perf_counter, x86: return raw count with x86_perf_counter_update()
[linux-block.git] / arch / x86 / kernel / cpu / perf_counter.c
1 /*
2  * Performance counter x86 architecture code
3  *
4  *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2009 Jaswinder Singh Rajput
7  *  Copyright(C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *
9  *  For licencing details see kernel-base/COPYING
10  */
11
12 #include <linux/perf_counter.h>
13 #include <linux/capability.h>
14 #include <linux/notifier.h>
15 #include <linux/hardirq.h>
16 #include <linux/kprobes.h>
17 #include <linux/module.h>
18 #include <linux/kdebug.h>
19 #include <linux/sched.h>
20 #include <linux/uaccess.h>
21
22 #include <asm/apic.h>
23 #include <asm/stacktrace.h>
24 #include <asm/nmi.h>
25
26 static u64 perf_counter_mask __read_mostly;
27
28 struct cpu_hw_counters {
29         struct perf_counter     *counters[X86_PMC_IDX_MAX];
30         unsigned long           used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
31         unsigned long           active[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
32         unsigned long           interrupts;
33         u64                     throttle_ctrl;
34         int                     enabled;
35 };
36
37 /*
38  * struct x86_pmu - generic x86 pmu
39  */
40 struct x86_pmu {
41         const char      *name;
42         int             version;
43         int             (*handle_irq)(struct pt_regs *, int);
44         u64             (*save_disable_all)(void);
45         void            (*restore_all)(u64);
46         void            (*enable)(struct hw_perf_counter *, int);
47         void            (*disable)(struct hw_perf_counter *, int);
48         unsigned        eventsel;
49         unsigned        perfctr;
50         u64             (*event_map)(int);
51         u64             (*raw_event)(u64);
52         int             max_events;
53         int             num_counters;
54         int             num_counters_fixed;
55         int             counter_bits;
56         u64             counter_mask;
57 };
58
59 static struct x86_pmu x86_pmu __read_mostly;
60
61 static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
62         .enabled = 1,
63 };
64
65 /*
66  * Intel PerfMon v3. Used on Core2 and later.
67  */
68 static const u64 intel_perfmon_event_map[] =
69 {
70   [PERF_COUNT_CPU_CYCLES]               = 0x003c,
71   [PERF_COUNT_INSTRUCTIONS]             = 0x00c0,
72   [PERF_COUNT_CACHE_REFERENCES]         = 0x4f2e,
73   [PERF_COUNT_CACHE_MISSES]             = 0x412e,
74   [PERF_COUNT_BRANCH_INSTRUCTIONS]      = 0x00c4,
75   [PERF_COUNT_BRANCH_MISSES]            = 0x00c5,
76   [PERF_COUNT_BUS_CYCLES]               = 0x013c,
77 };
78
79 static u64 intel_pmu_event_map(int event)
80 {
81         return intel_perfmon_event_map[event];
82 }
83
84 static u64 intel_pmu_raw_event(u64 event)
85 {
86 #define CORE_EVNTSEL_EVENT_MASK         0x000000FFULL
87 #define CORE_EVNTSEL_UNIT_MASK          0x0000FF00ULL
88 #define CORE_EVNTSEL_COUNTER_MASK       0xFF000000ULL
89
90 #define CORE_EVNTSEL_MASK               \
91         (CORE_EVNTSEL_EVENT_MASK |      \
92          CORE_EVNTSEL_UNIT_MASK  |      \
93          CORE_EVNTSEL_COUNTER_MASK)
94
95         return event & CORE_EVNTSEL_MASK;
96 }
97
98 /*
99  * AMD Performance Monitor K7 and later.
100  */
101 static const u64 amd_perfmon_event_map[] =
102 {
103   [PERF_COUNT_CPU_CYCLES]               = 0x0076,
104   [PERF_COUNT_INSTRUCTIONS]             = 0x00c0,
105   [PERF_COUNT_CACHE_REFERENCES]         = 0x0080,
106   [PERF_COUNT_CACHE_MISSES]             = 0x0081,
107   [PERF_COUNT_BRANCH_INSTRUCTIONS]      = 0x00c4,
108   [PERF_COUNT_BRANCH_MISSES]            = 0x00c5,
109 };
110
111 static u64 amd_pmu_event_map(int event)
112 {
113         return amd_perfmon_event_map[event];
114 }
115
116 static u64 amd_pmu_raw_event(u64 event)
117 {
118 #define K7_EVNTSEL_EVENT_MASK   0x7000000FFULL
119 #define K7_EVNTSEL_UNIT_MASK    0x00000FF00ULL
120 #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
121
122 #define K7_EVNTSEL_MASK                 \
123         (K7_EVNTSEL_EVENT_MASK |        \
124          K7_EVNTSEL_UNIT_MASK  |        \
125          K7_EVNTSEL_COUNTER_MASK)
126
127         return event & K7_EVNTSEL_MASK;
128 }
129
130 /*
131  * Propagate counter elapsed time into the generic counter.
132  * Can only be executed on the CPU where the counter is active.
133  * Returns the delta events processed.
134  */
135 static u64
136 x86_perf_counter_update(struct perf_counter *counter,
137                         struct hw_perf_counter *hwc, int idx)
138 {
139         u64 prev_raw_count, new_raw_count, delta;
140
141         /*
142          * Careful: an NMI might modify the previous counter value.
143          *
144          * Our tactic to handle this is to first atomically read and
145          * exchange a new raw count - then add that new-prev delta
146          * count to the generic counter atomically:
147          */
148 again:
149         prev_raw_count = atomic64_read(&hwc->prev_count);
150         rdmsrl(hwc->counter_base + idx, new_raw_count);
151
152         if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
153                                         new_raw_count) != prev_raw_count)
154                 goto again;
155
156         /*
157          * Now we have the new raw value and have updated the prev
158          * timestamp already. We can now calculate the elapsed delta
159          * (counter-)time and add that to the generic counter.
160          *
161          * Careful, not all hw sign-extends above the physical width
162          * of the count, so we do that by clipping the delta to 32 bits:
163          */
164         delta = (u64)(u32)((s32)new_raw_count - (s32)prev_raw_count);
165
166         atomic64_add(delta, &counter->count);
167         atomic64_sub(delta, &hwc->period_left);
168
169         return new_raw_count;
170 }
171
172 static atomic_t num_counters;
173 static DEFINE_MUTEX(pmc_reserve_mutex);
174
175 static bool reserve_pmc_hardware(void)
176 {
177         int i;
178
179         if (nmi_watchdog == NMI_LOCAL_APIC)
180                 disable_lapic_nmi_watchdog();
181
182         for (i = 0; i < x86_pmu.num_counters; i++) {
183                 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
184                         goto perfctr_fail;
185         }
186
187         for (i = 0; i < x86_pmu.num_counters; i++) {
188                 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
189                         goto eventsel_fail;
190         }
191
192         return true;
193
194 eventsel_fail:
195         for (i--; i >= 0; i--)
196                 release_evntsel_nmi(x86_pmu.eventsel + i);
197
198         i = x86_pmu.num_counters;
199
200 perfctr_fail:
201         for (i--; i >= 0; i--)
202                 release_perfctr_nmi(x86_pmu.perfctr + i);
203
204         if (nmi_watchdog == NMI_LOCAL_APIC)
205                 enable_lapic_nmi_watchdog();
206
207         return false;
208 }
209
210 static void release_pmc_hardware(void)
211 {
212         int i;
213
214         for (i = 0; i < x86_pmu.num_counters; i++) {
215                 release_perfctr_nmi(x86_pmu.perfctr + i);
216                 release_evntsel_nmi(x86_pmu.eventsel + i);
217         }
218
219         if (nmi_watchdog == NMI_LOCAL_APIC)
220                 enable_lapic_nmi_watchdog();
221 }
222
223 static void hw_perf_counter_destroy(struct perf_counter *counter)
224 {
225         if (atomic_dec_and_mutex_lock(&num_counters, &pmc_reserve_mutex)) {
226                 release_pmc_hardware();
227                 mutex_unlock(&pmc_reserve_mutex);
228         }
229 }
230
231 static inline int x86_pmu_initialized(void)
232 {
233         return x86_pmu.handle_irq != NULL;
234 }
235
236 /*
237  * Setup the hardware configuration for a given hw_event_type
238  */
239 static int __hw_perf_counter_init(struct perf_counter *counter)
240 {
241         struct perf_counter_hw_event *hw_event = &counter->hw_event;
242         struct hw_perf_counter *hwc = &counter->hw;
243         int err;
244
245         if (!x86_pmu_initialized())
246                 return -ENODEV;
247
248         err = 0;
249         if (atomic_inc_not_zero(&num_counters)) {
250                 mutex_lock(&pmc_reserve_mutex);
251                 if (atomic_read(&num_counters) == 0 && !reserve_pmc_hardware())
252                         err = -EBUSY;
253                 else
254                         atomic_inc(&num_counters);
255                 mutex_unlock(&pmc_reserve_mutex);
256         }
257         if (err)
258                 return err;
259
260         /*
261          * Generate PMC IRQs:
262          * (keep 'enabled' bit clear for now)
263          */
264         hwc->config = ARCH_PERFMON_EVENTSEL_INT;
265
266         /*
267          * Count user and OS events unless requested not to.
268          */
269         if (!hw_event->exclude_user)
270                 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
271         if (!hw_event->exclude_kernel)
272                 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
273
274         /*
275          * If privileged enough, allow NMI events:
276          */
277         hwc->nmi = 0;
278         if (capable(CAP_SYS_ADMIN) && hw_event->nmi)
279                 hwc->nmi = 1;
280
281         hwc->irq_period         = hw_event->irq_period;
282         /*
283          * Intel PMCs cannot be accessed sanely above 32 bit width,
284          * so we install an artificial 1<<31 period regardless of
285          * the generic counter period:
286          */
287         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
288                 if ((s64)hwc->irq_period <= 0 || hwc->irq_period > 0x7FFFFFFF)
289                         hwc->irq_period = 0x7FFFFFFF;
290
291         atomic64_set(&hwc->period_left, hwc->irq_period);
292
293         /*
294          * Raw event type provide the config in the event structure
295          */
296         if (perf_event_raw(hw_event)) {
297                 hwc->config |= x86_pmu.raw_event(perf_event_config(hw_event));
298         } else {
299                 if (perf_event_id(hw_event) >= x86_pmu.max_events)
300                         return -EINVAL;
301                 /*
302                  * The generic map:
303                  */
304                 hwc->config |= x86_pmu.event_map(perf_event_id(hw_event));
305         }
306
307         counter->destroy = hw_perf_counter_destroy;
308
309         return 0;
310 }
311
312 static u64 intel_pmu_save_disable_all(void)
313 {
314         u64 ctrl;
315
316         rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
317         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
318
319         return ctrl;
320 }
321
322 static u64 amd_pmu_save_disable_all(void)
323 {
324         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
325         int enabled, idx;
326
327         enabled = cpuc->enabled;
328         cpuc->enabled = 0;
329         /*
330          * ensure we write the disable before we start disabling the
331          * counters proper, so that amd_pmu_enable_counter() does the
332          * right thing.
333          */
334         barrier();
335
336         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
337                 u64 val;
338
339                 if (!test_bit(idx, cpuc->active))
340                         continue;
341                 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
342                 if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
343                         continue;
344                 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
345                 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
346         }
347
348         return enabled;
349 }
350
351 u64 hw_perf_save_disable(void)
352 {
353         if (!x86_pmu_initialized())
354                 return 0;
355         return x86_pmu.save_disable_all();
356 }
357 /*
358  * Exported because of ACPI idle
359  */
360 EXPORT_SYMBOL_GPL(hw_perf_save_disable);
361
362 static void intel_pmu_restore_all(u64 ctrl)
363 {
364         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
365 }
366
367 static void amd_pmu_restore_all(u64 ctrl)
368 {
369         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
370         int idx;
371
372         cpuc->enabled = ctrl;
373         barrier();
374         if (!ctrl)
375                 return;
376
377         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
378                 u64 val;
379
380                 if (!test_bit(idx, cpuc->active))
381                         continue;
382                 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
383                 if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
384                         continue;
385                 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
386                 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
387         }
388 }
389
390 void hw_perf_restore(u64 ctrl)
391 {
392         if (!x86_pmu_initialized())
393                 return;
394         x86_pmu.restore_all(ctrl);
395 }
396 /*
397  * Exported because of ACPI idle
398  */
399 EXPORT_SYMBOL_GPL(hw_perf_restore);
400
401 static inline u64 intel_pmu_get_status(u64 mask)
402 {
403         u64 status;
404
405         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
406
407         return status;
408 }
409
410 static inline void intel_pmu_ack_status(u64 ack)
411 {
412         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
413 }
414
415 static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
416 {
417         int err;
418         err = checking_wrmsrl(hwc->config_base + idx,
419                               hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
420 }
421
422 static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
423 {
424         int err;
425         err = checking_wrmsrl(hwc->config_base + idx,
426                               hwc->config);
427 }
428
429 static inline void
430 intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
431 {
432         int idx = __idx - X86_PMC_IDX_FIXED;
433         u64 ctrl_val, mask;
434         int err;
435
436         mask = 0xfULL << (idx * 4);
437
438         rdmsrl(hwc->config_base, ctrl_val);
439         ctrl_val &= ~mask;
440         err = checking_wrmsrl(hwc->config_base, ctrl_val);
441 }
442
443 static inline void
444 intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
445 {
446         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
447                 intel_pmu_disable_fixed(hwc, idx);
448                 return;
449         }
450
451         x86_pmu_disable_counter(hwc, idx);
452 }
453
454 static inline void
455 amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
456 {
457         x86_pmu_disable_counter(hwc, idx);
458 }
459
460 static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
461
462 /*
463  * Set the next IRQ period, based on the hwc->period_left value.
464  * To be called with the counter disabled in hw:
465  */
466 static void
467 x86_perf_counter_set_period(struct perf_counter *counter,
468                              struct hw_perf_counter *hwc, int idx)
469 {
470         s64 left = atomic64_read(&hwc->period_left);
471         s64 period = hwc->irq_period;
472         int err;
473
474         /*
475          * If we are way outside a reasoable range then just skip forward:
476          */
477         if (unlikely(left <= -period)) {
478                 left = period;
479                 atomic64_set(&hwc->period_left, left);
480         }
481
482         if (unlikely(left <= 0)) {
483                 left += period;
484                 atomic64_set(&hwc->period_left, left);
485         }
486
487         per_cpu(prev_left[idx], smp_processor_id()) = left;
488
489         /*
490          * The hw counter starts counting from this counter offset,
491          * mark it to be able to extra future deltas:
492          */
493         atomic64_set(&hwc->prev_count, (u64)-left);
494
495         err = checking_wrmsrl(hwc->counter_base + idx,
496                              (u64)(-left) & x86_pmu.counter_mask);
497 }
498
499 static inline void
500 intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
501 {
502         int idx = __idx - X86_PMC_IDX_FIXED;
503         u64 ctrl_val, bits, mask;
504         int err;
505
506         /*
507          * Enable IRQ generation (0x8),
508          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
509          * if requested:
510          */
511         bits = 0x8ULL;
512         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
513                 bits |= 0x2;
514         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
515                 bits |= 0x1;
516         bits <<= (idx * 4);
517         mask = 0xfULL << (idx * 4);
518
519         rdmsrl(hwc->config_base, ctrl_val);
520         ctrl_val &= ~mask;
521         ctrl_val |= bits;
522         err = checking_wrmsrl(hwc->config_base, ctrl_val);
523 }
524
525 static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
526 {
527         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
528                 intel_pmu_enable_fixed(hwc, idx);
529                 return;
530         }
531
532         x86_pmu_enable_counter(hwc, idx);
533 }
534
535 static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
536 {
537         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
538
539         if (cpuc->enabled)
540                 x86_pmu_enable_counter(hwc, idx);
541         else
542                 x86_pmu_disable_counter(hwc, idx);
543 }
544
545 static int
546 fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
547 {
548         unsigned int event;
549
550         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
551                 return -1;
552
553         if (unlikely(hwc->nmi))
554                 return -1;
555
556         event = hwc->config & ARCH_PERFMON_EVENT_MASK;
557
558         if (unlikely(event == x86_pmu.event_map(PERF_COUNT_INSTRUCTIONS)))
559                 return X86_PMC_IDX_FIXED_INSTRUCTIONS;
560         if (unlikely(event == x86_pmu.event_map(PERF_COUNT_CPU_CYCLES)))
561                 return X86_PMC_IDX_FIXED_CPU_CYCLES;
562         if (unlikely(event == x86_pmu.event_map(PERF_COUNT_BUS_CYCLES)))
563                 return X86_PMC_IDX_FIXED_BUS_CYCLES;
564
565         return -1;
566 }
567
568 /*
569  * Find a PMC slot for the freshly enabled / scheduled in counter:
570  */
571 static int x86_pmu_enable(struct perf_counter *counter)
572 {
573         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
574         struct hw_perf_counter *hwc = &counter->hw;
575         int idx;
576
577         idx = fixed_mode_idx(counter, hwc);
578         if (idx >= 0) {
579                 /*
580                  * Try to get the fixed counter, if that is already taken
581                  * then try to get a generic counter:
582                  */
583                 if (test_and_set_bit(idx, cpuc->used))
584                         goto try_generic;
585
586                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
587                 /*
588                  * We set it so that counter_base + idx in wrmsr/rdmsr maps to
589                  * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
590                  */
591                 hwc->counter_base =
592                         MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
593                 hwc->idx = idx;
594         } else {
595                 idx = hwc->idx;
596                 /* Try to get the previous generic counter again */
597                 if (test_and_set_bit(idx, cpuc->used)) {
598 try_generic:
599                         idx = find_first_zero_bit(cpuc->used,
600                                                   x86_pmu.num_counters);
601                         if (idx == x86_pmu.num_counters)
602                                 return -EAGAIN;
603
604                         set_bit(idx, cpuc->used);
605                         hwc->idx = idx;
606                 }
607                 hwc->config_base  = x86_pmu.eventsel;
608                 hwc->counter_base = x86_pmu.perfctr;
609         }
610
611         perf_counters_lapic_init(hwc->nmi);
612
613         x86_pmu.disable(hwc, idx);
614
615         cpuc->counters[idx] = counter;
616         set_bit(idx, cpuc->active);
617
618         x86_perf_counter_set_period(counter, hwc, idx);
619         x86_pmu.enable(hwc, idx);
620
621         return 0;
622 }
623
624 void perf_counter_print_debug(void)
625 {
626         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
627         struct cpu_hw_counters *cpuc;
628         int cpu, idx;
629
630         if (!x86_pmu.num_counters)
631                 return;
632
633         local_irq_disable();
634
635         cpu = smp_processor_id();
636         cpuc = &per_cpu(cpu_hw_counters, cpu);
637
638         if (x86_pmu.version >= 2) {
639                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
640                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
641                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
642                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
643
644                 pr_info("\n");
645                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
646                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
647                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
648                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
649         }
650         pr_info("CPU#%d: used:       %016llx\n", cpu, *(u64 *)cpuc->used);
651
652         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
653                 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
654                 rdmsrl(x86_pmu.perfctr  + idx, pmc_count);
655
656                 prev_left = per_cpu(prev_left[idx], cpu);
657
658                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
659                         cpu, idx, pmc_ctrl);
660                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
661                         cpu, idx, pmc_count);
662                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
663                         cpu, idx, prev_left);
664         }
665         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
666                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
667
668                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
669                         cpu, idx, pmc_count);
670         }
671         local_irq_enable();
672 }
673
674 static void x86_pmu_disable(struct perf_counter *counter)
675 {
676         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
677         struct hw_perf_counter *hwc = &counter->hw;
678         int idx = hwc->idx;
679
680         /*
681          * Must be done before we disable, otherwise the nmi handler
682          * could reenable again:
683          */
684         clear_bit(idx, cpuc->active);
685         x86_pmu.disable(hwc, idx);
686
687         /*
688          * Make sure the cleared pointer becomes visible before we
689          * (potentially) free the counter:
690          */
691         barrier();
692
693         /*
694          * Drain the remaining delta count out of a counter
695          * that we are disabling:
696          */
697         x86_perf_counter_update(counter, hwc, idx);
698         cpuc->counters[idx] = NULL;
699         clear_bit(idx, cpuc->used);
700 }
701
702 /*
703  * Save and restart an expired counter. Called by NMI contexts,
704  * so it has to be careful about preempting normal counter ops:
705  */
706 static void intel_pmu_save_and_restart(struct perf_counter *counter)
707 {
708         struct hw_perf_counter *hwc = &counter->hw;
709         int idx = hwc->idx;
710
711         x86_perf_counter_update(counter, hwc, idx);
712         x86_perf_counter_set_period(counter, hwc, idx);
713
714         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
715                 intel_pmu_enable_counter(hwc, idx);
716 }
717
718 /*
719  * Maximum interrupt frequency of 100KHz per CPU
720  */
721 #define PERFMON_MAX_INTERRUPTS (100000/HZ)
722
723 /*
724  * This handler is triggered by the local APIC, so the APIC IRQ handling
725  * rules apply:
726  */
727 static int intel_pmu_handle_irq(struct pt_regs *regs, int nmi)
728 {
729         int bit, cpu = smp_processor_id();
730         u64 ack, status;
731         struct cpu_hw_counters *cpuc = &per_cpu(cpu_hw_counters, cpu);
732         int ret = 0;
733
734         cpuc->throttle_ctrl = intel_pmu_save_disable_all();
735
736         status = intel_pmu_get_status(cpuc->throttle_ctrl);
737         if (!status)
738                 goto out;
739
740         ret = 1;
741 again:
742         inc_irq_stat(apic_perf_irqs);
743         ack = status;
744         for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
745                 struct perf_counter *counter = cpuc->counters[bit];
746
747                 clear_bit(bit, (unsigned long *) &status);
748                 if (!test_bit(bit, cpuc->active))
749                         continue;
750
751                 intel_pmu_save_and_restart(counter);
752                 if (perf_counter_overflow(counter, nmi, regs, 0))
753                         intel_pmu_disable_counter(&counter->hw, bit);
754         }
755
756         intel_pmu_ack_status(ack);
757
758         /*
759          * Repeat if there is more work to be done:
760          */
761         status = intel_pmu_get_status(cpuc->throttle_ctrl);
762         if (status)
763                 goto again;
764 out:
765         /*
766          * Restore - do not reenable when global enable is off or throttled:
767          */
768         if (++cpuc->interrupts < PERFMON_MAX_INTERRUPTS)
769                 intel_pmu_restore_all(cpuc->throttle_ctrl);
770
771         return ret;
772 }
773
774 static int amd_pmu_handle_irq(struct pt_regs *regs, int nmi)
775 {
776         int cpu = smp_processor_id();
777         struct cpu_hw_counters *cpuc = &per_cpu(cpu_hw_counters, cpu);
778         u64 val;
779         int handled = 0;
780         struct perf_counter *counter;
781         struct hw_perf_counter *hwc;
782         int idx;
783
784         ++cpuc->interrupts;
785         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
786                 if (!test_bit(idx, cpuc->active))
787                         continue;
788                 counter = cpuc->counters[idx];
789                 hwc = &counter->hw;
790                 val = x86_perf_counter_update(counter, hwc, idx);
791                 if (val & (1ULL << (x86_pmu.counter_bits - 1)))
792                         continue;
793                 /* counter overflow */
794                 x86_perf_counter_set_period(counter, hwc, idx);
795                 handled = 1;
796                 inc_irq_stat(apic_perf_irqs);
797                 if (perf_counter_overflow(counter, nmi, regs, 0))
798                         amd_pmu_disable_counter(hwc, idx);
799                 else if (cpuc->interrupts >= PERFMON_MAX_INTERRUPTS)
800                         /*
801                          * do not reenable when throttled, but reload
802                          * the register
803                          */
804                         amd_pmu_disable_counter(hwc, idx);
805                 else if (counter->state == PERF_COUNTER_STATE_ACTIVE)
806                         amd_pmu_enable_counter(hwc, idx);
807         }
808         return handled;
809 }
810
811 void perf_counter_unthrottle(void)
812 {
813         struct cpu_hw_counters *cpuc;
814
815         if (!x86_pmu_initialized())
816                 return;
817
818         cpuc = &__get_cpu_var(cpu_hw_counters);
819         if (cpuc->interrupts >= PERFMON_MAX_INTERRUPTS) {
820                 if (printk_ratelimit())
821                         printk(KERN_WARNING "PERFMON: max interrupts exceeded!\n");
822                 hw_perf_restore(cpuc->throttle_ctrl);
823         }
824         cpuc->interrupts = 0;
825 }
826
827 void smp_perf_counter_interrupt(struct pt_regs *regs)
828 {
829         irq_enter();
830         apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
831         ack_APIC_irq();
832         x86_pmu.handle_irq(regs, 0);
833         irq_exit();
834 }
835
836 void smp_perf_pending_interrupt(struct pt_regs *regs)
837 {
838         irq_enter();
839         ack_APIC_irq();
840         inc_irq_stat(apic_pending_irqs);
841         perf_counter_do_pending();
842         irq_exit();
843 }
844
845 void set_perf_counter_pending(void)
846 {
847         apic->send_IPI_self(LOCAL_PENDING_VECTOR);
848 }
849
850 void perf_counters_lapic_init(int nmi)
851 {
852         u32 apic_val;
853
854         if (!x86_pmu_initialized())
855                 return;
856
857         /*
858          * Enable the performance counter vector in the APIC LVT:
859          */
860         apic_val = apic_read(APIC_LVTERR);
861
862         apic_write(APIC_LVTERR, apic_val | APIC_LVT_MASKED);
863         if (nmi)
864                 apic_write(APIC_LVTPC, APIC_DM_NMI);
865         else
866                 apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
867         apic_write(APIC_LVTERR, apic_val);
868 }
869
870 static int __kprobes
871 perf_counter_nmi_handler(struct notifier_block *self,
872                          unsigned long cmd, void *__args)
873 {
874         struct die_args *args = __args;
875         struct pt_regs *regs;
876         int ret;
877
878         switch (cmd) {
879         case DIE_NMI:
880         case DIE_NMI_IPI:
881                 break;
882
883         default:
884                 return NOTIFY_DONE;
885         }
886
887         regs = args->regs;
888
889         apic_write(APIC_LVTPC, APIC_DM_NMI);
890         ret = x86_pmu.handle_irq(regs, 1);
891
892         return ret ? NOTIFY_STOP : NOTIFY_OK;
893 }
894
895 static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
896         .notifier_call          = perf_counter_nmi_handler,
897         .next                   = NULL,
898         .priority               = 1
899 };
900
901 static struct x86_pmu intel_pmu = {
902         .name                   = "Intel",
903         .handle_irq             = intel_pmu_handle_irq,
904         .save_disable_all       = intel_pmu_save_disable_all,
905         .restore_all            = intel_pmu_restore_all,
906         .enable                 = intel_pmu_enable_counter,
907         .disable                = intel_pmu_disable_counter,
908         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
909         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
910         .event_map              = intel_pmu_event_map,
911         .raw_event              = intel_pmu_raw_event,
912         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
913 };
914
915 static struct x86_pmu amd_pmu = {
916         .name                   = "AMD",
917         .handle_irq             = amd_pmu_handle_irq,
918         .save_disable_all       = amd_pmu_save_disable_all,
919         .restore_all            = amd_pmu_restore_all,
920         .enable                 = amd_pmu_enable_counter,
921         .disable                = amd_pmu_disable_counter,
922         .eventsel               = MSR_K7_EVNTSEL0,
923         .perfctr                = MSR_K7_PERFCTR0,
924         .event_map              = amd_pmu_event_map,
925         .raw_event              = amd_pmu_raw_event,
926         .max_events             = ARRAY_SIZE(amd_perfmon_event_map),
927         .num_counters           = 4,
928         .counter_bits           = 48,
929         .counter_mask           = (1ULL << 48) - 1,
930 };
931
932 static int intel_pmu_init(void)
933 {
934         union cpuid10_edx edx;
935         union cpuid10_eax eax;
936         unsigned int unused;
937         unsigned int ebx;
938         int version;
939
940         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
941                 return -ENODEV;
942
943         /*
944          * Check whether the Architectural PerfMon supports
945          * Branch Misses Retired Event or not.
946          */
947         cpuid(10, &eax.full, &ebx, &unused, &edx.full);
948         if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
949                 return -ENODEV;
950
951         version = eax.split.version_id;
952         if (version < 2)
953                 return -ENODEV;
954
955         x86_pmu = intel_pmu;
956         x86_pmu.version = version;
957         x86_pmu.num_counters = eax.split.num_counters;
958         x86_pmu.num_counters_fixed = edx.split.num_counters_fixed;
959         x86_pmu.counter_bits = eax.split.bit_width;
960         x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
961
962         return 0;
963 }
964
965 static int amd_pmu_init(void)
966 {
967         x86_pmu = amd_pmu;
968         return 0;
969 }
970
971 void __init init_hw_perf_counters(void)
972 {
973         int err;
974
975         switch (boot_cpu_data.x86_vendor) {
976         case X86_VENDOR_INTEL:
977                 err = intel_pmu_init();
978                 break;
979         case X86_VENDOR_AMD:
980                 err = amd_pmu_init();
981                 break;
982         default:
983                 return;
984         }
985         if (err != 0)
986                 return;
987
988         pr_info("%s Performance Monitoring support detected.\n", x86_pmu.name);
989         pr_info("... version:         %d\n", x86_pmu.version);
990         pr_info("... bit width:       %d\n", x86_pmu.counter_bits);
991
992         pr_info("... num counters:    %d\n", x86_pmu.num_counters);
993         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
994                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
995                 WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
996                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
997         }
998         perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
999         perf_max_counters = x86_pmu.num_counters;
1000
1001         pr_info("... value mask:      %016Lx\n", x86_pmu.counter_mask);
1002
1003         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1004                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1005                 WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
1006                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1007         }
1008         pr_info("... fixed counters:  %d\n", x86_pmu.num_counters_fixed);
1009
1010         perf_counter_mask |=
1011                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1012
1013         pr_info("... counter mask:    %016Lx\n", perf_counter_mask);
1014
1015         perf_counters_lapic_init(0);
1016         register_die_notifier(&perf_counter_nmi_notifier);
1017 }
1018
1019 static inline void x86_pmu_read(struct perf_counter *counter)
1020 {
1021         x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
1022 }
1023
1024 static const struct pmu pmu = {
1025         .enable         = x86_pmu_enable,
1026         .disable        = x86_pmu_disable,
1027         .read           = x86_pmu_read,
1028 };
1029
1030 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
1031 {
1032         int err;
1033
1034         err = __hw_perf_counter_init(counter);
1035         if (err)
1036                 return ERR_PTR(err);
1037
1038         return &pmu;
1039 }
1040
1041 /*
1042  * callchain support
1043  */
1044
1045 static inline
1046 void callchain_store(struct perf_callchain_entry *entry, unsigned long ip)
1047 {
1048         if (entry->nr < MAX_STACK_DEPTH)
1049                 entry->ip[entry->nr++] = ip;
1050 }
1051
1052 static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
1053 static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
1054
1055
1056 static void
1057 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1058 {
1059         /* Ignore warnings */
1060 }
1061
1062 static void backtrace_warning(void *data, char *msg)
1063 {
1064         /* Ignore warnings */
1065 }
1066
1067 static int backtrace_stack(void *data, char *name)
1068 {
1069         /* Don't bother with IRQ stacks for now */
1070         return -1;
1071 }
1072
1073 static void backtrace_address(void *data, unsigned long addr, int reliable)
1074 {
1075         struct perf_callchain_entry *entry = data;
1076
1077         if (reliable)
1078                 callchain_store(entry, addr);
1079 }
1080
1081 static const struct stacktrace_ops backtrace_ops = {
1082         .warning                = backtrace_warning,
1083         .warning_symbol         = backtrace_warning_symbol,
1084         .stack                  = backtrace_stack,
1085         .address                = backtrace_address,
1086 };
1087
1088 static void
1089 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1090 {
1091         unsigned long bp;
1092         char *stack;
1093         int nr = entry->nr;
1094
1095         callchain_store(entry, instruction_pointer(regs));
1096
1097         stack = ((char *)regs + sizeof(struct pt_regs));
1098 #ifdef CONFIG_FRAME_POINTER
1099         bp = frame_pointer(regs);
1100 #else
1101         bp = 0;
1102 #endif
1103
1104         dump_trace(NULL, regs, (void *)stack, bp, &backtrace_ops, entry);
1105
1106         entry->kernel = entry->nr - nr;
1107 }
1108
1109
1110 struct stack_frame {
1111         const void __user       *next_fp;
1112         unsigned long           return_address;
1113 };
1114
1115 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1116 {
1117         int ret;
1118
1119         if (!access_ok(VERIFY_READ, fp, sizeof(*frame)))
1120                 return 0;
1121
1122         ret = 1;
1123         pagefault_disable();
1124         if (__copy_from_user_inatomic(frame, fp, sizeof(*frame)))
1125                 ret = 0;
1126         pagefault_enable();
1127
1128         return ret;
1129 }
1130
1131 static void
1132 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1133 {
1134         struct stack_frame frame;
1135         const void __user *fp;
1136         int nr = entry->nr;
1137
1138         regs = (struct pt_regs *)current->thread.sp0 - 1;
1139         fp   = (void __user *)regs->bp;
1140
1141         callchain_store(entry, regs->ip);
1142
1143         while (entry->nr < MAX_STACK_DEPTH) {
1144                 frame.next_fp        = NULL;
1145                 frame.return_address = 0;
1146
1147                 if (!copy_stack_frame(fp, &frame))
1148                         break;
1149
1150                 if ((unsigned long)fp < user_stack_pointer(regs))
1151                         break;
1152
1153                 callchain_store(entry, frame.return_address);
1154                 fp = frame.next_fp;
1155         }
1156
1157         entry->user = entry->nr - nr;
1158 }
1159
1160 static void
1161 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1162 {
1163         int is_user;
1164
1165         if (!regs)
1166                 return;
1167
1168         is_user = user_mode(regs);
1169
1170         if (!current || current->pid == 0)
1171                 return;
1172
1173         if (is_user && current->state != TASK_RUNNING)
1174                 return;
1175
1176         if (!is_user)
1177                 perf_callchain_kernel(regs, entry);
1178
1179         if (current->mm)
1180                 perf_callchain_user(regs, entry);
1181 }
1182
1183 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1184 {
1185         struct perf_callchain_entry *entry;
1186
1187         if (in_nmi())
1188                 entry = &__get_cpu_var(nmi_entry);
1189         else
1190                 entry = &__get_cpu_var(irq_entry);
1191
1192         entry->nr = 0;
1193         entry->hv = 0;
1194         entry->kernel = 0;
1195         entry->user = 0;
1196
1197         perf_do_callchain(regs, entry);
1198
1199         return entry;
1200 }