Merge tag 'x86_cpu_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25
26 #include <asm/cmdline.h>
27 #include <asm/stackprotector.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/api.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/microcode.h>
57 #include <asm/microcode_intel.h>
58 #include <asm/intel-family.h>
59 #include <asm/cpu_device_id.h>
60 #include <asm/uv/uv.h>
61 #include <asm/sigframe.h>
62
63 #include "cpu.h"
64
65 u32 elf_hwcap2 __read_mostly;
66
67 /* all of these masks are initialized in setup_cpu_local_masks() */
68 cpumask_var_t cpu_initialized_mask;
69 cpumask_var_t cpu_callout_mask;
70 cpumask_var_t cpu_callin_mask;
71
72 /* representing cpus for which sibling maps can be computed */
73 cpumask_var_t cpu_sibling_setup_mask;
74
75 /* Number of siblings per CPU package */
76 int smp_num_siblings = 1;
77 EXPORT_SYMBOL(smp_num_siblings);
78
79 /* Last level cache ID of each logical CPU */
80 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
81
82 u16 get_llc_id(unsigned int cpu)
83 {
84         return per_cpu(cpu_llc_id, cpu);
85 }
86 EXPORT_SYMBOL_GPL(get_llc_id);
87
88 /* L2 cache ID of each logical CPU */
89 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
90
91 /* correctly size the local cpu masks */
92 void __init setup_cpu_local_masks(void)
93 {
94         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
95         alloc_bootmem_cpumask_var(&cpu_callin_mask);
96         alloc_bootmem_cpumask_var(&cpu_callout_mask);
97         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
98 }
99
100 static void default_init(struct cpuinfo_x86 *c)
101 {
102 #ifdef CONFIG_X86_64
103         cpu_detect_cache_sizes(c);
104 #else
105         /* Not much we can do here... */
106         /* Check if at least it has cpuid */
107         if (c->cpuid_level == -1) {
108                 /* No cpuid. It must be an ancient CPU */
109                 if (c->x86 == 4)
110                         strcpy(c->x86_model_id, "486");
111                 else if (c->x86 == 3)
112                         strcpy(c->x86_model_id, "386");
113         }
114 #endif
115 }
116
117 static const struct cpu_dev default_cpu = {
118         .c_init         = default_init,
119         .c_vendor       = "Unknown",
120         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
121 };
122
123 static const struct cpu_dev *this_cpu = &default_cpu;
124
125 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
126 #ifdef CONFIG_X86_64
127         /*
128          * We need valid kernel segments for data and code in long mode too
129          * IRET will check the segment types  kkeil 2000/10/28
130          * Also sysret mandates a special GDT layout
131          *
132          * TLS descriptors are currently at a different place compared to i386.
133          * Hopefully nobody expects them at a fixed place (Wine?)
134          */
135         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
136         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
137         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
138         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
139         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
140         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
141 #else
142         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
143         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
144         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
145         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
146         /*
147          * Segments used for calling PnP BIOS have byte granularity.
148          * They code segments and data segments have fixed 64k limits,
149          * the transfer segment sizes are set at run time.
150          */
151         /* 32-bit code */
152         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
153         /* 16-bit code */
154         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
155         /* 16-bit data */
156         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
157         /* 16-bit data */
158         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
159         /* 16-bit data */
160         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
161         /*
162          * The APM segments have byte granularity and their bases
163          * are set at run time.  All have 64k limits.
164          */
165         /* 32-bit code */
166         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
167         /* 16-bit code */
168         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
169         /* data */
170         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
171
172         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
173         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
174 #endif
175 } };
176 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
177
178 #ifdef CONFIG_X86_64
179 static int __init x86_nopcid_setup(char *s)
180 {
181         /* nopcid doesn't accept parameters */
182         if (s)
183                 return -EINVAL;
184
185         /* do not emit a message if the feature is not present */
186         if (!boot_cpu_has(X86_FEATURE_PCID))
187                 return 0;
188
189         setup_clear_cpu_cap(X86_FEATURE_PCID);
190         pr_info("nopcid: PCID feature disabled\n");
191         return 0;
192 }
193 early_param("nopcid", x86_nopcid_setup);
194 #endif
195
196 static int __init x86_noinvpcid_setup(char *s)
197 {
198         /* noinvpcid doesn't accept parameters */
199         if (s)
200                 return -EINVAL;
201
202         /* do not emit a message if the feature is not present */
203         if (!boot_cpu_has(X86_FEATURE_INVPCID))
204                 return 0;
205
206         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
207         pr_info("noinvpcid: INVPCID feature disabled\n");
208         return 0;
209 }
210 early_param("noinvpcid", x86_noinvpcid_setup);
211
212 #ifdef CONFIG_X86_32
213 static int cachesize_override = -1;
214 static int disable_x86_serial_nr = 1;
215
216 static int __init cachesize_setup(char *str)
217 {
218         get_option(&str, &cachesize_override);
219         return 1;
220 }
221 __setup("cachesize=", cachesize_setup);
222
223 static int __init x86_sep_setup(char *s)
224 {
225         setup_clear_cpu_cap(X86_FEATURE_SEP);
226         return 1;
227 }
228 __setup("nosep", x86_sep_setup);
229
230 /* Standard macro to see if a specific flag is changeable */
231 static inline int flag_is_changeable_p(u32 flag)
232 {
233         u32 f1, f2;
234
235         /*
236          * Cyrix and IDT cpus allow disabling of CPUID
237          * so the code below may return different results
238          * when it is executed before and after enabling
239          * the CPUID. Add "volatile" to not allow gcc to
240          * optimize the subsequent calls to this function.
241          */
242         asm volatile ("pushfl           \n\t"
243                       "pushfl           \n\t"
244                       "popl %0          \n\t"
245                       "movl %0, %1      \n\t"
246                       "xorl %2, %0      \n\t"
247                       "pushl %0         \n\t"
248                       "popfl            \n\t"
249                       "pushfl           \n\t"
250                       "popl %0          \n\t"
251                       "popfl            \n\t"
252
253                       : "=&r" (f1), "=&r" (f2)
254                       : "ir" (flag));
255
256         return ((f1^f2) & flag) != 0;
257 }
258
259 /* Probe for the CPUID instruction */
260 int have_cpuid_p(void)
261 {
262         return flag_is_changeable_p(X86_EFLAGS_ID);
263 }
264
265 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
266 {
267         unsigned long lo, hi;
268
269         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
270                 return;
271
272         /* Disable processor serial number: */
273
274         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
275         lo |= 0x200000;
276         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
277
278         pr_notice("CPU serial number disabled.\n");
279         clear_cpu_cap(c, X86_FEATURE_PN);
280
281         /* Disabling the serial number may affect the cpuid level */
282         c->cpuid_level = cpuid_eax(0);
283 }
284
285 static int __init x86_serial_nr_setup(char *s)
286 {
287         disable_x86_serial_nr = 0;
288         return 1;
289 }
290 __setup("serialnumber", x86_serial_nr_setup);
291 #else
292 static inline int flag_is_changeable_p(u32 flag)
293 {
294         return 1;
295 }
296 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
297 {
298 }
299 #endif
300
301 static __init int setup_disable_smep(char *arg)
302 {
303         setup_clear_cpu_cap(X86_FEATURE_SMEP);
304         return 1;
305 }
306 __setup("nosmep", setup_disable_smep);
307
308 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
309 {
310         if (cpu_has(c, X86_FEATURE_SMEP))
311                 cr4_set_bits(X86_CR4_SMEP);
312 }
313
314 static __init int setup_disable_smap(char *arg)
315 {
316         setup_clear_cpu_cap(X86_FEATURE_SMAP);
317         return 1;
318 }
319 __setup("nosmap", setup_disable_smap);
320
321 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
322 {
323         unsigned long eflags = native_save_fl();
324
325         /* This should have been cleared long ago */
326         BUG_ON(eflags & X86_EFLAGS_AC);
327
328         if (cpu_has(c, X86_FEATURE_SMAP)) {
329 #ifdef CONFIG_X86_SMAP
330                 cr4_set_bits(X86_CR4_SMAP);
331 #else
332                 clear_cpu_cap(c, X86_FEATURE_SMAP);
333                 cr4_clear_bits(X86_CR4_SMAP);
334 #endif
335         }
336 }
337
338 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
339 {
340         /* Check the boot processor, plus build option for UMIP. */
341         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
342                 goto out;
343
344         /* Check the current processor's cpuid bits. */
345         if (!cpu_has(c, X86_FEATURE_UMIP))
346                 goto out;
347
348         cr4_set_bits(X86_CR4_UMIP);
349
350         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
351
352         return;
353
354 out:
355         /*
356          * Make sure UMIP is disabled in case it was enabled in a
357          * previous boot (e.g., via kexec).
358          */
359         cr4_clear_bits(X86_CR4_UMIP);
360 }
361
362 /* These bits should not change their value after CPU init is finished. */
363 static const unsigned long cr4_pinned_mask =
364         X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
365 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
366 static unsigned long cr4_pinned_bits __ro_after_init;
367
368 void native_write_cr0(unsigned long val)
369 {
370         unsigned long bits_missing = 0;
371
372 set_register:
373         asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
374
375         if (static_branch_likely(&cr_pinning)) {
376                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
377                         bits_missing = X86_CR0_WP;
378                         val |= bits_missing;
379                         goto set_register;
380                 }
381                 /* Warn after we've set the missing bits. */
382                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
383         }
384 }
385 EXPORT_SYMBOL(native_write_cr0);
386
387 void __no_profile native_write_cr4(unsigned long val)
388 {
389         unsigned long bits_changed = 0;
390
391 set_register:
392         asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
393
394         if (static_branch_likely(&cr_pinning)) {
395                 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
396                         bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
397                         val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
398                         goto set_register;
399                 }
400                 /* Warn after we've corrected the changed bits. */
401                 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
402                           bits_changed);
403         }
404 }
405 #if IS_MODULE(CONFIG_LKDTM)
406 EXPORT_SYMBOL_GPL(native_write_cr4);
407 #endif
408
409 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
410 {
411         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
412
413         lockdep_assert_irqs_disabled();
414
415         newval = (cr4 & ~clear) | set;
416         if (newval != cr4) {
417                 this_cpu_write(cpu_tlbstate.cr4, newval);
418                 __write_cr4(newval);
419         }
420 }
421 EXPORT_SYMBOL(cr4_update_irqsoff);
422
423 /* Read the CR4 shadow. */
424 unsigned long cr4_read_shadow(void)
425 {
426         return this_cpu_read(cpu_tlbstate.cr4);
427 }
428 EXPORT_SYMBOL_GPL(cr4_read_shadow);
429
430 void cr4_init(void)
431 {
432         unsigned long cr4 = __read_cr4();
433
434         if (boot_cpu_has(X86_FEATURE_PCID))
435                 cr4 |= X86_CR4_PCIDE;
436         if (static_branch_likely(&cr_pinning))
437                 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
438
439         __write_cr4(cr4);
440
441         /* Initialize cr4 shadow for this CPU. */
442         this_cpu_write(cpu_tlbstate.cr4, cr4);
443 }
444
445 /*
446  * Once CPU feature detection is finished (and boot params have been
447  * parsed), record any of the sensitive CR bits that are set, and
448  * enable CR pinning.
449  */
450 static void __init setup_cr_pinning(void)
451 {
452         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
453         static_key_enable(&cr_pinning.key);
454 }
455
456 static __init int x86_nofsgsbase_setup(char *arg)
457 {
458         /* Require an exact match without trailing characters. */
459         if (strlen(arg))
460                 return 0;
461
462         /* Do not emit a message if the feature is not present. */
463         if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
464                 return 1;
465
466         setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
467         pr_info("FSGSBASE disabled via kernel command line\n");
468         return 1;
469 }
470 __setup("nofsgsbase", x86_nofsgsbase_setup);
471
472 /*
473  * Protection Keys are not available in 32-bit mode.
474  */
475 static bool pku_disabled;
476
477 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
478 {
479         if (c == &boot_cpu_data) {
480                 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
481                         return;
482                 /*
483                  * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
484                  * bit to be set.  Enforce it.
485                  */
486                 setup_force_cpu_cap(X86_FEATURE_OSPKE);
487
488         } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
489                 return;
490         }
491
492         cr4_set_bits(X86_CR4_PKE);
493         /* Load the default PKRU value */
494         pkru_write_default();
495 }
496
497 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
498 static __init int setup_disable_pku(char *arg)
499 {
500         /*
501          * Do not clear the X86_FEATURE_PKU bit.  All of the
502          * runtime checks are against OSPKE so clearing the
503          * bit does nothing.
504          *
505          * This way, we will see "pku" in cpuinfo, but not
506          * "ospke", which is exactly what we want.  It shows
507          * that the CPU has PKU, but the OS has not enabled it.
508          * This happens to be exactly how a system would look
509          * if we disabled the config option.
510          */
511         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
512         pku_disabled = true;
513         return 1;
514 }
515 __setup("nopku", setup_disable_pku);
516 #endif /* CONFIG_X86_64 */
517
518 /*
519  * Some CPU features depend on higher CPUID levels, which may not always
520  * be available due to CPUID level capping or broken virtualization
521  * software.  Add those features to this table to auto-disable them.
522  */
523 struct cpuid_dependent_feature {
524         u32 feature;
525         u32 level;
526 };
527
528 static const struct cpuid_dependent_feature
529 cpuid_dependent_features[] = {
530         { X86_FEATURE_MWAIT,            0x00000005 },
531         { X86_FEATURE_DCA,              0x00000009 },
532         { X86_FEATURE_XSAVE,            0x0000000d },
533         { 0, 0 }
534 };
535
536 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
537 {
538         const struct cpuid_dependent_feature *df;
539
540         for (df = cpuid_dependent_features; df->feature; df++) {
541
542                 if (!cpu_has(c, df->feature))
543                         continue;
544                 /*
545                  * Note: cpuid_level is set to -1 if unavailable, but
546                  * extended_extended_level is set to 0 if unavailable
547                  * and the legitimate extended levels are all negative
548                  * when signed; hence the weird messing around with
549                  * signs here...
550                  */
551                 if (!((s32)df->level < 0 ?
552                      (u32)df->level > (u32)c->extended_cpuid_level :
553                      (s32)df->level > (s32)c->cpuid_level))
554                         continue;
555
556                 clear_cpu_cap(c, df->feature);
557                 if (!warn)
558                         continue;
559
560                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
561                         x86_cap_flag(df->feature), df->level);
562         }
563 }
564
565 /*
566  * Naming convention should be: <Name> [(<Codename>)]
567  * This table only is used unless init_<vendor>() below doesn't set it;
568  * in particular, if CPUID levels 0x80000002..4 are supported, this
569  * isn't used
570  */
571
572 /* Look up CPU names by table lookup. */
573 static const char *table_lookup_model(struct cpuinfo_x86 *c)
574 {
575 #ifdef CONFIG_X86_32
576         const struct legacy_cpu_model_info *info;
577
578         if (c->x86_model >= 16)
579                 return NULL;    /* Range check */
580
581         if (!this_cpu)
582                 return NULL;
583
584         info = this_cpu->legacy_models;
585
586         while (info->family) {
587                 if (info->family == c->x86)
588                         return info->model_names[c->x86_model];
589                 info++;
590         }
591 #endif
592         return NULL;            /* Not found */
593 }
594
595 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
596 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
597 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
598
599 void load_percpu_segment(int cpu)
600 {
601 #ifdef CONFIG_X86_32
602         loadsegment(fs, __KERNEL_PERCPU);
603 #else
604         __loadsegment_simple(gs, 0);
605         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
606 #endif
607 }
608
609 #ifdef CONFIG_X86_32
610 /* The 32-bit entry code needs to find cpu_entry_area. */
611 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
612 #endif
613
614 /* Load the original GDT from the per-cpu structure */
615 void load_direct_gdt(int cpu)
616 {
617         struct desc_ptr gdt_descr;
618
619         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
620         gdt_descr.size = GDT_SIZE - 1;
621         load_gdt(&gdt_descr);
622 }
623 EXPORT_SYMBOL_GPL(load_direct_gdt);
624
625 /* Load a fixmap remapping of the per-cpu GDT */
626 void load_fixmap_gdt(int cpu)
627 {
628         struct desc_ptr gdt_descr;
629
630         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
631         gdt_descr.size = GDT_SIZE - 1;
632         load_gdt(&gdt_descr);
633 }
634 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
635
636 /*
637  * Current gdt points %fs at the "master" per-cpu area: after this,
638  * it's on the real one.
639  */
640 void switch_to_new_gdt(int cpu)
641 {
642         /* Load the original GDT */
643         load_direct_gdt(cpu);
644         /* Reload the per-cpu base */
645         load_percpu_segment(cpu);
646 }
647
648 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
649
650 static void get_model_name(struct cpuinfo_x86 *c)
651 {
652         unsigned int *v;
653         char *p, *q, *s;
654
655         if (c->extended_cpuid_level < 0x80000004)
656                 return;
657
658         v = (unsigned int *)c->x86_model_id;
659         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
660         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
661         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
662         c->x86_model_id[48] = 0;
663
664         /* Trim whitespace */
665         p = q = s = &c->x86_model_id[0];
666
667         while (*p == ' ')
668                 p++;
669
670         while (*p) {
671                 /* Note the last non-whitespace index */
672                 if (!isspace(*p))
673                         s = q;
674
675                 *q++ = *p++;
676         }
677
678         *(s + 1) = '\0';
679 }
680
681 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
682 {
683         unsigned int eax, ebx, ecx, edx;
684
685         c->x86_max_cores = 1;
686         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
687                 return;
688
689         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
690         if (eax & 0x1f)
691                 c->x86_max_cores = (eax >> 26) + 1;
692 }
693
694 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
695 {
696         unsigned int n, dummy, ebx, ecx, edx, l2size;
697
698         n = c->extended_cpuid_level;
699
700         if (n >= 0x80000005) {
701                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
702                 c->x86_cache_size = (ecx>>24) + (edx>>24);
703 #ifdef CONFIG_X86_64
704                 /* On K8 L1 TLB is inclusive, so don't count it */
705                 c->x86_tlbsize = 0;
706 #endif
707         }
708
709         if (n < 0x80000006)     /* Some chips just has a large L1. */
710                 return;
711
712         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
713         l2size = ecx >> 16;
714
715 #ifdef CONFIG_X86_64
716         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
717 #else
718         /* do processor-specific cache resizing */
719         if (this_cpu->legacy_cache_size)
720                 l2size = this_cpu->legacy_cache_size(c, l2size);
721
722         /* Allow user to override all this if necessary. */
723         if (cachesize_override != -1)
724                 l2size = cachesize_override;
725
726         if (l2size == 0)
727                 return;         /* Again, no L2 cache is possible */
728 #endif
729
730         c->x86_cache_size = l2size;
731 }
732
733 u16 __read_mostly tlb_lli_4k[NR_INFO];
734 u16 __read_mostly tlb_lli_2m[NR_INFO];
735 u16 __read_mostly tlb_lli_4m[NR_INFO];
736 u16 __read_mostly tlb_lld_4k[NR_INFO];
737 u16 __read_mostly tlb_lld_2m[NR_INFO];
738 u16 __read_mostly tlb_lld_4m[NR_INFO];
739 u16 __read_mostly tlb_lld_1g[NR_INFO];
740
741 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
742 {
743         if (this_cpu->c_detect_tlb)
744                 this_cpu->c_detect_tlb(c);
745
746         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
747                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
748                 tlb_lli_4m[ENTRIES]);
749
750         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
751                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
752                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
753 }
754
755 int detect_ht_early(struct cpuinfo_x86 *c)
756 {
757 #ifdef CONFIG_SMP
758         u32 eax, ebx, ecx, edx;
759
760         if (!cpu_has(c, X86_FEATURE_HT))
761                 return -1;
762
763         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
764                 return -1;
765
766         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
767                 return -1;
768
769         cpuid(1, &eax, &ebx, &ecx, &edx);
770
771         smp_num_siblings = (ebx & 0xff0000) >> 16;
772         if (smp_num_siblings == 1)
773                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
774 #endif
775         return 0;
776 }
777
778 void detect_ht(struct cpuinfo_x86 *c)
779 {
780 #ifdef CONFIG_SMP
781         int index_msb, core_bits;
782
783         if (detect_ht_early(c) < 0)
784                 return;
785
786         index_msb = get_count_order(smp_num_siblings);
787         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
788
789         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
790
791         index_msb = get_count_order(smp_num_siblings);
792
793         core_bits = get_count_order(c->x86_max_cores);
794
795         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
796                                        ((1 << core_bits) - 1);
797 #endif
798 }
799
800 static void get_cpu_vendor(struct cpuinfo_x86 *c)
801 {
802         char *v = c->x86_vendor_id;
803         int i;
804
805         for (i = 0; i < X86_VENDOR_NUM; i++) {
806                 if (!cpu_devs[i])
807                         break;
808
809                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
810                     (cpu_devs[i]->c_ident[1] &&
811                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
812
813                         this_cpu = cpu_devs[i];
814                         c->x86_vendor = this_cpu->c_x86_vendor;
815                         return;
816                 }
817         }
818
819         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
820                     "CPU: Your system may be unstable.\n", v);
821
822         c->x86_vendor = X86_VENDOR_UNKNOWN;
823         this_cpu = &default_cpu;
824 }
825
826 void cpu_detect(struct cpuinfo_x86 *c)
827 {
828         /* Get vendor name */
829         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
830               (unsigned int *)&c->x86_vendor_id[0],
831               (unsigned int *)&c->x86_vendor_id[8],
832               (unsigned int *)&c->x86_vendor_id[4]);
833
834         c->x86 = 4;
835         /* Intel-defined flags: level 0x00000001 */
836         if (c->cpuid_level >= 0x00000001) {
837                 u32 junk, tfms, cap0, misc;
838
839                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
840                 c->x86          = x86_family(tfms);
841                 c->x86_model    = x86_model(tfms);
842                 c->x86_stepping = x86_stepping(tfms);
843
844                 if (cap0 & (1<<19)) {
845                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
846                         c->x86_cache_alignment = c->x86_clflush_size;
847                 }
848         }
849 }
850
851 static void apply_forced_caps(struct cpuinfo_x86 *c)
852 {
853         int i;
854
855         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
856                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
857                 c->x86_capability[i] |= cpu_caps_set[i];
858         }
859 }
860
861 static void init_speculation_control(struct cpuinfo_x86 *c)
862 {
863         /*
864          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
865          * and they also have a different bit for STIBP support. Also,
866          * a hypervisor might have set the individual AMD bits even on
867          * Intel CPUs, for finer-grained selection of what's available.
868          */
869         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
870                 set_cpu_cap(c, X86_FEATURE_IBRS);
871                 set_cpu_cap(c, X86_FEATURE_IBPB);
872                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
873         }
874
875         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
876                 set_cpu_cap(c, X86_FEATURE_STIBP);
877
878         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
879             cpu_has(c, X86_FEATURE_VIRT_SSBD))
880                 set_cpu_cap(c, X86_FEATURE_SSBD);
881
882         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
883                 set_cpu_cap(c, X86_FEATURE_IBRS);
884                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
885         }
886
887         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
888                 set_cpu_cap(c, X86_FEATURE_IBPB);
889
890         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
891                 set_cpu_cap(c, X86_FEATURE_STIBP);
892                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
893         }
894
895         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
896                 set_cpu_cap(c, X86_FEATURE_SSBD);
897                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
898                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
899         }
900 }
901
902 void get_cpu_cap(struct cpuinfo_x86 *c)
903 {
904         u32 eax, ebx, ecx, edx;
905
906         /* Intel-defined flags: level 0x00000001 */
907         if (c->cpuid_level >= 0x00000001) {
908                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
909
910                 c->x86_capability[CPUID_1_ECX] = ecx;
911                 c->x86_capability[CPUID_1_EDX] = edx;
912         }
913
914         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
915         if (c->cpuid_level >= 0x00000006)
916                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
917
918         /* Additional Intel-defined flags: level 0x00000007 */
919         if (c->cpuid_level >= 0x00000007) {
920                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
921                 c->x86_capability[CPUID_7_0_EBX] = ebx;
922                 c->x86_capability[CPUID_7_ECX] = ecx;
923                 c->x86_capability[CPUID_7_EDX] = edx;
924
925                 /* Check valid sub-leaf index before accessing it */
926                 if (eax >= 1) {
927                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
928                         c->x86_capability[CPUID_7_1_EAX] = eax;
929                 }
930         }
931
932         /* Extended state features: level 0x0000000d */
933         if (c->cpuid_level >= 0x0000000d) {
934                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
935
936                 c->x86_capability[CPUID_D_1_EAX] = eax;
937         }
938
939         /* AMD-defined flags: level 0x80000001 */
940         eax = cpuid_eax(0x80000000);
941         c->extended_cpuid_level = eax;
942
943         if ((eax & 0xffff0000) == 0x80000000) {
944                 if (eax >= 0x80000001) {
945                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
946
947                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
948                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
949                 }
950         }
951
952         if (c->extended_cpuid_level >= 0x80000007) {
953                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
954
955                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
956                 c->x86_power = edx;
957         }
958
959         if (c->extended_cpuid_level >= 0x80000008) {
960                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
961                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
962         }
963
964         if (c->extended_cpuid_level >= 0x8000000a)
965                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
966
967         if (c->extended_cpuid_level >= 0x8000001f)
968                 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
969
970         init_scattered_cpuid_features(c);
971         init_speculation_control(c);
972
973         /*
974          * Clear/Set all flags overridden by options, after probe.
975          * This needs to happen each time we re-probe, which may happen
976          * several times during CPU initialization.
977          */
978         apply_forced_caps(c);
979 }
980
981 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
982 {
983         u32 eax, ebx, ecx, edx;
984
985         if (c->extended_cpuid_level >= 0x80000008) {
986                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
987
988                 c->x86_virt_bits = (eax >> 8) & 0xff;
989                 c->x86_phys_bits = eax & 0xff;
990         }
991 #ifdef CONFIG_X86_32
992         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
993                 c->x86_phys_bits = 36;
994 #endif
995         c->x86_cache_bits = c->x86_phys_bits;
996 }
997
998 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
999 {
1000 #ifdef CONFIG_X86_32
1001         int i;
1002
1003         /*
1004          * First of all, decide if this is a 486 or higher
1005          * It's a 486 if we can modify the AC flag
1006          */
1007         if (flag_is_changeable_p(X86_EFLAGS_AC))
1008                 c->x86 = 4;
1009         else
1010                 c->x86 = 3;
1011
1012         for (i = 0; i < X86_VENDOR_NUM; i++)
1013                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1014                         c->x86_vendor_id[0] = 0;
1015                         cpu_devs[i]->c_identify(c);
1016                         if (c->x86_vendor_id[0]) {
1017                                 get_cpu_vendor(c);
1018                                 break;
1019                         }
1020                 }
1021 #endif
1022 }
1023
1024 #define NO_SPECULATION          BIT(0)
1025 #define NO_MELTDOWN             BIT(1)
1026 #define NO_SSB                  BIT(2)
1027 #define NO_L1TF                 BIT(3)
1028 #define NO_MDS                  BIT(4)
1029 #define MSBDS_ONLY              BIT(5)
1030 #define NO_SWAPGS               BIT(6)
1031 #define NO_ITLB_MULTIHIT        BIT(7)
1032 #define NO_SPECTRE_V2           BIT(8)
1033
1034 #define VULNWL(vendor, family, model, whitelist)        \
1035         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1036
1037 #define VULNWL_INTEL(model, whitelist)          \
1038         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1039
1040 #define VULNWL_AMD(family, whitelist)           \
1041         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1042
1043 #define VULNWL_HYGON(family, whitelist)         \
1044         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1045
1046 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1047         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1048         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1049         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1050         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1051         VULNWL(VORTEX,  5, X86_MODEL_ANY,       NO_SPECULATION),
1052         VULNWL(VORTEX,  6, X86_MODEL_ANY,       NO_SPECULATION),
1053
1054         /* Intel Family 6 */
1055         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1056         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1057         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1058         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1059         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1060
1061         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1062         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1067
1068         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1069
1070         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1071         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1072
1073         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1074         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1075         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1076
1077         /*
1078          * Technically, swapgs isn't serializing on AMD (despite it previously
1079          * being documented as such in the APM).  But according to AMD, %gs is
1080          * updated non-speculatively, and the issuing of %gs-relative memory
1081          * operands will be blocked until the %gs update completes, which is
1082          * good enough for our purposes.
1083          */
1084
1085         VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT),
1086
1087         /* AMD Family 0xf - 0x12 */
1088         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1089         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1090         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1091         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1092
1093         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1094         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1095         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1096
1097         /* Zhaoxin Family 7 */
1098         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1099         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1100         {}
1101 };
1102
1103 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1104         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1105                                             INTEL_FAM6_##model, steppings, \
1106                                             X86_FEATURE_ANY, issues)
1107
1108 #define SRBDS           BIT(0)
1109
1110 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1111         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1112         VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1113         VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1114         VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1115         VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1116         VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1117         VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               SRBDS),
1118         VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               SRBDS),
1119         VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPINGS(0x0, 0xC),        SRBDS),
1120         VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPINGS(0x0, 0xD),        SRBDS),
1121         {}
1122 };
1123
1124 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1125 {
1126         const struct x86_cpu_id *m = x86_match_cpu(table);
1127
1128         return m && !!(m->driver_data & which);
1129 }
1130
1131 u64 x86_read_arch_cap_msr(void)
1132 {
1133         u64 ia32_cap = 0;
1134
1135         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1136                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1137
1138         return ia32_cap;
1139 }
1140
1141 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1142 {
1143         u64 ia32_cap = x86_read_arch_cap_msr();
1144
1145         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1146         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1147             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1148                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1149
1150         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1151                 return;
1152
1153         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1154
1155         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1156                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1157
1158         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1159             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1160            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1161                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1162
1163         if (ia32_cap & ARCH_CAP_IBRS_ALL)
1164                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1165
1166         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1167             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1168                 setup_force_cpu_bug(X86_BUG_MDS);
1169                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1170                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1171         }
1172
1173         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1174                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1175
1176         /*
1177          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1178          *      - TSX is supported or
1179          *      - TSX_CTRL is present
1180          *
1181          * TSX_CTRL check is needed for cases when TSX could be disabled before
1182          * the kernel boot e.g. kexec.
1183          * TSX_CTRL check alone is not sufficient for cases when the microcode
1184          * update is not present or running as guest that don't get TSX_CTRL.
1185          */
1186         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1187             (cpu_has(c, X86_FEATURE_RTM) ||
1188              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1189                 setup_force_cpu_bug(X86_BUG_TAA);
1190
1191         /*
1192          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1193          * in the vulnerability blacklist.
1194          */
1195         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1196              cpu_has(c, X86_FEATURE_RDSEED)) &&
1197             cpu_matches(cpu_vuln_blacklist, SRBDS))
1198                     setup_force_cpu_bug(X86_BUG_SRBDS);
1199
1200         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1201                 return;
1202
1203         /* Rogue Data Cache Load? No! */
1204         if (ia32_cap & ARCH_CAP_RDCL_NO)
1205                 return;
1206
1207         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1208
1209         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1210                 return;
1211
1212         setup_force_cpu_bug(X86_BUG_L1TF);
1213 }
1214
1215 /*
1216  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1217  * unfortunately, that's not true in practice because of early VIA
1218  * chips and (more importantly) broken virtualizers that are not easy
1219  * to detect. In the latter case it doesn't even *fail* reliably, so
1220  * probing for it doesn't even work. Disable it completely on 32-bit
1221  * unless we can find a reliable way to detect all the broken cases.
1222  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1223  */
1224 static void detect_nopl(void)
1225 {
1226 #ifdef CONFIG_X86_32
1227         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1228 #else
1229         setup_force_cpu_cap(X86_FEATURE_NOPL);
1230 #endif
1231 }
1232
1233 /*
1234  * We parse cpu parameters early because fpu__init_system() is executed
1235  * before parse_early_param().
1236  */
1237 static void __init cpu_parse_early_param(void)
1238 {
1239         char arg[128];
1240         char *argptr = arg;
1241         int arglen, res, bit;
1242
1243 #ifdef CONFIG_X86_32
1244         if (cmdline_find_option_bool(boot_command_line, "no387"))
1245 #ifdef CONFIG_MATH_EMULATION
1246                 setup_clear_cpu_cap(X86_FEATURE_FPU);
1247 #else
1248                 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1249 #endif
1250
1251         if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1252                 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1253 #endif
1254
1255         if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1256                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1257
1258         if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1259                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1260
1261         if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1262                 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1263
1264         arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1265         if (arglen <= 0)
1266                 return;
1267
1268         pr_info("Clearing CPUID bits:");
1269         do {
1270                 res = get_option(&argptr, &bit);
1271                 if (res == 0 || res == 3)
1272                         break;
1273
1274                 /* If the argument was too long, the last bit may be cut off */
1275                 if (res == 1 && arglen >= sizeof(arg))
1276                         break;
1277
1278                 if (bit >= 0 && bit < NCAPINTS * 32) {
1279                         pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1280                         setup_clear_cpu_cap(bit);
1281                 }
1282         } while (res == 2);
1283         pr_cont("\n");
1284 }
1285
1286 /*
1287  * Do minimum CPU detection early.
1288  * Fields really needed: vendor, cpuid_level, family, model, mask,
1289  * cache alignment.
1290  * The others are not touched to avoid unwanted side effects.
1291  *
1292  * WARNING: this function is only called on the boot CPU.  Don't add code
1293  * here that is supposed to run on all CPUs.
1294  */
1295 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1296 {
1297 #ifdef CONFIG_X86_64
1298         c->x86_clflush_size = 64;
1299         c->x86_phys_bits = 36;
1300         c->x86_virt_bits = 48;
1301 #else
1302         c->x86_clflush_size = 32;
1303         c->x86_phys_bits = 32;
1304         c->x86_virt_bits = 32;
1305 #endif
1306         c->x86_cache_alignment = c->x86_clflush_size;
1307
1308         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1309         c->extended_cpuid_level = 0;
1310
1311         if (!have_cpuid_p())
1312                 identify_cpu_without_cpuid(c);
1313
1314         /* cyrix could have cpuid enabled via c_identify()*/
1315         if (have_cpuid_p()) {
1316                 cpu_detect(c);
1317                 get_cpu_vendor(c);
1318                 get_cpu_cap(c);
1319                 get_cpu_address_sizes(c);
1320                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1321                 cpu_parse_early_param();
1322
1323                 if (this_cpu->c_early_init)
1324                         this_cpu->c_early_init(c);
1325
1326                 c->cpu_index = 0;
1327                 filter_cpuid_features(c, false);
1328
1329                 if (this_cpu->c_bsp_init)
1330                         this_cpu->c_bsp_init(c);
1331         } else {
1332                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1333         }
1334
1335         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1336
1337         cpu_set_bug_bits(c);
1338
1339         sld_setup(c);
1340
1341         fpu__init_system(c);
1342
1343         init_sigframe_size();
1344
1345 #ifdef CONFIG_X86_32
1346         /*
1347          * Regardless of whether PCID is enumerated, the SDM says
1348          * that it can't be enabled in 32-bit mode.
1349          */
1350         setup_clear_cpu_cap(X86_FEATURE_PCID);
1351 #endif
1352
1353         /*
1354          * Later in the boot process pgtable_l5_enabled() relies on
1355          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1356          * enabled by this point we need to clear the feature bit to avoid
1357          * false-positives at the later stage.
1358          *
1359          * pgtable_l5_enabled() can be false here for several reasons:
1360          *  - 5-level paging is disabled compile-time;
1361          *  - it's 32-bit kernel;
1362          *  - machine doesn't support 5-level paging;
1363          *  - user specified 'no5lvl' in kernel command line.
1364          */
1365         if (!pgtable_l5_enabled())
1366                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1367
1368         detect_nopl();
1369 }
1370
1371 void __init early_cpu_init(void)
1372 {
1373         const struct cpu_dev *const *cdev;
1374         int count = 0;
1375
1376 #ifdef CONFIG_PROCESSOR_SELECT
1377         pr_info("KERNEL supported cpus:\n");
1378 #endif
1379
1380         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1381                 const struct cpu_dev *cpudev = *cdev;
1382
1383                 if (count >= X86_VENDOR_NUM)
1384                         break;
1385                 cpu_devs[count] = cpudev;
1386                 count++;
1387
1388 #ifdef CONFIG_PROCESSOR_SELECT
1389                 {
1390                         unsigned int j;
1391
1392                         for (j = 0; j < 2; j++) {
1393                                 if (!cpudev->c_ident[j])
1394                                         continue;
1395                                 pr_info("  %s %s\n", cpudev->c_vendor,
1396                                         cpudev->c_ident[j]);
1397                         }
1398                 }
1399 #endif
1400         }
1401         early_identify_cpu(&boot_cpu_data);
1402 }
1403
1404 static bool detect_null_seg_behavior(void)
1405 {
1406         /*
1407          * Empirically, writing zero to a segment selector on AMD does
1408          * not clear the base, whereas writing zero to a segment
1409          * selector on Intel does clear the base.  Intel's behavior
1410          * allows slightly faster context switches in the common case
1411          * where GS is unused by the prev and next threads.
1412          *
1413          * Since neither vendor documents this anywhere that I can see,
1414          * detect it directly instead of hard-coding the choice by
1415          * vendor.
1416          *
1417          * I've designated AMD's behavior as the "bug" because it's
1418          * counterintuitive and less friendly.
1419          */
1420
1421         unsigned long old_base, tmp;
1422         rdmsrl(MSR_FS_BASE, old_base);
1423         wrmsrl(MSR_FS_BASE, 1);
1424         loadsegment(fs, 0);
1425         rdmsrl(MSR_FS_BASE, tmp);
1426         wrmsrl(MSR_FS_BASE, old_base);
1427         return tmp == 0;
1428 }
1429
1430 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1431 {
1432         /* BUG_NULL_SEG is only relevant with 64bit userspace */
1433         if (!IS_ENABLED(CONFIG_X86_64))
1434                 return;
1435
1436         /* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
1437         if (c->extended_cpuid_level >= 0x80000021 &&
1438             cpuid_eax(0x80000021) & BIT(6))
1439                 return;
1440
1441         /*
1442          * CPUID bit above wasn't set. If this kernel is still running
1443          * as a HV guest, then the HV has decided not to advertize
1444          * that CPUID bit for whatever reason.  For example, one
1445          * member of the migration pool might be vulnerable.  Which
1446          * means, the bug is present: set the BUG flag and return.
1447          */
1448         if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1449                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1450                 return;
1451         }
1452
1453         /*
1454          * Zen2 CPUs also have this behaviour, but no CPUID bit.
1455          * 0x18 is the respective family for Hygon.
1456          */
1457         if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1458             detect_null_seg_behavior())
1459                 return;
1460
1461         /* All the remaining ones are affected */
1462         set_cpu_bug(c, X86_BUG_NULL_SEG);
1463 }
1464
1465 static void generic_identify(struct cpuinfo_x86 *c)
1466 {
1467         c->extended_cpuid_level = 0;
1468
1469         if (!have_cpuid_p())
1470                 identify_cpu_without_cpuid(c);
1471
1472         /* cyrix could have cpuid enabled via c_identify()*/
1473         if (!have_cpuid_p())
1474                 return;
1475
1476         cpu_detect(c);
1477
1478         get_cpu_vendor(c);
1479
1480         get_cpu_cap(c);
1481
1482         get_cpu_address_sizes(c);
1483
1484         if (c->cpuid_level >= 0x00000001) {
1485                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1486 #ifdef CONFIG_X86_32
1487 # ifdef CONFIG_SMP
1488                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1489 # else
1490                 c->apicid = c->initial_apicid;
1491 # endif
1492 #endif
1493                 c->phys_proc_id = c->initial_apicid;
1494         }
1495
1496         get_model_name(c); /* Default name */
1497
1498         /*
1499          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1500          * systems that run Linux at CPL > 0 may or may not have the
1501          * issue, but, even if they have the issue, there's absolutely
1502          * nothing we can do about it because we can't use the real IRET
1503          * instruction.
1504          *
1505          * NB: For the time being, only 32-bit kernels support
1506          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1507          * whether to apply espfix using paravirt hooks.  If any
1508          * non-paravirt system ever shows up that does *not* have the
1509          * ESPFIX issue, we can change this.
1510          */
1511 #ifdef CONFIG_X86_32
1512         set_cpu_bug(c, X86_BUG_ESPFIX);
1513 #endif
1514 }
1515
1516 /*
1517  * Validate that ACPI/mptables have the same information about the
1518  * effective APIC id and update the package map.
1519  */
1520 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1521 {
1522 #ifdef CONFIG_SMP
1523         unsigned int apicid, cpu = smp_processor_id();
1524
1525         apicid = apic->cpu_present_to_apicid(cpu);
1526
1527         if (apicid != c->apicid) {
1528                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1529                        cpu, apicid, c->initial_apicid);
1530         }
1531         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1532         BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1533 #else
1534         c->logical_proc_id = 0;
1535 #endif
1536 }
1537
1538 /*
1539  * This does the hard work of actually picking apart the CPU stuff...
1540  */
1541 static void identify_cpu(struct cpuinfo_x86 *c)
1542 {
1543         int i;
1544
1545         c->loops_per_jiffy = loops_per_jiffy;
1546         c->x86_cache_size = 0;
1547         c->x86_vendor = X86_VENDOR_UNKNOWN;
1548         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1549         c->x86_vendor_id[0] = '\0'; /* Unset */
1550         c->x86_model_id[0] = '\0';  /* Unset */
1551         c->x86_max_cores = 1;
1552         c->x86_coreid_bits = 0;
1553         c->cu_id = 0xff;
1554 #ifdef CONFIG_X86_64
1555         c->x86_clflush_size = 64;
1556         c->x86_phys_bits = 36;
1557         c->x86_virt_bits = 48;
1558 #else
1559         c->cpuid_level = -1;    /* CPUID not detected */
1560         c->x86_clflush_size = 32;
1561         c->x86_phys_bits = 32;
1562         c->x86_virt_bits = 32;
1563 #endif
1564         c->x86_cache_alignment = c->x86_clflush_size;
1565         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1566 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1567         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1568 #endif
1569
1570         generic_identify(c);
1571
1572         if (this_cpu->c_identify)
1573                 this_cpu->c_identify(c);
1574
1575         /* Clear/Set all flags overridden by options, after probe */
1576         apply_forced_caps(c);
1577
1578 #ifdef CONFIG_X86_64
1579         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1580 #endif
1581
1582         /*
1583          * Vendor-specific initialization.  In this section we
1584          * canonicalize the feature flags, meaning if there are
1585          * features a certain CPU supports which CPUID doesn't
1586          * tell us, CPUID claiming incorrect flags, or other bugs,
1587          * we handle them here.
1588          *
1589          * At the end of this section, c->x86_capability better
1590          * indicate the features this CPU genuinely supports!
1591          */
1592         if (this_cpu->c_init)
1593                 this_cpu->c_init(c);
1594
1595         /* Disable the PN if appropriate */
1596         squash_the_stupid_serial_number(c);
1597
1598         /* Set up SMEP/SMAP/UMIP */
1599         setup_smep(c);
1600         setup_smap(c);
1601         setup_umip(c);
1602
1603         /* Enable FSGSBASE instructions if available. */
1604         if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1605                 cr4_set_bits(X86_CR4_FSGSBASE);
1606                 elf_hwcap2 |= HWCAP2_FSGSBASE;
1607         }
1608
1609         /*
1610          * The vendor-specific functions might have changed features.
1611          * Now we do "generic changes."
1612          */
1613
1614         /* Filter out anything that depends on CPUID levels we don't have */
1615         filter_cpuid_features(c, true);
1616
1617         /* If the model name is still unset, do table lookup. */
1618         if (!c->x86_model_id[0]) {
1619                 const char *p;
1620                 p = table_lookup_model(c);
1621                 if (p)
1622                         strcpy(c->x86_model_id, p);
1623                 else
1624                         /* Last resort... */
1625                         sprintf(c->x86_model_id, "%02x/%02x",
1626                                 c->x86, c->x86_model);
1627         }
1628
1629 #ifdef CONFIG_X86_64
1630         detect_ht(c);
1631 #endif
1632
1633         x86_init_rdrand(c);
1634         setup_pku(c);
1635
1636         /*
1637          * Clear/Set all flags overridden by options, need do it
1638          * before following smp all cpus cap AND.
1639          */
1640         apply_forced_caps(c);
1641
1642         /*
1643          * On SMP, boot_cpu_data holds the common feature set between
1644          * all CPUs; so make sure that we indicate which features are
1645          * common between the CPUs.  The first time this routine gets
1646          * executed, c == &boot_cpu_data.
1647          */
1648         if (c != &boot_cpu_data) {
1649                 /* AND the already accumulated flags with these */
1650                 for (i = 0; i < NCAPINTS; i++)
1651                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1652
1653                 /* OR, i.e. replicate the bug flags */
1654                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1655                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1656         }
1657
1658         /* Init Machine Check Exception if available. */
1659         mcheck_cpu_init(c);
1660
1661         select_idle_routine(c);
1662
1663 #ifdef CONFIG_NUMA
1664         numa_add_cpu(smp_processor_id());
1665 #endif
1666 }
1667
1668 /*
1669  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1670  * on 32-bit kernels:
1671  */
1672 #ifdef CONFIG_X86_32
1673 void enable_sep_cpu(void)
1674 {
1675         struct tss_struct *tss;
1676         int cpu;
1677
1678         if (!boot_cpu_has(X86_FEATURE_SEP))
1679                 return;
1680
1681         cpu = get_cpu();
1682         tss = &per_cpu(cpu_tss_rw, cpu);
1683
1684         /*
1685          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1686          * see the big comment in struct x86_hw_tss's definition.
1687          */
1688
1689         tss->x86_tss.ss1 = __KERNEL_CS;
1690         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1691         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1692         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1693
1694         put_cpu();
1695 }
1696 #endif
1697
1698 void __init identify_boot_cpu(void)
1699 {
1700         identify_cpu(&boot_cpu_data);
1701 #ifdef CONFIG_X86_32
1702         sysenter_setup();
1703         enable_sep_cpu();
1704 #endif
1705         cpu_detect_tlb(&boot_cpu_data);
1706         setup_cr_pinning();
1707
1708         tsx_init();
1709 }
1710
1711 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1712 {
1713         BUG_ON(c == &boot_cpu_data);
1714         identify_cpu(c);
1715 #ifdef CONFIG_X86_32
1716         enable_sep_cpu();
1717 #endif
1718         mtrr_ap_init();
1719         validate_apic_and_package_id(c);
1720         x86_spec_ctrl_setup_ap();
1721         update_srbds_msr();
1722 }
1723
1724 static __init int setup_noclflush(char *arg)
1725 {
1726         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1727         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1728         return 1;
1729 }
1730 __setup("noclflush", setup_noclflush);
1731
1732 void print_cpu_info(struct cpuinfo_x86 *c)
1733 {
1734         const char *vendor = NULL;
1735
1736         if (c->x86_vendor < X86_VENDOR_NUM) {
1737                 vendor = this_cpu->c_vendor;
1738         } else {
1739                 if (c->cpuid_level >= 0)
1740                         vendor = c->x86_vendor_id;
1741         }
1742
1743         if (vendor && !strstr(c->x86_model_id, vendor))
1744                 pr_cont("%s ", vendor);
1745
1746         if (c->x86_model_id[0])
1747                 pr_cont("%s", c->x86_model_id);
1748         else
1749                 pr_cont("%d86", c->x86);
1750
1751         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1752
1753         if (c->x86_stepping || c->cpuid_level >= 0)
1754                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1755         else
1756                 pr_cont(")\n");
1757 }
1758
1759 /*
1760  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1761  * function prevents it from becoming an environment variable for init.
1762  */
1763 static __init int setup_clearcpuid(char *arg)
1764 {
1765         return 1;
1766 }
1767 __setup("clearcpuid=", setup_clearcpuid);
1768
1769 #ifdef CONFIG_X86_64
1770 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1771                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1772 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1773
1774 /*
1775  * The following percpu variables are hot.  Align current_task to
1776  * cacheline size such that they fall in the same cacheline.
1777  */
1778 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1779         &init_task;
1780 EXPORT_PER_CPU_SYMBOL(current_task);
1781
1782 DEFINE_PER_CPU(void *, hardirq_stack_ptr);
1783 DEFINE_PER_CPU(bool, hardirq_stack_inuse);
1784
1785 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1786 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1787
1788 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
1789
1790 static void wrmsrl_cstar(unsigned long val)
1791 {
1792         /*
1793          * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
1794          * is so far ignored by the CPU, but raises a #VE trap in a TDX
1795          * guest. Avoid the pointless write on all Intel CPUs.
1796          */
1797         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1798                 wrmsrl(MSR_CSTAR, val);
1799 }
1800
1801 /* May not be marked __init: used by software suspend */
1802 void syscall_init(void)
1803 {
1804         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1805         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1806
1807 #ifdef CONFIG_IA32_EMULATION
1808         wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
1809         /*
1810          * This only works on Intel CPUs.
1811          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1812          * This does not cause SYSENTER to jump to the wrong location, because
1813          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1814          */
1815         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1816         wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1817                     (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1818         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1819 #else
1820         wrmsrl_cstar((unsigned long)ignore_sysret);
1821         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1822         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1823         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1824 #endif
1825
1826         /*
1827          * Flags to clear on syscall; clear as much as possible
1828          * to minimize user space-kernel interference.
1829          */
1830         wrmsrl(MSR_SYSCALL_MASK,
1831                X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
1832                X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
1833                X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
1834                X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
1835                X86_EFLAGS_AC|X86_EFLAGS_ID);
1836 }
1837
1838 #else   /* CONFIG_X86_64 */
1839
1840 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1841 EXPORT_PER_CPU_SYMBOL(current_task);
1842 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1843 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1844
1845 /*
1846  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1847  * the top of the kernel stack.  Use an extra percpu variable to track the
1848  * top of the kernel stack directly.
1849  */
1850 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1851         (unsigned long)&init_thread_union + THREAD_SIZE;
1852 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1853
1854 #ifdef CONFIG_STACKPROTECTOR
1855 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
1856 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
1857 #endif
1858
1859 #endif  /* CONFIG_X86_64 */
1860
1861 /*
1862  * Clear all 6 debug registers:
1863  */
1864 static void clear_all_debug_regs(void)
1865 {
1866         int i;
1867
1868         for (i = 0; i < 8; i++) {
1869                 /* Ignore db4, db5 */
1870                 if ((i == 4) || (i == 5))
1871                         continue;
1872
1873                 set_debugreg(0, i);
1874         }
1875 }
1876
1877 #ifdef CONFIG_KGDB
1878 /*
1879  * Restore debug regs if using kgdbwait and you have a kernel debugger
1880  * connection established.
1881  */
1882 static void dbg_restore_debug_regs(void)
1883 {
1884         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1885                 arch_kgdb_ops.correct_hw_break();
1886 }
1887 #else /* ! CONFIG_KGDB */
1888 #define dbg_restore_debug_regs()
1889 #endif /* ! CONFIG_KGDB */
1890
1891 static void wait_for_master_cpu(int cpu)
1892 {
1893 #ifdef CONFIG_SMP
1894         /*
1895          * wait for ACK from master CPU before continuing
1896          * with AP initialization
1897          */
1898         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1899         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1900                 cpu_relax();
1901 #endif
1902 }
1903
1904 #ifdef CONFIG_X86_64
1905 static inline void setup_getcpu(int cpu)
1906 {
1907         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1908         struct desc_struct d = { };
1909
1910         if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
1911                 wrmsr(MSR_TSC_AUX, cpudata, 0);
1912
1913         /* Store CPU and node number in limit. */
1914         d.limit0 = cpudata;
1915         d.limit1 = cpudata >> 16;
1916
1917         d.type = 5;             /* RO data, expand down, accessed */
1918         d.dpl = 3;              /* Visible to user code */
1919         d.s = 1;                /* Not a system segment */
1920         d.p = 1;                /* Present */
1921         d.d = 1;                /* 32-bit */
1922
1923         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1924 }
1925
1926 static inline void ucode_cpu_init(int cpu)
1927 {
1928         if (cpu)
1929                 load_ucode_ap();
1930 }
1931
1932 static inline void tss_setup_ist(struct tss_struct *tss)
1933 {
1934         /* Set up the per-CPU TSS IST stacks */
1935         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1936         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1937         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1938         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1939         /* Only mapped when SEV-ES is active */
1940         tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1941 }
1942
1943 #else /* CONFIG_X86_64 */
1944
1945 static inline void setup_getcpu(int cpu) { }
1946
1947 static inline void ucode_cpu_init(int cpu)
1948 {
1949         show_ucode_info_early();
1950 }
1951
1952 static inline void tss_setup_ist(struct tss_struct *tss) { }
1953
1954 #endif /* !CONFIG_X86_64 */
1955
1956 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1957 {
1958         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1959
1960 #ifdef CONFIG_X86_IOPL_IOPERM
1961         tss->io_bitmap.prev_max = 0;
1962         tss->io_bitmap.prev_sequence = 0;
1963         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1964         /*
1965          * Invalidate the extra array entry past the end of the all
1966          * permission bitmap as required by the hardware.
1967          */
1968         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1969 #endif
1970 }
1971
1972 /*
1973  * Setup everything needed to handle exceptions from the IDT, including the IST
1974  * exceptions which use paranoid_entry().
1975  */
1976 void cpu_init_exception_handling(void)
1977 {
1978         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1979         int cpu = raw_smp_processor_id();
1980
1981         /* paranoid_entry() gets the CPU number from the GDT */
1982         setup_getcpu(cpu);
1983
1984         /* IST vectors need TSS to be set up. */
1985         tss_setup_ist(tss);
1986         tss_setup_io_bitmap(tss);
1987         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1988
1989         load_TR_desc();
1990
1991         /* Finally load the IDT */
1992         load_current_idt();
1993 }
1994
1995 /*
1996  * cpu_init() initializes state that is per-CPU. Some data is already
1997  * initialized (naturally) in the bootstrap process, such as the GDT.  We
1998  * reload it nevertheless, this function acts as a 'CPU state barrier',
1999  * nothing should get across.
2000  */
2001 void cpu_init(void)
2002 {
2003         struct task_struct *cur = current;
2004         int cpu = raw_smp_processor_id();
2005
2006         wait_for_master_cpu(cpu);
2007
2008         ucode_cpu_init(cpu);
2009
2010 #ifdef CONFIG_NUMA
2011         if (this_cpu_read(numa_node) == 0 &&
2012             early_cpu_to_node(cpu) != NUMA_NO_NODE)
2013                 set_numa_node(early_cpu_to_node(cpu));
2014 #endif
2015         pr_debug("Initializing CPU#%d\n", cpu);
2016
2017         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2018             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2019                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2020
2021         /*
2022          * Initialize the per-CPU GDT with the boot GDT,
2023          * and set up the GDT descriptor:
2024          */
2025         switch_to_new_gdt(cpu);
2026
2027         if (IS_ENABLED(CONFIG_X86_64)) {
2028                 loadsegment(fs, 0);
2029                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2030                 syscall_init();
2031
2032                 wrmsrl(MSR_FS_BASE, 0);
2033                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2034                 barrier();
2035
2036                 x2apic_setup();
2037         }
2038
2039         mmgrab(&init_mm);
2040         cur->active_mm = &init_mm;
2041         BUG_ON(cur->mm);
2042         initialize_tlbstate_and_flush();
2043         enter_lazy_tlb(&init_mm, cur);
2044
2045         /*
2046          * sp0 points to the entry trampoline stack regardless of what task
2047          * is running.
2048          */
2049         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2050
2051         load_mm_ldt(&init_mm);
2052
2053         clear_all_debug_regs();
2054         dbg_restore_debug_regs();
2055
2056         doublefault_init_cpu_tss();
2057
2058         fpu__init_cpu();
2059
2060         if (is_uv_system())
2061                 uv_cpu_init();
2062
2063         load_fixmap_gdt(cpu);
2064 }
2065
2066 #ifdef CONFIG_SMP
2067 void cpu_init_secondary(void)
2068 {
2069         /*
2070          * Relies on the BP having set-up the IDT tables, which are loaded
2071          * on this CPU in cpu_init_exception_handling().
2072          */
2073         cpu_init_exception_handling();
2074         cpu_init();
2075 }
2076 #endif
2077
2078 /*
2079  * The microcode loader calls this upon late microcode load to recheck features,
2080  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2081  * hotplug lock.
2082  */
2083 void microcode_check(void)
2084 {
2085         struct cpuinfo_x86 info;
2086
2087         perf_check_microcode();
2088
2089         /* Reload CPUID max function as it might've changed. */
2090         info.cpuid_level = cpuid_eax(0);
2091
2092         /*
2093          * Copy all capability leafs to pick up the synthetic ones so that
2094          * memcmp() below doesn't fail on that. The ones coming from CPUID will
2095          * get overwritten in get_cpu_cap().
2096          */
2097         memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2098
2099         get_cpu_cap(&info);
2100
2101         if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2102                 return;
2103
2104         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2105         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2106 }
2107
2108 /*
2109  * Invoked from core CPU hotplug code after hotplug operations
2110  */
2111 void arch_smt_update(void)
2112 {
2113         /* Handle the speculative execution misfeatures */
2114         cpu_bugs_smt_update();
2115         /* Check whether IPI broadcasting can be enabled */
2116         apic_smt_update();
2117 }