Merge tag 'ntb-4.6' of git://github.com/jonmason/ntb
[linux-2.6-block.git] / arch / x86 / events / intel / core.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/apic.h>
20
21 #include "../perf_event.h"
22
23 /*
24  * Intel PerfMon, used on Core and later.
25  */
26 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
27 {
28         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
29         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
30         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
31         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
32         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
33         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
34         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
35         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
36 };
37
38 static struct event_constraint intel_core_event_constraints[] __read_mostly =
39 {
40         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
41         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
42         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
43         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
44         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
45         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
46         EVENT_CONSTRAINT_END
47 };
48
49 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
50 {
51         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
52         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
53         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
54         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
55         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
56         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
57         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
58         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
59         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
60         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
61         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
62         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
63         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
64         EVENT_CONSTRAINT_END
65 };
66
67 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
68 {
69         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
70         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
71         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
72         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
73         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
74         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
75         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
76         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
77         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
78         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
79         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
80         EVENT_CONSTRAINT_END
81 };
82
83 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
84 {
85         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
86         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
87         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
88         EVENT_EXTRA_END
89 };
90
91 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
92 {
93         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
94         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
95         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
96         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
97         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
98         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
99         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
100         EVENT_CONSTRAINT_END
101 };
102
103 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
104 {
105         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
106         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
107         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
108         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
109         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
110         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
111         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
112         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
113         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
114         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
115         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
117
118         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
119         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
120         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
121         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
122
123         EVENT_CONSTRAINT_END
124 };
125
126 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
127 {
128         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
129         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
130         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
131         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
132         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
133         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
134         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
135         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
136         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
137         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
138         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
139         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
141
142         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
143         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
144         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
145         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
146
147         EVENT_CONSTRAINT_END
148 };
149
150 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
151 {
152         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
153         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
154         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
155         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
156         EVENT_EXTRA_END
157 };
158
159 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
160 {
161         EVENT_CONSTRAINT_END
162 };
163
164 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
165 {
166         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
167         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
168         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
169         EVENT_CONSTRAINT_END
170 };
171
172 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
173 {
174         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
175         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
176         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
177         EVENT_CONSTRAINT_END
178 };
179
180 struct event_constraint intel_skl_event_constraints[] = {
181         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
182         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
183         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
184         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
185         EVENT_CONSTRAINT_END
186 };
187
188 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
189         INTEL_UEVENT_EXTRA_REG(0x01b7,
190                                MSR_OFFCORE_RSP_0, 0x7f9ffbffffull, RSP_0),
191         INTEL_UEVENT_EXTRA_REG(0x02b7,
192                                MSR_OFFCORE_RSP_1, 0x3f9ffbffffull, RSP_1),
193         EVENT_EXTRA_END
194 };
195
196 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
197         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
198         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
199         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
200         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
201         EVENT_EXTRA_END
202 };
203
204 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
205         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
206         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
207         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
208         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
209         EVENT_EXTRA_END
210 };
211
212 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
213         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
214         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
215         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
216         /*
217          * Note the low 8 bits eventsel code is not a continuous field, containing
218          * some #GPing bits. These are masked out.
219          */
220         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
221         EVENT_EXTRA_END
222 };
223
224 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
225 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
226 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
227
228 struct attribute *nhm_events_attrs[] = {
229         EVENT_PTR(mem_ld_nhm),
230         NULL,
231 };
232
233 struct attribute *snb_events_attrs[] = {
234         EVENT_PTR(mem_ld_snb),
235         EVENT_PTR(mem_st_snb),
236         NULL,
237 };
238
239 static struct event_constraint intel_hsw_event_constraints[] = {
240         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
241         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
242         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
243         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
244         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
245         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
246         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
247         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
248         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
249         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
250         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
251         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
252
253         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
254         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
255         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
256         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
257
258         EVENT_CONSTRAINT_END
259 };
260
261 struct event_constraint intel_bdw_event_constraints[] = {
262         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
263         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
264         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
265         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
266         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
267         EVENT_CONSTRAINT_END
268 };
269
270 static u64 intel_pmu_event_map(int hw_event)
271 {
272         return intel_perfmon_event_map[hw_event];
273 }
274
275 /*
276  * Notes on the events:
277  * - data reads do not include code reads (comparable to earlier tables)
278  * - data counts include speculative execution (except L1 write, dtlb, bpu)
279  * - remote node access includes remote memory, remote cache, remote mmio.
280  * - prefetches are not included in the counts.
281  * - icache miss does not include decoded icache
282  */
283
284 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
285 #define SKL_DEMAND_RFO                  BIT_ULL(1)
286 #define SKL_ANY_RESPONSE                BIT_ULL(16)
287 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
288 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
289 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
290 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
291 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
292 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
293                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
294                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
295                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
296 #define SKL_SPL_HIT                     BIT_ULL(30)
297 #define SKL_SNOOP_NONE                  BIT_ULL(31)
298 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
299 #define SKL_SNOOP_MISS                  BIT_ULL(33)
300 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
301 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
302 #define SKL_SNOOP_HITM                  BIT_ULL(36)
303 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
304 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
305                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
306                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
307                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
308 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
309 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
310                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
311                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
312                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
313 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
314 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
315 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
316                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
317                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
318
319 static __initconst const u64 skl_hw_cache_event_ids
320                                 [PERF_COUNT_HW_CACHE_MAX]
321                                 [PERF_COUNT_HW_CACHE_OP_MAX]
322                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
323 {
324  [ C(L1D ) ] = {
325         [ C(OP_READ) ] = {
326                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
327                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
328         },
329         [ C(OP_WRITE) ] = {
330                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
331                 [ C(RESULT_MISS)   ] = 0x0,
332         },
333         [ C(OP_PREFETCH) ] = {
334                 [ C(RESULT_ACCESS) ] = 0x0,
335                 [ C(RESULT_MISS)   ] = 0x0,
336         },
337  },
338  [ C(L1I ) ] = {
339         [ C(OP_READ) ] = {
340                 [ C(RESULT_ACCESS) ] = 0x0,
341                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
342         },
343         [ C(OP_WRITE) ] = {
344                 [ C(RESULT_ACCESS) ] = -1,
345                 [ C(RESULT_MISS)   ] = -1,
346         },
347         [ C(OP_PREFETCH) ] = {
348                 [ C(RESULT_ACCESS) ] = 0x0,
349                 [ C(RESULT_MISS)   ] = 0x0,
350         },
351  },
352  [ C(LL  ) ] = {
353         [ C(OP_READ) ] = {
354                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
355                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
356         },
357         [ C(OP_WRITE) ] = {
358                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
359                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
360         },
361         [ C(OP_PREFETCH) ] = {
362                 [ C(RESULT_ACCESS) ] = 0x0,
363                 [ C(RESULT_MISS)   ] = 0x0,
364         },
365  },
366  [ C(DTLB) ] = {
367         [ C(OP_READ) ] = {
368                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
369                 [ C(RESULT_MISS)   ] = 0x608,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
370         },
371         [ C(OP_WRITE) ] = {
372                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
373                 [ C(RESULT_MISS)   ] = 0x649,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
374         },
375         [ C(OP_PREFETCH) ] = {
376                 [ C(RESULT_ACCESS) ] = 0x0,
377                 [ C(RESULT_MISS)   ] = 0x0,
378         },
379  },
380  [ C(ITLB) ] = {
381         [ C(OP_READ) ] = {
382                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
383                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
384         },
385         [ C(OP_WRITE) ] = {
386                 [ C(RESULT_ACCESS) ] = -1,
387                 [ C(RESULT_MISS)   ] = -1,
388         },
389         [ C(OP_PREFETCH) ] = {
390                 [ C(RESULT_ACCESS) ] = -1,
391                 [ C(RESULT_MISS)   ] = -1,
392         },
393  },
394  [ C(BPU ) ] = {
395         [ C(OP_READ) ] = {
396                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
397                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
398         },
399         [ C(OP_WRITE) ] = {
400                 [ C(RESULT_ACCESS) ] = -1,
401                 [ C(RESULT_MISS)   ] = -1,
402         },
403         [ C(OP_PREFETCH) ] = {
404                 [ C(RESULT_ACCESS) ] = -1,
405                 [ C(RESULT_MISS)   ] = -1,
406         },
407  },
408  [ C(NODE) ] = {
409         [ C(OP_READ) ] = {
410                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
411                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
412         },
413         [ C(OP_WRITE) ] = {
414                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
415                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
416         },
417         [ C(OP_PREFETCH) ] = {
418                 [ C(RESULT_ACCESS) ] = 0x0,
419                 [ C(RESULT_MISS)   ] = 0x0,
420         },
421  },
422 };
423
424 static __initconst const u64 skl_hw_cache_extra_regs
425                                 [PERF_COUNT_HW_CACHE_MAX]
426                                 [PERF_COUNT_HW_CACHE_OP_MAX]
427                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
428 {
429  [ C(LL  ) ] = {
430         [ C(OP_READ) ] = {
431                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
432                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
433                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
434                                        SKL_L3_MISS|SKL_ANY_SNOOP|
435                                        SKL_SUPPLIER_NONE,
436         },
437         [ C(OP_WRITE) ] = {
438                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
439                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
440                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
441                                        SKL_L3_MISS|SKL_ANY_SNOOP|
442                                        SKL_SUPPLIER_NONE,
443         },
444         [ C(OP_PREFETCH) ] = {
445                 [ C(RESULT_ACCESS) ] = 0x0,
446                 [ C(RESULT_MISS)   ] = 0x0,
447         },
448  },
449  [ C(NODE) ] = {
450         [ C(OP_READ) ] = {
451                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
452                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
453                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
454                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
455         },
456         [ C(OP_WRITE) ] = {
457                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
458                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
459                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
460                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
461         },
462         [ C(OP_PREFETCH) ] = {
463                 [ C(RESULT_ACCESS) ] = 0x0,
464                 [ C(RESULT_MISS)   ] = 0x0,
465         },
466  },
467 };
468
469 #define SNB_DMND_DATA_RD        (1ULL << 0)
470 #define SNB_DMND_RFO            (1ULL << 1)
471 #define SNB_DMND_IFETCH         (1ULL << 2)
472 #define SNB_DMND_WB             (1ULL << 3)
473 #define SNB_PF_DATA_RD          (1ULL << 4)
474 #define SNB_PF_RFO              (1ULL << 5)
475 #define SNB_PF_IFETCH           (1ULL << 6)
476 #define SNB_LLC_DATA_RD         (1ULL << 7)
477 #define SNB_LLC_RFO             (1ULL << 8)
478 #define SNB_LLC_IFETCH          (1ULL << 9)
479 #define SNB_BUS_LOCKS           (1ULL << 10)
480 #define SNB_STRM_ST             (1ULL << 11)
481 #define SNB_OTHER               (1ULL << 15)
482 #define SNB_RESP_ANY            (1ULL << 16)
483 #define SNB_NO_SUPP             (1ULL << 17)
484 #define SNB_LLC_HITM            (1ULL << 18)
485 #define SNB_LLC_HITE            (1ULL << 19)
486 #define SNB_LLC_HITS            (1ULL << 20)
487 #define SNB_LLC_HITF            (1ULL << 21)
488 #define SNB_LOCAL               (1ULL << 22)
489 #define SNB_REMOTE              (0xffULL << 23)
490 #define SNB_SNP_NONE            (1ULL << 31)
491 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
492 #define SNB_SNP_MISS            (1ULL << 33)
493 #define SNB_NO_FWD              (1ULL << 34)
494 #define SNB_SNP_FWD             (1ULL << 35)
495 #define SNB_HITM                (1ULL << 36)
496 #define SNB_NON_DRAM            (1ULL << 37)
497
498 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
499 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
500 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
501
502 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
503                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
504                                  SNB_HITM)
505
506 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
507 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
508
509 #define SNB_L3_ACCESS           SNB_RESP_ANY
510 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
511
512 static __initconst const u64 snb_hw_cache_extra_regs
513                                 [PERF_COUNT_HW_CACHE_MAX]
514                                 [PERF_COUNT_HW_CACHE_OP_MAX]
515                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
516 {
517  [ C(LL  ) ] = {
518         [ C(OP_READ) ] = {
519                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
520                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
521         },
522         [ C(OP_WRITE) ] = {
523                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
524                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
525         },
526         [ C(OP_PREFETCH) ] = {
527                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
528                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
529         },
530  },
531  [ C(NODE) ] = {
532         [ C(OP_READ) ] = {
533                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
534                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
535         },
536         [ C(OP_WRITE) ] = {
537                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
538                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
539         },
540         [ C(OP_PREFETCH) ] = {
541                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
542                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
543         },
544  },
545 };
546
547 static __initconst const u64 snb_hw_cache_event_ids
548                                 [PERF_COUNT_HW_CACHE_MAX]
549                                 [PERF_COUNT_HW_CACHE_OP_MAX]
550                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
551 {
552  [ C(L1D) ] = {
553         [ C(OP_READ) ] = {
554                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
555                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
556         },
557         [ C(OP_WRITE) ] = {
558                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
559                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
560         },
561         [ C(OP_PREFETCH) ] = {
562                 [ C(RESULT_ACCESS) ] = 0x0,
563                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
564         },
565  },
566  [ C(L1I ) ] = {
567         [ C(OP_READ) ] = {
568                 [ C(RESULT_ACCESS) ] = 0x0,
569                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
570         },
571         [ C(OP_WRITE) ] = {
572                 [ C(RESULT_ACCESS) ] = -1,
573                 [ C(RESULT_MISS)   ] = -1,
574         },
575         [ C(OP_PREFETCH) ] = {
576                 [ C(RESULT_ACCESS) ] = 0x0,
577                 [ C(RESULT_MISS)   ] = 0x0,
578         },
579  },
580  [ C(LL  ) ] = {
581         [ C(OP_READ) ] = {
582                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
583                 [ C(RESULT_ACCESS) ] = 0x01b7,
584                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
585                 [ C(RESULT_MISS)   ] = 0x01b7,
586         },
587         [ C(OP_WRITE) ] = {
588                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
589                 [ C(RESULT_ACCESS) ] = 0x01b7,
590                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
591                 [ C(RESULT_MISS)   ] = 0x01b7,
592         },
593         [ C(OP_PREFETCH) ] = {
594                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
595                 [ C(RESULT_ACCESS) ] = 0x01b7,
596                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
597                 [ C(RESULT_MISS)   ] = 0x01b7,
598         },
599  },
600  [ C(DTLB) ] = {
601         [ C(OP_READ) ] = {
602                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
603                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
604         },
605         [ C(OP_WRITE) ] = {
606                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
607                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
608         },
609         [ C(OP_PREFETCH) ] = {
610                 [ C(RESULT_ACCESS) ] = 0x0,
611                 [ C(RESULT_MISS)   ] = 0x0,
612         },
613  },
614  [ C(ITLB) ] = {
615         [ C(OP_READ) ] = {
616                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
617                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
618         },
619         [ C(OP_WRITE) ] = {
620                 [ C(RESULT_ACCESS) ] = -1,
621                 [ C(RESULT_MISS)   ] = -1,
622         },
623         [ C(OP_PREFETCH) ] = {
624                 [ C(RESULT_ACCESS) ] = -1,
625                 [ C(RESULT_MISS)   ] = -1,
626         },
627  },
628  [ C(BPU ) ] = {
629         [ C(OP_READ) ] = {
630                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
631                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
632         },
633         [ C(OP_WRITE) ] = {
634                 [ C(RESULT_ACCESS) ] = -1,
635                 [ C(RESULT_MISS)   ] = -1,
636         },
637         [ C(OP_PREFETCH) ] = {
638                 [ C(RESULT_ACCESS) ] = -1,
639                 [ C(RESULT_MISS)   ] = -1,
640         },
641  },
642  [ C(NODE) ] = {
643         [ C(OP_READ) ] = {
644                 [ C(RESULT_ACCESS) ] = 0x01b7,
645                 [ C(RESULT_MISS)   ] = 0x01b7,
646         },
647         [ C(OP_WRITE) ] = {
648                 [ C(RESULT_ACCESS) ] = 0x01b7,
649                 [ C(RESULT_MISS)   ] = 0x01b7,
650         },
651         [ C(OP_PREFETCH) ] = {
652                 [ C(RESULT_ACCESS) ] = 0x01b7,
653                 [ C(RESULT_MISS)   ] = 0x01b7,
654         },
655  },
656
657 };
658
659 /*
660  * Notes on the events:
661  * - data reads do not include code reads (comparable to earlier tables)
662  * - data counts include speculative execution (except L1 write, dtlb, bpu)
663  * - remote node access includes remote memory, remote cache, remote mmio.
664  * - prefetches are not included in the counts because they are not
665  *   reliably counted.
666  */
667
668 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
669 #define HSW_DEMAND_RFO                  BIT_ULL(1)
670 #define HSW_ANY_RESPONSE                BIT_ULL(16)
671 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
672 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
673 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
674 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
675 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
676 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
677                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
678                                          HSW_L3_MISS_REMOTE_HOP2P)
679 #define HSW_SNOOP_NONE                  BIT_ULL(31)
680 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
681 #define HSW_SNOOP_MISS                  BIT_ULL(33)
682 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
683 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
684 #define HSW_SNOOP_HITM                  BIT_ULL(36)
685 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
686 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
687                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
688                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
689                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
690 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
691 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
692 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
693 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
694                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
695 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
696
697 #define BDW_L3_MISS_LOCAL               BIT(26)
698 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
699                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
700                                          HSW_L3_MISS_REMOTE_HOP2P)
701
702
703 static __initconst const u64 hsw_hw_cache_event_ids
704                                 [PERF_COUNT_HW_CACHE_MAX]
705                                 [PERF_COUNT_HW_CACHE_OP_MAX]
706                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
707 {
708  [ C(L1D ) ] = {
709         [ C(OP_READ) ] = {
710                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
711                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
712         },
713         [ C(OP_WRITE) ] = {
714                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
715                 [ C(RESULT_MISS)   ] = 0x0,
716         },
717         [ C(OP_PREFETCH) ] = {
718                 [ C(RESULT_ACCESS) ] = 0x0,
719                 [ C(RESULT_MISS)   ] = 0x0,
720         },
721  },
722  [ C(L1I ) ] = {
723         [ C(OP_READ) ] = {
724                 [ C(RESULT_ACCESS) ] = 0x0,
725                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
726         },
727         [ C(OP_WRITE) ] = {
728                 [ C(RESULT_ACCESS) ] = -1,
729                 [ C(RESULT_MISS)   ] = -1,
730         },
731         [ C(OP_PREFETCH) ] = {
732                 [ C(RESULT_ACCESS) ] = 0x0,
733                 [ C(RESULT_MISS)   ] = 0x0,
734         },
735  },
736  [ C(LL  ) ] = {
737         [ C(OP_READ) ] = {
738                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
739                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
740         },
741         [ C(OP_WRITE) ] = {
742                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
743                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
744         },
745         [ C(OP_PREFETCH) ] = {
746                 [ C(RESULT_ACCESS) ] = 0x0,
747                 [ C(RESULT_MISS)   ] = 0x0,
748         },
749  },
750  [ C(DTLB) ] = {
751         [ C(OP_READ) ] = {
752                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
753                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
754         },
755         [ C(OP_WRITE) ] = {
756                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
757                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
758         },
759         [ C(OP_PREFETCH) ] = {
760                 [ C(RESULT_ACCESS) ] = 0x0,
761                 [ C(RESULT_MISS)   ] = 0x0,
762         },
763  },
764  [ C(ITLB) ] = {
765         [ C(OP_READ) ] = {
766                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
767                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
768         },
769         [ C(OP_WRITE) ] = {
770                 [ C(RESULT_ACCESS) ] = -1,
771                 [ C(RESULT_MISS)   ] = -1,
772         },
773         [ C(OP_PREFETCH) ] = {
774                 [ C(RESULT_ACCESS) ] = -1,
775                 [ C(RESULT_MISS)   ] = -1,
776         },
777  },
778  [ C(BPU ) ] = {
779         [ C(OP_READ) ] = {
780                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
781                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
782         },
783         [ C(OP_WRITE) ] = {
784                 [ C(RESULT_ACCESS) ] = -1,
785                 [ C(RESULT_MISS)   ] = -1,
786         },
787         [ C(OP_PREFETCH) ] = {
788                 [ C(RESULT_ACCESS) ] = -1,
789                 [ C(RESULT_MISS)   ] = -1,
790         },
791  },
792  [ C(NODE) ] = {
793         [ C(OP_READ) ] = {
794                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
795                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
796         },
797         [ C(OP_WRITE) ] = {
798                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
799                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
800         },
801         [ C(OP_PREFETCH) ] = {
802                 [ C(RESULT_ACCESS) ] = 0x0,
803                 [ C(RESULT_MISS)   ] = 0x0,
804         },
805  },
806 };
807
808 static __initconst const u64 hsw_hw_cache_extra_regs
809                                 [PERF_COUNT_HW_CACHE_MAX]
810                                 [PERF_COUNT_HW_CACHE_OP_MAX]
811                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
812 {
813  [ C(LL  ) ] = {
814         [ C(OP_READ) ] = {
815                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
816                                        HSW_LLC_ACCESS,
817                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
818                                        HSW_L3_MISS|HSW_ANY_SNOOP,
819         },
820         [ C(OP_WRITE) ] = {
821                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
822                                        HSW_LLC_ACCESS,
823                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
824                                        HSW_L3_MISS|HSW_ANY_SNOOP,
825         },
826         [ C(OP_PREFETCH) ] = {
827                 [ C(RESULT_ACCESS) ] = 0x0,
828                 [ C(RESULT_MISS)   ] = 0x0,
829         },
830  },
831  [ C(NODE) ] = {
832         [ C(OP_READ) ] = {
833                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
834                                        HSW_L3_MISS_LOCAL_DRAM|
835                                        HSW_SNOOP_DRAM,
836                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
837                                        HSW_L3_MISS_REMOTE|
838                                        HSW_SNOOP_DRAM,
839         },
840         [ C(OP_WRITE) ] = {
841                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
842                                        HSW_L3_MISS_LOCAL_DRAM|
843                                        HSW_SNOOP_DRAM,
844                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
845                                        HSW_L3_MISS_REMOTE|
846                                        HSW_SNOOP_DRAM,
847         },
848         [ C(OP_PREFETCH) ] = {
849                 [ C(RESULT_ACCESS) ] = 0x0,
850                 [ C(RESULT_MISS)   ] = 0x0,
851         },
852  },
853 };
854
855 static __initconst const u64 westmere_hw_cache_event_ids
856                                 [PERF_COUNT_HW_CACHE_MAX]
857                                 [PERF_COUNT_HW_CACHE_OP_MAX]
858                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
859 {
860  [ C(L1D) ] = {
861         [ C(OP_READ) ] = {
862                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
863                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
864         },
865         [ C(OP_WRITE) ] = {
866                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
867                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
868         },
869         [ C(OP_PREFETCH) ] = {
870                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
871                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
872         },
873  },
874  [ C(L1I ) ] = {
875         [ C(OP_READ) ] = {
876                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
877                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
878         },
879         [ C(OP_WRITE) ] = {
880                 [ C(RESULT_ACCESS) ] = -1,
881                 [ C(RESULT_MISS)   ] = -1,
882         },
883         [ C(OP_PREFETCH) ] = {
884                 [ C(RESULT_ACCESS) ] = 0x0,
885                 [ C(RESULT_MISS)   ] = 0x0,
886         },
887  },
888  [ C(LL  ) ] = {
889         [ C(OP_READ) ] = {
890                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
891                 [ C(RESULT_ACCESS) ] = 0x01b7,
892                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
893                 [ C(RESULT_MISS)   ] = 0x01b7,
894         },
895         /*
896          * Use RFO, not WRITEBACK, because a write miss would typically occur
897          * on RFO.
898          */
899         [ C(OP_WRITE) ] = {
900                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
901                 [ C(RESULT_ACCESS) ] = 0x01b7,
902                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
903                 [ C(RESULT_MISS)   ] = 0x01b7,
904         },
905         [ C(OP_PREFETCH) ] = {
906                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
907                 [ C(RESULT_ACCESS) ] = 0x01b7,
908                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
909                 [ C(RESULT_MISS)   ] = 0x01b7,
910         },
911  },
912  [ C(DTLB) ] = {
913         [ C(OP_READ) ] = {
914                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
915                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
916         },
917         [ C(OP_WRITE) ] = {
918                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
919                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
920         },
921         [ C(OP_PREFETCH) ] = {
922                 [ C(RESULT_ACCESS) ] = 0x0,
923                 [ C(RESULT_MISS)   ] = 0x0,
924         },
925  },
926  [ C(ITLB) ] = {
927         [ C(OP_READ) ] = {
928                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
929                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
930         },
931         [ C(OP_WRITE) ] = {
932                 [ C(RESULT_ACCESS) ] = -1,
933                 [ C(RESULT_MISS)   ] = -1,
934         },
935         [ C(OP_PREFETCH) ] = {
936                 [ C(RESULT_ACCESS) ] = -1,
937                 [ C(RESULT_MISS)   ] = -1,
938         },
939  },
940  [ C(BPU ) ] = {
941         [ C(OP_READ) ] = {
942                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
943                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
944         },
945         [ C(OP_WRITE) ] = {
946                 [ C(RESULT_ACCESS) ] = -1,
947                 [ C(RESULT_MISS)   ] = -1,
948         },
949         [ C(OP_PREFETCH) ] = {
950                 [ C(RESULT_ACCESS) ] = -1,
951                 [ C(RESULT_MISS)   ] = -1,
952         },
953  },
954  [ C(NODE) ] = {
955         [ C(OP_READ) ] = {
956                 [ C(RESULT_ACCESS) ] = 0x01b7,
957                 [ C(RESULT_MISS)   ] = 0x01b7,
958         },
959         [ C(OP_WRITE) ] = {
960                 [ C(RESULT_ACCESS) ] = 0x01b7,
961                 [ C(RESULT_MISS)   ] = 0x01b7,
962         },
963         [ C(OP_PREFETCH) ] = {
964                 [ C(RESULT_ACCESS) ] = 0x01b7,
965                 [ C(RESULT_MISS)   ] = 0x01b7,
966         },
967  },
968 };
969
970 /*
971  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
972  * See IA32 SDM Vol 3B 30.6.1.3
973  */
974
975 #define NHM_DMND_DATA_RD        (1 << 0)
976 #define NHM_DMND_RFO            (1 << 1)
977 #define NHM_DMND_IFETCH         (1 << 2)
978 #define NHM_DMND_WB             (1 << 3)
979 #define NHM_PF_DATA_RD          (1 << 4)
980 #define NHM_PF_DATA_RFO         (1 << 5)
981 #define NHM_PF_IFETCH           (1 << 6)
982 #define NHM_OFFCORE_OTHER       (1 << 7)
983 #define NHM_UNCORE_HIT          (1 << 8)
984 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
985 #define NHM_OTHER_CORE_HITM     (1 << 10)
986                                 /* reserved */
987 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
988 #define NHM_REMOTE_DRAM         (1 << 13)
989 #define NHM_LOCAL_DRAM          (1 << 14)
990 #define NHM_NON_DRAM            (1 << 15)
991
992 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
993 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
994
995 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
996 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
997 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
998
999 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1000 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1001 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1002
1003 static __initconst const u64 nehalem_hw_cache_extra_regs
1004                                 [PERF_COUNT_HW_CACHE_MAX]
1005                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1006                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1007 {
1008  [ C(LL  ) ] = {
1009         [ C(OP_READ) ] = {
1010                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1011                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1012         },
1013         [ C(OP_WRITE) ] = {
1014                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1015                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1016         },
1017         [ C(OP_PREFETCH) ] = {
1018                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1019                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1020         },
1021  },
1022  [ C(NODE) ] = {
1023         [ C(OP_READ) ] = {
1024                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1025                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1026         },
1027         [ C(OP_WRITE) ] = {
1028                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1029                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1030         },
1031         [ C(OP_PREFETCH) ] = {
1032                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1033                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1034         },
1035  },
1036 };
1037
1038 static __initconst const u64 nehalem_hw_cache_event_ids
1039                                 [PERF_COUNT_HW_CACHE_MAX]
1040                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1041                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1042 {
1043  [ C(L1D) ] = {
1044         [ C(OP_READ) ] = {
1045                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1046                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1047         },
1048         [ C(OP_WRITE) ] = {
1049                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1050                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1051         },
1052         [ C(OP_PREFETCH) ] = {
1053                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1054                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1055         },
1056  },
1057  [ C(L1I ) ] = {
1058         [ C(OP_READ) ] = {
1059                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1060                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1061         },
1062         [ C(OP_WRITE) ] = {
1063                 [ C(RESULT_ACCESS) ] = -1,
1064                 [ C(RESULT_MISS)   ] = -1,
1065         },
1066         [ C(OP_PREFETCH) ] = {
1067                 [ C(RESULT_ACCESS) ] = 0x0,
1068                 [ C(RESULT_MISS)   ] = 0x0,
1069         },
1070  },
1071  [ C(LL  ) ] = {
1072         [ C(OP_READ) ] = {
1073                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1074                 [ C(RESULT_ACCESS) ] = 0x01b7,
1075                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1076                 [ C(RESULT_MISS)   ] = 0x01b7,
1077         },
1078         /*
1079          * Use RFO, not WRITEBACK, because a write miss would typically occur
1080          * on RFO.
1081          */
1082         [ C(OP_WRITE) ] = {
1083                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1084                 [ C(RESULT_ACCESS) ] = 0x01b7,
1085                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1086                 [ C(RESULT_MISS)   ] = 0x01b7,
1087         },
1088         [ C(OP_PREFETCH) ] = {
1089                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1090                 [ C(RESULT_ACCESS) ] = 0x01b7,
1091                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1092                 [ C(RESULT_MISS)   ] = 0x01b7,
1093         },
1094  },
1095  [ C(DTLB) ] = {
1096         [ C(OP_READ) ] = {
1097                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1098                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1099         },
1100         [ C(OP_WRITE) ] = {
1101                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1102                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1103         },
1104         [ C(OP_PREFETCH) ] = {
1105                 [ C(RESULT_ACCESS) ] = 0x0,
1106                 [ C(RESULT_MISS)   ] = 0x0,
1107         },
1108  },
1109  [ C(ITLB) ] = {
1110         [ C(OP_READ) ] = {
1111                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1112                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1113         },
1114         [ C(OP_WRITE) ] = {
1115                 [ C(RESULT_ACCESS) ] = -1,
1116                 [ C(RESULT_MISS)   ] = -1,
1117         },
1118         [ C(OP_PREFETCH) ] = {
1119                 [ C(RESULT_ACCESS) ] = -1,
1120                 [ C(RESULT_MISS)   ] = -1,
1121         },
1122  },
1123  [ C(BPU ) ] = {
1124         [ C(OP_READ) ] = {
1125                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1126                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1127         },
1128         [ C(OP_WRITE) ] = {
1129                 [ C(RESULT_ACCESS) ] = -1,
1130                 [ C(RESULT_MISS)   ] = -1,
1131         },
1132         [ C(OP_PREFETCH) ] = {
1133                 [ C(RESULT_ACCESS) ] = -1,
1134                 [ C(RESULT_MISS)   ] = -1,
1135         },
1136  },
1137  [ C(NODE) ] = {
1138         [ C(OP_READ) ] = {
1139                 [ C(RESULT_ACCESS) ] = 0x01b7,
1140                 [ C(RESULT_MISS)   ] = 0x01b7,
1141         },
1142         [ C(OP_WRITE) ] = {
1143                 [ C(RESULT_ACCESS) ] = 0x01b7,
1144                 [ C(RESULT_MISS)   ] = 0x01b7,
1145         },
1146         [ C(OP_PREFETCH) ] = {
1147                 [ C(RESULT_ACCESS) ] = 0x01b7,
1148                 [ C(RESULT_MISS)   ] = 0x01b7,
1149         },
1150  },
1151 };
1152
1153 static __initconst const u64 core2_hw_cache_event_ids
1154                                 [PERF_COUNT_HW_CACHE_MAX]
1155                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1156                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1157 {
1158  [ C(L1D) ] = {
1159         [ C(OP_READ) ] = {
1160                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1161                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1162         },
1163         [ C(OP_WRITE) ] = {
1164                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1165                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1166         },
1167         [ C(OP_PREFETCH) ] = {
1168                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1169                 [ C(RESULT_MISS)   ] = 0,
1170         },
1171  },
1172  [ C(L1I ) ] = {
1173         [ C(OP_READ) ] = {
1174                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1175                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1176         },
1177         [ C(OP_WRITE) ] = {
1178                 [ C(RESULT_ACCESS) ] = -1,
1179                 [ C(RESULT_MISS)   ] = -1,
1180         },
1181         [ C(OP_PREFETCH) ] = {
1182                 [ C(RESULT_ACCESS) ] = 0,
1183                 [ C(RESULT_MISS)   ] = 0,
1184         },
1185  },
1186  [ C(LL  ) ] = {
1187         [ C(OP_READ) ] = {
1188                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1189                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1190         },
1191         [ C(OP_WRITE) ] = {
1192                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1193                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1194         },
1195         [ C(OP_PREFETCH) ] = {
1196                 [ C(RESULT_ACCESS) ] = 0,
1197                 [ C(RESULT_MISS)   ] = 0,
1198         },
1199  },
1200  [ C(DTLB) ] = {
1201         [ C(OP_READ) ] = {
1202                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1203                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1204         },
1205         [ C(OP_WRITE) ] = {
1206                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1207                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1208         },
1209         [ C(OP_PREFETCH) ] = {
1210                 [ C(RESULT_ACCESS) ] = 0,
1211                 [ C(RESULT_MISS)   ] = 0,
1212         },
1213  },
1214  [ C(ITLB) ] = {
1215         [ C(OP_READ) ] = {
1216                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1217                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1218         },
1219         [ C(OP_WRITE) ] = {
1220                 [ C(RESULT_ACCESS) ] = -1,
1221                 [ C(RESULT_MISS)   ] = -1,
1222         },
1223         [ C(OP_PREFETCH) ] = {
1224                 [ C(RESULT_ACCESS) ] = -1,
1225                 [ C(RESULT_MISS)   ] = -1,
1226         },
1227  },
1228  [ C(BPU ) ] = {
1229         [ C(OP_READ) ] = {
1230                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1231                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1232         },
1233         [ C(OP_WRITE) ] = {
1234                 [ C(RESULT_ACCESS) ] = -1,
1235                 [ C(RESULT_MISS)   ] = -1,
1236         },
1237         [ C(OP_PREFETCH) ] = {
1238                 [ C(RESULT_ACCESS) ] = -1,
1239                 [ C(RESULT_MISS)   ] = -1,
1240         },
1241  },
1242 };
1243
1244 static __initconst const u64 atom_hw_cache_event_ids
1245                                 [PERF_COUNT_HW_CACHE_MAX]
1246                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1247                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1248 {
1249  [ C(L1D) ] = {
1250         [ C(OP_READ) ] = {
1251                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1252                 [ C(RESULT_MISS)   ] = 0,
1253         },
1254         [ C(OP_WRITE) ] = {
1255                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1256                 [ C(RESULT_MISS)   ] = 0,
1257         },
1258         [ C(OP_PREFETCH) ] = {
1259                 [ C(RESULT_ACCESS) ] = 0x0,
1260                 [ C(RESULT_MISS)   ] = 0,
1261         },
1262  },
1263  [ C(L1I ) ] = {
1264         [ C(OP_READ) ] = {
1265                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1266                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1267         },
1268         [ C(OP_WRITE) ] = {
1269                 [ C(RESULT_ACCESS) ] = -1,
1270                 [ C(RESULT_MISS)   ] = -1,
1271         },
1272         [ C(OP_PREFETCH) ] = {
1273                 [ C(RESULT_ACCESS) ] = 0,
1274                 [ C(RESULT_MISS)   ] = 0,
1275         },
1276  },
1277  [ C(LL  ) ] = {
1278         [ C(OP_READ) ] = {
1279                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1280                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1281         },
1282         [ C(OP_WRITE) ] = {
1283                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1284                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1285         },
1286         [ C(OP_PREFETCH) ] = {
1287                 [ C(RESULT_ACCESS) ] = 0,
1288                 [ C(RESULT_MISS)   ] = 0,
1289         },
1290  },
1291  [ C(DTLB) ] = {
1292         [ C(OP_READ) ] = {
1293                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1294                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1295         },
1296         [ C(OP_WRITE) ] = {
1297                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1298                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1299         },
1300         [ C(OP_PREFETCH) ] = {
1301                 [ C(RESULT_ACCESS) ] = 0,
1302                 [ C(RESULT_MISS)   ] = 0,
1303         },
1304  },
1305  [ C(ITLB) ] = {
1306         [ C(OP_READ) ] = {
1307                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1308                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1309         },
1310         [ C(OP_WRITE) ] = {
1311                 [ C(RESULT_ACCESS) ] = -1,
1312                 [ C(RESULT_MISS)   ] = -1,
1313         },
1314         [ C(OP_PREFETCH) ] = {
1315                 [ C(RESULT_ACCESS) ] = -1,
1316                 [ C(RESULT_MISS)   ] = -1,
1317         },
1318  },
1319  [ C(BPU ) ] = {
1320         [ C(OP_READ) ] = {
1321                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1322                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1323         },
1324         [ C(OP_WRITE) ] = {
1325                 [ C(RESULT_ACCESS) ] = -1,
1326                 [ C(RESULT_MISS)   ] = -1,
1327         },
1328         [ C(OP_PREFETCH) ] = {
1329                 [ C(RESULT_ACCESS) ] = -1,
1330                 [ C(RESULT_MISS)   ] = -1,
1331         },
1332  },
1333 };
1334
1335 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1336 {
1337         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1338         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1339         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1340         EVENT_EXTRA_END
1341 };
1342
1343 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1344 #define SLM_DMND_WRITE          SNB_DMND_RFO
1345 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1346
1347 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1348 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1349 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1350
1351 static __initconst const u64 slm_hw_cache_extra_regs
1352                                 [PERF_COUNT_HW_CACHE_MAX]
1353                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1354                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1355 {
1356  [ C(LL  ) ] = {
1357         [ C(OP_READ) ] = {
1358                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1359                 [ C(RESULT_MISS)   ] = 0,
1360         },
1361         [ C(OP_WRITE) ] = {
1362                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1363                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1364         },
1365         [ C(OP_PREFETCH) ] = {
1366                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1367                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1368         },
1369  },
1370 };
1371
1372 static __initconst const u64 slm_hw_cache_event_ids
1373                                 [PERF_COUNT_HW_CACHE_MAX]
1374                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1375                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1376 {
1377  [ C(L1D) ] = {
1378         [ C(OP_READ) ] = {
1379                 [ C(RESULT_ACCESS) ] = 0,
1380                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1381         },
1382         [ C(OP_WRITE) ] = {
1383                 [ C(RESULT_ACCESS) ] = 0,
1384                 [ C(RESULT_MISS)   ] = 0,
1385         },
1386         [ C(OP_PREFETCH) ] = {
1387                 [ C(RESULT_ACCESS) ] = 0,
1388                 [ C(RESULT_MISS)   ] = 0,
1389         },
1390  },
1391  [ C(L1I ) ] = {
1392         [ C(OP_READ) ] = {
1393                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1394                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1395         },
1396         [ C(OP_WRITE) ] = {
1397                 [ C(RESULT_ACCESS) ] = -1,
1398                 [ C(RESULT_MISS)   ] = -1,
1399         },
1400         [ C(OP_PREFETCH) ] = {
1401                 [ C(RESULT_ACCESS) ] = 0,
1402                 [ C(RESULT_MISS)   ] = 0,
1403         },
1404  },
1405  [ C(LL  ) ] = {
1406         [ C(OP_READ) ] = {
1407                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1408                 [ C(RESULT_ACCESS) ] = 0x01b7,
1409                 [ C(RESULT_MISS)   ] = 0,
1410         },
1411         [ C(OP_WRITE) ] = {
1412                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1413                 [ C(RESULT_ACCESS) ] = 0x01b7,
1414                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1415                 [ C(RESULT_MISS)   ] = 0x01b7,
1416         },
1417         [ C(OP_PREFETCH) ] = {
1418                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1419                 [ C(RESULT_ACCESS) ] = 0x01b7,
1420                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1421                 [ C(RESULT_MISS)   ] = 0x01b7,
1422         },
1423  },
1424  [ C(DTLB) ] = {
1425         [ C(OP_READ) ] = {
1426                 [ C(RESULT_ACCESS) ] = 0,
1427                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1428         },
1429         [ C(OP_WRITE) ] = {
1430                 [ C(RESULT_ACCESS) ] = 0,
1431                 [ C(RESULT_MISS)   ] = 0,
1432         },
1433         [ C(OP_PREFETCH) ] = {
1434                 [ C(RESULT_ACCESS) ] = 0,
1435                 [ C(RESULT_MISS)   ] = 0,
1436         },
1437  },
1438  [ C(ITLB) ] = {
1439         [ C(OP_READ) ] = {
1440                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1441                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1442         },
1443         [ C(OP_WRITE) ] = {
1444                 [ C(RESULT_ACCESS) ] = -1,
1445                 [ C(RESULT_MISS)   ] = -1,
1446         },
1447         [ C(OP_PREFETCH) ] = {
1448                 [ C(RESULT_ACCESS) ] = -1,
1449                 [ C(RESULT_MISS)   ] = -1,
1450         },
1451  },
1452  [ C(BPU ) ] = {
1453         [ C(OP_READ) ] = {
1454                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1455                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1456         },
1457         [ C(OP_WRITE) ] = {
1458                 [ C(RESULT_ACCESS) ] = -1,
1459                 [ C(RESULT_MISS)   ] = -1,
1460         },
1461         [ C(OP_PREFETCH) ] = {
1462                 [ C(RESULT_ACCESS) ] = -1,
1463                 [ C(RESULT_MISS)   ] = -1,
1464         },
1465  },
1466 };
1467
1468 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
1469 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
1470 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
1471 #define KNL_MCDRAM_FAR          BIT_ULL(22)
1472 #define KNL_DDR_LOCAL           BIT_ULL(23)
1473 #define KNL_DDR_FAR             BIT_ULL(24)
1474 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1475                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
1476 #define KNL_L2_READ             SLM_DMND_READ
1477 #define KNL_L2_WRITE            SLM_DMND_WRITE
1478 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
1479 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
1480 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1481                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
1482                                                   SNB_NON_DRAM)
1483
1484 static __initconst const u64 knl_hw_cache_extra_regs
1485                                 [PERF_COUNT_HW_CACHE_MAX]
1486                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1487                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1488         [C(LL)] = {
1489                 [C(OP_READ)] = {
1490                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1491                         [C(RESULT_MISS)]   = 0,
1492                 },
1493                 [C(OP_WRITE)] = {
1494                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1495                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1496                 },
1497                 [C(OP_PREFETCH)] = {
1498                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1499                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1500                 },
1501         },
1502 };
1503
1504 /*
1505  * Used from PMIs where the LBRs are already disabled.
1506  *
1507  * This function could be called consecutively. It is required to remain in
1508  * disabled state if called consecutively.
1509  *
1510  * During consecutive calls, the same disable value will be written to related
1511  * registers, so the PMU state remains unchanged. hw.state in
1512  * intel_bts_disable_local will remain PERF_HES_STOPPED too in consecutive
1513  * calls.
1514  */
1515 static void __intel_pmu_disable_all(void)
1516 {
1517         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1518
1519         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1520
1521         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1522                 intel_pmu_disable_bts();
1523         else
1524                 intel_bts_disable_local();
1525
1526         intel_pmu_pebs_disable_all();
1527 }
1528
1529 static void intel_pmu_disable_all(void)
1530 {
1531         __intel_pmu_disable_all();
1532         intel_pmu_lbr_disable_all();
1533 }
1534
1535 static void __intel_pmu_enable_all(int added, bool pmi)
1536 {
1537         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1538
1539         intel_pmu_pebs_enable_all();
1540         intel_pmu_lbr_enable_all(pmi);
1541         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1542                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1543
1544         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1545                 struct perf_event *event =
1546                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1547
1548                 if (WARN_ON_ONCE(!event))
1549                         return;
1550
1551                 intel_pmu_enable_bts(event->hw.config);
1552         } else
1553                 intel_bts_enable_local();
1554 }
1555
1556 static void intel_pmu_enable_all(int added)
1557 {
1558         __intel_pmu_enable_all(added, false);
1559 }
1560
1561 /*
1562  * Workaround for:
1563  *   Intel Errata AAK100 (model 26)
1564  *   Intel Errata AAP53  (model 30)
1565  *   Intel Errata BD53   (model 44)
1566  *
1567  * The official story:
1568  *   These chips need to be 'reset' when adding counters by programming the
1569  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1570  *   in sequence on the same PMC or on different PMCs.
1571  *
1572  * In practise it appears some of these events do in fact count, and
1573  * we need to programm all 4 events.
1574  */
1575 static void intel_pmu_nhm_workaround(void)
1576 {
1577         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1578         static const unsigned long nhm_magic[4] = {
1579                 0x4300B5,
1580                 0x4300D2,
1581                 0x4300B1,
1582                 0x4300B1
1583         };
1584         struct perf_event *event;
1585         int i;
1586
1587         /*
1588          * The Errata requires below steps:
1589          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1590          * 2) Configure 4 PERFEVTSELx with the magic events and clear
1591          *    the corresponding PMCx;
1592          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1593          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1594          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1595          */
1596
1597         /*
1598          * The real steps we choose are a little different from above.
1599          * A) To reduce MSR operations, we don't run step 1) as they
1600          *    are already cleared before this function is called;
1601          * B) Call x86_perf_event_update to save PMCx before configuring
1602          *    PERFEVTSELx with magic number;
1603          * C) With step 5), we do clear only when the PERFEVTSELx is
1604          *    not used currently.
1605          * D) Call x86_perf_event_set_period to restore PMCx;
1606          */
1607
1608         /* We always operate 4 pairs of PERF Counters */
1609         for (i = 0; i < 4; i++) {
1610                 event = cpuc->events[i];
1611                 if (event)
1612                         x86_perf_event_update(event);
1613         }
1614
1615         for (i = 0; i < 4; i++) {
1616                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1617                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1618         }
1619
1620         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1621         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1622
1623         for (i = 0; i < 4; i++) {
1624                 event = cpuc->events[i];
1625
1626                 if (event) {
1627                         x86_perf_event_set_period(event);
1628                         __x86_pmu_enable_event(&event->hw,
1629                                         ARCH_PERFMON_EVENTSEL_ENABLE);
1630                 } else
1631                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1632         }
1633 }
1634
1635 static void intel_pmu_nhm_enable_all(int added)
1636 {
1637         if (added)
1638                 intel_pmu_nhm_workaround();
1639         intel_pmu_enable_all(added);
1640 }
1641
1642 static inline u64 intel_pmu_get_status(void)
1643 {
1644         u64 status;
1645
1646         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1647
1648         return status;
1649 }
1650
1651 static inline void intel_pmu_ack_status(u64 ack)
1652 {
1653         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1654 }
1655
1656 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1657 {
1658         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1659         u64 ctrl_val, mask;
1660
1661         mask = 0xfULL << (idx * 4);
1662
1663         rdmsrl(hwc->config_base, ctrl_val);
1664         ctrl_val &= ~mask;
1665         wrmsrl(hwc->config_base, ctrl_val);
1666 }
1667
1668 static inline bool event_is_checkpointed(struct perf_event *event)
1669 {
1670         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1671 }
1672
1673 static void intel_pmu_disable_event(struct perf_event *event)
1674 {
1675         struct hw_perf_event *hwc = &event->hw;
1676         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1677
1678         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1679                 intel_pmu_disable_bts();
1680                 intel_pmu_drain_bts_buffer();
1681                 return;
1682         }
1683
1684         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1685         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1686         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1687
1688         /*
1689          * must disable before any actual event
1690          * because any event may be combined with LBR
1691          */
1692         if (needs_branch_stack(event))
1693                 intel_pmu_lbr_disable(event);
1694
1695         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1696                 intel_pmu_disable_fixed(hwc);
1697                 return;
1698         }
1699
1700         x86_pmu_disable_event(event);
1701
1702         if (unlikely(event->attr.precise_ip))
1703                 intel_pmu_pebs_disable(event);
1704 }
1705
1706 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1707 {
1708         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1709         u64 ctrl_val, bits, mask;
1710
1711         /*
1712          * Enable IRQ generation (0x8),
1713          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1714          * if requested:
1715          */
1716         bits = 0x8ULL;
1717         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1718                 bits |= 0x2;
1719         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1720                 bits |= 0x1;
1721
1722         /*
1723          * ANY bit is supported in v3 and up
1724          */
1725         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1726                 bits |= 0x4;
1727
1728         bits <<= (idx * 4);
1729         mask = 0xfULL << (idx * 4);
1730
1731         rdmsrl(hwc->config_base, ctrl_val);
1732         ctrl_val &= ~mask;
1733         ctrl_val |= bits;
1734         wrmsrl(hwc->config_base, ctrl_val);
1735 }
1736
1737 static void intel_pmu_enable_event(struct perf_event *event)
1738 {
1739         struct hw_perf_event *hwc = &event->hw;
1740         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1741
1742         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1743                 if (!__this_cpu_read(cpu_hw_events.enabled))
1744                         return;
1745
1746                 intel_pmu_enable_bts(hwc->config);
1747                 return;
1748         }
1749         /*
1750          * must enabled before any actual event
1751          * because any event may be combined with LBR
1752          */
1753         if (needs_branch_stack(event))
1754                 intel_pmu_lbr_enable(event);
1755
1756         if (event->attr.exclude_host)
1757                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1758         if (event->attr.exclude_guest)
1759                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1760
1761         if (unlikely(event_is_checkpointed(event)))
1762                 cpuc->intel_cp_status |= (1ull << hwc->idx);
1763
1764         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1765                 intel_pmu_enable_fixed(hwc);
1766                 return;
1767         }
1768
1769         if (unlikely(event->attr.precise_ip))
1770                 intel_pmu_pebs_enable(event);
1771
1772         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1773 }
1774
1775 /*
1776  * Save and restart an expired event. Called by NMI contexts,
1777  * so it has to be careful about preempting normal event ops:
1778  */
1779 int intel_pmu_save_and_restart(struct perf_event *event)
1780 {
1781         x86_perf_event_update(event);
1782         /*
1783          * For a checkpointed counter always reset back to 0.  This
1784          * avoids a situation where the counter overflows, aborts the
1785          * transaction and is then set back to shortly before the
1786          * overflow, and overflows and aborts again.
1787          */
1788         if (unlikely(event_is_checkpointed(event))) {
1789                 /* No race with NMIs because the counter should not be armed */
1790                 wrmsrl(event->hw.event_base, 0);
1791                 local64_set(&event->hw.prev_count, 0);
1792         }
1793         return x86_perf_event_set_period(event);
1794 }
1795
1796 static void intel_pmu_reset(void)
1797 {
1798         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1799         unsigned long flags;
1800         int idx;
1801
1802         if (!x86_pmu.num_counters)
1803                 return;
1804
1805         local_irq_save(flags);
1806
1807         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1808
1809         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1810                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1811                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1812         }
1813         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1814                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1815
1816         if (ds)
1817                 ds->bts_index = ds->bts_buffer_base;
1818
1819         /* Ack all overflows and disable fixed counters */
1820         if (x86_pmu.version >= 2) {
1821                 intel_pmu_ack_status(intel_pmu_get_status());
1822                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1823         }
1824
1825         /* Reset LBRs and LBR freezing */
1826         if (x86_pmu.lbr_nr) {
1827                 update_debugctlmsr(get_debugctlmsr() &
1828                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
1829         }
1830
1831         local_irq_restore(flags);
1832 }
1833
1834 /*
1835  * This handler is triggered by the local APIC, so the APIC IRQ handling
1836  * rules apply:
1837  */
1838 static int intel_pmu_handle_irq(struct pt_regs *regs)
1839 {
1840         struct perf_sample_data data;
1841         struct cpu_hw_events *cpuc;
1842         int bit, loops;
1843         u64 status;
1844         int handled;
1845
1846         cpuc = this_cpu_ptr(&cpu_hw_events);
1847
1848         /*
1849          * No known reason to not always do late ACK,
1850          * but just in case do it opt-in.
1851          */
1852         if (!x86_pmu.late_ack)
1853                 apic_write(APIC_LVTPC, APIC_DM_NMI);
1854         __intel_pmu_disable_all();
1855         handled = intel_pmu_drain_bts_buffer();
1856         handled += intel_bts_interrupt();
1857         status = intel_pmu_get_status();
1858         if (!status)
1859                 goto done;
1860
1861         loops = 0;
1862 again:
1863         intel_pmu_lbr_read();
1864         intel_pmu_ack_status(status);
1865         if (++loops > 100) {
1866                 static bool warned = false;
1867                 if (!warned) {
1868                         WARN(1, "perfevents: irq loop stuck!\n");
1869                         perf_event_print_debug();
1870                         warned = true;
1871                 }
1872                 intel_pmu_reset();
1873                 goto done;
1874         }
1875
1876         inc_irq_stat(apic_perf_irqs);
1877
1878
1879         /*
1880          * Ignore a range of extra bits in status that do not indicate
1881          * overflow by themselves.
1882          */
1883         status &= ~(GLOBAL_STATUS_COND_CHG |
1884                     GLOBAL_STATUS_ASIF |
1885                     GLOBAL_STATUS_LBRS_FROZEN);
1886         if (!status)
1887                 goto done;
1888
1889         /*
1890          * PEBS overflow sets bit 62 in the global status register
1891          */
1892         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1893                 handled++;
1894                 x86_pmu.drain_pebs(regs);
1895                 /*
1896                  * There are cases where, even though, the PEBS ovfl bit is set
1897                  * in GLOBAL_OVF_STATUS, the PEBS events may also have their
1898                  * overflow bits set for their counters. We must clear them
1899                  * here because they have been processed as exact samples in
1900                  * the drain_pebs() routine. They must not be processed again
1901                  * in the for_each_bit_set() loop for regular samples below.
1902                  */
1903                 status &= ~cpuc->pebs_enabled;
1904                 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
1905         }
1906
1907         /*
1908          * Intel PT
1909          */
1910         if (__test_and_clear_bit(55, (unsigned long *)&status)) {
1911                 handled++;
1912                 intel_pt_interrupt();
1913         }
1914
1915         /*
1916          * Checkpointed counters can lead to 'spurious' PMIs because the
1917          * rollback caused by the PMI will have cleared the overflow status
1918          * bit. Therefore always force probe these counters.
1919          */
1920         status |= cpuc->intel_cp_status;
1921
1922         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1923                 struct perf_event *event = cpuc->events[bit];
1924
1925                 handled++;
1926
1927                 if (!test_bit(bit, cpuc->active_mask))
1928                         continue;
1929
1930                 if (!intel_pmu_save_and_restart(event))
1931                         continue;
1932
1933                 perf_sample_data_init(&data, 0, event->hw.last_period);
1934
1935                 if (has_branch_stack(event))
1936                         data.br_stack = &cpuc->lbr_stack;
1937
1938                 if (perf_event_overflow(event, &data, regs))
1939                         x86_pmu_stop(event, 0);
1940         }
1941
1942         /*
1943          * Repeat if there is more work to be done:
1944          */
1945         status = intel_pmu_get_status();
1946         if (status)
1947                 goto again;
1948
1949 done:
1950         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
1951         if (cpuc->enabled)
1952                 __intel_pmu_enable_all(0, true);
1953
1954         /*
1955          * Only unmask the NMI after the overflow counters
1956          * have been reset. This avoids spurious NMIs on
1957          * Haswell CPUs.
1958          */
1959         if (x86_pmu.late_ack)
1960                 apic_write(APIC_LVTPC, APIC_DM_NMI);
1961         return handled;
1962 }
1963
1964 static struct event_constraint *
1965 intel_bts_constraints(struct perf_event *event)
1966 {
1967         struct hw_perf_event *hwc = &event->hw;
1968         unsigned int hw_event, bts_event;
1969
1970         if (event->attr.freq)
1971                 return NULL;
1972
1973         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1974         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1975
1976         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1977                 return &bts_constraint;
1978
1979         return NULL;
1980 }
1981
1982 static int intel_alt_er(int idx, u64 config)
1983 {
1984         int alt_idx = idx;
1985
1986         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
1987                 return idx;
1988
1989         if (idx == EXTRA_REG_RSP_0)
1990                 alt_idx = EXTRA_REG_RSP_1;
1991
1992         if (idx == EXTRA_REG_RSP_1)
1993                 alt_idx = EXTRA_REG_RSP_0;
1994
1995         if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
1996                 return idx;
1997
1998         return alt_idx;
1999 }
2000
2001 static void intel_fixup_er(struct perf_event *event, int idx)
2002 {
2003         event->hw.extra_reg.idx = idx;
2004
2005         if (idx == EXTRA_REG_RSP_0) {
2006                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2007                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2008                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2009         } else if (idx == EXTRA_REG_RSP_1) {
2010                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2011                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2012                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2013         }
2014 }
2015
2016 /*
2017  * manage allocation of shared extra msr for certain events
2018  *
2019  * sharing can be:
2020  * per-cpu: to be shared between the various events on a single PMU
2021  * per-core: per-cpu + shared by HT threads
2022  */
2023 static struct event_constraint *
2024 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2025                                    struct perf_event *event,
2026                                    struct hw_perf_event_extra *reg)
2027 {
2028         struct event_constraint *c = &emptyconstraint;
2029         struct er_account *era;
2030         unsigned long flags;
2031         int idx = reg->idx;
2032
2033         /*
2034          * reg->alloc can be set due to existing state, so for fake cpuc we
2035          * need to ignore this, otherwise we might fail to allocate proper fake
2036          * state for this extra reg constraint. Also see the comment below.
2037          */
2038         if (reg->alloc && !cpuc->is_fake)
2039                 return NULL; /* call x86_get_event_constraint() */
2040
2041 again:
2042         era = &cpuc->shared_regs->regs[idx];
2043         /*
2044          * we use spin_lock_irqsave() to avoid lockdep issues when
2045          * passing a fake cpuc
2046          */
2047         raw_spin_lock_irqsave(&era->lock, flags);
2048
2049         if (!atomic_read(&era->ref) || era->config == reg->config) {
2050
2051                 /*
2052                  * If its a fake cpuc -- as per validate_{group,event}() we
2053                  * shouldn't touch event state and we can avoid doing so
2054                  * since both will only call get_event_constraints() once
2055                  * on each event, this avoids the need for reg->alloc.
2056                  *
2057                  * Not doing the ER fixup will only result in era->reg being
2058                  * wrong, but since we won't actually try and program hardware
2059                  * this isn't a problem either.
2060                  */
2061                 if (!cpuc->is_fake) {
2062                         if (idx != reg->idx)
2063                                 intel_fixup_er(event, idx);
2064
2065                         /*
2066                          * x86_schedule_events() can call get_event_constraints()
2067                          * multiple times on events in the case of incremental
2068                          * scheduling(). reg->alloc ensures we only do the ER
2069                          * allocation once.
2070                          */
2071                         reg->alloc = 1;
2072                 }
2073
2074                 /* lock in msr value */
2075                 era->config = reg->config;
2076                 era->reg = reg->reg;
2077
2078                 /* one more user */
2079                 atomic_inc(&era->ref);
2080
2081                 /*
2082                  * need to call x86_get_event_constraint()
2083                  * to check if associated event has constraints
2084                  */
2085                 c = NULL;
2086         } else {
2087                 idx = intel_alt_er(idx, reg->config);
2088                 if (idx != reg->idx) {
2089                         raw_spin_unlock_irqrestore(&era->lock, flags);
2090                         goto again;
2091                 }
2092         }
2093         raw_spin_unlock_irqrestore(&era->lock, flags);
2094
2095         return c;
2096 }
2097
2098 static void
2099 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2100                                    struct hw_perf_event_extra *reg)
2101 {
2102         struct er_account *era;
2103
2104         /*
2105          * Only put constraint if extra reg was actually allocated. Also takes
2106          * care of event which do not use an extra shared reg.
2107          *
2108          * Also, if this is a fake cpuc we shouldn't touch any event state
2109          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2110          * either since it'll be thrown out.
2111          */
2112         if (!reg->alloc || cpuc->is_fake)
2113                 return;
2114
2115         era = &cpuc->shared_regs->regs[reg->idx];
2116
2117         /* one fewer user */
2118         atomic_dec(&era->ref);
2119
2120         /* allocate again next time */
2121         reg->alloc = 0;
2122 }
2123
2124 static struct event_constraint *
2125 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2126                               struct perf_event *event)
2127 {
2128         struct event_constraint *c = NULL, *d;
2129         struct hw_perf_event_extra *xreg, *breg;
2130
2131         xreg = &event->hw.extra_reg;
2132         if (xreg->idx != EXTRA_REG_NONE) {
2133                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2134                 if (c == &emptyconstraint)
2135                         return c;
2136         }
2137         breg = &event->hw.branch_reg;
2138         if (breg->idx != EXTRA_REG_NONE) {
2139                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2140                 if (d == &emptyconstraint) {
2141                         __intel_shared_reg_put_constraints(cpuc, xreg);
2142                         c = d;
2143                 }
2144         }
2145         return c;
2146 }
2147
2148 struct event_constraint *
2149 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2150                           struct perf_event *event)
2151 {
2152         struct event_constraint *c;
2153
2154         if (x86_pmu.event_constraints) {
2155                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2156                         if ((event->hw.config & c->cmask) == c->code) {
2157                                 event->hw.flags |= c->flags;
2158                                 return c;
2159                         }
2160                 }
2161         }
2162
2163         return &unconstrained;
2164 }
2165
2166 static struct event_constraint *
2167 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2168                             struct perf_event *event)
2169 {
2170         struct event_constraint *c;
2171
2172         c = intel_bts_constraints(event);
2173         if (c)
2174                 return c;
2175
2176         c = intel_shared_regs_constraints(cpuc, event);
2177         if (c)
2178                 return c;
2179
2180         c = intel_pebs_constraints(event);
2181         if (c)
2182                 return c;
2183
2184         return x86_get_event_constraints(cpuc, idx, event);
2185 }
2186
2187 static void
2188 intel_start_scheduling(struct cpu_hw_events *cpuc)
2189 {
2190         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2191         struct intel_excl_states *xl;
2192         int tid = cpuc->excl_thread_id;
2193
2194         /*
2195          * nothing needed if in group validation mode
2196          */
2197         if (cpuc->is_fake || !is_ht_workaround_enabled())
2198                 return;
2199
2200         /*
2201          * no exclusion needed
2202          */
2203         if (WARN_ON_ONCE(!excl_cntrs))
2204                 return;
2205
2206         xl = &excl_cntrs->states[tid];
2207
2208         xl->sched_started = true;
2209         /*
2210          * lock shared state until we are done scheduling
2211          * in stop_event_scheduling()
2212          * makes scheduling appear as a transaction
2213          */
2214         raw_spin_lock(&excl_cntrs->lock);
2215 }
2216
2217 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2218 {
2219         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2220         struct event_constraint *c = cpuc->event_constraint[idx];
2221         struct intel_excl_states *xl;
2222         int tid = cpuc->excl_thread_id;
2223
2224         if (cpuc->is_fake || !is_ht_workaround_enabled())
2225                 return;
2226
2227         if (WARN_ON_ONCE(!excl_cntrs))
2228                 return;
2229
2230         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2231                 return;
2232
2233         xl = &excl_cntrs->states[tid];
2234
2235         lockdep_assert_held(&excl_cntrs->lock);
2236
2237         if (c->flags & PERF_X86_EVENT_EXCL)
2238                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2239         else
2240                 xl->state[cntr] = INTEL_EXCL_SHARED;
2241 }
2242
2243 static void
2244 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2245 {
2246         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2247         struct intel_excl_states *xl;
2248         int tid = cpuc->excl_thread_id;
2249
2250         /*
2251          * nothing needed if in group validation mode
2252          */
2253         if (cpuc->is_fake || !is_ht_workaround_enabled())
2254                 return;
2255         /*
2256          * no exclusion needed
2257          */
2258         if (WARN_ON_ONCE(!excl_cntrs))
2259                 return;
2260
2261         xl = &excl_cntrs->states[tid];
2262
2263         xl->sched_started = false;
2264         /*
2265          * release shared state lock (acquired in intel_start_scheduling())
2266          */
2267         raw_spin_unlock(&excl_cntrs->lock);
2268 }
2269
2270 static struct event_constraint *
2271 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2272                            int idx, struct event_constraint *c)
2273 {
2274         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2275         struct intel_excl_states *xlo;
2276         int tid = cpuc->excl_thread_id;
2277         int is_excl, i;
2278
2279         /*
2280          * validating a group does not require
2281          * enforcing cross-thread  exclusion
2282          */
2283         if (cpuc->is_fake || !is_ht_workaround_enabled())
2284                 return c;
2285
2286         /*
2287          * no exclusion needed
2288          */
2289         if (WARN_ON_ONCE(!excl_cntrs))
2290                 return c;
2291
2292         /*
2293          * because we modify the constraint, we need
2294          * to make a copy. Static constraints come
2295          * from static const tables.
2296          *
2297          * only needed when constraint has not yet
2298          * been cloned (marked dynamic)
2299          */
2300         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2301                 struct event_constraint *cx;
2302
2303                 /*
2304                  * grab pre-allocated constraint entry
2305                  */
2306                 cx = &cpuc->constraint_list[idx];
2307
2308                 /*
2309                  * initialize dynamic constraint
2310                  * with static constraint
2311                  */
2312                 *cx = *c;
2313
2314                 /*
2315                  * mark constraint as dynamic, so we
2316                  * can free it later on
2317                  */
2318                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2319                 c = cx;
2320         }
2321
2322         /*
2323          * From here on, the constraint is dynamic.
2324          * Either it was just allocated above, or it
2325          * was allocated during a earlier invocation
2326          * of this function
2327          */
2328
2329         /*
2330          * state of sibling HT
2331          */
2332         xlo = &excl_cntrs->states[tid ^ 1];
2333
2334         /*
2335          * event requires exclusive counter access
2336          * across HT threads
2337          */
2338         is_excl = c->flags & PERF_X86_EVENT_EXCL;
2339         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2340                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2341                 if (!cpuc->n_excl++)
2342                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2343         }
2344
2345         /*
2346          * Modify static constraint with current dynamic
2347          * state of thread
2348          *
2349          * EXCLUSIVE: sibling counter measuring exclusive event
2350          * SHARED   : sibling counter measuring non-exclusive event
2351          * UNUSED   : sibling counter unused
2352          */
2353         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2354                 /*
2355                  * exclusive event in sibling counter
2356                  * our corresponding counter cannot be used
2357                  * regardless of our event
2358                  */
2359                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2360                         __clear_bit(i, c->idxmsk);
2361                 /*
2362                  * if measuring an exclusive event, sibling
2363                  * measuring non-exclusive, then counter cannot
2364                  * be used
2365                  */
2366                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2367                         __clear_bit(i, c->idxmsk);
2368         }
2369
2370         /*
2371          * recompute actual bit weight for scheduling algorithm
2372          */
2373         c->weight = hweight64(c->idxmsk64);
2374
2375         /*
2376          * if we return an empty mask, then switch
2377          * back to static empty constraint to avoid
2378          * the cost of freeing later on
2379          */
2380         if (c->weight == 0)
2381                 c = &emptyconstraint;
2382
2383         return c;
2384 }
2385
2386 static struct event_constraint *
2387 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2388                             struct perf_event *event)
2389 {
2390         struct event_constraint *c1 = NULL;
2391         struct event_constraint *c2;
2392
2393         if (idx >= 0) /* fake does < 0 */
2394                 c1 = cpuc->event_constraint[idx];
2395
2396         /*
2397          * first time only
2398          * - static constraint: no change across incremental scheduling calls
2399          * - dynamic constraint: handled by intel_get_excl_constraints()
2400          */
2401         c2 = __intel_get_event_constraints(cpuc, idx, event);
2402         if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2403                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2404                 c1->weight = c2->weight;
2405                 c2 = c1;
2406         }
2407
2408         if (cpuc->excl_cntrs)
2409                 return intel_get_excl_constraints(cpuc, event, idx, c2);
2410
2411         return c2;
2412 }
2413
2414 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2415                 struct perf_event *event)
2416 {
2417         struct hw_perf_event *hwc = &event->hw;
2418         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2419         int tid = cpuc->excl_thread_id;
2420         struct intel_excl_states *xl;
2421
2422         /*
2423          * nothing needed if in group validation mode
2424          */
2425         if (cpuc->is_fake)
2426                 return;
2427
2428         if (WARN_ON_ONCE(!excl_cntrs))
2429                 return;
2430
2431         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2432                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2433                 if (!--cpuc->n_excl)
2434                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2435         }
2436
2437         /*
2438          * If event was actually assigned, then mark the counter state as
2439          * unused now.
2440          */
2441         if (hwc->idx >= 0) {
2442                 xl = &excl_cntrs->states[tid];
2443
2444                 /*
2445                  * put_constraint may be called from x86_schedule_events()
2446                  * which already has the lock held so here make locking
2447                  * conditional.
2448                  */
2449                 if (!xl->sched_started)
2450                         raw_spin_lock(&excl_cntrs->lock);
2451
2452                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2453
2454                 if (!xl->sched_started)
2455                         raw_spin_unlock(&excl_cntrs->lock);
2456         }
2457 }
2458
2459 static void
2460 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2461                                         struct perf_event *event)
2462 {
2463         struct hw_perf_event_extra *reg;
2464
2465         reg = &event->hw.extra_reg;
2466         if (reg->idx != EXTRA_REG_NONE)
2467                 __intel_shared_reg_put_constraints(cpuc, reg);
2468
2469         reg = &event->hw.branch_reg;
2470         if (reg->idx != EXTRA_REG_NONE)
2471                 __intel_shared_reg_put_constraints(cpuc, reg);
2472 }
2473
2474 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2475                                         struct perf_event *event)
2476 {
2477         intel_put_shared_regs_event_constraints(cpuc, event);
2478
2479         /*
2480          * is PMU has exclusive counter restrictions, then
2481          * all events are subject to and must call the
2482          * put_excl_constraints() routine
2483          */
2484         if (cpuc->excl_cntrs)
2485                 intel_put_excl_constraints(cpuc, event);
2486 }
2487
2488 static void intel_pebs_aliases_core2(struct perf_event *event)
2489 {
2490         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2491                 /*
2492                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2493                  * (0x003c) so that we can use it with PEBS.
2494                  *
2495                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2496                  * PEBS capable. However we can use INST_RETIRED.ANY_P
2497                  * (0x00c0), which is a PEBS capable event, to get the same
2498                  * count.
2499                  *
2500                  * INST_RETIRED.ANY_P counts the number of cycles that retires
2501                  * CNTMASK instructions. By setting CNTMASK to a value (16)
2502                  * larger than the maximum number of instructions that can be
2503                  * retired per cycle (4) and then inverting the condition, we
2504                  * count all cycles that retire 16 or less instructions, which
2505                  * is every cycle.
2506                  *
2507                  * Thereby we gain a PEBS capable cycle counter.
2508                  */
2509                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2510
2511                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2512                 event->hw.config = alt_config;
2513         }
2514 }
2515
2516 static void intel_pebs_aliases_snb(struct perf_event *event)
2517 {
2518         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2519                 /*
2520                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2521                  * (0x003c) so that we can use it with PEBS.
2522                  *
2523                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2524                  * PEBS capable. However we can use UOPS_RETIRED.ALL
2525                  * (0x01c2), which is a PEBS capable event, to get the same
2526                  * count.
2527                  *
2528                  * UOPS_RETIRED.ALL counts the number of cycles that retires
2529                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2530                  * larger than the maximum number of micro-ops that can be
2531                  * retired per cycle (4) and then inverting the condition, we
2532                  * count all cycles that retire 16 or less micro-ops, which
2533                  * is every cycle.
2534                  *
2535                  * Thereby we gain a PEBS capable cycle counter.
2536                  */
2537                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2538
2539                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2540                 event->hw.config = alt_config;
2541         }
2542 }
2543
2544 static void intel_pebs_aliases_precdist(struct perf_event *event)
2545 {
2546         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2547                 /*
2548                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2549                  * (0x003c) so that we can use it with PEBS.
2550                  *
2551                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2552                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2553                  * (0x01c0), which is a PEBS capable event, to get the same
2554                  * count.
2555                  *
2556                  * The PREC_DIST event has special support to minimize sample
2557                  * shadowing effects. One drawback is that it can be
2558                  * only programmed on counter 1, but that seems like an
2559                  * acceptable trade off.
2560                  */
2561                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2562
2563                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2564                 event->hw.config = alt_config;
2565         }
2566 }
2567
2568 static void intel_pebs_aliases_ivb(struct perf_event *event)
2569 {
2570         if (event->attr.precise_ip < 3)
2571                 return intel_pebs_aliases_snb(event);
2572         return intel_pebs_aliases_precdist(event);
2573 }
2574
2575 static void intel_pebs_aliases_skl(struct perf_event *event)
2576 {
2577         if (event->attr.precise_ip < 3)
2578                 return intel_pebs_aliases_core2(event);
2579         return intel_pebs_aliases_precdist(event);
2580 }
2581
2582 static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2583 {
2584         unsigned long flags = x86_pmu.free_running_flags;
2585
2586         if (event->attr.use_clockid)
2587                 flags &= ~PERF_SAMPLE_TIME;
2588         return flags;
2589 }
2590
2591 static int intel_pmu_hw_config(struct perf_event *event)
2592 {
2593         int ret = x86_pmu_hw_config(event);
2594
2595         if (ret)
2596                 return ret;
2597
2598         if (event->attr.precise_ip) {
2599                 if (!event->attr.freq) {
2600                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2601                         if (!(event->attr.sample_type &
2602                               ~intel_pmu_free_running_flags(event)))
2603                                 event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2604                 }
2605                 if (x86_pmu.pebs_aliases)
2606                         x86_pmu.pebs_aliases(event);
2607         }
2608
2609         if (needs_branch_stack(event)) {
2610                 ret = intel_pmu_setup_lbr_filter(event);
2611                 if (ret)
2612                         return ret;
2613
2614                 /*
2615                  * BTS is set up earlier in this path, so don't account twice
2616                  */
2617                 if (!intel_pmu_has_bts(event)) {
2618                         /* disallow lbr if conflicting events are present */
2619                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2620                                 return -EBUSY;
2621
2622                         event->destroy = hw_perf_lbr_event_destroy;
2623                 }
2624         }
2625
2626         if (event->attr.type != PERF_TYPE_RAW)
2627                 return 0;
2628
2629         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2630                 return 0;
2631
2632         if (x86_pmu.version < 3)
2633                 return -EINVAL;
2634
2635         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2636                 return -EACCES;
2637
2638         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2639
2640         return 0;
2641 }
2642
2643 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2644 {
2645         if (x86_pmu.guest_get_msrs)
2646                 return x86_pmu.guest_get_msrs(nr);
2647         *nr = 0;
2648         return NULL;
2649 }
2650 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2651
2652 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2653 {
2654         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2655         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2656
2657         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2658         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2659         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2660         /*
2661          * If PMU counter has PEBS enabled it is not enough to disable counter
2662          * on a guest entry since PEBS memory write can overshoot guest entry
2663          * and corrupt guest memory. Disabling PEBS solves the problem.
2664          */
2665         arr[1].msr = MSR_IA32_PEBS_ENABLE;
2666         arr[1].host = cpuc->pebs_enabled;
2667         arr[1].guest = 0;
2668
2669         *nr = 2;
2670         return arr;
2671 }
2672
2673 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2674 {
2675         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2676         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2677         int idx;
2678
2679         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
2680                 struct perf_event *event = cpuc->events[idx];
2681
2682                 arr[idx].msr = x86_pmu_config_addr(idx);
2683                 arr[idx].host = arr[idx].guest = 0;
2684
2685                 if (!test_bit(idx, cpuc->active_mask))
2686                         continue;
2687
2688                 arr[idx].host = arr[idx].guest =
2689                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2690
2691                 if (event->attr.exclude_host)
2692                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2693                 else if (event->attr.exclude_guest)
2694                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2695         }
2696
2697         *nr = x86_pmu.num_counters;
2698         return arr;
2699 }
2700
2701 static void core_pmu_enable_event(struct perf_event *event)
2702 {
2703         if (!event->attr.exclude_host)
2704                 x86_pmu_enable_event(event);
2705 }
2706
2707 static void core_pmu_enable_all(int added)
2708 {
2709         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2710         int idx;
2711
2712         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2713                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2714
2715                 if (!test_bit(idx, cpuc->active_mask) ||
2716                                 cpuc->events[idx]->attr.exclude_host)
2717                         continue;
2718
2719                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2720         }
2721 }
2722
2723 static int hsw_hw_config(struct perf_event *event)
2724 {
2725         int ret = intel_pmu_hw_config(event);
2726
2727         if (ret)
2728                 return ret;
2729         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2730                 return 0;
2731         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2732
2733         /*
2734          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2735          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2736          * this combination.
2737          */
2738         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2739              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2740               event->attr.precise_ip > 0))
2741                 return -EOPNOTSUPP;
2742
2743         if (event_is_checkpointed(event)) {
2744                 /*
2745                  * Sampling of checkpointed events can cause situations where
2746                  * the CPU constantly aborts because of a overflow, which is
2747                  * then checkpointed back and ignored. Forbid checkpointing
2748                  * for sampling.
2749                  *
2750                  * But still allow a long sampling period, so that perf stat
2751                  * from KVM works.
2752                  */
2753                 if (event->attr.sample_period > 0 &&
2754                     event->attr.sample_period < 0x7fffffff)
2755                         return -EOPNOTSUPP;
2756         }
2757         return 0;
2758 }
2759
2760 static struct event_constraint counter2_constraint =
2761                         EVENT_CONSTRAINT(0, 0x4, 0);
2762
2763 static struct event_constraint *
2764 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2765                           struct perf_event *event)
2766 {
2767         struct event_constraint *c;
2768
2769         c = intel_get_event_constraints(cpuc, idx, event);
2770
2771         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
2772         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2773                 if (c->idxmsk64 & (1U << 2))
2774                         return &counter2_constraint;
2775                 return &emptyconstraint;
2776         }
2777
2778         return c;
2779 }
2780
2781 /*
2782  * Broadwell:
2783  *
2784  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2785  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2786  * the two to enforce a minimum period of 128 (the smallest value that has bits
2787  * 0-5 cleared and >= 100).
2788  *
2789  * Because of how the code in x86_perf_event_set_period() works, the truncation
2790  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2791  * to make up for the 'lost' events due to carrying the 'error' in period_left.
2792  *
2793  * Therefore the effective (average) period matches the requested period,
2794  * despite coarser hardware granularity.
2795  */
2796 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2797 {
2798         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2799                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
2800                 if (left < 128)
2801                         left = 128;
2802                 left &= ~0x3fu;
2803         }
2804         return left;
2805 }
2806
2807 PMU_FORMAT_ATTR(event,  "config:0-7"    );
2808 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
2809 PMU_FORMAT_ATTR(edge,   "config:18"     );
2810 PMU_FORMAT_ATTR(pc,     "config:19"     );
2811 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
2812 PMU_FORMAT_ATTR(inv,    "config:23"     );
2813 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
2814 PMU_FORMAT_ATTR(in_tx,  "config:32");
2815 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2816
2817 static struct attribute *intel_arch_formats_attr[] = {
2818         &format_attr_event.attr,
2819         &format_attr_umask.attr,
2820         &format_attr_edge.attr,
2821         &format_attr_pc.attr,
2822         &format_attr_inv.attr,
2823         &format_attr_cmask.attr,
2824         NULL,
2825 };
2826
2827 ssize_t intel_event_sysfs_show(char *page, u64 config)
2828 {
2829         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2830
2831         return x86_event_sysfs_show(page, config, event);
2832 }
2833
2834 struct intel_shared_regs *allocate_shared_regs(int cpu)
2835 {
2836         struct intel_shared_regs *regs;
2837         int i;
2838
2839         regs = kzalloc_node(sizeof(struct intel_shared_regs),
2840                             GFP_KERNEL, cpu_to_node(cpu));
2841         if (regs) {
2842                 /*
2843                  * initialize the locks to keep lockdep happy
2844                  */
2845                 for (i = 0; i < EXTRA_REG_MAX; i++)
2846                         raw_spin_lock_init(&regs->regs[i].lock);
2847
2848                 regs->core_id = -1;
2849         }
2850         return regs;
2851 }
2852
2853 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
2854 {
2855         struct intel_excl_cntrs *c;
2856
2857         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
2858                          GFP_KERNEL, cpu_to_node(cpu));
2859         if (c) {
2860                 raw_spin_lock_init(&c->lock);
2861                 c->core_id = -1;
2862         }
2863         return c;
2864 }
2865
2866 static int intel_pmu_cpu_prepare(int cpu)
2867 {
2868         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2869
2870         if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
2871                 cpuc->shared_regs = allocate_shared_regs(cpu);
2872                 if (!cpuc->shared_regs)
2873                         goto err;
2874         }
2875
2876         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2877                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
2878
2879                 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
2880                 if (!cpuc->constraint_list)
2881                         goto err_shared_regs;
2882
2883                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
2884                 if (!cpuc->excl_cntrs)
2885                         goto err_constraint_list;
2886
2887                 cpuc->excl_thread_id = 0;
2888         }
2889
2890         return NOTIFY_OK;
2891
2892 err_constraint_list:
2893         kfree(cpuc->constraint_list);
2894         cpuc->constraint_list = NULL;
2895
2896 err_shared_regs:
2897         kfree(cpuc->shared_regs);
2898         cpuc->shared_regs = NULL;
2899
2900 err:
2901         return NOTIFY_BAD;
2902 }
2903
2904 static void intel_pmu_cpu_starting(int cpu)
2905 {
2906         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2907         int core_id = topology_core_id(cpu);
2908         int i;
2909
2910         init_debug_store_on_cpu(cpu);
2911         /*
2912          * Deal with CPUs that don't clear their LBRs on power-up.
2913          */
2914         intel_pmu_lbr_reset();
2915
2916         cpuc->lbr_sel = NULL;
2917
2918         if (!cpuc->shared_regs)
2919                 return;
2920
2921         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
2922                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
2923                         struct intel_shared_regs *pc;
2924
2925                         pc = per_cpu(cpu_hw_events, i).shared_regs;
2926                         if (pc && pc->core_id == core_id) {
2927                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
2928                                 cpuc->shared_regs = pc;
2929                                 break;
2930                         }
2931                 }
2932                 cpuc->shared_regs->core_id = core_id;
2933                 cpuc->shared_regs->refcnt++;
2934         }
2935
2936         if (x86_pmu.lbr_sel_map)
2937                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2938
2939         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2940                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
2941                         struct intel_excl_cntrs *c;
2942
2943                         c = per_cpu(cpu_hw_events, i).excl_cntrs;
2944                         if (c && c->core_id == core_id) {
2945                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
2946                                 cpuc->excl_cntrs = c;
2947                                 cpuc->excl_thread_id = 1;
2948                                 break;
2949                         }
2950                 }
2951                 cpuc->excl_cntrs->core_id = core_id;
2952                 cpuc->excl_cntrs->refcnt++;
2953         }
2954 }
2955
2956 static void free_excl_cntrs(int cpu)
2957 {
2958         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2959         struct intel_excl_cntrs *c;
2960
2961         c = cpuc->excl_cntrs;
2962         if (c) {
2963                 if (c->core_id == -1 || --c->refcnt == 0)
2964                         kfree(c);
2965                 cpuc->excl_cntrs = NULL;
2966                 kfree(cpuc->constraint_list);
2967                 cpuc->constraint_list = NULL;
2968         }
2969 }
2970
2971 static void intel_pmu_cpu_dying(int cpu)
2972 {
2973         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2974         struct intel_shared_regs *pc;
2975
2976         pc = cpuc->shared_regs;
2977         if (pc) {
2978                 if (pc->core_id == -1 || --pc->refcnt == 0)
2979                         kfree(pc);
2980                 cpuc->shared_regs = NULL;
2981         }
2982
2983         free_excl_cntrs(cpu);
2984
2985         fini_debug_store_on_cpu(cpu);
2986 }
2987
2988 static void intel_pmu_sched_task(struct perf_event_context *ctx,
2989                                  bool sched_in)
2990 {
2991         if (x86_pmu.pebs_active)
2992                 intel_pmu_pebs_sched_task(ctx, sched_in);
2993         if (x86_pmu.lbr_nr)
2994                 intel_pmu_lbr_sched_task(ctx, sched_in);
2995 }
2996
2997 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2998
2999 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3000
3001 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3002
3003 static struct attribute *intel_arch3_formats_attr[] = {
3004         &format_attr_event.attr,
3005         &format_attr_umask.attr,
3006         &format_attr_edge.attr,
3007         &format_attr_pc.attr,
3008         &format_attr_any.attr,
3009         &format_attr_inv.attr,
3010         &format_attr_cmask.attr,
3011         &format_attr_in_tx.attr,
3012         &format_attr_in_tx_cp.attr,
3013
3014         &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
3015         &format_attr_ldlat.attr, /* PEBS load latency */
3016         NULL,
3017 };
3018
3019 static struct attribute *skl_format_attr[] = {
3020         &format_attr_frontend.attr,
3021         NULL,
3022 };
3023
3024 static __initconst const struct x86_pmu core_pmu = {
3025         .name                   = "core",
3026         .handle_irq             = x86_pmu_handle_irq,
3027         .disable_all            = x86_pmu_disable_all,
3028         .enable_all             = core_pmu_enable_all,
3029         .enable                 = core_pmu_enable_event,
3030         .disable                = x86_pmu_disable_event,
3031         .hw_config              = x86_pmu_hw_config,
3032         .schedule_events        = x86_schedule_events,
3033         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3034         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3035         .event_map              = intel_pmu_event_map,
3036         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3037         .apic                   = 1,
3038         .free_running_flags     = PEBS_FREERUNNING_FLAGS,
3039
3040         /*
3041          * Intel PMCs cannot be accessed sanely above 32-bit width,
3042          * so we install an artificial 1<<31 period regardless of
3043          * the generic event period:
3044          */
3045         .max_period             = (1ULL<<31) - 1,
3046         .get_event_constraints  = intel_get_event_constraints,
3047         .put_event_constraints  = intel_put_event_constraints,
3048         .event_constraints      = intel_core_event_constraints,
3049         .guest_get_msrs         = core_guest_get_msrs,
3050         .format_attrs           = intel_arch_formats_attr,
3051         .events_sysfs_show      = intel_event_sysfs_show,
3052
3053         /*
3054          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3055          * together with PMU version 1 and thus be using core_pmu with
3056          * shared_regs. We need following callbacks here to allocate
3057          * it properly.
3058          */
3059         .cpu_prepare            = intel_pmu_cpu_prepare,
3060         .cpu_starting           = intel_pmu_cpu_starting,
3061         .cpu_dying              = intel_pmu_cpu_dying,
3062 };
3063
3064 static __initconst const struct x86_pmu intel_pmu = {
3065         .name                   = "Intel",
3066         .handle_irq             = intel_pmu_handle_irq,
3067         .disable_all            = intel_pmu_disable_all,
3068         .enable_all             = intel_pmu_enable_all,
3069         .enable                 = intel_pmu_enable_event,
3070         .disable                = intel_pmu_disable_event,
3071         .hw_config              = intel_pmu_hw_config,
3072         .schedule_events        = x86_schedule_events,
3073         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3074         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3075         .event_map              = intel_pmu_event_map,
3076         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3077         .apic                   = 1,
3078         .free_running_flags     = PEBS_FREERUNNING_FLAGS,
3079         /*
3080          * Intel PMCs cannot be accessed sanely above 32 bit width,
3081          * so we install an artificial 1<<31 period regardless of
3082          * the generic event period:
3083          */
3084         .max_period             = (1ULL << 31) - 1,
3085         .get_event_constraints  = intel_get_event_constraints,
3086         .put_event_constraints  = intel_put_event_constraints,
3087         .pebs_aliases           = intel_pebs_aliases_core2,
3088
3089         .format_attrs           = intel_arch3_formats_attr,
3090         .events_sysfs_show      = intel_event_sysfs_show,
3091
3092         .cpu_prepare            = intel_pmu_cpu_prepare,
3093         .cpu_starting           = intel_pmu_cpu_starting,
3094         .cpu_dying              = intel_pmu_cpu_dying,
3095         .guest_get_msrs         = intel_guest_get_msrs,
3096         .sched_task             = intel_pmu_sched_task,
3097 };
3098
3099 static __init void intel_clovertown_quirk(void)
3100 {
3101         /*
3102          * PEBS is unreliable due to:
3103          *
3104          *   AJ67  - PEBS may experience CPL leaks
3105          *   AJ68  - PEBS PMI may be delayed by one event
3106          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3107          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3108          *
3109          * AJ67 could be worked around by restricting the OS/USR flags.
3110          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3111          *
3112          * AJ106 could possibly be worked around by not allowing LBR
3113          *       usage from PEBS, including the fixup.
3114          * AJ68  could possibly be worked around by always programming
3115          *       a pebs_event_reset[0] value and coping with the lost events.
3116          *
3117          * But taken together it might just make sense to not enable PEBS on
3118          * these chips.
3119          */
3120         pr_warn("PEBS disabled due to CPU errata\n");
3121         x86_pmu.pebs = 0;
3122         x86_pmu.pebs_constraints = NULL;
3123 }
3124
3125 static int intel_snb_pebs_broken(int cpu)
3126 {
3127         u32 rev = UINT_MAX; /* default to broken for unknown models */
3128
3129         switch (cpu_data(cpu).x86_model) {
3130         case 42: /* SNB */
3131                 rev = 0x28;
3132                 break;
3133
3134         case 45: /* SNB-EP */
3135                 switch (cpu_data(cpu).x86_mask) {
3136                 case 6: rev = 0x618; break;
3137                 case 7: rev = 0x70c; break;
3138                 }
3139         }
3140
3141         return (cpu_data(cpu).microcode < rev);
3142 }
3143
3144 static void intel_snb_check_microcode(void)
3145 {
3146         int pebs_broken = 0;
3147         int cpu;
3148
3149         get_online_cpus();
3150         for_each_online_cpu(cpu) {
3151                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3152                         break;
3153         }
3154         put_online_cpus();
3155
3156         if (pebs_broken == x86_pmu.pebs_broken)
3157                 return;
3158
3159         /*
3160          * Serialized by the microcode lock..
3161          */
3162         if (x86_pmu.pebs_broken) {
3163                 pr_info("PEBS enabled due to microcode update\n");
3164                 x86_pmu.pebs_broken = 0;
3165         } else {
3166                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3167                 x86_pmu.pebs_broken = 1;
3168         }
3169 }
3170
3171 /*
3172  * Under certain circumstances, access certain MSR may cause #GP.
3173  * The function tests if the input MSR can be safely accessed.
3174  */
3175 static bool check_msr(unsigned long msr, u64 mask)
3176 {
3177         u64 val_old, val_new, val_tmp;
3178
3179         /*
3180          * Read the current value, change it and read it back to see if it
3181          * matches, this is needed to detect certain hardware emulators
3182          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3183          */
3184         if (rdmsrl_safe(msr, &val_old))
3185                 return false;
3186
3187         /*
3188          * Only change the bits which can be updated by wrmsrl.
3189          */
3190         val_tmp = val_old ^ mask;
3191         if (wrmsrl_safe(msr, val_tmp) ||
3192             rdmsrl_safe(msr, &val_new))
3193                 return false;
3194
3195         if (val_new != val_tmp)
3196                 return false;
3197
3198         /* Here it's sure that the MSR can be safely accessed.
3199          * Restore the old value and return.
3200          */
3201         wrmsrl(msr, val_old);
3202
3203         return true;
3204 }
3205
3206 static __init void intel_sandybridge_quirk(void)
3207 {
3208         x86_pmu.check_microcode = intel_snb_check_microcode;
3209         intel_snb_check_microcode();
3210 }
3211
3212 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3213         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3214         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3215         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3216         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3217         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3218         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3219         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3220 };
3221
3222 static __init void intel_arch_events_quirk(void)
3223 {
3224         int bit;
3225
3226         /* disable event that reported as not presend by cpuid */
3227         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3228                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3229                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3230                         intel_arch_events_map[bit].name);
3231         }
3232 }
3233
3234 static __init void intel_nehalem_quirk(void)
3235 {
3236         union cpuid10_ebx ebx;
3237
3238         ebx.full = x86_pmu.events_maskl;
3239         if (ebx.split.no_branch_misses_retired) {
3240                 /*
3241                  * Erratum AAJ80 detected, we work it around by using
3242                  * the BR_MISP_EXEC.ANY event. This will over-count
3243                  * branch-misses, but it's still much better than the
3244                  * architectural event which is often completely bogus:
3245                  */
3246                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3247                 ebx.split.no_branch_misses_retired = 0;
3248                 x86_pmu.events_maskl = ebx.full;
3249                 pr_info("CPU erratum AAJ80 worked around\n");
3250         }
3251 }
3252
3253 /*
3254  * enable software workaround for errata:
3255  * SNB: BJ122
3256  * IVB: BV98
3257  * HSW: HSD29
3258  *
3259  * Only needed when HT is enabled. However detecting
3260  * if HT is enabled is difficult (model specific). So instead,
3261  * we enable the workaround in the early boot, and verify if
3262  * it is needed in a later initcall phase once we have valid
3263  * topology information to check if HT is actually enabled
3264  */
3265 static __init void intel_ht_bug(void)
3266 {
3267         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3268
3269         x86_pmu.start_scheduling = intel_start_scheduling;
3270         x86_pmu.commit_scheduling = intel_commit_scheduling;
3271         x86_pmu.stop_scheduling = intel_stop_scheduling;
3272 }
3273
3274 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
3275 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
3276
3277 /* Haswell special events */
3278 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
3279 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
3280 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
3281 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
3282 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
3283 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
3284 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
3285 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
3286 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
3287 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
3288 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
3289 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
3290
3291 static struct attribute *hsw_events_attrs[] = {
3292         EVENT_PTR(tx_start),
3293         EVENT_PTR(tx_commit),
3294         EVENT_PTR(tx_abort),
3295         EVENT_PTR(tx_capacity),
3296         EVENT_PTR(tx_conflict),
3297         EVENT_PTR(el_start),
3298         EVENT_PTR(el_commit),
3299         EVENT_PTR(el_abort),
3300         EVENT_PTR(el_capacity),
3301         EVENT_PTR(el_conflict),
3302         EVENT_PTR(cycles_t),
3303         EVENT_PTR(cycles_ct),
3304         EVENT_PTR(mem_ld_hsw),
3305         EVENT_PTR(mem_st_hsw),
3306         NULL
3307 };
3308
3309 __init int intel_pmu_init(void)
3310 {
3311         union cpuid10_edx edx;
3312         union cpuid10_eax eax;
3313         union cpuid10_ebx ebx;
3314         struct event_constraint *c;
3315         unsigned int unused;
3316         struct extra_reg *er;
3317         int version, i;
3318
3319         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3320                 switch (boot_cpu_data.x86) {
3321                 case 0x6:
3322                         return p6_pmu_init();
3323                 case 0xb:
3324                         return knc_pmu_init();
3325                 case 0xf:
3326                         return p4_pmu_init();
3327                 }
3328                 return -ENODEV;
3329         }
3330
3331         /*
3332          * Check whether the Architectural PerfMon supports
3333          * Branch Misses Retired hw_event or not.
3334          */
3335         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3336         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3337                 return -ENODEV;
3338
3339         version = eax.split.version_id;
3340         if (version < 2)
3341                 x86_pmu = core_pmu;
3342         else
3343                 x86_pmu = intel_pmu;
3344
3345         x86_pmu.version                 = version;
3346         x86_pmu.num_counters            = eax.split.num_counters;
3347         x86_pmu.cntval_bits             = eax.split.bit_width;
3348         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
3349
3350         x86_pmu.events_maskl            = ebx.full;
3351         x86_pmu.events_mask_len         = eax.split.mask_length;
3352
3353         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3354
3355         /*
3356          * Quirk: v2 perfmon does not report fixed-purpose events, so
3357          * assume at least 3 events:
3358          */
3359         if (version > 1)
3360                 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
3361
3362         if (boot_cpu_has(X86_FEATURE_PDCM)) {
3363                 u64 capabilities;
3364
3365                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3366                 x86_pmu.intel_cap.capabilities = capabilities;
3367         }
3368
3369         intel_ds_init();
3370
3371         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3372
3373         /*
3374          * Install the hw-cache-events table:
3375          */
3376         switch (boot_cpu_data.x86_model) {
3377         case 14: /* 65nm Core "Yonah" */
3378                 pr_cont("Core events, ");
3379                 break;
3380
3381         case 15: /* 65nm Core2 "Merom"          */
3382                 x86_add_quirk(intel_clovertown_quirk);
3383         case 22: /* 65nm Core2 "Merom-L"        */
3384         case 23: /* 45nm Core2 "Penryn"         */
3385         case 29: /* 45nm Core2 "Dunnington (MP) */
3386                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3387                        sizeof(hw_cache_event_ids));
3388
3389                 intel_pmu_lbr_init_core();
3390
3391                 x86_pmu.event_constraints = intel_core2_event_constraints;
3392                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3393                 pr_cont("Core2 events, ");
3394                 break;
3395
3396         case 30: /* 45nm Nehalem    */
3397         case 26: /* 45nm Nehalem-EP */
3398         case 46: /* 45nm Nehalem-EX */
3399                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3400                        sizeof(hw_cache_event_ids));
3401                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3402                        sizeof(hw_cache_extra_regs));
3403
3404                 intel_pmu_lbr_init_nhm();
3405
3406                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
3407                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3408                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3409                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
3410
3411                 x86_pmu.cpu_events = nhm_events_attrs;
3412
3413                 /* UOPS_ISSUED.STALLED_CYCLES */
3414                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3415                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3416                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3417                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3418                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3419
3420                 intel_pmu_pebs_data_source_nhm();
3421                 x86_add_quirk(intel_nehalem_quirk);
3422
3423                 pr_cont("Nehalem events, ");
3424                 break;
3425
3426         case 28: /* 45nm Atom "Pineview"   */
3427         case 38: /* 45nm Atom "Lincroft"   */
3428         case 39: /* 32nm Atom "Penwell"    */
3429         case 53: /* 32nm Atom "Cloverview" */
3430         case 54: /* 32nm Atom "Cedarview"  */
3431                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3432                        sizeof(hw_cache_event_ids));
3433
3434                 intel_pmu_lbr_init_atom();
3435
3436                 x86_pmu.event_constraints = intel_gen_event_constraints;
3437                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3438                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
3439                 pr_cont("Atom events, ");
3440                 break;
3441
3442         case 55: /* 22nm Atom "Silvermont"                */
3443         case 76: /* 14nm Atom "Airmont"                   */
3444         case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
3445                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3446                         sizeof(hw_cache_event_ids));
3447                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3448                        sizeof(hw_cache_extra_regs));
3449
3450                 intel_pmu_lbr_init_atom();
3451
3452                 x86_pmu.event_constraints = intel_slm_event_constraints;
3453                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3454                 x86_pmu.extra_regs = intel_slm_extra_regs;
3455                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3456                 pr_cont("Silvermont events, ");
3457                 break;
3458
3459         case 37: /* 32nm Westmere    */
3460         case 44: /* 32nm Westmere-EP */
3461         case 47: /* 32nm Westmere-EX */
3462                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3463                        sizeof(hw_cache_event_ids));
3464                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3465                        sizeof(hw_cache_extra_regs));
3466
3467                 intel_pmu_lbr_init_nhm();
3468
3469                 x86_pmu.event_constraints = intel_westmere_event_constraints;
3470                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3471                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3472                 x86_pmu.extra_regs = intel_westmere_extra_regs;
3473                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3474
3475                 x86_pmu.cpu_events = nhm_events_attrs;
3476
3477                 /* UOPS_ISSUED.STALLED_CYCLES */
3478                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3479                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3480                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3481                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3482                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3483
3484                 intel_pmu_pebs_data_source_nhm();
3485                 pr_cont("Westmere events, ");
3486                 break;
3487
3488         case 42: /* 32nm SandyBridge         */
3489         case 45: /* 32nm SandyBridge-E/EN/EP */
3490                 x86_add_quirk(intel_sandybridge_quirk);
3491                 x86_add_quirk(intel_ht_bug);
3492                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3493                        sizeof(hw_cache_event_ids));
3494                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3495                        sizeof(hw_cache_extra_regs));
3496
3497                 intel_pmu_lbr_init_snb();
3498
3499                 x86_pmu.event_constraints = intel_snb_event_constraints;
3500                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3501                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3502                 if (boot_cpu_data.x86_model == 45)
3503                         x86_pmu.extra_regs = intel_snbep_extra_regs;
3504                 else
3505                         x86_pmu.extra_regs = intel_snb_extra_regs;
3506
3507
3508                 /* all extra regs are per-cpu when HT is on */
3509                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3510                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3511
3512                 x86_pmu.cpu_events = snb_events_attrs;
3513
3514                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3515                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3516                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3517                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3518                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3519                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3520
3521                 pr_cont("SandyBridge events, ");
3522                 break;
3523
3524         case 58: /* 22nm IvyBridge       */
3525         case 62: /* 22nm IvyBridge-EP/EX */
3526                 x86_add_quirk(intel_ht_bug);
3527                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3528                        sizeof(hw_cache_event_ids));
3529                 /* dTLB-load-misses on IVB is different than SNB */
3530                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3531
3532                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3533                        sizeof(hw_cache_extra_regs));
3534
3535                 intel_pmu_lbr_init_snb();
3536
3537                 x86_pmu.event_constraints = intel_ivb_event_constraints;
3538                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3539                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3540                 x86_pmu.pebs_prec_dist = true;
3541                 if (boot_cpu_data.x86_model == 62)
3542                         x86_pmu.extra_regs = intel_snbep_extra_regs;
3543                 else
3544                         x86_pmu.extra_regs = intel_snb_extra_regs;
3545                 /* all extra regs are per-cpu when HT is on */
3546                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3547                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3548
3549                 x86_pmu.cpu_events = snb_events_attrs;
3550
3551                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3552                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3553                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3554
3555                 pr_cont("IvyBridge events, ");
3556                 break;
3557
3558
3559         case 60: /* 22nm Haswell Core */
3560         case 63: /* 22nm Haswell Server */
3561         case 69: /* 22nm Haswell ULT */
3562         case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
3563                 x86_add_quirk(intel_ht_bug);
3564                 x86_pmu.late_ack = true;
3565                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3566                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3567
3568                 intel_pmu_lbr_init_hsw();
3569
3570                 x86_pmu.event_constraints = intel_hsw_event_constraints;
3571                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3572                 x86_pmu.extra_regs = intel_snbep_extra_regs;
3573                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3574                 x86_pmu.pebs_prec_dist = true;
3575                 /* all extra regs are per-cpu when HT is on */
3576                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3577                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3578
3579                 x86_pmu.hw_config = hsw_hw_config;
3580                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3581                 x86_pmu.cpu_events = hsw_events_attrs;
3582                 x86_pmu.lbr_double_abort = true;
3583                 pr_cont("Haswell events, ");
3584                 break;
3585
3586         case 61: /* 14nm Broadwell Core-M */
3587         case 86: /* 14nm Broadwell Xeon D */
3588         case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
3589         case 79: /* 14nm Broadwell Server */
3590                 x86_pmu.late_ack = true;
3591                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3592                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3593
3594                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3595                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3596                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
3597                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3598                                                                           HSW_SNOOP_DRAM;
3599                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3600                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3601                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3602                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3603
3604                 intel_pmu_lbr_init_hsw();
3605
3606                 x86_pmu.event_constraints = intel_bdw_event_constraints;
3607                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
3608                 x86_pmu.extra_regs = intel_snbep_extra_regs;
3609                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3610                 x86_pmu.pebs_prec_dist = true;
3611                 /* all extra regs are per-cpu when HT is on */
3612                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3613                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3614
3615                 x86_pmu.hw_config = hsw_hw_config;
3616                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3617                 x86_pmu.cpu_events = hsw_events_attrs;
3618                 x86_pmu.limit_period = bdw_limit_period;
3619                 pr_cont("Broadwell events, ");
3620                 break;
3621
3622         case 87: /* Knights Landing Xeon Phi */
3623                 memcpy(hw_cache_event_ids,
3624                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3625                 memcpy(hw_cache_extra_regs,
3626                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3627                 intel_pmu_lbr_init_knl();
3628
3629                 x86_pmu.event_constraints = intel_slm_event_constraints;
3630                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3631                 x86_pmu.extra_regs = intel_knl_extra_regs;
3632
3633                 /* all extra regs are per-cpu when HT is on */
3634                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3635                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3636
3637                 pr_cont("Knights Landing events, ");
3638                 break;
3639
3640         case 78: /* 14nm Skylake Mobile */
3641         case 94: /* 14nm Skylake Desktop */
3642                 x86_pmu.late_ack = true;
3643                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3644                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3645                 intel_pmu_lbr_init_skl();
3646
3647                 x86_pmu.event_constraints = intel_skl_event_constraints;
3648                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
3649                 x86_pmu.extra_regs = intel_skl_extra_regs;
3650                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
3651                 x86_pmu.pebs_prec_dist = true;
3652                 /* all extra regs are per-cpu when HT is on */
3653                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3654                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3655
3656                 x86_pmu.hw_config = hsw_hw_config;
3657                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3658                 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
3659                                                   skl_format_attr);
3660                 WARN_ON(!x86_pmu.format_attrs);
3661                 x86_pmu.cpu_events = hsw_events_attrs;
3662                 pr_cont("Skylake events, ");
3663                 break;
3664
3665         default:
3666                 switch (x86_pmu.version) {
3667                 case 1:
3668                         x86_pmu.event_constraints = intel_v1_event_constraints;
3669                         pr_cont("generic architected perfmon v1, ");
3670                         break;
3671                 default:
3672                         /*
3673                          * default constraints for v2 and up
3674                          */
3675                         x86_pmu.event_constraints = intel_gen_event_constraints;
3676                         pr_cont("generic architected perfmon, ");
3677                         break;
3678                 }
3679         }
3680
3681         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3682                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3683                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3684                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3685         }
3686         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3687
3688         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3689                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3690                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3691                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3692         }
3693
3694         x86_pmu.intel_ctrl |=
3695                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3696
3697         if (x86_pmu.event_constraints) {
3698                 /*
3699                  * event on fixed counter2 (REF_CYCLES) only works on this
3700                  * counter, so do not extend mask to generic counters
3701                  */
3702                 for_each_event_constraint(c, x86_pmu.event_constraints) {
3703                         if (c->cmask == FIXED_EVENT_FLAGS
3704                             && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3705                                 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3706                         }
3707                         c->idxmsk64 &=
3708                                 ~(~0UL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
3709                         c->weight = hweight64(c->idxmsk64);
3710                 }
3711         }
3712
3713         /*
3714          * Access LBR MSR may cause #GP under certain circumstances.
3715          * E.g. KVM doesn't support LBR MSR
3716          * Check all LBT MSR here.
3717          * Disable LBR access if any LBR MSRs can not be accessed.
3718          */
3719         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
3720                 x86_pmu.lbr_nr = 0;
3721         for (i = 0; i < x86_pmu.lbr_nr; i++) {
3722                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
3723                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
3724                         x86_pmu.lbr_nr = 0;
3725         }
3726
3727         /*
3728          * Access extra MSR may cause #GP under certain circumstances.
3729          * E.g. KVM doesn't support offcore event
3730          * Check all extra_regs here.
3731          */
3732         if (x86_pmu.extra_regs) {
3733                 for (er = x86_pmu.extra_regs; er->msr; er++) {
3734                         er->extra_msr_access = check_msr(er->msr, 0x11UL);
3735                         /* Disable LBR select mapping */
3736                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
3737                                 x86_pmu.lbr_sel_map = NULL;
3738                 }
3739         }
3740
3741         /* Support full width counters using alternative MSR range */
3742         if (x86_pmu.intel_cap.full_width_write) {
3743                 x86_pmu.max_period = x86_pmu.cntval_mask;
3744                 x86_pmu.perfctr = MSR_IA32_PMC0;
3745                 pr_cont("full-width counters, ");
3746         }
3747
3748         return 0;
3749 }
3750
3751 /*
3752  * HT bug: phase 2 init
3753  * Called once we have valid topology information to check
3754  * whether or not HT is enabled
3755  * If HT is off, then we disable the workaround
3756  */
3757 static __init int fixup_ht_bug(void)
3758 {
3759         int cpu = smp_processor_id();
3760         int w, c;
3761         /*
3762          * problem not present on this CPU model, nothing to do
3763          */
3764         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
3765                 return 0;
3766
3767         w = cpumask_weight(topology_sibling_cpumask(cpu));
3768         if (w > 1) {
3769                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
3770                 return 0;
3771         }
3772
3773         if (lockup_detector_suspend() != 0) {
3774                 pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
3775                 return 0;
3776         }
3777
3778         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
3779
3780         x86_pmu.start_scheduling = NULL;
3781         x86_pmu.commit_scheduling = NULL;
3782         x86_pmu.stop_scheduling = NULL;
3783
3784         lockup_detector_resume();
3785
3786         get_online_cpus();
3787
3788         for_each_online_cpu(c) {
3789                 free_excl_cntrs(c);
3790         }
3791
3792         put_online_cpus();
3793         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
3794         return 0;
3795 }
3796 subsys_initcall(fixup_ht_bug)