x86/mm/gup: Switch GUP to the generic get_user_page_fast() implementation
[linux-block.git] / arch / x86 / include / asm / pgtable.h
1 #ifndef _ASM_X86_PGTABLE_H
2 #define _ASM_X86_PGTABLE_H
3
4 #include <asm/page.h>
5 #include <asm/pgtable_types.h>
6
7 /*
8  * Macro to mark a page protection value as UC-
9  */
10 #define pgprot_noncached(prot)                                          \
11         ((boot_cpu_data.x86 > 3)                                        \
12          ? (__pgprot(pgprot_val(prot) |                                 \
13                      cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)))     \
14          : (prot))
15
16 #ifndef __ASSEMBLY__
17 #include <asm/x86_init.h>
18
19 void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd);
20 void ptdump_walk_pgd_level_checkwx(void);
21
22 #ifdef CONFIG_DEBUG_WX
23 #define debug_checkwx() ptdump_walk_pgd_level_checkwx()
24 #else
25 #define debug_checkwx() do { } while (0)
26 #endif
27
28 /*
29  * ZERO_PAGE is a global shared page that is always zero: used
30  * for zero-mapped memory areas etc..
31  */
32 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
33         __visible;
34 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
35
36 extern spinlock_t pgd_lock;
37 extern struct list_head pgd_list;
38
39 extern struct mm_struct *pgd_page_get_mm(struct page *page);
40
41 #ifdef CONFIG_PARAVIRT
42 #include <asm/paravirt.h>
43 #else  /* !CONFIG_PARAVIRT */
44 #define set_pte(ptep, pte)              native_set_pte(ptep, pte)
45 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
46 #define set_pmd_at(mm, addr, pmdp, pmd) native_set_pmd_at(mm, addr, pmdp, pmd)
47 #define set_pud_at(mm, addr, pudp, pud) native_set_pud_at(mm, addr, pudp, pud)
48
49 #define set_pte_atomic(ptep, pte)                                       \
50         native_set_pte_atomic(ptep, pte)
51
52 #define set_pmd(pmdp, pmd)              native_set_pmd(pmdp, pmd)
53
54 #ifndef __PAGETABLE_P4D_FOLDED
55 #define set_pgd(pgdp, pgd)              native_set_pgd(pgdp, pgd)
56 #define pgd_clear(pgd)                  native_pgd_clear(pgd)
57 #endif
58
59 #ifndef set_p4d
60 # define set_p4d(p4dp, p4d)             native_set_p4d(p4dp, p4d)
61 #endif
62
63 #ifndef __PAGETABLE_PUD_FOLDED
64 #define p4d_clear(p4d)                  native_p4d_clear(p4d)
65 #endif
66
67 #ifndef set_pud
68 # define set_pud(pudp, pud)             native_set_pud(pudp, pud)
69 #endif
70
71 #ifndef __PAGETABLE_PUD_FOLDED
72 #define pud_clear(pud)                  native_pud_clear(pud)
73 #endif
74
75 #define pte_clear(mm, addr, ptep)       native_pte_clear(mm, addr, ptep)
76 #define pmd_clear(pmd)                  native_pmd_clear(pmd)
77
78 #define pte_update(mm, addr, ptep)              do { } while (0)
79
80 #define pgd_val(x)      native_pgd_val(x)
81 #define __pgd(x)        native_make_pgd(x)
82
83 #ifndef __PAGETABLE_P4D_FOLDED
84 #define p4d_val(x)      native_p4d_val(x)
85 #define __p4d(x)        native_make_p4d(x)
86 #endif
87
88 #ifndef __PAGETABLE_PUD_FOLDED
89 #define pud_val(x)      native_pud_val(x)
90 #define __pud(x)        native_make_pud(x)
91 #endif
92
93 #ifndef __PAGETABLE_PMD_FOLDED
94 #define pmd_val(x)      native_pmd_val(x)
95 #define __pmd(x)        native_make_pmd(x)
96 #endif
97
98 #define pte_val(x)      native_pte_val(x)
99 #define __pte(x)        native_make_pte(x)
100
101 #define arch_end_context_switch(prev)   do {} while(0)
102
103 #endif  /* CONFIG_PARAVIRT */
104
105 /*
106  * The following only work if pte_present() is true.
107  * Undefined behaviour if not..
108  */
109 static inline int pte_dirty(pte_t pte)
110 {
111         return pte_flags(pte) & _PAGE_DIRTY;
112 }
113
114
115 static inline u32 read_pkru(void)
116 {
117         if (boot_cpu_has(X86_FEATURE_OSPKE))
118                 return __read_pkru();
119         return 0;
120 }
121
122 static inline void write_pkru(u32 pkru)
123 {
124         if (boot_cpu_has(X86_FEATURE_OSPKE))
125                 __write_pkru(pkru);
126 }
127
128 static inline int pte_young(pte_t pte)
129 {
130         return pte_flags(pte) & _PAGE_ACCESSED;
131 }
132
133 static inline int pmd_dirty(pmd_t pmd)
134 {
135         return pmd_flags(pmd) & _PAGE_DIRTY;
136 }
137
138 static inline int pmd_young(pmd_t pmd)
139 {
140         return pmd_flags(pmd) & _PAGE_ACCESSED;
141 }
142
143 static inline int pud_dirty(pud_t pud)
144 {
145         return pud_flags(pud) & _PAGE_DIRTY;
146 }
147
148 static inline int pud_young(pud_t pud)
149 {
150         return pud_flags(pud) & _PAGE_ACCESSED;
151 }
152
153 static inline int pte_write(pte_t pte)
154 {
155         return pte_flags(pte) & _PAGE_RW;
156 }
157
158 static inline int pte_huge(pte_t pte)
159 {
160         return pte_flags(pte) & _PAGE_PSE;
161 }
162
163 static inline int pte_global(pte_t pte)
164 {
165         return pte_flags(pte) & _PAGE_GLOBAL;
166 }
167
168 static inline int pte_exec(pte_t pte)
169 {
170         return !(pte_flags(pte) & _PAGE_NX);
171 }
172
173 static inline int pte_special(pte_t pte)
174 {
175         return pte_flags(pte) & _PAGE_SPECIAL;
176 }
177
178 static inline unsigned long pte_pfn(pte_t pte)
179 {
180         return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT;
181 }
182
183 static inline unsigned long pmd_pfn(pmd_t pmd)
184 {
185         return (pmd_val(pmd) & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
186 }
187
188 static inline unsigned long pud_pfn(pud_t pud)
189 {
190         return (pud_val(pud) & pud_pfn_mask(pud)) >> PAGE_SHIFT;
191 }
192
193 static inline unsigned long p4d_pfn(p4d_t p4d)
194 {
195         return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
196 }
197
198 static inline int p4d_large(p4d_t p4d)
199 {
200         /* No 512 GiB pages yet */
201         return 0;
202 }
203
204 #define pte_page(pte)   pfn_to_page(pte_pfn(pte))
205
206 static inline int pmd_large(pmd_t pte)
207 {
208         return pmd_flags(pte) & _PAGE_PSE;
209 }
210
211 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
212 static inline int pmd_trans_huge(pmd_t pmd)
213 {
214         return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
215 }
216
217 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
218 static inline int pud_trans_huge(pud_t pud)
219 {
220         return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
221 }
222 #endif
223
224 #define has_transparent_hugepage has_transparent_hugepage
225 static inline int has_transparent_hugepage(void)
226 {
227         return boot_cpu_has(X86_FEATURE_PSE);
228 }
229
230 #ifdef __HAVE_ARCH_PTE_DEVMAP
231 static inline int pmd_devmap(pmd_t pmd)
232 {
233         return !!(pmd_val(pmd) & _PAGE_DEVMAP);
234 }
235
236 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
237 static inline int pud_devmap(pud_t pud)
238 {
239         return !!(pud_val(pud) & _PAGE_DEVMAP);
240 }
241 #else
242 static inline int pud_devmap(pud_t pud)
243 {
244         return 0;
245 }
246 #endif
247
248 static inline int pgd_devmap(pgd_t pgd)
249 {
250         return 0;
251 }
252 #endif
253 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
254
255 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
256 {
257         pteval_t v = native_pte_val(pte);
258
259         return native_make_pte(v | set);
260 }
261
262 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
263 {
264         pteval_t v = native_pte_val(pte);
265
266         return native_make_pte(v & ~clear);
267 }
268
269 static inline pte_t pte_mkclean(pte_t pte)
270 {
271         return pte_clear_flags(pte, _PAGE_DIRTY);
272 }
273
274 static inline pte_t pte_mkold(pte_t pte)
275 {
276         return pte_clear_flags(pte, _PAGE_ACCESSED);
277 }
278
279 static inline pte_t pte_wrprotect(pte_t pte)
280 {
281         return pte_clear_flags(pte, _PAGE_RW);
282 }
283
284 static inline pte_t pte_mkexec(pte_t pte)
285 {
286         return pte_clear_flags(pte, _PAGE_NX);
287 }
288
289 static inline pte_t pte_mkdirty(pte_t pte)
290 {
291         return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
292 }
293
294 static inline pte_t pte_mkyoung(pte_t pte)
295 {
296         return pte_set_flags(pte, _PAGE_ACCESSED);
297 }
298
299 static inline pte_t pte_mkwrite(pte_t pte)
300 {
301         return pte_set_flags(pte, _PAGE_RW);
302 }
303
304 static inline pte_t pte_mkhuge(pte_t pte)
305 {
306         return pte_set_flags(pte, _PAGE_PSE);
307 }
308
309 static inline pte_t pte_clrhuge(pte_t pte)
310 {
311         return pte_clear_flags(pte, _PAGE_PSE);
312 }
313
314 static inline pte_t pte_mkglobal(pte_t pte)
315 {
316         return pte_set_flags(pte, _PAGE_GLOBAL);
317 }
318
319 static inline pte_t pte_clrglobal(pte_t pte)
320 {
321         return pte_clear_flags(pte, _PAGE_GLOBAL);
322 }
323
324 static inline pte_t pte_mkspecial(pte_t pte)
325 {
326         return pte_set_flags(pte, _PAGE_SPECIAL);
327 }
328
329 static inline pte_t pte_mkdevmap(pte_t pte)
330 {
331         return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
332 }
333
334 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
335 {
336         pmdval_t v = native_pmd_val(pmd);
337
338         return __pmd(v | set);
339 }
340
341 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
342 {
343         pmdval_t v = native_pmd_val(pmd);
344
345         return __pmd(v & ~clear);
346 }
347
348 static inline pmd_t pmd_mkold(pmd_t pmd)
349 {
350         return pmd_clear_flags(pmd, _PAGE_ACCESSED);
351 }
352
353 static inline pmd_t pmd_mkclean(pmd_t pmd)
354 {
355         return pmd_clear_flags(pmd, _PAGE_DIRTY);
356 }
357
358 static inline pmd_t pmd_wrprotect(pmd_t pmd)
359 {
360         return pmd_clear_flags(pmd, _PAGE_RW);
361 }
362
363 static inline pmd_t pmd_mkdirty(pmd_t pmd)
364 {
365         return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
366 }
367
368 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
369 {
370         return pmd_set_flags(pmd, _PAGE_DEVMAP);
371 }
372
373 static inline pmd_t pmd_mkhuge(pmd_t pmd)
374 {
375         return pmd_set_flags(pmd, _PAGE_PSE);
376 }
377
378 static inline pmd_t pmd_mkyoung(pmd_t pmd)
379 {
380         return pmd_set_flags(pmd, _PAGE_ACCESSED);
381 }
382
383 static inline pmd_t pmd_mkwrite(pmd_t pmd)
384 {
385         return pmd_set_flags(pmd, _PAGE_RW);
386 }
387
388 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
389 {
390         return pmd_clear_flags(pmd, _PAGE_PRESENT | _PAGE_PROTNONE);
391 }
392
393 static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
394 {
395         pudval_t v = native_pud_val(pud);
396
397         return __pud(v | set);
398 }
399
400 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
401 {
402         pudval_t v = native_pud_val(pud);
403
404         return __pud(v & ~clear);
405 }
406
407 static inline pud_t pud_mkold(pud_t pud)
408 {
409         return pud_clear_flags(pud, _PAGE_ACCESSED);
410 }
411
412 static inline pud_t pud_mkclean(pud_t pud)
413 {
414         return pud_clear_flags(pud, _PAGE_DIRTY);
415 }
416
417 static inline pud_t pud_wrprotect(pud_t pud)
418 {
419         return pud_clear_flags(pud, _PAGE_RW);
420 }
421
422 static inline pud_t pud_mkdirty(pud_t pud)
423 {
424         return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
425 }
426
427 static inline pud_t pud_mkdevmap(pud_t pud)
428 {
429         return pud_set_flags(pud, _PAGE_DEVMAP);
430 }
431
432 static inline pud_t pud_mkhuge(pud_t pud)
433 {
434         return pud_set_flags(pud, _PAGE_PSE);
435 }
436
437 static inline pud_t pud_mkyoung(pud_t pud)
438 {
439         return pud_set_flags(pud, _PAGE_ACCESSED);
440 }
441
442 static inline pud_t pud_mkwrite(pud_t pud)
443 {
444         return pud_set_flags(pud, _PAGE_RW);
445 }
446
447 static inline pud_t pud_mknotpresent(pud_t pud)
448 {
449         return pud_clear_flags(pud, _PAGE_PRESENT | _PAGE_PROTNONE);
450 }
451
452 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
453 static inline int pte_soft_dirty(pte_t pte)
454 {
455         return pte_flags(pte) & _PAGE_SOFT_DIRTY;
456 }
457
458 static inline int pmd_soft_dirty(pmd_t pmd)
459 {
460         return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
461 }
462
463 static inline int pud_soft_dirty(pud_t pud)
464 {
465         return pud_flags(pud) & _PAGE_SOFT_DIRTY;
466 }
467
468 static inline pte_t pte_mksoft_dirty(pte_t pte)
469 {
470         return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
471 }
472
473 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
474 {
475         return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
476 }
477
478 static inline pud_t pud_mksoft_dirty(pud_t pud)
479 {
480         return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
481 }
482
483 static inline pte_t pte_clear_soft_dirty(pte_t pte)
484 {
485         return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
486 }
487
488 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
489 {
490         return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
491 }
492
493 static inline pud_t pud_clear_soft_dirty(pud_t pud)
494 {
495         return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
496 }
497
498 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
499
500 /*
501  * Mask out unsupported bits in a present pgprot.  Non-present pgprots
502  * can use those bits for other purposes, so leave them be.
503  */
504 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
505 {
506         pgprotval_t protval = pgprot_val(pgprot);
507
508         if (protval & _PAGE_PRESENT)
509                 protval &= __supported_pte_mask;
510
511         return protval;
512 }
513
514 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
515 {
516         return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) |
517                      massage_pgprot(pgprot));
518 }
519
520 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
521 {
522         return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) |
523                      massage_pgprot(pgprot));
524 }
525
526 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
527 {
528         return __pud(((phys_addr_t)page_nr << PAGE_SHIFT) |
529                      massage_pgprot(pgprot));
530 }
531
532 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
533 {
534         pteval_t val = pte_val(pte);
535
536         /*
537          * Chop off the NX bit (if present), and add the NX portion of
538          * the newprot (if present):
539          */
540         val &= _PAGE_CHG_MASK;
541         val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK;
542
543         return __pte(val);
544 }
545
546 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
547 {
548         pmdval_t val = pmd_val(pmd);
549
550         val &= _HPAGE_CHG_MASK;
551         val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK;
552
553         return __pmd(val);
554 }
555
556 /* mprotect needs to preserve PAT bits when updating vm_page_prot */
557 #define pgprot_modify pgprot_modify
558 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
559 {
560         pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
561         pgprotval_t addbits = pgprot_val(newprot);
562         return __pgprot(preservebits | addbits);
563 }
564
565 #define pte_pgprot(x) __pgprot(pte_flags(x))
566 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
567 #define pud_pgprot(x) __pgprot(pud_flags(x))
568 #define p4d_pgprot(x) __pgprot(p4d_flags(x))
569
570 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
571
572 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
573                                          enum page_cache_mode pcm,
574                                          enum page_cache_mode new_pcm)
575 {
576         /*
577          * PAT type is always WB for untracked ranges, so no need to check.
578          */
579         if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
580                 return 1;
581
582         /*
583          * Certain new memtypes are not allowed with certain
584          * requested memtype:
585          * - request is uncached, return cannot be write-back
586          * - request is write-combine, return cannot be write-back
587          * - request is write-through, return cannot be write-back
588          * - request is write-through, return cannot be write-combine
589          */
590         if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
591              new_pcm == _PAGE_CACHE_MODE_WB) ||
592             (pcm == _PAGE_CACHE_MODE_WC &&
593              new_pcm == _PAGE_CACHE_MODE_WB) ||
594             (pcm == _PAGE_CACHE_MODE_WT &&
595              new_pcm == _PAGE_CACHE_MODE_WB) ||
596             (pcm == _PAGE_CACHE_MODE_WT &&
597              new_pcm == _PAGE_CACHE_MODE_WC)) {
598                 return 0;
599         }
600
601         return 1;
602 }
603
604 pmd_t *populate_extra_pmd(unsigned long vaddr);
605 pte_t *populate_extra_pte(unsigned long vaddr);
606 #endif  /* __ASSEMBLY__ */
607
608 #ifdef CONFIG_X86_32
609 # include <asm/pgtable_32.h>
610 #else
611 # include <asm/pgtable_64.h>
612 #endif
613
614 #ifndef __ASSEMBLY__
615 #include <linux/mm_types.h>
616 #include <linux/mmdebug.h>
617 #include <linux/log2.h>
618 #include <asm/fixmap.h>
619
620 static inline int pte_none(pte_t pte)
621 {
622         return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
623 }
624
625 #define __HAVE_ARCH_PTE_SAME
626 static inline int pte_same(pte_t a, pte_t b)
627 {
628         return a.pte == b.pte;
629 }
630
631 static inline int pte_present(pte_t a)
632 {
633         return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
634 }
635
636 #ifdef __HAVE_ARCH_PTE_DEVMAP
637 static inline int pte_devmap(pte_t a)
638 {
639         return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
640 }
641 #endif
642
643 #define pte_accessible pte_accessible
644 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
645 {
646         if (pte_flags(a) & _PAGE_PRESENT)
647                 return true;
648
649         if ((pte_flags(a) & _PAGE_PROTNONE) &&
650                         mm_tlb_flush_pending(mm))
651                 return true;
652
653         return false;
654 }
655
656 static inline int pte_hidden(pte_t pte)
657 {
658         return pte_flags(pte) & _PAGE_HIDDEN;
659 }
660
661 static inline int pmd_present(pmd_t pmd)
662 {
663         /*
664          * Checking for _PAGE_PSE is needed too because
665          * split_huge_page will temporarily clear the present bit (but
666          * the _PAGE_PSE flag will remain set at all times while the
667          * _PAGE_PRESENT bit is clear).
668          */
669         return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
670 }
671
672 #ifdef CONFIG_NUMA_BALANCING
673 /*
674  * These work without NUMA balancing but the kernel does not care. See the
675  * comment in include/asm-generic/pgtable.h
676  */
677 static inline int pte_protnone(pte_t pte)
678 {
679         return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
680                 == _PAGE_PROTNONE;
681 }
682
683 static inline int pmd_protnone(pmd_t pmd)
684 {
685         return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
686                 == _PAGE_PROTNONE;
687 }
688 #endif /* CONFIG_NUMA_BALANCING */
689
690 static inline int pmd_none(pmd_t pmd)
691 {
692         /* Only check low word on 32-bit platforms, since it might be
693            out of sync with upper half. */
694         unsigned long val = native_pmd_val(pmd);
695         return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
696 }
697
698 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
699 {
700         return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
701 }
702
703 /*
704  * Currently stuck as a macro due to indirect forward reference to
705  * linux/mmzone.h's __section_mem_map_addr() definition:
706  */
707 #define pmd_page(pmd)           \
708         pfn_to_page((pmd_val(pmd) & pmd_pfn_mask(pmd)) >> PAGE_SHIFT)
709
710 /*
711  * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
712  *
713  * this macro returns the index of the entry in the pmd page which would
714  * control the given virtual address
715  */
716 static inline unsigned long pmd_index(unsigned long address)
717 {
718         return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
719 }
720
721 /*
722  * Conversion functions: convert a page and protection to a page entry,
723  * and a page entry and page directory to the page they refer to.
724  *
725  * (Currently stuck as a macro because of indirect forward reference
726  * to linux/mm.h:page_to_nid())
727  */
728 #define mk_pte(page, pgprot)   pfn_pte(page_to_pfn(page), (pgprot))
729
730 /*
731  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
732  *
733  * this function returns the index of the entry in the pte page which would
734  * control the given virtual address
735  */
736 static inline unsigned long pte_index(unsigned long address)
737 {
738         return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
739 }
740
741 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
742 {
743         return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
744 }
745
746 static inline int pmd_bad(pmd_t pmd)
747 {
748         return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE;
749 }
750
751 static inline unsigned long pages_to_mb(unsigned long npg)
752 {
753         return npg >> (20 - PAGE_SHIFT);
754 }
755
756 #if CONFIG_PGTABLE_LEVELS > 2
757 static inline int pud_none(pud_t pud)
758 {
759         return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
760 }
761
762 static inline int pud_present(pud_t pud)
763 {
764         return pud_flags(pud) & _PAGE_PRESENT;
765 }
766
767 static inline unsigned long pud_page_vaddr(pud_t pud)
768 {
769         return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud));
770 }
771
772 /*
773  * Currently stuck as a macro due to indirect forward reference to
774  * linux/mmzone.h's __section_mem_map_addr() definition:
775  */
776 #define pud_page(pud)           \
777         pfn_to_page((pud_val(pud) & pud_pfn_mask(pud)) >> PAGE_SHIFT)
778
779 /* Find an entry in the second-level page table.. */
780 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
781 {
782         return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
783 }
784
785 static inline int pud_large(pud_t pud)
786 {
787         return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
788                 (_PAGE_PSE | _PAGE_PRESENT);
789 }
790
791 static inline int pud_bad(pud_t pud)
792 {
793         return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
794 }
795 #else
796 static inline int pud_large(pud_t pud)
797 {
798         return 0;
799 }
800 #endif  /* CONFIG_PGTABLE_LEVELS > 2 */
801
802 static inline unsigned long pud_index(unsigned long address)
803 {
804         return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
805 }
806
807 #if CONFIG_PGTABLE_LEVELS > 3
808 static inline int p4d_none(p4d_t p4d)
809 {
810         return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
811 }
812
813 static inline int p4d_present(p4d_t p4d)
814 {
815         return p4d_flags(p4d) & _PAGE_PRESENT;
816 }
817
818 static inline unsigned long p4d_page_vaddr(p4d_t p4d)
819 {
820         return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
821 }
822
823 /*
824  * Currently stuck as a macro due to indirect forward reference to
825  * linux/mmzone.h's __section_mem_map_addr() definition:
826  */
827 #define p4d_page(p4d)           \
828         pfn_to_page((p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT)
829
830 /* Find an entry in the third-level page table.. */
831 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
832 {
833         return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
834 }
835
836 static inline int p4d_bad(p4d_t p4d)
837 {
838         return (p4d_flags(p4d) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
839 }
840 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
841
842 static inline unsigned long p4d_index(unsigned long address)
843 {
844         return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
845 }
846
847 #if CONFIG_PGTABLE_LEVELS > 4
848 static inline int pgd_present(pgd_t pgd)
849 {
850         return pgd_flags(pgd) & _PAGE_PRESENT;
851 }
852
853 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
854 {
855         return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
856 }
857
858 /*
859  * Currently stuck as a macro due to indirect forward reference to
860  * linux/mmzone.h's __section_mem_map_addr() definition:
861  */
862 #define pgd_page(pgd)           pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT)
863
864 /* to find an entry in a page-table-directory. */
865 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
866 {
867         return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
868 }
869
870 static inline int pgd_bad(pgd_t pgd)
871 {
872         return (pgd_flags(pgd) & ~_PAGE_USER) != _KERNPG_TABLE;
873 }
874
875 static inline int pgd_none(pgd_t pgd)
876 {
877         /*
878          * There is no need to do a workaround for the KNL stray
879          * A/D bit erratum here.  PGDs only point to page tables
880          * except on 32-bit non-PAE which is not supported on
881          * KNL.
882          */
883         return !native_pgd_val(pgd);
884 }
885 #endif  /* CONFIG_PGTABLE_LEVELS > 4 */
886
887 #endif  /* __ASSEMBLY__ */
888
889 /*
890  * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
891  *
892  * this macro returns the index of the entry in the pgd page which would
893  * control the given virtual address
894  */
895 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
896
897 /*
898  * pgd_offset() returns a (pgd_t *)
899  * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
900  */
901 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address)))
902 /*
903  * a shortcut which implies the use of the kernel's pgd, instead
904  * of a process's
905  */
906 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
907
908
909 #define KERNEL_PGD_BOUNDARY     pgd_index(PAGE_OFFSET)
910 #define KERNEL_PGD_PTRS         (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
911
912 #ifndef __ASSEMBLY__
913
914 extern int direct_gbpages;
915 void init_mem_mapping(void);
916 void early_alloc_pgt_buf(void);
917 extern void memblock_find_dma_reserve(void);
918
919 #ifdef CONFIG_X86_64
920 /* Realmode trampoline initialization. */
921 extern pgd_t trampoline_pgd_entry;
922 static inline void __meminit init_trampoline_default(void)
923 {
924         /* Default trampoline pgd value */
925         trampoline_pgd_entry = init_level4_pgt[pgd_index(__PAGE_OFFSET)];
926 }
927 # ifdef CONFIG_RANDOMIZE_MEMORY
928 void __meminit init_trampoline(void);
929 # else
930 #  define init_trampoline init_trampoline_default
931 # endif
932 #else
933 static inline void init_trampoline(void) { }
934 #endif
935
936 /* local pte updates need not use xchg for locking */
937 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
938 {
939         pte_t res = *ptep;
940
941         /* Pure native function needs no input for mm, addr */
942         native_pte_clear(NULL, 0, ptep);
943         return res;
944 }
945
946 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
947 {
948         pmd_t res = *pmdp;
949
950         native_pmd_clear(pmdp);
951         return res;
952 }
953
954 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
955 {
956         pud_t res = *pudp;
957
958         native_pud_clear(pudp);
959         return res;
960 }
961
962 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
963                                      pte_t *ptep , pte_t pte)
964 {
965         native_set_pte(ptep, pte);
966 }
967
968 static inline void native_set_pmd_at(struct mm_struct *mm, unsigned long addr,
969                                      pmd_t *pmdp , pmd_t pmd)
970 {
971         native_set_pmd(pmdp, pmd);
972 }
973
974 static inline void native_set_pud_at(struct mm_struct *mm, unsigned long addr,
975                                      pud_t *pudp, pud_t pud)
976 {
977         native_set_pud(pudp, pud);
978 }
979
980 #ifndef CONFIG_PARAVIRT
981 /*
982  * Rules for using pte_update - it must be called after any PTE update which
983  * has not been done using the set_pte / clear_pte interfaces.  It is used by
984  * shadow mode hypervisors to resynchronize the shadow page tables.  Kernel PTE
985  * updates should either be sets, clears, or set_pte_atomic for P->P
986  * transitions, which means this hook should only be called for user PTEs.
987  * This hook implies a P->P protection or access change has taken place, which
988  * requires a subsequent TLB flush.
989  */
990 #define pte_update(mm, addr, ptep)              do { } while (0)
991 #endif
992
993 /*
994  * We only update the dirty/accessed state if we set
995  * the dirty bit by hand in the kernel, since the hardware
996  * will do the accessed bit for us, and we don't want to
997  * race with other CPU's that might be updating the dirty
998  * bit at the same time.
999  */
1000 struct vm_area_struct;
1001
1002 #define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1003 extern int ptep_set_access_flags(struct vm_area_struct *vma,
1004                                  unsigned long address, pte_t *ptep,
1005                                  pte_t entry, int dirty);
1006
1007 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1008 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
1009                                      unsigned long addr, pte_t *ptep);
1010
1011 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1012 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
1013                                   unsigned long address, pte_t *ptep);
1014
1015 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1016 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
1017                                        pte_t *ptep)
1018 {
1019         pte_t pte = native_ptep_get_and_clear(ptep);
1020         pte_update(mm, addr, ptep);
1021         return pte;
1022 }
1023
1024 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1025 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1026                                             unsigned long addr, pte_t *ptep,
1027                                             int full)
1028 {
1029         pte_t pte;
1030         if (full) {
1031                 /*
1032                  * Full address destruction in progress; paravirt does not
1033                  * care about updates and native needs no locking
1034                  */
1035                 pte = native_local_ptep_get_and_clear(ptep);
1036         } else {
1037                 pte = ptep_get_and_clear(mm, addr, ptep);
1038         }
1039         return pte;
1040 }
1041
1042 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1043 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1044                                       unsigned long addr, pte_t *ptep)
1045 {
1046         clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
1047         pte_update(mm, addr, ptep);
1048 }
1049
1050 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
1051
1052 #define mk_pmd(page, pgprot)   pfn_pmd(page_to_pfn(page), (pgprot))
1053
1054 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1055 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1056                                  unsigned long address, pmd_t *pmdp,
1057                                  pmd_t entry, int dirty);
1058 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1059                                  unsigned long address, pud_t *pudp,
1060                                  pud_t entry, int dirty);
1061
1062 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1063 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1064                                      unsigned long addr, pmd_t *pmdp);
1065 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1066                                      unsigned long addr, pud_t *pudp);
1067
1068 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1069 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1070                                   unsigned long address, pmd_t *pmdp);
1071
1072
1073 #define __HAVE_ARCH_PMD_WRITE
1074 static inline int pmd_write(pmd_t pmd)
1075 {
1076         return pmd_flags(pmd) & _PAGE_RW;
1077 }
1078
1079 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1080 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1081                                        pmd_t *pmdp)
1082 {
1083         return native_pmdp_get_and_clear(pmdp);
1084 }
1085
1086 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1087 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1088                                         unsigned long addr, pud_t *pudp)
1089 {
1090         return native_pudp_get_and_clear(pudp);
1091 }
1092
1093 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1094 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1095                                       unsigned long addr, pmd_t *pmdp)
1096 {
1097         clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp);
1098 }
1099
1100 /*
1101  * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1102  *
1103  *  dst - pointer to pgd range anwhere on a pgd page
1104  *  src - ""
1105  *  count - the number of pgds to copy.
1106  *
1107  * dst and src can be on the same page, but the range must not overlap,
1108  * and must not cross a page boundary.
1109  */
1110 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1111 {
1112        memcpy(dst, src, count * sizeof(pgd_t));
1113 }
1114
1115 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
1116 static inline int page_level_shift(enum pg_level level)
1117 {
1118         return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1119 }
1120 static inline unsigned long page_level_size(enum pg_level level)
1121 {
1122         return 1UL << page_level_shift(level);
1123 }
1124 static inline unsigned long page_level_mask(enum pg_level level)
1125 {
1126         return ~(page_level_size(level) - 1);
1127 }
1128
1129 /*
1130  * The x86 doesn't have any external MMU info: the kernel page
1131  * tables contain all the necessary information.
1132  */
1133 static inline void update_mmu_cache(struct vm_area_struct *vma,
1134                 unsigned long addr, pte_t *ptep)
1135 {
1136 }
1137 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1138                 unsigned long addr, pmd_t *pmd)
1139 {
1140 }
1141 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1142                 unsigned long addr, pud_t *pud)
1143 {
1144 }
1145
1146 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1147 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1148 {
1149         return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1150 }
1151
1152 static inline int pte_swp_soft_dirty(pte_t pte)
1153 {
1154         return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1155 }
1156
1157 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1158 {
1159         return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1160 }
1161 #endif
1162
1163 #define PKRU_AD_BIT 0x1
1164 #define PKRU_WD_BIT 0x2
1165 #define PKRU_BITS_PER_PKEY 2
1166
1167 static inline bool __pkru_allows_read(u32 pkru, u16 pkey)
1168 {
1169         int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1170         return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits));
1171 }
1172
1173 static inline bool __pkru_allows_write(u32 pkru, u16 pkey)
1174 {
1175         int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1176         /*
1177          * Access-disable disables writes too so we need to check
1178          * both bits here.
1179          */
1180         return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits));
1181 }
1182
1183 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1184 {
1185 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1186         /* ifdef to avoid doing 59-bit shift on 32-bit values */
1187         return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1188 #else
1189         return 0;
1190 #endif
1191 }
1192
1193 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
1194 {
1195         u32 pkru = read_pkru();
1196
1197         if (!__pkru_allows_read(pkru, pkey))
1198                 return false;
1199         if (write && !__pkru_allows_write(pkru, pkey))
1200                 return false;
1201
1202         return true;
1203 }
1204
1205 /*
1206  * 'pteval' can come from a PTE, PMD or PUD.  We only check
1207  * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
1208  * same value on all 3 types.
1209  */
1210 static inline bool __pte_access_permitted(unsigned long pteval, bool write)
1211 {
1212         unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
1213
1214         if (write)
1215                 need_pte_bits |= _PAGE_RW;
1216
1217         if ((pteval & need_pte_bits) != need_pte_bits)
1218                 return 0;
1219
1220         return __pkru_allows_pkey(pte_flags_pkey(pteval), write);
1221 }
1222
1223 #define pte_access_permitted pte_access_permitted
1224 static inline bool pte_access_permitted(pte_t pte, bool write)
1225 {
1226         return __pte_access_permitted(pte_val(pte), write);
1227 }
1228
1229 #define pmd_access_permitted pmd_access_permitted
1230 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1231 {
1232         return __pte_access_permitted(pmd_val(pmd), write);
1233 }
1234
1235 #define pud_access_permitted pud_access_permitted
1236 static inline bool pud_access_permitted(pud_t pud, bool write)
1237 {
1238         return __pte_access_permitted(pud_val(pud), write);
1239 }
1240
1241 #include <asm-generic/pgtable.h>
1242 #endif  /* __ASSEMBLY__ */
1243
1244 #endif /* _ASM_X86_PGTABLE_H */