Merge tag 'soc-ep93xx-dt-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-block.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
47 #include <asm/apic.h>
48 #include <asm/desc.h>
49 #include <asm/fpu/api.h>
50 #include <asm/mtrr.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
53 #include <asm/numa.h>
54 #include <asm/asm.h>
55 #include <asm/bugs.h>
56 #include <asm/cpu.h>
57 #include <asm/mce.h>
58 #include <asm/msr.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/intel-family.h>
63 #include <asm/cpu_device_id.h>
64 #include <asm/fred.h>
65 #include <asm/uv/uv.h>
66 #include <asm/ia32.h>
67 #include <asm/set_memory.h>
68 #include <asm/traps.h>
69 #include <asm/sev.h>
70 #include <asm/tdx.h>
71 #include <asm/posted_intr.h>
72
73 #include "cpu.h"
74
75 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
76 EXPORT_PER_CPU_SYMBOL(cpu_info);
77
78 u32 elf_hwcap2 __read_mostly;
79
80 /* Number of siblings per CPU package */
81 unsigned int __max_threads_per_core __ro_after_init = 1;
82 EXPORT_SYMBOL(__max_threads_per_core);
83
84 unsigned int __max_dies_per_package __ro_after_init = 1;
85 EXPORT_SYMBOL(__max_dies_per_package);
86
87 unsigned int __max_logical_packages __ro_after_init = 1;
88 EXPORT_SYMBOL(__max_logical_packages);
89
90 unsigned int __num_cores_per_package __ro_after_init = 1;
91 EXPORT_SYMBOL(__num_cores_per_package);
92
93 unsigned int __num_threads_per_package __ro_after_init = 1;
94 EXPORT_SYMBOL(__num_threads_per_package);
95
96 static struct ppin_info {
97         int     feature;
98         int     msr_ppin_ctl;
99         int     msr_ppin;
100 } ppin_info[] = {
101         [X86_VENDOR_INTEL] = {
102                 .feature = X86_FEATURE_INTEL_PPIN,
103                 .msr_ppin_ctl = MSR_PPIN_CTL,
104                 .msr_ppin = MSR_PPIN
105         },
106         [X86_VENDOR_AMD] = {
107                 .feature = X86_FEATURE_AMD_PPIN,
108                 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
109                 .msr_ppin = MSR_AMD_PPIN
110         },
111 };
112
113 static const struct x86_cpu_id ppin_cpuids[] = {
114         X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
115         X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
116
117         /* Legacy models without CPUID enumeration */
118         X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
119         X86_MATCH_VFM(INTEL_HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
120         X86_MATCH_VFM(INTEL_BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
121         X86_MATCH_VFM(INTEL_BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
122         X86_MATCH_VFM(INTEL_SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
123         X86_MATCH_VFM(INTEL_ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
124         X86_MATCH_VFM(INTEL_ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
125         X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
126         X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
127         X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
128         X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
129
130         {}
131 };
132
133 static void ppin_init(struct cpuinfo_x86 *c)
134 {
135         const struct x86_cpu_id *id;
136         unsigned long long val;
137         struct ppin_info *info;
138
139         id = x86_match_cpu(ppin_cpuids);
140         if (!id)
141                 return;
142
143         /*
144          * Testing the presence of the MSR is not enough. Need to check
145          * that the PPIN_CTL allows reading of the PPIN.
146          */
147         info = (struct ppin_info *)id->driver_data;
148
149         if (rdmsrl_safe(info->msr_ppin_ctl, &val))
150                 goto clear_ppin;
151
152         if ((val & 3UL) == 1UL) {
153                 /* PPIN locked in disabled mode */
154                 goto clear_ppin;
155         }
156
157         /* If PPIN is disabled, try to enable */
158         if (!(val & 2UL)) {
159                 wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
160                 rdmsrl_safe(info->msr_ppin_ctl, &val);
161         }
162
163         /* Is the enable bit set? */
164         if (val & 2UL) {
165                 c->ppin = __rdmsr(info->msr_ppin);
166                 set_cpu_cap(c, info->feature);
167                 return;
168         }
169
170 clear_ppin:
171         clear_cpu_cap(c, info->feature);
172 }
173
174 static void default_init(struct cpuinfo_x86 *c)
175 {
176 #ifdef CONFIG_X86_64
177         cpu_detect_cache_sizes(c);
178 #else
179         /* Not much we can do here... */
180         /* Check if at least it has cpuid */
181         if (c->cpuid_level == -1) {
182                 /* No cpuid. It must be an ancient CPU */
183                 if (c->x86 == 4)
184                         strcpy(c->x86_model_id, "486");
185                 else if (c->x86 == 3)
186                         strcpy(c->x86_model_id, "386");
187         }
188 #endif
189 }
190
191 static const struct cpu_dev default_cpu = {
192         .c_init         = default_init,
193         .c_vendor       = "Unknown",
194         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
195 };
196
197 static const struct cpu_dev *this_cpu = &default_cpu;
198
199 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
200 #ifdef CONFIG_X86_64
201         /*
202          * We need valid kernel segments for data and code in long mode too
203          * IRET will check the segment types  kkeil 2000/10/28
204          * Also sysret mandates a special GDT layout
205          *
206          * TLS descriptors are currently at a different place compared to i386.
207          * Hopefully nobody expects them at a fixed place (Wine?)
208          */
209         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
210         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
211         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
212         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
213         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
214         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
215 #else
216         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
217         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
218         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
219         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
220         /*
221          * Segments used for calling PnP BIOS have byte granularity.
222          * They code segments and data segments have fixed 64k limits,
223          * the transfer segment sizes are set at run time.
224          */
225         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
226         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
227         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
228         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
229         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
230         /*
231          * The APM segments have byte granularity and their bases
232          * are set at run time.  All have 64k limits.
233          */
234         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
235         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
236         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
237
238         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
239         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
240 #endif
241 } };
242 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
243
244 #ifdef CONFIG_X86_64
245 static int __init x86_nopcid_setup(char *s)
246 {
247         /* nopcid doesn't accept parameters */
248         if (s)
249                 return -EINVAL;
250
251         /* do not emit a message if the feature is not present */
252         if (!boot_cpu_has(X86_FEATURE_PCID))
253                 return 0;
254
255         setup_clear_cpu_cap(X86_FEATURE_PCID);
256         pr_info("nopcid: PCID feature disabled\n");
257         return 0;
258 }
259 early_param("nopcid", x86_nopcid_setup);
260 #endif
261
262 static int __init x86_noinvpcid_setup(char *s)
263 {
264         /* noinvpcid doesn't accept parameters */
265         if (s)
266                 return -EINVAL;
267
268         /* do not emit a message if the feature is not present */
269         if (!boot_cpu_has(X86_FEATURE_INVPCID))
270                 return 0;
271
272         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
273         pr_info("noinvpcid: INVPCID feature disabled\n");
274         return 0;
275 }
276 early_param("noinvpcid", x86_noinvpcid_setup);
277
278 #ifdef CONFIG_X86_32
279 static int cachesize_override = -1;
280 static int disable_x86_serial_nr = 1;
281
282 static int __init cachesize_setup(char *str)
283 {
284         get_option(&str, &cachesize_override);
285         return 1;
286 }
287 __setup("cachesize=", cachesize_setup);
288
289 /* Standard macro to see if a specific flag is changeable */
290 static inline int flag_is_changeable_p(u32 flag)
291 {
292         u32 f1, f2;
293
294         /*
295          * Cyrix and IDT cpus allow disabling of CPUID
296          * so the code below may return different results
297          * when it is executed before and after enabling
298          * the CPUID. Add "volatile" to not allow gcc to
299          * optimize the subsequent calls to this function.
300          */
301         asm volatile ("pushfl           \n\t"
302                       "pushfl           \n\t"
303                       "popl %0          \n\t"
304                       "movl %0, %1      \n\t"
305                       "xorl %2, %0      \n\t"
306                       "pushl %0         \n\t"
307                       "popfl            \n\t"
308                       "pushfl           \n\t"
309                       "popl %0          \n\t"
310                       "popfl            \n\t"
311
312                       : "=&r" (f1), "=&r" (f2)
313                       : "ir" (flag));
314
315         return ((f1^f2) & flag) != 0;
316 }
317
318 /* Probe for the CPUID instruction */
319 int have_cpuid_p(void)
320 {
321         return flag_is_changeable_p(X86_EFLAGS_ID);
322 }
323
324 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
325 {
326         unsigned long lo, hi;
327
328         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
329                 return;
330
331         /* Disable processor serial number: */
332
333         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
334         lo |= 0x200000;
335         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
336
337         pr_notice("CPU serial number disabled.\n");
338         clear_cpu_cap(c, X86_FEATURE_PN);
339
340         /* Disabling the serial number may affect the cpuid level */
341         c->cpuid_level = cpuid_eax(0);
342 }
343
344 static int __init x86_serial_nr_setup(char *s)
345 {
346         disable_x86_serial_nr = 0;
347         return 1;
348 }
349 __setup("serialnumber", x86_serial_nr_setup);
350 #else
351 static inline int flag_is_changeable_p(u32 flag)
352 {
353         return 1;
354 }
355 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
356 {
357 }
358 #endif
359
360 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
361 {
362         if (cpu_has(c, X86_FEATURE_SMEP))
363                 cr4_set_bits(X86_CR4_SMEP);
364 }
365
366 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
367 {
368         unsigned long eflags = native_save_fl();
369
370         /* This should have been cleared long ago */
371         BUG_ON(eflags & X86_EFLAGS_AC);
372
373         if (cpu_has(c, X86_FEATURE_SMAP))
374                 cr4_set_bits(X86_CR4_SMAP);
375 }
376
377 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
378 {
379         /* Check the boot processor, plus build option for UMIP. */
380         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
381                 goto out;
382
383         /* Check the current processor's cpuid bits. */
384         if (!cpu_has(c, X86_FEATURE_UMIP))
385                 goto out;
386
387         cr4_set_bits(X86_CR4_UMIP);
388
389         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
390
391         return;
392
393 out:
394         /*
395          * Make sure UMIP is disabled in case it was enabled in a
396          * previous boot (e.g., via kexec).
397          */
398         cr4_clear_bits(X86_CR4_UMIP);
399 }
400
401 /* These bits should not change their value after CPU init is finished. */
402 static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
403                                              X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED;
404 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
405 static unsigned long cr4_pinned_bits __ro_after_init;
406
407 void native_write_cr0(unsigned long val)
408 {
409         unsigned long bits_missing = 0;
410
411 set_register:
412         asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
413
414         if (static_branch_likely(&cr_pinning)) {
415                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
416                         bits_missing = X86_CR0_WP;
417                         val |= bits_missing;
418                         goto set_register;
419                 }
420                 /* Warn after we've set the missing bits. */
421                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
422         }
423 }
424 EXPORT_SYMBOL(native_write_cr0);
425
426 void __no_profile native_write_cr4(unsigned long val)
427 {
428         unsigned long bits_changed = 0;
429
430 set_register:
431         asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
432
433         if (static_branch_likely(&cr_pinning)) {
434                 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
435                         bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
436                         val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
437                         goto set_register;
438                 }
439                 /* Warn after we've corrected the changed bits. */
440                 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
441                           bits_changed);
442         }
443 }
444 #if IS_MODULE(CONFIG_LKDTM)
445 EXPORT_SYMBOL_GPL(native_write_cr4);
446 #endif
447
448 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
449 {
450         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
451
452         lockdep_assert_irqs_disabled();
453
454         newval = (cr4 & ~clear) | set;
455         if (newval != cr4) {
456                 this_cpu_write(cpu_tlbstate.cr4, newval);
457                 __write_cr4(newval);
458         }
459 }
460 EXPORT_SYMBOL(cr4_update_irqsoff);
461
462 /* Read the CR4 shadow. */
463 unsigned long cr4_read_shadow(void)
464 {
465         return this_cpu_read(cpu_tlbstate.cr4);
466 }
467 EXPORT_SYMBOL_GPL(cr4_read_shadow);
468
469 void cr4_init(void)
470 {
471         unsigned long cr4 = __read_cr4();
472
473         if (boot_cpu_has(X86_FEATURE_PCID))
474                 cr4 |= X86_CR4_PCIDE;
475         if (static_branch_likely(&cr_pinning))
476                 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
477
478         __write_cr4(cr4);
479
480         /* Initialize cr4 shadow for this CPU. */
481         this_cpu_write(cpu_tlbstate.cr4, cr4);
482 }
483
484 /*
485  * Once CPU feature detection is finished (and boot params have been
486  * parsed), record any of the sensitive CR bits that are set, and
487  * enable CR pinning.
488  */
489 static void __init setup_cr_pinning(void)
490 {
491         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
492         static_key_enable(&cr_pinning.key);
493 }
494
495 static __init int x86_nofsgsbase_setup(char *arg)
496 {
497         /* Require an exact match without trailing characters. */
498         if (strlen(arg))
499                 return 0;
500
501         /* Do not emit a message if the feature is not present. */
502         if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
503                 return 1;
504
505         setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
506         pr_info("FSGSBASE disabled via kernel command line\n");
507         return 1;
508 }
509 __setup("nofsgsbase", x86_nofsgsbase_setup);
510
511 /*
512  * Protection Keys are not available in 32-bit mode.
513  */
514 static bool pku_disabled;
515
516 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
517 {
518         if (c == &boot_cpu_data) {
519                 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
520                         return;
521                 /*
522                  * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
523                  * bit to be set.  Enforce it.
524                  */
525                 setup_force_cpu_cap(X86_FEATURE_OSPKE);
526
527         } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
528                 return;
529         }
530
531         cr4_set_bits(X86_CR4_PKE);
532         /* Load the default PKRU value */
533         pkru_write_default();
534 }
535
536 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
537 static __init int setup_disable_pku(char *arg)
538 {
539         /*
540          * Do not clear the X86_FEATURE_PKU bit.  All of the
541          * runtime checks are against OSPKE so clearing the
542          * bit does nothing.
543          *
544          * This way, we will see "pku" in cpuinfo, but not
545          * "ospke", which is exactly what we want.  It shows
546          * that the CPU has PKU, but the OS has not enabled it.
547          * This happens to be exactly how a system would look
548          * if we disabled the config option.
549          */
550         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
551         pku_disabled = true;
552         return 1;
553 }
554 __setup("nopku", setup_disable_pku);
555 #endif
556
557 #ifdef CONFIG_X86_KERNEL_IBT
558
559 __noendbr u64 ibt_save(bool disable)
560 {
561         u64 msr = 0;
562
563         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
564                 rdmsrl(MSR_IA32_S_CET, msr);
565                 if (disable)
566                         wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
567         }
568
569         return msr;
570 }
571
572 __noendbr void ibt_restore(u64 save)
573 {
574         u64 msr;
575
576         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
577                 rdmsrl(MSR_IA32_S_CET, msr);
578                 msr &= ~CET_ENDBR_EN;
579                 msr |= (save & CET_ENDBR_EN);
580                 wrmsrl(MSR_IA32_S_CET, msr);
581         }
582 }
583
584 #endif
585
586 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
587 {
588         bool user_shstk, kernel_ibt;
589
590         if (!IS_ENABLED(CONFIG_X86_CET))
591                 return;
592
593         kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
594         user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
595                      IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
596
597         if (!kernel_ibt && !user_shstk)
598                 return;
599
600         if (user_shstk)
601                 set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
602
603         if (kernel_ibt)
604                 wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
605         else
606                 wrmsrl(MSR_IA32_S_CET, 0);
607
608         cr4_set_bits(X86_CR4_CET);
609
610         if (kernel_ibt && ibt_selftest()) {
611                 pr_err("IBT selftest: Failed!\n");
612                 wrmsrl(MSR_IA32_S_CET, 0);
613                 setup_clear_cpu_cap(X86_FEATURE_IBT);
614         }
615 }
616
617 __noendbr void cet_disable(void)
618 {
619         if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
620               cpu_feature_enabled(X86_FEATURE_SHSTK)))
621                 return;
622
623         wrmsrl(MSR_IA32_S_CET, 0);
624         wrmsrl(MSR_IA32_U_CET, 0);
625 }
626
627 /*
628  * Some CPU features depend on higher CPUID levels, which may not always
629  * be available due to CPUID level capping or broken virtualization
630  * software.  Add those features to this table to auto-disable them.
631  */
632 struct cpuid_dependent_feature {
633         u32 feature;
634         u32 level;
635 };
636
637 static const struct cpuid_dependent_feature
638 cpuid_dependent_features[] = {
639         { X86_FEATURE_MWAIT,            0x00000005 },
640         { X86_FEATURE_DCA,              0x00000009 },
641         { X86_FEATURE_XSAVE,            0x0000000d },
642         { 0, 0 }
643 };
644
645 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
646 {
647         const struct cpuid_dependent_feature *df;
648
649         for (df = cpuid_dependent_features; df->feature; df++) {
650
651                 if (!cpu_has(c, df->feature))
652                         continue;
653                 /*
654                  * Note: cpuid_level is set to -1 if unavailable, but
655                  * extended_extended_level is set to 0 if unavailable
656                  * and the legitimate extended levels are all negative
657                  * when signed; hence the weird messing around with
658                  * signs here...
659                  */
660                 if (!((s32)df->level < 0 ?
661                      (u32)df->level > (u32)c->extended_cpuid_level :
662                      (s32)df->level > (s32)c->cpuid_level))
663                         continue;
664
665                 clear_cpu_cap(c, df->feature);
666                 if (!warn)
667                         continue;
668
669                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
670                         x86_cap_flag(df->feature), df->level);
671         }
672 }
673
674 /*
675  * Naming convention should be: <Name> [(<Codename>)]
676  * This table only is used unless init_<vendor>() below doesn't set it;
677  * in particular, if CPUID levels 0x80000002..4 are supported, this
678  * isn't used
679  */
680
681 /* Look up CPU names by table lookup. */
682 static const char *table_lookup_model(struct cpuinfo_x86 *c)
683 {
684 #ifdef CONFIG_X86_32
685         const struct legacy_cpu_model_info *info;
686
687         if (c->x86_model >= 16)
688                 return NULL;    /* Range check */
689
690         if (!this_cpu)
691                 return NULL;
692
693         info = this_cpu->legacy_models;
694
695         while (info->family) {
696                 if (info->family == c->x86)
697                         return info->model_names[c->x86_model];
698                 info++;
699         }
700 #endif
701         return NULL;            /* Not found */
702 }
703
704 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
705 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
706 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
707
708 #ifdef CONFIG_X86_32
709 /* The 32-bit entry code needs to find cpu_entry_area. */
710 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
711 #endif
712
713 /* Load the original GDT from the per-cpu structure */
714 void load_direct_gdt(int cpu)
715 {
716         struct desc_ptr gdt_descr;
717
718         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
719         gdt_descr.size = GDT_SIZE - 1;
720         load_gdt(&gdt_descr);
721 }
722 EXPORT_SYMBOL_GPL(load_direct_gdt);
723
724 /* Load a fixmap remapping of the per-cpu GDT */
725 void load_fixmap_gdt(int cpu)
726 {
727         struct desc_ptr gdt_descr;
728
729         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
730         gdt_descr.size = GDT_SIZE - 1;
731         load_gdt(&gdt_descr);
732 }
733 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
734
735 /**
736  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
737  * @cpu:        The CPU number for which this is invoked
738  *
739  * Invoked during early boot to switch from early GDT and early per CPU to
740  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
741  * switch is implicit by loading the direct GDT. On 64bit this requires
742  * to update GSBASE.
743  */
744 void __init switch_gdt_and_percpu_base(int cpu)
745 {
746         load_direct_gdt(cpu);
747
748 #ifdef CONFIG_X86_64
749         /*
750          * No need to load %gs. It is already correct.
751          *
752          * Writing %gs on 64bit would zero GSBASE which would make any per
753          * CPU operation up to the point of the wrmsrl() fault.
754          *
755          * Set GSBASE to the new offset. Until the wrmsrl() happens the
756          * early mapping is still valid. That means the GSBASE update will
757          * lose any prior per CPU data which was not copied over in
758          * setup_per_cpu_areas().
759          *
760          * This works even with stackprotector enabled because the
761          * per CPU stack canary is 0 in both per CPU areas.
762          */
763         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
764 #else
765         /*
766          * %fs is already set to __KERNEL_PERCPU, but after switching GDT
767          * it is required to load FS again so that the 'hidden' part is
768          * updated from the new GDT. Up to this point the early per CPU
769          * translation is active. Any content of the early per CPU data
770          * which was not copied over in setup_per_cpu_areas() is lost.
771          */
772         loadsegment(fs, __KERNEL_PERCPU);
773 #endif
774 }
775
776 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
777
778 static void get_model_name(struct cpuinfo_x86 *c)
779 {
780         unsigned int *v;
781         char *p, *q, *s;
782
783         if (c->extended_cpuid_level < 0x80000004)
784                 return;
785
786         v = (unsigned int *)c->x86_model_id;
787         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
788         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
789         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
790         c->x86_model_id[48] = 0;
791
792         /* Trim whitespace */
793         p = q = s = &c->x86_model_id[0];
794
795         while (*p == ' ')
796                 p++;
797
798         while (*p) {
799                 /* Note the last non-whitespace index */
800                 if (!isspace(*p))
801                         s = q;
802
803                 *q++ = *p++;
804         }
805
806         *(s + 1) = '\0';
807 }
808
809 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
810 {
811         unsigned int n, dummy, ebx, ecx, edx, l2size;
812
813         n = c->extended_cpuid_level;
814
815         if (n >= 0x80000005) {
816                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
817                 c->x86_cache_size = (ecx>>24) + (edx>>24);
818 #ifdef CONFIG_X86_64
819                 /* On K8 L1 TLB is inclusive, so don't count it */
820                 c->x86_tlbsize = 0;
821 #endif
822         }
823
824         if (n < 0x80000006)     /* Some chips just has a large L1. */
825                 return;
826
827         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
828         l2size = ecx >> 16;
829
830 #ifdef CONFIG_X86_64
831         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
832 #else
833         /* do processor-specific cache resizing */
834         if (this_cpu->legacy_cache_size)
835                 l2size = this_cpu->legacy_cache_size(c, l2size);
836
837         /* Allow user to override all this if necessary. */
838         if (cachesize_override != -1)
839                 l2size = cachesize_override;
840
841         if (l2size == 0)
842                 return;         /* Again, no L2 cache is possible */
843 #endif
844
845         c->x86_cache_size = l2size;
846 }
847
848 u16 __read_mostly tlb_lli_4k[NR_INFO];
849 u16 __read_mostly tlb_lli_2m[NR_INFO];
850 u16 __read_mostly tlb_lli_4m[NR_INFO];
851 u16 __read_mostly tlb_lld_4k[NR_INFO];
852 u16 __read_mostly tlb_lld_2m[NR_INFO];
853 u16 __read_mostly tlb_lld_4m[NR_INFO];
854 u16 __read_mostly tlb_lld_1g[NR_INFO];
855
856 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
857 {
858         if (this_cpu->c_detect_tlb)
859                 this_cpu->c_detect_tlb(c);
860
861         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
862                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
863                 tlb_lli_4m[ENTRIES]);
864
865         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
866                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
867                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
868 }
869
870 static void get_cpu_vendor(struct cpuinfo_x86 *c)
871 {
872         char *v = c->x86_vendor_id;
873         int i;
874
875         for (i = 0; i < X86_VENDOR_NUM; i++) {
876                 if (!cpu_devs[i])
877                         break;
878
879                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
880                     (cpu_devs[i]->c_ident[1] &&
881                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
882
883                         this_cpu = cpu_devs[i];
884                         c->x86_vendor = this_cpu->c_x86_vendor;
885                         return;
886                 }
887         }
888
889         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
890                     "CPU: Your system may be unstable.\n", v);
891
892         c->x86_vendor = X86_VENDOR_UNKNOWN;
893         this_cpu = &default_cpu;
894 }
895
896 void cpu_detect(struct cpuinfo_x86 *c)
897 {
898         /* Get vendor name */
899         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
900               (unsigned int *)&c->x86_vendor_id[0],
901               (unsigned int *)&c->x86_vendor_id[8],
902               (unsigned int *)&c->x86_vendor_id[4]);
903
904         c->x86 = 4;
905         /* Intel-defined flags: level 0x00000001 */
906         if (c->cpuid_level >= 0x00000001) {
907                 u32 junk, tfms, cap0, misc;
908
909                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
910                 c->x86          = x86_family(tfms);
911                 c->x86_model    = x86_model(tfms);
912                 c->x86_stepping = x86_stepping(tfms);
913
914                 if (cap0 & (1<<19)) {
915                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
916                         c->x86_cache_alignment = c->x86_clflush_size;
917                 }
918         }
919 }
920
921 static void apply_forced_caps(struct cpuinfo_x86 *c)
922 {
923         int i;
924
925         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
926                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
927                 c->x86_capability[i] |= cpu_caps_set[i];
928         }
929 }
930
931 static void init_speculation_control(struct cpuinfo_x86 *c)
932 {
933         /*
934          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
935          * and they also have a different bit for STIBP support. Also,
936          * a hypervisor might have set the individual AMD bits even on
937          * Intel CPUs, for finer-grained selection of what's available.
938          */
939         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
940                 set_cpu_cap(c, X86_FEATURE_IBRS);
941                 set_cpu_cap(c, X86_FEATURE_IBPB);
942                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
943         }
944
945         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
946                 set_cpu_cap(c, X86_FEATURE_STIBP);
947
948         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
949             cpu_has(c, X86_FEATURE_VIRT_SSBD))
950                 set_cpu_cap(c, X86_FEATURE_SSBD);
951
952         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
953                 set_cpu_cap(c, X86_FEATURE_IBRS);
954                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
955         }
956
957         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
958                 set_cpu_cap(c, X86_FEATURE_IBPB);
959
960         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
961                 set_cpu_cap(c, X86_FEATURE_STIBP);
962                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
963         }
964
965         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
966                 set_cpu_cap(c, X86_FEATURE_SSBD);
967                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
968                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
969         }
970 }
971
972 void get_cpu_cap(struct cpuinfo_x86 *c)
973 {
974         u32 eax, ebx, ecx, edx;
975
976         /* Intel-defined flags: level 0x00000001 */
977         if (c->cpuid_level >= 0x00000001) {
978                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
979
980                 c->x86_capability[CPUID_1_ECX] = ecx;
981                 c->x86_capability[CPUID_1_EDX] = edx;
982         }
983
984         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
985         if (c->cpuid_level >= 0x00000006)
986                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
987
988         /* Additional Intel-defined flags: level 0x00000007 */
989         if (c->cpuid_level >= 0x00000007) {
990                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
991                 c->x86_capability[CPUID_7_0_EBX] = ebx;
992                 c->x86_capability[CPUID_7_ECX] = ecx;
993                 c->x86_capability[CPUID_7_EDX] = edx;
994
995                 /* Check valid sub-leaf index before accessing it */
996                 if (eax >= 1) {
997                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
998                         c->x86_capability[CPUID_7_1_EAX] = eax;
999                 }
1000         }
1001
1002         /* Extended state features: level 0x0000000d */
1003         if (c->cpuid_level >= 0x0000000d) {
1004                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1005
1006                 c->x86_capability[CPUID_D_1_EAX] = eax;
1007         }
1008
1009         /* AMD-defined flags: level 0x80000001 */
1010         eax = cpuid_eax(0x80000000);
1011         c->extended_cpuid_level = eax;
1012
1013         if ((eax & 0xffff0000) == 0x80000000) {
1014                 if (eax >= 0x80000001) {
1015                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1016
1017                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1018                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
1019                 }
1020         }
1021
1022         if (c->extended_cpuid_level >= 0x80000007) {
1023                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1024
1025                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1026                 c->x86_power = edx;
1027         }
1028
1029         if (c->extended_cpuid_level >= 0x80000008) {
1030                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1031                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1032         }
1033
1034         if (c->extended_cpuid_level >= 0x8000000a)
1035                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1036
1037         if (c->extended_cpuid_level >= 0x8000001f)
1038                 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1039
1040         if (c->extended_cpuid_level >= 0x80000021)
1041                 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1042
1043         init_scattered_cpuid_features(c);
1044         init_speculation_control(c);
1045
1046         /*
1047          * Clear/Set all flags overridden by options, after probe.
1048          * This needs to happen each time we re-probe, which may happen
1049          * several times during CPU initialization.
1050          */
1051         apply_forced_caps(c);
1052 }
1053
1054 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1055 {
1056         u32 eax, ebx, ecx, edx;
1057
1058         if (!cpu_has(c, X86_FEATURE_CPUID) ||
1059             (c->extended_cpuid_level < 0x80000008)) {
1060                 if (IS_ENABLED(CONFIG_X86_64)) {
1061                         c->x86_clflush_size = 64;
1062                         c->x86_phys_bits = 36;
1063                         c->x86_virt_bits = 48;
1064                 } else {
1065                         c->x86_clflush_size = 32;
1066                         c->x86_virt_bits = 32;
1067                         c->x86_phys_bits = 32;
1068
1069                         if (cpu_has(c, X86_FEATURE_PAE) ||
1070                             cpu_has(c, X86_FEATURE_PSE36))
1071                                 c->x86_phys_bits = 36;
1072                 }
1073         } else {
1074                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1075
1076                 c->x86_virt_bits = (eax >> 8) & 0xff;
1077                 c->x86_phys_bits = eax & 0xff;
1078
1079                 /* Provide a sane default if not enumerated: */
1080                 if (!c->x86_clflush_size)
1081                         c->x86_clflush_size = 32;
1082         }
1083
1084         c->x86_cache_bits = c->x86_phys_bits;
1085         c->x86_cache_alignment = c->x86_clflush_size;
1086 }
1087
1088 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1089 {
1090 #ifdef CONFIG_X86_32
1091         int i;
1092
1093         /*
1094          * First of all, decide if this is a 486 or higher
1095          * It's a 486 if we can modify the AC flag
1096          */
1097         if (flag_is_changeable_p(X86_EFLAGS_AC))
1098                 c->x86 = 4;
1099         else
1100                 c->x86 = 3;
1101
1102         for (i = 0; i < X86_VENDOR_NUM; i++)
1103                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1104                         c->x86_vendor_id[0] = 0;
1105                         cpu_devs[i]->c_identify(c);
1106                         if (c->x86_vendor_id[0]) {
1107                                 get_cpu_vendor(c);
1108                                 break;
1109                         }
1110                 }
1111 #endif
1112 }
1113
1114 #define NO_SPECULATION          BIT(0)
1115 #define NO_MELTDOWN             BIT(1)
1116 #define NO_SSB                  BIT(2)
1117 #define NO_L1TF                 BIT(3)
1118 #define NO_MDS                  BIT(4)
1119 #define MSBDS_ONLY              BIT(5)
1120 #define NO_SWAPGS               BIT(6)
1121 #define NO_ITLB_MULTIHIT        BIT(7)
1122 #define NO_SPECTRE_V2           BIT(8)
1123 #define NO_MMIO                 BIT(9)
1124 #define NO_EIBRS_PBRSB          BIT(10)
1125 #define NO_BHI                  BIT(11)
1126
1127 #define VULNWL(vendor, family, model, whitelist)        \
1128         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1129
1130 #define VULNWL_INTEL(vfm, whitelist)            \
1131         X86_MATCH_VFM(vfm, whitelist)
1132
1133 #define VULNWL_AMD(family, whitelist)           \
1134         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1135
1136 #define VULNWL_HYGON(family, whitelist)         \
1137         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1138
1139 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1140         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1141         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1142         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1143         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1144         VULNWL(VORTEX,  5, X86_MODEL_ANY,       NO_SPECULATION),
1145         VULNWL(VORTEX,  6, X86_MODEL_ANY,       NO_SPECULATION),
1146
1147         /* Intel Family 6 */
1148         VULNWL_INTEL(INTEL_TIGERLAKE,           NO_MMIO),
1149         VULNWL_INTEL(INTEL_TIGERLAKE_L,         NO_MMIO),
1150         VULNWL_INTEL(INTEL_ALDERLAKE,           NO_MMIO),
1151         VULNWL_INTEL(INTEL_ALDERLAKE_L,         NO_MMIO),
1152
1153         VULNWL_INTEL(INTEL_ATOM_SALTWELL,       NO_SPECULATION | NO_ITLB_MULTIHIT),
1154         VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1155         VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID,   NO_SPECULATION | NO_ITLB_MULTIHIT),
1156         VULNWL_INTEL(INTEL_ATOM_BONNELL,        NO_SPECULATION | NO_ITLB_MULTIHIT),
1157         VULNWL_INTEL(INTEL_ATOM_BONNELL_MID,    NO_SPECULATION | NO_ITLB_MULTIHIT),
1158
1159         VULNWL_INTEL(INTEL_ATOM_SILVERMONT,     NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1160         VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D,   NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1161         VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1162         VULNWL_INTEL(INTEL_ATOM_AIRMONT,        NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1163         VULNWL_INTEL(INTEL_XEON_PHI_KNL,        NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1164         VULNWL_INTEL(INTEL_XEON_PHI_KNM,        NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1165
1166         VULNWL_INTEL(INTEL_CORE_YONAH,          NO_SSB),
1167
1168         VULNWL_INTEL(INTEL_ATOM_AIRMONT_MID,    NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | MSBDS_ONLY),
1169         VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP,     NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1170
1171         VULNWL_INTEL(INTEL_ATOM_GOLDMONT,       NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1172         VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D,     NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1173         VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS,  NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1174
1175         /*
1176          * Technically, swapgs isn't serializing on AMD (despite it previously
1177          * being documented as such in the APM).  But according to AMD, %gs is
1178          * updated non-speculatively, and the issuing of %gs-relative memory
1179          * operands will be blocked until the %gs update completes, which is
1180          * good enough for our purposes.
1181          */
1182
1183         VULNWL_INTEL(INTEL_ATOM_TREMONT,        NO_EIBRS_PBRSB),
1184         VULNWL_INTEL(INTEL_ATOM_TREMONT_L,      NO_EIBRS_PBRSB),
1185         VULNWL_INTEL(INTEL_ATOM_TREMONT_D,      NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1186
1187         /* AMD Family 0xf - 0x12 */
1188         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1189         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1190         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1191         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1192
1193         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1194         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1195         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1196
1197         /* Zhaoxin Family 7 */
1198         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1199         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1200         {}
1201 };
1202
1203 #define VULNBL(vendor, family, model, blacklist)        \
1204         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1205
1206 #define VULNBL_INTEL_STEPPINGS(vfm, steppings, issues)             \
1207         X86_MATCH_VFM_STEPPINGS(vfm, steppings, issues)
1208
1209 #define VULNBL_AMD(family, blacklist)           \
1210         VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1211
1212 #define VULNBL_HYGON(family, blacklist)         \
1213         VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1214
1215 #define SRBDS           BIT(0)
1216 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1217 #define MMIO            BIT(1)
1218 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1219 #define MMIO_SBDS       BIT(2)
1220 /* CPU is affected by RETbleed, speculating where you would not expect it */
1221 #define RETBLEED        BIT(3)
1222 /* CPU is affected by SMT (cross-thread) return predictions */
1223 #define SMT_RSB         BIT(4)
1224 /* CPU is affected by SRSO */
1225 #define SRSO            BIT(5)
1226 /* CPU is affected by GDS */
1227 #define GDS             BIT(6)
1228 /* CPU is affected by Register File Data Sampling */
1229 #define RFDS            BIT(7)
1230
1231 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1232         VULNBL_INTEL_STEPPINGS(INTEL_IVYBRIDGE,         X86_STEPPING_ANY,               SRBDS),
1233         VULNBL_INTEL_STEPPINGS(INTEL_HASWELL,           X86_STEPPING_ANY,               SRBDS),
1234         VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_L,         X86_STEPPING_ANY,               SRBDS),
1235         VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_G,         X86_STEPPING_ANY,               SRBDS),
1236         VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_X,         X86_STEPPING_ANY,               MMIO),
1237         VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_D,       X86_STEPPING_ANY,               MMIO),
1238         VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_G,       X86_STEPPING_ANY,               SRBDS),
1239         VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_X,       X86_STEPPING_ANY,               MMIO),
1240         VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL,         X86_STEPPING_ANY,               SRBDS),
1241         VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_X,         X86_STEPPING_ANY,               MMIO | RETBLEED | GDS),
1242         VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_L,         X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1243         VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE,           X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1244         VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE_L,        X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1245         VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE,          X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1246         VULNBL_INTEL_STEPPINGS(INTEL_CANNONLAKE_L,      X86_STEPPING_ANY,               RETBLEED),
1247         VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_L,         X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1248         VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_D,         X86_STEPPING_ANY,               MMIO | GDS),
1249         VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_X,         X86_STEPPING_ANY,               MMIO | GDS),
1250         VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE,         X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1251         VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L,       X86_STEPPINGS(0x0, 0x0),        MMIO | RETBLEED),
1252         VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1253         VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE_L,       X86_STEPPING_ANY,               GDS),
1254         VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE,         X86_STEPPING_ANY,               GDS),
1255         VULNBL_INTEL_STEPPINGS(INTEL_LAKEFIELD,         X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED),
1256         VULNBL_INTEL_STEPPINGS(INTEL_ROCKETLAKE,        X86_STEPPING_ANY,               MMIO | RETBLEED | GDS),
1257         VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE,         X86_STEPPING_ANY,               RFDS),
1258         VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE_L,       X86_STEPPING_ANY,               RFDS),
1259         VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE,        X86_STEPPING_ANY,               RFDS),
1260         VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_P,      X86_STEPPING_ANY,               RFDS),
1261         VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_S,      X86_STEPPING_ANY,               RFDS),
1262         VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GRACEMONT,    X86_STEPPING_ANY,               RFDS),
1263         VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT,      X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RFDS),
1264         VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_D,    X86_STEPPING_ANY,               MMIO | RFDS),
1265         VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_L,    X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RFDS),
1266         VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT,     X86_STEPPING_ANY,               RFDS),
1267         VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_D,   X86_STEPPING_ANY,               RFDS),
1268         VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_PLUS, X86_STEPPING_ANY,              RFDS),
1269
1270         VULNBL_AMD(0x15, RETBLEED),
1271         VULNBL_AMD(0x16, RETBLEED),
1272         VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1273         VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1274         VULNBL_AMD(0x19, SRSO),
1275         {}
1276 };
1277
1278 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1279 {
1280         const struct x86_cpu_id *m = x86_match_cpu(table);
1281
1282         return m && !!(m->driver_data & which);
1283 }
1284
1285 u64 x86_read_arch_cap_msr(void)
1286 {
1287         u64 x86_arch_cap_msr = 0;
1288
1289         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1290                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr);
1291
1292         return x86_arch_cap_msr;
1293 }
1294
1295 static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr)
1296 {
1297         return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO &&
1298                 x86_arch_cap_msr & ARCH_CAP_PSDP_NO &&
1299                 x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO);
1300 }
1301
1302 static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr)
1303 {
1304         /* The "immunity" bit trumps everything else: */
1305         if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO)
1306                 return false;
1307
1308         /*
1309          * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
1310          * indicate that mitigation is needed because guest is running on a
1311          * vulnerable hardware or may migrate to such hardware:
1312          */
1313         if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
1314                 return true;
1315
1316         /* Only consult the blacklist when there is no enumeration: */
1317         return cpu_matches(cpu_vuln_blacklist, RFDS);
1318 }
1319
1320 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1321 {
1322         u64 x86_arch_cap_msr = x86_read_arch_cap_msr();
1323
1324         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1325         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1326             !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO))
1327                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1328
1329         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1330                 return;
1331
1332         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1333
1334         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1335                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1336
1337         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1338             !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) &&
1339            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1340                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1341
1342         /*
1343          * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1344          * flag and protect from vendor-specific bugs via the whitelist.
1345          *
1346          * Don't use AutoIBRS when SNP is enabled because it degrades host
1347          * userspace indirect branch performance.
1348          */
1349         if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) ||
1350             (cpu_has(c, X86_FEATURE_AUTOIBRS) &&
1351              !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) {
1352                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1353                 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1354                     !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO))
1355                         setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1356         }
1357
1358         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1359             !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) {
1360                 setup_force_cpu_bug(X86_BUG_MDS);
1361                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1362                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1363         }
1364
1365         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1366                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1367
1368         /*
1369          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1370          *      - TSX is supported or
1371          *      - TSX_CTRL is present
1372          *
1373          * TSX_CTRL check is needed for cases when TSX could be disabled before
1374          * the kernel boot e.g. kexec.
1375          * TSX_CTRL check alone is not sufficient for cases when the microcode
1376          * update is not present or running as guest that don't get TSX_CTRL.
1377          */
1378         if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) &&
1379             (cpu_has(c, X86_FEATURE_RTM) ||
1380              (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)))
1381                 setup_force_cpu_bug(X86_BUG_TAA);
1382
1383         /*
1384          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1385          * in the vulnerability blacklist.
1386          *
1387          * Some of the implications and mitigation of Shared Buffers Data
1388          * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1389          * SRBDS.
1390          */
1391         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1392              cpu_has(c, X86_FEATURE_RDSEED)) &&
1393             cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1394                     setup_force_cpu_bug(X86_BUG_SRBDS);
1395
1396         /*
1397          * Processor MMIO Stale Data bug enumeration
1398          *
1399          * Affected CPU list is generally enough to enumerate the vulnerability,
1400          * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1401          * not want the guest to enumerate the bug.
1402          *
1403          * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1404          * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1405          */
1406         if (!arch_cap_mmio_immune(x86_arch_cap_msr)) {
1407                 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1408                         setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1409                 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1410                         setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1411         }
1412
1413         if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1414                 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA))
1415                         setup_force_cpu_bug(X86_BUG_RETBLEED);
1416         }
1417
1418         if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1419                 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1420
1421         if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1422                 if (cpu_matches(cpu_vuln_blacklist, SRSO))
1423                         setup_force_cpu_bug(X86_BUG_SRSO);
1424         }
1425
1426         /*
1427          * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1428          * an affected processor, the VMM may have disabled the use of GATHER by
1429          * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1430          * which means that AVX will be disabled.
1431          */
1432         if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) &&
1433             boot_cpu_has(X86_FEATURE_AVX))
1434                 setup_force_cpu_bug(X86_BUG_GDS);
1435
1436         if (vulnerable_to_rfds(x86_arch_cap_msr))
1437                 setup_force_cpu_bug(X86_BUG_RFDS);
1438
1439         /* When virtualized, eIBRS could be hidden, assume vulnerable */
1440         if (!(x86_arch_cap_msr & ARCH_CAP_BHI_NO) &&
1441             !cpu_matches(cpu_vuln_whitelist, NO_BHI) &&
1442             (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) ||
1443              boot_cpu_has(X86_FEATURE_HYPERVISOR)))
1444                 setup_force_cpu_bug(X86_BUG_BHI);
1445
1446         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1447                 return;
1448
1449         /* Rogue Data Cache Load? No! */
1450         if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO)
1451                 return;
1452
1453         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1454
1455         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1456                 return;
1457
1458         setup_force_cpu_bug(X86_BUG_L1TF);
1459 }
1460
1461 /*
1462  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1463  * unfortunately, that's not true in practice because of early VIA
1464  * chips and (more importantly) broken virtualizers that are not easy
1465  * to detect. In the latter case it doesn't even *fail* reliably, so
1466  * probing for it doesn't even work. Disable it completely on 32-bit
1467  * unless we can find a reliable way to detect all the broken cases.
1468  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1469  */
1470 static void detect_nopl(void)
1471 {
1472 #ifdef CONFIG_X86_32
1473         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1474 #else
1475         setup_force_cpu_cap(X86_FEATURE_NOPL);
1476 #endif
1477 }
1478
1479 /*
1480  * We parse cpu parameters early because fpu__init_system() is executed
1481  * before parse_early_param().
1482  */
1483 static void __init cpu_parse_early_param(void)
1484 {
1485         char arg[128];
1486         char *argptr = arg, *opt;
1487         int arglen, taint = 0;
1488
1489 #ifdef CONFIG_X86_32
1490         if (cmdline_find_option_bool(boot_command_line, "no387"))
1491 #ifdef CONFIG_MATH_EMULATION
1492                 setup_clear_cpu_cap(X86_FEATURE_FPU);
1493 #else
1494                 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1495 #endif
1496
1497         if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1498                 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1499 #endif
1500
1501         if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1502                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1503
1504         if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1505                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1506
1507         if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1508                 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1509
1510         if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1511                 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1512
1513         /* Minimize the gap between FRED is available and available but disabled. */
1514         arglen = cmdline_find_option(boot_command_line, "fred", arg, sizeof(arg));
1515         if (arglen != 2 || strncmp(arg, "on", 2))
1516                 setup_clear_cpu_cap(X86_FEATURE_FRED);
1517
1518         arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1519         if (arglen <= 0)
1520                 return;
1521
1522         pr_info("Clearing CPUID bits:");
1523
1524         while (argptr) {
1525                 bool found __maybe_unused = false;
1526                 unsigned int bit;
1527
1528                 opt = strsep(&argptr, ",");
1529
1530                 /*
1531                  * Handle naked numbers first for feature flags which don't
1532                  * have names.
1533                  */
1534                 if (!kstrtouint(opt, 10, &bit)) {
1535                         if (bit < NCAPINTS * 32) {
1536
1537                                 /* empty-string, i.e., ""-defined feature flags */
1538                                 if (!x86_cap_flags[bit])
1539                                         pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1540                                 else
1541                                         pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1542
1543                                 setup_clear_cpu_cap(bit);
1544                                 taint++;
1545                         }
1546                         /*
1547                          * The assumption is that there are no feature names with only
1548                          * numbers in the name thus go to the next argument.
1549                          */
1550                         continue;
1551                 }
1552
1553                 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1554                         if (!x86_cap_flag(bit))
1555                                 continue;
1556
1557                         if (strcmp(x86_cap_flag(bit), opt))
1558                                 continue;
1559
1560                         pr_cont(" %s", opt);
1561                         setup_clear_cpu_cap(bit);
1562                         taint++;
1563                         found = true;
1564                         break;
1565                 }
1566
1567                 if (!found)
1568                         pr_cont(" (unknown: %s)", opt);
1569         }
1570         pr_cont("\n");
1571
1572         if (taint)
1573                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1574 }
1575
1576 /*
1577  * Do minimum CPU detection early.
1578  * Fields really needed: vendor, cpuid_level, family, model, mask,
1579  * cache alignment.
1580  * The others are not touched to avoid unwanted side effects.
1581  *
1582  * WARNING: this function is only called on the boot CPU.  Don't add code
1583  * here that is supposed to run on all CPUs.
1584  */
1585 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1586 {
1587         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1588         c->extended_cpuid_level = 0;
1589
1590         if (!have_cpuid_p())
1591                 identify_cpu_without_cpuid(c);
1592
1593         /* cyrix could have cpuid enabled via c_identify()*/
1594         if (have_cpuid_p()) {
1595                 cpu_detect(c);
1596                 get_cpu_vendor(c);
1597                 intel_unlock_cpuid_leafs(c);
1598                 get_cpu_cap(c);
1599                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1600                 get_cpu_address_sizes(c);
1601                 cpu_parse_early_param();
1602
1603                 cpu_init_topology(c);
1604
1605                 if (this_cpu->c_early_init)
1606                         this_cpu->c_early_init(c);
1607
1608                 c->cpu_index = 0;
1609                 filter_cpuid_features(c, false);
1610
1611                 if (this_cpu->c_bsp_init)
1612                         this_cpu->c_bsp_init(c);
1613         } else {
1614                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1615                 get_cpu_address_sizes(c);
1616                 cpu_init_topology(c);
1617         }
1618
1619         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1620
1621         cpu_set_bug_bits(c);
1622
1623         sld_setup(c);
1624
1625 #ifdef CONFIG_X86_32
1626         /*
1627          * Regardless of whether PCID is enumerated, the SDM says
1628          * that it can't be enabled in 32-bit mode.
1629          */
1630         setup_clear_cpu_cap(X86_FEATURE_PCID);
1631 #endif
1632
1633         /*
1634          * Later in the boot process pgtable_l5_enabled() relies on
1635          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1636          * enabled by this point we need to clear the feature bit to avoid
1637          * false-positives at the later stage.
1638          *
1639          * pgtable_l5_enabled() can be false here for several reasons:
1640          *  - 5-level paging is disabled compile-time;
1641          *  - it's 32-bit kernel;
1642          *  - machine doesn't support 5-level paging;
1643          *  - user specified 'no5lvl' in kernel command line.
1644          */
1645         if (!pgtable_l5_enabled())
1646                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1647
1648         detect_nopl();
1649 }
1650
1651 void __init early_cpu_init(void)
1652 {
1653         const struct cpu_dev *const *cdev;
1654         int count = 0;
1655
1656 #ifdef CONFIG_PROCESSOR_SELECT
1657         pr_info("KERNEL supported cpus:\n");
1658 #endif
1659
1660         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1661                 const struct cpu_dev *cpudev = *cdev;
1662
1663                 if (count >= X86_VENDOR_NUM)
1664                         break;
1665                 cpu_devs[count] = cpudev;
1666                 count++;
1667
1668 #ifdef CONFIG_PROCESSOR_SELECT
1669                 {
1670                         unsigned int j;
1671
1672                         for (j = 0; j < 2; j++) {
1673                                 if (!cpudev->c_ident[j])
1674                                         continue;
1675                                 pr_info("  %s %s\n", cpudev->c_vendor,
1676                                         cpudev->c_ident[j]);
1677                         }
1678                 }
1679 #endif
1680         }
1681         early_identify_cpu(&boot_cpu_data);
1682 }
1683
1684 static bool detect_null_seg_behavior(void)
1685 {
1686         /*
1687          * Empirically, writing zero to a segment selector on AMD does
1688          * not clear the base, whereas writing zero to a segment
1689          * selector on Intel does clear the base.  Intel's behavior
1690          * allows slightly faster context switches in the common case
1691          * where GS is unused by the prev and next threads.
1692          *
1693          * Since neither vendor documents this anywhere that I can see,
1694          * detect it directly instead of hard-coding the choice by
1695          * vendor.
1696          *
1697          * I've designated AMD's behavior as the "bug" because it's
1698          * counterintuitive and less friendly.
1699          */
1700
1701         unsigned long old_base, tmp;
1702         rdmsrl(MSR_FS_BASE, old_base);
1703         wrmsrl(MSR_FS_BASE, 1);
1704         loadsegment(fs, 0);
1705         rdmsrl(MSR_FS_BASE, tmp);
1706         wrmsrl(MSR_FS_BASE, old_base);
1707         return tmp == 0;
1708 }
1709
1710 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1711 {
1712         /* BUG_NULL_SEG is only relevant with 64bit userspace */
1713         if (!IS_ENABLED(CONFIG_X86_64))
1714                 return;
1715
1716         if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1717                 return;
1718
1719         /*
1720          * CPUID bit above wasn't set. If this kernel is still running
1721          * as a HV guest, then the HV has decided not to advertize
1722          * that CPUID bit for whatever reason.  For example, one
1723          * member of the migration pool might be vulnerable.  Which
1724          * means, the bug is present: set the BUG flag and return.
1725          */
1726         if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1727                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1728                 return;
1729         }
1730
1731         /*
1732          * Zen2 CPUs also have this behaviour, but no CPUID bit.
1733          * 0x18 is the respective family for Hygon.
1734          */
1735         if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1736             detect_null_seg_behavior())
1737                 return;
1738
1739         /* All the remaining ones are affected */
1740         set_cpu_bug(c, X86_BUG_NULL_SEG);
1741 }
1742
1743 static void generic_identify(struct cpuinfo_x86 *c)
1744 {
1745         c->extended_cpuid_level = 0;
1746
1747         if (!have_cpuid_p())
1748                 identify_cpu_without_cpuid(c);
1749
1750         /* cyrix could have cpuid enabled via c_identify()*/
1751         if (!have_cpuid_p())
1752                 return;
1753
1754         cpu_detect(c);
1755
1756         get_cpu_vendor(c);
1757         intel_unlock_cpuid_leafs(c);
1758         get_cpu_cap(c);
1759
1760         get_cpu_address_sizes(c);
1761
1762         get_model_name(c); /* Default name */
1763
1764         /*
1765          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1766          * systems that run Linux at CPL > 0 may or may not have the
1767          * issue, but, even if they have the issue, there's absolutely
1768          * nothing we can do about it because we can't use the real IRET
1769          * instruction.
1770          *
1771          * NB: For the time being, only 32-bit kernels support
1772          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1773          * whether to apply espfix using paravirt hooks.  If any
1774          * non-paravirt system ever shows up that does *not* have the
1775          * ESPFIX issue, we can change this.
1776          */
1777 #ifdef CONFIG_X86_32
1778         set_cpu_bug(c, X86_BUG_ESPFIX);
1779 #endif
1780 }
1781
1782 /*
1783  * This does the hard work of actually picking apart the CPU stuff...
1784  */
1785 static void identify_cpu(struct cpuinfo_x86 *c)
1786 {
1787         int i;
1788
1789         c->loops_per_jiffy = loops_per_jiffy;
1790         c->x86_cache_size = 0;
1791         c->x86_vendor = X86_VENDOR_UNKNOWN;
1792         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1793         c->x86_vendor_id[0] = '\0'; /* Unset */
1794         c->x86_model_id[0] = '\0';  /* Unset */
1795 #ifdef CONFIG_X86_64
1796         c->x86_clflush_size = 64;
1797         c->x86_phys_bits = 36;
1798         c->x86_virt_bits = 48;
1799 #else
1800         c->cpuid_level = -1;    /* CPUID not detected */
1801         c->x86_clflush_size = 32;
1802         c->x86_phys_bits = 32;
1803         c->x86_virt_bits = 32;
1804 #endif
1805         c->x86_cache_alignment = c->x86_clflush_size;
1806         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1807 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1808         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1809 #endif
1810
1811         generic_identify(c);
1812
1813         cpu_parse_topology(c);
1814
1815         if (this_cpu->c_identify)
1816                 this_cpu->c_identify(c);
1817
1818         /* Clear/Set all flags overridden by options, after probe */
1819         apply_forced_caps(c);
1820
1821         /*
1822          * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1823          * Hygon will clear it in ->c_init() below.
1824          */
1825         set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1826
1827         /*
1828          * Vendor-specific initialization.  In this section we
1829          * canonicalize the feature flags, meaning if there are
1830          * features a certain CPU supports which CPUID doesn't
1831          * tell us, CPUID claiming incorrect flags, or other bugs,
1832          * we handle them here.
1833          *
1834          * At the end of this section, c->x86_capability better
1835          * indicate the features this CPU genuinely supports!
1836          */
1837         if (this_cpu->c_init)
1838                 this_cpu->c_init(c);
1839
1840         /* Disable the PN if appropriate */
1841         squash_the_stupid_serial_number(c);
1842
1843         /* Set up SMEP/SMAP/UMIP */
1844         setup_smep(c);
1845         setup_smap(c);
1846         setup_umip(c);
1847
1848         /* Enable FSGSBASE instructions if available. */
1849         if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1850                 cr4_set_bits(X86_CR4_FSGSBASE);
1851                 elf_hwcap2 |= HWCAP2_FSGSBASE;
1852         }
1853
1854         /*
1855          * The vendor-specific functions might have changed features.
1856          * Now we do "generic changes."
1857          */
1858
1859         /* Filter out anything that depends on CPUID levels we don't have */
1860         filter_cpuid_features(c, true);
1861
1862         /* If the model name is still unset, do table lookup. */
1863         if (!c->x86_model_id[0]) {
1864                 const char *p;
1865                 p = table_lookup_model(c);
1866                 if (p)
1867                         strcpy(c->x86_model_id, p);
1868                 else
1869                         /* Last resort... */
1870                         sprintf(c->x86_model_id, "%02x/%02x",
1871                                 c->x86, c->x86_model);
1872         }
1873
1874         x86_init_rdrand(c);
1875         setup_pku(c);
1876         setup_cet(c);
1877
1878         /*
1879          * Clear/Set all flags overridden by options, need do it
1880          * before following smp all cpus cap AND.
1881          */
1882         apply_forced_caps(c);
1883
1884         /*
1885          * On SMP, boot_cpu_data holds the common feature set between
1886          * all CPUs; so make sure that we indicate which features are
1887          * common between the CPUs.  The first time this routine gets
1888          * executed, c == &boot_cpu_data.
1889          */
1890         if (c != &boot_cpu_data) {
1891                 /* AND the already accumulated flags with these */
1892                 for (i = 0; i < NCAPINTS; i++)
1893                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1894
1895                 /* OR, i.e. replicate the bug flags */
1896                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1897                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1898         }
1899
1900         ppin_init(c);
1901
1902         /* Init Machine Check Exception if available. */
1903         mcheck_cpu_init(c);
1904
1905 #ifdef CONFIG_NUMA
1906         numa_add_cpu(smp_processor_id());
1907 #endif
1908 }
1909
1910 /*
1911  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1912  * on 32-bit kernels:
1913  */
1914 #ifdef CONFIG_X86_32
1915 void enable_sep_cpu(void)
1916 {
1917         struct tss_struct *tss;
1918         int cpu;
1919
1920         if (!boot_cpu_has(X86_FEATURE_SEP))
1921                 return;
1922
1923         cpu = get_cpu();
1924         tss = &per_cpu(cpu_tss_rw, cpu);
1925
1926         /*
1927          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1928          * see the big comment in struct x86_hw_tss's definition.
1929          */
1930
1931         tss->x86_tss.ss1 = __KERNEL_CS;
1932         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1933         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1934         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1935
1936         put_cpu();
1937 }
1938 #endif
1939
1940 static __init void identify_boot_cpu(void)
1941 {
1942         identify_cpu(&boot_cpu_data);
1943         if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1944                 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1945 #ifdef CONFIG_X86_32
1946         enable_sep_cpu();
1947 #endif
1948         cpu_detect_tlb(&boot_cpu_data);
1949         setup_cr_pinning();
1950
1951         tsx_init();
1952         tdx_init();
1953         lkgs_init();
1954 }
1955
1956 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1957 {
1958         BUG_ON(c == &boot_cpu_data);
1959         identify_cpu(c);
1960 #ifdef CONFIG_X86_32
1961         enable_sep_cpu();
1962 #endif
1963         x86_spec_ctrl_setup_ap();
1964         update_srbds_msr();
1965         if (boot_cpu_has_bug(X86_BUG_GDS))
1966                 update_gds_msr();
1967
1968         tsx_ap_init();
1969 }
1970
1971 void print_cpu_info(struct cpuinfo_x86 *c)
1972 {
1973         const char *vendor = NULL;
1974
1975         if (c->x86_vendor < X86_VENDOR_NUM) {
1976                 vendor = this_cpu->c_vendor;
1977         } else {
1978                 if (c->cpuid_level >= 0)
1979                         vendor = c->x86_vendor_id;
1980         }
1981
1982         if (vendor && !strstr(c->x86_model_id, vendor))
1983                 pr_cont("%s ", vendor);
1984
1985         if (c->x86_model_id[0])
1986                 pr_cont("%s", c->x86_model_id);
1987         else
1988                 pr_cont("%d86", c->x86);
1989
1990         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1991
1992         if (c->x86_stepping || c->cpuid_level >= 0)
1993                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1994         else
1995                 pr_cont(")\n");
1996 }
1997
1998 /*
1999  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
2000  * function prevents it from becoming an environment variable for init.
2001  */
2002 static __init int setup_clearcpuid(char *arg)
2003 {
2004         return 1;
2005 }
2006 __setup("clearcpuid=", setup_clearcpuid);
2007
2008 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2009         .current_task   = &init_task,
2010         .preempt_count  = INIT_PREEMPT_COUNT,
2011         .top_of_stack   = TOP_OF_INIT_STACK,
2012 };
2013 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2014 EXPORT_PER_CPU_SYMBOL(const_pcpu_hot);
2015
2016 #ifdef CONFIG_X86_64
2017 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2018                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2019 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2020
2021 static void wrmsrl_cstar(unsigned long val)
2022 {
2023         /*
2024          * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2025          * is so far ignored by the CPU, but raises a #VE trap in a TDX
2026          * guest. Avoid the pointless write on all Intel CPUs.
2027          */
2028         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2029                 wrmsrl(MSR_CSTAR, val);
2030 }
2031
2032 static inline void idt_syscall_init(void)
2033 {
2034         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2035
2036         if (ia32_enabled()) {
2037                 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2038                 /*
2039                  * This only works on Intel CPUs.
2040                  * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2041                  * This does not cause SYSENTER to jump to the wrong location, because
2042                  * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2043                  */
2044                 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2045                 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2046                             (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2047                 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2048         } else {
2049                 wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2050                 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2051                 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2052                 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2053         }
2054
2055         /*
2056          * Flags to clear on syscall; clear as much as possible
2057          * to minimize user space-kernel interference.
2058          */
2059         wrmsrl(MSR_SYSCALL_MASK,
2060                X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2061                X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2062                X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2063                X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2064                X86_EFLAGS_AC|X86_EFLAGS_ID);
2065 }
2066
2067 /* May not be marked __init: used by software suspend */
2068 void syscall_init(void)
2069 {
2070         /* The default user and kernel segments */
2071         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2072
2073         /*
2074          * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
2075          * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
2076          * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
2077          * instruction to return to ring 3 (both sysexit and sysret cause
2078          * #UD when FRED is enabled).
2079          */
2080         if (!cpu_feature_enabled(X86_FEATURE_FRED))
2081                 idt_syscall_init();
2082 }
2083
2084 #else   /* CONFIG_X86_64 */
2085
2086 #ifdef CONFIG_STACKPROTECTOR
2087 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2088 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2089 #endif
2090
2091 #endif  /* CONFIG_X86_64 */
2092
2093 /*
2094  * Clear all 6 debug registers:
2095  */
2096 static void clear_all_debug_regs(void)
2097 {
2098         int i;
2099
2100         for (i = 0; i < 8; i++) {
2101                 /* Ignore db4, db5 */
2102                 if ((i == 4) || (i == 5))
2103                         continue;
2104
2105                 set_debugreg(0, i);
2106         }
2107 }
2108
2109 #ifdef CONFIG_KGDB
2110 /*
2111  * Restore debug regs if using kgdbwait and you have a kernel debugger
2112  * connection established.
2113  */
2114 static void dbg_restore_debug_regs(void)
2115 {
2116         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2117                 arch_kgdb_ops.correct_hw_break();
2118 }
2119 #else /* ! CONFIG_KGDB */
2120 #define dbg_restore_debug_regs()
2121 #endif /* ! CONFIG_KGDB */
2122
2123 static inline void setup_getcpu(int cpu)
2124 {
2125         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2126         struct desc_struct d = { };
2127
2128         if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2129                 wrmsr(MSR_TSC_AUX, cpudata, 0);
2130
2131         /* Store CPU and node number in limit. */
2132         d.limit0 = cpudata;
2133         d.limit1 = cpudata >> 16;
2134
2135         d.type = 5;             /* RO data, expand down, accessed */
2136         d.dpl = 3;              /* Visible to user code */
2137         d.s = 1;                /* Not a system segment */
2138         d.p = 1;                /* Present */
2139         d.d = 1;                /* 32-bit */
2140
2141         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2142 }
2143
2144 #ifdef CONFIG_X86_64
2145 static inline void tss_setup_ist(struct tss_struct *tss)
2146 {
2147         /* Set up the per-CPU TSS IST stacks */
2148         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2149         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2150         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2151         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2152         /* Only mapped when SEV-ES is active */
2153         tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2154 }
2155 #else /* CONFIG_X86_64 */
2156 static inline void tss_setup_ist(struct tss_struct *tss) { }
2157 #endif /* !CONFIG_X86_64 */
2158
2159 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2160 {
2161         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2162
2163 #ifdef CONFIG_X86_IOPL_IOPERM
2164         tss->io_bitmap.prev_max = 0;
2165         tss->io_bitmap.prev_sequence = 0;
2166         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2167         /*
2168          * Invalidate the extra array entry past the end of the all
2169          * permission bitmap as required by the hardware.
2170          */
2171         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2172 #endif
2173 }
2174
2175 /*
2176  * Setup everything needed to handle exceptions from the IDT, including the IST
2177  * exceptions which use paranoid_entry().
2178  */
2179 void cpu_init_exception_handling(bool boot_cpu)
2180 {
2181         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2182         int cpu = raw_smp_processor_id();
2183
2184         /* paranoid_entry() gets the CPU number from the GDT */
2185         setup_getcpu(cpu);
2186
2187         /* For IDT mode, IST vectors need to be set in TSS. */
2188         if (!cpu_feature_enabled(X86_FEATURE_FRED))
2189                 tss_setup_ist(tss);
2190         tss_setup_io_bitmap(tss);
2191         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2192
2193         load_TR_desc();
2194
2195         /* GHCB needs to be setup to handle #VC. */
2196         setup_ghcb();
2197
2198         if (cpu_feature_enabled(X86_FEATURE_FRED)) {
2199                 /* The boot CPU has enabled FRED during early boot */
2200                 if (!boot_cpu)
2201                         cpu_init_fred_exceptions();
2202
2203                 cpu_init_fred_rsps();
2204         } else {
2205                 load_current_idt();
2206         }
2207 }
2208
2209 void __init cpu_init_replace_early_idt(void)
2210 {
2211         if (cpu_feature_enabled(X86_FEATURE_FRED))
2212                 cpu_init_fred_exceptions();
2213         else
2214                 idt_setup_early_pf();
2215 }
2216
2217 /*
2218  * cpu_init() initializes state that is per-CPU. Some data is already
2219  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2220  * reload it nevertheless, this function acts as a 'CPU state barrier',
2221  * nothing should get across.
2222  */
2223 void cpu_init(void)
2224 {
2225         struct task_struct *cur = current;
2226         int cpu = raw_smp_processor_id();
2227
2228 #ifdef CONFIG_NUMA
2229         if (this_cpu_read(numa_node) == 0 &&
2230             early_cpu_to_node(cpu) != NUMA_NO_NODE)
2231                 set_numa_node(early_cpu_to_node(cpu));
2232 #endif
2233         pr_debug("Initializing CPU#%d\n", cpu);
2234
2235         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2236             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2237                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2238
2239         if (IS_ENABLED(CONFIG_X86_64)) {
2240                 loadsegment(fs, 0);
2241                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2242                 syscall_init();
2243
2244                 wrmsrl(MSR_FS_BASE, 0);
2245                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2246                 barrier();
2247
2248                 x2apic_setup();
2249
2250                 intel_posted_msi_init();
2251         }
2252
2253         mmgrab(&init_mm);
2254         cur->active_mm = &init_mm;
2255         BUG_ON(cur->mm);
2256         initialize_tlbstate_and_flush();
2257         enter_lazy_tlb(&init_mm, cur);
2258
2259         /*
2260          * sp0 points to the entry trampoline stack regardless of what task
2261          * is running.
2262          */
2263         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2264
2265         load_mm_ldt(&init_mm);
2266
2267         clear_all_debug_regs();
2268         dbg_restore_debug_regs();
2269
2270         doublefault_init_cpu_tss();
2271
2272         if (is_uv_system())
2273                 uv_cpu_init();
2274
2275         load_fixmap_gdt(cpu);
2276 }
2277
2278 #ifdef CONFIG_MICROCODE_LATE_LOADING
2279 /**
2280  * store_cpu_caps() - Store a snapshot of CPU capabilities
2281  * @curr_info: Pointer where to store it
2282  *
2283  * Returns: None
2284  */
2285 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2286 {
2287         /* Reload CPUID max function as it might've changed. */
2288         curr_info->cpuid_level = cpuid_eax(0);
2289
2290         /* Copy all capability leafs and pick up the synthetic ones. */
2291         memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2292                sizeof(curr_info->x86_capability));
2293
2294         /* Get the hardware CPUID leafs */
2295         get_cpu_cap(curr_info);
2296 }
2297
2298 /**
2299  * microcode_check() - Check if any CPU capabilities changed after an update.
2300  * @prev_info:  CPU capabilities stored before an update.
2301  *
2302  * The microcode loader calls this upon late microcode load to recheck features,
2303  * only when microcode has been updated. Caller holds and CPU hotplug lock.
2304  *
2305  * Return: None
2306  */
2307 void microcode_check(struct cpuinfo_x86 *prev_info)
2308 {
2309         struct cpuinfo_x86 curr_info;
2310
2311         perf_check_microcode();
2312
2313         amd_check_microcode();
2314
2315         store_cpu_caps(&curr_info);
2316
2317         if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2318                     sizeof(prev_info->x86_capability)))
2319                 return;
2320
2321         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2322         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2323 }
2324 #endif
2325
2326 /*
2327  * Invoked from core CPU hotplug code after hotplug operations
2328  */
2329 void arch_smt_update(void)
2330 {
2331         /* Handle the speculative execution misfeatures */
2332         cpu_bugs_smt_update();
2333         /* Check whether IPI broadcasting can be enabled */
2334         apic_smt_update();
2335 }
2336
2337 void __init arch_cpu_finalize_init(void)
2338 {
2339         struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
2340
2341         identify_boot_cpu();
2342
2343         select_idle_routine();
2344
2345         /*
2346          * identify_boot_cpu() initialized SMT support information, let the
2347          * core code know.
2348          */
2349         cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core);
2350
2351         if (!IS_ENABLED(CONFIG_SMP)) {
2352                 pr_info("CPU: ");
2353                 print_cpu_info(&boot_cpu_data);
2354         }
2355
2356         cpu_select_mitigations();
2357
2358         arch_smt_update();
2359
2360         if (IS_ENABLED(CONFIG_X86_32)) {
2361                 /*
2362                  * Check whether this is a real i386 which is not longer
2363                  * supported and fixup the utsname.
2364                  */
2365                 if (boot_cpu_data.x86 < 4)
2366                         panic("Kernel requires i486+ for 'invlpg' and other features");
2367
2368                 init_utsname()->machine[1] =
2369                         '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2370         }
2371
2372         /*
2373          * Must be before alternatives because it might set or clear
2374          * feature bits.
2375          */
2376         fpu__init_system();
2377         fpu__init_cpu();
2378
2379         /*
2380          * Ensure that access to the per CPU representation has the initial
2381          * boot CPU configuration.
2382          */
2383         *c = boot_cpu_data;
2384         c->initialized = true;
2385
2386         alternative_instructions();
2387
2388         if (IS_ENABLED(CONFIG_X86_64)) {
2389                 /*
2390                  * Make sure the first 2MB area is not mapped by huge pages
2391                  * There are typically fixed size MTRRs in there and overlapping
2392                  * MTRRs into large pages causes slow downs.
2393                  *
2394                  * Right now we don't do that with gbpages because there seems
2395                  * very little benefit for that case.
2396                  */
2397                 if (!direct_gbpages)
2398                         set_memory_4k((unsigned long)__va(0), 1);
2399         } else {
2400                 fpu__init_check_bugs();
2401         }
2402
2403         /*
2404          * This needs to be called before any devices perform DMA
2405          * operations that might use the SWIOTLB bounce buffers. It will
2406          * mark the bounce buffers as decrypted so that their usage will
2407          * not cause "plain-text" data to be decrypted when accessed. It
2408          * must be called after late_time_init() so that Hyper-V x86/x64
2409          * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2410          */
2411         mem_encrypt_init();
2412 }