Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-block.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kvm_host.h>
14 #include "linux/lockdep.h"
15 #include <linux/export.h>
16 #include <linux/vmalloc.h>
17 #include <linux/uaccess.h>
18 #include <linux/sched/stat.h>
19
20 #include <asm/processor.h>
21 #include <asm/user.h>
22 #include <asm/fpu/xstate.h>
23 #include <asm/sgx.h>
24 #include <asm/cpuid.h>
25 #include "cpuid.h"
26 #include "lapic.h"
27 #include "mmu.h"
28 #include "trace.h"
29 #include "pmu.h"
30 #include "xen.h"
31
32 /*
33  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
35  */
36 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
38
39 u32 xstate_required_size(u64 xstate_bv, bool compacted)
40 {
41         int feature_bit = 0;
42         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
43
44         xstate_bv &= XFEATURE_MASK_EXTEND;
45         while (xstate_bv) {
46                 if (xstate_bv & 0x1) {
47                         u32 eax, ebx, ecx, edx, offset;
48                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
49                         /* ECX[1]: 64B alignment in compacted form */
50                         if (compacted)
51                                 offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
52                         else
53                                 offset = ebx;
54                         ret = max(ret, offset + eax);
55                 }
56
57                 xstate_bv >>= 1;
58                 feature_bit++;
59         }
60
61         return ret;
62 }
63
64 #define F feature_bit
65
66 /* Scattered Flag - For features that are scattered by cpufeatures.h. */
67 #define SF(name)                                                \
68 ({                                                              \
69         BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);   \
70         (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);       \
71 })
72
73 /*
74  * Magic value used by KVM when querying userspace-provided CPUID entries and
75  * doesn't care about the CPIUD index because the index of the function in
76  * question is not significant.  Note, this magic value must have at least one
77  * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
78  * to avoid false positives when processing guest CPUID input.
79  */
80 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
81
82 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
83         struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
84 {
85         struct kvm_cpuid_entry2 *e;
86         int i;
87
88         /*
89          * KVM has a semi-arbitrary rule that querying the guest's CPUID model
90          * with IRQs disabled is disallowed.  The CPUID model can legitimately
91          * have over one hundred entries, i.e. the lookup is slow, and IRQs are
92          * typically disabled in KVM only when KVM is in a performance critical
93          * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
94          * if this rule is violated, this assertion is purely to flag potential
95          * performance issues.  If this fires, consider moving the lookup out
96          * of the hotpath, e.g. by caching information during CPUID updates.
97          */
98         lockdep_assert_irqs_enabled();
99
100         for (i = 0; i < nent; i++) {
101                 e = &entries[i];
102
103                 if (e->function != function)
104                         continue;
105
106                 /*
107                  * If the index isn't significant, use the first entry with a
108                  * matching function.  It's userspace's responsibility to not
109                  * provide "duplicate" entries in all cases.
110                  */
111                 if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
112                         return e;
113
114
115                 /*
116                  * Similarly, use the first matching entry if KVM is doing a
117                  * lookup (as opposed to emulating CPUID) for a function that's
118                  * architecturally defined as not having a significant index.
119                  */
120                 if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
121                         /*
122                          * Direct lookups from KVM should not diverge from what
123                          * KVM defines internally (the architectural behavior).
124                          */
125                         WARN_ON_ONCE(cpuid_function_is_indexed(function));
126                         return e;
127                 }
128         }
129
130         return NULL;
131 }
132
133 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
134                            struct kvm_cpuid_entry2 *entries,
135                            int nent)
136 {
137         struct kvm_cpuid_entry2 *best;
138         u64 xfeatures;
139
140         /*
141          * The existing code assumes virtual address is 48-bit or 57-bit in the
142          * canonical address checks; exit if it is ever changed.
143          */
144         best = cpuid_entry2_find(entries, nent, 0x80000008,
145                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
146         if (best) {
147                 int vaddr_bits = (best->eax & 0xff00) >> 8;
148
149                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
150                         return -EINVAL;
151         }
152
153         /*
154          * Exposing dynamic xfeatures to the guest requires additional
155          * enabling in the FPU, e.g. to expand the guest XSAVE state size.
156          */
157         best = cpuid_entry2_find(entries, nent, 0xd, 0);
158         if (!best)
159                 return 0;
160
161         xfeatures = best->eax | ((u64)best->edx << 32);
162         xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
163         if (!xfeatures)
164                 return 0;
165
166         return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
167 }
168
169 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
170 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
171                                  int nent)
172 {
173         struct kvm_cpuid_entry2 *orig;
174         int i;
175
176         if (nent != vcpu->arch.cpuid_nent)
177                 return -EINVAL;
178
179         for (i = 0; i < nent; i++) {
180                 orig = &vcpu->arch.cpuid_entries[i];
181                 if (e2[i].function != orig->function ||
182                     e2[i].index != orig->index ||
183                     e2[i].flags != orig->flags ||
184                     e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
185                     e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
186                         return -EINVAL;
187         }
188
189         return 0;
190 }
191
192 static struct kvm_hypervisor_cpuid __kvm_get_hypervisor_cpuid(struct kvm_cpuid_entry2 *entries,
193                                                               int nent, const char *sig)
194 {
195         struct kvm_hypervisor_cpuid cpuid = {};
196         struct kvm_cpuid_entry2 *entry;
197         u32 base;
198
199         for_each_possible_hypervisor_cpuid_base(base) {
200                 entry = cpuid_entry2_find(entries, nent, base, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
201
202                 if (entry) {
203                         u32 signature[3];
204
205                         signature[0] = entry->ebx;
206                         signature[1] = entry->ecx;
207                         signature[2] = entry->edx;
208
209                         if (!memcmp(signature, sig, sizeof(signature))) {
210                                 cpuid.base = base;
211                                 cpuid.limit = entry->eax;
212                                 break;
213                         }
214                 }
215         }
216
217         return cpuid;
218 }
219
220 static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
221                                                             const char *sig)
222 {
223         return __kvm_get_hypervisor_cpuid(vcpu->arch.cpuid_entries,
224                                           vcpu->arch.cpuid_nent, sig);
225 }
226
227 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_cpuid_entry2 *entries,
228                                                               int nent, u32 kvm_cpuid_base)
229 {
230         return cpuid_entry2_find(entries, nent, kvm_cpuid_base | KVM_CPUID_FEATURES,
231                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
232 }
233
234 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
235 {
236         u32 base = vcpu->arch.kvm_cpuid.base;
237
238         if (!base)
239                 return NULL;
240
241         return __kvm_find_kvm_cpuid_features(vcpu->arch.cpuid_entries,
242                                              vcpu->arch.cpuid_nent, base);
243 }
244
245 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
246 {
247         struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
248
249         /*
250          * save the feature bitmap to avoid cpuid lookup for every PV
251          * operation
252          */
253         if (best)
254                 vcpu->arch.pv_cpuid.features = best->eax;
255 }
256
257 /*
258  * Calculate guest's supported XCR0 taking into account guest CPUID data and
259  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
260  */
261 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
262 {
263         struct kvm_cpuid_entry2 *best;
264
265         best = cpuid_entry2_find(entries, nent, 0xd, 0);
266         if (!best)
267                 return 0;
268
269         return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
270 }
271
272 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
273                                        int nent)
274 {
275         struct kvm_cpuid_entry2 *best;
276         struct kvm_hypervisor_cpuid kvm_cpuid;
277
278         best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
279         if (best) {
280                 /* Update OSXSAVE bit */
281                 if (boot_cpu_has(X86_FEATURE_XSAVE))
282                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
283                                            kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
284
285                 cpuid_entry_change(best, X86_FEATURE_APIC,
286                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
287         }
288
289         best = cpuid_entry2_find(entries, nent, 7, 0);
290         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
291                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
292                                    kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
293
294         best = cpuid_entry2_find(entries, nent, 0xD, 0);
295         if (best)
296                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
297
298         best = cpuid_entry2_find(entries, nent, 0xD, 1);
299         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
300                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
301                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
302
303         kvm_cpuid = __kvm_get_hypervisor_cpuid(entries, nent, KVM_SIGNATURE);
304         if (kvm_cpuid.base) {
305                 best = __kvm_find_kvm_cpuid_features(entries, nent, kvm_cpuid.base);
306                 if (kvm_hlt_in_guest(vcpu->kvm) && best)
307                         best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
308         }
309
310         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
311                 best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
312                 if (best)
313                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
314                                            vcpu->arch.ia32_misc_enable_msr &
315                                            MSR_IA32_MISC_ENABLE_MWAIT);
316         }
317 }
318
319 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
320 {
321         __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
322 }
323 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
324
325 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
326 {
327 #ifdef CONFIG_KVM_HYPERV
328         struct kvm_cpuid_entry2 *entry;
329
330         entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
331                                   KVM_CPUID_INDEX_NOT_SIGNIFICANT);
332         return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
333 #else
334         return false;
335 #endif
336 }
337
338 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
339 {
340         struct kvm_lapic *apic = vcpu->arch.apic;
341         struct kvm_cpuid_entry2 *best;
342         bool allow_gbpages;
343
344         BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
345         bitmap_zero(vcpu->arch.governed_features.enabled,
346                     KVM_MAX_NR_GOVERNED_FEATURES);
347
348         /*
349          * If TDP is enabled, let the guest use GBPAGES if they're supported in
350          * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
351          * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
352          * walk for performance and complexity reasons.  Not to mention KVM
353          * _can't_ solve the problem because GVA->GPA walks aren't visible to
354          * KVM once a TDP translation is installed.  Mimic hardware behavior so
355          * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
356          * If TDP is disabled, honor *only* guest CPUID as KVM has full control
357          * and can install smaller shadow pages if the host lacks 1GiB support.
358          */
359         allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
360                                       guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
361         if (allow_gbpages)
362                 kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
363
364         best = kvm_find_cpuid_entry(vcpu, 1);
365         if (best && apic) {
366                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
367                         apic->lapic_timer.timer_mode_mask = 3 << 17;
368                 else
369                         apic->lapic_timer.timer_mode_mask = 1 << 17;
370
371                 kvm_apic_set_version(vcpu);
372         }
373
374         vcpu->arch.guest_supported_xcr0 =
375                 cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
376
377         kvm_update_pv_runtime(vcpu);
378
379         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
380         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
381
382         kvm_pmu_refresh(vcpu);
383         vcpu->arch.cr4_guest_rsvd_bits =
384             __cr4_reserved_bits(guest_cpuid_has, vcpu);
385
386         kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
387                                                     vcpu->arch.cpuid_nent));
388
389         /* Invoke the vendor callback only after the above state is updated. */
390         static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
391
392         /*
393          * Except for the MMU, which needs to do its thing any vendor specific
394          * adjustments to the reserved GPA bits.
395          */
396         kvm_mmu_after_set_cpuid(vcpu);
397 }
398
399 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
400 {
401         struct kvm_cpuid_entry2 *best;
402
403         best = kvm_find_cpuid_entry(vcpu, 0x80000000);
404         if (!best || best->eax < 0x80000008)
405                 goto not_found;
406         best = kvm_find_cpuid_entry(vcpu, 0x80000008);
407         if (best)
408                 return best->eax & 0xff;
409 not_found:
410         return 36;
411 }
412
413 /*
414  * This "raw" version returns the reserved GPA bits without any adjustments for
415  * encryption technologies that usurp bits.  The raw mask should be used if and
416  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
417  */
418 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
419 {
420         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
421 }
422
423 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
424                         int nent)
425 {
426         int r;
427
428         __kvm_update_cpuid_runtime(vcpu, e2, nent);
429
430         /*
431          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
432          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
433          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
434          * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
435          * the core vCPU model on the fly. It would've been better to forbid any
436          * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
437          * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
438          * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
439          * whether the supplied CPUID data is equal to what's already set.
440          */
441         if (kvm_vcpu_has_run(vcpu)) {
442                 r = kvm_cpuid_check_equal(vcpu, e2, nent);
443                 if (r)
444                         return r;
445
446                 kvfree(e2);
447                 return 0;
448         }
449
450 #ifdef CONFIG_KVM_HYPERV
451         if (kvm_cpuid_has_hyperv(e2, nent)) {
452                 r = kvm_hv_vcpu_init(vcpu);
453                 if (r)
454                         return r;
455         }
456 #endif
457
458         r = kvm_check_cpuid(vcpu, e2, nent);
459         if (r)
460                 return r;
461
462         kvfree(vcpu->arch.cpuid_entries);
463         vcpu->arch.cpuid_entries = e2;
464         vcpu->arch.cpuid_nent = nent;
465
466         vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
467 #ifdef CONFIG_KVM_XEN
468         vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
469 #endif
470         kvm_vcpu_after_set_cpuid(vcpu);
471
472         return 0;
473 }
474
475 /* when an old userspace process fills a new kernel module */
476 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
477                              struct kvm_cpuid *cpuid,
478                              struct kvm_cpuid_entry __user *entries)
479 {
480         int r, i;
481         struct kvm_cpuid_entry *e = NULL;
482         struct kvm_cpuid_entry2 *e2 = NULL;
483
484         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
485                 return -E2BIG;
486
487         if (cpuid->nent) {
488                 e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
489                 if (IS_ERR(e))
490                         return PTR_ERR(e);
491
492                 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
493                 if (!e2) {
494                         r = -ENOMEM;
495                         goto out_free_cpuid;
496                 }
497         }
498         for (i = 0; i < cpuid->nent; i++) {
499                 e2[i].function = e[i].function;
500                 e2[i].eax = e[i].eax;
501                 e2[i].ebx = e[i].ebx;
502                 e2[i].ecx = e[i].ecx;
503                 e2[i].edx = e[i].edx;
504                 e2[i].index = 0;
505                 e2[i].flags = 0;
506                 e2[i].padding[0] = 0;
507                 e2[i].padding[1] = 0;
508                 e2[i].padding[2] = 0;
509         }
510
511         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
512         if (r)
513                 kvfree(e2);
514
515 out_free_cpuid:
516         kvfree(e);
517
518         return r;
519 }
520
521 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
522                               struct kvm_cpuid2 *cpuid,
523                               struct kvm_cpuid_entry2 __user *entries)
524 {
525         struct kvm_cpuid_entry2 *e2 = NULL;
526         int r;
527
528         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
529                 return -E2BIG;
530
531         if (cpuid->nent) {
532                 e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
533                 if (IS_ERR(e2))
534                         return PTR_ERR(e2);
535         }
536
537         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
538         if (r)
539                 kvfree(e2);
540
541         return r;
542 }
543
544 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
545                               struct kvm_cpuid2 *cpuid,
546                               struct kvm_cpuid_entry2 __user *entries)
547 {
548         if (cpuid->nent < vcpu->arch.cpuid_nent)
549                 return -E2BIG;
550
551         if (copy_to_user(entries, vcpu->arch.cpuid_entries,
552                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
553                 return -EFAULT;
554
555         cpuid->nent = vcpu->arch.cpuid_nent;
556         return 0;
557 }
558
559 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
560 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
561 {
562         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
563         struct kvm_cpuid_entry2 entry;
564
565         reverse_cpuid_check(leaf);
566
567         cpuid_count(cpuid.function, cpuid.index,
568                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
569
570         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
571 }
572
573 static __always_inline
574 void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
575 {
576         /* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
577         BUILD_BUG_ON(leaf < NCAPINTS);
578
579         kvm_cpu_caps[leaf] = mask;
580
581         __kvm_cpu_cap_mask(leaf);
582 }
583
584 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
585 {
586         /* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
587         BUILD_BUG_ON(leaf >= NCAPINTS);
588
589         kvm_cpu_caps[leaf] &= mask;
590
591         __kvm_cpu_cap_mask(leaf);
592 }
593
594 void kvm_set_cpu_caps(void)
595 {
596 #ifdef CONFIG_X86_64
597         unsigned int f_gbpages = F(GBPAGES);
598         unsigned int f_lm = F(LM);
599         unsigned int f_xfd = F(XFD);
600 #else
601         unsigned int f_gbpages = 0;
602         unsigned int f_lm = 0;
603         unsigned int f_xfd = 0;
604 #endif
605         memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
606
607         BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
608                      sizeof(boot_cpu_data.x86_capability));
609
610         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
611                sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
612
613         kvm_cpu_cap_mask(CPUID_1_ECX,
614                 /*
615                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
616                  * advertised to guests via CPUID!
617                  */
618                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
619                 0 /* DS-CPL, VMX, SMX, EST */ |
620                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
621                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
622                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
623                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
624                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
625                 F(F16C) | F(RDRAND)
626         );
627         /* KVM emulates x2apic in software irrespective of host support. */
628         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
629
630         kvm_cpu_cap_mask(CPUID_1_EDX,
631                 F(FPU) | F(VME) | F(DE) | F(PSE) |
632                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
633                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
634                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
635                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
636                 0 /* Reserved, DS, ACPI */ | F(MMX) |
637                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
638                 0 /* HTT, TM, Reserved, PBE */
639         );
640
641         kvm_cpu_cap_mask(CPUID_7_0_EBX,
642                 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
643                 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
644                 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
645                 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
646                 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
647                 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
648                 F(AVX512VL));
649
650         kvm_cpu_cap_mask(CPUID_7_ECX,
651                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
652                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
653                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
654                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
655                 F(SGX_LC) | F(BUS_LOCK_DETECT)
656         );
657         /* Set LA57 based on hardware capability. */
658         if (cpuid_ecx(7) & F(LA57))
659                 kvm_cpu_cap_set(X86_FEATURE_LA57);
660
661         /*
662          * PKU not yet implemented for shadow paging and requires OSPKE
663          * to be set on the host. Clear it if that is not the case
664          */
665         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
666                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
667
668         kvm_cpu_cap_mask(CPUID_7_EDX,
669                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
670                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
671                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
672                 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
673                 F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
674         );
675
676         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
677         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
678         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
679
680         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
681                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
682         if (boot_cpu_has(X86_FEATURE_STIBP))
683                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
684         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
685                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
686
687         kvm_cpu_cap_mask(CPUID_7_1_EAX,
688                 F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
689                 F(FZRM) | F(FSRS) | F(FSRC) |
690                 F(AMX_FP16) | F(AVX_IFMA) | F(LAM)
691         );
692
693         kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
694                 F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
695                 F(AMX_COMPLEX)
696         );
697
698         kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
699                 F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
700                 F(BHI_CTRL) | F(MCDT_NO)
701         );
702
703         kvm_cpu_cap_mask(CPUID_D_1_EAX,
704                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
705         );
706
707         kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
708                 SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
709         );
710
711         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
712                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
713                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
714                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
715                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
716                 F(TOPOEXT) | 0 /* PERFCTR_CORE */
717         );
718
719         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
720                 F(FPU) | F(VME) | F(DE) | F(PSE) |
721                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
722                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
723                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
724                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
725                 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
726                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
727                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
728         );
729
730         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
731                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
732
733         kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
734                 SF(CONSTANT_TSC)
735         );
736
737         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
738                 F(CLZERO) | F(XSAVEERPTR) |
739                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
740                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
741                 F(AMD_PSFD)
742         );
743
744         /*
745          * AMD has separate bits for each SPEC_CTRL bit.
746          * arch/x86/kernel/cpu/bugs.c is kind enough to
747          * record that in cpufeatures so use them.
748          */
749         if (boot_cpu_has(X86_FEATURE_IBPB))
750                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
751         if (boot_cpu_has(X86_FEATURE_IBRS))
752                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
753         if (boot_cpu_has(X86_FEATURE_STIBP))
754                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
755         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
756                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
757         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
758                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
759         /*
760          * The preference is to use SPEC CTRL MSR instead of the
761          * VIRT_SPEC MSR.
762          */
763         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
764             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
765                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
766
767         /*
768          * Hide all SVM features by default, SVM will set the cap bits for
769          * features it emulates and/or exposes for L1.
770          */
771         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
772
773         kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
774                 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
775                 F(SME_COHERENT));
776
777         kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
778                 F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
779                 F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
780                 F(WRMSR_XX_BASE_NS)
781         );
782
783         kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
784         kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
785         kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
786
787         kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
788                 F(PERFMON_V2)
789         );
790
791         /*
792          * Synthesize "LFENCE is serializing" into the AMD-defined entry in
793          * KVM's supported CPUID if the feature is reported as supported by the
794          * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
795          * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
796          * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
797          * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
798          * the mask with the raw host CPUID, and reporting support in AMD's
799          * leaf can make it easier for userspace to detect the feature.
800          */
801         if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
802                 kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
803         if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
804                 kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
805         kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
806
807         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
808                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
809                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
810                 F(PMM) | F(PMM_EN)
811         );
812
813         /*
814          * Hide RDTSCP and RDPID if either feature is reported as supported but
815          * probing MSR_TSC_AUX failed.  This is purely a sanity check and
816          * should never happen, but the guest will likely crash if RDTSCP or
817          * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
818          * the past.  For example, the sanity check may fire if this instance of
819          * KVM is running as L1 on top of an older, broken KVM.
820          */
821         if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
822                      kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
823                      !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
824                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
825                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
826         }
827 }
828 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
829
830 struct kvm_cpuid_array {
831         struct kvm_cpuid_entry2 *entries;
832         int maxnent;
833         int nent;
834 };
835
836 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
837 {
838         if (array->nent >= array->maxnent)
839                 return NULL;
840
841         return &array->entries[array->nent++];
842 }
843
844 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
845                                               u32 function, u32 index)
846 {
847         struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
848
849         if (!entry)
850                 return NULL;
851
852         memset(entry, 0, sizeof(*entry));
853         entry->function = function;
854         entry->index = index;
855         switch (function & 0xC0000000) {
856         case 0x40000000:
857                 /* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
858                 return entry;
859
860         case 0x80000000:
861                 /*
862                  * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
863                  * would result in out-of-bounds calls to do_host_cpuid.
864                  */
865                 {
866                         static int max_cpuid_80000000;
867                         if (!READ_ONCE(max_cpuid_80000000))
868                                 WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
869                         if (function > READ_ONCE(max_cpuid_80000000))
870                                 return entry;
871                 }
872                 break;
873
874         default:
875                 break;
876         }
877
878         cpuid_count(entry->function, entry->index,
879                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
880
881         if (cpuid_function_is_indexed(function))
882                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
883
884         return entry;
885 }
886
887 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
888 {
889         struct kvm_cpuid_entry2 *entry;
890
891         if (array->nent >= array->maxnent)
892                 return -E2BIG;
893
894         entry = &array->entries[array->nent];
895         entry->function = func;
896         entry->index = 0;
897         entry->flags = 0;
898
899         switch (func) {
900         case 0:
901                 entry->eax = 7;
902                 ++array->nent;
903                 break;
904         case 1:
905                 entry->ecx = F(MOVBE);
906                 ++array->nent;
907                 break;
908         case 7:
909                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
910                 entry->eax = 0;
911                 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
912                         entry->ecx = F(RDPID);
913                 ++array->nent;
914                 break;
915         default:
916                 break;
917         }
918
919         return 0;
920 }
921
922 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
923 {
924         struct kvm_cpuid_entry2 *entry;
925         int r, i, max_idx;
926
927         /* all calls to cpuid_count() should be made on the same cpu */
928         get_cpu();
929
930         r = -E2BIG;
931
932         entry = do_host_cpuid(array, function, 0);
933         if (!entry)
934                 goto out;
935
936         switch (function) {
937         case 0:
938                 /* Limited to the highest leaf implemented in KVM. */
939                 entry->eax = min(entry->eax, 0x1fU);
940                 break;
941         case 1:
942                 cpuid_entry_override(entry, CPUID_1_EDX);
943                 cpuid_entry_override(entry, CPUID_1_ECX);
944                 break;
945         case 2:
946                 /*
947                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
948                  * CPUID(function=2, index=0) may return different results each
949                  * time, with the least-significant byte in EAX enumerating the
950                  * number of times software should do CPUID(2, 0).
951                  *
952                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
953                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
954                  * return 01H. Software should ignore this value and not
955                  * interpret it as an informational descriptor", while AMD's
956                  * APM states that CPUID(2) is reserved.
957                  *
958                  * WARN if a frankenstein CPU that supports virtualization and
959                  * a stateful CPUID.0x2 is encountered.
960                  */
961                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
962                 break;
963         /* functions 4 and 0x8000001d have additional index. */
964         case 4:
965         case 0x8000001d:
966                 /*
967                  * Read entries until the cache type in the previous entry is
968                  * zero, i.e. indicates an invalid entry.
969                  */
970                 for (i = 1; entry->eax & 0x1f; ++i) {
971                         entry = do_host_cpuid(array, function, i);
972                         if (!entry)
973                                 goto out;
974                 }
975                 break;
976         case 6: /* Thermal management */
977                 entry->eax = 0x4; /* allow ARAT */
978                 entry->ebx = 0;
979                 entry->ecx = 0;
980                 entry->edx = 0;
981                 break;
982         /* function 7 has additional index. */
983         case 7:
984                 max_idx = entry->eax = min(entry->eax, 2u);
985                 cpuid_entry_override(entry, CPUID_7_0_EBX);
986                 cpuid_entry_override(entry, CPUID_7_ECX);
987                 cpuid_entry_override(entry, CPUID_7_EDX);
988
989                 /* KVM only supports up to 0x7.2, capped above via min(). */
990                 if (max_idx >= 1) {
991                         entry = do_host_cpuid(array, function, 1);
992                         if (!entry)
993                                 goto out;
994
995                         cpuid_entry_override(entry, CPUID_7_1_EAX);
996                         cpuid_entry_override(entry, CPUID_7_1_EDX);
997                         entry->ebx = 0;
998                         entry->ecx = 0;
999                 }
1000                 if (max_idx >= 2) {
1001                         entry = do_host_cpuid(array, function, 2);
1002                         if (!entry)
1003                                 goto out;
1004
1005                         cpuid_entry_override(entry, CPUID_7_2_EDX);
1006                         entry->ecx = 0;
1007                         entry->ebx = 0;
1008                         entry->eax = 0;
1009                 }
1010                 break;
1011         case 0xa: { /* Architectural Performance Monitoring */
1012                 union cpuid10_eax eax;
1013                 union cpuid10_edx edx;
1014
1015                 if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1016                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1017                         break;
1018                 }
1019
1020                 eax.split.version_id = kvm_pmu_cap.version;
1021                 eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1022                 eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1023                 eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1024                 edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1025                 edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1026
1027                 if (kvm_pmu_cap.version)
1028                         edx.split.anythread_deprecated = 1;
1029                 edx.split.reserved1 = 0;
1030                 edx.split.reserved2 = 0;
1031
1032                 entry->eax = eax.full;
1033                 entry->ebx = kvm_pmu_cap.events_mask;
1034                 entry->ecx = 0;
1035                 entry->edx = edx.full;
1036                 break;
1037         }
1038         case 0x1f:
1039         case 0xb:
1040                 /*
1041                  * No topology; a valid topology is indicated by the presence
1042                  * of subleaf 1.
1043                  */
1044                 entry->eax = entry->ebx = entry->ecx = 0;
1045                 break;
1046         case 0xd: {
1047                 u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1048                 u64 permitted_xss = kvm_caps.supported_xss;
1049
1050                 entry->eax &= permitted_xcr0;
1051                 entry->ebx = xstate_required_size(permitted_xcr0, false);
1052                 entry->ecx = entry->ebx;
1053                 entry->edx &= permitted_xcr0 >> 32;
1054                 if (!permitted_xcr0)
1055                         break;
1056
1057                 entry = do_host_cpuid(array, function, 1);
1058                 if (!entry)
1059                         goto out;
1060
1061                 cpuid_entry_override(entry, CPUID_D_1_EAX);
1062                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1063                         entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1064                                                           true);
1065                 else {
1066                         WARN_ON_ONCE(permitted_xss != 0);
1067                         entry->ebx = 0;
1068                 }
1069                 entry->ecx &= permitted_xss;
1070                 entry->edx &= permitted_xss >> 32;
1071
1072                 for (i = 2; i < 64; ++i) {
1073                         bool s_state;
1074                         if (permitted_xcr0 & BIT_ULL(i))
1075                                 s_state = false;
1076                         else if (permitted_xss & BIT_ULL(i))
1077                                 s_state = true;
1078                         else
1079                                 continue;
1080
1081                         entry = do_host_cpuid(array, function, i);
1082                         if (!entry)
1083                                 goto out;
1084
1085                         /*
1086                          * The supported check above should have filtered out
1087                          * invalid sub-leafs.  Only valid sub-leafs should
1088                          * reach this point, and they should have a non-zero
1089                          * save state size.  Furthermore, check whether the
1090                          * processor agrees with permitted_xcr0/permitted_xss
1091                          * on whether this is an XCR0- or IA32_XSS-managed area.
1092                          */
1093                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1094                                 --array->nent;
1095                                 continue;
1096                         }
1097
1098                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1099                                 entry->ecx &= ~BIT_ULL(2);
1100                         entry->edx = 0;
1101                 }
1102                 break;
1103         }
1104         case 0x12:
1105                 /* Intel SGX */
1106                 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1107                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1108                         break;
1109                 }
1110
1111                 /*
1112                  * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1113                  * and max enclave sizes.   The SGX sub-features and MISCSELECT
1114                  * are restricted by kernel and KVM capabilities (like most
1115                  * feature flags), while enclave size is unrestricted.
1116                  */
1117                 cpuid_entry_override(entry, CPUID_12_EAX);
1118                 entry->ebx &= SGX_MISC_EXINFO;
1119
1120                 entry = do_host_cpuid(array, function, 1);
1121                 if (!entry)
1122                         goto out;
1123
1124                 /*
1125                  * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1126                  * feature flags.  Advertise all supported flags, including
1127                  * privileged attributes that require explicit opt-in from
1128                  * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1129                  * expected to derive it from supported XCR0.
1130                  */
1131                 entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1132                 entry->ebx &= 0;
1133                 break;
1134         /* Intel PT */
1135         case 0x14:
1136                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1137                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1138                         break;
1139                 }
1140
1141                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1142                         if (!do_host_cpuid(array, function, i))
1143                                 goto out;
1144                 }
1145                 break;
1146         /* Intel AMX TILE */
1147         case 0x1d:
1148                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1149                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1150                         break;
1151                 }
1152
1153                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1154                         if (!do_host_cpuid(array, function, i))
1155                                 goto out;
1156                 }
1157                 break;
1158         case 0x1e: /* TMUL information */
1159                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1160                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1161                         break;
1162                 }
1163                 break;
1164         case KVM_CPUID_SIGNATURE: {
1165                 const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1166                 entry->eax = KVM_CPUID_FEATURES;
1167                 entry->ebx = sigptr[0];
1168                 entry->ecx = sigptr[1];
1169                 entry->edx = sigptr[2];
1170                 break;
1171         }
1172         case KVM_CPUID_FEATURES:
1173                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1174                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
1175                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
1176                              (1 << KVM_FEATURE_ASYNC_PF) |
1177                              (1 << KVM_FEATURE_PV_EOI) |
1178                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1179                              (1 << KVM_FEATURE_PV_UNHALT) |
1180                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1181                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1182                              (1 << KVM_FEATURE_PV_SEND_IPI) |
1183                              (1 << KVM_FEATURE_POLL_CONTROL) |
1184                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1185                              (1 << KVM_FEATURE_ASYNC_PF_INT);
1186
1187                 if (sched_info_on())
1188                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1189
1190                 entry->ebx = 0;
1191                 entry->ecx = 0;
1192                 entry->edx = 0;
1193                 break;
1194         case 0x80000000:
1195                 entry->eax = min(entry->eax, 0x80000022);
1196                 /*
1197                  * Serializing LFENCE is reported in a multitude of ways, and
1198                  * NullSegClearsBase is not reported in CPUID on Zen2; help
1199                  * userspace by providing the CPUID leaf ourselves.
1200                  *
1201                  * However, only do it if the host has CPUID leaf 0x8000001d.
1202                  * QEMU thinks that it can query the host blindly for that
1203                  * CPUID leaf if KVM reports that it supports 0x8000001d or
1204                  * above.  The processor merrily returns values from the
1205                  * highest Intel leaf which QEMU tries to use as the guest's
1206                  * 0x8000001d.  Even worse, this can result in an infinite
1207                  * loop if said highest leaf has no subleaves indexed by ECX.
1208                  */
1209                 if (entry->eax >= 0x8000001d &&
1210                     (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1211                      || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1212                         entry->eax = max(entry->eax, 0x80000021);
1213                 break;
1214         case 0x80000001:
1215                 entry->ebx &= ~GENMASK(27, 16);
1216                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1217                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1218                 break;
1219         case 0x80000005:
1220                 /*  Pass host L1 cache and TLB info. */
1221                 break;
1222         case 0x80000006:
1223                 /* Drop reserved bits, pass host L2 cache and TLB info. */
1224                 entry->edx &= ~GENMASK(17, 16);
1225                 break;
1226         case 0x80000007: /* Advanced power management */
1227                 cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1228
1229                 /* mask against host */
1230                 entry->edx &= boot_cpu_data.x86_power;
1231                 entry->eax = entry->ebx = entry->ecx = 0;
1232                 break;
1233         case 0x80000008: {
1234                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1235                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1236                 unsigned phys_as = entry->eax & 0xff;
1237
1238                 /*
1239                  * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1240                  * the guest operates in the same PA space as the host, i.e.
1241                  * reductions in MAXPHYADDR for memory encryption affect shadow
1242                  * paging, too.
1243                  *
1244                  * If TDP is enabled but an explicit guest MAXPHYADDR is not
1245                  * provided, use the raw bare metal MAXPHYADDR as reductions to
1246                  * the HPAs do not affect GPAs.
1247                  */
1248                 if (!tdp_enabled)
1249                         g_phys_as = boot_cpu_data.x86_phys_bits;
1250                 else if (!g_phys_as)
1251                         g_phys_as = phys_as;
1252
1253                 entry->eax = g_phys_as | (virt_as << 8);
1254                 entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1255                 entry->edx = 0;
1256                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1257                 break;
1258         }
1259         case 0x8000000A:
1260                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1261                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1262                         break;
1263                 }
1264                 entry->eax = 1; /* SVM revision 1 */
1265                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1266                                    ASID emulation to nested SVM */
1267                 entry->ecx = 0; /* Reserved */
1268                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1269                 break;
1270         case 0x80000019:
1271                 entry->ecx = entry->edx = 0;
1272                 break;
1273         case 0x8000001a:
1274                 entry->eax &= GENMASK(2, 0);
1275                 entry->ebx = entry->ecx = entry->edx = 0;
1276                 break;
1277         case 0x8000001e:
1278                 /* Do not return host topology information.  */
1279                 entry->eax = entry->ebx = entry->ecx = 0;
1280                 entry->edx = 0; /* reserved */
1281                 break;
1282         case 0x8000001F:
1283                 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1284                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1285                 } else {
1286                         cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1287                         /* Clear NumVMPL since KVM does not support VMPL.  */
1288                         entry->ebx &= ~GENMASK(31, 12);
1289                         /*
1290                          * Enumerate '0' for "PA bits reduction", the adjusted
1291                          * MAXPHYADDR is enumerated directly (see 0x80000008).
1292                          */
1293                         entry->ebx &= ~GENMASK(11, 6);
1294                 }
1295                 break;
1296         case 0x80000020:
1297                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1298                 break;
1299         case 0x80000021:
1300                 entry->ebx = entry->ecx = entry->edx = 0;
1301                 cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1302                 break;
1303         /* AMD Extended Performance Monitoring and Debug */
1304         case 0x80000022: {
1305                 union cpuid_0x80000022_ebx ebx;
1306
1307                 entry->ecx = entry->edx = 0;
1308                 if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1309                         entry->eax = entry->ebx;
1310                         break;
1311                 }
1312
1313                 cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1314
1315                 if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1316                         ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1317                 else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1318                         ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1319                 else
1320                         ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1321
1322                 entry->ebx = ebx.full;
1323                 break;
1324         }
1325         /*Add support for Centaur's CPUID instruction*/
1326         case 0xC0000000:
1327                 /*Just support up to 0xC0000004 now*/
1328                 entry->eax = min(entry->eax, 0xC0000004);
1329                 break;
1330         case 0xC0000001:
1331                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1332                 break;
1333         case 3: /* Processor serial number */
1334         case 5: /* MONITOR/MWAIT */
1335         case 0xC0000002:
1336         case 0xC0000003:
1337         case 0xC0000004:
1338         default:
1339                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1340                 break;
1341         }
1342
1343         r = 0;
1344
1345 out:
1346         put_cpu();
1347
1348         return r;
1349 }
1350
1351 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1352                          unsigned int type)
1353 {
1354         if (type == KVM_GET_EMULATED_CPUID)
1355                 return __do_cpuid_func_emulated(array, func);
1356
1357         return __do_cpuid_func(array, func);
1358 }
1359
1360 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1361
1362 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1363                           unsigned int type)
1364 {
1365         u32 limit;
1366         int r;
1367
1368         if (func == CENTAUR_CPUID_SIGNATURE &&
1369             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1370                 return 0;
1371
1372         r = do_cpuid_func(array, func, type);
1373         if (r)
1374                 return r;
1375
1376         limit = array->entries[array->nent - 1].eax;
1377         for (func = func + 1; func <= limit; ++func) {
1378                 r = do_cpuid_func(array, func, type);
1379                 if (r)
1380                         break;
1381         }
1382
1383         return r;
1384 }
1385
1386 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1387                                  __u32 num_entries, unsigned int ioctl_type)
1388 {
1389         int i;
1390         __u32 pad[3];
1391
1392         if (ioctl_type != KVM_GET_EMULATED_CPUID)
1393                 return false;
1394
1395         /*
1396          * We want to make sure that ->padding is being passed clean from
1397          * userspace in case we want to use it for something in the future.
1398          *
1399          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1400          * have to give ourselves satisfied only with the emulated side. /me
1401          * sheds a tear.
1402          */
1403         for (i = 0; i < num_entries; i++) {
1404                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1405                         return true;
1406
1407                 if (pad[0] || pad[1] || pad[2])
1408                         return true;
1409         }
1410         return false;
1411 }
1412
1413 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1414                             struct kvm_cpuid_entry2 __user *entries,
1415                             unsigned int type)
1416 {
1417         static const u32 funcs[] = {
1418                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1419         };
1420
1421         struct kvm_cpuid_array array = {
1422                 .nent = 0,
1423         };
1424         int r, i;
1425
1426         if (cpuid->nent < 1)
1427                 return -E2BIG;
1428         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1429                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1430
1431         if (sanity_check_entries(entries, cpuid->nent, type))
1432                 return -EINVAL;
1433
1434         array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1435         if (!array.entries)
1436                 return -ENOMEM;
1437
1438         array.maxnent = cpuid->nent;
1439
1440         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1441                 r = get_cpuid_func(&array, funcs[i], type);
1442                 if (r)
1443                         goto out_free;
1444         }
1445         cpuid->nent = array.nent;
1446
1447         if (copy_to_user(entries, array.entries,
1448                          array.nent * sizeof(struct kvm_cpuid_entry2)))
1449                 r = -EFAULT;
1450
1451 out_free:
1452         kvfree(array.entries);
1453         return r;
1454 }
1455
1456 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1457                                                     u32 function, u32 index)
1458 {
1459         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1460                                  function, index);
1461 }
1462 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1463
1464 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1465                                               u32 function)
1466 {
1467         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1468                                  function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1469 }
1470 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1471
1472 /*
1473  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1474  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1475  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1476  * range.  Centaur/VIA follows Intel semantics.
1477  *
1478  * A leaf is considered out-of-range if its function is higher than the maximum
1479  * supported leaf of its associated class or if its associated class does not
1480  * exist.
1481  *
1482  * There are three primary classes to be considered, with their respective
1483  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1484  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1485  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1486  *
1487  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1488  *  - Hypervisor: 0x40000000 - 0x4fffffff
1489  *  - Extended:   0x80000000 - 0xbfffffff
1490  *  - Centaur:    0xc0000000 - 0xcfffffff
1491  *
1492  * The Hypervisor class is further subdivided into sub-classes that each act as
1493  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1494  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1495  * CPUID sub-classes are:
1496  *
1497  *  - HyperV:     0x40000000 - 0x400000ff
1498  *  - KVM:        0x40000100 - 0x400001ff
1499  */
1500 static struct kvm_cpuid_entry2 *
1501 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1502 {
1503         struct kvm_cpuid_entry2 *basic, *class;
1504         u32 function = *fn_ptr;
1505
1506         basic = kvm_find_cpuid_entry(vcpu, 0);
1507         if (!basic)
1508                 return NULL;
1509
1510         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1511             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1512                 return NULL;
1513
1514         if (function >= 0x40000000 && function <= 0x4fffffff)
1515                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1516         else if (function >= 0xc0000000)
1517                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1518         else
1519                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1520
1521         if (class && function <= class->eax)
1522                 return NULL;
1523
1524         /*
1525          * Leaf specific adjustments are also applied when redirecting to the
1526          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1527          * entry for CPUID.0xb.index (see below), then the output value for EDX
1528          * needs to be pulled from CPUID.0xb.1.
1529          */
1530         *fn_ptr = basic->eax;
1531
1532         /*
1533          * The class does not exist or the requested function is out of range;
1534          * the effective CPUID entry is the max basic leaf.  Note, the index of
1535          * the original requested leaf is observed!
1536          */
1537         return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1538 }
1539
1540 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1541                u32 *ecx, u32 *edx, bool exact_only)
1542 {
1543         u32 orig_function = *eax, function = *eax, index = *ecx;
1544         struct kvm_cpuid_entry2 *entry;
1545         bool exact, used_max_basic = false;
1546
1547         entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1548         exact = !!entry;
1549
1550         if (!entry && !exact_only) {
1551                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1552                 used_max_basic = !!entry;
1553         }
1554
1555         if (entry) {
1556                 *eax = entry->eax;
1557                 *ebx = entry->ebx;
1558                 *ecx = entry->ecx;
1559                 *edx = entry->edx;
1560                 if (function == 7 && index == 0) {
1561                         u64 data;
1562                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1563                             (data & TSX_CTRL_CPUID_CLEAR))
1564                                 *ebx &= ~(F(RTM) | F(HLE));
1565                 } else if (function == 0x80000007) {
1566                         if (kvm_hv_invtsc_suppressed(vcpu))
1567                                 *edx &= ~SF(CONSTANT_TSC);
1568                 }
1569         } else {
1570                 *eax = *ebx = *ecx = *edx = 0;
1571                 /*
1572                  * When leaf 0BH or 1FH is defined, CL is pass-through
1573                  * and EDX is always the x2APIC ID, even for undefined
1574                  * subleaves. Index 1 will exist iff the leaf is
1575                  * implemented, so we pass through CL iff leaf 1
1576                  * exists. EDX can be copied from any existing index.
1577                  */
1578                 if (function == 0xb || function == 0x1f) {
1579                         entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1580                         if (entry) {
1581                                 *ecx = index & 0xff;
1582                                 *edx = entry->edx;
1583                         }
1584                 }
1585         }
1586         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1587                         used_max_basic);
1588         return exact;
1589 }
1590 EXPORT_SYMBOL_GPL(kvm_cpuid);
1591
1592 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1593 {
1594         u32 eax, ebx, ecx, edx;
1595
1596         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1597                 return 1;
1598
1599         eax = kvm_rax_read(vcpu);
1600         ecx = kvm_rcx_read(vcpu);
1601         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1602         kvm_rax_write(vcpu, eax);
1603         kvm_rbx_write(vcpu, ebx);
1604         kvm_rcx_write(vcpu, ecx);
1605         kvm_rdx_write(vcpu, edx);
1606         return kvm_skip_emulated_instruction(vcpu);
1607 }
1608 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);