Merge branch 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / arch / x86 / events / intel / ds.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5
6 #include <asm/cpu_entry_area.h>
7 #include <asm/perf_event.h>
8 #include <asm/tlbflush.h>
9 #include <asm/insn.h>
10 #include <asm/io.h>
11
12 #include "../perf_event.h"
13
14 /* Waste a full page so it can be mapped into the cpu_entry_area */
15 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
16
17 /* The size of a BTS record in bytes: */
18 #define BTS_RECORD_SIZE         24
19
20 #define PEBS_FIXUP_SIZE         PAGE_SIZE
21
22 /*
23  * pebs_record_32 for p4 and core not supported
24
25 struct pebs_record_32 {
26         u32 flags, ip;
27         u32 ax, bc, cx, dx;
28         u32 si, di, bp, sp;
29 };
30
31  */
32
33 union intel_x86_pebs_dse {
34         u64 val;
35         struct {
36                 unsigned int ld_dse:4;
37                 unsigned int ld_stlb_miss:1;
38                 unsigned int ld_locked:1;
39                 unsigned int ld_reserved:26;
40         };
41         struct {
42                 unsigned int st_l1d_hit:1;
43                 unsigned int st_reserved1:3;
44                 unsigned int st_stlb_miss:1;
45                 unsigned int st_locked:1;
46                 unsigned int st_reserved2:26;
47         };
48 };
49
50
51 /*
52  * Map PEBS Load Latency Data Source encodings to generic
53  * memory data source information
54  */
55 #define P(a, b) PERF_MEM_S(a, b)
56 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
57 #define LEVEL(x) P(LVLNUM, x)
58 #define REM P(REMOTE, REMOTE)
59 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
60
61 /* Version for Sandy Bridge and later */
62 static u64 pebs_data_source[] = {
63         P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
64         OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
65         OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
66         OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
67         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
68         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
69         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
70         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
71         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
72         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
73         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
74         OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
75         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
76         OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
77         OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
78         OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
79 };
80
81 /* Patch up minor differences in the bits */
82 void __init intel_pmu_pebs_data_source_nhm(void)
83 {
84         pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
85         pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
86         pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
87 }
88
89 void __init intel_pmu_pebs_data_source_skl(bool pmem)
90 {
91         u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
92
93         pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
94         pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
95         pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
96         pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
97         pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
98 }
99
100 static u64 precise_store_data(u64 status)
101 {
102         union intel_x86_pebs_dse dse;
103         u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
104
105         dse.val = status;
106
107         /*
108          * bit 4: TLB access
109          * 1 = stored missed 2nd level TLB
110          *
111          * so it either hit the walker or the OS
112          * otherwise hit 2nd level TLB
113          */
114         if (dse.st_stlb_miss)
115                 val |= P(TLB, MISS);
116         else
117                 val |= P(TLB, HIT);
118
119         /*
120          * bit 0: hit L1 data cache
121          * if not set, then all we know is that
122          * it missed L1D
123          */
124         if (dse.st_l1d_hit)
125                 val |= P(LVL, HIT);
126         else
127                 val |= P(LVL, MISS);
128
129         /*
130          * bit 5: Locked prefix
131          */
132         if (dse.st_locked)
133                 val |= P(LOCK, LOCKED);
134
135         return val;
136 }
137
138 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
139 {
140         union perf_mem_data_src dse;
141
142         dse.val = PERF_MEM_NA;
143
144         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
145                 dse.mem_op = PERF_MEM_OP_STORE;
146         else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
147                 dse.mem_op = PERF_MEM_OP_LOAD;
148
149         /*
150          * L1 info only valid for following events:
151          *
152          * MEM_UOPS_RETIRED.STLB_MISS_STORES
153          * MEM_UOPS_RETIRED.LOCK_STORES
154          * MEM_UOPS_RETIRED.SPLIT_STORES
155          * MEM_UOPS_RETIRED.ALL_STORES
156          */
157         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
158                 if (status & 1)
159                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
160                 else
161                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
162         }
163         return dse.val;
164 }
165
166 static u64 load_latency_data(u64 status)
167 {
168         union intel_x86_pebs_dse dse;
169         u64 val;
170
171         dse.val = status;
172
173         /*
174          * use the mapping table for bit 0-3
175          */
176         val = pebs_data_source[dse.ld_dse];
177
178         /*
179          * Nehalem models do not support TLB, Lock infos
180          */
181         if (x86_pmu.pebs_no_tlb) {
182                 val |= P(TLB, NA) | P(LOCK, NA);
183                 return val;
184         }
185         /*
186          * bit 4: TLB access
187          * 0 = did not miss 2nd level TLB
188          * 1 = missed 2nd level TLB
189          */
190         if (dse.ld_stlb_miss)
191                 val |= P(TLB, MISS) | P(TLB, L2);
192         else
193                 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
194
195         /*
196          * bit 5: locked prefix
197          */
198         if (dse.ld_locked)
199                 val |= P(LOCK, LOCKED);
200
201         return val;
202 }
203
204 struct pebs_record_core {
205         u64 flags, ip;
206         u64 ax, bx, cx, dx;
207         u64 si, di, bp, sp;
208         u64 r8,  r9,  r10, r11;
209         u64 r12, r13, r14, r15;
210 };
211
212 struct pebs_record_nhm {
213         u64 flags, ip;
214         u64 ax, bx, cx, dx;
215         u64 si, di, bp, sp;
216         u64 r8,  r9,  r10, r11;
217         u64 r12, r13, r14, r15;
218         u64 status, dla, dse, lat;
219 };
220
221 /*
222  * Same as pebs_record_nhm, with two additional fields.
223  */
224 struct pebs_record_hsw {
225         u64 flags, ip;
226         u64 ax, bx, cx, dx;
227         u64 si, di, bp, sp;
228         u64 r8,  r9,  r10, r11;
229         u64 r12, r13, r14, r15;
230         u64 status, dla, dse, lat;
231         u64 real_ip, tsx_tuning;
232 };
233
234 union hsw_tsx_tuning {
235         struct {
236                 u32 cycles_last_block     : 32,
237                     hle_abort             : 1,
238                     rtm_abort             : 1,
239                     instruction_abort     : 1,
240                     non_instruction_abort : 1,
241                     retry                 : 1,
242                     data_conflict         : 1,
243                     capacity_writes       : 1,
244                     capacity_reads        : 1;
245         };
246         u64         value;
247 };
248
249 #define PEBS_HSW_TSX_FLAGS      0xff00000000ULL
250
251 /* Same as HSW, plus TSC */
252
253 struct pebs_record_skl {
254         u64 flags, ip;
255         u64 ax, bx, cx, dx;
256         u64 si, di, bp, sp;
257         u64 r8,  r9,  r10, r11;
258         u64 r12, r13, r14, r15;
259         u64 status, dla, dse, lat;
260         u64 real_ip, tsx_tuning;
261         u64 tsc;
262 };
263
264 void init_debug_store_on_cpu(int cpu)
265 {
266         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
267
268         if (!ds)
269                 return;
270
271         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
272                      (u32)((u64)(unsigned long)ds),
273                      (u32)((u64)(unsigned long)ds >> 32));
274 }
275
276 void fini_debug_store_on_cpu(int cpu)
277 {
278         if (!per_cpu(cpu_hw_events, cpu).ds)
279                 return;
280
281         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
282 }
283
284 static DEFINE_PER_CPU(void *, insn_buffer);
285
286 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
287 {
288         unsigned long start = (unsigned long)cea;
289         phys_addr_t pa;
290         size_t msz = 0;
291
292         pa = virt_to_phys(addr);
293
294         preempt_disable();
295         for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
296                 cea_set_pte(cea, pa, prot);
297
298         /*
299          * This is a cross-CPU update of the cpu_entry_area, we must shoot down
300          * all TLB entries for it.
301          */
302         flush_tlb_kernel_range(start, start + size);
303         preempt_enable();
304 }
305
306 static void ds_clear_cea(void *cea, size_t size)
307 {
308         unsigned long start = (unsigned long)cea;
309         size_t msz = 0;
310
311         preempt_disable();
312         for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
313                 cea_set_pte(cea, 0, PAGE_NONE);
314
315         flush_tlb_kernel_range(start, start + size);
316         preempt_enable();
317 }
318
319 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
320 {
321         unsigned int order = get_order(size);
322         int node = cpu_to_node(cpu);
323         struct page *page;
324
325         page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
326         return page ? page_address(page) : NULL;
327 }
328
329 static void dsfree_pages(const void *buffer, size_t size)
330 {
331         if (buffer)
332                 free_pages((unsigned long)buffer, get_order(size));
333 }
334
335 static int alloc_pebs_buffer(int cpu)
336 {
337         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
338         struct debug_store *ds = hwev->ds;
339         size_t bsiz = x86_pmu.pebs_buffer_size;
340         int max, node = cpu_to_node(cpu);
341         void *buffer, *insn_buff, *cea;
342
343         if (!x86_pmu.pebs)
344                 return 0;
345
346         buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
347         if (unlikely(!buffer))
348                 return -ENOMEM;
349
350         /*
351          * HSW+ already provides us the eventing ip; no need to allocate this
352          * buffer then.
353          */
354         if (x86_pmu.intel_cap.pebs_format < 2) {
355                 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
356                 if (!insn_buff) {
357                         dsfree_pages(buffer, bsiz);
358                         return -ENOMEM;
359                 }
360                 per_cpu(insn_buffer, cpu) = insn_buff;
361         }
362         hwev->ds_pebs_vaddr = buffer;
363         /* Update the cpu entry area mapping */
364         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
365         ds->pebs_buffer_base = (unsigned long) cea;
366         ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
367         ds->pebs_index = ds->pebs_buffer_base;
368         max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
369         ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
370         return 0;
371 }
372
373 static void release_pebs_buffer(int cpu)
374 {
375         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
376         void *cea;
377
378         if (!x86_pmu.pebs)
379                 return;
380
381         kfree(per_cpu(insn_buffer, cpu));
382         per_cpu(insn_buffer, cpu) = NULL;
383
384         /* Clear the fixmap */
385         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
386         ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
387         dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
388         hwev->ds_pebs_vaddr = NULL;
389 }
390
391 static int alloc_bts_buffer(int cpu)
392 {
393         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
394         struct debug_store *ds = hwev->ds;
395         void *buffer, *cea;
396         int max;
397
398         if (!x86_pmu.bts)
399                 return 0;
400
401         buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
402         if (unlikely(!buffer)) {
403                 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
404                 return -ENOMEM;
405         }
406         hwev->ds_bts_vaddr = buffer;
407         /* Update the fixmap */
408         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
409         ds->bts_buffer_base = (unsigned long) cea;
410         ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
411         ds->bts_index = ds->bts_buffer_base;
412         max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
413         ds->bts_absolute_maximum = ds->bts_buffer_base +
414                                         max * BTS_RECORD_SIZE;
415         ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
416                                         (max / 16) * BTS_RECORD_SIZE;
417         return 0;
418 }
419
420 static void release_bts_buffer(int cpu)
421 {
422         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
423         void *cea;
424
425         if (!x86_pmu.bts)
426                 return;
427
428         /* Clear the fixmap */
429         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
430         ds_clear_cea(cea, BTS_BUFFER_SIZE);
431         dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
432         hwev->ds_bts_vaddr = NULL;
433 }
434
435 static int alloc_ds_buffer(int cpu)
436 {
437         struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
438
439         memset(ds, 0, sizeof(*ds));
440         per_cpu(cpu_hw_events, cpu).ds = ds;
441         return 0;
442 }
443
444 static void release_ds_buffer(int cpu)
445 {
446         per_cpu(cpu_hw_events, cpu).ds = NULL;
447 }
448
449 void release_ds_buffers(void)
450 {
451         int cpu;
452
453         if (!x86_pmu.bts && !x86_pmu.pebs)
454                 return;
455
456         for_each_possible_cpu(cpu)
457                 release_ds_buffer(cpu);
458
459         for_each_possible_cpu(cpu) {
460                 /*
461                  * Again, ignore errors from offline CPUs, they will no longer
462                  * observe cpu_hw_events.ds and not program the DS_AREA when
463                  * they come up.
464                  */
465                 fini_debug_store_on_cpu(cpu);
466         }
467
468         for_each_possible_cpu(cpu) {
469                 release_pebs_buffer(cpu);
470                 release_bts_buffer(cpu);
471         }
472 }
473
474 void reserve_ds_buffers(void)
475 {
476         int bts_err = 0, pebs_err = 0;
477         int cpu;
478
479         x86_pmu.bts_active = 0;
480         x86_pmu.pebs_active = 0;
481
482         if (!x86_pmu.bts && !x86_pmu.pebs)
483                 return;
484
485         if (!x86_pmu.bts)
486                 bts_err = 1;
487
488         if (!x86_pmu.pebs)
489                 pebs_err = 1;
490
491         for_each_possible_cpu(cpu) {
492                 if (alloc_ds_buffer(cpu)) {
493                         bts_err = 1;
494                         pebs_err = 1;
495                 }
496
497                 if (!bts_err && alloc_bts_buffer(cpu))
498                         bts_err = 1;
499
500                 if (!pebs_err && alloc_pebs_buffer(cpu))
501                         pebs_err = 1;
502
503                 if (bts_err && pebs_err)
504                         break;
505         }
506
507         if (bts_err) {
508                 for_each_possible_cpu(cpu)
509                         release_bts_buffer(cpu);
510         }
511
512         if (pebs_err) {
513                 for_each_possible_cpu(cpu)
514                         release_pebs_buffer(cpu);
515         }
516
517         if (bts_err && pebs_err) {
518                 for_each_possible_cpu(cpu)
519                         release_ds_buffer(cpu);
520         } else {
521                 if (x86_pmu.bts && !bts_err)
522                         x86_pmu.bts_active = 1;
523
524                 if (x86_pmu.pebs && !pebs_err)
525                         x86_pmu.pebs_active = 1;
526
527                 for_each_possible_cpu(cpu) {
528                         /*
529                          * Ignores wrmsr_on_cpu() errors for offline CPUs they
530                          * will get this call through intel_pmu_cpu_starting().
531                          */
532                         init_debug_store_on_cpu(cpu);
533                 }
534         }
535 }
536
537 /*
538  * BTS
539  */
540
541 struct event_constraint bts_constraint =
542         EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
543
544 void intel_pmu_enable_bts(u64 config)
545 {
546         unsigned long debugctlmsr;
547
548         debugctlmsr = get_debugctlmsr();
549
550         debugctlmsr |= DEBUGCTLMSR_TR;
551         debugctlmsr |= DEBUGCTLMSR_BTS;
552         if (config & ARCH_PERFMON_EVENTSEL_INT)
553                 debugctlmsr |= DEBUGCTLMSR_BTINT;
554
555         if (!(config & ARCH_PERFMON_EVENTSEL_OS))
556                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
557
558         if (!(config & ARCH_PERFMON_EVENTSEL_USR))
559                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
560
561         update_debugctlmsr(debugctlmsr);
562 }
563
564 void intel_pmu_disable_bts(void)
565 {
566         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
567         unsigned long debugctlmsr;
568
569         if (!cpuc->ds)
570                 return;
571
572         debugctlmsr = get_debugctlmsr();
573
574         debugctlmsr &=
575                 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
576                   DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
577
578         update_debugctlmsr(debugctlmsr);
579 }
580
581 int intel_pmu_drain_bts_buffer(void)
582 {
583         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
584         struct debug_store *ds = cpuc->ds;
585         struct bts_record {
586                 u64     from;
587                 u64     to;
588                 u64     flags;
589         };
590         struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
591         struct bts_record *at, *base, *top;
592         struct perf_output_handle handle;
593         struct perf_event_header header;
594         struct perf_sample_data data;
595         unsigned long skip = 0;
596         struct pt_regs regs;
597
598         if (!event)
599                 return 0;
600
601         if (!x86_pmu.bts_active)
602                 return 0;
603
604         base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
605         top  = (struct bts_record *)(unsigned long)ds->bts_index;
606
607         if (top <= base)
608                 return 0;
609
610         memset(&regs, 0, sizeof(regs));
611
612         ds->bts_index = ds->bts_buffer_base;
613
614         perf_sample_data_init(&data, 0, event->hw.last_period);
615
616         /*
617          * BTS leaks kernel addresses in branches across the cpl boundary,
618          * such as traps or system calls, so unless the user is asking for
619          * kernel tracing (and right now it's not possible), we'd need to
620          * filter them out. But first we need to count how many of those we
621          * have in the current batch. This is an extra O(n) pass, however,
622          * it's much faster than the other one especially considering that
623          * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
624          * alloc_bts_buffer()).
625          */
626         for (at = base; at < top; at++) {
627                 /*
628                  * Note that right now *this* BTS code only works if
629                  * attr::exclude_kernel is set, but let's keep this extra
630                  * check here in case that changes.
631                  */
632                 if (event->attr.exclude_kernel &&
633                     (kernel_ip(at->from) || kernel_ip(at->to)))
634                         skip++;
635         }
636
637         /*
638          * Prepare a generic sample, i.e. fill in the invariant fields.
639          * We will overwrite the from and to address before we output
640          * the sample.
641          */
642         rcu_read_lock();
643         perf_prepare_sample(&header, &data, event, &regs);
644
645         if (perf_output_begin(&handle, event, header.size *
646                               (top - base - skip)))
647                 goto unlock;
648
649         for (at = base; at < top; at++) {
650                 /* Filter out any records that contain kernel addresses. */
651                 if (event->attr.exclude_kernel &&
652                     (kernel_ip(at->from) || kernel_ip(at->to)))
653                         continue;
654
655                 data.ip         = at->from;
656                 data.addr       = at->to;
657
658                 perf_output_sample(&handle, &header, &data, event);
659         }
660
661         perf_output_end(&handle);
662
663         /* There's new data available. */
664         event->hw.interrupts++;
665         event->pending_kill = POLL_IN;
666 unlock:
667         rcu_read_unlock();
668         return 1;
669 }
670
671 static inline void intel_pmu_drain_pebs_buffer(void)
672 {
673         struct pt_regs regs;
674
675         x86_pmu.drain_pebs(&regs);
676 }
677
678 /*
679  * PEBS
680  */
681 struct event_constraint intel_core2_pebs_event_constraints[] = {
682         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
683         INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
684         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
685         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
686         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
687         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
688         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
689         EVENT_CONSTRAINT_END
690 };
691
692 struct event_constraint intel_atom_pebs_event_constraints[] = {
693         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
694         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
695         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
696         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
697         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
698         /* Allow all events as PEBS with no flags */
699         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
700         EVENT_CONSTRAINT_END
701 };
702
703 struct event_constraint intel_slm_pebs_event_constraints[] = {
704         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
705         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
706         /* Allow all events as PEBS with no flags */
707         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
708         EVENT_CONSTRAINT_END
709 };
710
711 struct event_constraint intel_glm_pebs_event_constraints[] = {
712         /* Allow all events as PEBS with no flags */
713         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
714         EVENT_CONSTRAINT_END
715 };
716
717 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
718         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
719         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
720         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
721         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
722         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
723         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
724         INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
725         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
726         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
727         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
728         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
729         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
730         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
731         EVENT_CONSTRAINT_END
732 };
733
734 struct event_constraint intel_westmere_pebs_event_constraints[] = {
735         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
736         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
737         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
738         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
739         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
740         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
741         INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
742         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
743         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
744         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
745         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
746         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
747         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
748         EVENT_CONSTRAINT_END
749 };
750
751 struct event_constraint intel_snb_pebs_event_constraints[] = {
752         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
753         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
754         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
755         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
756         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
757         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
758         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
759         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
760         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
761         /* Allow all events as PEBS with no flags */
762         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
763         EVENT_CONSTRAINT_END
764 };
765
766 struct event_constraint intel_ivb_pebs_event_constraints[] = {
767         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
768         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
769         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
770         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
771         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
772         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
773         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
774         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
775         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
776         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
777         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
778         /* Allow all events as PEBS with no flags */
779         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
780         EVENT_CONSTRAINT_END
781 };
782
783 struct event_constraint intel_hsw_pebs_event_constraints[] = {
784         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
785         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
786         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
787         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
788         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
789         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
790         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
791         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
792         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
793         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
794         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
795         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
796         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
797         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
798         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
799         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
800         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
801         /* Allow all events as PEBS with no flags */
802         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
803         EVENT_CONSTRAINT_END
804 };
805
806 struct event_constraint intel_bdw_pebs_event_constraints[] = {
807         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
808         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
809         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
810         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
811         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
812         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
813         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
814         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
815         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
816         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
817         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
818         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
819         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
820         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
821         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
822         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
823         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
824         /* Allow all events as PEBS with no flags */
825         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
826         EVENT_CONSTRAINT_END
827 };
828
829
830 struct event_constraint intel_skl_pebs_event_constraints[] = {
831         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),      /* INST_RETIRED.PREC_DIST */
832         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
833         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
834         /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
835         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
836         INTEL_PLD_CONSTRAINT(0x1cd, 0xf),                     /* MEM_TRANS_RETIRED.* */
837         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
838         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
839         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
840         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
841         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
842         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
843         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
844         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
845         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
846         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
847         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
848         /* Allow all events as PEBS with no flags */
849         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
850         EVENT_CONSTRAINT_END
851 };
852
853 struct event_constraint intel_icl_pebs_event_constraints[] = {
854         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x100000000ULL),   /* INST_RETIRED.PREC_DIST */
855         INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),  /* SLOTS */
856
857         INTEL_PLD_CONSTRAINT(0x1cd, 0xff),                      /* MEM_TRANS_RETIRED.LOAD_LATENCY */
858         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf),    /* MEM_INST_RETIRED.LOAD */
859         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf),    /* MEM_INST_RETIRED.STORE */
860
861         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
862
863         INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),                /* MEM_INST_RETIRED.* */
864
865         /*
866          * Everything else is handled by PMU_FL_PEBS_ALL, because we
867          * need the full constraints from the main table.
868          */
869
870         EVENT_CONSTRAINT_END
871 };
872
873 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
874 {
875         struct event_constraint *c;
876
877         if (!event->attr.precise_ip)
878                 return NULL;
879
880         if (x86_pmu.pebs_constraints) {
881                 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
882                         if (constraint_match(c, event->hw.config)) {
883                                 event->hw.flags |= c->flags;
884                                 return c;
885                         }
886                 }
887         }
888
889         /*
890          * Extended PEBS support
891          * Makes the PEBS code search the normal constraints.
892          */
893         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
894                 return NULL;
895
896         return &emptyconstraint;
897 }
898
899 /*
900  * We need the sched_task callback even for per-cpu events when we use
901  * the large interrupt threshold, such that we can provide PID and TID
902  * to PEBS samples.
903  */
904 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
905 {
906         if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
907                 return false;
908
909         return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
910 }
911
912 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
913 {
914         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
915
916         if (!sched_in && pebs_needs_sched_cb(cpuc))
917                 intel_pmu_drain_pebs_buffer();
918 }
919
920 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
921 {
922         struct debug_store *ds = cpuc->ds;
923         u64 threshold;
924         int reserved;
925
926         if (cpuc->n_pebs_via_pt)
927                 return;
928
929         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
930                 reserved = x86_pmu.max_pebs_events + x86_pmu.num_counters_fixed;
931         else
932                 reserved = x86_pmu.max_pebs_events;
933
934         if (cpuc->n_pebs == cpuc->n_large_pebs) {
935                 threshold = ds->pebs_absolute_maximum -
936                         reserved * cpuc->pebs_record_size;
937         } else {
938                 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
939         }
940
941         ds->pebs_interrupt_threshold = threshold;
942 }
943
944 static void adaptive_pebs_record_size_update(void)
945 {
946         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
947         u64 pebs_data_cfg = cpuc->pebs_data_cfg;
948         int sz = sizeof(struct pebs_basic);
949
950         if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
951                 sz += sizeof(struct pebs_meminfo);
952         if (pebs_data_cfg & PEBS_DATACFG_GP)
953                 sz += sizeof(struct pebs_gprs);
954         if (pebs_data_cfg & PEBS_DATACFG_XMMS)
955                 sz += sizeof(struct pebs_xmm);
956         if (pebs_data_cfg & PEBS_DATACFG_LBRS)
957                 sz += x86_pmu.lbr_nr * sizeof(struct pebs_lbr_entry);
958
959         cpuc->pebs_record_size = sz;
960 }
961
962 #define PERF_PEBS_MEMINFO_TYPE  (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
963                                 PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_WEIGHT | \
964                                 PERF_SAMPLE_TRANSACTION)
965
966 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
967 {
968         struct perf_event_attr *attr = &event->attr;
969         u64 sample_type = attr->sample_type;
970         u64 pebs_data_cfg = 0;
971         bool gprs, tsx_weight;
972
973         if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
974             attr->precise_ip > 1)
975                 return pebs_data_cfg;
976
977         if (sample_type & PERF_PEBS_MEMINFO_TYPE)
978                 pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
979
980         /*
981          * We need GPRs when:
982          * + user requested them
983          * + precise_ip < 2 for the non event IP
984          * + For RTM TSX weight we need GPRs for the abort code.
985          */
986         gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
987                (attr->sample_regs_intr & PEBS_GP_REGS);
988
989         tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT) &&
990                      ((attr->config & INTEL_ARCH_EVENT_MASK) ==
991                       x86_pmu.rtm_abort_event);
992
993         if (gprs || (attr->precise_ip < 2) || tsx_weight)
994                 pebs_data_cfg |= PEBS_DATACFG_GP;
995
996         if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
997             (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
998                 pebs_data_cfg |= PEBS_DATACFG_XMMS;
999
1000         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1001                 /*
1002                  * For now always log all LBRs. Could configure this
1003                  * later.
1004                  */
1005                 pebs_data_cfg |= PEBS_DATACFG_LBRS |
1006                         ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1007         }
1008
1009         return pebs_data_cfg;
1010 }
1011
1012 static void
1013 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1014                   struct perf_event *event, bool add)
1015 {
1016         struct pmu *pmu = event->ctx->pmu;
1017         /*
1018          * Make sure we get updated with the first PEBS
1019          * event. It will trigger also during removal, but
1020          * that does not hurt:
1021          */
1022         bool update = cpuc->n_pebs == 1;
1023
1024         if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1025                 if (!needed_cb)
1026                         perf_sched_cb_inc(pmu);
1027                 else
1028                         perf_sched_cb_dec(pmu);
1029
1030                 update = true;
1031         }
1032
1033         /*
1034          * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1035          * iterating all remaining PEBS events to reconstruct the config.
1036          */
1037         if (x86_pmu.intel_cap.pebs_baseline && add) {
1038                 u64 pebs_data_cfg;
1039
1040                 /* Clear pebs_data_cfg and pebs_record_size for first PEBS. */
1041                 if (cpuc->n_pebs == 1) {
1042                         cpuc->pebs_data_cfg = 0;
1043                         cpuc->pebs_record_size = sizeof(struct pebs_basic);
1044                 }
1045
1046                 pebs_data_cfg = pebs_update_adaptive_cfg(event);
1047
1048                 /* Update pebs_record_size if new event requires more data. */
1049                 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) {
1050                         cpuc->pebs_data_cfg |= pebs_data_cfg;
1051                         adaptive_pebs_record_size_update();
1052                         update = true;
1053                 }
1054         }
1055
1056         if (update)
1057                 pebs_update_threshold(cpuc);
1058 }
1059
1060 void intel_pmu_pebs_add(struct perf_event *event)
1061 {
1062         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1063         struct hw_perf_event *hwc = &event->hw;
1064         bool needed_cb = pebs_needs_sched_cb(cpuc);
1065
1066         cpuc->n_pebs++;
1067         if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1068                 cpuc->n_large_pebs++;
1069         if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1070                 cpuc->n_pebs_via_pt++;
1071
1072         pebs_update_state(needed_cb, cpuc, event, true);
1073 }
1074
1075 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1076 {
1077         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1078
1079         if (!is_pebs_pt(event))
1080                 return;
1081
1082         if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1083                 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1084 }
1085
1086 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1087 {
1088         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1089         struct hw_perf_event *hwc = &event->hw;
1090         struct debug_store *ds = cpuc->ds;
1091
1092         if (!is_pebs_pt(event))
1093                 return;
1094
1095         if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1096                 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1097
1098         cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1099
1100         wrmsrl(MSR_RELOAD_PMC0 + hwc->idx, ds->pebs_event_reset[hwc->idx]);
1101 }
1102
1103 void intel_pmu_pebs_enable(struct perf_event *event)
1104 {
1105         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1106         struct hw_perf_event *hwc = &event->hw;
1107         struct debug_store *ds = cpuc->ds;
1108
1109         hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1110
1111         cpuc->pebs_enabled |= 1ULL << hwc->idx;
1112
1113         if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1114                 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1115         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1116                 cpuc->pebs_enabled |= 1ULL << 63;
1117
1118         if (x86_pmu.intel_cap.pebs_baseline) {
1119                 hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1120                 if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1121                         wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg);
1122                         cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg;
1123                 }
1124         }
1125
1126         /*
1127          * Use auto-reload if possible to save a MSR write in the PMI.
1128          * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1129          */
1130         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1131                 unsigned int idx = hwc->idx;
1132
1133                 if (idx >= INTEL_PMC_IDX_FIXED)
1134                         idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1135                 ds->pebs_event_reset[idx] =
1136                         (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1137         } else {
1138                 ds->pebs_event_reset[hwc->idx] = 0;
1139         }
1140
1141         intel_pmu_pebs_via_pt_enable(event);
1142 }
1143
1144 void intel_pmu_pebs_del(struct perf_event *event)
1145 {
1146         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1147         struct hw_perf_event *hwc = &event->hw;
1148         bool needed_cb = pebs_needs_sched_cb(cpuc);
1149
1150         cpuc->n_pebs--;
1151         if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1152                 cpuc->n_large_pebs--;
1153         if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1154                 cpuc->n_pebs_via_pt--;
1155
1156         pebs_update_state(needed_cb, cpuc, event, false);
1157 }
1158
1159 void intel_pmu_pebs_disable(struct perf_event *event)
1160 {
1161         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1162         struct hw_perf_event *hwc = &event->hw;
1163
1164         if (cpuc->n_pebs == cpuc->n_large_pebs &&
1165             cpuc->n_pebs != cpuc->n_pebs_via_pt)
1166                 intel_pmu_drain_pebs_buffer();
1167
1168         cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1169
1170         if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1171             (x86_pmu.version < 5))
1172                 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1173         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1174                 cpuc->pebs_enabled &= ~(1ULL << 63);
1175
1176         intel_pmu_pebs_via_pt_disable(event);
1177
1178         if (cpuc->enabled)
1179                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1180
1181         hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1182 }
1183
1184 void intel_pmu_pebs_enable_all(void)
1185 {
1186         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1187
1188         if (cpuc->pebs_enabled)
1189                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1190 }
1191
1192 void intel_pmu_pebs_disable_all(void)
1193 {
1194         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1195
1196         if (cpuc->pebs_enabled)
1197                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1198 }
1199
1200 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1201 {
1202         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1203         unsigned long from = cpuc->lbr_entries[0].from;
1204         unsigned long old_to, to = cpuc->lbr_entries[0].to;
1205         unsigned long ip = regs->ip;
1206         int is_64bit = 0;
1207         void *kaddr;
1208         int size;
1209
1210         /*
1211          * We don't need to fixup if the PEBS assist is fault like
1212          */
1213         if (!x86_pmu.intel_cap.pebs_trap)
1214                 return 1;
1215
1216         /*
1217          * No LBR entry, no basic block, no rewinding
1218          */
1219         if (!cpuc->lbr_stack.nr || !from || !to)
1220                 return 0;
1221
1222         /*
1223          * Basic blocks should never cross user/kernel boundaries
1224          */
1225         if (kernel_ip(ip) != kernel_ip(to))
1226                 return 0;
1227
1228         /*
1229          * unsigned math, either ip is before the start (impossible) or
1230          * the basic block is larger than 1 page (sanity)
1231          */
1232         if ((ip - to) > PEBS_FIXUP_SIZE)
1233                 return 0;
1234
1235         /*
1236          * We sampled a branch insn, rewind using the LBR stack
1237          */
1238         if (ip == to) {
1239                 set_linear_ip(regs, from);
1240                 return 1;
1241         }
1242
1243         size = ip - to;
1244         if (!kernel_ip(ip)) {
1245                 int bytes;
1246                 u8 *buf = this_cpu_read(insn_buffer);
1247
1248                 /* 'size' must fit our buffer, see above */
1249                 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1250                 if (bytes != 0)
1251                         return 0;
1252
1253                 kaddr = buf;
1254         } else {
1255                 kaddr = (void *)to;
1256         }
1257
1258         do {
1259                 struct insn insn;
1260
1261                 old_to = to;
1262
1263 #ifdef CONFIG_X86_64
1264                 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
1265 #endif
1266                 insn_init(&insn, kaddr, size, is_64bit);
1267                 insn_get_length(&insn);
1268                 /*
1269                  * Make sure there was not a problem decoding the
1270                  * instruction and getting the length.  This is
1271                  * doubly important because we have an infinite
1272                  * loop if insn.length=0.
1273                  */
1274                 if (!insn.length)
1275                         break;
1276
1277                 to += insn.length;
1278                 kaddr += insn.length;
1279                 size -= insn.length;
1280         } while (to < ip);
1281
1282         if (to == ip) {
1283                 set_linear_ip(regs, old_to);
1284                 return 1;
1285         }
1286
1287         /*
1288          * Even though we decoded the basic block, the instruction stream
1289          * never matched the given IP, either the TO or the IP got corrupted.
1290          */
1291         return 0;
1292 }
1293
1294 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1295 {
1296         if (tsx_tuning) {
1297                 union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1298                 return tsx.cycles_last_block;
1299         }
1300         return 0;
1301 }
1302
1303 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1304 {
1305         u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1306
1307         /* For RTM XABORTs also log the abort code from AX */
1308         if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1309                 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1310         return txn;
1311 }
1312
1313 static inline u64 get_pebs_status(void *n)
1314 {
1315         if (x86_pmu.intel_cap.pebs_format < 4)
1316                 return ((struct pebs_record_nhm *)n)->status;
1317         return ((struct pebs_basic *)n)->applicable_counters;
1318 }
1319
1320 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1321                 (PERF_X86_EVENT_PEBS_ST_HSW | \
1322                  PERF_X86_EVENT_PEBS_LD_HSW | \
1323                  PERF_X86_EVENT_PEBS_NA_HSW)
1324
1325 static u64 get_data_src(struct perf_event *event, u64 aux)
1326 {
1327         u64 val = PERF_MEM_NA;
1328         int fl = event->hw.flags;
1329         bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1330
1331         if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1332                 val = load_latency_data(aux);
1333         else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1334                 val = precise_datala_hsw(event, aux);
1335         else if (fst)
1336                 val = precise_store_data(aux);
1337         return val;
1338 }
1339
1340 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1341                                    struct pt_regs *iregs, void *__pebs,
1342                                    struct perf_sample_data *data,
1343                                    struct pt_regs *regs)
1344 {
1345         /*
1346          * We cast to the biggest pebs_record but are careful not to
1347          * unconditionally access the 'extra' entries.
1348          */
1349         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1350         struct pebs_record_skl *pebs = __pebs;
1351         u64 sample_type;
1352         int fll;
1353
1354         if (pebs == NULL)
1355                 return;
1356
1357         sample_type = event->attr.sample_type;
1358         fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1359
1360         perf_sample_data_init(data, 0, event->hw.last_period);
1361
1362         data->period = event->hw.last_period;
1363
1364         /*
1365          * Use latency for weight (only avail with PEBS-LL)
1366          */
1367         if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1368                 data->weight = pebs->lat;
1369
1370         /*
1371          * data.data_src encodes the data source
1372          */
1373         if (sample_type & PERF_SAMPLE_DATA_SRC)
1374                 data->data_src.val = get_data_src(event, pebs->dse);
1375
1376         /*
1377          * We must however always use iregs for the unwinder to stay sane; the
1378          * record BP,SP,IP can point into thin air when the record is from a
1379          * previous PMI context or an (I)RET happened between the record and
1380          * PMI.
1381          */
1382         if (sample_type & PERF_SAMPLE_CALLCHAIN)
1383                 data->callchain = perf_callchain(event, iregs);
1384
1385         /*
1386          * We use the interrupt regs as a base because the PEBS record does not
1387          * contain a full regs set, specifically it seems to lack segment
1388          * descriptors, which get used by things like user_mode().
1389          *
1390          * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1391          */
1392         *regs = *iregs;
1393
1394         /*
1395          * Initialize regs_>flags from PEBS,
1396          * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1397          * i.e., do not rely on it being zero:
1398          */
1399         regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1400
1401         if (sample_type & PERF_SAMPLE_REGS_INTR) {
1402                 regs->ax = pebs->ax;
1403                 regs->bx = pebs->bx;
1404                 regs->cx = pebs->cx;
1405                 regs->dx = pebs->dx;
1406                 regs->si = pebs->si;
1407                 regs->di = pebs->di;
1408
1409                 regs->bp = pebs->bp;
1410                 regs->sp = pebs->sp;
1411
1412 #ifndef CONFIG_X86_32
1413                 regs->r8 = pebs->r8;
1414                 regs->r9 = pebs->r9;
1415                 regs->r10 = pebs->r10;
1416                 regs->r11 = pebs->r11;
1417                 regs->r12 = pebs->r12;
1418                 regs->r13 = pebs->r13;
1419                 regs->r14 = pebs->r14;
1420                 regs->r15 = pebs->r15;
1421 #endif
1422         }
1423
1424         if (event->attr.precise_ip > 1) {
1425                 /*
1426                  * Haswell and later processors have an 'eventing IP'
1427                  * (real IP) which fixes the off-by-1 skid in hardware.
1428                  * Use it when precise_ip >= 2 :
1429                  */
1430                 if (x86_pmu.intel_cap.pebs_format >= 2) {
1431                         set_linear_ip(regs, pebs->real_ip);
1432                         regs->flags |= PERF_EFLAGS_EXACT;
1433                 } else {
1434                         /* Otherwise, use PEBS off-by-1 IP: */
1435                         set_linear_ip(regs, pebs->ip);
1436
1437                         /*
1438                          * With precise_ip >= 2, try to fix up the off-by-1 IP
1439                          * using the LBR. If successful, the fixup function
1440                          * corrects regs->ip and calls set_linear_ip() on regs:
1441                          */
1442                         if (intel_pmu_pebs_fixup_ip(regs))
1443                                 regs->flags |= PERF_EFLAGS_EXACT;
1444                 }
1445         } else {
1446                 /*
1447                  * When precise_ip == 1, return the PEBS off-by-1 IP,
1448                  * no fixup attempted:
1449                  */
1450                 set_linear_ip(regs, pebs->ip);
1451         }
1452
1453
1454         if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) &&
1455             x86_pmu.intel_cap.pebs_format >= 1)
1456                 data->addr = pebs->dla;
1457
1458         if (x86_pmu.intel_cap.pebs_format >= 2) {
1459                 /* Only set the TSX weight when no memory weight. */
1460                 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1461                         data->weight = intel_get_tsx_weight(pebs->tsx_tuning);
1462
1463                 if (sample_type & PERF_SAMPLE_TRANSACTION)
1464                         data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1465                                                               pebs->ax);
1466         }
1467
1468         /*
1469          * v3 supplies an accurate time stamp, so we use that
1470          * for the time stamp.
1471          *
1472          * We can only do this for the default trace clock.
1473          */
1474         if (x86_pmu.intel_cap.pebs_format >= 3 &&
1475                 event->attr.use_clockid == 0)
1476                 data->time = native_sched_clock_from_tsc(pebs->tsc);
1477
1478         if (has_branch_stack(event))
1479                 data->br_stack = &cpuc->lbr_stack;
1480 }
1481
1482 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1483                                     struct pebs_gprs *gprs)
1484 {
1485         regs->ax = gprs->ax;
1486         regs->bx = gprs->bx;
1487         regs->cx = gprs->cx;
1488         regs->dx = gprs->dx;
1489         regs->si = gprs->si;
1490         regs->di = gprs->di;
1491         regs->bp = gprs->bp;
1492         regs->sp = gprs->sp;
1493 #ifndef CONFIG_X86_32
1494         regs->r8 = gprs->r8;
1495         regs->r9 = gprs->r9;
1496         regs->r10 = gprs->r10;
1497         regs->r11 = gprs->r11;
1498         regs->r12 = gprs->r12;
1499         regs->r13 = gprs->r13;
1500         regs->r14 = gprs->r14;
1501         regs->r15 = gprs->r15;
1502 #endif
1503 }
1504
1505 /*
1506  * With adaptive PEBS the layout depends on what fields are configured.
1507  */
1508
1509 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1510                                             struct pt_regs *iregs, void *__pebs,
1511                                             struct perf_sample_data *data,
1512                                             struct pt_regs *regs)
1513 {
1514         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1515         struct pebs_basic *basic = __pebs;
1516         void *next_record = basic + 1;
1517         u64 sample_type;
1518         u64 format_size;
1519         struct pebs_meminfo *meminfo = NULL;
1520         struct pebs_gprs *gprs = NULL;
1521         struct x86_perf_regs *perf_regs;
1522
1523         if (basic == NULL)
1524                 return;
1525
1526         perf_regs = container_of(regs, struct x86_perf_regs, regs);
1527         perf_regs->xmm_regs = NULL;
1528
1529         sample_type = event->attr.sample_type;
1530         format_size = basic->format_size;
1531         perf_sample_data_init(data, 0, event->hw.last_period);
1532         data->period = event->hw.last_period;
1533
1534         if (event->attr.use_clockid == 0)
1535                 data->time = native_sched_clock_from_tsc(basic->tsc);
1536
1537         /*
1538          * We must however always use iregs for the unwinder to stay sane; the
1539          * record BP,SP,IP can point into thin air when the record is from a
1540          * previous PMI context or an (I)RET happened between the record and
1541          * PMI.
1542          */
1543         if (sample_type & PERF_SAMPLE_CALLCHAIN)
1544                 data->callchain = perf_callchain(event, iregs);
1545
1546         *regs = *iregs;
1547         /* The ip in basic is EventingIP */
1548         set_linear_ip(regs, basic->ip);
1549         regs->flags = PERF_EFLAGS_EXACT;
1550
1551         /*
1552          * The record for MEMINFO is in front of GP
1553          * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1554          * Save the pointer here but process later.
1555          */
1556         if (format_size & PEBS_DATACFG_MEMINFO) {
1557                 meminfo = next_record;
1558                 next_record = meminfo + 1;
1559         }
1560
1561         if (format_size & PEBS_DATACFG_GP) {
1562                 gprs = next_record;
1563                 next_record = gprs + 1;
1564
1565                 if (event->attr.precise_ip < 2) {
1566                         set_linear_ip(regs, gprs->ip);
1567                         regs->flags &= ~PERF_EFLAGS_EXACT;
1568                 }
1569
1570                 if (sample_type & PERF_SAMPLE_REGS_INTR)
1571                         adaptive_pebs_save_regs(regs, gprs);
1572         }
1573
1574         if (format_size & PEBS_DATACFG_MEMINFO) {
1575                 if (sample_type & PERF_SAMPLE_WEIGHT)
1576                         data->weight = meminfo->latency ?:
1577                                 intel_get_tsx_weight(meminfo->tsx_tuning);
1578
1579                 if (sample_type & PERF_SAMPLE_DATA_SRC)
1580                         data->data_src.val = get_data_src(event, meminfo->aux);
1581
1582                 if (sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
1583                         data->addr = meminfo->address;
1584
1585                 if (sample_type & PERF_SAMPLE_TRANSACTION)
1586                         data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
1587                                                           gprs ? gprs->ax : 0);
1588         }
1589
1590         if (format_size & PEBS_DATACFG_XMMS) {
1591                 struct pebs_xmm *xmm = next_record;
1592
1593                 next_record = xmm + 1;
1594                 perf_regs->xmm_regs = xmm->xmm;
1595         }
1596
1597         if (format_size & PEBS_DATACFG_LBRS) {
1598                 struct pebs_lbr *lbr = next_record;
1599                 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
1600                                         & 0xff) + 1;
1601                 next_record = next_record + num_lbr*sizeof(struct pebs_lbr_entry);
1602
1603                 if (has_branch_stack(event)) {
1604                         intel_pmu_store_pebs_lbrs(lbr);
1605                         data->br_stack = &cpuc->lbr_stack;
1606                 }
1607         }
1608
1609         WARN_ONCE(next_record != __pebs + (format_size >> 48),
1610                         "PEBS record size %llu, expected %llu, config %llx\n",
1611                         format_size >> 48,
1612                         (u64)(next_record - __pebs),
1613                         basic->format_size);
1614 }
1615
1616 static inline void *
1617 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1618 {
1619         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1620         void *at;
1621         u64 pebs_status;
1622
1623         /*
1624          * fmt0 does not have a status bitfield (does not use
1625          * perf_record_nhm format)
1626          */
1627         if (x86_pmu.intel_cap.pebs_format < 1)
1628                 return base;
1629
1630         if (base == NULL)
1631                 return NULL;
1632
1633         for (at = base; at < top; at += cpuc->pebs_record_size) {
1634                 unsigned long status = get_pebs_status(at);
1635
1636                 if (test_bit(bit, (unsigned long *)&status)) {
1637                         /* PEBS v3 has accurate status bits */
1638                         if (x86_pmu.intel_cap.pebs_format >= 3)
1639                                 return at;
1640
1641                         if (status == (1 << bit))
1642                                 return at;
1643
1644                         /* clear non-PEBS bit and re-check */
1645                         pebs_status = status & cpuc->pebs_enabled;
1646                         pebs_status &= PEBS_COUNTER_MASK;
1647                         if (pebs_status == (1 << bit))
1648                                 return at;
1649                 }
1650         }
1651         return NULL;
1652 }
1653
1654 void intel_pmu_auto_reload_read(struct perf_event *event)
1655 {
1656         WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1657
1658         perf_pmu_disable(event->pmu);
1659         intel_pmu_drain_pebs_buffer();
1660         perf_pmu_enable(event->pmu);
1661 }
1662
1663 /*
1664  * Special variant of intel_pmu_save_and_restart() for auto-reload.
1665  */
1666 static int
1667 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1668 {
1669         struct hw_perf_event *hwc = &event->hw;
1670         int shift = 64 - x86_pmu.cntval_bits;
1671         u64 period = hwc->sample_period;
1672         u64 prev_raw_count, new_raw_count;
1673         s64 new, old;
1674
1675         WARN_ON(!period);
1676
1677         /*
1678          * drain_pebs() only happens when the PMU is disabled.
1679          */
1680         WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1681
1682         prev_raw_count = local64_read(&hwc->prev_count);
1683         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1684         local64_set(&hwc->prev_count, new_raw_count);
1685
1686         /*
1687          * Since the counter increments a negative counter value and
1688          * overflows on the sign switch, giving the interval:
1689          *
1690          *   [-period, 0]
1691          *
1692          * the difference between two consequtive reads is:
1693          *
1694          *   A) value2 - value1;
1695          *      when no overflows have happened in between,
1696          *
1697          *   B) (0 - value1) + (value2 - (-period));
1698          *      when one overflow happened in between,
1699          *
1700          *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
1701          *      when @n overflows happened in between.
1702          *
1703          * Here A) is the obvious difference, B) is the extension to the
1704          * discrete interval, where the first term is to the top of the
1705          * interval and the second term is from the bottom of the next
1706          * interval and C) the extension to multiple intervals, where the
1707          * middle term is the whole intervals covered.
1708          *
1709          * An equivalent of C, by reduction, is:
1710          *
1711          *   value2 - value1 + n * period
1712          */
1713         new = ((s64)(new_raw_count << shift) >> shift);
1714         old = ((s64)(prev_raw_count << shift) >> shift);
1715         local64_add(new - old + count * period, &event->count);
1716
1717         local64_set(&hwc->period_left, -new);
1718
1719         perf_event_update_userpage(event);
1720
1721         return 0;
1722 }
1723
1724 static void __intel_pmu_pebs_event(struct perf_event *event,
1725                                    struct pt_regs *iregs,
1726                                    void *base, void *top,
1727                                    int bit, int count,
1728                                    void (*setup_sample)(struct perf_event *,
1729                                                 struct pt_regs *,
1730                                                 void *,
1731                                                 struct perf_sample_data *,
1732                                                 struct pt_regs *))
1733 {
1734         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1735         struct hw_perf_event *hwc = &event->hw;
1736         struct perf_sample_data data;
1737         struct x86_perf_regs perf_regs;
1738         struct pt_regs *regs = &perf_regs.regs;
1739         void *at = get_next_pebs_record_by_bit(base, top, bit);
1740
1741         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1742                 /*
1743                  * Now, auto-reload is only enabled in fixed period mode.
1744                  * The reload value is always hwc->sample_period.
1745                  * May need to change it, if auto-reload is enabled in
1746                  * freq mode later.
1747                  */
1748                 intel_pmu_save_and_restart_reload(event, count);
1749         } else if (!intel_pmu_save_and_restart(event))
1750                 return;
1751
1752         while (count > 1) {
1753                 setup_sample(event, iregs, at, &data, regs);
1754                 perf_event_output(event, &data, regs);
1755                 at += cpuc->pebs_record_size;
1756                 at = get_next_pebs_record_by_bit(at, top, bit);
1757                 count--;
1758         }
1759
1760         setup_sample(event, iregs, at, &data, regs);
1761
1762         /*
1763          * All but the last records are processed.
1764          * The last one is left to be able to call the overflow handler.
1765          */
1766         if (perf_event_overflow(event, &data, regs)) {
1767                 x86_pmu_stop(event, 0);
1768                 return;
1769         }
1770
1771 }
1772
1773 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1774 {
1775         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1776         struct debug_store *ds = cpuc->ds;
1777         struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1778         struct pebs_record_core *at, *top;
1779         int n;
1780
1781         if (!x86_pmu.pebs_active)
1782                 return;
1783
1784         at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1785         top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1786
1787         /*
1788          * Whatever else happens, drain the thing
1789          */
1790         ds->pebs_index = ds->pebs_buffer_base;
1791
1792         if (!test_bit(0, cpuc->active_mask))
1793                 return;
1794
1795         WARN_ON_ONCE(!event);
1796
1797         if (!event->attr.precise_ip)
1798                 return;
1799
1800         n = top - at;
1801         if (n <= 0) {
1802                 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1803                         intel_pmu_save_and_restart_reload(event, 0);
1804                 return;
1805         }
1806
1807         __intel_pmu_pebs_event(event, iregs, at, top, 0, n,
1808                                setup_pebs_fixed_sample_data);
1809 }
1810
1811 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
1812 {
1813         struct perf_event *event;
1814         int bit;
1815
1816         /*
1817          * The drain_pebs() could be called twice in a short period
1818          * for auto-reload event in pmu::read(). There are no
1819          * overflows have happened in between.
1820          * It needs to call intel_pmu_save_and_restart_reload() to
1821          * update the event->count for this case.
1822          */
1823         for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
1824                 event = cpuc->events[bit];
1825                 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1826                         intel_pmu_save_and_restart_reload(event, 0);
1827         }
1828 }
1829
1830 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1831 {
1832         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1833         struct debug_store *ds = cpuc->ds;
1834         struct perf_event *event;
1835         void *base, *at, *top;
1836         short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1837         short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1838         int bit, i, size;
1839         u64 mask;
1840
1841         if (!x86_pmu.pebs_active)
1842                 return;
1843
1844         base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1845         top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1846
1847         ds->pebs_index = ds->pebs_buffer_base;
1848
1849         mask = (1ULL << x86_pmu.max_pebs_events) - 1;
1850         size = x86_pmu.max_pebs_events;
1851         if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
1852                 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
1853                 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
1854         }
1855
1856         if (unlikely(base >= top)) {
1857                 intel_pmu_pebs_event_update_no_drain(cpuc, size);
1858                 return;
1859         }
1860
1861         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1862                 struct pebs_record_nhm *p = at;
1863                 u64 pebs_status;
1864
1865                 pebs_status = p->status & cpuc->pebs_enabled;
1866                 pebs_status &= mask;
1867
1868                 /* PEBS v3 has more accurate status bits */
1869                 if (x86_pmu.intel_cap.pebs_format >= 3) {
1870                         for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
1871                                 counts[bit]++;
1872
1873                         continue;
1874                 }
1875
1876                 /*
1877                  * On some CPUs the PEBS status can be zero when PEBS is
1878                  * racing with clearing of GLOBAL_STATUS.
1879                  *
1880                  * Normally we would drop that record, but in the
1881                  * case when there is only a single active PEBS event
1882                  * we can assume it's for that event.
1883                  */
1884                 if (!pebs_status && cpuc->pebs_enabled &&
1885                         !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
1886                         pebs_status = cpuc->pebs_enabled;
1887
1888                 bit = find_first_bit((unsigned long *)&pebs_status,
1889                                         x86_pmu.max_pebs_events);
1890                 if (bit >= x86_pmu.max_pebs_events)
1891                         continue;
1892
1893                 /*
1894                  * The PEBS hardware does not deal well with the situation
1895                  * when events happen near to each other and multiple bits
1896                  * are set. But it should happen rarely.
1897                  *
1898                  * If these events include one PEBS and multiple non-PEBS
1899                  * events, it doesn't impact PEBS record. The record will
1900                  * be handled normally. (slow path)
1901                  *
1902                  * If these events include two or more PEBS events, the
1903                  * records for the events can be collapsed into a single
1904                  * one, and it's not possible to reconstruct all events
1905                  * that caused the PEBS record. It's called collision.
1906                  * If collision happened, the record will be dropped.
1907                  */
1908                 if (p->status != (1ULL << bit)) {
1909                         for_each_set_bit(i, (unsigned long *)&pebs_status, size)
1910                                 error[i]++;
1911                         continue;
1912                 }
1913
1914                 counts[bit]++;
1915         }
1916
1917         for_each_set_bit(bit, (unsigned long *)&mask, size) {
1918                 if ((counts[bit] == 0) && (error[bit] == 0))
1919                         continue;
1920
1921                 event = cpuc->events[bit];
1922                 if (WARN_ON_ONCE(!event))
1923                         continue;
1924
1925                 if (WARN_ON_ONCE(!event->attr.precise_ip))
1926                         continue;
1927
1928                 /* log dropped samples number */
1929                 if (error[bit]) {
1930                         perf_log_lost_samples(event, error[bit]);
1931
1932                         if (perf_event_account_interrupt(event))
1933                                 x86_pmu_stop(event, 0);
1934                 }
1935
1936                 if (counts[bit]) {
1937                         __intel_pmu_pebs_event(event, iregs, base,
1938                                                top, bit, counts[bit],
1939                                                setup_pebs_fixed_sample_data);
1940                 }
1941         }
1942 }
1943
1944 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs)
1945 {
1946         short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1947         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1948         struct debug_store *ds = cpuc->ds;
1949         struct perf_event *event;
1950         void *base, *at, *top;
1951         int bit, size;
1952         u64 mask;
1953
1954         if (!x86_pmu.pebs_active)
1955                 return;
1956
1957         base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
1958         top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
1959
1960         ds->pebs_index = ds->pebs_buffer_base;
1961
1962         mask = ((1ULL << x86_pmu.max_pebs_events) - 1) |
1963                (((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
1964         size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
1965
1966         if (unlikely(base >= top)) {
1967                 intel_pmu_pebs_event_update_no_drain(cpuc, size);
1968                 return;
1969         }
1970
1971         for (at = base; at < top; at += cpuc->pebs_record_size) {
1972                 u64 pebs_status;
1973
1974                 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
1975                 pebs_status &= mask;
1976
1977                 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
1978                         counts[bit]++;
1979         }
1980
1981         for_each_set_bit(bit, (unsigned long *)&mask, size) {
1982                 if (counts[bit] == 0)
1983                         continue;
1984
1985                 event = cpuc->events[bit];
1986                 if (WARN_ON_ONCE(!event))
1987                         continue;
1988
1989                 if (WARN_ON_ONCE(!event->attr.precise_ip))
1990                         continue;
1991
1992                 __intel_pmu_pebs_event(event, iregs, base,
1993                                        top, bit, counts[bit],
1994                                        setup_pebs_adaptive_sample_data);
1995         }
1996 }
1997
1998 /*
1999  * BTS, PEBS probe and setup
2000  */
2001
2002 void __init intel_ds_init(void)
2003 {
2004         /*
2005          * No support for 32bit formats
2006          */
2007         if (!boot_cpu_has(X86_FEATURE_DTES64))
2008                 return;
2009
2010         x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
2011         x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2012         x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2013         if (x86_pmu.version <= 4)
2014                 x86_pmu.pebs_no_isolation = 1;
2015
2016         if (x86_pmu.pebs) {
2017                 char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
2018                 char *pebs_qual = "";
2019                 int format = x86_pmu.intel_cap.pebs_format;
2020
2021                 if (format < 4)
2022                         x86_pmu.intel_cap.pebs_baseline = 0;
2023
2024                 switch (format) {
2025                 case 0:
2026                         pr_cont("PEBS fmt0%c, ", pebs_type);
2027                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2028                         /*
2029                          * Using >PAGE_SIZE buffers makes the WRMSR to
2030                          * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2031                          * mysteriously hang on Core2.
2032                          *
2033                          * As a workaround, we don't do this.
2034                          */
2035                         x86_pmu.pebs_buffer_size = PAGE_SIZE;
2036                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2037                         break;
2038
2039                 case 1:
2040                         pr_cont("PEBS fmt1%c, ", pebs_type);
2041                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2042                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2043                         break;
2044
2045                 case 2:
2046                         pr_cont("PEBS fmt2%c, ", pebs_type);
2047                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2048                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2049                         break;
2050
2051                 case 3:
2052                         pr_cont("PEBS fmt3%c, ", pebs_type);
2053                         x86_pmu.pebs_record_size =
2054                                                 sizeof(struct pebs_record_skl);
2055                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2056                         x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2057                         break;
2058
2059                 case 4:
2060                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2061                         x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2062                         if (x86_pmu.intel_cap.pebs_baseline) {
2063                                 x86_pmu.large_pebs_flags |=
2064                                         PERF_SAMPLE_BRANCH_STACK |
2065                                         PERF_SAMPLE_TIME;
2066                                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
2067                                 pebs_qual = "-baseline";
2068                                 x86_get_pmu()->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2069                         } else {
2070                                 /* Only basic record supported */
2071                                 x86_pmu.large_pebs_flags &=
2072                                         ~(PERF_SAMPLE_ADDR |
2073                                           PERF_SAMPLE_TIME |
2074                                           PERF_SAMPLE_DATA_SRC |
2075                                           PERF_SAMPLE_TRANSACTION |
2076                                           PERF_SAMPLE_REGS_USER |
2077                                           PERF_SAMPLE_REGS_INTR);
2078                         }
2079                         pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2080
2081                         if (x86_pmu.intel_cap.pebs_output_pt_available) {
2082                                 pr_cont("PEBS-via-PT, ");
2083                                 x86_get_pmu()->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2084                         }
2085
2086                         break;
2087
2088                 default:
2089                         pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2090                         x86_pmu.pebs = 0;
2091                 }
2092         }
2093 }
2094
2095 void perf_restore_debug_store(void)
2096 {
2097         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2098
2099         if (!x86_pmu.bts && !x86_pmu.pebs)
2100                 return;
2101
2102         wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2103 }