Merge tag 'for-linus-4.11-ofs2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / arch / x86 / kvm / cpuid.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14
15 #include <linux/kvm_host.h>
16 #include <linux/export.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/processor.h>
20 #include <asm/user.h>
21 #include <asm/fpu/xstate.h>
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "mmu.h"
25 #include "trace.h"
26 #include "pmu.h"
27
28 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
29 {
30         int feature_bit = 0;
31         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
32
33         xstate_bv &= XFEATURE_MASK_EXTEND;
34         while (xstate_bv) {
35                 if (xstate_bv & 0x1) {
36                         u32 eax, ebx, ecx, edx, offset;
37                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
38                         offset = compacted ? ret : ebx;
39                         ret = max(ret, offset + eax);
40                 }
41
42                 xstate_bv >>= 1;
43                 feature_bit++;
44         }
45
46         return ret;
47 }
48
49 bool kvm_mpx_supported(void)
50 {
51         return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
52                  && kvm_x86_ops->mpx_supported());
53 }
54 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
55
56 u64 kvm_supported_xcr0(void)
57 {
58         u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
59
60         if (!kvm_mpx_supported())
61                 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
62
63         return xcr0;
64 }
65
66 #define F(x) bit(X86_FEATURE_##x)
67
68 /* These are scattered features in cpufeatures.h. */
69 #define KVM_CPUID_BIT_AVX512_4VNNIW     2
70 #define KVM_CPUID_BIT_AVX512_4FMAPS     3
71 #define KF(x) bit(KVM_CPUID_BIT_##x)
72
73 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
74 {
75         struct kvm_cpuid_entry2 *best;
76         struct kvm_lapic *apic = vcpu->arch.apic;
77
78         best = kvm_find_cpuid_entry(vcpu, 1, 0);
79         if (!best)
80                 return 0;
81
82         /* Update OSXSAVE bit */
83         if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
84                 best->ecx &= ~F(OSXSAVE);
85                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
86                         best->ecx |= F(OSXSAVE);
87         }
88
89         best->edx &= ~F(APIC);
90         if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
91                 best->edx |= F(APIC);
92
93         if (apic) {
94                 if (best->ecx & F(TSC_DEADLINE_TIMER))
95                         apic->lapic_timer.timer_mode_mask = 3 << 17;
96                 else
97                         apic->lapic_timer.timer_mode_mask = 1 << 17;
98         }
99
100         best = kvm_find_cpuid_entry(vcpu, 7, 0);
101         if (best) {
102                 /* Update OSPKE bit */
103                 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
104                         best->ecx &= ~F(OSPKE);
105                         if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
106                                 best->ecx |= F(OSPKE);
107                 }
108         }
109
110         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
111         if (!best) {
112                 vcpu->arch.guest_supported_xcr0 = 0;
113                 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
114         } else {
115                 vcpu->arch.guest_supported_xcr0 =
116                         (best->eax | ((u64)best->edx << 32)) &
117                         kvm_supported_xcr0();
118                 vcpu->arch.guest_xstate_size = best->ebx =
119                         xstate_required_size(vcpu->arch.xcr0, false);
120         }
121
122         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
123         if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
124                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
125
126         /*
127          * The existing code assumes virtual address is 48-bit in the canonical
128          * address checks; exit if it is ever changed.
129          */
130         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
131         if (best && ((best->eax & 0xff00) >> 8) != 48 &&
132                 ((best->eax & 0xff00) >> 8) != 0)
133                 return -EINVAL;
134
135         /* Update physical-address width */
136         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
137
138         kvm_pmu_refresh(vcpu);
139         return 0;
140 }
141
142 static int is_efer_nx(void)
143 {
144         unsigned long long efer = 0;
145
146         rdmsrl_safe(MSR_EFER, &efer);
147         return efer & EFER_NX;
148 }
149
150 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
151 {
152         int i;
153         struct kvm_cpuid_entry2 *e, *entry;
154
155         entry = NULL;
156         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
157                 e = &vcpu->arch.cpuid_entries[i];
158                 if (e->function == 0x80000001) {
159                         entry = e;
160                         break;
161                 }
162         }
163         if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
164                 entry->edx &= ~F(NX);
165                 printk(KERN_INFO "kvm: guest NX capability removed\n");
166         }
167 }
168
169 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
170 {
171         struct kvm_cpuid_entry2 *best;
172
173         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
174         if (!best || best->eax < 0x80000008)
175                 goto not_found;
176         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
177         if (best)
178                 return best->eax & 0xff;
179 not_found:
180         return 36;
181 }
182 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
183
184 /* when an old userspace process fills a new kernel module */
185 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
186                              struct kvm_cpuid *cpuid,
187                              struct kvm_cpuid_entry __user *entries)
188 {
189         int r, i;
190         struct kvm_cpuid_entry *cpuid_entries = NULL;
191
192         r = -E2BIG;
193         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
194                 goto out;
195         r = -ENOMEM;
196         if (cpuid->nent) {
197                 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
198                                         cpuid->nent);
199                 if (!cpuid_entries)
200                         goto out;
201                 r = -EFAULT;
202                 if (copy_from_user(cpuid_entries, entries,
203                                    cpuid->nent * sizeof(struct kvm_cpuid_entry)))
204                         goto out;
205         }
206         for (i = 0; i < cpuid->nent; i++) {
207                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
208                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
209                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
210                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
211                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
212                 vcpu->arch.cpuid_entries[i].index = 0;
213                 vcpu->arch.cpuid_entries[i].flags = 0;
214                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
215                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
216                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
217         }
218         vcpu->arch.cpuid_nent = cpuid->nent;
219         cpuid_fix_nx_cap(vcpu);
220         kvm_apic_set_version(vcpu);
221         kvm_x86_ops->cpuid_update(vcpu);
222         r = kvm_update_cpuid(vcpu);
223
224 out:
225         vfree(cpuid_entries);
226         return r;
227 }
228
229 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
230                               struct kvm_cpuid2 *cpuid,
231                               struct kvm_cpuid_entry2 __user *entries)
232 {
233         int r;
234
235         r = -E2BIG;
236         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
237                 goto out;
238         r = -EFAULT;
239         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
240                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
241                 goto out;
242         vcpu->arch.cpuid_nent = cpuid->nent;
243         kvm_apic_set_version(vcpu);
244         kvm_x86_ops->cpuid_update(vcpu);
245         r = kvm_update_cpuid(vcpu);
246 out:
247         return r;
248 }
249
250 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
251                               struct kvm_cpuid2 *cpuid,
252                               struct kvm_cpuid_entry2 __user *entries)
253 {
254         int r;
255
256         r = -E2BIG;
257         if (cpuid->nent < vcpu->arch.cpuid_nent)
258                 goto out;
259         r = -EFAULT;
260         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
261                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
262                 goto out;
263         return 0;
264
265 out:
266         cpuid->nent = vcpu->arch.cpuid_nent;
267         return r;
268 }
269
270 static void cpuid_mask(u32 *word, int wordnum)
271 {
272         *word &= boot_cpu_data.x86_capability[wordnum];
273 }
274
275 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
276                            u32 index)
277 {
278         entry->function = function;
279         entry->index = index;
280         cpuid_count(entry->function, entry->index,
281                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
282         entry->flags = 0;
283 }
284
285 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
286                                    u32 func, u32 index, int *nent, int maxnent)
287 {
288         switch (func) {
289         case 0:
290                 entry->eax = 1;         /* only one leaf currently */
291                 ++*nent;
292                 break;
293         case 1:
294                 entry->ecx = F(MOVBE);
295                 ++*nent;
296                 break;
297         default:
298                 break;
299         }
300
301         entry->function = func;
302         entry->index = index;
303
304         return 0;
305 }
306
307 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
308                                  u32 index, int *nent, int maxnent)
309 {
310         int r;
311         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
312 #ifdef CONFIG_X86_64
313         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
314                                 ? F(GBPAGES) : 0;
315         unsigned f_lm = F(LM);
316 #else
317         unsigned f_gbpages = 0;
318         unsigned f_lm = 0;
319 #endif
320         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
321         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
322         unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
323         unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
324
325         /* cpuid 1.edx */
326         const u32 kvm_cpuid_1_edx_x86_features =
327                 F(FPU) | F(VME) | F(DE) | F(PSE) |
328                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
329                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
330                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
331                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
332                 0 /* Reserved, DS, ACPI */ | F(MMX) |
333                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
334                 0 /* HTT, TM, Reserved, PBE */;
335         /* cpuid 0x80000001.edx */
336         const u32 kvm_cpuid_8000_0001_edx_x86_features =
337                 F(FPU) | F(VME) | F(DE) | F(PSE) |
338                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
339                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
340                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
341                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
342                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
343                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
344                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
345         /* cpuid 1.ecx */
346         const u32 kvm_cpuid_1_ecx_x86_features =
347                 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
348                  * but *not* advertised to guests via CPUID ! */
349                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
350                 0 /* DS-CPL, VMX, SMX, EST */ |
351                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
352                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
353                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
354                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
355                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
356                 F(F16C) | F(RDRAND);
357         /* cpuid 0x80000001.ecx */
358         const u32 kvm_cpuid_8000_0001_ecx_x86_features =
359                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
360                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
361                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
362                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
363
364         /* cpuid 0xC0000001.edx */
365         const u32 kvm_cpuid_C000_0001_edx_x86_features =
366                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
367                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
368                 F(PMM) | F(PMM_EN);
369
370         /* cpuid 7.0.ebx */
371         const u32 kvm_cpuid_7_0_ebx_x86_features =
372                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
373                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
374                 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
375                 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
376                 F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
377
378         /* cpuid 0xD.1.eax */
379         const u32 kvm_cpuid_D_1_eax_x86_features =
380                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
381
382         /* cpuid 7.0.ecx*/
383         const u32 kvm_cpuid_7_0_ecx_x86_features =
384                 F(AVX512VBMI) | F(PKU) | 0 /*OSPKE*/ | F(AVX512_VPOPCNTDQ);
385
386         /* cpuid 7.0.edx*/
387         const u32 kvm_cpuid_7_0_edx_x86_features =
388                 KF(AVX512_4VNNIW) | KF(AVX512_4FMAPS);
389
390         /* all calls to cpuid_count() should be made on the same cpu */
391         get_cpu();
392
393         r = -E2BIG;
394
395         if (*nent >= maxnent)
396                 goto out;
397
398         do_cpuid_1_ent(entry, function, index);
399         ++*nent;
400
401         switch (function) {
402         case 0:
403                 entry->eax = min(entry->eax, (u32)0xd);
404                 break;
405         case 1:
406                 entry->edx &= kvm_cpuid_1_edx_x86_features;
407                 cpuid_mask(&entry->edx, CPUID_1_EDX);
408                 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
409                 cpuid_mask(&entry->ecx, CPUID_1_ECX);
410                 /* we support x2apic emulation even if host does not support
411                  * it since we emulate x2apic in software */
412                 entry->ecx |= F(X2APIC);
413                 break;
414         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
415          * may return different values. This forces us to get_cpu() before
416          * issuing the first command, and also to emulate this annoying behavior
417          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
418         case 2: {
419                 int t, times = entry->eax & 0xff;
420
421                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
422                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
423                 for (t = 1; t < times; ++t) {
424                         if (*nent >= maxnent)
425                                 goto out;
426
427                         do_cpuid_1_ent(&entry[t], function, 0);
428                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
429                         ++*nent;
430                 }
431                 break;
432         }
433         /* function 4 has additional index. */
434         case 4: {
435                 int i, cache_type;
436
437                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
438                 /* read more entries until cache_type is zero */
439                 for (i = 1; ; ++i) {
440                         if (*nent >= maxnent)
441                                 goto out;
442
443                         cache_type = entry[i - 1].eax & 0x1f;
444                         if (!cache_type)
445                                 break;
446                         do_cpuid_1_ent(&entry[i], function, i);
447                         entry[i].flags |=
448                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
449                         ++*nent;
450                 }
451                 break;
452         }
453         case 6: /* Thermal management */
454                 entry->eax = 0x4; /* allow ARAT */
455                 entry->ebx = 0;
456                 entry->ecx = 0;
457                 entry->edx = 0;
458                 break;
459         case 7: {
460                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
461                 /* Mask ebx against host capability word 9 */
462                 if (index == 0) {
463                         entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
464                         cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
465                         // TSC_ADJUST is emulated
466                         entry->ebx |= F(TSC_ADJUST);
467                         entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
468                         cpuid_mask(&entry->ecx, CPUID_7_ECX);
469                         /* PKU is not yet implemented for shadow paging. */
470                         if (!tdp_enabled)
471                                 entry->ecx &= ~F(PKU);
472                         entry->edx &= kvm_cpuid_7_0_edx_x86_features;
473                         entry->edx &= get_scattered_cpuid_leaf(7, 0, CPUID_EDX);
474                 } else {
475                         entry->ebx = 0;
476                         entry->ecx = 0;
477                         entry->edx = 0;
478                 }
479                 entry->eax = 0;
480                 break;
481         }
482         case 9:
483                 break;
484         case 0xa: { /* Architectural Performance Monitoring */
485                 struct x86_pmu_capability cap;
486                 union cpuid10_eax eax;
487                 union cpuid10_edx edx;
488
489                 perf_get_x86_pmu_capability(&cap);
490
491                 /*
492                  * Only support guest architectural pmu on a host
493                  * with architectural pmu.
494                  */
495                 if (!cap.version)
496                         memset(&cap, 0, sizeof(cap));
497
498                 eax.split.version_id = min(cap.version, 2);
499                 eax.split.num_counters = cap.num_counters_gp;
500                 eax.split.bit_width = cap.bit_width_gp;
501                 eax.split.mask_length = cap.events_mask_len;
502
503                 edx.split.num_counters_fixed = cap.num_counters_fixed;
504                 edx.split.bit_width_fixed = cap.bit_width_fixed;
505                 edx.split.reserved = 0;
506
507                 entry->eax = eax.full;
508                 entry->ebx = cap.events_mask;
509                 entry->ecx = 0;
510                 entry->edx = edx.full;
511                 break;
512         }
513         /* function 0xb has additional index. */
514         case 0xb: {
515                 int i, level_type;
516
517                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
518                 /* read more entries until level_type is zero */
519                 for (i = 1; ; ++i) {
520                         if (*nent >= maxnent)
521                                 goto out;
522
523                         level_type = entry[i - 1].ecx & 0xff00;
524                         if (!level_type)
525                                 break;
526                         do_cpuid_1_ent(&entry[i], function, i);
527                         entry[i].flags |=
528                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
529                         ++*nent;
530                 }
531                 break;
532         }
533         case 0xd: {
534                 int idx, i;
535                 u64 supported = kvm_supported_xcr0();
536
537                 entry->eax &= supported;
538                 entry->ebx = xstate_required_size(supported, false);
539                 entry->ecx = entry->ebx;
540                 entry->edx &= supported >> 32;
541                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
542                 if (!supported)
543                         break;
544
545                 for (idx = 1, i = 1; idx < 64; ++idx) {
546                         u64 mask = ((u64)1 << idx);
547                         if (*nent >= maxnent)
548                                 goto out;
549
550                         do_cpuid_1_ent(&entry[i], function, idx);
551                         if (idx == 1) {
552                                 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
553                                 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
554                                 entry[i].ebx = 0;
555                                 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
556                                         entry[i].ebx =
557                                                 xstate_required_size(supported,
558                                                                      true);
559                         } else {
560                                 if (entry[i].eax == 0 || !(supported & mask))
561                                         continue;
562                                 if (WARN_ON_ONCE(entry[i].ecx & 1))
563                                         continue;
564                         }
565                         entry[i].ecx = 0;
566                         entry[i].edx = 0;
567                         entry[i].flags |=
568                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
569                         ++*nent;
570                         ++i;
571                 }
572                 break;
573         }
574         case KVM_CPUID_SIGNATURE: {
575                 static const char signature[12] = "KVMKVMKVM\0\0";
576                 const u32 *sigptr = (const u32 *)signature;
577                 entry->eax = KVM_CPUID_FEATURES;
578                 entry->ebx = sigptr[0];
579                 entry->ecx = sigptr[1];
580                 entry->edx = sigptr[2];
581                 break;
582         }
583         case KVM_CPUID_FEATURES:
584                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
585                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
586                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
587                              (1 << KVM_FEATURE_ASYNC_PF) |
588                              (1 << KVM_FEATURE_PV_EOI) |
589                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
590                              (1 << KVM_FEATURE_PV_UNHALT);
591
592                 if (sched_info_on())
593                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
594
595                 entry->ebx = 0;
596                 entry->ecx = 0;
597                 entry->edx = 0;
598                 break;
599         case 0x80000000:
600                 entry->eax = min(entry->eax, 0x8000001a);
601                 break;
602         case 0x80000001:
603                 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
604                 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
605                 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
606                 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
607                 break;
608         case 0x80000007: /* Advanced power management */
609                 /* invariant TSC is CPUID.80000007H:EDX[8] */
610                 entry->edx &= (1 << 8);
611                 /* mask against host */
612                 entry->edx &= boot_cpu_data.x86_power;
613                 entry->eax = entry->ebx = entry->ecx = 0;
614                 break;
615         case 0x80000008: {
616                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
617                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
618                 unsigned phys_as = entry->eax & 0xff;
619
620                 if (!g_phys_as)
621                         g_phys_as = phys_as;
622                 entry->eax = g_phys_as | (virt_as << 8);
623                 entry->ebx = entry->edx = 0;
624                 break;
625         }
626         case 0x80000019:
627                 entry->ecx = entry->edx = 0;
628                 break;
629         case 0x8000001a:
630                 break;
631         case 0x8000001d:
632                 break;
633         /*Add support for Centaur's CPUID instruction*/
634         case 0xC0000000:
635                 /*Just support up to 0xC0000004 now*/
636                 entry->eax = min(entry->eax, 0xC0000004);
637                 break;
638         case 0xC0000001:
639                 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
640                 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
641                 break;
642         case 3: /* Processor serial number */
643         case 5: /* MONITOR/MWAIT */
644         case 0xC0000002:
645         case 0xC0000003:
646         case 0xC0000004:
647         default:
648                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
649                 break;
650         }
651
652         kvm_x86_ops->set_supported_cpuid(function, entry);
653
654         r = 0;
655
656 out:
657         put_cpu();
658
659         return r;
660 }
661
662 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
663                         u32 idx, int *nent, int maxnent, unsigned int type)
664 {
665         if (type == KVM_GET_EMULATED_CPUID)
666                 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
667
668         return __do_cpuid_ent(entry, func, idx, nent, maxnent);
669 }
670
671 #undef F
672
673 struct kvm_cpuid_param {
674         u32 func;
675         u32 idx;
676         bool has_leaf_count;
677         bool (*qualifier)(const struct kvm_cpuid_param *param);
678 };
679
680 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
681 {
682         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
683 }
684
685 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
686                                  __u32 num_entries, unsigned int ioctl_type)
687 {
688         int i;
689         __u32 pad[3];
690
691         if (ioctl_type != KVM_GET_EMULATED_CPUID)
692                 return false;
693
694         /*
695          * We want to make sure that ->padding is being passed clean from
696          * userspace in case we want to use it for something in the future.
697          *
698          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
699          * have to give ourselves satisfied only with the emulated side. /me
700          * sheds a tear.
701          */
702         for (i = 0; i < num_entries; i++) {
703                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
704                         return true;
705
706                 if (pad[0] || pad[1] || pad[2])
707                         return true;
708         }
709         return false;
710 }
711
712 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
713                             struct kvm_cpuid_entry2 __user *entries,
714                             unsigned int type)
715 {
716         struct kvm_cpuid_entry2 *cpuid_entries;
717         int limit, nent = 0, r = -E2BIG, i;
718         u32 func;
719         static const struct kvm_cpuid_param param[] = {
720                 { .func = 0, .has_leaf_count = true },
721                 { .func = 0x80000000, .has_leaf_count = true },
722                 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
723                 { .func = KVM_CPUID_SIGNATURE },
724                 { .func = KVM_CPUID_FEATURES },
725         };
726
727         if (cpuid->nent < 1)
728                 goto out;
729         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
730                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
731
732         if (sanity_check_entries(entries, cpuid->nent, type))
733                 return -EINVAL;
734
735         r = -ENOMEM;
736         cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
737         if (!cpuid_entries)
738                 goto out;
739
740         r = 0;
741         for (i = 0; i < ARRAY_SIZE(param); i++) {
742                 const struct kvm_cpuid_param *ent = &param[i];
743
744                 if (ent->qualifier && !ent->qualifier(ent))
745                         continue;
746
747                 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
748                                 &nent, cpuid->nent, type);
749
750                 if (r)
751                         goto out_free;
752
753                 if (!ent->has_leaf_count)
754                         continue;
755
756                 limit = cpuid_entries[nent - 1].eax;
757                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
758                         r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
759                                      &nent, cpuid->nent, type);
760
761                 if (r)
762                         goto out_free;
763         }
764
765         r = -EFAULT;
766         if (copy_to_user(entries, cpuid_entries,
767                          nent * sizeof(struct kvm_cpuid_entry2)))
768                 goto out_free;
769         cpuid->nent = nent;
770         r = 0;
771
772 out_free:
773         vfree(cpuid_entries);
774 out:
775         return r;
776 }
777
778 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
779 {
780         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
781         int j, nent = vcpu->arch.cpuid_nent;
782
783         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
784         /* when no next entry is found, the current entry[i] is reselected */
785         for (j = i + 1; ; j = (j + 1) % nent) {
786                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
787                 if (ej->function == e->function) {
788                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
789                         return j;
790                 }
791         }
792         return 0; /* silence gcc, even though control never reaches here */
793 }
794
795 /* find an entry with matching function, matching index (if needed), and that
796  * should be read next (if it's stateful) */
797 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
798         u32 function, u32 index)
799 {
800         if (e->function != function)
801                 return 0;
802         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
803                 return 0;
804         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
805             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
806                 return 0;
807         return 1;
808 }
809
810 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
811                                               u32 function, u32 index)
812 {
813         int i;
814         struct kvm_cpuid_entry2 *best = NULL;
815
816         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
817                 struct kvm_cpuid_entry2 *e;
818
819                 e = &vcpu->arch.cpuid_entries[i];
820                 if (is_matching_cpuid_entry(e, function, index)) {
821                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
822                                 move_to_next_stateful_cpuid_entry(vcpu, i);
823                         best = e;
824                         break;
825                 }
826         }
827         return best;
828 }
829 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
830
831 /*
832  * If no match is found, check whether we exceed the vCPU's limit
833  * and return the content of the highest valid _standard_ leaf instead.
834  * This is to satisfy the CPUID specification.
835  */
836 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
837                                                   u32 function, u32 index)
838 {
839         struct kvm_cpuid_entry2 *maxlevel;
840
841         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
842         if (!maxlevel || maxlevel->eax >= function)
843                 return NULL;
844         if (function & 0x80000000) {
845                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
846                 if (!maxlevel)
847                         return NULL;
848         }
849         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
850 }
851
852 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
853 {
854         u32 function = *eax, index = *ecx;
855         struct kvm_cpuid_entry2 *best;
856
857         best = kvm_find_cpuid_entry(vcpu, function, index);
858
859         if (!best)
860                 best = check_cpuid_limit(vcpu, function, index);
861
862         if (best) {
863                 *eax = best->eax;
864                 *ebx = best->ebx;
865                 *ecx = best->ecx;
866                 *edx = best->edx;
867         } else
868                 *eax = *ebx = *ecx = *edx = 0;
869         trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
870 }
871 EXPORT_SYMBOL_GPL(kvm_cpuid);
872
873 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
874 {
875         u32 eax, ebx, ecx, edx;
876
877         eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
878         ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
879         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
880         kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
881         kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
882         kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
883         kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
884         return kvm_skip_emulated_instruction(vcpu);
885 }
886 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);