1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 1995 Linus Torvalds
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
11 * CPU hotplug support - ashok.raj@intel.com
15 * This file handles the architecture-dependent parts of process handling..
18 #include <linux/cpu.h>
19 #include <linux/errno.h>
20 #include <linux/sched.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
24 #include <linux/kernel.h>
26 #include <linux/elfcore.h>
27 #include <linux/smp.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/export.h>
33 #include <linux/ptrace.h>
34 #include <linux/notifier.h>
35 #include <linux/kprobes.h>
36 #include <linux/kdebug.h>
37 #include <linux/prctl.h>
38 #include <linux/uaccess.h>
40 #include <linux/ftrace.h>
41 #include <linux/syscalls.h>
42 #include <linux/iommu.h>
44 #include <asm/processor.h>
46 #include <asm/fpu/sched.h>
47 #include <asm/mmu_context.h>
48 #include <asm/prctl.h>
50 #include <asm/proto.h>
52 #include <asm/debugreg.h>
53 #include <asm/switch_to.h>
54 #include <asm/xen/hypervisor.h>
56 #include <asm/resctrl.h>
57 #include <asm/unistd.h>
58 #include <asm/fsgsbase.h>
61 #ifdef CONFIG_IA32_EMULATION
62 /* Not included via unistd.h */
63 #include <asm/unistd_32_ia32.h>
68 /* Prints also some state that isn't saved in the pt_regs */
69 void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
72 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
73 unsigned long d0, d1, d2, d3, d6, d7;
74 unsigned int fsindex, gsindex;
77 show_iret_regs(regs, log_lvl);
79 if (regs->orig_ax != -1)
80 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
84 printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
85 log_lvl, regs->ax, regs->bx, regs->cx);
86 printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
87 log_lvl, regs->dx, regs->si, regs->di);
88 printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
89 log_lvl, regs->bp, regs->r8, regs->r9);
90 printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
91 log_lvl, regs->r10, regs->r11, regs->r12);
92 printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
93 log_lvl, regs->r13, regs->r14, regs->r15);
95 if (mode == SHOW_REGS_SHORT)
98 if (mode == SHOW_REGS_USER) {
99 rdmsrq(MSR_FS_BASE, fs);
100 rdmsrq(MSR_KERNEL_GS_BASE, shadowgs);
101 printk("%sFS: %016lx GS: %016lx\n",
102 log_lvl, fs, shadowgs);
106 asm("movl %%ds,%0" : "=r" (ds));
107 asm("movl %%es,%0" : "=r" (es));
108 asm("movl %%fs,%0" : "=r" (fsindex));
109 asm("movl %%gs,%0" : "=r" (gsindex));
111 rdmsrq(MSR_FS_BASE, fs);
112 rdmsrq(MSR_GS_BASE, gs);
113 rdmsrq(MSR_KERNEL_GS_BASE, shadowgs);
120 printk("%sFS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
121 log_lvl, fs, fsindex, gs, gsindex, shadowgs);
122 printk("%sCS: %04x DS: %04x ES: %04x CR0: %016lx\n",
123 log_lvl, regs->cs, ds, es, cr0);
124 printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
125 log_lvl, cr2, cr3, cr4);
134 /* Only print out debug registers if they are in their non-default state. */
135 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
136 (d6 == DR6_RESERVED) && (d7 == DR7_FIXED_1))) {
137 printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
138 log_lvl, d0, d1, d2);
139 printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
140 log_lvl, d3, d6, d7);
143 if (cr4 & X86_CR4_PKE)
144 printk("%sPKRU: %08x\n", log_lvl, read_pkru());
147 void release_thread(struct task_struct *dead_task)
149 WARN_ON(dead_task->mm);
152 enum which_selector {
158 * Out of line to be protected from kprobes and tracing. If this would be
159 * traced or probed than any access to a per CPU variable happens with
162 * It is not used on Xen paravirt. When paravirt support is needed, it
163 * needs to be renamed with native_ prefix.
165 static noinstr unsigned long __rdgsbase_inactive(void)
167 unsigned long gsbase;
169 lockdep_assert_irqs_disabled();
172 * SWAPGS is no longer needed thus NOT allowed with FRED because
173 * FRED transitions ensure that an operating system can _always_
174 * operate with its own GS base address:
175 * - For events that occur in ring 3, FRED event delivery swaps
176 * the GS base address with the IA32_KERNEL_GS_BASE MSR.
177 * - ERETU (the FRED transition that returns to ring 3) also swaps
178 * the GS base address with the IA32_KERNEL_GS_BASE MSR.
180 * And the operating system can still setup the GS segment for a
181 * user thread without the need of loading a user thread GS with:
182 * - Using LKGS, available with FRED, to modify other attributes
183 * of the GS segment without compromising its ability always to
184 * operate with its own GS base address.
185 * - Accessing the GS segment base address for a user thread as
186 * before using RDMSR or WRMSR on the IA32_KERNEL_GS_BASE MSR.
188 * Note, LKGS loads the GS base address into the IA32_KERNEL_GS_BASE
189 * MSR instead of the GS segment’s descriptor cache. As such, the
190 * operating system never changes its runtime GS base address.
192 if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
193 !cpu_feature_enabled(X86_FEATURE_XENPV)) {
198 instrumentation_begin();
199 rdmsrq(MSR_KERNEL_GS_BASE, gsbase);
200 instrumentation_end();
207 * Out of line to be protected from kprobes and tracing. If this would be
208 * traced or probed than any access to a per CPU variable happens with
211 * It is not used on Xen paravirt. When paravirt support is needed, it
212 * needs to be renamed with native_ prefix.
214 static noinstr void __wrgsbase_inactive(unsigned long gsbase)
216 lockdep_assert_irqs_disabled();
218 if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
219 !cpu_feature_enabled(X86_FEATURE_XENPV)) {
224 instrumentation_begin();
225 wrmsrq(MSR_KERNEL_GS_BASE, gsbase);
226 instrumentation_end();
231 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
232 * not available. The goal is to be reasonably fast on non-FSGSBASE systems.
233 * It's forcibly inlined because it'll generate better code and this function
236 static __always_inline void save_base_legacy(struct task_struct *prev_p,
237 unsigned short selector,
238 enum which_selector which)
240 if (likely(selector == 0)) {
242 * On Intel (without X86_BUG_NULL_SEG), the segment base could
243 * be the pre-existing saved base or it could be zero. On AMD
244 * (with X86_BUG_NULL_SEG), the segment base could be almost
247 * This branch is very hot (it's hit twice on almost every
248 * context switch between 64-bit programs), and avoiding
249 * the RDMSR helps a lot, so we just assume that whatever
250 * value is already saved is correct. This matches historical
251 * Linux behavior, so it won't break existing applications.
253 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
254 * report that the base is zero, it needs to actually be zero:
255 * see the corresponding logic in load_seg_legacy.
259 * If the selector is 1, 2, or 3, then the base is zero on
260 * !X86_BUG_NULL_SEG CPUs and could be anything on
261 * X86_BUG_NULL_SEG CPUs. In the latter case, Linux
262 * has never attempted to preserve the base across context
265 * If selector > 3, then it refers to a real segment, and
266 * saving the base isn't necessary.
269 prev_p->thread.fsbase = 0;
271 prev_p->thread.gsbase = 0;
275 static __always_inline void save_fsgs(struct task_struct *task)
277 savesegment(fs, task->thread.fsindex);
278 savesegment(gs, task->thread.gsindex);
279 if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
281 * If FSGSBASE is enabled, we can't make any useful guesses
282 * about the base, and user code expects us to save the current
283 * value. Fortunately, reading the base directly is efficient.
285 task->thread.fsbase = rdfsbase();
286 task->thread.gsbase = __rdgsbase_inactive();
288 save_base_legacy(task, task->thread.fsindex, FS);
289 save_base_legacy(task, task->thread.gsindex, GS);
294 * While a process is running,current->thread.fsbase and current->thread.gsbase
295 * may not match the corresponding CPU registers (see save_base_legacy()).
297 void current_save_fsgs(void)
301 /* Interrupts need to be off for FSGSBASE */
302 local_irq_save(flags);
304 local_irq_restore(flags);
306 #if IS_ENABLED(CONFIG_KVM)
307 EXPORT_SYMBOL_GPL(current_save_fsgs);
310 static __always_inline void loadseg(enum which_selector which,
314 loadsegment(fs, sel);
319 static __always_inline void load_seg_legacy(unsigned short prev_index,
320 unsigned long prev_base,
321 unsigned short next_index,
322 unsigned long next_base,
323 enum which_selector which)
325 if (likely(next_index <= 3)) {
327 * The next task is using 64-bit TLS, is not using this
328 * segment at all, or is having fun with arcane CPU features.
330 if (next_base == 0) {
332 * Nasty case: on AMD CPUs, we need to forcibly zero
335 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
336 loadseg(which, __USER_DS);
337 loadseg(which, next_index);
340 * We could try to exhaustively detect cases
341 * under which we can skip the segment load,
342 * but there's really only one case that matters
343 * for performance: if both the previous and
344 * next states are fully zeroed, we can skip
347 * (This assumes that prev_base == 0 has no
348 * false positives. This is the case on
351 if (likely(prev_index | next_index | prev_base))
352 loadseg(which, next_index);
355 if (prev_index != next_index)
356 loadseg(which, next_index);
357 wrmsrq(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
362 * The next task is using a real segment. Loading the selector
365 loadseg(which, next_index);
370 * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
371 * is not XSTATE managed on context switch because that would require a
372 * lookup in the task's FPU xsave buffer and require to keep that updated
375 static __always_inline void x86_pkru_load(struct thread_struct *prev,
376 struct thread_struct *next)
378 if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
381 /* Stash the prev task's value: */
382 prev->pkru = rdpkru();
385 * PKRU writes are slightly expensive. Avoid them when not
386 * strictly necessary:
388 if (prev->pkru != next->pkru)
392 static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
393 struct thread_struct *next)
395 if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
396 /* Update the FS and GS selectors if they could have changed. */
397 if (unlikely(prev->fsindex || next->fsindex))
398 loadseg(FS, next->fsindex);
399 if (unlikely(prev->gsindex || next->gsindex))
400 loadseg(GS, next->gsindex);
402 /* Update the bases. */
403 wrfsbase(next->fsbase);
404 __wrgsbase_inactive(next->gsbase);
406 load_seg_legacy(prev->fsindex, prev->fsbase,
407 next->fsindex, next->fsbase, FS);
408 load_seg_legacy(prev->gsindex, prev->gsbase,
409 next->gsindex, next->gsbase, GS);
413 unsigned long x86_fsgsbase_read_task(struct task_struct *task,
414 unsigned short selector)
416 unsigned short idx = selector >> 3;
419 if (likely((selector & SEGMENT_TI_MASK) == 0)) {
420 if (unlikely(idx >= GDT_ENTRIES))
424 * There are no user segments in the GDT with nonzero bases
425 * other than the TLS segments.
427 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
430 idx -= GDT_ENTRY_TLS_MIN;
431 base = get_desc_base(&task->thread.tls_array[idx]);
433 #ifdef CONFIG_MODIFY_LDT_SYSCALL
434 struct ldt_struct *ldt;
437 * If performance here mattered, we could protect the LDT
438 * with RCU. This is a slow path, though, so we can just
441 mutex_lock(&task->mm->context.lock);
442 ldt = task->mm->context.ldt;
443 if (unlikely(!ldt || idx >= ldt->nr_entries))
446 base = get_desc_base(ldt->entries + idx);
447 mutex_unlock(&task->mm->context.lock);
456 unsigned long x86_gsbase_read_cpu_inactive(void)
458 unsigned long gsbase;
460 if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
463 local_irq_save(flags);
464 gsbase = __rdgsbase_inactive();
465 local_irq_restore(flags);
467 rdmsrq(MSR_KERNEL_GS_BASE, gsbase);
473 void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
475 if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
478 local_irq_save(flags);
479 __wrgsbase_inactive(gsbase);
480 local_irq_restore(flags);
482 wrmsrq(MSR_KERNEL_GS_BASE, gsbase);
486 unsigned long x86_fsbase_read_task(struct task_struct *task)
488 unsigned long fsbase;
491 fsbase = x86_fsbase_read_cpu();
492 else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
493 (task->thread.fsindex == 0))
494 fsbase = task->thread.fsbase;
496 fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
501 unsigned long x86_gsbase_read_task(struct task_struct *task)
503 unsigned long gsbase;
506 gsbase = x86_gsbase_read_cpu_inactive();
507 else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
508 (task->thread.gsindex == 0))
509 gsbase = task->thread.gsbase;
511 gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
516 void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
518 WARN_ON_ONCE(task == current);
520 task->thread.fsbase = fsbase;
523 void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
525 WARN_ON_ONCE(task == current);
527 task->thread.gsbase = gsbase;
531 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
532 unsigned long new_sp,
533 u16 _cs, u16 _ss, u16 _ds)
535 WARN_ON_ONCE(regs != current_pt_regs());
537 if (static_cpu_has(X86_BUG_NULL_SEG)) {
538 /* Loading zero below won't clear the base. */
539 loadsegment(fs, __USER_DS);
540 load_gs_index(__USER_DS);
543 reset_thread_features();
546 loadsegment(es, _ds);
547 loadsegment(ds, _ds);
555 * Allow single-step trap and NMI when starting a new task, thus
556 * once the new task enters user space, single-step trap and NMI
557 * are both enabled immediately.
559 * Entering a new task is logically speaking a return from a
560 * system call (exec, fork, clone, etc.). As such, if ptrace
561 * enables single stepping a single step exception should be
562 * allowed to trigger immediately upon entering user space.
563 * This is not optional.
565 * NMI should *never* be disabled in user space. As such, this
566 * is an optional, opportunistic way to catch errors.
568 * Paranoia: High-order 48 bits above the lowest 16 bit SS are
569 * discarded by the legacy IRET instruction on all Intel, AMD,
570 * and Cyrix/Centaur/VIA CPUs, thus can be set unconditionally,
571 * even when FRED is not enabled. But we choose the safer side
572 * to use these bits only when FRED is enabled.
574 if (cpu_feature_enabled(X86_FEATURE_FRED)) {
575 regs->fred_ss.swevent = true;
576 regs->fred_ss.nmi = true;
579 regs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
583 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
585 start_thread_common(regs, new_ip, new_sp,
586 __USER_CS, __USER_DS, 0);
588 EXPORT_SYMBOL_GPL(start_thread);
591 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
593 start_thread_common(regs, new_ip, new_sp,
594 x32 ? __USER_CS : __USER32_CS,
595 __USER_DS, __USER_DS);
600 * switch_to(x,y) should switch tasks from x to y.
602 * This could still be optimized:
603 * - fold all the options into a flag word and test it with a single test.
604 * - could test fs/gs bitsliced
606 * Kprobes not supported here. Set the probe on schedule instead.
607 * Function graph tracer not supported too.
610 __visible __notrace_funcgraph struct task_struct *
611 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
613 struct thread_struct *prev = &prev_p->thread;
614 struct thread_struct *next = &next_p->thread;
615 int cpu = smp_processor_id();
617 WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
618 this_cpu_read(hardirq_stack_inuse));
620 switch_fpu(prev_p, cpu);
622 /* We must save %fs and %gs before load_TLS() because
623 * %fs and %gs may be cleared by load_TLS().
625 * (e.g. xen_load_tls())
630 * Load TLS before restoring any segments so that segment loads
631 * reference the correct GDT entries.
636 * Leave lazy mode, flushing any hypercalls made here. This
637 * must be done after loading TLS entries in the GDT but before
638 * loading segments that might reference them.
640 arch_end_context_switch(next_p);
644 * Reading them only returns the selectors, but writing them (if
645 * nonzero) loads the full descriptor from the GDT or LDT. The
646 * LDT for next is loaded in switch_mm, and the GDT is loaded
649 * We therefore need to write new values to the segment
650 * registers on every context switch unless both the new and old
653 * Note that we don't need to do anything for CS and SS, as
654 * those are saved and restored as part of pt_regs.
656 savesegment(es, prev->es);
657 if (unlikely(next->es | prev->es))
658 loadsegment(es, next->es);
660 savesegment(ds, prev->ds);
661 if (unlikely(next->ds | prev->ds))
662 loadsegment(ds, next->ds);
664 x86_fsgsbase_load(prev, next);
666 x86_pkru_load(prev, next);
669 * Switch the PDA and FPU contexts.
671 raw_cpu_write(current_task, next_p);
672 raw_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
675 update_task_stack(next_p);
677 switch_to_extra(prev_p, next_p);
679 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
681 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
682 * does not update the cached descriptor. As a result, if we
683 * do SYSRET while SS is NULL, we'll end up in user mode with
684 * SS apparently equal to __USER_DS but actually unusable.
686 * The straightforward workaround would be to fix it up just
687 * before SYSRET, but that would slow down the system call
688 * fast paths. Instead, we ensure that SS is never NULL in
689 * system call context. We do this by replacing NULL SS
690 * selectors at every context switch. SYSCALL sets up a valid
691 * SS, so the only way to get NULL is to re-enter the kernel
692 * from CPL 3 through an interrupt. Since that can't happen
693 * in the same task as a running syscall, we are guaranteed to
694 * context switch between every interrupt vector entry and a
697 * We read SS first because SS reads are much faster than
698 * writes. Out of caution, we force SS to __KERNEL_DS even if
699 * it previously had a different non-NULL value.
701 unsigned short ss_sel;
702 savesegment(ss, ss_sel);
703 if (ss_sel != __KERNEL_DS)
704 loadsegment(ss, __KERNEL_DS);
707 /* Load the Intel cache allocation PQR MSR. */
708 resctrl_arch_sched_in(next_p);
713 void set_personality_64bit(void)
715 /* inherit personality from parent */
717 /* Make sure to be in 64bit mode */
718 clear_thread_flag(TIF_ADDR32);
719 /* Pretend that this comes from a 64bit execve */
720 task_pt_regs(current)->orig_ax = __NR_execve;
721 current_thread_info()->status &= ~TS_COMPAT;
723 __set_bit(MM_CONTEXT_HAS_VSYSCALL, ¤t->mm->context.flags);
725 /* TBD: overwrites user setup. Should have two bits.
726 But 64bit processes have always behaved this way,
727 so it's not too bad. The main problem is just that
728 32bit children are affected again. */
729 current->personality &= ~READ_IMPLIES_EXEC;
732 static void __set_personality_x32(void)
734 #ifdef CONFIG_X86_X32_ABI
736 current->mm->context.flags = 0;
738 current->personality &= ~READ_IMPLIES_EXEC;
740 * in_32bit_syscall() uses the presence of the x32 syscall bit
741 * flag to determine compat status. The x86 mmap() code relies on
742 * the syscall bitness so set x32 syscall bit right here to make
743 * in_32bit_syscall() work during exec().
745 * Pretend to come from a x32 execve.
747 task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
748 current_thread_info()->status &= ~TS_COMPAT;
752 static void __set_personality_ia32(void)
754 #ifdef CONFIG_IA32_EMULATION
757 * uprobes applied to this MM need to know this and
758 * cannot use user_64bit_mode() at that time.
760 __set_bit(MM_CONTEXT_UPROBE_IA32, ¤t->mm->context.flags);
763 current->personality |= force_personality32;
764 /* Prepare the first "return" to user space */
765 task_pt_regs(current)->orig_ax = __NR_ia32_execve;
766 current_thread_info()->status |= TS_COMPAT;
770 void set_personality_ia32(bool x32)
772 /* Make sure to be in 32bit mode */
773 set_thread_flag(TIF_ADDR32);
776 __set_personality_x32();
778 __set_personality_ia32();
780 EXPORT_SYMBOL_GPL(set_personality_ia32);
782 #ifdef CONFIG_CHECKPOINT_RESTORE
783 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
787 ret = map_vdso_once(image, addr);
791 return (long)image->size;
795 #ifdef CONFIG_ADDRESS_MASKING
797 #define LAM_U57_BITS 6
799 static void enable_lam_func(void *__mm)
801 struct mm_struct *mm = __mm;
804 if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) {
805 lam = mm_lam_cr3_mask(mm);
806 write_cr3(__read_cr3() | lam);
807 cpu_tlbstate_update_lam(lam, mm_untag_mask(mm));
811 static void mm_enable_lam(struct mm_struct *mm)
813 mm->context.lam_cr3_mask = X86_CR3_LAM_U57;
814 mm->context.untag_mask = ~GENMASK(62, 57);
817 * Even though the process must still be single-threaded at this
818 * point, kernel threads may be using the mm. IPI those kernel
819 * threads if they exist.
821 on_each_cpu_mask(mm_cpumask(mm), enable_lam_func, mm, true);
822 set_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags);
825 static int prctl_enable_tagged_addr(struct mm_struct *mm, unsigned long nr_bits)
827 if (!cpu_feature_enabled(X86_FEATURE_LAM))
830 /* PTRACE_ARCH_PRCTL */
831 if (current->mm != mm)
834 if (mm_valid_pasid(mm) &&
835 !test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags))
838 if (mmap_write_lock_killable(mm))
842 * MM_CONTEXT_LOCK_LAM is set on clone. Prevent LAM from
843 * being enabled unless the process is single threaded:
845 if (test_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags)) {
846 mmap_write_unlock(mm);
850 if (!nr_bits || nr_bits > LAM_U57_BITS) {
851 mmap_write_unlock(mm);
857 mmap_write_unlock(mm);
863 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
869 if (unlikely(arg2 >= TASK_SIZE_MAX))
874 * ARCH_SET_GS has always overwritten the index
875 * and the base. Zero is the most sensible value
876 * to put in the index, and is the only value that
877 * makes any sense if FSGSBASE is unavailable.
879 if (task == current) {
881 x86_gsbase_write_cpu_inactive(arg2);
884 * On non-FSGSBASE systems, save_base_legacy() expects
885 * that we also fill in thread.gsbase.
887 task->thread.gsbase = arg2;
890 task->thread.gsindex = 0;
891 x86_gsbase_write_task(task, arg2);
898 * Not strictly needed for %fs, but do it for symmetry
901 if (unlikely(arg2 >= TASK_SIZE_MAX))
906 * Set the selector to 0 for the same reason
909 if (task == current) {
911 x86_fsbase_write_cpu(arg2);
914 * On non-FSGSBASE systems, save_base_legacy() expects
915 * that we also fill in thread.fsbase.
917 task->thread.fsbase = arg2;
919 task->thread.fsindex = 0;
920 x86_fsbase_write_task(task, arg2);
926 unsigned long base = x86_fsbase_read_task(task);
928 ret = put_user(base, (unsigned long __user *)arg2);
932 unsigned long base = x86_gsbase_read_task(task);
934 ret = put_user(base, (unsigned long __user *)arg2);
938 #ifdef CONFIG_CHECKPOINT_RESTORE
939 # ifdef CONFIG_X86_X32_ABI
940 case ARCH_MAP_VDSO_X32:
941 return prctl_map_vdso(&vdso_image_x32, arg2);
943 # ifdef CONFIG_IA32_EMULATION
944 case ARCH_MAP_VDSO_32:
945 return prctl_map_vdso(&vdso_image_32, arg2);
947 case ARCH_MAP_VDSO_64:
948 return prctl_map_vdso(&vdso_image_64, arg2);
950 #ifdef CONFIG_ADDRESS_MASKING
951 case ARCH_GET_UNTAG_MASK:
952 return put_user(task->mm->context.untag_mask,
953 (unsigned long __user *)arg2);
954 case ARCH_ENABLE_TAGGED_ADDR:
955 return prctl_enable_tagged_addr(task->mm, arg2);
956 case ARCH_FORCE_TAGGED_SVA:
959 set_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &task->mm->context.flags);
961 case ARCH_GET_MAX_TAG_BITS:
962 if (!cpu_feature_enabled(X86_FEATURE_LAM))
963 return put_user(0, (unsigned long __user *)arg2);
965 return put_user(LAM_U57_BITS, (unsigned long __user *)arg2);
967 case ARCH_SHSTK_ENABLE:
968 case ARCH_SHSTK_DISABLE:
969 case ARCH_SHSTK_LOCK:
970 case ARCH_SHSTK_UNLOCK:
971 case ARCH_SHSTK_STATUS:
972 return shstk_prctl(task, option, arg2);