm_hv *hv)
1153 {
1154         return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) &&
1155                 hv->hv_tsc_emulation_control;
1156 }
1157
1158 void kvm_hv_setup_tsc_page(struct kvm *kvm,
1159                            struct pvclock_vcpu_time_info *hv_clock)
1160 {
1161         struct kvm_hv *hv = to_kvm_hv(kvm);
1162         u32 tsc_seq;
1163         u64 gfn;
1164
1165         BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
1166         BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
1167
1168         mutex_lock(&hv->hv_lock);
1169
1170         if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
1171             hv->hv_tsc_page_status == HV_TSC_PAGE_SET ||
1172             hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET)
1173                 goto out_unlock;
1174
1175         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1176                 goto out_unlock;
1177
1178         gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1179         /*
1180          * Because the TSC parameters only vary when there is a
1181          * change in the master clock, do not bother with caching.
1182          */
1183         if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
1184                                     &tsc_seq, sizeof(tsc_seq))))
1185                 goto out_err;
1186
1187         if (tsc_seq && tsc_page_update_unsafe(hv)) {
1188                 if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1189                         goto out_err;
1190
1191                 hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1192                 goto out_unlock;
1193         }
1194
1195         /*
1196          * While we're computing and writing the parameters, force the
1197          * guest to use the time reference count MSR.
1198          */
1199         hv->tsc_ref.tsc_sequence = 0;
1200         if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1201                             &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1202                 goto out_err;
1203
1204         if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
1205                 goto out_err;
1206
1207         /* Ensure sequence is zero before writing the rest of the struct.  */
1208         smp_wmb();
1209         if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1210                 goto out_err;
1211
1212         /*
1213          * Now switch to the TSC page mechanism by writing the sequence.
1214          */
1215         tsc_seq++;
1216         if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
1217                 tsc_seq = 1;
1218
1219         /* Write the struct entirely before the non-zero sequence.  */
1220         smp_wmb();
1221
1222         hv->tsc_ref.tsc_sequence = tsc_seq;
1223         if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1224                             &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1225                 goto out_err;
1226
1227         hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1228         goto out_unlock;
1229
1230 out_err:
1231         hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1232 out_unlock:
1233         mutex_unlock(&hv->hv_lock);
1234 }
1235
1236 void kvm_hv_request_tsc_page_update(struct kvm *kvm)
1237 {
1238         struct kvm_hv *hv = to_kvm_hv(kvm);
1239
1240         mutex_lock(&hv->hv_lock);
1241
1242         if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET &&
1243             !tsc_page_update_unsafe(hv))
1244                 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1245
1246         mutex_unlock(&hv->hv_lock);
1247 }
1248
1249 static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr)
1250 {
1251         if (!hv_vcpu->enforce_cpuid)
1252                 return true;
1253
1254         switch (msr) {
1255         case HV_X64_MSR_GUEST_OS_ID:
1256         case HV_X64_MSR_HYPERCALL:
1257                 return hv_vcpu->cpuid_cache.features_eax &
1258                         HV_MSR_HYPERCALL_AVAILABLE;
1259         case HV_X64_MSR_VP_RUNTIME:
1260                 return hv_vcpu->cpuid_cache.features_eax &
1261                         HV_MSR_VP_RUNTIME_AVAILABLE;
1262         case HV_X64_MSR_TIME_REF_COUNT:
1263                 return hv_vcpu->cpuid_cache.features_eax &
1264                         HV_MSR_TIME_REF_COUNT_AVAILABLE;
1265         case HV_X64_MSR_VP_INDEX:
1266                 return hv_vcpu->cpuid_cache.features_eax &
1267                         HV_MSR_VP_INDEX_AVAILABLE;
1268         case HV_X64_MSR_RESET:
1269                 return hv_vcpu->cpuid_cache.features_eax &
1270                         HV_MSR_RESET_AVAILABLE;
1271         case HV_X64_MSR_REFERENCE_TSC:
1272                 return hv_vcpu->cpuid_cache.features_eax &
1273                         HV_MSR_REFERENCE_TSC_AVAILABLE;
1274         case HV_X64_MSR_SCONTROL:
1275         case HV_X64_MSR_SVERSION:
1276         case HV_X64_MSR_SIEFP:
1277         case HV_X64_MSR_SIMP:
1278         case HV_X64_MSR_EOM:
1279         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1280                 return hv_vcpu->cpuid_cache.features_eax &
1281                         HV_MSR_SYNIC_AVAILABLE;
1282         case HV_X64_MSR_STIMER0_CONFIG:
1283         case HV_X64_MSR_STIMER1_CONFIG:
1284         case HV_X64_MSR_STIMER2_CONFIG:
1285         case HV_X64_MSR_STIMER3_CONFIG:
1286         case HV_X64_MSR_STIMER0_COUNT:
1287         case HV_X64_MSR_STIMER1_COUNT:
1288         case HV_X64_MSR_STIMER2_COUNT:
1289         case HV_X64_MSR_STIMER3_COUNT:
1290                 return hv_vcpu->cpuid_cache.features_eax &
1291                         HV_MSR_SYNTIMER_AVAILABLE;
1292         case HV_X64_MSR_EOI:
1293         case HV_X64_MSR_ICR:
1294         case HV_X64_MSR_TPR:
1295         case HV_X64_MSR_VP_ASSIST_PAGE:
1296                 return hv_vcpu->cpuid_cache.features_eax &
1297                         HV_MSR_APIC_ACCESS_AVAILABLE;
1298         case HV_X64_MSR_TSC_FREQUENCY:
1299         case HV_X64_MSR_APIC_FREQUENCY:
1300                 return hv_vcpu->cpuid_cache.features_eax &
1301                         HV_ACCESS_FREQUENCY_MSRS;
1302         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1303         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1304         case HV_X64_MSR_TSC_EMULATION_STATUS:
1305                 return hv_vcpu->cpuid_cache.features_eax &
1306                         HV_ACCESS_REENLIGHTENMENT;
1307         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1308                 return hv_vcpu->cpuid_cache.features_eax &
1309                         HV_ACCESS_TSC_INVARIANT;
1310         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1311         case HV_X64_MSR_CRASH_CTL:
1312                 return hv_vcpu->cpuid_cache.features_edx &
1313                         HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1314         case HV_X64_MSR_SYNDBG_OPTIONS:
1315         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1316                 return hv_vcpu->cpuid_cache.features_edx &
1317                         HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1318         default:
1319                 break;
1320         }
1321
1322         return false;
1323 }
1324
1325 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
1326                              bool host)
1327 {
1328         struct kvm *kvm = vcpu->kvm;
1329         struct kvm_hv *hv = to_kvm_hv(kvm);
1330
1331         if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1332                 return 1;
1333
1334         switch (msr) {
1335         case HV_X64_MSR_GUEST_OS_ID:
1336                 hv->hv_guest_os_id = data;
1337                 /* setting guest os id to zero disables hypercall page */
1338                 if (!hv->hv_guest_os_id)
1339                         hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1340                 break;
1341         case HV_X64_MSR_HYPERCALL: {
1342                 u8 instructions[9];
1343                 int i = 0;
1344                 u64 addr;
1345
1346                 /* if guest os id is not set hypercall should remain disabled */
1347                 if (!hv->hv_guest_os_id)
1348                         break;
1349                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1350                         hv->hv_hypercall = data;
1351                         break;
1352                 }
1353
1354                 /*
1355                  * If Xen and Hyper-V hypercalls are both enabled, disambiguate
1356                  * the same way Xen itself does, by setting the bit 31 of EAX
1357                  * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
1358                  * going to be clobbered on 64-bit.
1359                  */
1360                 if (kvm_xen_hypercall_enabled(kvm)) {
1361                         /* orl $0x80000000, %eax */
1362                         instructions[i++] = 0x0d;
1363                         instructions[i++] = 0x00;
1364                         instructions[i++] = 0x00;
1365                         instructions[i++] = 0x00;
1366                         instructions[i++] = 0x80;
1367                 }
1368
1369                 /* vmcall/vmmcall */
1370                 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i);
1371                 i += 3;
1372
1373                 /* ret */
1374                 ((unsigned char *)instructions)[i++] = 0xc3;
1375
1376                 addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
1377                 if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
1378                         return 1;
1379                 hv->hv_hypercall = data;
1380                 break;
1381         }
1382         case HV_X64_MSR_REFERENCE_TSC:
1383                 hv->hv_tsc_page = data;
1384                 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) {
1385                         if (!host)
1386                                 hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED;
1387                         else
1388                                 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1389                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1390                 } else {
1391                         hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET;
1392                 }
1393                 break;
1394         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1395                 return kvm_hv_msr_set_crash_data(kvm,
1396                                                  msr - HV_X64_MSR_CRASH_P0,
1397                                                  data);
1398         case HV_X64_MSR_CRASH_CTL:
1399                 if (host)
1400                         return kvm_hv_msr_set_crash_ctl(kvm, data);
1401
1402                 if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
1403                         vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
1404                                    hv->hv_crash_param[0],
1405                                    hv->hv_crash_param[1],
1406                                    hv->hv_crash_param[2],
1407                                    hv->hv_crash_param[3],
1408                                    hv->hv_crash_param[4]);
1409
1410                         /* Send notification about crash to user space */
1411                         kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
1412                 }
1413                 break;
1414         case HV_X64_MSR_RESET:
1415                 if (data == 1) {
1416                         vcpu_debug(vcpu, "hyper-v reset requested\n");
1417                         kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1418                 }
1419                 break;
1420         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1421                 hv->hv_reenlightenment_control = data;
1422                 break;
1423         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1424                 hv->hv_tsc_emulation_control = data;
1425                 break;
1426         case HV_X64_MSR_TSC_EMULATION_STATUS:
1427                 if (data && !host)
1428                         return 1;
1429
1430                 hv->hv_tsc_emulation_status = data;
1431                 break;
1432         case HV_X64_MSR_TIME_REF_COUNT:
1433                 /* read-only, but still ignore it if host-initiated */
1434                 if (!host)
1435                         return 1;
1436                 break;
1437         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1438                 /* Only bit 0 is supported */
1439                 if (data & ~HV_EXPOSE_INVARIANT_TSC)
1440                         return 1;
1441
1442                 /* The feature can't be disabled from the guest */
1443                 if (!host && hv->hv_invtsc_control && !data)
1444                         return 1;
1445
1446                 hv->hv_invtsc_control = data;
1447                 break;
1448         case HV_X64_MSR_SYNDBG_OPTIONS:
1449         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1450                 return syndbg_set_msr(vcpu, msr, data, host);
1451         default:
1452                 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
1453                 return 1;
1454         }
1455         return 0;
1456 }
1457
1458 /* Calculate cpu time spent by current task in 100ns units */
1459 static u64 current_task_runtime_100ns(void)
1460 {
1461         u64 utime, stime;
1462
1463         task_cputime_adjusted(current, &utime, &stime);
1464
1465         return div_u64(utime + stime, 100);
1466 }
1467
1468 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1469 {
1470         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1471
1472         if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1473                 return 1;
1474
1475         switch (msr) {
1476         case HV_X64_MSR_VP_INDEX: {
1477                 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1478                 u32 new_vp_index = (u32)data;
1479
1480                 if (!host || new_vp_index >= KVM_MAX_VCPUS)
1481                         return 1;
1482
1483                 if (new_vp_index == hv_vcpu->vp_index)
1484                         return 0;
1485
1486                 /*
1487                  * The VP index is initialized to vcpu_index by
1488                  * kvm_hv_vcpu_postcreate so they initially match.  Now the
1489                  * VP index is changing, adjust num_mismatched_vp_indexes if
1490                  * it now matches or no longer matches vcpu_idx.
1491                  */
1492                 if (hv_vcpu->vp_index == vcpu->vcpu_idx)
1493                         atomic_inc(&hv->num_mismatched_vp_indexes);
1494                 else if (new_vp_index == vcpu->vcpu_idx)
1495                         atomic_dec(&hv->num_mismatched_vp_indexes);
1496
1497                 hv_vcpu->vp_index = new_vp_index;
1498                 break;
1499         }
1500         case HV_X64_MSR_VP_ASSIST_PAGE: {
1501                 u64 gfn;
1502                 unsigned long addr;
1503
1504                 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1505                         hv_vcpu->hv_vapic = data;
1506                         if (kvm_lapic_set_pv_eoi(vcpu, 0, 0))
1507                                 return 1;
1508                         break;
1509                 }
1510                 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1511                 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1512                 if (kvm_is_error_hva(addr))
1513                         return 1;
1514
1515                 /*
1516                  * Clear apic_assist portion of struct hv_vp_assist_page
1517                  * only, there can be valuable data in the rest which needs
1518                  * to be preserved e.g. on migration.
1519                  */
1520                 if (__put_user(0, (u32 __user *)addr))
1521                         return 1;
1522                 hv_vcpu->hv_vapic = data;
1523                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1524                 if (kvm_lapic_set_pv_eoi(vcpu,
1525                                             gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1526                                             sizeof(struct hv_vp_assist_page)))
1527                         return 1;
1528                 break;
1529         }
1530         case HV_X64_MSR_EOI:
1531                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1532         case HV_X64_MSR_ICR:
1533                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1534         case HV_X64_MSR_TPR:
1535                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1536         case HV_X64_MSR_VP_RUNTIME:
1537                 if (!host)
1538                         return 1;
1539                 hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1540                 break;
1541         case HV_X64_MSR_SCONTROL:
1542         case HV_X64_MSR_SVERSION:
1543         case HV_X64_MSR_SIEFP:
1544         case HV_X64_MSR_SIMP:
1545         case HV_X64_MSR_EOM:
1546         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1547                 return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
1548         case HV_X64_MSR_STIMER0_CONFIG:
1549         case HV_X64_MSR_STIMER1_CONFIG:
1550         case HV_X64_MSR_STIMER2_CONFIG:
1551         case HV_X64_MSR_STIMER3_CONFIG: {
1552                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1553
1554                 return stimer_set_config(to_hv_stimer(vcpu, timer_index),
1555                                          data, host);
1556         }
1557         case HV_X64_MSR_STIMER0_COUNT:
1558         case HV_X64_MSR_STIMER1_COUNT:
1559         case HV_X64_MSR_STIMER2_COUNT:
1560         case HV_X64_MSR_STIMER3_COUNT: {
1561                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1562
1563                 return stimer_set_count(to_hv_stimer(vcpu, timer_index),
1564                                         data, host);
1565         }
1566         case HV_X64_MSR_TSC_FREQUENCY:
1567         case HV_X64_MSR_APIC_FREQUENCY:
1568                 /* read-only, but still ignore it if host-initiated */
1569                 if (!host)
1570                         return 1;
1571                 break;
1572         default:
1573                 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
1574                 return 1;
1575         }
1576
1577         return 0;
1578 }
1579
1580 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1581                              bool host)
1582 {
1583         u64 data = 0;
1584         struct kvm *kvm = vcpu->kvm;
1585         struct kvm_hv *hv = to_kvm_hv(kvm);
1586
1587         if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1588                 return 1;
1589
1590         switch (msr) {
1591         case HV_X64_MSR_GUEST_OS_ID:
1592                 data = hv->hv_guest_os_id;
1593                 break;
1594         case HV_X64_MSR_HYPERCALL:
1595                 data = hv->hv_hypercall;
1596                 break;
1597         case HV_X64_MSR_TIME_REF_COUNT:
1598                 data = get_time_ref_counter(kvm);
1599                 break;
1600         case HV_X64_MSR_REFERENCE_TSC:
1601                 data = hv->hv_tsc_page;
1602                 break;
1603         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1604                 return kvm_hv_msr_get_crash_data(kvm,
1605                                                  msr - HV_X64_MSR_CRASH_P0,
1606                                                  pdata);
1607         case HV_X64_MSR_CRASH_CTL:
1608                 return kvm_hv_msr_get_crash_ctl(kvm, pdata);
1609         case HV_X64_MSR_RESET:
1610                 data = 0;
1611                 break;
1612         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1613                 data = hv->hv_reenlightenment_control;
1614                 break;
1615         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1616                 data = hv->hv_tsc_emulation_control;
1617                 break;
1618         case HV_X64_MSR_TSC_EMULATION_STATUS:
1619                 data = hv->hv_tsc_emulation_status;
1620                 break;
1621         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1622                 data = hv->hv_invtsc_control;
1623                 break;
1624         case HV_X64_MSR_SYNDBG_OPTIONS:
1625         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1626                 return syndbg_get_msr(vcpu, msr, pdata, host);
1627         default:
1628                 kvm_pr_unimpl_rdmsr(vcpu, msr);
1629                 return 1;
1630         }
1631
1632         *pdata = data;
1633         return 0;
1634 }
1635
1636 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1637                           bool host)
1638 {
1639         u64 data = 0;
1640         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1641
1642         if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1643                 return 1;
1644
1645         switch (msr) {
1646         case HV_X64_MSR_VP_INDEX:
1647                 data = hv_vcpu->vp_index;
1648                 break;
1649         case HV_X64_MSR_EOI:
1650                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1651         case HV_X64_MSR_ICR:
1652                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1653         case HV_X64_MSR_TPR:
1654                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1655         case HV_X64_MSR_VP_ASSIST_PAGE:
1656                 data = hv_vcpu->hv_vapic;
1657                 break;
1658         case HV_X64_MSR_VP_RUNTIME:
1659                 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1660                 break;
1661         case HV_X64_MSR_SCONTROL:
1662         case HV_X64_MSR_SVERSION:
1663         case HV_X64_MSR_SIEFP:
1664         case HV_X64_MSR_SIMP:
1665         case HV_X64_MSR_EOM:
1666         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1667                 return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
1668         case HV_X64_MSR_STIMER0_CONFIG:
1669         case HV_X64_MSR_STIMER1_CONFIG:
1670         case HV_X64_MSR_STIMER2_CONFIG:
1671         case HV_X64_MSR_STIMER3_CONFIG: {
1672                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1673
1674                 return stimer_get_config(to_hv_stimer(vcpu, timer_index),
1675                                          pdata);
1676         }
1677         case HV_X64_MSR_STIMER0_COUNT:
1678         case HV_X64_MSR_STIMER1_COUNT:
1679         case HV_X64_MSR_STIMER2_COUNT:
1680         case HV_X64_MSR_STIMER3_COUNT: {
1681                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1682
1683                 return stimer_get_count(to_hv_stimer(vcpu, timer_index),
1684                                         pdata);
1685         }
1686         case HV_X64_MSR_TSC_FREQUENCY:
1687                 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1688                 break;
1689         case HV_X64_MSR_APIC_FREQUENCY:
1690                 data = APIC_BUS_FREQUENCY;
1691                 break;
1692         default:
1693                 kvm_pr_unimpl_rdmsr(vcpu, msr);
1694                 return 1;
1695         }
1696         *pdata = data;
1697         return 0;
1698 }
1699
1700 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1701 {
1702         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1703
1704         if (!host && !vcpu->arch.hyperv_enabled)
1705                 return 1;
1706
1707         if (kvm_hv_vcpu_init(vcpu))
1708                 return 1;
1709
1710         if (kvm_hv_msr_partition_wide(msr)) {
1711                 int r;
1712
1713                 mutex_lock(&hv->hv_lock);
1714                 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1715                 mutex_unlock(&hv->hv_lock);
1716                 return r;
1717         } else
1718                 return kvm_hv_set_msr(vcpu, msr, data, host);
1719 }
1720
1721 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1722 {
1723         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1724
1725         if (!host && !vcpu->arch.hyperv_enabled)
1726                 return 1;
1727
1728         if (kvm_hv_vcpu_init(vcpu))
1729                 return 1;
1730
1731         if (kvm_hv_msr_partition_wide(msr)) {
1732                 int r;
1733
1734                 mutex_lock(&hv->hv_lock);
1735                 r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
1736                 mutex_unlock(&hv->hv_lock);
1737                 return r;
1738         } else
1739                 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1740 }
1741
1742 static void sparse_set_to_vcpu_mask(struct kvm *kvm, u64 *sparse_banks,
1743                                     u64 valid_bank_mask, unsigned long *vcpu_mask)
1744 {
1745         struct kvm_hv *hv = to_kvm_hv(kvm);
1746         bool has_mismatch = atomic_read(&hv->num_mismatched_vp_indexes);
1747         u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1748         struct kvm_vcpu *vcpu;
1749         int bank, sbank = 0;
1750         unsigned long i;
1751         u64 *bitmap;
1752
1753         BUILD_BUG_ON(sizeof(vp_bitmap) >
1754                      sizeof(*vcpu_mask) * BITS_TO_LONGS(KVM_MAX_VCPUS));
1755
1756         /*
1757          * If vp_index == vcpu_idx for all vCPUs, fill vcpu_mask directly, else
1758          * fill a temporary buffer and manually test each vCPU's VP index.
1759          */
1760         if (likely(!has_mismatch))
1761                 bitmap = (u64 *)vcpu_mask;
1762         else
1763                 bitmap = vp_bitmap;
1764
1765         /*
1766          * Each set of 64 VPs is packed into sparse_banks, with valid_bank_mask
1767          * having a '1' for each bank that exists in sparse_banks.  Sets must
1768          * be in ascending order, i.e. bank0..bankN.
1769          */
1770         memset(bitmap, 0, sizeof(vp_bitmap));
1771         for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1772                          KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1773                 bitmap[bank] = sparse_banks[sbank++];
1774
1775         if (likely(!has_mismatch))
1776                 return;
1777
1778         bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
1779         kvm_for_each_vcpu(i, vcpu, kvm) {
1780                 if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
1781                         __set_bit(i, vcpu_mask);
1782         }
1783 }
1784
1785 static bool hv_is_vp_in_sparse_set(u32 vp_id, u64 valid_bank_mask, u64 sparse_banks[])
1786 {
1787         int valid_bit_nr = vp_id / HV_VCPUS_PER_SPARSE_BANK;
1788         unsigned long sbank;
1789
1790         if (!test_bit(valid_bit_nr, (unsigned long *)&valid_bank_mask))
1791                 return false;
1792
1793         /*
1794          * The index into the sparse bank is the number of preceding bits in
1795          * the valid mask.  Optimize for VMs with <64 vCPUs by skipping the
1796          * fancy math if there can't possibly be preceding bits.
1797          */
1798         if (valid_bit_nr)
1799                 sbank = hweight64(valid_bank_mask & GENMASK_ULL(valid_bit_nr - 1, 0));
1800         else
1801                 sbank = 0;
1802
1803         return test_bit(vp_id % HV_VCPUS_PER_SPARSE_BANK,
1804                         (unsigned long *)&sparse_banks[sbank]);
1805 }
1806
1807 struct kvm_hv_hcall {
1808         /* Hypercall input data */
1809         u64 param;
1810         u64 ingpa;
1811         u64 outgpa;
1812         u16 code;
1813         u16 var_cnt;
1814         u16 rep_cnt;
1815         u16 rep_idx;
1816         bool fast;
1817         bool rep;
1818         sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS];
1819
1820         /*
1821          * Current read offset when KVM reads hypercall input data gradually,
1822          * either offset in bytes from 'ingpa' for regular hypercalls or the
1823          * number of already consumed 'XMM halves' for 'fast' hypercalls.
1824          */
1825         union {
1826                 gpa_t data_offset;
1827                 int consumed_xmm_halves;
1828         };
1829 };
1830
1831
1832 static int kvm_hv_get_hc_data(struct kvm *kvm, struct kvm_hv_hcall *hc,
1833                               u16 orig_cnt, u16 cnt_cap, u64 *data)
1834 {
1835         /*
1836          * Preserve the original count when ignoring entries via a "cap", KVM
1837          * still needs to validate the guest input (though the non-XMM path
1838          * punts on the checks).
1839          */
1840         u16 cnt = min(orig_cnt, cnt_cap);
1841         int i, j;
1842
1843         if (hc->fast) {
1844                 /*
1845                  * Each XMM holds two sparse banks, but do not count halves that
1846                  * have already been consumed for hypercall parameters.
1847                  */
1848                 if (orig_cnt > 2 * HV_HYPERCALL_MAX_XMM_REGISTERS - hc->consumed_xmm_halves)
1849                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1850
1851                 for (i = 0; i < cnt; i++) {
1852                         j = i + hc->consumed_xmm_halves;
1853                         if (j % 2)
1854                                 data[i] = sse128_hi(hc->xmm[j / 2]);
1855                         else
1856                                 data[i] = sse128_lo(hc->xmm[j / 2]);
1857                 }
1858                 return 0;
1859         }
1860
1861         return kvm_read_guest(kvm, hc->ingpa + hc->data_offset, data,
1862                               cnt * sizeof(*data));
1863 }
1864
1865 static u64 kvm_get_sparse_vp_set(struct kvm *kvm, struct kvm_hv_hcall *hc,
1866                                  u64 *sparse_banks)
1867 {
1868         if (hc->var_cnt > HV_MAX_SPARSE_VCPU_BANKS)
1869                 return -EINVAL;
1870
1871         /* Cap var_cnt to ignore banks that cannot contain a legal VP index. */
1872         return kvm_hv_get_hc_data(kvm, hc, hc->var_cnt, KVM_HV_MAX_SPARSE_VCPU_SET_BITS,
1873                                   sparse_banks);
1874 }
1875
1876 static int kvm_hv_get_tlb_flush_entries(struct kvm *kvm, struct kvm_hv_hcall *hc, u64 entries[])
1877 {
1878         return kvm_hv_get_hc_data(kvm, hc, hc->rep_cnt, hc->rep_cnt, entries);
1879 }
1880
1881 static void hv_tlb_flush_enqueue(struct kvm_vcpu *vcpu,
1882                                  struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo,
1883                                  u64 *entries, int count)
1884 {
1885         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1886         u64 flush_all_entry = KVM_HV_TLB_FLUSHALL_ENTRY;
1887
1888         if (!hv_vcpu)
1889                 return;
1890
1891         spin_lock(&tlb_flush_fifo->write_lock);
1892
1893         /*
1894          * All entries should fit on the fifo leaving one free for 'flush all'
1895          * entry in case another request comes in. In case there's not enough
1896          * space, just put 'flush all' entry there.
1897          */
1898         if (count && entries && count < kfifo_avail(&tlb_flush_fifo->entries)) {
1899                 WARN_ON(kfifo_in(&tlb_flush_fifo->entries, entries, count) != count);
1900                 goto out_unlock;
1901         }
1902
1903         /*
1904          * Note: full fifo always contains 'flush all' entry, no need to check the
1905          * return value.
1906          */
1907         kfifo_in(&tlb_flush_fifo->entries, &flush_all_entry, 1);
1908
1909 out_unlock:
1910         spin_unlock(&tlb_flush_fifo->write_lock);
1911 }
1912
1913 int kvm_hv_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
1914 {
1915         struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
1916         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1917         u64 entries[KVM_HV_TLB_FLUSH_FIFO_SIZE];
1918         int i, j, count;
1919         gva_t gva;
1920
1921         if (!tdp_enabled || !hv_vcpu)
1922                 return -EINVAL;
1923
1924         tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(vcpu, is_guest_mode(vcpu));
1925
1926         count = kfifo_out(&tlb_flush_fifo->entries, entries, KVM_HV_TLB_FLUSH_FIFO_SIZE);
1927
1928         for (i = 0; i < count; i++) {
1929                 if (entries[i] == KVM_HV_TLB_FLUSHALL_ENTRY)
1930                         goto out_flush_all;
1931
1932                 /*
1933                  * Lower 12 bits of 'address' encode the number of additional
1934                  * pages to flush.
1935                  */
1936                 gva = entries[i] & PAGE_MASK;
1937                 for (j = 0; j < (entries[i] & ~PAGE_MASK) + 1; j++)
1938                         static_call(kvm_x86_flush_tlb_gva)(vcpu, gva + j * PAGE_SIZE);
1939
1940                 ++vcpu->stat.tlb_flush;
1941         }
1942         return 0;
1943
1944 out_flush_all:
1945         kfifo_reset_out(&tlb_flush_fifo->entries);
1946
1947         /* Fall back to full flush. */
1948         return -ENOSPC;
1949 }
1950
1951 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
1952 {
1953         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1954         u64 *sparse_banks = hv_vcpu->sparse_banks;
1955         struct kvm *kvm = vcpu->kvm;
1956         struct hv_tlb_flush_ex flush_ex;
1957         struct hv_tlb_flush flush;
1958         DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
1959         struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
1960         /*
1961          * Normally, there can be no more than 'KVM_HV_TLB_FLUSH_FIFO_SIZE'
1962          * entries on the TLB flush fifo. The last entry, however, needs to be
1963          * always left free for 'flush all' entry which gets placed when
1964          * there is not enough space to put all the requested entries.
1965          */
1966         u64 __tlb_flush_entries[KVM_HV_TLB_FLUSH_FIFO_SIZE - 1];
1967         u64 *tlb_flush_entries;
1968         u64 valid_bank_mask;
1969         struct kvm_vcpu *v;
1970         unsigned long i;
1971         bool all_cpus;
1972
1973         /*
1974          * The Hyper-V TLFS doesn't allow more than HV_MAX_SPARSE_VCPU_BANKS
1975          * sparse banks. Fail the build if KVM's max allowed number of
1976          * vCPUs (>4096) exceeds this limit.
1977          */
1978         BUILD_BUG_ON(KVM_HV_MAX_SPARSE_VCPU_SET_BITS > HV_MAX_SPARSE_VCPU_BANKS);
1979
1980         /*
1981          * 'Slow' hypercall's first parameter is the address in guest's memory
1982          * where hypercall parameters are placed. This is either a GPA or a
1983          * nested GPA when KVM is handling the call from L2 ('direct' TLB
1984          * flush).  Translate the address here so the memory can be uniformly
1985          * read with kvm_read_guest().
1986          */
1987         if (!hc->fast && is_guest_mode(vcpu)) {
1988                 hc->ingpa = translate_nested_gpa(vcpu, hc->ingpa, 0, NULL);
1989                 if (unlikely(hc->ingpa == INVALID_GPA))
1990                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1991         }
1992
1993         if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST ||
1994             hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE) {
1995                 if (hc->fast) {
1996                         flush.address_space = hc->ingpa;
1997                         flush.flags = hc->outgpa;
1998                         flush.processor_mask = sse128_lo(hc->xmm[0]);
1999                         hc->consumed_xmm_halves = 1;
2000                 } else {
2001                         if (unlikely(kvm_read_guest(kvm, hc->ingpa,
2002                                                     &flush, sizeof(flush))))
2003                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2004                         hc->data_offset = sizeof(flush);
2005                 }
2006
2007                 trace_kvm_hv_flush_tlb(flush.processor_mask,
2008                                        flush.address_space, flush.flags,
2009                                        is_guest_mode(vcpu));
2010
2011                 valid_bank_mask = BIT_ULL(0);
2012                 sparse_banks[0] = flush.processor_mask;
2013
2014                 /*
2015                  * Work around possible WS2012 bug: it sends hypercalls
2016                  * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
2017                  * while also expecting us to flush something and crashing if
2018                  * we don't. Let's treat processor_mask == 0 same as
2019                  * HV_FLUSH_ALL_PROCESSORS.
2020                  */
2021                 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
2022                         flush.processor_mask == 0;
2023         } else {
2024                 if (hc->fast) {
2025                         flush_ex.address_space = hc->ingpa;
2026                         flush_ex.flags = hc->outgpa;
2027                         memcpy(&flush_ex.hv_vp_set,
2028                                &hc->xmm[0], sizeof(hc->xmm[0]));
2029                         hc->consumed_xmm_halves = 2;
2030                 } else {
2031                         if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex,
2032                                                     sizeof(flush_ex))))
2033                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2034                         hc->data_offset = sizeof(flush_ex);
2035                 }
2036
2037                 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
2038                                           flush_ex.hv_vp_set.format,
2039                                           flush_ex.address_space,
2040                                           flush_ex.flags, is_guest_mode(vcpu));
2041
2042                 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
2043                 all_cpus = flush_ex.hv_vp_set.format !=
2044                         HV_GENERIC_SET_SPARSE_4K;
2045
2046                 if (hc->var_cnt != hweight64(valid_bank_mask))
2047                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
2048
2049                 if (!all_cpus) {
2050                         if (!hc->var_cnt)
2051                                 goto ret_success;
2052
2053                         if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
2054                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2055                 }
2056
2057                 /*
2058                  * Hyper-V TLFS doesn't explicitly forbid non-empty sparse vCPU
2059                  * banks (and, thus, non-zero 'var_cnt') for the 'all vCPUs'
2060                  * case (HV_GENERIC_SET_ALL).  Always adjust data_offset and
2061                  * consumed_xmm_halves to make sure TLB flush entries are read
2062                  * from the correct offset.
2063                  */
2064                 if (hc->fast)
2065                         hc->consumed_xmm_halves += hc->var_cnt;
2066                 else
2067                         hc->data_offset += hc->var_cnt * sizeof(sparse_banks[0]);
2068         }
2069
2070         if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE ||
2071             hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX ||
2072             hc->rep_cnt > ARRAY_SIZE(__tlb_flush_entries)) {
2073                 tlb_flush_entries = NULL;
2074         } else {
2075                 if (kvm_hv_get_tlb_flush_entries(kvm, hc, __tlb_flush_entries))
2076                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
2077                 tlb_flush_entries = __tlb_flush_entries;
2078         }
2079
2080         /*
2081          * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
2082          * analyze it here, flush TLB regardless of the specified address space.
2083          */
2084         if (all_cpus && !is_guest_mode(vcpu)) {
2085                 kvm_for_each_vcpu(i, v, kvm) {
2086                         tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
2087                         hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2088                                              tlb_flush_entries, hc->rep_cnt);
2089                 }
2090
2091                 kvm_make_all_cpus_request(kvm, KVM_REQ_HV_TLB_FLUSH);
2092         } else if (!is_guest_mode(vcpu)) {
2093                 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, vcpu_mask);
2094
2095                 for_each_set_bit(i, vcpu_mask, KVM_MAX_VCPUS) {
2096                         v = kvm_get_vcpu(kvm, i);
2097                         if (!v)
2098                                 continue;
2099                         tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
2100                         hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2101                                              tlb_flush_entries, hc->rep_cnt);
2102                 }
2103
2104                 kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
2105         } else {
2106                 struct kvm_vcpu_hv *hv_v;
2107
2108                 bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
2109
2110                 kvm_for_each_vcpu(i, v, kvm) {
2111                         hv_v = to_hv_vcpu(v);
2112
2113                         /*
2114                          * The following check races with nested vCPUs entering/exiting
2115                          * and/or migrating between L1's vCPUs, however the only case when
2116                          * KVM *must* flush the TLB is when the target L2 vCPU keeps
2117                          * running on the same L1 vCPU from the moment of the request until
2118                          * kvm_hv_flush_tlb() returns. TLB is fully flushed in all other
2119                          * cases, e.g. when the target L2 vCPU migrates to a different L1
2120                          * vCPU or when the corresponding L1 vCPU temporary switches to a
2121                          * different L2 vCPU while the request is being processed.
2122                          */
2123                         if (!hv_v || hv_v->nested.vm_id != hv_vcpu->nested.vm_id)
2124                                 continue;
2125
2126                         if (!all_cpus &&
2127                             !hv_is_vp_in_sparse_set(hv_v->nested.vp_id, valid_bank_mask,
2128                                                     sparse_banks))
2129                                 continue;
2130
2131                         __set_bit(i, vcpu_mask);
2132                         tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, true);
2133                         hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2134                                              tlb_flush_entries, hc->rep_cnt);
2135                 }
2136
2137                 kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
2138         }
2139
2140 ret_success:
2141         /* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */
2142         return (u64)HV_STATUS_SUCCESS |
2143                 ((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
2144 }
2145
2146 static void kvm_hv_send_ipi_to_many(struct kvm *kvm, u32 vector,
2147                                     u64 *sparse_banks, u64 valid_bank_mask)
2148 {
2149         struct kvm_lapic_irq irq = {
2150                 .delivery_mode = APIC_DM_FIXED,
2151                 .vector = vector
2152         };
2153         struct kvm_vcpu *vcpu;
2154         unsigned long i;
2155
2156         kvm_for_each_vcpu(i, vcpu, kvm) {
2157                 if (sparse_banks &&
2158                     !hv_is_vp_in_sparse_set(kvm_hv_get_vpindex(vcpu),
2159                                             valid_bank_mask, sparse_banks))
2160                         continue;
2161
2162                 /* We fail only when APIC is disabled */
2163                 kvm_apic_set_irq(vcpu, &irq, NULL);
2164         }
2165 }
2166
2167 static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2168 {
2169         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2170         u64 *sparse_banks = hv_vcpu->sparse_banks;
2171         struct kvm *kvm = vcpu->kvm;
2172         struct hv_send_ipi_ex send_ipi_ex;
2173         struct hv_send_ipi send_ipi;
2174         u64 valid_bank_mask;
2175         u32 vector;
2176         bool all_cpus;
2177
2178         if (hc->code == HVCALL_SEND_IPI) {
2179                 if (!hc->fast) {
2180                         if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi,
2181                                                     sizeof(send_ipi))))
2182                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2183                         sparse_banks[0] = send_ipi.cpu_mask;
2184                         vector = send_ipi.vector;
2185                 } else {
2186                         /* 'reserved' part of hv_send_ipi should be 0 */
2187                         if (unlikely(hc->ingpa >> 32 != 0))
2188                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2189                         sparse_banks[0] = hc->outgpa;
2190                         vector = (u32)hc->ingpa;
2191                 }
2192                 all_cpus = false;
2193                 valid_bank_mask = BIT_ULL(0);
2194
2195                 trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
2196         } else {
2197                 if (!hc->fast) {
2198                         if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex,
2199                                                     sizeof(send_ipi_ex))))
2200                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2201                 } else {
2202                         send_ipi_ex.vector = (u32)hc->ingpa;
2203                         send_ipi_ex.vp_set.format = hc->outgpa;
2204                         send_ipi_ex.vp_set.valid_bank_mask = sse128_lo(hc->xmm[0]);
2205                 }
2206
2207                 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
2208                                          send_ipi_ex.vp_set.format,
2209                                          send_ipi_ex.vp_set.valid_bank_mask);
2210
2211                 vector = send_ipi_ex.vector;
2212                 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
2213                 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
2214
2215                 if (hc->var_cnt != hweight64(valid_bank_mask))
2216                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
2217
2218                 if (all_cpus)
2219                         goto check_and_send_ipi;
2220
2221                 if (!hc->var_cnt)
2222                         goto ret_success;
2223
2224                 if (!hc->fast)
2225                         hc->data_offset = offsetof(struct hv_send_ipi_ex,
2226                                                    vp_set.bank_contents);
2227                 else
2228                         hc->consumed_xmm_halves = 1;
2229
2230                 if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
2231                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
2232         }
2233
2234 check_and_send_ipi:
2235         if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
2236                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2237
2238         if (all_cpus)
2239                 kvm_hv_send_ipi_to_many(kvm, vector, NULL, 0);
2240         else
2241                 kvm_hv_send_ipi_to_many(kvm, vector, sparse_banks, valid_bank_mask);
2242
2243 ret_success:
2244         return HV_STATUS_SUCCESS;
2245 }
2246
2247 void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu, bool hyperv_enabled)
2248 {
2249         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2250         struct kvm_cpuid_entry2 *entry;
2251
2252         vcpu->arch.hyperv_enabled = hyperv_enabled;
2253
2254         if (!hv_vcpu) {
2255                 /*
2256                  * KVM should have already allocated kvm_vcpu_hv if Hyper-V is
2257                  * enabled in CPUID.
2258                  */
2259                 WARN_ON_ONCE(vcpu->arch.hyperv_enabled);
2260                 return;
2261         }
2262
2263         memset(&hv_vcpu->cpuid_cache, 0, sizeof(hv_vcpu->cpuid_cache));
2264
2265         if (!vcpu->arch.hyperv_enabled)
2266                 return;
2267
2268         entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES);
2269         if (entry) {
2270                 hv_vcpu->cpuid_cache.features_eax = entry->eax;
2271                 hv_vcpu->cpuid_cache.features_ebx = entry->ebx;
2272                 hv_vcpu->cpuid_cache.features_edx = entry->edx;
2273         }
2274
2275         entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO);
2276         if (entry) {
2277                 hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax;
2278                 hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx;
2279         }
2280
2281         entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
2282         if (entry)
2283                 hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax;
2284
2285         entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_NESTED_FEATURES);
2286         if (entry) {
2287                 hv_vcpu->cpuid_cache.nested_eax = entry->eax;
2288                 hv_vcpu->cpuid_cache.nested_ebx = entry->ebx;
2289         }
2290 }
2291
2292 int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce)
2293 {
2294         struct kvm_vcpu_hv *hv_vcpu;
2295         int ret = 0;
2296
2297         if (!to_hv_vcpu(vcpu)) {
2298                 if (enforce) {
2299                         ret = kvm_hv_vcpu_init(vcpu);
2300                         if (ret)
2301                                 return ret;
2302                 } else {
2303                         return 0;
2304                 }
2305         }
2306
2307         hv_vcpu = to_hv_vcpu(vcpu);
2308         hv_vcpu->enforce_cpuid = enforce;
2309
2310         return ret;
2311 }
2312
2313 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
2314 {
2315         bool longmode;
2316
2317         longmode = is_64_bit_hypercall(vcpu);
2318         if (longmode)
2319                 kvm_rax_write(vcpu, result);
2320         else {
2321                 kvm_rdx_write(vcpu, result >> 32);
2322                 kvm_rax_write(vcpu, result & 0xffffffff);
2323         }
2324 }
2325
2326 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
2327 {
2328         u32 tlb_lock_count = 0;
2329         int ret;
2330
2331         if (hv_result_success(result) && is_guest_mode(vcpu) &&
2332             kvm_hv_is_tlb_flush_hcall(vcpu) &&
2333             kvm_read_guest(vcpu->kvm, to_hv_vcpu(vcpu)->nested.pa_page_gpa,
2334                            &tlb_lock_count, sizeof(tlb_lock_count)))
2335                 result = HV_STATUS_INVALID_HYPERCALL_INPUT;
2336
2337         trace_kvm_hv_hypercall_done(result);
2338         kvm_hv_hypercall_set_result(vcpu, result);
2339         ++vcpu->stat.hypercalls;
2340
2341         ret = kvm_skip_emulated_instruction(vcpu);
2342
2343         if (tlb_lock_count)
2344                 kvm_x86_ops.nested_ops->hv_inject_synthetic_vmexit_post_tlb_flush(vcpu);
2345
2346         return ret;
2347 }
2348
2349 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
2350 {
2351         return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
2352 }
2353
2354 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2355 {
2356         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
2357         struct eventfd_ctx *eventfd;
2358
2359         if (unlikely(!hc->fast)) {
2360                 int ret;
2361                 gpa_t gpa = hc->ingpa;
2362
2363                 if ((gpa & (__alignof__(hc->ingpa) - 1)) ||
2364                     offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE)
2365                         return HV_STATUS_INVALID_ALIGNMENT;
2366
2367                 ret = kvm_vcpu_read_guest(vcpu, gpa,
2368                                           &hc->ingpa, sizeof(hc->ingpa));
2369                 if (ret < 0)
2370                         return HV_STATUS_INVALID_ALIGNMENT;
2371         }
2372
2373         /*
2374          * Per spec, bits 32-47 contain the extra "flag number".  However, we
2375          * have no use for it, and in all known usecases it is zero, so just
2376          * report lookup failure if it isn't.
2377          */
2378         if (hc->ingpa & 0xffff00000000ULL)
2379                 return HV_STATUS_INVALID_PORT_ID;
2380         /* remaining bits are reserved-zero */
2381         if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK)
2382                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2383
2384         /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
2385         rcu_read_lock();
2386         eventfd = idr_find(&hv->conn_to_evt, hc->ingpa);
2387         rcu_read_unlock();
2388         if (!eventfd)
2389                 return HV_STATUS_INVALID_PORT_ID;
2390
2391         eventfd_signal(eventfd);
2392         return HV_STATUS_SUCCESS;
2393 }
2394
2395 static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc)
2396 {
2397         switch (hc->code) {
2398         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2399         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2400         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2401         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2402         case HVCALL_SEND_IPI_EX:
2403                 return true;
2404         }
2405
2406         return false;
2407 }
2408
2409 static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc)
2410 {
2411         int reg;
2412
2413         kvm_fpu_get();
2414         for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++)
2415                 _kvm_read_sse_reg(reg, &hc->xmm[reg]);
2416         kvm_fpu_put();
2417 }
2418
2419 static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code)
2420 {
2421         if (!hv_vcpu->enforce_cpuid)
2422                 return true;
2423
2424         switch (code) {
2425         case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2426                 return hv_vcpu->cpuid_cache.enlightenments_ebx &&
2427                         hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX;
2428         case HVCALL_POST_MESSAGE:
2429                 return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES;
2430         case HVCALL_SIGNAL_EVENT:
2431                 return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS;
2432         case HVCALL_POST_DEBUG_DATA:
2433         case HVCALL_RETRIEVE_DEBUG_DATA:
2434         case HVCALL_RESET_DEBUG_SESSION:
2435                 /*
2436                  * Return 'true' when SynDBG is disabled so the resulting code
2437                  * will be HV_STATUS_INVALID_HYPERCALL_CODE.
2438                  */
2439                 return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) ||
2440                         hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING;
2441         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2442         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2443                 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2444                       HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2445                         return false;
2446                 fallthrough;
2447         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2448         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2449                 return hv_vcpu->cpuid_cache.enlightenments_eax &
2450                         HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2451         case HVCALL_SEND_IPI_EX:
2452                 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2453                       HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2454                         return false;
2455                 fallthrough;
2456         case HVCALL_SEND_IPI:
2457                 return hv_vcpu->cpuid_cache.enlightenments_eax &
2458                         HV_X64_CLUSTER_IPI_RECOMMENDED;
2459         case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
2460                 return hv_vcpu->cpuid_cache.features_ebx &
2461                         HV_ENABLE_EXTENDED_HYPERCALLS;
2462         default:
2463                 break;
2464         }
2465
2466         return true;
2467 }
2468
2469 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
2470 {
2471         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2472         struct kvm_hv_hcall hc;
2473         u64 ret = HV_STATUS_SUCCESS;
2474
2475         /*
2476          * hypercall generates UD from non zero cpl and real mode
2477          * per HYPER-V spec
2478          */
2479         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
2480                 kvm_queue_exception(vcpu, UD_VECTOR);
2481                 return 1;
2482         }
2483
2484 #ifdef CONFIG_X86_64
2485         if (is_64_bit_hypercall(vcpu)) {
2486                 hc.param = kvm_rcx_read(vcpu);
2487                 hc.ingpa = kvm_rdx_read(vcpu);
2488                 hc.outgpa = kvm_r8_read(vcpu);
2489         } else
2490 #endif
2491         {
2492                 hc.param = ((u64)kvm_rdx_read(vcpu) << 32) |
2493                             (kvm_rax_read(vcpu) & 0xffffffff);
2494                 hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
2495                             (kvm_rcx_read(vcpu) & 0xffffffff);
2496                 hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
2497                              (kvm_rsi_read(vcpu) & 0xffffffff);
2498         }
2499
2500         hc.code = hc.param & 0xffff;
2501         hc.var_cnt = (hc.param & HV_HYPERCALL_VARHEAD_MASK) >> HV_HYPERCALL_VARHEAD_OFFSET;
2502         hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT);
2503         hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
2504         hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
2505         hc.rep = !!(hc.rep_cnt || hc.rep_idx);
2506
2507         trace_kvm_hv_hypercall(hc.code, hc.fast, hc.var_cnt, hc.rep_cnt,
2508                                hc.rep_idx, hc.ingpa, hc.outgpa);
2509
2510         if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) {
2511                 ret = HV_STATUS_ACCESS_DENIED;
2512                 goto hypercall_complete;
2513         }
2514
2515         if (unlikely(hc.param & HV_HYPERCALL_RSVD_MASK)) {
2516                 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2517                 goto hypercall_complete;
2518         }
2519
2520         if (hc.fast && is_xmm_fast_hypercall(&hc)) {
2521                 if (unlikely(hv_vcpu->enforce_cpuid &&
2522                              !(hv_vcpu->cpuid_cache.features_edx &
2523                                HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) {
2524                         kvm_queue_exception(vcpu, UD_VECTOR);
2525                         return 1;
2526                 }
2527
2528                 kvm_hv_hypercall_read_xmm(&hc);
2529         }
2530
2531         switch (hc.code) {
2532         case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2533                 if (unlikely(hc.rep || hc.var_cnt)) {
2534                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2535                         break;
2536                 }
2537                 kvm_vcpu_on_spin(vcpu, true);
2538                 break;
2539         case HVCALL_SIGNAL_EVENT:
2540                 if (unlikely(hc.rep || hc.var_cnt)) {
2541                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2542                         break;
2543                 }
2544                 ret = kvm_hvcall_signal_event(vcpu, &hc);
2545                 if (ret != HV_STATUS_INVALID_PORT_ID)
2546                         break;
2547                 fallthrough;    /* maybe userspace knows this conn_id */
2548         case HVCALL_POST_MESSAGE:
2549                 /* don't bother userspace if it has no way to handle it */
2550                 if (unlikely(hc.rep || hc.var_cnt || !to_hv_synic(vcpu)->active)) {
2551                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2552                         break;
2553                 }
2554                 goto hypercall_userspace_exit;
2555         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2556                 if (unlikely(hc.var_cnt)) {
2557                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2558                         break;
2559                 }
2560                 fallthrough;
2561         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2562                 if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
2563                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2564                         break;
2565                 }
2566                 ret = kvm_hv_flush_tlb(vcpu, &hc);
2567                 break;
2568         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2569                 if (unlikely(hc.var_cnt)) {
2570                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2571                         break;
2572                 }
2573                 fallthrough;
2574         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2575                 if (unlikely(hc.rep)) {
2576                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2577                         break;
2578                 }
2579                 ret = kvm_hv_flush_tlb(vcpu, &hc);
2580                 break;
2581         case HVCALL_SEND_IPI:
2582                 if (unlikely(hc.var_cnt)) {
2583                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2584                         break;
2585                 }
2586                 fallthrough;
2587         case HVCALL_SEND_IPI_EX:
2588                 if (unlikely(hc.rep)) {
2589                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2590                         break;
2591                 }
2592                 ret = kvm_hv_send_ipi(vcpu, &hc);
2593                 break;
2594         case HVCALL_POST_DEBUG_DATA:
2595         case HVCALL_RETRIEVE_DEBUG_DATA:
2596                 if (unlikely(hc.fast)) {
2597                         ret = HV_STATUS_INVALID_PARAMETER;
2598                         break;
2599                 }
2600                 fallthrough;
2601         case HVCALL_RESET_DEBUG_SESSION: {
2602                 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
2603
2604                 if (!kvm_hv_is_syndbg_enabled(vcpu)) {
2605                         ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2606                         break;
2607                 }
2608
2609                 if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
2610                         ret = HV_STATUS_OPERATION_DENIED;
2611                         break;
2612                 }
2613                 goto hypercall_userspace_exit;
2614         }
2615         case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
2616                 if (unlikely(hc.fast)) {
2617                         ret = HV_STATUS_INVALID_PARAMETER;
2618                         break;
2619                 }
2620                 goto hypercall_userspace_exit;
2621         default:
2622                 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2623                 break;
2624         }
2625
2626 hypercall_complete:
2627         return kvm_hv_hypercall_complete(vcpu, ret);
2628
2629 hypercall_userspace_exit:
2630         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
2631         vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2632         vcpu->run->hyperv.u.hcall.input = hc.param;
2633         vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
2634         vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
2635         vcpu->arch.complete_userspace_io = kvm_hv_hypercall_complete_userspace;
2636         return 0;
2637 }
2638
2639 void kvm_hv_init_vm(struct kvm *kvm)
2640 {
2641         struct kvm_hv *hv = to_kvm_hv(kvm);
2642
2643         mutex_init(&hv->hv_lock);
2644         idr_init(&hv->conn_to_evt);
2645 }
2646
2647 void kvm_hv_destroy_vm(struct kvm *kvm)
2648 {
2649         struct kvm_hv *hv = to_kvm_hv(kvm);
2650         struct eventfd_ctx *eventfd;
2651         int i;
2652
2653         idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
2654                 eventfd_ctx_put(eventfd);
2655         idr_destroy(&hv->conn_to_evt);
2656 }
2657
2658 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
2659 {
2660         struct kvm_hv *hv = to_kvm_hv(kvm);
2661         struct eventfd_ctx *eventfd;
2662         int ret;
2663
2664         eventfd = eventfd_ctx_fdget(fd);
2665         if (IS_ERR(eventfd))
2666                 return PTR_ERR(eventfd);
2667
2668         mutex_lock(&hv->hv_lock);
2669         ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
2670                         GFP_KERNEL_ACCOUNT);
2671         mutex_unlock(&hv->hv_lock);
2672
2673         if (ret >= 0)
2674                 return 0;
2675
2676         if (ret == -ENOSPC)
2677                 ret = -EEXIST;
2678         eventfd_ctx_put(eventfd);
2679         return ret;
2680 }
2681
2682 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
2683 {
2684         struct kvm_hv *hv = to_kvm_hv(kvm);
2685         struct eventfd_ctx *eventfd;
2686
2687         mutex_lock(&hv->hv_lock);
2688         eventfd = idr_remove(&hv->conn_to_evt, conn_id);
2689         mutex_unlock(&hv->hv_lock);
2690
2691         if (!eventfd)
2692                 return -ENOENT;
2693
2694         synchronize_srcu(&kvm->srcu);
2695         eventfd_ctx_put(eventfd);
2696         return 0;
2697 }
2698
2699 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
2700 {
2701         if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
2702             (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
2703                 return -EINVAL;
2704
2705         if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
2706                 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
2707         return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
2708 }
2709
2710 int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
2711                      struct kvm_cpuid_entry2 __user *entries)
2712 {
2713         uint16_t evmcs_ver = 0;
2714         struct kvm_cpuid_entry2 cpuid_entries[] = {
2715                 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
2716                 { .function = HYPERV_CPUID_INTERFACE },
2717                 { .function = HYPERV_CPUID_VERSION },
2718                 { .function = HYPERV_CPUID_FEATURES },
2719                 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
2720                 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
2721                 { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
2722                 { .function = HYPERV_CPUID_SYNDBG_INTERFACE },
2723                 { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES },
2724                 { .function = HYPERV_CPUID_NESTED_FEATURES },
2725         };
2726         int i, nent = ARRAY_SIZE(cpuid_entries);
2727
2728         if (kvm_x86_ops.nested_ops->get_evmcs_version)
2729                 evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
2730
2731         if (cpuid->nent < nent)
2732                 return -E2BIG;
2733
2734         if (cpuid->nent > nent)
2735                 cpuid->nent = nent;
2736
2737         for (i = 0; i < nent; i++) {
2738                 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
2739                 u32 signature[3];
2740
2741                 switch (ent->function) {
2742                 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
2743                         memcpy(signature, "Linux KVM Hv", 12);
2744
2745                         ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
2746                         ent->ebx = signature[0];
2747                         ent->ecx = signature[1];
2748                         ent->edx = signature[2];
2749                         break;
2750
2751                 case HYPERV_CPUID_INTERFACE:
2752                         ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
2753                         break;
2754
2755                 case HYPERV_CPUID_VERSION:
2756                         /*
2757                          * We implement some Hyper-V 2016 functions so let's use
2758                          * this version.
2759                          */
2760                         ent->eax = 0x00003839;
2761                         ent->ebx = 0x000A0000;
2762                         break;
2763
2764                 case HYPERV_CPUID_FEATURES:
2765                         ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
2766                         ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
2767                         ent->eax |= HV_MSR_SYNIC_AVAILABLE;
2768                         ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
2769                         ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
2770                         ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
2771                         ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
2772                         ent->eax |= HV_MSR_RESET_AVAILABLE;
2773                         ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
2774                         ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
2775                         ent->eax |= HV_ACCESS_REENLIGHTENMENT;
2776                         ent->eax |= HV_ACCESS_TSC_INVARIANT;
2777
2778                         ent->ebx |= HV_POST_MESSAGES;
2779                         ent->ebx |= HV_SIGNAL_EVENTS;
2780                         ent->ebx |= HV_ENABLE_EXTENDED_HYPERCALLS;
2781
2782                         ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE;
2783                         ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
2784                         ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
2785
2786                         ent->ebx |= HV_DEBUGGING;
2787                         ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
2788                         ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
2789                         ent->edx |= HV_FEATURE_EXT_GVA_RANGES_FLUSH;
2790
2791                         /*
2792                          * Direct Synthetic timers only make sense with in-kernel
2793                          * LAPIC
2794                          */
2795                         if (!vcpu || lapic_in_kernel(vcpu))
2796                                 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2797
2798                         break;
2799
2800                 case HYPERV_CPUID_ENLIGHTMENT_INFO:
2801                         ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2802                         ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
2803                         ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
2804                         ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
2805                         ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
2806                         if (evmcs_ver)
2807                                 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
2808                         if (!cpu_smt_possible())
2809                                 ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
2810
2811                         ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED;
2812                         /*
2813                          * Default number of spinlock retry attempts, matches
2814                          * HyperV 2016.
2815                          */
2816                         ent->ebx = 0x00000FFF;
2817
2818                         break;
2819
2820                 case HYPERV_CPUID_IMPLEMENT_LIMITS:
2821                         /* Maximum number of virtual processors */
2822                         ent->eax = KVM_MAX_VCPUS;
2823                         /*
2824                          * Maximum number of logical processors, matches
2825                          * HyperV 2016.
2826                          */
2827                         ent->ebx = 64;
2828
2829                         break;
2830
2831                 case HYPERV_CPUID_NESTED_FEATURES:
2832                         ent->eax = evmcs_ver;
2833                         ent->eax |= HV_X64_NESTED_DIRECT_FLUSH;
2834                         ent->eax |= HV_X64_NESTED_MSR_BITMAP;
2835                         ent->ebx |= HV_X64_NESTED_EVMCS1_PERF_GLOBAL_CTRL;
2836                         break;
2837
2838                 case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
2839                         memcpy(signature, "Linux KVM Hv", 12);
2840
2841                         ent->eax = 0;
2842                         ent->ebx = signature[0];
2843                         ent->ecx = signature[1];
2844                         ent->edx = signature[2];
2845                         break;
2846
2847                 case HYPERV_CPUID_SYNDBG_INTERFACE:
2848                         memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
2849                         ent->eax = signature[0];
2850                         break;
2851
2852                 case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
2853                         ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
2854                         break;
2855
2856                 default:
2857                         break;
2858                 }
2859         }
2860
2861         if (copy_to_user(entries, cpuid_entries,
2862                          nent * sizeof(struct kvm_cpuid_entry2)))
2863                 return -EFAULT;
2864
2865         return 0;
2866 }