ffdc28684cb7981f7395fae81e54dd5e361c727f
[linux-2.6-block.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include <asm/sgx.h>
22 #include <asm/cpuid.h>
23 #include "cpuid.h"
24 #include "lapic.h"
25 #include "mmu.h"
26 #include "trace.h"
27 #include "pmu.h"
28
29 /*
30  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
31  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
32  */
33 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
34 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
35
36 u32 xstate_required_size(u64 xstate_bv, bool compacted)
37 {
38         int feature_bit = 0;
39         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
40
41         xstate_bv &= XFEATURE_MASK_EXTEND;
42         while (xstate_bv) {
43                 if (xstate_bv & 0x1) {
44                         u32 eax, ebx, ecx, edx, offset;
45                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
46                         /* ECX[1]: 64B alignment in compacted form */
47                         if (compacted)
48                                 offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
49                         else
50                                 offset = ebx;
51                         ret = max(ret, offset + eax);
52                 }
53
54                 xstate_bv >>= 1;
55                 feature_bit++;
56         }
57
58         return ret;
59 }
60
61 /*
62  * This one is tied to SSB in the user API, and not
63  * visible in /proc/cpuinfo.
64  */
65 #define KVM_X86_FEATURE_PSFD            (13*32+28) /* Predictive Store Forwarding Disable */
66
67 #define F feature_bit
68 #define SF(name) (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0)
69
70 /*
71  * Magic value used by KVM when querying userspace-provided CPUID entries and
72  * doesn't care about the CPIUD index because the index of the function in
73  * question is not significant.  Note, this magic value must have at least one
74  * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
75  * to avoid false positives when processing guest CPUID input.
76  */
77 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
78
79 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
80         struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
81 {
82         struct kvm_cpuid_entry2 *e;
83         int i;
84
85         for (i = 0; i < nent; i++) {
86                 e = &entries[i];
87
88                 if (e->function != function)
89                         continue;
90
91                 /*
92                  * If the index isn't significant, use the first entry with a
93                  * matching function.  It's userspace's responsibilty to not
94                  * provide "duplicate" entries in all cases.
95                  */
96                 if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
97                         return e;
98
99
100                 /*
101                  * Similarly, use the first matching entry if KVM is doing a
102                  * lookup (as opposed to emulating CPUID) for a function that's
103                  * architecturally defined as not having a significant index.
104                  */
105                 if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
106                         /*
107                          * Direct lookups from KVM should not diverge from what
108                          * KVM defines internally (the architectural behavior).
109                          */
110                         WARN_ON_ONCE(cpuid_function_is_indexed(function));
111                         return e;
112                 }
113         }
114
115         return NULL;
116 }
117
118 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
119                            struct kvm_cpuid_entry2 *entries,
120                            int nent)
121 {
122         struct kvm_cpuid_entry2 *best;
123         u64 xfeatures;
124
125         /*
126          * The existing code assumes virtual address is 48-bit or 57-bit in the
127          * canonical address checks; exit if it is ever changed.
128          */
129         best = cpuid_entry2_find(entries, nent, 0x80000008,
130                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
131         if (best) {
132                 int vaddr_bits = (best->eax & 0xff00) >> 8;
133
134                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
135                         return -EINVAL;
136         }
137
138         /*
139          * Exposing dynamic xfeatures to the guest requires additional
140          * enabling in the FPU, e.g. to expand the guest XSAVE state size.
141          */
142         best = cpuid_entry2_find(entries, nent, 0xd, 0);
143         if (!best)
144                 return 0;
145
146         xfeatures = best->eax | ((u64)best->edx << 32);
147         xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
148         if (!xfeatures)
149                 return 0;
150
151         return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
152 }
153
154 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
155 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
156                                  int nent)
157 {
158         struct kvm_cpuid_entry2 *orig;
159         int i;
160
161         if (nent != vcpu->arch.cpuid_nent)
162                 return -EINVAL;
163
164         for (i = 0; i < nent; i++) {
165                 orig = &vcpu->arch.cpuid_entries[i];
166                 if (e2[i].function != orig->function ||
167                     e2[i].index != orig->index ||
168                     e2[i].flags != orig->flags ||
169                     e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
170                     e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
171                         return -EINVAL;
172         }
173
174         return 0;
175 }
176
177 static void kvm_update_kvm_cpuid_base(struct kvm_vcpu *vcpu)
178 {
179         u32 function;
180         struct kvm_cpuid_entry2 *entry;
181
182         vcpu->arch.kvm_cpuid_base = 0;
183
184         for_each_possible_hypervisor_cpuid_base(function) {
185                 entry = kvm_find_cpuid_entry(vcpu, function);
186
187                 if (entry) {
188                         u32 signature[3];
189
190                         signature[0] = entry->ebx;
191                         signature[1] = entry->ecx;
192                         signature[2] = entry->edx;
193
194                         BUILD_BUG_ON(sizeof(signature) > sizeof(KVM_SIGNATURE));
195                         if (!memcmp(signature, KVM_SIGNATURE, sizeof(signature))) {
196                                 vcpu->arch.kvm_cpuid_base = function;
197                                 break;
198                         }
199                 }
200         }
201 }
202
203 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
204                                               struct kvm_cpuid_entry2 *entries, int nent)
205 {
206         u32 base = vcpu->arch.kvm_cpuid_base;
207
208         if (!base)
209                 return NULL;
210
211         return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
212                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
213 }
214
215 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
216 {
217         return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
218                                              vcpu->arch.cpuid_nent);
219 }
220
221 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
222 {
223         struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
224
225         /*
226          * save the feature bitmap to avoid cpuid lookup for every PV
227          * operation
228          */
229         if (best)
230                 vcpu->arch.pv_cpuid.features = best->eax;
231 }
232
233 /*
234  * Calculate guest's supported XCR0 taking into account guest CPUID data and
235  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
236  */
237 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
238 {
239         struct kvm_cpuid_entry2 *best;
240
241         best = cpuid_entry2_find(entries, nent, 0xd, 0);
242         if (!best)
243                 return 0;
244
245         return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
246 }
247
248 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
249                                        int nent)
250 {
251         struct kvm_cpuid_entry2 *best;
252         u64 guest_supported_xcr0 = cpuid_get_supported_xcr0(entries, nent);
253
254         best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
255         if (best) {
256                 /* Update OSXSAVE bit */
257                 if (boot_cpu_has(X86_FEATURE_XSAVE))
258                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
259                                    kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
260
261                 cpuid_entry_change(best, X86_FEATURE_APIC,
262                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
263         }
264
265         best = cpuid_entry2_find(entries, nent, 7, 0);
266         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
267                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
268                                    kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
269
270         best = cpuid_entry2_find(entries, nent, 0xD, 0);
271         if (best)
272                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
273
274         best = cpuid_entry2_find(entries, nent, 0xD, 1);
275         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
276                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
277                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
278
279         best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
280         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
281                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
282                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
283
284         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
285                 best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
286                 if (best)
287                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
288                                            vcpu->arch.ia32_misc_enable_msr &
289                                            MSR_IA32_MISC_ENABLE_MWAIT);
290         }
291
292         /*
293          * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
294          * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
295          * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
296          * at the time of EENTER, thus adjust the allowed XFRM by the guest's
297          * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
298          * '1' even on CPUs that don't support XSAVE.
299          */
300         best = cpuid_entry2_find(entries, nent, 0x12, 0x1);
301         if (best) {
302                 best->ecx &= guest_supported_xcr0 & 0xffffffff;
303                 best->edx &= guest_supported_xcr0 >> 32;
304                 best->ecx |= XFEATURE_MASK_FPSSE;
305         }
306 }
307
308 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
309 {
310         __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
311 }
312 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
313
314 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
315 {
316         struct kvm_cpuid_entry2 *entry;
317
318         entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
319                                   KVM_CPUID_INDEX_NOT_SIGNIFICANT);
320         return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
321 }
322
323 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
324 {
325         struct kvm_lapic *apic = vcpu->arch.apic;
326         struct kvm_cpuid_entry2 *best;
327         u64 guest_supported_xcr0;
328
329         best = kvm_find_cpuid_entry(vcpu, 1);
330         if (best && apic) {
331                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
332                         apic->lapic_timer.timer_mode_mask = 3 << 17;
333                 else
334                         apic->lapic_timer.timer_mode_mask = 1 << 17;
335
336                 kvm_apic_set_version(vcpu);
337         }
338
339         guest_supported_xcr0 =
340                 cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
341
342         vcpu->arch.guest_fpu.fpstate->user_xfeatures = guest_supported_xcr0;
343
344         kvm_update_pv_runtime(vcpu);
345
346         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
347         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
348
349         kvm_pmu_refresh(vcpu);
350         vcpu->arch.cr4_guest_rsvd_bits =
351             __cr4_reserved_bits(guest_cpuid_has, vcpu);
352
353         kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
354                                                     vcpu->arch.cpuid_nent));
355
356         /* Invoke the vendor callback only after the above state is updated. */
357         static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
358
359         /*
360          * Except for the MMU, which needs to do its thing any vendor specific
361          * adjustments to the reserved GPA bits.
362          */
363         kvm_mmu_after_set_cpuid(vcpu);
364 }
365
366 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
367 {
368         struct kvm_cpuid_entry2 *best;
369
370         best = kvm_find_cpuid_entry(vcpu, 0x80000000);
371         if (!best || best->eax < 0x80000008)
372                 goto not_found;
373         best = kvm_find_cpuid_entry(vcpu, 0x80000008);
374         if (best)
375                 return best->eax & 0xff;
376 not_found:
377         return 36;
378 }
379
380 /*
381  * This "raw" version returns the reserved GPA bits without any adjustments for
382  * encryption technologies that usurp bits.  The raw mask should be used if and
383  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
384  */
385 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
386 {
387         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
388 }
389
390 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
391                         int nent)
392 {
393         int r;
394
395         __kvm_update_cpuid_runtime(vcpu, e2, nent);
396
397         /*
398          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
399          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
400          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
401          * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
402          * the core vCPU model on the fly. It would've been better to forbid any
403          * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
404          * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
405          * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
406          * whether the supplied CPUID data is equal to what's already set.
407          */
408         if (vcpu->arch.last_vmentry_cpu != -1) {
409                 r = kvm_cpuid_check_equal(vcpu, e2, nent);
410                 if (r)
411                         return r;
412
413                 kvfree(e2);
414                 return 0;
415         }
416
417         if (kvm_cpuid_has_hyperv(e2, nent)) {
418                 r = kvm_hv_vcpu_init(vcpu);
419                 if (r)
420                         return r;
421         }
422
423         r = kvm_check_cpuid(vcpu, e2, nent);
424         if (r)
425                 return r;
426
427         kvfree(vcpu->arch.cpuid_entries);
428         vcpu->arch.cpuid_entries = e2;
429         vcpu->arch.cpuid_nent = nent;
430
431         kvm_update_kvm_cpuid_base(vcpu);
432         kvm_vcpu_after_set_cpuid(vcpu);
433
434         return 0;
435 }
436
437 /* when an old userspace process fills a new kernel module */
438 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
439                              struct kvm_cpuid *cpuid,
440                              struct kvm_cpuid_entry __user *entries)
441 {
442         int r, i;
443         struct kvm_cpuid_entry *e = NULL;
444         struct kvm_cpuid_entry2 *e2 = NULL;
445
446         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
447                 return -E2BIG;
448
449         if (cpuid->nent) {
450                 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
451                 if (IS_ERR(e))
452                         return PTR_ERR(e);
453
454                 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
455                 if (!e2) {
456                         r = -ENOMEM;
457                         goto out_free_cpuid;
458                 }
459         }
460         for (i = 0; i < cpuid->nent; i++) {
461                 e2[i].function = e[i].function;
462                 e2[i].eax = e[i].eax;
463                 e2[i].ebx = e[i].ebx;
464                 e2[i].ecx = e[i].ecx;
465                 e2[i].edx = e[i].edx;
466                 e2[i].index = 0;
467                 e2[i].flags = 0;
468                 e2[i].padding[0] = 0;
469                 e2[i].padding[1] = 0;
470                 e2[i].padding[2] = 0;
471         }
472
473         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
474         if (r)
475                 kvfree(e2);
476
477 out_free_cpuid:
478         kvfree(e);
479
480         return r;
481 }
482
483 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
484                               struct kvm_cpuid2 *cpuid,
485                               struct kvm_cpuid_entry2 __user *entries)
486 {
487         struct kvm_cpuid_entry2 *e2 = NULL;
488         int r;
489
490         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
491                 return -E2BIG;
492
493         if (cpuid->nent) {
494                 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
495                 if (IS_ERR(e2))
496                         return PTR_ERR(e2);
497         }
498
499         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
500         if (r)
501                 kvfree(e2);
502
503         return r;
504 }
505
506 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
507                               struct kvm_cpuid2 *cpuid,
508                               struct kvm_cpuid_entry2 __user *entries)
509 {
510         int r;
511
512         r = -E2BIG;
513         if (cpuid->nent < vcpu->arch.cpuid_nent)
514                 goto out;
515         r = -EFAULT;
516         if (copy_to_user(entries, vcpu->arch.cpuid_entries,
517                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
518                 goto out;
519         return 0;
520
521 out:
522         cpuid->nent = vcpu->arch.cpuid_nent;
523         return r;
524 }
525
526 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
527 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
528 {
529         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
530         struct kvm_cpuid_entry2 entry;
531
532         reverse_cpuid_check(leaf);
533
534         cpuid_count(cpuid.function, cpuid.index,
535                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
536
537         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
538 }
539
540 static __always_inline
541 void kvm_cpu_cap_init_scattered(enum kvm_only_cpuid_leafs leaf, u32 mask)
542 {
543         /* Use kvm_cpu_cap_mask for non-scattered leafs. */
544         BUILD_BUG_ON(leaf < NCAPINTS);
545
546         kvm_cpu_caps[leaf] = mask;
547
548         __kvm_cpu_cap_mask(leaf);
549 }
550
551 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
552 {
553         /* Use kvm_cpu_cap_init_scattered for scattered leafs. */
554         BUILD_BUG_ON(leaf >= NCAPINTS);
555
556         kvm_cpu_caps[leaf] &= mask;
557
558         __kvm_cpu_cap_mask(leaf);
559 }
560
561 void kvm_set_cpu_caps(void)
562 {
563 #ifdef CONFIG_X86_64
564         unsigned int f_gbpages = F(GBPAGES);
565         unsigned int f_lm = F(LM);
566         unsigned int f_xfd = F(XFD);
567 #else
568         unsigned int f_gbpages = 0;
569         unsigned int f_lm = 0;
570         unsigned int f_xfd = 0;
571 #endif
572         memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
573
574         BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
575                      sizeof(boot_cpu_data.x86_capability));
576
577         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
578                sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
579
580         kvm_cpu_cap_mask(CPUID_1_ECX,
581                 /*
582                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
583                  * advertised to guests via CPUID!
584                  */
585                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
586                 0 /* DS-CPL, VMX, SMX, EST */ |
587                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
588                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
589                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
590                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
591                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
592                 F(F16C) | F(RDRAND)
593         );
594         /* KVM emulates x2apic in software irrespective of host support. */
595         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
596
597         kvm_cpu_cap_mask(CPUID_1_EDX,
598                 F(FPU) | F(VME) | F(DE) | F(PSE) |
599                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
600                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
601                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
602                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
603                 0 /* Reserved, DS, ACPI */ | F(MMX) |
604                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
605                 0 /* HTT, TM, Reserved, PBE */
606         );
607
608         kvm_cpu_cap_mask(CPUID_7_0_EBX,
609                 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
610                 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
611                 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
612                 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
613                 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
614                 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
615                 F(AVX512VL));
616
617         kvm_cpu_cap_mask(CPUID_7_ECX,
618                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
619                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
620                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
621                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
622                 F(SGX_LC) | F(BUS_LOCK_DETECT)
623         );
624         /* Set LA57 based on hardware capability. */
625         if (cpuid_ecx(7) & F(LA57))
626                 kvm_cpu_cap_set(X86_FEATURE_LA57);
627
628         /*
629          * PKU not yet implemented for shadow paging and requires OSPKE
630          * to be set on the host. Clear it if that is not the case
631          */
632         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
633                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
634
635         kvm_cpu_cap_mask(CPUID_7_EDX,
636                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
637                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
638                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
639                 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
640                 F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16)
641         );
642
643         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
644         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
645         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
646
647         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
648                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
649         if (boot_cpu_has(X86_FEATURE_STIBP))
650                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
651         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
652                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
653
654         kvm_cpu_cap_mask(CPUID_7_1_EAX,
655                 F(AVX_VNNI) | F(AVX512_BF16)
656         );
657
658         kvm_cpu_cap_mask(CPUID_D_1_EAX,
659                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
660         );
661
662         kvm_cpu_cap_init_scattered(CPUID_12_EAX,
663                 SF(SGX1) | SF(SGX2)
664         );
665
666         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
667                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
668                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
669                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
670                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
671                 F(TOPOEXT) | 0 /* PERFCTR_CORE */
672         );
673
674         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
675                 F(FPU) | F(VME) | F(DE) | F(PSE) |
676                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
677                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
678                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
679                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
680                 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
681                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
682                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
683         );
684
685         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
686                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
687
688         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
689                 F(CLZERO) | F(XSAVEERPTR) |
690                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
691                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
692                 __feature_bit(KVM_X86_FEATURE_PSFD)
693         );
694
695         /*
696          * AMD has separate bits for each SPEC_CTRL bit.
697          * arch/x86/kernel/cpu/bugs.c is kind enough to
698          * record that in cpufeatures so use them.
699          */
700         if (boot_cpu_has(X86_FEATURE_IBPB))
701                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
702         if (boot_cpu_has(X86_FEATURE_IBRS))
703                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
704         if (boot_cpu_has(X86_FEATURE_STIBP))
705                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
706         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
707                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
708         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
709                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
710         /*
711          * The preference is to use SPEC CTRL MSR instead of the
712          * VIRT_SPEC MSR.
713          */
714         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
715             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
716                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
717
718         /*
719          * Hide all SVM features by default, SVM will set the cap bits for
720          * features it emulates and/or exposes for L1.
721          */
722         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
723
724         kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
725                 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
726                 F(SME_COHERENT));
727
728         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
729                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
730                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
731                 F(PMM) | F(PMM_EN)
732         );
733
734         /*
735          * Hide RDTSCP and RDPID if either feature is reported as supported but
736          * probing MSR_TSC_AUX failed.  This is purely a sanity check and
737          * should never happen, but the guest will likely crash if RDTSCP or
738          * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
739          * the past.  For example, the sanity check may fire if this instance of
740          * KVM is running as L1 on top of an older, broken KVM.
741          */
742         if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
743                      kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
744                      !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
745                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
746                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
747         }
748 }
749 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
750
751 struct kvm_cpuid_array {
752         struct kvm_cpuid_entry2 *entries;
753         int maxnent;
754         int nent;
755 };
756
757 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
758                                               u32 function, u32 index)
759 {
760         struct kvm_cpuid_entry2 *entry;
761
762         if (array->nent >= array->maxnent)
763                 return NULL;
764
765         entry = &array->entries[array->nent++];
766
767         memset(entry, 0, sizeof(*entry));
768         entry->function = function;
769         entry->index = index;
770         switch (function & 0xC0000000) {
771         case 0x40000000:
772                 /* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
773                 return entry;
774
775         case 0x80000000:
776                 /*
777                  * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
778                  * would result in out-of-bounds calls to do_host_cpuid.
779                  */
780                 {
781                         static int max_cpuid_80000000;
782                         if (!READ_ONCE(max_cpuid_80000000))
783                                 WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
784                         if (function > READ_ONCE(max_cpuid_80000000))
785                                 return entry;
786                 }
787                 break;
788
789         default:
790                 break;
791         }
792
793         cpuid_count(entry->function, entry->index,
794                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
795
796         if (cpuid_function_is_indexed(function))
797                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
798
799         return entry;
800 }
801
802 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
803 {
804         struct kvm_cpuid_entry2 *entry;
805
806         if (array->nent >= array->maxnent)
807                 return -E2BIG;
808
809         entry = &array->entries[array->nent];
810         entry->function = func;
811         entry->index = 0;
812         entry->flags = 0;
813
814         switch (func) {
815         case 0:
816                 entry->eax = 7;
817                 ++array->nent;
818                 break;
819         case 1:
820                 entry->ecx = F(MOVBE);
821                 ++array->nent;
822                 break;
823         case 7:
824                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
825                 entry->eax = 0;
826                 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
827                         entry->ecx = F(RDPID);
828                 ++array->nent;
829                 break;
830         default:
831                 break;
832         }
833
834         return 0;
835 }
836
837 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
838 {
839         struct kvm_cpuid_entry2 *entry;
840         int r, i, max_idx;
841
842         /* all calls to cpuid_count() should be made on the same cpu */
843         get_cpu();
844
845         r = -E2BIG;
846
847         entry = do_host_cpuid(array, function, 0);
848         if (!entry)
849                 goto out;
850
851         switch (function) {
852         case 0:
853                 /* Limited to the highest leaf implemented in KVM. */
854                 entry->eax = min(entry->eax, 0x1fU);
855                 break;
856         case 1:
857                 cpuid_entry_override(entry, CPUID_1_EDX);
858                 cpuid_entry_override(entry, CPUID_1_ECX);
859                 break;
860         case 2:
861                 /*
862                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
863                  * CPUID(function=2, index=0) may return different results each
864                  * time, with the least-significant byte in EAX enumerating the
865                  * number of times software should do CPUID(2, 0).
866                  *
867                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
868                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
869                  * return 01H. Software should ignore this value and not
870                  * interpret it as an informational descriptor", while AMD's
871                  * APM states that CPUID(2) is reserved.
872                  *
873                  * WARN if a frankenstein CPU that supports virtualization and
874                  * a stateful CPUID.0x2 is encountered.
875                  */
876                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
877                 break;
878         /* functions 4 and 0x8000001d have additional index. */
879         case 4:
880         case 0x8000001d:
881                 /*
882                  * Read entries until the cache type in the previous entry is
883                  * zero, i.e. indicates an invalid entry.
884                  */
885                 for (i = 1; entry->eax & 0x1f; ++i) {
886                         entry = do_host_cpuid(array, function, i);
887                         if (!entry)
888                                 goto out;
889                 }
890                 break;
891         case 6: /* Thermal management */
892                 entry->eax = 0x4; /* allow ARAT */
893                 entry->ebx = 0;
894                 entry->ecx = 0;
895                 entry->edx = 0;
896                 break;
897         /* function 7 has additional index. */
898         case 7:
899                 entry->eax = min(entry->eax, 1u);
900                 cpuid_entry_override(entry, CPUID_7_0_EBX);
901                 cpuid_entry_override(entry, CPUID_7_ECX);
902                 cpuid_entry_override(entry, CPUID_7_EDX);
903
904                 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
905                 if (entry->eax == 1) {
906                         entry = do_host_cpuid(array, function, 1);
907                         if (!entry)
908                                 goto out;
909
910                         cpuid_entry_override(entry, CPUID_7_1_EAX);
911                         entry->ebx = 0;
912                         entry->ecx = 0;
913                         entry->edx = 0;
914                 }
915                 break;
916         case 9:
917                 break;
918         case 0xa: { /* Architectural Performance Monitoring */
919                 union cpuid10_eax eax;
920                 union cpuid10_edx edx;
921
922                 if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
923                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
924                         break;
925                 }
926
927                 eax.split.version_id = kvm_pmu_cap.version;
928                 eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
929                 eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
930                 eax.split.mask_length = kvm_pmu_cap.events_mask_len;
931                 edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
932                 edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
933
934                 if (kvm_pmu_cap.version)
935                         edx.split.anythread_deprecated = 1;
936                 edx.split.reserved1 = 0;
937                 edx.split.reserved2 = 0;
938
939                 entry->eax = eax.full;
940                 entry->ebx = kvm_pmu_cap.events_mask;
941                 entry->ecx = 0;
942                 entry->edx = edx.full;
943                 break;
944         }
945         /*
946          * Per Intel's SDM, the 0x1f is a superset of 0xb,
947          * thus they can be handled by common code.
948          */
949         case 0x1f:
950         case 0xb:
951                 /*
952                  * Populate entries until the level type (ECX[15:8]) of the
953                  * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
954                  * the starting entry, filled by the primary do_host_cpuid().
955                  */
956                 for (i = 1; entry->ecx & 0xff00; ++i) {
957                         entry = do_host_cpuid(array, function, i);
958                         if (!entry)
959                                 goto out;
960                 }
961                 break;
962         case 0xd: {
963                 u64 permitted_xcr0 = kvm_caps.supported_xcr0 & xstate_get_guest_group_perm();
964                 u64 permitted_xss = kvm_caps.supported_xss;
965
966                 entry->eax &= permitted_xcr0;
967                 entry->ebx = xstate_required_size(permitted_xcr0, false);
968                 entry->ecx = entry->ebx;
969                 entry->edx &= permitted_xcr0 >> 32;
970                 if (!permitted_xcr0)
971                         break;
972
973                 entry = do_host_cpuid(array, function, 1);
974                 if (!entry)
975                         goto out;
976
977                 cpuid_entry_override(entry, CPUID_D_1_EAX);
978                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
979                         entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
980                                                           true);
981                 else {
982                         WARN_ON_ONCE(permitted_xss != 0);
983                         entry->ebx = 0;
984                 }
985                 entry->ecx &= permitted_xss;
986                 entry->edx &= permitted_xss >> 32;
987
988                 for (i = 2; i < 64; ++i) {
989                         bool s_state;
990                         if (permitted_xcr0 & BIT_ULL(i))
991                                 s_state = false;
992                         else if (permitted_xss & BIT_ULL(i))
993                                 s_state = true;
994                         else
995                                 continue;
996
997                         entry = do_host_cpuid(array, function, i);
998                         if (!entry)
999                                 goto out;
1000
1001                         /*
1002                          * The supported check above should have filtered out
1003                          * invalid sub-leafs.  Only valid sub-leafs should
1004                          * reach this point, and they should have a non-zero
1005                          * save state size.  Furthermore, check whether the
1006                          * processor agrees with permitted_xcr0/permitted_xss
1007                          * on whether this is an XCR0- or IA32_XSS-managed area.
1008                          */
1009                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1010                                 --array->nent;
1011                                 continue;
1012                         }
1013
1014                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1015                                 entry->ecx &= ~BIT_ULL(2);
1016                         entry->edx = 0;
1017                 }
1018                 break;
1019         }
1020         case 0x12:
1021                 /* Intel SGX */
1022                 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1023                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1024                         break;
1025                 }
1026
1027                 /*
1028                  * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1029                  * and max enclave sizes.   The SGX sub-features and MISCSELECT
1030                  * are restricted by kernel and KVM capabilities (like most
1031                  * feature flags), while enclave size is unrestricted.
1032                  */
1033                 cpuid_entry_override(entry, CPUID_12_EAX);
1034                 entry->ebx &= SGX_MISC_EXINFO;
1035
1036                 entry = do_host_cpuid(array, function, 1);
1037                 if (!entry)
1038                         goto out;
1039
1040                 /*
1041                  * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1042                  * feature flags.  Advertise all supported flags, including
1043                  * privileged attributes that require explicit opt-in from
1044                  * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1045                  * expected to derive it from supported XCR0.
1046                  */
1047                 entry->eax &= SGX_ATTR_DEBUG | SGX_ATTR_MODE64BIT |
1048                               SGX_ATTR_PROVISIONKEY | SGX_ATTR_EINITTOKENKEY |
1049                               SGX_ATTR_KSS;
1050                 entry->ebx &= 0;
1051                 break;
1052         /* Intel PT */
1053         case 0x14:
1054                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1055                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1056                         break;
1057                 }
1058
1059                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1060                         if (!do_host_cpuid(array, function, i))
1061                                 goto out;
1062                 }
1063                 break;
1064         /* Intel AMX TILE */
1065         case 0x1d:
1066                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1067                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1068                         break;
1069                 }
1070
1071                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1072                         if (!do_host_cpuid(array, function, i))
1073                                 goto out;
1074                 }
1075                 break;
1076         case 0x1e: /* TMUL information */
1077                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1078                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1079                         break;
1080                 }
1081                 break;
1082         case KVM_CPUID_SIGNATURE: {
1083                 const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1084                 entry->eax = KVM_CPUID_FEATURES;
1085                 entry->ebx = sigptr[0];
1086                 entry->ecx = sigptr[1];
1087                 entry->edx = sigptr[2];
1088                 break;
1089         }
1090         case KVM_CPUID_FEATURES:
1091                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1092                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
1093                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
1094                              (1 << KVM_FEATURE_ASYNC_PF) |
1095                              (1 << KVM_FEATURE_PV_EOI) |
1096                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1097                              (1 << KVM_FEATURE_PV_UNHALT) |
1098                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1099                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1100                              (1 << KVM_FEATURE_PV_SEND_IPI) |
1101                              (1 << KVM_FEATURE_POLL_CONTROL) |
1102                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1103                              (1 << KVM_FEATURE_ASYNC_PF_INT);
1104
1105                 if (sched_info_on())
1106                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1107
1108                 entry->ebx = 0;
1109                 entry->ecx = 0;
1110                 entry->edx = 0;
1111                 break;
1112         case 0x80000000:
1113                 entry->eax = min(entry->eax, 0x80000021);
1114                 /*
1115                  * Serializing LFENCE is reported in a multitude of ways, and
1116                  * NullSegClearsBase is not reported in CPUID on Zen2; help
1117                  * userspace by providing the CPUID leaf ourselves.
1118                  *
1119                  * However, only do it if the host has CPUID leaf 0x8000001d.
1120                  * QEMU thinks that it can query the host blindly for that
1121                  * CPUID leaf if KVM reports that it supports 0x8000001d or
1122                  * above.  The processor merrily returns values from the
1123                  * highest Intel leaf which QEMU tries to use as the guest's
1124                  * 0x8000001d.  Even worse, this can result in an infinite
1125                  * loop if said highest leaf has no subleaves indexed by ECX.
1126                  */
1127                 if (entry->eax >= 0x8000001d &&
1128                     (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1129                      || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1130                         entry->eax = max(entry->eax, 0x80000021);
1131                 break;
1132         case 0x80000001:
1133                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1134                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1135                 break;
1136         case 0x80000006:
1137                 /* L2 cache and TLB: pass through host info. */
1138                 break;
1139         case 0x80000007: /* Advanced power management */
1140                 /* invariant TSC is CPUID.80000007H:EDX[8] */
1141                 entry->edx &= (1 << 8);
1142                 /* mask against host */
1143                 entry->edx &= boot_cpu_data.x86_power;
1144                 entry->eax = entry->ebx = entry->ecx = 0;
1145                 break;
1146         case 0x80000008: {
1147                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1148                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1149                 unsigned phys_as = entry->eax & 0xff;
1150
1151                 /*
1152                  * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1153                  * the guest operates in the same PA space as the host, i.e.
1154                  * reductions in MAXPHYADDR for memory encryption affect shadow
1155                  * paging, too.
1156                  *
1157                  * If TDP is enabled but an explicit guest MAXPHYADDR is not
1158                  * provided, use the raw bare metal MAXPHYADDR as reductions to
1159                  * the HPAs do not affect GPAs.
1160                  */
1161                 if (!tdp_enabled)
1162                         g_phys_as = boot_cpu_data.x86_phys_bits;
1163                 else if (!g_phys_as)
1164                         g_phys_as = phys_as;
1165
1166                 entry->eax = g_phys_as | (virt_as << 8);
1167                 entry->edx = 0;
1168                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1169                 break;
1170         }
1171         case 0x8000000A:
1172                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1173                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1174                         break;
1175                 }
1176                 entry->eax = 1; /* SVM revision 1 */
1177                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1178                                    ASID emulation to nested SVM */
1179                 entry->ecx = 0; /* Reserved */
1180                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1181                 break;
1182         case 0x80000019:
1183                 entry->ecx = entry->edx = 0;
1184                 break;
1185         case 0x8000001a:
1186         case 0x8000001e:
1187                 break;
1188         case 0x8000001F:
1189                 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1190                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1191                 } else {
1192                         cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1193
1194                         /*
1195                          * Enumerate '0' for "PA bits reduction", the adjusted
1196                          * MAXPHYADDR is enumerated directly (see 0x80000008).
1197                          */
1198                         entry->ebx &= ~GENMASK(11, 6);
1199                 }
1200                 break;
1201         case 0x80000020:
1202                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1203                 break;
1204         case 0x80000021:
1205                 entry->ebx = entry->ecx = entry->edx = 0;
1206                 /*
1207                  * Pass down these bits:
1208                  *    EAX      0      NNDBP, Processor ignores nested data breakpoints
1209                  *    EAX      2      LAS, LFENCE always serializing
1210                  *    EAX      6      NSCB, Null selector clear base
1211                  *
1212                  * Other defined bits are for MSRs that KVM does not expose:
1213                  *   EAX      3      SPCL, SMM page configuration lock
1214                  *   EAX      13     PCMSR, Prefetch control MSR
1215                  */
1216                 entry->eax &= BIT(0) | BIT(2) | BIT(6);
1217                 if (static_cpu_has(X86_FEATURE_LFENCE_RDTSC))
1218                         entry->eax |= BIT(2);
1219                 if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
1220                         entry->eax |= BIT(6);
1221                 break;
1222         /*Add support for Centaur's CPUID instruction*/
1223         case 0xC0000000:
1224                 /*Just support up to 0xC0000004 now*/
1225                 entry->eax = min(entry->eax, 0xC0000004);
1226                 break;
1227         case 0xC0000001:
1228                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1229                 break;
1230         case 3: /* Processor serial number */
1231         case 5: /* MONITOR/MWAIT */
1232         case 0xC0000002:
1233         case 0xC0000003:
1234         case 0xC0000004:
1235         default:
1236                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1237                 break;
1238         }
1239
1240         r = 0;
1241
1242 out:
1243         put_cpu();
1244
1245         return r;
1246 }
1247
1248 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1249                          unsigned int type)
1250 {
1251         if (type == KVM_GET_EMULATED_CPUID)
1252                 return __do_cpuid_func_emulated(array, func);
1253
1254         return __do_cpuid_func(array, func);
1255 }
1256
1257 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1258
1259 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1260                           unsigned int type)
1261 {
1262         u32 limit;
1263         int r;
1264
1265         if (func == CENTAUR_CPUID_SIGNATURE &&
1266             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1267                 return 0;
1268
1269         r = do_cpuid_func(array, func, type);
1270         if (r)
1271                 return r;
1272
1273         limit = array->entries[array->nent - 1].eax;
1274         for (func = func + 1; func <= limit; ++func) {
1275                 r = do_cpuid_func(array, func, type);
1276                 if (r)
1277                         break;
1278         }
1279
1280         return r;
1281 }
1282
1283 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1284                                  __u32 num_entries, unsigned int ioctl_type)
1285 {
1286         int i;
1287         __u32 pad[3];
1288
1289         if (ioctl_type != KVM_GET_EMULATED_CPUID)
1290                 return false;
1291
1292         /*
1293          * We want to make sure that ->padding is being passed clean from
1294          * userspace in case we want to use it for something in the future.
1295          *
1296          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1297          * have to give ourselves satisfied only with the emulated side. /me
1298          * sheds a tear.
1299          */
1300         for (i = 0; i < num_entries; i++) {
1301                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1302                         return true;
1303
1304                 if (pad[0] || pad[1] || pad[2])
1305                         return true;
1306         }
1307         return false;
1308 }
1309
1310 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1311                             struct kvm_cpuid_entry2 __user *entries,
1312                             unsigned int type)
1313 {
1314         static const u32 funcs[] = {
1315                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1316         };
1317
1318         struct kvm_cpuid_array array = {
1319                 .nent = 0,
1320         };
1321         int r, i;
1322
1323         if (cpuid->nent < 1)
1324                 return -E2BIG;
1325         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1326                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1327
1328         if (sanity_check_entries(entries, cpuid->nent, type))
1329                 return -EINVAL;
1330
1331         array.entries = kvcalloc(sizeof(struct kvm_cpuid_entry2), cpuid->nent, GFP_KERNEL);
1332         if (!array.entries)
1333                 return -ENOMEM;
1334
1335         array.maxnent = cpuid->nent;
1336
1337         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1338                 r = get_cpuid_func(&array, funcs[i], type);
1339                 if (r)
1340                         goto out_free;
1341         }
1342         cpuid->nent = array.nent;
1343
1344         if (copy_to_user(entries, array.entries,
1345                          array.nent * sizeof(struct kvm_cpuid_entry2)))
1346                 r = -EFAULT;
1347
1348 out_free:
1349         kvfree(array.entries);
1350         return r;
1351 }
1352
1353 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1354                                                     u32 function, u32 index)
1355 {
1356         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1357                                  function, index);
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1360
1361 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1362                                               u32 function)
1363 {
1364         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1365                                  function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1366 }
1367 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1368
1369 /*
1370  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1371  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1372  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1373  * range.  Centaur/VIA follows Intel semantics.
1374  *
1375  * A leaf is considered out-of-range if its function is higher than the maximum
1376  * supported leaf of its associated class or if its associated class does not
1377  * exist.
1378  *
1379  * There are three primary classes to be considered, with their respective
1380  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1381  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1382  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1383  *
1384  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1385  *  - Hypervisor: 0x40000000 - 0x4fffffff
1386  *  - Extended:   0x80000000 - 0xbfffffff
1387  *  - Centaur:    0xc0000000 - 0xcfffffff
1388  *
1389  * The Hypervisor class is further subdivided into sub-classes that each act as
1390  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1391  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1392  * CPUID sub-classes are:
1393  *
1394  *  - HyperV:     0x40000000 - 0x400000ff
1395  *  - KVM:        0x40000100 - 0x400001ff
1396  */
1397 static struct kvm_cpuid_entry2 *
1398 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1399 {
1400         struct kvm_cpuid_entry2 *basic, *class;
1401         u32 function = *fn_ptr;
1402
1403         basic = kvm_find_cpuid_entry(vcpu, 0);
1404         if (!basic)
1405                 return NULL;
1406
1407         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1408             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1409                 return NULL;
1410
1411         if (function >= 0x40000000 && function <= 0x4fffffff)
1412                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1413         else if (function >= 0xc0000000)
1414                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1415         else
1416                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1417
1418         if (class && function <= class->eax)
1419                 return NULL;
1420
1421         /*
1422          * Leaf specific adjustments are also applied when redirecting to the
1423          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1424          * entry for CPUID.0xb.index (see below), then the output value for EDX
1425          * needs to be pulled from CPUID.0xb.1.
1426          */
1427         *fn_ptr = basic->eax;
1428
1429         /*
1430          * The class does not exist or the requested function is out of range;
1431          * the effective CPUID entry is the max basic leaf.  Note, the index of
1432          * the original requested leaf is observed!
1433          */
1434         return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1435 }
1436
1437 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1438                u32 *ecx, u32 *edx, bool exact_only)
1439 {
1440         u32 orig_function = *eax, function = *eax, index = *ecx;
1441         struct kvm_cpuid_entry2 *entry;
1442         bool exact, used_max_basic = false;
1443
1444         entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1445         exact = !!entry;
1446
1447         if (!entry && !exact_only) {
1448                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1449                 used_max_basic = !!entry;
1450         }
1451
1452         if (entry) {
1453                 *eax = entry->eax;
1454                 *ebx = entry->ebx;
1455                 *ecx = entry->ecx;
1456                 *edx = entry->edx;
1457                 if (function == 7 && index == 0) {
1458                         u64 data;
1459                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1460                             (data & TSX_CTRL_CPUID_CLEAR))
1461                                 *ebx &= ~(F(RTM) | F(HLE));
1462                 }
1463         } else {
1464                 *eax = *ebx = *ecx = *edx = 0;
1465                 /*
1466                  * When leaf 0BH or 1FH is defined, CL is pass-through
1467                  * and EDX is always the x2APIC ID, even for undefined
1468                  * subleaves. Index 1 will exist iff the leaf is
1469                  * implemented, so we pass through CL iff leaf 1
1470                  * exists. EDX can be copied from any existing index.
1471                  */
1472                 if (function == 0xb || function == 0x1f) {
1473                         entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1474                         if (entry) {
1475                                 *ecx = index & 0xff;
1476                                 *edx = entry->edx;
1477                         }
1478                 }
1479         }
1480         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1481                         used_max_basic);
1482         return exact;
1483 }
1484 EXPORT_SYMBOL_GPL(kvm_cpuid);
1485
1486 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1487 {
1488         u32 eax, ebx, ecx, edx;
1489
1490         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1491                 return 1;
1492
1493         eax = kvm_rax_read(vcpu);
1494         ecx = kvm_rcx_read(vcpu);
1495         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1496         kvm_rax_write(vcpu, eax);
1497         kvm_rbx_write(vcpu, ebx);
1498         kvm_rcx_write(vcpu, ecx);
1499         kvm_rdx_write(vcpu, edx);
1500         return kvm_skip_emulated_instruction(vcpu);
1501 }
1502 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);