ba101c28dcc97898b225cc91e4c18e2abbeaaf3b
[linux-block.git] / arch / x86 / events / intel / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 #include <linux/kvm_host.h>
18
19 #include <asm/cpufeature.h>
20 #include <asm/hardirq.h>
21 #include <asm/intel-family.h>
22 #include <asm/intel_pt.h>
23 #include <asm/apic.h>
24 #include <asm/cpu_device_id.h>
25
26 #include "../perf_event.h"
27
28 /*
29  * Intel PerfMon, used on Core and later.
30  */
31 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
32 {
33         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
34         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
35         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
36         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
37         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
38         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
39         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
40         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
41 };
42
43 static struct event_constraint intel_core_event_constraints[] __read_mostly =
44 {
45         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
46         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
47         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
48         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
49         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
50         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
51         EVENT_CONSTRAINT_END
52 };
53
54 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
55 {
56         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
57         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
58         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
59         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
60         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
61         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
62         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
63         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
64         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
65         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
66         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
67         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
68         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
69         EVENT_CONSTRAINT_END
70 };
71
72 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
73 {
74         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
75         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
76         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
77         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
78         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
79         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
80         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
81         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
82         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
83         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
84         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
85         EVENT_CONSTRAINT_END
86 };
87
88 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
89 {
90         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
91         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
92         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
93         EVENT_EXTRA_END
94 };
95
96 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
97 {
98         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
99         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
100         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
101         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
102         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
103         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
104         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
105         EVENT_CONSTRAINT_END
106 };
107
108 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
109 {
110         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
111         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
112         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
113         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
114         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
115         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
117         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
118         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
119         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
120         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
121         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
122
123         /*
124          * When HT is off these events can only run on the bottom 4 counters
125          * When HT is on, they are impacted by the HT bug and require EXCL access
126          */
127         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
128         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
129         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
130         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
131
132         EVENT_CONSTRAINT_END
133 };
134
135 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
136 {
137         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
138         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
139         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
140         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
141         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
142         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
143         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
144         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
145         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
146         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
147         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
148         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
149         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
150
151         /*
152          * When HT is off these events can only run on the bottom 4 counters
153          * When HT is on, they are impacted by the HT bug and require EXCL access
154          */
155         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
156         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
157         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
158         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
159
160         EVENT_CONSTRAINT_END
161 };
162
163 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
164 {
165         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
166         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
167         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
168         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
169         EVENT_EXTRA_END
170 };
171
172 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
173 {
174         EVENT_CONSTRAINT_END
175 };
176
177 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
178 {
179         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
180         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
181         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
182         EVENT_CONSTRAINT_END
183 };
184
185 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
186 {
187         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
188         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
189         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
190         FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
191         FIXED_EVENT_CONSTRAINT(0x0500, 4),
192         FIXED_EVENT_CONSTRAINT(0x0600, 5),
193         FIXED_EVENT_CONSTRAINT(0x0700, 6),
194         FIXED_EVENT_CONSTRAINT(0x0800, 7),
195         FIXED_EVENT_CONSTRAINT(0x0900, 8),
196         FIXED_EVENT_CONSTRAINT(0x0a00, 9),
197         FIXED_EVENT_CONSTRAINT(0x0b00, 10),
198         FIXED_EVENT_CONSTRAINT(0x0c00, 11),
199         FIXED_EVENT_CONSTRAINT(0x0d00, 12),
200         FIXED_EVENT_CONSTRAINT(0x0e00, 13),
201         FIXED_EVENT_CONSTRAINT(0x0f00, 14),
202         FIXED_EVENT_CONSTRAINT(0x1000, 15),
203         EVENT_CONSTRAINT_END
204 };
205
206 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
207 {
208         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
209         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
210         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
211         EVENT_CONSTRAINT_END
212 };
213
214 static struct event_constraint intel_skl_event_constraints[] = {
215         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
216         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
217         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
218         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
219
220         /*
221          * when HT is off, these can only run on the bottom 4 counters
222          */
223         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
224         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
225         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
226         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
227         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
228
229         EVENT_CONSTRAINT_END
230 };
231
232 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
233         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
234         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
235         EVENT_EXTRA_END
236 };
237
238 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
239         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
240         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
241         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
242         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
243         EVENT_EXTRA_END
244 };
245
246 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
247         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
248         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
249         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
250         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
251         EVENT_EXTRA_END
252 };
253
254 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
255         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
256         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
257         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
258         /*
259          * Note the low 8 bits eventsel code is not a continuous field, containing
260          * some #GPing bits. These are masked out.
261          */
262         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
263         EVENT_EXTRA_END
264 };
265
266 static struct event_constraint intel_icl_event_constraints[] = {
267         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
268         FIXED_EVENT_CONSTRAINT(0x01c0, 0),      /* old INST_RETIRED.PREC_DIST */
269         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
270         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
271         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
272         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
273         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
274         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
275         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
276         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
277         INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
278         INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
279         INTEL_EVENT_CONSTRAINT(0x32, 0xf),      /* SW_PREFETCH_ACCESS.* */
280         INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
281         INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
282         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
283         INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
284         INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
285         INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
286         INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
287         INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
288         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
289         INTEL_EVENT_CONSTRAINT(0xef, 0xf),
290         INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
291         EVENT_CONSTRAINT_END
292 };
293
294 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
295         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
296         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
297         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
298         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
299         EVENT_EXTRA_END
300 };
301
302 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
303         INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
304         INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
305         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
306         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
307         INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
308         INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
309         EVENT_EXTRA_END
310 };
311
312 static struct event_constraint intel_spr_event_constraints[] = {
313         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
314         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
315         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
316         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
317         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
318         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
319         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
320         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
321         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
322         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
323         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
324         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
325         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
326
327         INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
328         INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
329         /*
330          * Generally event codes < 0x90 are restricted to counters 0-3.
331          * The 0x2E and 0x3C are exception, which has no restriction.
332          */
333         INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
334
335         INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
336         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
337         INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
338         INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
339         INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
340         INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
341         INTEL_EVENT_CONSTRAINT(0xce, 0x1),
342         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
343         /*
344          * Generally event codes >= 0x90 are likely to have no restrictions.
345          * The exception are defined as above.
346          */
347         INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
348
349         EVENT_CONSTRAINT_END
350 };
351
352
353 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
354 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
355 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
356
357 static struct attribute *nhm_mem_events_attrs[] = {
358         EVENT_PTR(mem_ld_nhm),
359         NULL,
360 };
361
362 /*
363  * topdown events for Intel Core CPUs.
364  *
365  * The events are all in slots, which is a free slot in a 4 wide
366  * pipeline. Some events are already reported in slots, for cycle
367  * events we multiply by the pipeline width (4).
368  *
369  * With Hyper Threading on, topdown metrics are either summed or averaged
370  * between the threads of a core: (count_t0 + count_t1).
371  *
372  * For the average case the metric is always scaled to pipeline width,
373  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
374  */
375
376 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
377         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
378         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
379 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
380 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
381         "event=0xe,umask=0x1");                 /* uops_issued.any */
382 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
383         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
384 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
385         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
386 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
387         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
388         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
389 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
390         "4", "2");
391
392 EVENT_ATTR_STR(slots,                   slots,                  "event=0x00,umask=0x4");
393 EVENT_ATTR_STR(topdown-retiring,        td_retiring,            "event=0x00,umask=0x80");
394 EVENT_ATTR_STR(topdown-bad-spec,        td_bad_spec,            "event=0x00,umask=0x81");
395 EVENT_ATTR_STR(topdown-fe-bound,        td_fe_bound,            "event=0x00,umask=0x82");
396 EVENT_ATTR_STR(topdown-be-bound,        td_be_bound,            "event=0x00,umask=0x83");
397 EVENT_ATTR_STR(topdown-heavy-ops,       td_heavy_ops,           "event=0x00,umask=0x84");
398 EVENT_ATTR_STR(topdown-br-mispredict,   td_br_mispredict,       "event=0x00,umask=0x85");
399 EVENT_ATTR_STR(topdown-fetch-lat,       td_fetch_lat,           "event=0x00,umask=0x86");
400 EVENT_ATTR_STR(topdown-mem-bound,       td_mem_bound,           "event=0x00,umask=0x87");
401
402 static struct attribute *snb_events_attrs[] = {
403         EVENT_PTR(td_slots_issued),
404         EVENT_PTR(td_slots_retired),
405         EVENT_PTR(td_fetch_bubbles),
406         EVENT_PTR(td_total_slots),
407         EVENT_PTR(td_total_slots_scale),
408         EVENT_PTR(td_recovery_bubbles),
409         EVENT_PTR(td_recovery_bubbles_scale),
410         NULL,
411 };
412
413 static struct attribute *snb_mem_events_attrs[] = {
414         EVENT_PTR(mem_ld_snb),
415         EVENT_PTR(mem_st_snb),
416         NULL,
417 };
418
419 static struct event_constraint intel_hsw_event_constraints[] = {
420         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
421         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
422         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
423         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
424         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
425         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
426         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
427         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
428         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
429         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
430         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
431         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
432
433         /*
434          * When HT is off these events can only run on the bottom 4 counters
435          * When HT is on, they are impacted by the HT bug and require EXCL access
436          */
437         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
438         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
439         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
440         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
441
442         EVENT_CONSTRAINT_END
443 };
444
445 static struct event_constraint intel_bdw_event_constraints[] = {
446         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
447         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
448         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
449         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
450         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
451         /*
452          * when HT is off, these can only run on the bottom 4 counters
453          */
454         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
455         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
456         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
457         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
458         EVENT_CONSTRAINT_END
459 };
460
461 static u64 intel_pmu_event_map(int hw_event)
462 {
463         return intel_perfmon_event_map[hw_event];
464 }
465
466 static __initconst const u64 spr_hw_cache_event_ids
467                                 [PERF_COUNT_HW_CACHE_MAX]
468                                 [PERF_COUNT_HW_CACHE_OP_MAX]
469                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
470 {
471  [ C(L1D ) ] = {
472         [ C(OP_READ) ] = {
473                 [ C(RESULT_ACCESS) ] = 0x81d0,
474                 [ C(RESULT_MISS)   ] = 0xe124,
475         },
476         [ C(OP_WRITE) ] = {
477                 [ C(RESULT_ACCESS) ] = 0x82d0,
478         },
479  },
480  [ C(L1I ) ] = {
481         [ C(OP_READ) ] = {
482                 [ C(RESULT_MISS)   ] = 0xe424,
483         },
484         [ C(OP_WRITE) ] = {
485                 [ C(RESULT_ACCESS) ] = -1,
486                 [ C(RESULT_MISS)   ] = -1,
487         },
488  },
489  [ C(LL  ) ] = {
490         [ C(OP_READ) ] = {
491                 [ C(RESULT_ACCESS) ] = 0x12a,
492                 [ C(RESULT_MISS)   ] = 0x12a,
493         },
494         [ C(OP_WRITE) ] = {
495                 [ C(RESULT_ACCESS) ] = 0x12a,
496                 [ C(RESULT_MISS)   ] = 0x12a,
497         },
498  },
499  [ C(DTLB) ] = {
500         [ C(OP_READ) ] = {
501                 [ C(RESULT_ACCESS) ] = 0x81d0,
502                 [ C(RESULT_MISS)   ] = 0xe12,
503         },
504         [ C(OP_WRITE) ] = {
505                 [ C(RESULT_ACCESS) ] = 0x82d0,
506                 [ C(RESULT_MISS)   ] = 0xe13,
507         },
508  },
509  [ C(ITLB) ] = {
510         [ C(OP_READ) ] = {
511                 [ C(RESULT_ACCESS) ] = -1,
512                 [ C(RESULT_MISS)   ] = 0xe11,
513         },
514         [ C(OP_WRITE) ] = {
515                 [ C(RESULT_ACCESS) ] = -1,
516                 [ C(RESULT_MISS)   ] = -1,
517         },
518         [ C(OP_PREFETCH) ] = {
519                 [ C(RESULT_ACCESS) ] = -1,
520                 [ C(RESULT_MISS)   ] = -1,
521         },
522  },
523  [ C(BPU ) ] = {
524         [ C(OP_READ) ] = {
525                 [ C(RESULT_ACCESS) ] = 0x4c4,
526                 [ C(RESULT_MISS)   ] = 0x4c5,
527         },
528         [ C(OP_WRITE) ] = {
529                 [ C(RESULT_ACCESS) ] = -1,
530                 [ C(RESULT_MISS)   ] = -1,
531         },
532         [ C(OP_PREFETCH) ] = {
533                 [ C(RESULT_ACCESS) ] = -1,
534                 [ C(RESULT_MISS)   ] = -1,
535         },
536  },
537  [ C(NODE) ] = {
538         [ C(OP_READ) ] = {
539                 [ C(RESULT_ACCESS) ] = 0x12a,
540                 [ C(RESULT_MISS)   ] = 0x12a,
541         },
542  },
543 };
544
545 static __initconst const u64 spr_hw_cache_extra_regs
546                                 [PERF_COUNT_HW_CACHE_MAX]
547                                 [PERF_COUNT_HW_CACHE_OP_MAX]
548                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
549 {
550  [ C(LL  ) ] = {
551         [ C(OP_READ) ] = {
552                 [ C(RESULT_ACCESS) ] = 0x10001,
553                 [ C(RESULT_MISS)   ] = 0x3fbfc00001,
554         },
555         [ C(OP_WRITE) ] = {
556                 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
557                 [ C(RESULT_MISS)   ] = 0x3f3fc00002,
558         },
559  },
560  [ C(NODE) ] = {
561         [ C(OP_READ) ] = {
562                 [ C(RESULT_ACCESS) ] = 0x10c000001,
563                 [ C(RESULT_MISS)   ] = 0x3fb3000001,
564         },
565  },
566 };
567
568 /*
569  * Notes on the events:
570  * - data reads do not include code reads (comparable to earlier tables)
571  * - data counts include speculative execution (except L1 write, dtlb, bpu)
572  * - remote node access includes remote memory, remote cache, remote mmio.
573  * - prefetches are not included in the counts.
574  * - icache miss does not include decoded icache
575  */
576
577 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
578 #define SKL_DEMAND_RFO                  BIT_ULL(1)
579 #define SKL_ANY_RESPONSE                BIT_ULL(16)
580 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
581 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
582 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
583 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
584 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
585 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
586                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
587                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
588                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
589 #define SKL_SPL_HIT                     BIT_ULL(30)
590 #define SKL_SNOOP_NONE                  BIT_ULL(31)
591 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
592 #define SKL_SNOOP_MISS                  BIT_ULL(33)
593 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
594 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
595 #define SKL_SNOOP_HITM                  BIT_ULL(36)
596 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
597 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
598                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
599                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
600                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
601 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
602 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
603                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
604                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
605                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
606 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
607 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
608 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
609                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
610                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
611
612 static __initconst const u64 skl_hw_cache_event_ids
613                                 [PERF_COUNT_HW_CACHE_MAX]
614                                 [PERF_COUNT_HW_CACHE_OP_MAX]
615                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
616 {
617  [ C(L1D ) ] = {
618         [ C(OP_READ) ] = {
619                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
620                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
621         },
622         [ C(OP_WRITE) ] = {
623                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
624                 [ C(RESULT_MISS)   ] = 0x0,
625         },
626         [ C(OP_PREFETCH) ] = {
627                 [ C(RESULT_ACCESS) ] = 0x0,
628                 [ C(RESULT_MISS)   ] = 0x0,
629         },
630  },
631  [ C(L1I ) ] = {
632         [ C(OP_READ) ] = {
633                 [ C(RESULT_ACCESS) ] = 0x0,
634                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
635         },
636         [ C(OP_WRITE) ] = {
637                 [ C(RESULT_ACCESS) ] = -1,
638                 [ C(RESULT_MISS)   ] = -1,
639         },
640         [ C(OP_PREFETCH) ] = {
641                 [ C(RESULT_ACCESS) ] = 0x0,
642                 [ C(RESULT_MISS)   ] = 0x0,
643         },
644  },
645  [ C(LL  ) ] = {
646         [ C(OP_READ) ] = {
647                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
648                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
649         },
650         [ C(OP_WRITE) ] = {
651                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
652                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
653         },
654         [ C(OP_PREFETCH) ] = {
655                 [ C(RESULT_ACCESS) ] = 0x0,
656                 [ C(RESULT_MISS)   ] = 0x0,
657         },
658  },
659  [ C(DTLB) ] = {
660         [ C(OP_READ) ] = {
661                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
662                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
663         },
664         [ C(OP_WRITE) ] = {
665                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
666                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
667         },
668         [ C(OP_PREFETCH) ] = {
669                 [ C(RESULT_ACCESS) ] = 0x0,
670                 [ C(RESULT_MISS)   ] = 0x0,
671         },
672  },
673  [ C(ITLB) ] = {
674         [ C(OP_READ) ] = {
675                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
676                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
677         },
678         [ C(OP_WRITE) ] = {
679                 [ C(RESULT_ACCESS) ] = -1,
680                 [ C(RESULT_MISS)   ] = -1,
681         },
682         [ C(OP_PREFETCH) ] = {
683                 [ C(RESULT_ACCESS) ] = -1,
684                 [ C(RESULT_MISS)   ] = -1,
685         },
686  },
687  [ C(BPU ) ] = {
688         [ C(OP_READ) ] = {
689                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
690                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
691         },
692         [ C(OP_WRITE) ] = {
693                 [ C(RESULT_ACCESS) ] = -1,
694                 [ C(RESULT_MISS)   ] = -1,
695         },
696         [ C(OP_PREFETCH) ] = {
697                 [ C(RESULT_ACCESS) ] = -1,
698                 [ C(RESULT_MISS)   ] = -1,
699         },
700  },
701  [ C(NODE) ] = {
702         [ C(OP_READ) ] = {
703                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
704                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
705         },
706         [ C(OP_WRITE) ] = {
707                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
708                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
709         },
710         [ C(OP_PREFETCH) ] = {
711                 [ C(RESULT_ACCESS) ] = 0x0,
712                 [ C(RESULT_MISS)   ] = 0x0,
713         },
714  },
715 };
716
717 static __initconst const u64 skl_hw_cache_extra_regs
718                                 [PERF_COUNT_HW_CACHE_MAX]
719                                 [PERF_COUNT_HW_CACHE_OP_MAX]
720                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
721 {
722  [ C(LL  ) ] = {
723         [ C(OP_READ) ] = {
724                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
725                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
726                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
727                                        SKL_L3_MISS|SKL_ANY_SNOOP|
728                                        SKL_SUPPLIER_NONE,
729         },
730         [ C(OP_WRITE) ] = {
731                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
732                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
733                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
734                                        SKL_L3_MISS|SKL_ANY_SNOOP|
735                                        SKL_SUPPLIER_NONE,
736         },
737         [ C(OP_PREFETCH) ] = {
738                 [ C(RESULT_ACCESS) ] = 0x0,
739                 [ C(RESULT_MISS)   ] = 0x0,
740         },
741  },
742  [ C(NODE) ] = {
743         [ C(OP_READ) ] = {
744                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
745                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
746                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
747                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
748         },
749         [ C(OP_WRITE) ] = {
750                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
751                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
752                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
753                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
754         },
755         [ C(OP_PREFETCH) ] = {
756                 [ C(RESULT_ACCESS) ] = 0x0,
757                 [ C(RESULT_MISS)   ] = 0x0,
758         },
759  },
760 };
761
762 #define SNB_DMND_DATA_RD        (1ULL << 0)
763 #define SNB_DMND_RFO            (1ULL << 1)
764 #define SNB_DMND_IFETCH         (1ULL << 2)
765 #define SNB_DMND_WB             (1ULL << 3)
766 #define SNB_PF_DATA_RD          (1ULL << 4)
767 #define SNB_PF_RFO              (1ULL << 5)
768 #define SNB_PF_IFETCH           (1ULL << 6)
769 #define SNB_LLC_DATA_RD         (1ULL << 7)
770 #define SNB_LLC_RFO             (1ULL << 8)
771 #define SNB_LLC_IFETCH          (1ULL << 9)
772 #define SNB_BUS_LOCKS           (1ULL << 10)
773 #define SNB_STRM_ST             (1ULL << 11)
774 #define SNB_OTHER               (1ULL << 15)
775 #define SNB_RESP_ANY            (1ULL << 16)
776 #define SNB_NO_SUPP             (1ULL << 17)
777 #define SNB_LLC_HITM            (1ULL << 18)
778 #define SNB_LLC_HITE            (1ULL << 19)
779 #define SNB_LLC_HITS            (1ULL << 20)
780 #define SNB_LLC_HITF            (1ULL << 21)
781 #define SNB_LOCAL               (1ULL << 22)
782 #define SNB_REMOTE              (0xffULL << 23)
783 #define SNB_SNP_NONE            (1ULL << 31)
784 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
785 #define SNB_SNP_MISS            (1ULL << 33)
786 #define SNB_NO_FWD              (1ULL << 34)
787 #define SNB_SNP_FWD             (1ULL << 35)
788 #define SNB_HITM                (1ULL << 36)
789 #define SNB_NON_DRAM            (1ULL << 37)
790
791 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
792 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
793 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
794
795 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
796                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
797                                  SNB_HITM)
798
799 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
800 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
801
802 #define SNB_L3_ACCESS           SNB_RESP_ANY
803 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
804
805 static __initconst const u64 snb_hw_cache_extra_regs
806                                 [PERF_COUNT_HW_CACHE_MAX]
807                                 [PERF_COUNT_HW_CACHE_OP_MAX]
808                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
809 {
810  [ C(LL  ) ] = {
811         [ C(OP_READ) ] = {
812                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
813                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
814         },
815         [ C(OP_WRITE) ] = {
816                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
817                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
818         },
819         [ C(OP_PREFETCH) ] = {
820                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
821                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
822         },
823  },
824  [ C(NODE) ] = {
825         [ C(OP_READ) ] = {
826                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
827                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
828         },
829         [ C(OP_WRITE) ] = {
830                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
831                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
832         },
833         [ C(OP_PREFETCH) ] = {
834                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
835                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
836         },
837  },
838 };
839
840 static __initconst const u64 snb_hw_cache_event_ids
841                                 [PERF_COUNT_HW_CACHE_MAX]
842                                 [PERF_COUNT_HW_CACHE_OP_MAX]
843                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
844 {
845  [ C(L1D) ] = {
846         [ C(OP_READ) ] = {
847                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
848                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
849         },
850         [ C(OP_WRITE) ] = {
851                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
852                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
853         },
854         [ C(OP_PREFETCH) ] = {
855                 [ C(RESULT_ACCESS) ] = 0x0,
856                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
857         },
858  },
859  [ C(L1I ) ] = {
860         [ C(OP_READ) ] = {
861                 [ C(RESULT_ACCESS) ] = 0x0,
862                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
863         },
864         [ C(OP_WRITE) ] = {
865                 [ C(RESULT_ACCESS) ] = -1,
866                 [ C(RESULT_MISS)   ] = -1,
867         },
868         [ C(OP_PREFETCH) ] = {
869                 [ C(RESULT_ACCESS) ] = 0x0,
870                 [ C(RESULT_MISS)   ] = 0x0,
871         },
872  },
873  [ C(LL  ) ] = {
874         [ C(OP_READ) ] = {
875                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
876                 [ C(RESULT_ACCESS) ] = 0x01b7,
877                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
878                 [ C(RESULT_MISS)   ] = 0x01b7,
879         },
880         [ C(OP_WRITE) ] = {
881                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
882                 [ C(RESULT_ACCESS) ] = 0x01b7,
883                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
884                 [ C(RESULT_MISS)   ] = 0x01b7,
885         },
886         [ C(OP_PREFETCH) ] = {
887                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
888                 [ C(RESULT_ACCESS) ] = 0x01b7,
889                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
890                 [ C(RESULT_MISS)   ] = 0x01b7,
891         },
892  },
893  [ C(DTLB) ] = {
894         [ C(OP_READ) ] = {
895                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
896                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
897         },
898         [ C(OP_WRITE) ] = {
899                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
900                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
901         },
902         [ C(OP_PREFETCH) ] = {
903                 [ C(RESULT_ACCESS) ] = 0x0,
904                 [ C(RESULT_MISS)   ] = 0x0,
905         },
906  },
907  [ C(ITLB) ] = {
908         [ C(OP_READ) ] = {
909                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
910                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
911         },
912         [ C(OP_WRITE) ] = {
913                 [ C(RESULT_ACCESS) ] = -1,
914                 [ C(RESULT_MISS)   ] = -1,
915         },
916         [ C(OP_PREFETCH) ] = {
917                 [ C(RESULT_ACCESS) ] = -1,
918                 [ C(RESULT_MISS)   ] = -1,
919         },
920  },
921  [ C(BPU ) ] = {
922         [ C(OP_READ) ] = {
923                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
924                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
925         },
926         [ C(OP_WRITE) ] = {
927                 [ C(RESULT_ACCESS) ] = -1,
928                 [ C(RESULT_MISS)   ] = -1,
929         },
930         [ C(OP_PREFETCH) ] = {
931                 [ C(RESULT_ACCESS) ] = -1,
932                 [ C(RESULT_MISS)   ] = -1,
933         },
934  },
935  [ C(NODE) ] = {
936         [ C(OP_READ) ] = {
937                 [ C(RESULT_ACCESS) ] = 0x01b7,
938                 [ C(RESULT_MISS)   ] = 0x01b7,
939         },
940         [ C(OP_WRITE) ] = {
941                 [ C(RESULT_ACCESS) ] = 0x01b7,
942                 [ C(RESULT_MISS)   ] = 0x01b7,
943         },
944         [ C(OP_PREFETCH) ] = {
945                 [ C(RESULT_ACCESS) ] = 0x01b7,
946                 [ C(RESULT_MISS)   ] = 0x01b7,
947         },
948  },
949
950 };
951
952 /*
953  * Notes on the events:
954  * - data reads do not include code reads (comparable to earlier tables)
955  * - data counts include speculative execution (except L1 write, dtlb, bpu)
956  * - remote node access includes remote memory, remote cache, remote mmio.
957  * - prefetches are not included in the counts because they are not
958  *   reliably counted.
959  */
960
961 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
962 #define HSW_DEMAND_RFO                  BIT_ULL(1)
963 #define HSW_ANY_RESPONSE                BIT_ULL(16)
964 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
965 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
966 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
967 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
968 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
969 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
970                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
971                                          HSW_L3_MISS_REMOTE_HOP2P)
972 #define HSW_SNOOP_NONE                  BIT_ULL(31)
973 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
974 #define HSW_SNOOP_MISS                  BIT_ULL(33)
975 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
976 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
977 #define HSW_SNOOP_HITM                  BIT_ULL(36)
978 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
979 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
980                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
981                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
982                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
983 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
984 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
985 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
986 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
987                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
988 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
989
990 #define BDW_L3_MISS_LOCAL               BIT(26)
991 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
992                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
993                                          HSW_L3_MISS_REMOTE_HOP2P)
994
995
996 static __initconst const u64 hsw_hw_cache_event_ids
997                                 [PERF_COUNT_HW_CACHE_MAX]
998                                 [PERF_COUNT_HW_CACHE_OP_MAX]
999                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1000 {
1001  [ C(L1D ) ] = {
1002         [ C(OP_READ) ] = {
1003                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1004                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
1005         },
1006         [ C(OP_WRITE) ] = {
1007                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1008                 [ C(RESULT_MISS)   ] = 0x0,
1009         },
1010         [ C(OP_PREFETCH) ] = {
1011                 [ C(RESULT_ACCESS) ] = 0x0,
1012                 [ C(RESULT_MISS)   ] = 0x0,
1013         },
1014  },
1015  [ C(L1I ) ] = {
1016         [ C(OP_READ) ] = {
1017                 [ C(RESULT_ACCESS) ] = 0x0,
1018                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
1019         },
1020         [ C(OP_WRITE) ] = {
1021                 [ C(RESULT_ACCESS) ] = -1,
1022                 [ C(RESULT_MISS)   ] = -1,
1023         },
1024         [ C(OP_PREFETCH) ] = {
1025                 [ C(RESULT_ACCESS) ] = 0x0,
1026                 [ C(RESULT_MISS)   ] = 0x0,
1027         },
1028  },
1029  [ C(LL  ) ] = {
1030         [ C(OP_READ) ] = {
1031                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1032                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1033         },
1034         [ C(OP_WRITE) ] = {
1035                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1036                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1037         },
1038         [ C(OP_PREFETCH) ] = {
1039                 [ C(RESULT_ACCESS) ] = 0x0,
1040                 [ C(RESULT_MISS)   ] = 0x0,
1041         },
1042  },
1043  [ C(DTLB) ] = {
1044         [ C(OP_READ) ] = {
1045                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1046                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1047         },
1048         [ C(OP_WRITE) ] = {
1049                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1050                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1051         },
1052         [ C(OP_PREFETCH) ] = {
1053                 [ C(RESULT_ACCESS) ] = 0x0,
1054                 [ C(RESULT_MISS)   ] = 0x0,
1055         },
1056  },
1057  [ C(ITLB) ] = {
1058         [ C(OP_READ) ] = {
1059                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
1060                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1061         },
1062         [ C(OP_WRITE) ] = {
1063                 [ C(RESULT_ACCESS) ] = -1,
1064                 [ C(RESULT_MISS)   ] = -1,
1065         },
1066         [ C(OP_PREFETCH) ] = {
1067                 [ C(RESULT_ACCESS) ] = -1,
1068                 [ C(RESULT_MISS)   ] = -1,
1069         },
1070  },
1071  [ C(BPU ) ] = {
1072         [ C(OP_READ) ] = {
1073                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
1074                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
1075         },
1076         [ C(OP_WRITE) ] = {
1077                 [ C(RESULT_ACCESS) ] = -1,
1078                 [ C(RESULT_MISS)   ] = -1,
1079         },
1080         [ C(OP_PREFETCH) ] = {
1081                 [ C(RESULT_ACCESS) ] = -1,
1082                 [ C(RESULT_MISS)   ] = -1,
1083         },
1084  },
1085  [ C(NODE) ] = {
1086         [ C(OP_READ) ] = {
1087                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1088                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1089         },
1090         [ C(OP_WRITE) ] = {
1091                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1092                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1093         },
1094         [ C(OP_PREFETCH) ] = {
1095                 [ C(RESULT_ACCESS) ] = 0x0,
1096                 [ C(RESULT_MISS)   ] = 0x0,
1097         },
1098  },
1099 };
1100
1101 static __initconst const u64 hsw_hw_cache_extra_regs
1102                                 [PERF_COUNT_HW_CACHE_MAX]
1103                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1104                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1105 {
1106  [ C(LL  ) ] = {
1107         [ C(OP_READ) ] = {
1108                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1109                                        HSW_LLC_ACCESS,
1110                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1111                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1112         },
1113         [ C(OP_WRITE) ] = {
1114                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1115                                        HSW_LLC_ACCESS,
1116                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1117                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1118         },
1119         [ C(OP_PREFETCH) ] = {
1120                 [ C(RESULT_ACCESS) ] = 0x0,
1121                 [ C(RESULT_MISS)   ] = 0x0,
1122         },
1123  },
1124  [ C(NODE) ] = {
1125         [ C(OP_READ) ] = {
1126                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1127                                        HSW_L3_MISS_LOCAL_DRAM|
1128                                        HSW_SNOOP_DRAM,
1129                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1130                                        HSW_L3_MISS_REMOTE|
1131                                        HSW_SNOOP_DRAM,
1132         },
1133         [ C(OP_WRITE) ] = {
1134                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1135                                        HSW_L3_MISS_LOCAL_DRAM|
1136                                        HSW_SNOOP_DRAM,
1137                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1138                                        HSW_L3_MISS_REMOTE|
1139                                        HSW_SNOOP_DRAM,
1140         },
1141         [ C(OP_PREFETCH) ] = {
1142                 [ C(RESULT_ACCESS) ] = 0x0,
1143                 [ C(RESULT_MISS)   ] = 0x0,
1144         },
1145  },
1146 };
1147
1148 static __initconst const u64 westmere_hw_cache_event_ids
1149                                 [PERF_COUNT_HW_CACHE_MAX]
1150                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1151                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1152 {
1153  [ C(L1D) ] = {
1154         [ C(OP_READ) ] = {
1155                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1156                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1157         },
1158         [ C(OP_WRITE) ] = {
1159                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1160                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1161         },
1162         [ C(OP_PREFETCH) ] = {
1163                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1164                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1165         },
1166  },
1167  [ C(L1I ) ] = {
1168         [ C(OP_READ) ] = {
1169                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1170                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1171         },
1172         [ C(OP_WRITE) ] = {
1173                 [ C(RESULT_ACCESS) ] = -1,
1174                 [ C(RESULT_MISS)   ] = -1,
1175         },
1176         [ C(OP_PREFETCH) ] = {
1177                 [ C(RESULT_ACCESS) ] = 0x0,
1178                 [ C(RESULT_MISS)   ] = 0x0,
1179         },
1180  },
1181  [ C(LL  ) ] = {
1182         [ C(OP_READ) ] = {
1183                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1184                 [ C(RESULT_ACCESS) ] = 0x01b7,
1185                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1186                 [ C(RESULT_MISS)   ] = 0x01b7,
1187         },
1188         /*
1189          * Use RFO, not WRITEBACK, because a write miss would typically occur
1190          * on RFO.
1191          */
1192         [ C(OP_WRITE) ] = {
1193                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1194                 [ C(RESULT_ACCESS) ] = 0x01b7,
1195                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1196                 [ C(RESULT_MISS)   ] = 0x01b7,
1197         },
1198         [ C(OP_PREFETCH) ] = {
1199                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1200                 [ C(RESULT_ACCESS) ] = 0x01b7,
1201                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1202                 [ C(RESULT_MISS)   ] = 0x01b7,
1203         },
1204  },
1205  [ C(DTLB) ] = {
1206         [ C(OP_READ) ] = {
1207                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1208                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1209         },
1210         [ C(OP_WRITE) ] = {
1211                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1212                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1213         },
1214         [ C(OP_PREFETCH) ] = {
1215                 [ C(RESULT_ACCESS) ] = 0x0,
1216                 [ C(RESULT_MISS)   ] = 0x0,
1217         },
1218  },
1219  [ C(ITLB) ] = {
1220         [ C(OP_READ) ] = {
1221                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1222                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1223         },
1224         [ C(OP_WRITE) ] = {
1225                 [ C(RESULT_ACCESS) ] = -1,
1226                 [ C(RESULT_MISS)   ] = -1,
1227         },
1228         [ C(OP_PREFETCH) ] = {
1229                 [ C(RESULT_ACCESS) ] = -1,
1230                 [ C(RESULT_MISS)   ] = -1,
1231         },
1232  },
1233  [ C(BPU ) ] = {
1234         [ C(OP_READ) ] = {
1235                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1236                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1237         },
1238         [ C(OP_WRITE) ] = {
1239                 [ C(RESULT_ACCESS) ] = -1,
1240                 [ C(RESULT_MISS)   ] = -1,
1241         },
1242         [ C(OP_PREFETCH) ] = {
1243                 [ C(RESULT_ACCESS) ] = -1,
1244                 [ C(RESULT_MISS)   ] = -1,
1245         },
1246  },
1247  [ C(NODE) ] = {
1248         [ C(OP_READ) ] = {
1249                 [ C(RESULT_ACCESS) ] = 0x01b7,
1250                 [ C(RESULT_MISS)   ] = 0x01b7,
1251         },
1252         [ C(OP_WRITE) ] = {
1253                 [ C(RESULT_ACCESS) ] = 0x01b7,
1254                 [ C(RESULT_MISS)   ] = 0x01b7,
1255         },
1256         [ C(OP_PREFETCH) ] = {
1257                 [ C(RESULT_ACCESS) ] = 0x01b7,
1258                 [ C(RESULT_MISS)   ] = 0x01b7,
1259         },
1260  },
1261 };
1262
1263 /*
1264  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1265  * See IA32 SDM Vol 3B 30.6.1.3
1266  */
1267
1268 #define NHM_DMND_DATA_RD        (1 << 0)
1269 #define NHM_DMND_RFO            (1 << 1)
1270 #define NHM_DMND_IFETCH         (1 << 2)
1271 #define NHM_DMND_WB             (1 << 3)
1272 #define NHM_PF_DATA_RD          (1 << 4)
1273 #define NHM_PF_DATA_RFO         (1 << 5)
1274 #define NHM_PF_IFETCH           (1 << 6)
1275 #define NHM_OFFCORE_OTHER       (1 << 7)
1276 #define NHM_UNCORE_HIT          (1 << 8)
1277 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1278 #define NHM_OTHER_CORE_HITM     (1 << 10)
1279                                 /* reserved */
1280 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1281 #define NHM_REMOTE_DRAM         (1 << 13)
1282 #define NHM_LOCAL_DRAM          (1 << 14)
1283 #define NHM_NON_DRAM            (1 << 15)
1284
1285 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1286 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1287
1288 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1289 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1290 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1291
1292 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1293 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1294 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1295
1296 static __initconst const u64 nehalem_hw_cache_extra_regs
1297                                 [PERF_COUNT_HW_CACHE_MAX]
1298                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1299                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1300 {
1301  [ C(LL  ) ] = {
1302         [ C(OP_READ) ] = {
1303                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1304                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1305         },
1306         [ C(OP_WRITE) ] = {
1307                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1308                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1309         },
1310         [ C(OP_PREFETCH) ] = {
1311                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1312                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1313         },
1314  },
1315  [ C(NODE) ] = {
1316         [ C(OP_READ) ] = {
1317                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1318                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1319         },
1320         [ C(OP_WRITE) ] = {
1321                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1322                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1323         },
1324         [ C(OP_PREFETCH) ] = {
1325                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1326                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1327         },
1328  },
1329 };
1330
1331 static __initconst const u64 nehalem_hw_cache_event_ids
1332                                 [PERF_COUNT_HW_CACHE_MAX]
1333                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1334                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1335 {
1336  [ C(L1D) ] = {
1337         [ C(OP_READ) ] = {
1338                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1339                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1340         },
1341         [ C(OP_WRITE) ] = {
1342                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1343                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1344         },
1345         [ C(OP_PREFETCH) ] = {
1346                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1347                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1348         },
1349  },
1350  [ C(L1I ) ] = {
1351         [ C(OP_READ) ] = {
1352                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1353                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1354         },
1355         [ C(OP_WRITE) ] = {
1356                 [ C(RESULT_ACCESS) ] = -1,
1357                 [ C(RESULT_MISS)   ] = -1,
1358         },
1359         [ C(OP_PREFETCH) ] = {
1360                 [ C(RESULT_ACCESS) ] = 0x0,
1361                 [ C(RESULT_MISS)   ] = 0x0,
1362         },
1363  },
1364  [ C(LL  ) ] = {
1365         [ C(OP_READ) ] = {
1366                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1367                 [ C(RESULT_ACCESS) ] = 0x01b7,
1368                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1369                 [ C(RESULT_MISS)   ] = 0x01b7,
1370         },
1371         /*
1372          * Use RFO, not WRITEBACK, because a write miss would typically occur
1373          * on RFO.
1374          */
1375         [ C(OP_WRITE) ] = {
1376                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1377                 [ C(RESULT_ACCESS) ] = 0x01b7,
1378                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1379                 [ C(RESULT_MISS)   ] = 0x01b7,
1380         },
1381         [ C(OP_PREFETCH) ] = {
1382                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1383                 [ C(RESULT_ACCESS) ] = 0x01b7,
1384                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1385                 [ C(RESULT_MISS)   ] = 0x01b7,
1386         },
1387  },
1388  [ C(DTLB) ] = {
1389         [ C(OP_READ) ] = {
1390                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1391                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1392         },
1393         [ C(OP_WRITE) ] = {
1394                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1395                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1396         },
1397         [ C(OP_PREFETCH) ] = {
1398                 [ C(RESULT_ACCESS) ] = 0x0,
1399                 [ C(RESULT_MISS)   ] = 0x0,
1400         },
1401  },
1402  [ C(ITLB) ] = {
1403         [ C(OP_READ) ] = {
1404                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1405                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1406         },
1407         [ C(OP_WRITE) ] = {
1408                 [ C(RESULT_ACCESS) ] = -1,
1409                 [ C(RESULT_MISS)   ] = -1,
1410         },
1411         [ C(OP_PREFETCH) ] = {
1412                 [ C(RESULT_ACCESS) ] = -1,
1413                 [ C(RESULT_MISS)   ] = -1,
1414         },
1415  },
1416  [ C(BPU ) ] = {
1417         [ C(OP_READ) ] = {
1418                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1419                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1420         },
1421         [ C(OP_WRITE) ] = {
1422                 [ C(RESULT_ACCESS) ] = -1,
1423                 [ C(RESULT_MISS)   ] = -1,
1424         },
1425         [ C(OP_PREFETCH) ] = {
1426                 [ C(RESULT_ACCESS) ] = -1,
1427                 [ C(RESULT_MISS)   ] = -1,
1428         },
1429  },
1430  [ C(NODE) ] = {
1431         [ C(OP_READ) ] = {
1432                 [ C(RESULT_ACCESS) ] = 0x01b7,
1433                 [ C(RESULT_MISS)   ] = 0x01b7,
1434         },
1435         [ C(OP_WRITE) ] = {
1436                 [ C(RESULT_ACCESS) ] = 0x01b7,
1437                 [ C(RESULT_MISS)   ] = 0x01b7,
1438         },
1439         [ C(OP_PREFETCH) ] = {
1440                 [ C(RESULT_ACCESS) ] = 0x01b7,
1441                 [ C(RESULT_MISS)   ] = 0x01b7,
1442         },
1443  },
1444 };
1445
1446 static __initconst const u64 core2_hw_cache_event_ids
1447                                 [PERF_COUNT_HW_CACHE_MAX]
1448                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1449                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1450 {
1451  [ C(L1D) ] = {
1452         [ C(OP_READ) ] = {
1453                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1454                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1455         },
1456         [ C(OP_WRITE) ] = {
1457                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1458                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1459         },
1460         [ C(OP_PREFETCH) ] = {
1461                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1462                 [ C(RESULT_MISS)   ] = 0,
1463         },
1464  },
1465  [ C(L1I ) ] = {
1466         [ C(OP_READ) ] = {
1467                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1468                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1469         },
1470         [ C(OP_WRITE) ] = {
1471                 [ C(RESULT_ACCESS) ] = -1,
1472                 [ C(RESULT_MISS)   ] = -1,
1473         },
1474         [ C(OP_PREFETCH) ] = {
1475                 [ C(RESULT_ACCESS) ] = 0,
1476                 [ C(RESULT_MISS)   ] = 0,
1477         },
1478  },
1479  [ C(LL  ) ] = {
1480         [ C(OP_READ) ] = {
1481                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1482                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1483         },
1484         [ C(OP_WRITE) ] = {
1485                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1486                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1487         },
1488         [ C(OP_PREFETCH) ] = {
1489                 [ C(RESULT_ACCESS) ] = 0,
1490                 [ C(RESULT_MISS)   ] = 0,
1491         },
1492  },
1493  [ C(DTLB) ] = {
1494         [ C(OP_READ) ] = {
1495                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1496                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1497         },
1498         [ C(OP_WRITE) ] = {
1499                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1500                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1501         },
1502         [ C(OP_PREFETCH) ] = {
1503                 [ C(RESULT_ACCESS) ] = 0,
1504                 [ C(RESULT_MISS)   ] = 0,
1505         },
1506  },
1507  [ C(ITLB) ] = {
1508         [ C(OP_READ) ] = {
1509                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1510                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1511         },
1512         [ C(OP_WRITE) ] = {
1513                 [ C(RESULT_ACCESS) ] = -1,
1514                 [ C(RESULT_MISS)   ] = -1,
1515         },
1516         [ C(OP_PREFETCH) ] = {
1517                 [ C(RESULT_ACCESS) ] = -1,
1518                 [ C(RESULT_MISS)   ] = -1,
1519         },
1520  },
1521  [ C(BPU ) ] = {
1522         [ C(OP_READ) ] = {
1523                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1524                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1525         },
1526         [ C(OP_WRITE) ] = {
1527                 [ C(RESULT_ACCESS) ] = -1,
1528                 [ C(RESULT_MISS)   ] = -1,
1529         },
1530         [ C(OP_PREFETCH) ] = {
1531                 [ C(RESULT_ACCESS) ] = -1,
1532                 [ C(RESULT_MISS)   ] = -1,
1533         },
1534  },
1535 };
1536
1537 static __initconst const u64 atom_hw_cache_event_ids
1538                                 [PERF_COUNT_HW_CACHE_MAX]
1539                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1540                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1541 {
1542  [ C(L1D) ] = {
1543         [ C(OP_READ) ] = {
1544                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1545                 [ C(RESULT_MISS)   ] = 0,
1546         },
1547         [ C(OP_WRITE) ] = {
1548                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1549                 [ C(RESULT_MISS)   ] = 0,
1550         },
1551         [ C(OP_PREFETCH) ] = {
1552                 [ C(RESULT_ACCESS) ] = 0x0,
1553                 [ C(RESULT_MISS)   ] = 0,
1554         },
1555  },
1556  [ C(L1I ) ] = {
1557         [ C(OP_READ) ] = {
1558                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1559                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1560         },
1561         [ C(OP_WRITE) ] = {
1562                 [ C(RESULT_ACCESS) ] = -1,
1563                 [ C(RESULT_MISS)   ] = -1,
1564         },
1565         [ C(OP_PREFETCH) ] = {
1566                 [ C(RESULT_ACCESS) ] = 0,
1567                 [ C(RESULT_MISS)   ] = 0,
1568         },
1569  },
1570  [ C(LL  ) ] = {
1571         [ C(OP_READ) ] = {
1572                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1573                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1574         },
1575         [ C(OP_WRITE) ] = {
1576                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1577                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1578         },
1579         [ C(OP_PREFETCH) ] = {
1580                 [ C(RESULT_ACCESS) ] = 0,
1581                 [ C(RESULT_MISS)   ] = 0,
1582         },
1583  },
1584  [ C(DTLB) ] = {
1585         [ C(OP_READ) ] = {
1586                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1587                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1588         },
1589         [ C(OP_WRITE) ] = {
1590                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1591                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1592         },
1593         [ C(OP_PREFETCH) ] = {
1594                 [ C(RESULT_ACCESS) ] = 0,
1595                 [ C(RESULT_MISS)   ] = 0,
1596         },
1597  },
1598  [ C(ITLB) ] = {
1599         [ C(OP_READ) ] = {
1600                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1601                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1602         },
1603         [ C(OP_WRITE) ] = {
1604                 [ C(RESULT_ACCESS) ] = -1,
1605                 [ C(RESULT_MISS)   ] = -1,
1606         },
1607         [ C(OP_PREFETCH) ] = {
1608                 [ C(RESULT_ACCESS) ] = -1,
1609                 [ C(RESULT_MISS)   ] = -1,
1610         },
1611  },
1612  [ C(BPU ) ] = {
1613         [ C(OP_READ) ] = {
1614                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1615                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1616         },
1617         [ C(OP_WRITE) ] = {
1618                 [ C(RESULT_ACCESS) ] = -1,
1619                 [ C(RESULT_MISS)   ] = -1,
1620         },
1621         [ C(OP_PREFETCH) ] = {
1622                 [ C(RESULT_ACCESS) ] = -1,
1623                 [ C(RESULT_MISS)   ] = -1,
1624         },
1625  },
1626 };
1627
1628 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1629 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1630 /* no_alloc_cycles.not_delivered */
1631 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1632                "event=0xca,umask=0x50");
1633 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1634 /* uops_retired.all */
1635 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1636                "event=0xc2,umask=0x10");
1637 /* uops_retired.all */
1638 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1639                "event=0xc2,umask=0x10");
1640
1641 static struct attribute *slm_events_attrs[] = {
1642         EVENT_PTR(td_total_slots_slm),
1643         EVENT_PTR(td_total_slots_scale_slm),
1644         EVENT_PTR(td_fetch_bubbles_slm),
1645         EVENT_PTR(td_fetch_bubbles_scale_slm),
1646         EVENT_PTR(td_slots_issued_slm),
1647         EVENT_PTR(td_slots_retired_slm),
1648         NULL
1649 };
1650
1651 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1652 {
1653         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1654         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1655         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1656         EVENT_EXTRA_END
1657 };
1658
1659 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1660 #define SLM_DMND_WRITE          SNB_DMND_RFO
1661 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1662
1663 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1664 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1665 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1666
1667 static __initconst const u64 slm_hw_cache_extra_regs
1668                                 [PERF_COUNT_HW_CACHE_MAX]
1669                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1670                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1671 {
1672  [ C(LL  ) ] = {
1673         [ C(OP_READ) ] = {
1674                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1675                 [ C(RESULT_MISS)   ] = 0,
1676         },
1677         [ C(OP_WRITE) ] = {
1678                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1679                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1680         },
1681         [ C(OP_PREFETCH) ] = {
1682                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1683                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1684         },
1685  },
1686 };
1687
1688 static __initconst const u64 slm_hw_cache_event_ids
1689                                 [PERF_COUNT_HW_CACHE_MAX]
1690                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1691                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1692 {
1693  [ C(L1D) ] = {
1694         [ C(OP_READ) ] = {
1695                 [ C(RESULT_ACCESS) ] = 0,
1696                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1697         },
1698         [ C(OP_WRITE) ] = {
1699                 [ C(RESULT_ACCESS) ] = 0,
1700                 [ C(RESULT_MISS)   ] = 0,
1701         },
1702         [ C(OP_PREFETCH) ] = {
1703                 [ C(RESULT_ACCESS) ] = 0,
1704                 [ C(RESULT_MISS)   ] = 0,
1705         },
1706  },
1707  [ C(L1I ) ] = {
1708         [ C(OP_READ) ] = {
1709                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1710                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1711         },
1712         [ C(OP_WRITE) ] = {
1713                 [ C(RESULT_ACCESS) ] = -1,
1714                 [ C(RESULT_MISS)   ] = -1,
1715         },
1716         [ C(OP_PREFETCH) ] = {
1717                 [ C(RESULT_ACCESS) ] = 0,
1718                 [ C(RESULT_MISS)   ] = 0,
1719         },
1720  },
1721  [ C(LL  ) ] = {
1722         [ C(OP_READ) ] = {
1723                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1724                 [ C(RESULT_ACCESS) ] = 0x01b7,
1725                 [ C(RESULT_MISS)   ] = 0,
1726         },
1727         [ C(OP_WRITE) ] = {
1728                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1729                 [ C(RESULT_ACCESS) ] = 0x01b7,
1730                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1731                 [ C(RESULT_MISS)   ] = 0x01b7,
1732         },
1733         [ C(OP_PREFETCH) ] = {
1734                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1735                 [ C(RESULT_ACCESS) ] = 0x01b7,
1736                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1737                 [ C(RESULT_MISS)   ] = 0x01b7,
1738         },
1739  },
1740  [ C(DTLB) ] = {
1741         [ C(OP_READ) ] = {
1742                 [ C(RESULT_ACCESS) ] = 0,
1743                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1744         },
1745         [ C(OP_WRITE) ] = {
1746                 [ C(RESULT_ACCESS) ] = 0,
1747                 [ C(RESULT_MISS)   ] = 0,
1748         },
1749         [ C(OP_PREFETCH) ] = {
1750                 [ C(RESULT_ACCESS) ] = 0,
1751                 [ C(RESULT_MISS)   ] = 0,
1752         },
1753  },
1754  [ C(ITLB) ] = {
1755         [ C(OP_READ) ] = {
1756                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1757                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1758         },
1759         [ C(OP_WRITE) ] = {
1760                 [ C(RESULT_ACCESS) ] = -1,
1761                 [ C(RESULT_MISS)   ] = -1,
1762         },
1763         [ C(OP_PREFETCH) ] = {
1764                 [ C(RESULT_ACCESS) ] = -1,
1765                 [ C(RESULT_MISS)   ] = -1,
1766         },
1767  },
1768  [ C(BPU ) ] = {
1769         [ C(OP_READ) ] = {
1770                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1771                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1772         },
1773         [ C(OP_WRITE) ] = {
1774                 [ C(RESULT_ACCESS) ] = -1,
1775                 [ C(RESULT_MISS)   ] = -1,
1776         },
1777         [ C(OP_PREFETCH) ] = {
1778                 [ C(RESULT_ACCESS) ] = -1,
1779                 [ C(RESULT_MISS)   ] = -1,
1780         },
1781  },
1782 };
1783
1784 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1785 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1786 /* UOPS_NOT_DELIVERED.ANY */
1787 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1788 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1789 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1790 /* UOPS_RETIRED.ANY */
1791 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1792 /* UOPS_ISSUED.ANY */
1793 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1794
1795 static struct attribute *glm_events_attrs[] = {
1796         EVENT_PTR(td_total_slots_glm),
1797         EVENT_PTR(td_total_slots_scale_glm),
1798         EVENT_PTR(td_fetch_bubbles_glm),
1799         EVENT_PTR(td_recovery_bubbles_glm),
1800         EVENT_PTR(td_slots_issued_glm),
1801         EVENT_PTR(td_slots_retired_glm),
1802         NULL
1803 };
1804
1805 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1806         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1807         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1808         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1809         EVENT_EXTRA_END
1810 };
1811
1812 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1813 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1814 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1815 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1816 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1817 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1818 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1819 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1820 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1821 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1822
1823 static __initconst const u64 glm_hw_cache_event_ids
1824                                 [PERF_COUNT_HW_CACHE_MAX]
1825                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1826                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1827         [C(L1D)] = {
1828                 [C(OP_READ)] = {
1829                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1830                         [C(RESULT_MISS)]        = 0x0,
1831                 },
1832                 [C(OP_WRITE)] = {
1833                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1834                         [C(RESULT_MISS)]        = 0x0,
1835                 },
1836                 [C(OP_PREFETCH)] = {
1837                         [C(RESULT_ACCESS)]      = 0x0,
1838                         [C(RESULT_MISS)]        = 0x0,
1839                 },
1840         },
1841         [C(L1I)] = {
1842                 [C(OP_READ)] = {
1843                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1844                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1845                 },
1846                 [C(OP_WRITE)] = {
1847                         [C(RESULT_ACCESS)]      = -1,
1848                         [C(RESULT_MISS)]        = -1,
1849                 },
1850                 [C(OP_PREFETCH)] = {
1851                         [C(RESULT_ACCESS)]      = 0x0,
1852                         [C(RESULT_MISS)]        = 0x0,
1853                 },
1854         },
1855         [C(LL)] = {
1856                 [C(OP_READ)] = {
1857                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1858                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1859                 },
1860                 [C(OP_WRITE)] = {
1861                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1862                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1863                 },
1864                 [C(OP_PREFETCH)] = {
1865                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1866                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1867                 },
1868         },
1869         [C(DTLB)] = {
1870                 [C(OP_READ)] = {
1871                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1872                         [C(RESULT_MISS)]        = 0x0,
1873                 },
1874                 [C(OP_WRITE)] = {
1875                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1876                         [C(RESULT_MISS)]        = 0x0,
1877                 },
1878                 [C(OP_PREFETCH)] = {
1879                         [C(RESULT_ACCESS)]      = 0x0,
1880                         [C(RESULT_MISS)]        = 0x0,
1881                 },
1882         },
1883         [C(ITLB)] = {
1884                 [C(OP_READ)] = {
1885                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1886                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1887                 },
1888                 [C(OP_WRITE)] = {
1889                         [C(RESULT_ACCESS)]      = -1,
1890                         [C(RESULT_MISS)]        = -1,
1891                 },
1892                 [C(OP_PREFETCH)] = {
1893                         [C(RESULT_ACCESS)]      = -1,
1894                         [C(RESULT_MISS)]        = -1,
1895                 },
1896         },
1897         [C(BPU)] = {
1898                 [C(OP_READ)] = {
1899                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1900                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1901                 },
1902                 [C(OP_WRITE)] = {
1903                         [C(RESULT_ACCESS)]      = -1,
1904                         [C(RESULT_MISS)]        = -1,
1905                 },
1906                 [C(OP_PREFETCH)] = {
1907                         [C(RESULT_ACCESS)]      = -1,
1908                         [C(RESULT_MISS)]        = -1,
1909                 },
1910         },
1911 };
1912
1913 static __initconst const u64 glm_hw_cache_extra_regs
1914                                 [PERF_COUNT_HW_CACHE_MAX]
1915                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1916                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1917         [C(LL)] = {
1918                 [C(OP_READ)] = {
1919                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1920                                                   GLM_LLC_ACCESS,
1921                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1922                                                   GLM_LLC_MISS,
1923                 },
1924                 [C(OP_WRITE)] = {
1925                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1926                                                   GLM_LLC_ACCESS,
1927                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1928                                                   GLM_LLC_MISS,
1929                 },
1930                 [C(OP_PREFETCH)] = {
1931                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1932                                                   GLM_LLC_ACCESS,
1933                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1934                                                   GLM_LLC_MISS,
1935                 },
1936         },
1937 };
1938
1939 static __initconst const u64 glp_hw_cache_event_ids
1940                                 [PERF_COUNT_HW_CACHE_MAX]
1941                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1942                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1943         [C(L1D)] = {
1944                 [C(OP_READ)] = {
1945                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1946                         [C(RESULT_MISS)]        = 0x0,
1947                 },
1948                 [C(OP_WRITE)] = {
1949                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1950                         [C(RESULT_MISS)]        = 0x0,
1951                 },
1952                 [C(OP_PREFETCH)] = {
1953                         [C(RESULT_ACCESS)]      = 0x0,
1954                         [C(RESULT_MISS)]        = 0x0,
1955                 },
1956         },
1957         [C(L1I)] = {
1958                 [C(OP_READ)] = {
1959                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1960                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1961                 },
1962                 [C(OP_WRITE)] = {
1963                         [C(RESULT_ACCESS)]      = -1,
1964                         [C(RESULT_MISS)]        = -1,
1965                 },
1966                 [C(OP_PREFETCH)] = {
1967                         [C(RESULT_ACCESS)]      = 0x0,
1968                         [C(RESULT_MISS)]        = 0x0,
1969                 },
1970         },
1971         [C(LL)] = {
1972                 [C(OP_READ)] = {
1973                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1974                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1975                 },
1976                 [C(OP_WRITE)] = {
1977                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1978                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1979                 },
1980                 [C(OP_PREFETCH)] = {
1981                         [C(RESULT_ACCESS)]      = 0x0,
1982                         [C(RESULT_MISS)]        = 0x0,
1983                 },
1984         },
1985         [C(DTLB)] = {
1986                 [C(OP_READ)] = {
1987                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1988                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1989                 },
1990                 [C(OP_WRITE)] = {
1991                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1992                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1993                 },
1994                 [C(OP_PREFETCH)] = {
1995                         [C(RESULT_ACCESS)]      = 0x0,
1996                         [C(RESULT_MISS)]        = 0x0,
1997                 },
1998         },
1999         [C(ITLB)] = {
2000                 [C(OP_READ)] = {
2001                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
2002                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
2003                 },
2004                 [C(OP_WRITE)] = {
2005                         [C(RESULT_ACCESS)]      = -1,
2006                         [C(RESULT_MISS)]        = -1,
2007                 },
2008                 [C(OP_PREFETCH)] = {
2009                         [C(RESULT_ACCESS)]      = -1,
2010                         [C(RESULT_MISS)]        = -1,
2011                 },
2012         },
2013         [C(BPU)] = {
2014                 [C(OP_READ)] = {
2015                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
2016                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
2017                 },
2018                 [C(OP_WRITE)] = {
2019                         [C(RESULT_ACCESS)]      = -1,
2020                         [C(RESULT_MISS)]        = -1,
2021                 },
2022                 [C(OP_PREFETCH)] = {
2023                         [C(RESULT_ACCESS)]      = -1,
2024                         [C(RESULT_MISS)]        = -1,
2025                 },
2026         },
2027 };
2028
2029 static __initconst const u64 glp_hw_cache_extra_regs
2030                                 [PERF_COUNT_HW_CACHE_MAX]
2031                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2032                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2033         [C(LL)] = {
2034                 [C(OP_READ)] = {
2035                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
2036                                                   GLM_LLC_ACCESS,
2037                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
2038                                                   GLM_LLC_MISS,
2039                 },
2040                 [C(OP_WRITE)] = {
2041                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
2042                                                   GLM_LLC_ACCESS,
2043                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
2044                                                   GLM_LLC_MISS,
2045                 },
2046                 [C(OP_PREFETCH)] = {
2047                         [C(RESULT_ACCESS)]      = 0x0,
2048                         [C(RESULT_MISS)]        = 0x0,
2049                 },
2050         },
2051 };
2052
2053 #define TNT_LOCAL_DRAM                  BIT_ULL(26)
2054 #define TNT_DEMAND_READ                 GLM_DEMAND_DATA_RD
2055 #define TNT_DEMAND_WRITE                GLM_DEMAND_RFO
2056 #define TNT_LLC_ACCESS                  GLM_ANY_RESPONSE
2057 #define TNT_SNP_ANY                     (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2058                                          SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2059 #define TNT_LLC_MISS                    (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2060
2061 static __initconst const u64 tnt_hw_cache_extra_regs
2062                                 [PERF_COUNT_HW_CACHE_MAX]
2063                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2064                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2065         [C(LL)] = {
2066                 [C(OP_READ)] = {
2067                         [C(RESULT_ACCESS)]      = TNT_DEMAND_READ|
2068                                                   TNT_LLC_ACCESS,
2069                         [C(RESULT_MISS)]        = TNT_DEMAND_READ|
2070                                                   TNT_LLC_MISS,
2071                 },
2072                 [C(OP_WRITE)] = {
2073                         [C(RESULT_ACCESS)]      = TNT_DEMAND_WRITE|
2074                                                   TNT_LLC_ACCESS,
2075                         [C(RESULT_MISS)]        = TNT_DEMAND_WRITE|
2076                                                   TNT_LLC_MISS,
2077                 },
2078                 [C(OP_PREFETCH)] = {
2079                         [C(RESULT_ACCESS)]      = 0x0,
2080                         [C(RESULT_MISS)]        = 0x0,
2081                 },
2082         },
2083 };
2084
2085 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2086 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2087 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2088 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2089
2090 static struct attribute *tnt_events_attrs[] = {
2091         EVENT_PTR(td_fe_bound_tnt),
2092         EVENT_PTR(td_retiring_tnt),
2093         EVENT_PTR(td_bad_spec_tnt),
2094         EVENT_PTR(td_be_bound_tnt),
2095         NULL,
2096 };
2097
2098 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2099         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2100         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2101         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2102         EVENT_EXTRA_END
2103 };
2104
2105 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2106         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2107         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2108         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2109         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2110         EVENT_EXTRA_END
2111 };
2112
2113 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
2114 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
2115 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
2116 #define KNL_MCDRAM_FAR          BIT_ULL(22)
2117 #define KNL_DDR_LOCAL           BIT_ULL(23)
2118 #define KNL_DDR_FAR             BIT_ULL(24)
2119 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2120                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
2121 #define KNL_L2_READ             SLM_DMND_READ
2122 #define KNL_L2_WRITE            SLM_DMND_WRITE
2123 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
2124 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
2125 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2126                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
2127                                                   SNB_NON_DRAM)
2128
2129 static __initconst const u64 knl_hw_cache_extra_regs
2130                                 [PERF_COUNT_HW_CACHE_MAX]
2131                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2132                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2133         [C(LL)] = {
2134                 [C(OP_READ)] = {
2135                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2136                         [C(RESULT_MISS)]   = 0,
2137                 },
2138                 [C(OP_WRITE)] = {
2139                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2140                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2141                 },
2142                 [C(OP_PREFETCH)] = {
2143                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2144                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2145                 },
2146         },
2147 };
2148
2149 /*
2150  * Used from PMIs where the LBRs are already disabled.
2151  *
2152  * This function could be called consecutively. It is required to remain in
2153  * disabled state if called consecutively.
2154  *
2155  * During consecutive calls, the same disable value will be written to related
2156  * registers, so the PMU state remains unchanged.
2157  *
2158  * intel_bts events don't coexist with intel PMU's BTS events because of
2159  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2160  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2161  *
2162  * Avoid PEBS_ENABLE MSR access in PMIs.
2163  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2164  * It doesn't matter if the PEBS is enabled or not.
2165  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2166  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2167  * However, there are some cases which may change PEBS status, e.g. PMI
2168  * throttle. The PEBS_ENABLE should be updated where the status changes.
2169  */
2170 static __always_inline void __intel_pmu_disable_all(bool bts)
2171 {
2172         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2173
2174         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2175
2176         if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2177                 intel_pmu_disable_bts();
2178 }
2179
2180 static __always_inline void intel_pmu_disable_all(void)
2181 {
2182         __intel_pmu_disable_all(true);
2183         intel_pmu_pebs_disable_all();
2184         intel_pmu_lbr_disable_all();
2185 }
2186
2187 static void __intel_pmu_enable_all(int added, bool pmi)
2188 {
2189         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2190         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2191
2192         intel_pmu_lbr_enable_all(pmi);
2193         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2194                intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2195
2196         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2197                 struct perf_event *event =
2198                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2199
2200                 if (WARN_ON_ONCE(!event))
2201                         return;
2202
2203                 intel_pmu_enable_bts(event->hw.config);
2204         }
2205 }
2206
2207 static void intel_pmu_enable_all(int added)
2208 {
2209         intel_pmu_pebs_enable_all();
2210         __intel_pmu_enable_all(added, false);
2211 }
2212
2213 static noinline int
2214 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2215                                   unsigned int cnt, unsigned long flags)
2216 {
2217         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2218
2219         intel_pmu_lbr_read();
2220         cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2221
2222         memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2223         intel_pmu_enable_all(0);
2224         local_irq_restore(flags);
2225         return cnt;
2226 }
2227
2228 static int
2229 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2230 {
2231         unsigned long flags;
2232
2233         /* must not have branches... */
2234         local_irq_save(flags);
2235         __intel_pmu_disable_all(false); /* we don't care about BTS */
2236         __intel_pmu_lbr_disable();
2237         /*            ... until here */
2238         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2239 }
2240
2241 static int
2242 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2243 {
2244         unsigned long flags;
2245
2246         /* must not have branches... */
2247         local_irq_save(flags);
2248         __intel_pmu_disable_all(false); /* we don't care about BTS */
2249         __intel_pmu_arch_lbr_disable();
2250         /*            ... until here */
2251         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2252 }
2253
2254 /*
2255  * Workaround for:
2256  *   Intel Errata AAK100 (model 26)
2257  *   Intel Errata AAP53  (model 30)
2258  *   Intel Errata BD53   (model 44)
2259  *
2260  * The official story:
2261  *   These chips need to be 'reset' when adding counters by programming the
2262  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2263  *   in sequence on the same PMC or on different PMCs.
2264  *
2265  * In practice it appears some of these events do in fact count, and
2266  * we need to program all 4 events.
2267  */
2268 static void intel_pmu_nhm_workaround(void)
2269 {
2270         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2271         static const unsigned long nhm_magic[4] = {
2272                 0x4300B5,
2273                 0x4300D2,
2274                 0x4300B1,
2275                 0x4300B1
2276         };
2277         struct perf_event *event;
2278         int i;
2279
2280         /*
2281          * The Errata requires below steps:
2282          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2283          * 2) Configure 4 PERFEVTSELx with the magic events and clear
2284          *    the corresponding PMCx;
2285          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2286          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2287          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2288          */
2289
2290         /*
2291          * The real steps we choose are a little different from above.
2292          * A) To reduce MSR operations, we don't run step 1) as they
2293          *    are already cleared before this function is called;
2294          * B) Call x86_perf_event_update to save PMCx before configuring
2295          *    PERFEVTSELx with magic number;
2296          * C) With step 5), we do clear only when the PERFEVTSELx is
2297          *    not used currently.
2298          * D) Call x86_perf_event_set_period to restore PMCx;
2299          */
2300
2301         /* We always operate 4 pairs of PERF Counters */
2302         for (i = 0; i < 4; i++) {
2303                 event = cpuc->events[i];
2304                 if (event)
2305                         x86_perf_event_update(event);
2306         }
2307
2308         for (i = 0; i < 4; i++) {
2309                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2310                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2311         }
2312
2313         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2314         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2315
2316         for (i = 0; i < 4; i++) {
2317                 event = cpuc->events[i];
2318
2319                 if (event) {
2320                         x86_perf_event_set_period(event);
2321                         __x86_pmu_enable_event(&event->hw,
2322                                         ARCH_PERFMON_EVENTSEL_ENABLE);
2323                 } else
2324                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2325         }
2326 }
2327
2328 static void intel_pmu_nhm_enable_all(int added)
2329 {
2330         if (added)
2331                 intel_pmu_nhm_workaround();
2332         intel_pmu_enable_all(added);
2333 }
2334
2335 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2336 {
2337         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2338
2339         if (cpuc->tfa_shadow != val) {
2340                 cpuc->tfa_shadow = val;
2341                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2342         }
2343 }
2344
2345 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2346 {
2347         /*
2348          * We're going to use PMC3, make sure TFA is set before we touch it.
2349          */
2350         if (cntr == 3)
2351                 intel_set_tfa(cpuc, true);
2352 }
2353
2354 static void intel_tfa_pmu_enable_all(int added)
2355 {
2356         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2357
2358         /*
2359          * If we find PMC3 is no longer used when we enable the PMU, we can
2360          * clear TFA.
2361          */
2362         if (!test_bit(3, cpuc->active_mask))
2363                 intel_set_tfa(cpuc, false);
2364
2365         intel_pmu_enable_all(added);
2366 }
2367
2368 static inline u64 intel_pmu_get_status(void)
2369 {
2370         u64 status;
2371
2372         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2373
2374         return status;
2375 }
2376
2377 static inline void intel_pmu_ack_status(u64 ack)
2378 {
2379         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2380 }
2381
2382 static inline bool event_is_checkpointed(struct perf_event *event)
2383 {
2384         return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2385 }
2386
2387 static inline void intel_set_masks(struct perf_event *event, int idx)
2388 {
2389         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2390
2391         if (event->attr.exclude_host)
2392                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2393         if (event->attr.exclude_guest)
2394                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2395         if (event_is_checkpointed(event))
2396                 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2397 }
2398
2399 static inline void intel_clear_masks(struct perf_event *event, int idx)
2400 {
2401         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2402
2403         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2404         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2405         __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2406 }
2407
2408 static void intel_pmu_disable_fixed(struct perf_event *event)
2409 {
2410         struct hw_perf_event *hwc = &event->hw;
2411         u64 ctrl_val, mask;
2412         int idx = hwc->idx;
2413
2414         if (is_topdown_idx(idx)) {
2415                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2416
2417                 /*
2418                  * When there are other active TopDown events,
2419                  * don't disable the fixed counter 3.
2420                  */
2421                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2422                         return;
2423                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2424         }
2425
2426         intel_clear_masks(event, idx);
2427
2428         mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2429         rdmsrl(hwc->config_base, ctrl_val);
2430         ctrl_val &= ~mask;
2431         wrmsrl(hwc->config_base, ctrl_val);
2432 }
2433
2434 static void intel_pmu_disable_event(struct perf_event *event)
2435 {
2436         struct hw_perf_event *hwc = &event->hw;
2437         int idx = hwc->idx;
2438
2439         switch (idx) {
2440         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2441                 intel_clear_masks(event, idx);
2442                 x86_pmu_disable_event(event);
2443                 break;
2444         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2445         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2446                 intel_pmu_disable_fixed(event);
2447                 break;
2448         case INTEL_PMC_IDX_FIXED_BTS:
2449                 intel_pmu_disable_bts();
2450                 intel_pmu_drain_bts_buffer();
2451                 return;
2452         case INTEL_PMC_IDX_FIXED_VLBR:
2453                 intel_clear_masks(event, idx);
2454                 break;
2455         default:
2456                 intel_clear_masks(event, idx);
2457                 pr_warn("Failed to disable the event with invalid index %d\n",
2458                         idx);
2459                 return;
2460         }
2461
2462         /*
2463          * Needs to be called after x86_pmu_disable_event,
2464          * so we don't trigger the event without PEBS bit set.
2465          */
2466         if (unlikely(event->attr.precise_ip))
2467                 intel_pmu_pebs_disable(event);
2468 }
2469
2470 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2471 {
2472         if (is_pebs_pt(event))
2473                 perf_report_aux_output_id(event, idx);
2474 }
2475
2476 static void intel_pmu_del_event(struct perf_event *event)
2477 {
2478         if (needs_branch_stack(event))
2479                 intel_pmu_lbr_del(event);
2480         if (event->attr.precise_ip)
2481                 intel_pmu_pebs_del(event);
2482 }
2483
2484 static int icl_set_topdown_event_period(struct perf_event *event)
2485 {
2486         struct hw_perf_event *hwc = &event->hw;
2487         s64 left = local64_read(&hwc->period_left);
2488
2489         /*
2490          * The values in PERF_METRICS MSR are derived from fixed counter 3.
2491          * Software should start both registers, PERF_METRICS and fixed
2492          * counter 3, from zero.
2493          * Clear PERF_METRICS and Fixed counter 3 in initialization.
2494          * After that, both MSRs will be cleared for each read.
2495          * Don't need to clear them again.
2496          */
2497         if (left == x86_pmu.max_period) {
2498                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2499                 wrmsrl(MSR_PERF_METRICS, 0);
2500                 hwc->saved_slots = 0;
2501                 hwc->saved_metric = 0;
2502         }
2503
2504         if ((hwc->saved_slots) && is_slots_event(event)) {
2505                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2506                 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2507         }
2508
2509         perf_event_update_userpage(event);
2510
2511         return 0;
2512 }
2513
2514 static int adl_set_topdown_event_period(struct perf_event *event)
2515 {
2516         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2517
2518         if (pmu->cpu_type != hybrid_big)
2519                 return 0;
2520
2521         return icl_set_topdown_event_period(event);
2522 }
2523
2524 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2525 {
2526         u32 val;
2527
2528         /*
2529          * The metric is reported as an 8bit integer fraction
2530          * summing up to 0xff.
2531          * slots-in-metric = (Metric / 0xff) * slots
2532          */
2533         val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2534         return  mul_u64_u32_div(slots, val, 0xff);
2535 }
2536
2537 static u64 icl_get_topdown_value(struct perf_event *event,
2538                                        u64 slots, u64 metrics)
2539 {
2540         int idx = event->hw.idx;
2541         u64 delta;
2542
2543         if (is_metric_idx(idx))
2544                 delta = icl_get_metrics_event_value(metrics, slots, idx);
2545         else
2546                 delta = slots;
2547
2548         return delta;
2549 }
2550
2551 static void __icl_update_topdown_event(struct perf_event *event,
2552                                        u64 slots, u64 metrics,
2553                                        u64 last_slots, u64 last_metrics)
2554 {
2555         u64 delta, last = 0;
2556
2557         delta = icl_get_topdown_value(event, slots, metrics);
2558         if (last_slots)
2559                 last = icl_get_topdown_value(event, last_slots, last_metrics);
2560
2561         /*
2562          * The 8bit integer fraction of metric may be not accurate,
2563          * especially when the changes is very small.
2564          * For example, if only a few bad_spec happens, the fraction
2565          * may be reduced from 1 to 0. If so, the bad_spec event value
2566          * will be 0 which is definitely less than the last value.
2567          * Avoid update event->count for this case.
2568          */
2569         if (delta > last) {
2570                 delta -= last;
2571                 local64_add(delta, &event->count);
2572         }
2573 }
2574
2575 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2576                                       u64 metrics, int metric_end)
2577 {
2578         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2579         struct perf_event *other;
2580         int idx;
2581
2582         event->hw.saved_slots = slots;
2583         event->hw.saved_metric = metrics;
2584
2585         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2586                 if (!is_topdown_idx(idx))
2587                         continue;
2588                 other = cpuc->events[idx];
2589                 other->hw.saved_slots = slots;
2590                 other->hw.saved_metric = metrics;
2591         }
2592 }
2593
2594 /*
2595  * Update all active Topdown events.
2596  *
2597  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2598  * modify by a NMI. PMU has to be disabled before calling this function.
2599  */
2600
2601 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2602 {
2603         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2604         struct perf_event *other;
2605         u64 slots, metrics;
2606         bool reset = true;
2607         int idx;
2608
2609         /* read Fixed counter 3 */
2610         rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2611         if (!slots)
2612                 return 0;
2613
2614         /* read PERF_METRICS */
2615         rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2616
2617         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2618                 if (!is_topdown_idx(idx))
2619                         continue;
2620                 other = cpuc->events[idx];
2621                 __icl_update_topdown_event(other, slots, metrics,
2622                                            event ? event->hw.saved_slots : 0,
2623                                            event ? event->hw.saved_metric : 0);
2624         }
2625
2626         /*
2627          * Check and update this event, which may have been cleared
2628          * in active_mask e.g. x86_pmu_stop()
2629          */
2630         if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2631                 __icl_update_topdown_event(event, slots, metrics,
2632                                            event->hw.saved_slots,
2633                                            event->hw.saved_metric);
2634
2635                 /*
2636                  * In x86_pmu_stop(), the event is cleared in active_mask first,
2637                  * then drain the delta, which indicates context switch for
2638                  * counting.
2639                  * Save metric and slots for context switch.
2640                  * Don't need to reset the PERF_METRICS and Fixed counter 3.
2641                  * Because the values will be restored in next schedule in.
2642                  */
2643                 update_saved_topdown_regs(event, slots, metrics, metric_end);
2644                 reset = false;
2645         }
2646
2647         if (reset) {
2648                 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2649                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2650                 wrmsrl(MSR_PERF_METRICS, 0);
2651                 if (event)
2652                         update_saved_topdown_regs(event, 0, 0, metric_end);
2653         }
2654
2655         return slots;
2656 }
2657
2658 static u64 icl_update_topdown_event(struct perf_event *event)
2659 {
2660         return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2661                                                  x86_pmu.num_topdown_events - 1);
2662 }
2663
2664 static u64 adl_update_topdown_event(struct perf_event *event)
2665 {
2666         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2667
2668         if (pmu->cpu_type != hybrid_big)
2669                 return 0;
2670
2671         return icl_update_topdown_event(event);
2672 }
2673
2674
2675 static void intel_pmu_read_topdown_event(struct perf_event *event)
2676 {
2677         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2678
2679         /* Only need to call update_topdown_event() once for group read. */
2680         if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2681             !is_slots_event(event))
2682                 return;
2683
2684         perf_pmu_disable(event->pmu);
2685         x86_pmu.update_topdown_event(event);
2686         perf_pmu_enable(event->pmu);
2687 }
2688
2689 static void intel_pmu_read_event(struct perf_event *event)
2690 {
2691         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2692                 intel_pmu_auto_reload_read(event);
2693         else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2694                 intel_pmu_read_topdown_event(event);
2695         else
2696                 x86_perf_event_update(event);
2697 }
2698
2699 static void intel_pmu_enable_fixed(struct perf_event *event)
2700 {
2701         struct hw_perf_event *hwc = &event->hw;
2702         u64 ctrl_val, mask, bits = 0;
2703         int idx = hwc->idx;
2704
2705         if (is_topdown_idx(idx)) {
2706                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2707                 /*
2708                  * When there are other active TopDown events,
2709                  * don't enable the fixed counter 3 again.
2710                  */
2711                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2712                         return;
2713
2714                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2715         }
2716
2717         intel_set_masks(event, idx);
2718
2719         /*
2720          * Enable IRQ generation (0x8), if not PEBS,
2721          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2722          * if requested:
2723          */
2724         if (!event->attr.precise_ip)
2725                 bits |= 0x8;
2726         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2727                 bits |= 0x2;
2728         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2729                 bits |= 0x1;
2730
2731         /*
2732          * ANY bit is supported in v3 and up
2733          */
2734         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2735                 bits |= 0x4;
2736
2737         idx -= INTEL_PMC_IDX_FIXED;
2738         bits <<= (idx * 4);
2739         mask = 0xfULL << (idx * 4);
2740
2741         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2742                 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2743                 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2744         }
2745
2746         rdmsrl(hwc->config_base, ctrl_val);
2747         ctrl_val &= ~mask;
2748         ctrl_val |= bits;
2749         wrmsrl(hwc->config_base, ctrl_val);
2750 }
2751
2752 static void intel_pmu_enable_event(struct perf_event *event)
2753 {
2754         struct hw_perf_event *hwc = &event->hw;
2755         int idx = hwc->idx;
2756
2757         if (unlikely(event->attr.precise_ip))
2758                 intel_pmu_pebs_enable(event);
2759
2760         switch (idx) {
2761         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2762                 intel_set_masks(event, idx);
2763                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2764                 break;
2765         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2766         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2767                 intel_pmu_enable_fixed(event);
2768                 break;
2769         case INTEL_PMC_IDX_FIXED_BTS:
2770                 if (!__this_cpu_read(cpu_hw_events.enabled))
2771                         return;
2772                 intel_pmu_enable_bts(hwc->config);
2773                 break;
2774         case INTEL_PMC_IDX_FIXED_VLBR:
2775                 intel_set_masks(event, idx);
2776                 break;
2777         default:
2778                 pr_warn("Failed to enable the event with invalid index %d\n",
2779                         idx);
2780         }
2781 }
2782
2783 static void intel_pmu_add_event(struct perf_event *event)
2784 {
2785         if (event->attr.precise_ip)
2786                 intel_pmu_pebs_add(event);
2787         if (needs_branch_stack(event))
2788                 intel_pmu_lbr_add(event);
2789 }
2790
2791 /*
2792  * Save and restart an expired event. Called by NMI contexts,
2793  * so it has to be careful about preempting normal event ops:
2794  */
2795 int intel_pmu_save_and_restart(struct perf_event *event)
2796 {
2797         x86_perf_event_update(event);
2798         /*
2799          * For a checkpointed counter always reset back to 0.  This
2800          * avoids a situation where the counter overflows, aborts the
2801          * transaction and is then set back to shortly before the
2802          * overflow, and overflows and aborts again.
2803          */
2804         if (unlikely(event_is_checkpointed(event))) {
2805                 /* No race with NMIs because the counter should not be armed */
2806                 wrmsrl(event->hw.event_base, 0);
2807                 local64_set(&event->hw.prev_count, 0);
2808         }
2809         return x86_perf_event_set_period(event);
2810 }
2811
2812 static void intel_pmu_reset(void)
2813 {
2814         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2815         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2816         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2817         int num_counters = hybrid(cpuc->pmu, num_counters);
2818         unsigned long flags;
2819         int idx;
2820
2821         if (!num_counters)
2822                 return;
2823
2824         local_irq_save(flags);
2825
2826         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2827
2828         for (idx = 0; idx < num_counters; idx++) {
2829                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2830                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2831         }
2832         for (idx = 0; idx < num_counters_fixed; idx++) {
2833                 if (fixed_counter_disabled(idx, cpuc->pmu))
2834                         continue;
2835                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2836         }
2837
2838         if (ds)
2839                 ds->bts_index = ds->bts_buffer_base;
2840
2841         /* Ack all overflows and disable fixed counters */
2842         if (x86_pmu.version >= 2) {
2843                 intel_pmu_ack_status(intel_pmu_get_status());
2844                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2845         }
2846
2847         /* Reset LBRs and LBR freezing */
2848         if (x86_pmu.lbr_nr) {
2849                 update_debugctlmsr(get_debugctlmsr() &
2850                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2851         }
2852
2853         local_irq_restore(flags);
2854 }
2855
2856 /*
2857  * We may be running with guest PEBS events created by KVM, and the
2858  * PEBS records are logged into the guest's DS and invisible to host.
2859  *
2860  * In the case of guest PEBS overflow, we only trigger a fake event
2861  * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
2862  * The guest will then vm-entry and check the guest DS area to read
2863  * the guest PEBS records.
2864  *
2865  * The contents and other behavior of the guest event do not matter.
2866  */
2867 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
2868                                       struct perf_sample_data *data)
2869 {
2870         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2871         u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
2872         struct perf_event *event = NULL;
2873         int bit;
2874
2875         if (!unlikely(perf_guest_state()))
2876                 return;
2877
2878         if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
2879             !guest_pebs_idxs)
2880                 return;
2881
2882         for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs,
2883                          INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed) {
2884                 event = cpuc->events[bit];
2885                 if (!event->attr.precise_ip)
2886                         continue;
2887
2888                 perf_sample_data_init(data, 0, event->hw.last_period);
2889                 if (perf_event_overflow(event, data, regs))
2890                         x86_pmu_stop(event, 0);
2891
2892                 /* Inject one fake event is enough. */
2893                 break;
2894         }
2895 }
2896
2897 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2898 {
2899         struct perf_sample_data data;
2900         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2901         int bit;
2902         int handled = 0;
2903         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2904
2905         inc_irq_stat(apic_perf_irqs);
2906
2907         /*
2908          * Ignore a range of extra bits in status that do not indicate
2909          * overflow by themselves.
2910          */
2911         status &= ~(GLOBAL_STATUS_COND_CHG |
2912                     GLOBAL_STATUS_ASIF |
2913                     GLOBAL_STATUS_LBRS_FROZEN);
2914         if (!status)
2915                 return 0;
2916         /*
2917          * In case multiple PEBS events are sampled at the same time,
2918          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2919          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2920          * having their bits set in the status register. This is a sign
2921          * that there was at least one PEBS record pending at the time
2922          * of the PMU interrupt. PEBS counters must only be processed
2923          * via the drain_pebs() calls and not via the regular sample
2924          * processing loop coming after that the function, otherwise
2925          * phony regular samples may be generated in the sampling buffer
2926          * not marked with the EXACT tag. Another possibility is to have
2927          * one PEBS event and at least one non-PEBS event which overflows
2928          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2929          * not be set, yet the overflow status bit for the PEBS counter will
2930          * be on Skylake.
2931          *
2932          * To avoid this problem, we systematically ignore the PEBS-enabled
2933          * counters from the GLOBAL_STATUS mask and we always process PEBS
2934          * events via drain_pebs().
2935          */
2936         status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
2937
2938         /*
2939          * PEBS overflow sets bit 62 in the global status register
2940          */
2941         if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2942                 u64 pebs_enabled = cpuc->pebs_enabled;
2943
2944                 handled++;
2945                 x86_pmu_handle_guest_pebs(regs, &data);
2946                 x86_pmu.drain_pebs(regs, &data);
2947                 status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2948
2949                 /*
2950                  * PMI throttle may be triggered, which stops the PEBS event.
2951                  * Although cpuc->pebs_enabled is updated accordingly, the
2952                  * MSR_IA32_PEBS_ENABLE is not updated. Because the
2953                  * cpuc->enabled has been forced to 0 in PMI.
2954                  * Update the MSR if pebs_enabled is changed.
2955                  */
2956                 if (pebs_enabled != cpuc->pebs_enabled)
2957                         wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2958         }
2959
2960         /*
2961          * Intel PT
2962          */
2963         if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2964                 handled++;
2965                 if (!perf_guest_handle_intel_pt_intr())
2966                         intel_pt_interrupt();
2967         }
2968
2969         /*
2970          * Intel Perf metrics
2971          */
2972         if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2973                 handled++;
2974                 if (x86_pmu.update_topdown_event)
2975                         x86_pmu.update_topdown_event(NULL);
2976         }
2977
2978         /*
2979          * Checkpointed counters can lead to 'spurious' PMIs because the
2980          * rollback caused by the PMI will have cleared the overflow status
2981          * bit. Therefore always force probe these counters.
2982          */
2983         status |= cpuc->intel_cp_status;
2984
2985         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2986                 struct perf_event *event = cpuc->events[bit];
2987
2988                 handled++;
2989
2990                 if (!test_bit(bit, cpuc->active_mask))
2991                         continue;
2992
2993                 if (!intel_pmu_save_and_restart(event))
2994                         continue;
2995
2996                 perf_sample_data_init(&data, 0, event->hw.last_period);
2997
2998                 if (has_branch_stack(event)) {
2999                         data.br_stack = &cpuc->lbr_stack;
3000                         data.sample_flags |= PERF_SAMPLE_BRANCH_STACK;
3001                 }
3002
3003                 if (perf_event_overflow(event, &data, regs))
3004                         x86_pmu_stop(event, 0);
3005         }
3006
3007         return handled;
3008 }
3009
3010 /*
3011  * This handler is triggered by the local APIC, so the APIC IRQ handling
3012  * rules apply:
3013  */
3014 static int intel_pmu_handle_irq(struct pt_regs *regs)
3015 {
3016         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3017         bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3018         bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3019         int loops;
3020         u64 status;
3021         int handled;
3022         int pmu_enabled;
3023
3024         /*
3025          * Save the PMU state.
3026          * It needs to be restored when leaving the handler.
3027          */
3028         pmu_enabled = cpuc->enabled;
3029         /*
3030          * In general, the early ACK is only applied for old platforms.
3031          * For the big core starts from Haswell, the late ACK should be
3032          * applied.
3033          * For the small core after Tremont, we have to do the ACK right
3034          * before re-enabling counters, which is in the middle of the
3035          * NMI handler.
3036          */
3037         if (!late_ack && !mid_ack)
3038                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3039         intel_bts_disable_local();
3040         cpuc->enabled = 0;
3041         __intel_pmu_disable_all(true);
3042         handled = intel_pmu_drain_bts_buffer();
3043         handled += intel_bts_interrupt();
3044         status = intel_pmu_get_status();
3045         if (!status)
3046                 goto done;
3047
3048         loops = 0;
3049 again:
3050         intel_pmu_lbr_read();
3051         intel_pmu_ack_status(status);
3052         if (++loops > 100) {
3053                 static bool warned;
3054
3055                 if (!warned) {
3056                         WARN(1, "perfevents: irq loop stuck!\n");
3057                         perf_event_print_debug();
3058                         warned = true;
3059                 }
3060                 intel_pmu_reset();
3061                 goto done;
3062         }
3063
3064         handled += handle_pmi_common(regs, status);
3065
3066         /*
3067          * Repeat if there is more work to be done:
3068          */
3069         status = intel_pmu_get_status();
3070         if (status)
3071                 goto again;
3072
3073 done:
3074         if (mid_ack)
3075                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3076         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
3077         cpuc->enabled = pmu_enabled;
3078         if (pmu_enabled)
3079                 __intel_pmu_enable_all(0, true);
3080         intel_bts_enable_local();
3081
3082         /*
3083          * Only unmask the NMI after the overflow counters
3084          * have been reset. This avoids spurious NMIs on
3085          * Haswell CPUs.
3086          */
3087         if (late_ack)
3088                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3089         return handled;
3090 }
3091
3092 static struct event_constraint *
3093 intel_bts_constraints(struct perf_event *event)
3094 {
3095         if (unlikely(intel_pmu_has_bts(event)))
3096                 return &bts_constraint;
3097
3098         return NULL;
3099 }
3100
3101 /*
3102  * Note: matches a fake event, like Fixed2.
3103  */
3104 static struct event_constraint *
3105 intel_vlbr_constraints(struct perf_event *event)
3106 {
3107         struct event_constraint *c = &vlbr_constraint;
3108
3109         if (unlikely(constraint_match(c, event->hw.config))) {
3110                 event->hw.flags |= c->flags;
3111                 return c;
3112         }
3113
3114         return NULL;
3115 }
3116
3117 static int intel_alt_er(struct cpu_hw_events *cpuc,
3118                         int idx, u64 config)
3119 {
3120         struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3121         int alt_idx = idx;
3122
3123         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3124                 return idx;
3125
3126         if (idx == EXTRA_REG_RSP_0)
3127                 alt_idx = EXTRA_REG_RSP_1;
3128
3129         if (idx == EXTRA_REG_RSP_1)
3130                 alt_idx = EXTRA_REG_RSP_0;
3131
3132         if (config & ~extra_regs[alt_idx].valid_mask)
3133                 return idx;
3134
3135         return alt_idx;
3136 }
3137
3138 static void intel_fixup_er(struct perf_event *event, int idx)
3139 {
3140         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3141         event->hw.extra_reg.idx = idx;
3142
3143         if (idx == EXTRA_REG_RSP_0) {
3144                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3145                 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3146                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3147         } else if (idx == EXTRA_REG_RSP_1) {
3148                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3149                 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3150                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3151         }
3152 }
3153
3154 /*
3155  * manage allocation of shared extra msr for certain events
3156  *
3157  * sharing can be:
3158  * per-cpu: to be shared between the various events on a single PMU
3159  * per-core: per-cpu + shared by HT threads
3160  */
3161 static struct event_constraint *
3162 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3163                                    struct perf_event *event,
3164                                    struct hw_perf_event_extra *reg)
3165 {
3166         struct event_constraint *c = &emptyconstraint;
3167         struct er_account *era;
3168         unsigned long flags;
3169         int idx = reg->idx;
3170
3171         /*
3172          * reg->alloc can be set due to existing state, so for fake cpuc we
3173          * need to ignore this, otherwise we might fail to allocate proper fake
3174          * state for this extra reg constraint. Also see the comment below.
3175          */
3176         if (reg->alloc && !cpuc->is_fake)
3177                 return NULL; /* call x86_get_event_constraint() */
3178
3179 again:
3180         era = &cpuc->shared_regs->regs[idx];
3181         /*
3182          * we use spin_lock_irqsave() to avoid lockdep issues when
3183          * passing a fake cpuc
3184          */
3185         raw_spin_lock_irqsave(&era->lock, flags);
3186
3187         if (!atomic_read(&era->ref) || era->config == reg->config) {
3188
3189                 /*
3190                  * If its a fake cpuc -- as per validate_{group,event}() we
3191                  * shouldn't touch event state and we can avoid doing so
3192                  * since both will only call get_event_constraints() once
3193                  * on each event, this avoids the need for reg->alloc.
3194                  *
3195                  * Not doing the ER fixup will only result in era->reg being
3196                  * wrong, but since we won't actually try and program hardware
3197                  * this isn't a problem either.
3198                  */
3199                 if (!cpuc->is_fake) {
3200                         if (idx != reg->idx)
3201                                 intel_fixup_er(event, idx);
3202
3203                         /*
3204                          * x86_schedule_events() can call get_event_constraints()
3205                          * multiple times on events in the case of incremental
3206                          * scheduling(). reg->alloc ensures we only do the ER
3207                          * allocation once.
3208                          */
3209                         reg->alloc = 1;
3210                 }
3211
3212                 /* lock in msr value */
3213                 era->config = reg->config;
3214                 era->reg = reg->reg;
3215
3216                 /* one more user */
3217                 atomic_inc(&era->ref);
3218
3219                 /*
3220                  * need to call x86_get_event_constraint()
3221                  * to check if associated event has constraints
3222                  */
3223                 c = NULL;
3224         } else {
3225                 idx = intel_alt_er(cpuc, idx, reg->config);
3226                 if (idx != reg->idx) {
3227                         raw_spin_unlock_irqrestore(&era->lock, flags);
3228                         goto again;
3229                 }
3230         }
3231         raw_spin_unlock_irqrestore(&era->lock, flags);
3232
3233         return c;
3234 }
3235
3236 static void
3237 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3238                                    struct hw_perf_event_extra *reg)
3239 {
3240         struct er_account *era;
3241
3242         /*
3243          * Only put constraint if extra reg was actually allocated. Also takes
3244          * care of event which do not use an extra shared reg.
3245          *
3246          * Also, if this is a fake cpuc we shouldn't touch any event state
3247          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3248          * either since it'll be thrown out.
3249          */
3250         if (!reg->alloc || cpuc->is_fake)
3251                 return;
3252
3253         era = &cpuc->shared_regs->regs[reg->idx];
3254
3255         /* one fewer user */
3256         atomic_dec(&era->ref);
3257
3258         /* allocate again next time */
3259         reg->alloc = 0;
3260 }
3261
3262 static struct event_constraint *
3263 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3264                               struct perf_event *event)
3265 {
3266         struct event_constraint *c = NULL, *d;
3267         struct hw_perf_event_extra *xreg, *breg;
3268
3269         xreg = &event->hw.extra_reg;
3270         if (xreg->idx != EXTRA_REG_NONE) {
3271                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3272                 if (c == &emptyconstraint)
3273                         return c;
3274         }
3275         breg = &event->hw.branch_reg;
3276         if (breg->idx != EXTRA_REG_NONE) {
3277                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3278                 if (d == &emptyconstraint) {
3279                         __intel_shared_reg_put_constraints(cpuc, xreg);
3280                         c = d;
3281                 }
3282         }
3283         return c;
3284 }
3285
3286 struct event_constraint *
3287 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3288                           struct perf_event *event)
3289 {
3290         struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3291         struct event_constraint *c;
3292
3293         if (event_constraints) {
3294                 for_each_event_constraint(c, event_constraints) {
3295                         if (constraint_match(c, event->hw.config)) {
3296                                 event->hw.flags |= c->flags;
3297                                 return c;
3298                         }
3299                 }
3300         }
3301
3302         return &hybrid_var(cpuc->pmu, unconstrained);
3303 }
3304
3305 static struct event_constraint *
3306 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3307                             struct perf_event *event)
3308 {
3309         struct event_constraint *c;
3310
3311         c = intel_vlbr_constraints(event);
3312         if (c)
3313                 return c;
3314
3315         c = intel_bts_constraints(event);
3316         if (c)
3317                 return c;
3318
3319         c = intel_shared_regs_constraints(cpuc, event);
3320         if (c)
3321                 return c;
3322
3323         c = intel_pebs_constraints(event);
3324         if (c)
3325                 return c;
3326
3327         return x86_get_event_constraints(cpuc, idx, event);
3328 }
3329
3330 static void
3331 intel_start_scheduling(struct cpu_hw_events *cpuc)
3332 {
3333         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3334         struct intel_excl_states *xl;
3335         int tid = cpuc->excl_thread_id;
3336
3337         /*
3338          * nothing needed if in group validation mode
3339          */
3340         if (cpuc->is_fake || !is_ht_workaround_enabled())
3341                 return;
3342
3343         /*
3344          * no exclusion needed
3345          */
3346         if (WARN_ON_ONCE(!excl_cntrs))
3347                 return;
3348
3349         xl = &excl_cntrs->states[tid];
3350
3351         xl->sched_started = true;
3352         /*
3353          * lock shared state until we are done scheduling
3354          * in stop_event_scheduling()
3355          * makes scheduling appear as a transaction
3356          */
3357         raw_spin_lock(&excl_cntrs->lock);
3358 }
3359
3360 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3361 {
3362         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3363         struct event_constraint *c = cpuc->event_constraint[idx];
3364         struct intel_excl_states *xl;
3365         int tid = cpuc->excl_thread_id;
3366
3367         if (cpuc->is_fake || !is_ht_workaround_enabled())
3368                 return;
3369
3370         if (WARN_ON_ONCE(!excl_cntrs))
3371                 return;
3372
3373         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3374                 return;
3375
3376         xl = &excl_cntrs->states[tid];
3377
3378         lockdep_assert_held(&excl_cntrs->lock);
3379
3380         if (c->flags & PERF_X86_EVENT_EXCL)
3381                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3382         else
3383                 xl->state[cntr] = INTEL_EXCL_SHARED;
3384 }
3385
3386 static void
3387 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3388 {
3389         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3390         struct intel_excl_states *xl;
3391         int tid = cpuc->excl_thread_id;
3392
3393         /*
3394          * nothing needed if in group validation mode
3395          */
3396         if (cpuc->is_fake || !is_ht_workaround_enabled())
3397                 return;
3398         /*
3399          * no exclusion needed
3400          */
3401         if (WARN_ON_ONCE(!excl_cntrs))
3402                 return;
3403
3404         xl = &excl_cntrs->states[tid];
3405
3406         xl->sched_started = false;
3407         /*
3408          * release shared state lock (acquired in intel_start_scheduling())
3409          */
3410         raw_spin_unlock(&excl_cntrs->lock);
3411 }
3412
3413 static struct event_constraint *
3414 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3415 {
3416         WARN_ON_ONCE(!cpuc->constraint_list);
3417
3418         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3419                 struct event_constraint *cx;
3420
3421                 /*
3422                  * grab pre-allocated constraint entry
3423                  */
3424                 cx = &cpuc->constraint_list[idx];
3425
3426                 /*
3427                  * initialize dynamic constraint
3428                  * with static constraint
3429                  */
3430                 *cx = *c;
3431
3432                 /*
3433                  * mark constraint as dynamic
3434                  */
3435                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3436                 c = cx;
3437         }
3438
3439         return c;
3440 }
3441
3442 static struct event_constraint *
3443 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3444                            int idx, struct event_constraint *c)
3445 {
3446         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3447         struct intel_excl_states *xlo;
3448         int tid = cpuc->excl_thread_id;
3449         int is_excl, i, w;
3450
3451         /*
3452          * validating a group does not require
3453          * enforcing cross-thread  exclusion
3454          */
3455         if (cpuc->is_fake || !is_ht_workaround_enabled())
3456                 return c;
3457
3458         /*
3459          * no exclusion needed
3460          */
3461         if (WARN_ON_ONCE(!excl_cntrs))
3462                 return c;
3463
3464         /*
3465          * because we modify the constraint, we need
3466          * to make a copy. Static constraints come
3467          * from static const tables.
3468          *
3469          * only needed when constraint has not yet
3470          * been cloned (marked dynamic)
3471          */
3472         c = dyn_constraint(cpuc, c, idx);
3473
3474         /*
3475          * From here on, the constraint is dynamic.
3476          * Either it was just allocated above, or it
3477          * was allocated during a earlier invocation
3478          * of this function
3479          */
3480
3481         /*
3482          * state of sibling HT
3483          */
3484         xlo = &excl_cntrs->states[tid ^ 1];
3485
3486         /*
3487          * event requires exclusive counter access
3488          * across HT threads
3489          */
3490         is_excl = c->flags & PERF_X86_EVENT_EXCL;
3491         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3492                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3493                 if (!cpuc->n_excl++)
3494                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3495         }
3496
3497         /*
3498          * Modify static constraint with current dynamic
3499          * state of thread
3500          *
3501          * EXCLUSIVE: sibling counter measuring exclusive event
3502          * SHARED   : sibling counter measuring non-exclusive event
3503          * UNUSED   : sibling counter unused
3504          */
3505         w = c->weight;
3506         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3507                 /*
3508                  * exclusive event in sibling counter
3509                  * our corresponding counter cannot be used
3510                  * regardless of our event
3511                  */
3512                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3513                         __clear_bit(i, c->idxmsk);
3514                         w--;
3515                         continue;
3516                 }
3517                 /*
3518                  * if measuring an exclusive event, sibling
3519                  * measuring non-exclusive, then counter cannot
3520                  * be used
3521                  */
3522                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3523                         __clear_bit(i, c->idxmsk);
3524                         w--;
3525                         continue;
3526                 }
3527         }
3528
3529         /*
3530          * if we return an empty mask, then switch
3531          * back to static empty constraint to avoid
3532          * the cost of freeing later on
3533          */
3534         if (!w)
3535                 c = &emptyconstraint;
3536
3537         c->weight = w;
3538
3539         return c;
3540 }
3541
3542 static struct event_constraint *
3543 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3544                             struct perf_event *event)
3545 {
3546         struct event_constraint *c1, *c2;
3547
3548         c1 = cpuc->event_constraint[idx];
3549
3550         /*
3551          * first time only
3552          * - static constraint: no change across incremental scheduling calls
3553          * - dynamic constraint: handled by intel_get_excl_constraints()
3554          */
3555         c2 = __intel_get_event_constraints(cpuc, idx, event);
3556         if (c1) {
3557                 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3558                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3559                 c1->weight = c2->weight;
3560                 c2 = c1;
3561         }
3562
3563         if (cpuc->excl_cntrs)
3564                 return intel_get_excl_constraints(cpuc, event, idx, c2);
3565
3566         return c2;
3567 }
3568
3569 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3570                 struct perf_event *event)
3571 {
3572         struct hw_perf_event *hwc = &event->hw;
3573         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3574         int tid = cpuc->excl_thread_id;
3575         struct intel_excl_states *xl;
3576
3577         /*
3578          * nothing needed if in group validation mode
3579          */
3580         if (cpuc->is_fake)
3581                 return;
3582
3583         if (WARN_ON_ONCE(!excl_cntrs))
3584                 return;
3585
3586         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3587                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3588                 if (!--cpuc->n_excl)
3589                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3590         }
3591
3592         /*
3593          * If event was actually assigned, then mark the counter state as
3594          * unused now.
3595          */
3596         if (hwc->idx >= 0) {
3597                 xl = &excl_cntrs->states[tid];
3598
3599                 /*
3600                  * put_constraint may be called from x86_schedule_events()
3601                  * which already has the lock held so here make locking
3602                  * conditional.
3603                  */
3604                 if (!xl->sched_started)
3605                         raw_spin_lock(&excl_cntrs->lock);
3606
3607                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3608
3609                 if (!xl->sched_started)
3610                         raw_spin_unlock(&excl_cntrs->lock);
3611         }
3612 }
3613
3614 static void
3615 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3616                                         struct perf_event *event)
3617 {
3618         struct hw_perf_event_extra *reg;
3619
3620         reg = &event->hw.extra_reg;
3621         if (reg->idx != EXTRA_REG_NONE)
3622                 __intel_shared_reg_put_constraints(cpuc, reg);
3623
3624         reg = &event->hw.branch_reg;
3625         if (reg->idx != EXTRA_REG_NONE)
3626                 __intel_shared_reg_put_constraints(cpuc, reg);
3627 }
3628
3629 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3630                                         struct perf_event *event)
3631 {
3632         intel_put_shared_regs_event_constraints(cpuc, event);
3633
3634         /*
3635          * is PMU has exclusive counter restrictions, then
3636          * all events are subject to and must call the
3637          * put_excl_constraints() routine
3638          */
3639         if (cpuc->excl_cntrs)
3640                 intel_put_excl_constraints(cpuc, event);
3641 }
3642
3643 static void intel_pebs_aliases_core2(struct perf_event *event)
3644 {
3645         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3646                 /*
3647                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3648                  * (0x003c) so that we can use it with PEBS.
3649                  *
3650                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3651                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3652                  * (0x00c0), which is a PEBS capable event, to get the same
3653                  * count.
3654                  *
3655                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3656                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3657                  * larger than the maximum number of instructions that can be
3658                  * retired per cycle (4) and then inverting the condition, we
3659                  * count all cycles that retire 16 or less instructions, which
3660                  * is every cycle.
3661                  *
3662                  * Thereby we gain a PEBS capable cycle counter.
3663                  */
3664                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3665
3666                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3667                 event->hw.config = alt_config;
3668         }
3669 }
3670
3671 static void intel_pebs_aliases_snb(struct perf_event *event)
3672 {
3673         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3674                 /*
3675                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3676                  * (0x003c) so that we can use it with PEBS.
3677                  *
3678                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3679                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3680                  * (0x01c2), which is a PEBS capable event, to get the same
3681                  * count.
3682                  *
3683                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3684                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3685                  * larger than the maximum number of micro-ops that can be
3686                  * retired per cycle (4) and then inverting the condition, we
3687                  * count all cycles that retire 16 or less micro-ops, which
3688                  * is every cycle.
3689                  *
3690                  * Thereby we gain a PEBS capable cycle counter.
3691                  */
3692                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3693
3694                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3695                 event->hw.config = alt_config;
3696         }
3697 }
3698
3699 static void intel_pebs_aliases_precdist(struct perf_event *event)
3700 {
3701         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3702                 /*
3703                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3704                  * (0x003c) so that we can use it with PEBS.
3705                  *
3706                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3707                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3708                  * (0x01c0), which is a PEBS capable event, to get the same
3709                  * count.
3710                  *
3711                  * The PREC_DIST event has special support to minimize sample
3712                  * shadowing effects. One drawback is that it can be
3713                  * only programmed on counter 1, but that seems like an
3714                  * acceptable trade off.
3715                  */
3716                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3717
3718                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3719                 event->hw.config = alt_config;
3720         }
3721 }
3722
3723 static void intel_pebs_aliases_ivb(struct perf_event *event)
3724 {
3725         if (event->attr.precise_ip < 3)
3726                 return intel_pebs_aliases_snb(event);
3727         return intel_pebs_aliases_precdist(event);
3728 }
3729
3730 static void intel_pebs_aliases_skl(struct perf_event *event)
3731 {
3732         if (event->attr.precise_ip < 3)
3733                 return intel_pebs_aliases_core2(event);
3734         return intel_pebs_aliases_precdist(event);
3735 }
3736
3737 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3738 {
3739         unsigned long flags = x86_pmu.large_pebs_flags;
3740
3741         if (event->attr.use_clockid)
3742                 flags &= ~PERF_SAMPLE_TIME;
3743         if (!event->attr.exclude_kernel)
3744                 flags &= ~PERF_SAMPLE_REGS_USER;
3745         if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3746                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3747         return flags;
3748 }
3749
3750 static int intel_pmu_bts_config(struct perf_event *event)
3751 {
3752         struct perf_event_attr *attr = &event->attr;
3753
3754         if (unlikely(intel_pmu_has_bts(event))) {
3755                 /* BTS is not supported by this architecture. */
3756                 if (!x86_pmu.bts_active)
3757                         return -EOPNOTSUPP;
3758
3759                 /* BTS is currently only allowed for user-mode. */
3760                 if (!attr->exclude_kernel)
3761                         return -EOPNOTSUPP;
3762
3763                 /* BTS is not allowed for precise events. */
3764                 if (attr->precise_ip)
3765                         return -EOPNOTSUPP;
3766
3767                 /* disallow bts if conflicting events are present */
3768                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3769                         return -EBUSY;
3770
3771                 event->destroy = hw_perf_lbr_event_destroy;
3772         }
3773
3774         return 0;
3775 }
3776
3777 static int core_pmu_hw_config(struct perf_event *event)
3778 {
3779         int ret = x86_pmu_hw_config(event);
3780
3781         if (ret)
3782                 return ret;
3783
3784         return intel_pmu_bts_config(event);
3785 }
3786
3787 #define INTEL_TD_METRIC_AVAILABLE_MAX   (INTEL_TD_METRIC_RETIRING + \
3788                                          ((x86_pmu.num_topdown_events - 1) << 8))
3789
3790 static bool is_available_metric_event(struct perf_event *event)
3791 {
3792         return is_metric_event(event) &&
3793                 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3794 }
3795
3796 static inline bool is_mem_loads_event(struct perf_event *event)
3797 {
3798         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3799 }
3800
3801 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3802 {
3803         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3804 }
3805
3806 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3807 {
3808         if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3809                 return false;
3810
3811         if (is_hybrid())
3812                 return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3813
3814         return true;
3815 }
3816
3817 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3818 {
3819         union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3820
3821         return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3822 }
3823
3824 static int intel_pmu_hw_config(struct perf_event *event)
3825 {
3826         int ret = x86_pmu_hw_config(event);
3827
3828         if (ret)
3829                 return ret;
3830
3831         ret = intel_pmu_bts_config(event);
3832         if (ret)
3833                 return ret;
3834
3835         if (event->attr.precise_ip) {
3836                 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3837                         return -EINVAL;
3838
3839                 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3840                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3841                         if (!(event->attr.sample_type &
3842                               ~intel_pmu_large_pebs_flags(event))) {
3843                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3844                                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3845                         }
3846                 }
3847                 if (x86_pmu.pebs_aliases)
3848                         x86_pmu.pebs_aliases(event);
3849
3850                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3851                         event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3852         }
3853
3854         if (needs_branch_stack(event)) {
3855                 ret = intel_pmu_setup_lbr_filter(event);
3856                 if (ret)
3857                         return ret;
3858                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3859
3860                 /*
3861                  * BTS is set up earlier in this path, so don't account twice
3862                  */
3863                 if (!unlikely(intel_pmu_has_bts(event))) {
3864                         /* disallow lbr if conflicting events are present */
3865                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3866                                 return -EBUSY;
3867
3868                         event->destroy = hw_perf_lbr_event_destroy;
3869                 }
3870         }
3871
3872         if (event->attr.aux_output) {
3873                 if (!event->attr.precise_ip)
3874                         return -EINVAL;
3875
3876                 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3877         }
3878
3879         if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3880             (event->attr.type == PERF_TYPE_HW_CACHE))
3881                 return 0;
3882
3883         /*
3884          * Config Topdown slots and metric events
3885          *
3886          * The slots event on Fixed Counter 3 can support sampling,
3887          * which will be handled normally in x86_perf_event_update().
3888          *
3889          * Metric events don't support sampling and require being paired
3890          * with a slots event as group leader. When the slots event
3891          * is used in a metrics group, it too cannot support sampling.
3892          */
3893         if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3894                 if (event->attr.config1 || event->attr.config2)
3895                         return -EINVAL;
3896
3897                 /*
3898                  * The TopDown metrics events and slots event don't
3899                  * support any filters.
3900                  */
3901                 if (event->attr.config & X86_ALL_EVENT_FLAGS)
3902                         return -EINVAL;
3903
3904                 if (is_available_metric_event(event)) {
3905                         struct perf_event *leader = event->group_leader;
3906
3907                         /* The metric events don't support sampling. */
3908                         if (is_sampling_event(event))
3909                                 return -EINVAL;
3910
3911                         /* The metric events require a slots group leader. */
3912                         if (!is_slots_event(leader))
3913                                 return -EINVAL;
3914
3915                         /*
3916                          * The leader/SLOTS must not be a sampling event for
3917                          * metric use; hardware requires it starts at 0 when used
3918                          * in conjunction with MSR_PERF_METRICS.
3919                          */
3920                         if (is_sampling_event(leader))
3921                                 return -EINVAL;
3922
3923                         event->event_caps |= PERF_EV_CAP_SIBLING;
3924                         /*
3925                          * Only once we have a METRICs sibling do we
3926                          * need TopDown magic.
3927                          */
3928                         leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3929                         event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3930                 }
3931         }
3932
3933         /*
3934          * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3935          * doesn't function quite right. As a work-around it needs to always be
3936          * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3937          * The actual count of this second event is irrelevant it just needs
3938          * to be active to make the first event function correctly.
3939          *
3940          * In a group, the auxiliary event must be in front of the load latency
3941          * event. The rule is to simplify the implementation of the check.
3942          * That's because perf cannot have a complete group at the moment.
3943          */
3944         if (require_mem_loads_aux_event(event) &&
3945             (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3946             is_mem_loads_event(event)) {
3947                 struct perf_event *leader = event->group_leader;
3948                 struct perf_event *sibling = NULL;
3949
3950                 if (!is_mem_loads_aux_event(leader)) {
3951                         for_each_sibling_event(sibling, leader) {
3952                                 if (is_mem_loads_aux_event(sibling))
3953                                         break;
3954                         }
3955                         if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3956                                 return -ENODATA;
3957                 }
3958         }
3959
3960         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3961                 return 0;
3962
3963         if (x86_pmu.version < 3)
3964                 return -EINVAL;
3965
3966         ret = perf_allow_cpu(&event->attr);
3967         if (ret)
3968                 return ret;
3969
3970         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3971
3972         return 0;
3973 }
3974
3975 /*
3976  * Currently, the only caller of this function is the atomic_switch_perf_msrs().
3977  * The host perf conext helps to prepare the values of the real hardware for
3978  * a set of msrs that need to be switched atomically in a vmx transaction.
3979  *
3980  * For example, the pseudocode needed to add a new msr should look like:
3981  *
3982  * arr[(*nr)++] = (struct perf_guest_switch_msr){
3983  *      .msr = the hardware msr address,
3984  *      .host = the value the hardware has when it doesn't run a guest,
3985  *      .guest = the value the hardware has when it runs a guest,
3986  * };
3987  *
3988  * These values have nothing to do with the emulated values the guest sees
3989  * when it uses {RD,WR}MSR, which should be handled by the KVM context,
3990  * specifically in the intel_pmu_{get,set}_msr().
3991  */
3992 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
3993 {
3994         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3995         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3996         struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
3997         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
3998         u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
3999         int global_ctrl, pebs_enable;
4000
4001         *nr = 0;
4002         global_ctrl = (*nr)++;
4003         arr[global_ctrl] = (struct perf_guest_switch_msr){
4004                 .msr = MSR_CORE_PERF_GLOBAL_CTRL,
4005                 .host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4006                 .guest = intel_ctrl & (~cpuc->intel_ctrl_host_mask | ~pebs_mask),
4007         };
4008
4009         if (!x86_pmu.pebs)
4010                 return arr;
4011
4012         /*
4013          * If PMU counter has PEBS enabled it is not enough to
4014          * disable counter on a guest entry since PEBS memory
4015          * write can overshoot guest entry and corrupt guest
4016          * memory. Disabling PEBS solves the problem.
4017          *
4018          * Don't do this if the CPU already enforces it.
4019          */
4020         if (x86_pmu.pebs_no_isolation) {
4021                 arr[(*nr)++] = (struct perf_guest_switch_msr){
4022                         .msr = MSR_IA32_PEBS_ENABLE,
4023                         .host = cpuc->pebs_enabled,
4024                         .guest = 0,
4025                 };
4026                 return arr;
4027         }
4028
4029         if (!kvm_pmu || !x86_pmu.pebs_ept)
4030                 return arr;
4031
4032         arr[(*nr)++] = (struct perf_guest_switch_msr){
4033                 .msr = MSR_IA32_DS_AREA,
4034                 .host = (unsigned long)cpuc->ds,
4035                 .guest = kvm_pmu->ds_area,
4036         };
4037
4038         if (x86_pmu.intel_cap.pebs_baseline) {
4039                 arr[(*nr)++] = (struct perf_guest_switch_msr){
4040                         .msr = MSR_PEBS_DATA_CFG,
4041                         .host = cpuc->pebs_data_cfg,
4042                         .guest = kvm_pmu->pebs_data_cfg,
4043                 };
4044         }
4045
4046         pebs_enable = (*nr)++;
4047         arr[pebs_enable] = (struct perf_guest_switch_msr){
4048                 .msr = MSR_IA32_PEBS_ENABLE,
4049                 .host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4050                 .guest = pebs_mask & ~cpuc->intel_ctrl_host_mask,
4051         };
4052
4053         if (arr[pebs_enable].host) {
4054                 /* Disable guest PEBS if host PEBS is enabled. */
4055                 arr[pebs_enable].guest = 0;
4056         } else {
4057                 /* Disable guest PEBS for cross-mapped PEBS counters. */
4058                 arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
4059                 /* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4060                 arr[global_ctrl].guest |= arr[pebs_enable].guest;
4061         }
4062
4063         return arr;
4064 }
4065
4066 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4067 {
4068         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4069         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4070         int idx;
4071
4072         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
4073                 struct perf_event *event = cpuc->events[idx];
4074
4075                 arr[idx].msr = x86_pmu_config_addr(idx);
4076                 arr[idx].host = arr[idx].guest = 0;
4077
4078                 if (!test_bit(idx, cpuc->active_mask))
4079                         continue;
4080
4081                 arr[idx].host = arr[idx].guest =
4082                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4083
4084                 if (event->attr.exclude_host)
4085                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4086                 else if (event->attr.exclude_guest)
4087                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4088         }
4089
4090         *nr = x86_pmu.num_counters;
4091         return arr;
4092 }
4093
4094 static void core_pmu_enable_event(struct perf_event *event)
4095 {
4096         if (!event->attr.exclude_host)
4097                 x86_pmu_enable_event(event);
4098 }
4099
4100 static void core_pmu_enable_all(int added)
4101 {
4102         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4103         int idx;
4104
4105         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
4106                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4107
4108                 if (!test_bit(idx, cpuc->active_mask) ||
4109                                 cpuc->events[idx]->attr.exclude_host)
4110                         continue;
4111
4112                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4113         }
4114 }
4115
4116 static int hsw_hw_config(struct perf_event *event)
4117 {
4118         int ret = intel_pmu_hw_config(event);
4119
4120         if (ret)
4121                 return ret;
4122         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4123                 return 0;
4124         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4125
4126         /*
4127          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4128          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4129          * this combination.
4130          */
4131         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4132              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4133               event->attr.precise_ip > 0))
4134                 return -EOPNOTSUPP;
4135
4136         if (event_is_checkpointed(event)) {
4137                 /*
4138                  * Sampling of checkpointed events can cause situations where
4139                  * the CPU constantly aborts because of a overflow, which is
4140                  * then checkpointed back and ignored. Forbid checkpointing
4141                  * for sampling.
4142                  *
4143                  * But still allow a long sampling period, so that perf stat
4144                  * from KVM works.
4145                  */
4146                 if (event->attr.sample_period > 0 &&
4147                     event->attr.sample_period < 0x7fffffff)
4148                         return -EOPNOTSUPP;
4149         }
4150         return 0;
4151 }
4152
4153 static struct event_constraint counter0_constraint =
4154                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4155
4156 static struct event_constraint counter2_constraint =
4157                         EVENT_CONSTRAINT(0, 0x4, 0);
4158
4159 static struct event_constraint fixed0_constraint =
4160                         FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4161
4162 static struct event_constraint fixed0_counter0_constraint =
4163                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4164
4165 static struct event_constraint *
4166 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4167                           struct perf_event *event)
4168 {
4169         struct event_constraint *c;
4170
4171         c = intel_get_event_constraints(cpuc, idx, event);
4172
4173         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
4174         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4175                 if (c->idxmsk64 & (1U << 2))
4176                         return &counter2_constraint;
4177                 return &emptyconstraint;
4178         }
4179
4180         return c;
4181 }
4182
4183 static struct event_constraint *
4184 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4185                           struct perf_event *event)
4186 {
4187         /*
4188          * Fixed counter 0 has less skid.
4189          * Force instruction:ppp in Fixed counter 0
4190          */
4191         if ((event->attr.precise_ip == 3) &&
4192             constraint_match(&fixed0_constraint, event->hw.config))
4193                 return &fixed0_constraint;
4194
4195         return hsw_get_event_constraints(cpuc, idx, event);
4196 }
4197
4198 static struct event_constraint *
4199 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4200                           struct perf_event *event)
4201 {
4202         struct event_constraint *c;
4203
4204         c = icl_get_event_constraints(cpuc, idx, event);
4205
4206         /*
4207          * The :ppp indicates the Precise Distribution (PDist) facility, which
4208          * is only supported on the GP counter 0. If a :ppp event which is not
4209          * available on the GP counter 0, error out.
4210          * Exception: Instruction PDIR is only available on the fixed counter 0.
4211          */
4212         if ((event->attr.precise_ip == 3) &&
4213             !constraint_match(&fixed0_constraint, event->hw.config)) {
4214                 if (c->idxmsk64 & BIT_ULL(0))
4215                         return &counter0_constraint;
4216
4217                 return &emptyconstraint;
4218         }
4219
4220         return c;
4221 }
4222
4223 static struct event_constraint *
4224 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4225                           struct perf_event *event)
4226 {
4227         struct event_constraint *c;
4228
4229         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4230         if (event->attr.precise_ip == 3)
4231                 return &counter0_constraint;
4232
4233         c = intel_get_event_constraints(cpuc, idx, event);
4234
4235         return c;
4236 }
4237
4238 static struct event_constraint *
4239 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4240                           struct perf_event *event)
4241 {
4242         struct event_constraint *c;
4243
4244         c = intel_get_event_constraints(cpuc, idx, event);
4245
4246         /*
4247          * :ppp means to do reduced skid PEBS,
4248          * which is available on PMC0 and fixed counter 0.
4249          */
4250         if (event->attr.precise_ip == 3) {
4251                 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4252                 if (constraint_match(&fixed0_constraint, event->hw.config))
4253                         return &fixed0_counter0_constraint;
4254
4255                 return &counter0_constraint;
4256         }
4257
4258         return c;
4259 }
4260
4261 static bool allow_tsx_force_abort = true;
4262
4263 static struct event_constraint *
4264 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4265                           struct perf_event *event)
4266 {
4267         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4268
4269         /*
4270          * Without TFA we must not use PMC3.
4271          */
4272         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4273                 c = dyn_constraint(cpuc, c, idx);
4274                 c->idxmsk64 &= ~(1ULL << 3);
4275                 c->weight--;
4276         }
4277
4278         return c;
4279 }
4280
4281 static struct event_constraint *
4282 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4283                           struct perf_event *event)
4284 {
4285         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4286
4287         if (pmu->cpu_type == hybrid_big)
4288                 return spr_get_event_constraints(cpuc, idx, event);
4289         else if (pmu->cpu_type == hybrid_small)
4290                 return tnt_get_event_constraints(cpuc, idx, event);
4291
4292         WARN_ON(1);
4293         return &emptyconstraint;
4294 }
4295
4296 static int adl_hw_config(struct perf_event *event)
4297 {
4298         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4299
4300         if (pmu->cpu_type == hybrid_big)
4301                 return hsw_hw_config(event);
4302         else if (pmu->cpu_type == hybrid_small)
4303                 return intel_pmu_hw_config(event);
4304
4305         WARN_ON(1);
4306         return -EOPNOTSUPP;
4307 }
4308
4309 static u8 adl_get_hybrid_cpu_type(void)
4310 {
4311         return hybrid_big;
4312 }
4313
4314 /*
4315  * Broadwell:
4316  *
4317  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4318  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4319  * the two to enforce a minimum period of 128 (the smallest value that has bits
4320  * 0-5 cleared and >= 100).
4321  *
4322  * Because of how the code in x86_perf_event_set_period() works, the truncation
4323  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4324  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4325  *
4326  * Therefore the effective (average) period matches the requested period,
4327  * despite coarser hardware granularity.
4328  */
4329 static u64 bdw_limit_period(struct perf_event *event, u64 left)
4330 {
4331         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4332                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
4333                 if (left < 128)
4334                         left = 128;
4335                 left &= ~0x3fULL;
4336         }
4337         return left;
4338 }
4339
4340 static u64 nhm_limit_period(struct perf_event *event, u64 left)
4341 {
4342         return max(left, 32ULL);
4343 }
4344
4345 static u64 spr_limit_period(struct perf_event *event, u64 left)
4346 {
4347         if (event->attr.precise_ip == 3)
4348                 return max(left, 128ULL);
4349
4350         return left;
4351 }
4352
4353 PMU_FORMAT_ATTR(event,  "config:0-7"    );
4354 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
4355 PMU_FORMAT_ATTR(edge,   "config:18"     );
4356 PMU_FORMAT_ATTR(pc,     "config:19"     );
4357 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
4358 PMU_FORMAT_ATTR(inv,    "config:23"     );
4359 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
4360 PMU_FORMAT_ATTR(in_tx,  "config:32");
4361 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4362
4363 static struct attribute *intel_arch_formats_attr[] = {
4364         &format_attr_event.attr,
4365         &format_attr_umask.attr,
4366         &format_attr_edge.attr,
4367         &format_attr_pc.attr,
4368         &format_attr_inv.attr,
4369         &format_attr_cmask.attr,
4370         NULL,
4371 };
4372
4373 ssize_t intel_event_sysfs_show(char *page, u64 config)
4374 {
4375         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4376
4377         return x86_event_sysfs_show(page, config, event);
4378 }
4379
4380 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4381 {
4382         struct intel_shared_regs *regs;
4383         int i;
4384
4385         regs = kzalloc_node(sizeof(struct intel_shared_regs),
4386                             GFP_KERNEL, cpu_to_node(cpu));
4387         if (regs) {
4388                 /*
4389                  * initialize the locks to keep lockdep happy
4390                  */
4391                 for (i = 0; i < EXTRA_REG_MAX; i++)
4392                         raw_spin_lock_init(&regs->regs[i].lock);
4393
4394                 regs->core_id = -1;
4395         }
4396         return regs;
4397 }
4398
4399 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4400 {
4401         struct intel_excl_cntrs *c;
4402
4403         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4404                          GFP_KERNEL, cpu_to_node(cpu));
4405         if (c) {
4406                 raw_spin_lock_init(&c->lock);
4407                 c->core_id = -1;
4408         }
4409         return c;
4410 }
4411
4412
4413 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4414 {
4415         cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4416
4417         if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4418                 cpuc->shared_regs = allocate_shared_regs(cpu);
4419                 if (!cpuc->shared_regs)
4420                         goto err;
4421         }
4422
4423         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4424                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4425
4426                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4427                 if (!cpuc->constraint_list)
4428                         goto err_shared_regs;
4429         }
4430
4431         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4432                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4433                 if (!cpuc->excl_cntrs)
4434                         goto err_constraint_list;
4435
4436                 cpuc->excl_thread_id = 0;
4437         }
4438
4439         return 0;
4440
4441 err_constraint_list:
4442         kfree(cpuc->constraint_list);
4443         cpuc->constraint_list = NULL;
4444
4445 err_shared_regs:
4446         kfree(cpuc->shared_regs);
4447         cpuc->shared_regs = NULL;
4448
4449 err:
4450         return -ENOMEM;
4451 }
4452
4453 static int intel_pmu_cpu_prepare(int cpu)
4454 {
4455         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4456 }
4457
4458 static void flip_smm_bit(void *data)
4459 {
4460         unsigned long set = *(unsigned long *)data;
4461
4462         if (set > 0) {
4463                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4464                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4465         } else {
4466                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4467                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4468         }
4469 }
4470
4471 static bool init_hybrid_pmu(int cpu)
4472 {
4473         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4474         u8 cpu_type = get_this_hybrid_cpu_type();
4475         struct x86_hybrid_pmu *pmu = NULL;
4476         int i;
4477
4478         if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4479                 cpu_type = x86_pmu.get_hybrid_cpu_type();
4480
4481         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4482                 if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4483                         pmu = &x86_pmu.hybrid_pmu[i];
4484                         break;
4485                 }
4486         }
4487         if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4488                 cpuc->pmu = NULL;
4489                 return false;
4490         }
4491
4492         /* Only check and dump the PMU information for the first CPU */
4493         if (!cpumask_empty(&pmu->supported_cpus))
4494                 goto end;
4495
4496         if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4497                 return false;
4498
4499         pr_info("%s PMU driver: ", pmu->name);
4500
4501         if (pmu->intel_cap.pebs_output_pt_available)
4502                 pr_cont("PEBS-via-PT ");
4503
4504         pr_cont("\n");
4505
4506         x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4507                              pmu->intel_ctrl);
4508
4509 end:
4510         cpumask_set_cpu(cpu, &pmu->supported_cpus);
4511         cpuc->pmu = &pmu->pmu;
4512
4513         x86_pmu_update_cpu_context(&pmu->pmu, cpu);
4514
4515         return true;
4516 }
4517
4518 static void intel_pmu_cpu_starting(int cpu)
4519 {
4520         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4521         int core_id = topology_core_id(cpu);
4522         int i;
4523
4524         if (is_hybrid() && !init_hybrid_pmu(cpu))
4525                 return;
4526
4527         init_debug_store_on_cpu(cpu);
4528         /*
4529          * Deal with CPUs that don't clear their LBRs on power-up.
4530          */
4531         intel_pmu_lbr_reset();
4532
4533         cpuc->lbr_sel = NULL;
4534
4535         if (x86_pmu.flags & PMU_FL_TFA) {
4536                 WARN_ON_ONCE(cpuc->tfa_shadow);
4537                 cpuc->tfa_shadow = ~0ULL;
4538                 intel_set_tfa(cpuc, false);
4539         }
4540
4541         if (x86_pmu.version > 1)
4542                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4543
4544         /*
4545          * Disable perf metrics if any added CPU doesn't support it.
4546          *
4547          * Turn off the check for a hybrid architecture, because the
4548          * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4549          * the architecture features. The perf metrics is a model-specific
4550          * feature for now. The corresponding bit should always be 0 on
4551          * a hybrid platform, e.g., Alder Lake.
4552          */
4553         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4554                 union perf_capabilities perf_cap;
4555
4556                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4557                 if (!perf_cap.perf_metrics) {
4558                         x86_pmu.intel_cap.perf_metrics = 0;
4559                         x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4560                 }
4561         }
4562
4563         if (!cpuc->shared_regs)
4564                 return;
4565
4566         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4567                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4568                         struct intel_shared_regs *pc;
4569
4570                         pc = per_cpu(cpu_hw_events, i).shared_regs;
4571                         if (pc && pc->core_id == core_id) {
4572                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
4573                                 cpuc->shared_regs = pc;
4574                                 break;
4575                         }
4576                 }
4577                 cpuc->shared_regs->core_id = core_id;
4578                 cpuc->shared_regs->refcnt++;
4579         }
4580
4581         if (x86_pmu.lbr_sel_map)
4582                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4583
4584         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4585                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4586                         struct cpu_hw_events *sibling;
4587                         struct intel_excl_cntrs *c;
4588
4589                         sibling = &per_cpu(cpu_hw_events, i);
4590                         c = sibling->excl_cntrs;
4591                         if (c && c->core_id == core_id) {
4592                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4593                                 cpuc->excl_cntrs = c;
4594                                 if (!sibling->excl_thread_id)
4595                                         cpuc->excl_thread_id = 1;
4596                                 break;
4597                         }
4598                 }
4599                 cpuc->excl_cntrs->core_id = core_id;
4600                 cpuc->excl_cntrs->refcnt++;
4601         }
4602 }
4603
4604 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4605 {
4606         struct intel_excl_cntrs *c;
4607
4608         c = cpuc->excl_cntrs;
4609         if (c) {
4610                 if (c->core_id == -1 || --c->refcnt == 0)
4611                         kfree(c);
4612                 cpuc->excl_cntrs = NULL;
4613         }
4614
4615         kfree(cpuc->constraint_list);
4616         cpuc->constraint_list = NULL;
4617 }
4618
4619 static void intel_pmu_cpu_dying(int cpu)
4620 {
4621         fini_debug_store_on_cpu(cpu);
4622 }
4623
4624 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4625 {
4626         struct intel_shared_regs *pc;
4627
4628         pc = cpuc->shared_regs;
4629         if (pc) {
4630                 if (pc->core_id == -1 || --pc->refcnt == 0)
4631                         kfree(pc);
4632                 cpuc->shared_regs = NULL;
4633         }
4634
4635         free_excl_cntrs(cpuc);
4636 }
4637
4638 static void intel_pmu_cpu_dead(int cpu)
4639 {
4640         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4641
4642         intel_cpuc_finish(cpuc);
4643
4644         if (is_hybrid() && cpuc->pmu)
4645                 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4646 }
4647
4648 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4649                                  bool sched_in)
4650 {
4651         intel_pmu_pebs_sched_task(ctx, sched_in);
4652         intel_pmu_lbr_sched_task(ctx, sched_in);
4653 }
4654
4655 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4656                                     struct perf_event_context *next)
4657 {
4658         intel_pmu_lbr_swap_task_ctx(prev, next);
4659 }
4660
4661 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4662 {
4663         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4664 }
4665
4666 static void intel_aux_output_init(void)
4667 {
4668         /* Refer also intel_pmu_aux_output_match() */
4669         if (x86_pmu.intel_cap.pebs_output_pt_available)
4670                 x86_pmu.assign = intel_pmu_assign_event;
4671 }
4672
4673 static int intel_pmu_aux_output_match(struct perf_event *event)
4674 {
4675         /* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
4676         if (!x86_pmu.intel_cap.pebs_output_pt_available)
4677                 return 0;
4678
4679         return is_intel_pt_event(event);
4680 }
4681
4682 static int intel_pmu_filter_match(struct perf_event *event)
4683 {
4684         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4685         unsigned int cpu = smp_processor_id();
4686
4687         return cpumask_test_cpu(cpu, &pmu->supported_cpus);
4688 }
4689
4690 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4691
4692 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4693
4694 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4695
4696 static struct attribute *intel_arch3_formats_attr[] = {
4697         &format_attr_event.attr,
4698         &format_attr_umask.attr,
4699         &format_attr_edge.attr,
4700         &format_attr_pc.attr,
4701         &format_attr_any.attr,
4702         &format_attr_inv.attr,
4703         &format_attr_cmask.attr,
4704         NULL,
4705 };
4706
4707 static struct attribute *hsw_format_attr[] = {
4708         &format_attr_in_tx.attr,
4709         &format_attr_in_tx_cp.attr,
4710         &format_attr_offcore_rsp.attr,
4711         &format_attr_ldlat.attr,
4712         NULL
4713 };
4714
4715 static struct attribute *nhm_format_attr[] = {
4716         &format_attr_offcore_rsp.attr,
4717         &format_attr_ldlat.attr,
4718         NULL
4719 };
4720
4721 static struct attribute *slm_format_attr[] = {
4722         &format_attr_offcore_rsp.attr,
4723         NULL
4724 };
4725
4726 static struct attribute *skl_format_attr[] = {
4727         &format_attr_frontend.attr,
4728         NULL,
4729 };
4730
4731 static __initconst const struct x86_pmu core_pmu = {
4732         .name                   = "core",
4733         .handle_irq             = x86_pmu_handle_irq,
4734         .disable_all            = x86_pmu_disable_all,
4735         .enable_all             = core_pmu_enable_all,
4736         .enable                 = core_pmu_enable_event,
4737         .disable                = x86_pmu_disable_event,
4738         .hw_config              = core_pmu_hw_config,
4739         .schedule_events        = x86_schedule_events,
4740         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4741         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4742         .event_map              = intel_pmu_event_map,
4743         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4744         .apic                   = 1,
4745         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4746
4747         /*
4748          * Intel PMCs cannot be accessed sanely above 32-bit width,
4749          * so we install an artificial 1<<31 period regardless of
4750          * the generic event period:
4751          */
4752         .max_period             = (1ULL<<31) - 1,
4753         .get_event_constraints  = intel_get_event_constraints,
4754         .put_event_constraints  = intel_put_event_constraints,
4755         .event_constraints      = intel_core_event_constraints,
4756         .guest_get_msrs         = core_guest_get_msrs,
4757         .format_attrs           = intel_arch_formats_attr,
4758         .events_sysfs_show      = intel_event_sysfs_show,
4759
4760         /*
4761          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4762          * together with PMU version 1 and thus be using core_pmu with
4763          * shared_regs. We need following callbacks here to allocate
4764          * it properly.
4765          */
4766         .cpu_prepare            = intel_pmu_cpu_prepare,
4767         .cpu_starting           = intel_pmu_cpu_starting,
4768         .cpu_dying              = intel_pmu_cpu_dying,
4769         .cpu_dead               = intel_pmu_cpu_dead,
4770
4771         .check_period           = intel_pmu_check_period,
4772
4773         .lbr_reset              = intel_pmu_lbr_reset_64,
4774         .lbr_read               = intel_pmu_lbr_read_64,
4775         .lbr_save               = intel_pmu_lbr_save,
4776         .lbr_restore            = intel_pmu_lbr_restore,
4777 };
4778
4779 static __initconst const struct x86_pmu intel_pmu = {
4780         .name                   = "Intel",
4781         .handle_irq             = intel_pmu_handle_irq,
4782         .disable_all            = intel_pmu_disable_all,
4783         .enable_all             = intel_pmu_enable_all,
4784         .enable                 = intel_pmu_enable_event,
4785         .disable                = intel_pmu_disable_event,
4786         .add                    = intel_pmu_add_event,
4787         .del                    = intel_pmu_del_event,
4788         .read                   = intel_pmu_read_event,
4789         .hw_config              = intel_pmu_hw_config,
4790         .schedule_events        = x86_schedule_events,
4791         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4792         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4793         .event_map              = intel_pmu_event_map,
4794         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4795         .apic                   = 1,
4796         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4797         /*
4798          * Intel PMCs cannot be accessed sanely above 32 bit width,
4799          * so we install an artificial 1<<31 period regardless of
4800          * the generic event period:
4801          */
4802         .max_period             = (1ULL << 31) - 1,
4803         .get_event_constraints  = intel_get_event_constraints,
4804         .put_event_constraints  = intel_put_event_constraints,
4805         .pebs_aliases           = intel_pebs_aliases_core2,
4806
4807         .format_attrs           = intel_arch3_formats_attr,
4808         .events_sysfs_show      = intel_event_sysfs_show,
4809
4810         .cpu_prepare            = intel_pmu_cpu_prepare,
4811         .cpu_starting           = intel_pmu_cpu_starting,
4812         .cpu_dying              = intel_pmu_cpu_dying,
4813         .cpu_dead               = intel_pmu_cpu_dead,
4814
4815         .guest_get_msrs         = intel_guest_get_msrs,
4816         .sched_task             = intel_pmu_sched_task,
4817         .swap_task_ctx          = intel_pmu_swap_task_ctx,
4818
4819         .check_period           = intel_pmu_check_period,
4820
4821         .aux_output_match       = intel_pmu_aux_output_match,
4822
4823         .lbr_reset              = intel_pmu_lbr_reset_64,
4824         .lbr_read               = intel_pmu_lbr_read_64,
4825         .lbr_save               = intel_pmu_lbr_save,
4826         .lbr_restore            = intel_pmu_lbr_restore,
4827
4828         /*
4829          * SMM has access to all 4 rings and while traditionally SMM code only
4830          * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
4831          *
4832          * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
4833          * between SMM or not, this results in what should be pure userspace
4834          * counters including SMM data.
4835          *
4836          * This is a clear privilege issue, therefore globally disable
4837          * counting SMM by default.
4838          */
4839         .attr_freeze_on_smi     = 1,
4840 };
4841
4842 static __init void intel_clovertown_quirk(void)
4843 {
4844         /*
4845          * PEBS is unreliable due to:
4846          *
4847          *   AJ67  - PEBS may experience CPL leaks
4848          *   AJ68  - PEBS PMI may be delayed by one event
4849          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4850          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4851          *
4852          * AJ67 could be worked around by restricting the OS/USR flags.
4853          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4854          *
4855          * AJ106 could possibly be worked around by not allowing LBR
4856          *       usage from PEBS, including the fixup.
4857          * AJ68  could possibly be worked around by always programming
4858          *       a pebs_event_reset[0] value and coping with the lost events.
4859          *
4860          * But taken together it might just make sense to not enable PEBS on
4861          * these chips.
4862          */
4863         pr_warn("PEBS disabled due to CPU errata\n");
4864         x86_pmu.pebs = 0;
4865         x86_pmu.pebs_constraints = NULL;
4866 }
4867
4868 static const struct x86_cpu_desc isolation_ucodes[] = {
4869         INTEL_CPU_DESC(INTEL_FAM6_HASWELL,               3, 0x0000001f),
4870         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,             1, 0x0000001e),
4871         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,             1, 0x00000015),
4872         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             2, 0x00000037),
4873         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             4, 0x0000000a),
4874         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,             4, 0x00000023),
4875         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,           1, 0x00000014),
4876         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           2, 0x00000010),
4877         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           3, 0x07000009),
4878         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           4, 0x0f000009),
4879         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           5, 0x0e000002),
4880         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,           1, 0x0b000014),
4881         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             3, 0x00000021),
4882         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             4, 0x00000000),
4883         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             5, 0x00000000),
4884         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             6, 0x00000000),
4885         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             7, 0x00000000),
4886         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,             3, 0x0000007c),
4887         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,               3, 0x0000007c),
4888         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,              9, 0x0000004e),
4889         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,            9, 0x0000004e),
4890         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           10, 0x0000004e),
4891         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           11, 0x0000004e),
4892         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           12, 0x0000004e),
4893         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             10, 0x0000004e),
4894         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             11, 0x0000004e),
4895         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             12, 0x0000004e),
4896         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             13, 0x0000004e),
4897         {}
4898 };
4899
4900 static void intel_check_pebs_isolation(void)
4901 {
4902         x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4903 }
4904
4905 static __init void intel_pebs_isolation_quirk(void)
4906 {
4907         WARN_ON_ONCE(x86_pmu.check_microcode);
4908         x86_pmu.check_microcode = intel_check_pebs_isolation;
4909         intel_check_pebs_isolation();
4910 }
4911
4912 static const struct x86_cpu_desc pebs_ucodes[] = {
4913         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,          7, 0x00000028),
4914         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        6, 0x00000618),
4915         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        7, 0x0000070c),
4916         {}
4917 };
4918
4919 static bool intel_snb_pebs_broken(void)
4920 {
4921         return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4922 }
4923
4924 static void intel_snb_check_microcode(void)
4925 {
4926         if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4927                 return;
4928
4929         /*
4930          * Serialized by the microcode lock..
4931          */
4932         if (x86_pmu.pebs_broken) {
4933                 pr_info("PEBS enabled due to microcode update\n");
4934                 x86_pmu.pebs_broken = 0;
4935         } else {
4936                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4937                 x86_pmu.pebs_broken = 1;
4938         }
4939 }
4940
4941 static bool is_lbr_from(unsigned long msr)
4942 {
4943         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4944
4945         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4946 }
4947
4948 /*
4949  * Under certain circumstances, access certain MSR may cause #GP.
4950  * The function tests if the input MSR can be safely accessed.
4951  */
4952 static bool check_msr(unsigned long msr, u64 mask)
4953 {
4954         u64 val_old, val_new, val_tmp;
4955
4956         /*
4957          * Disable the check for real HW, so we don't
4958          * mess with potentially enabled registers:
4959          */
4960         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4961                 return true;
4962
4963         /*
4964          * Read the current value, change it and read it back to see if it
4965          * matches, this is needed to detect certain hardware emulators
4966          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4967          */
4968         if (rdmsrl_safe(msr, &val_old))
4969                 return false;
4970
4971         /*
4972          * Only change the bits which can be updated by wrmsrl.
4973          */
4974         val_tmp = val_old ^ mask;
4975
4976         if (is_lbr_from(msr))
4977                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4978
4979         if (wrmsrl_safe(msr, val_tmp) ||
4980             rdmsrl_safe(msr, &val_new))
4981                 return false;
4982
4983         /*
4984          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4985          * should equal rdmsrl()'s even with the quirk.
4986          */
4987         if (val_new != val_tmp)
4988                 return false;
4989
4990         if (is_lbr_from(msr))
4991                 val_old = lbr_from_signext_quirk_wr(val_old);
4992
4993         /* Here it's sure that the MSR can be safely accessed.
4994          * Restore the old value and return.
4995          */
4996         wrmsrl(msr, val_old);
4997
4998         return true;
4999 }
5000
5001 static __init void intel_sandybridge_quirk(void)
5002 {
5003         x86_pmu.check_microcode = intel_snb_check_microcode;
5004         cpus_read_lock();
5005         intel_snb_check_microcode();
5006         cpus_read_unlock();
5007 }
5008
5009 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
5010         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
5011         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
5012         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
5013         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
5014         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
5015         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
5016         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
5017 };
5018
5019 static __init void intel_arch_events_quirk(void)
5020 {
5021         int bit;
5022
5023         /* disable event that reported as not present by cpuid */
5024         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
5025                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
5026                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
5027                         intel_arch_events_map[bit].name);
5028         }
5029 }
5030
5031 static __init void intel_nehalem_quirk(void)
5032 {
5033         union cpuid10_ebx ebx;
5034
5035         ebx.full = x86_pmu.events_maskl;
5036         if (ebx.split.no_branch_misses_retired) {
5037                 /*
5038                  * Erratum AAJ80 detected, we work it around by using
5039                  * the BR_MISP_EXEC.ANY event. This will over-count
5040                  * branch-misses, but it's still much better than the
5041                  * architectural event which is often completely bogus:
5042                  */
5043                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
5044                 ebx.split.no_branch_misses_retired = 0;
5045                 x86_pmu.events_maskl = ebx.full;
5046                 pr_info("CPU erratum AAJ80 worked around\n");
5047         }
5048 }
5049
5050 /*
5051  * enable software workaround for errata:
5052  * SNB: BJ122
5053  * IVB: BV98
5054  * HSW: HSD29
5055  *
5056  * Only needed when HT is enabled. However detecting
5057  * if HT is enabled is difficult (model specific). So instead,
5058  * we enable the workaround in the early boot, and verify if
5059  * it is needed in a later initcall phase once we have valid
5060  * topology information to check if HT is actually enabled
5061  */
5062 static __init void intel_ht_bug(void)
5063 {
5064         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
5065
5066         x86_pmu.start_scheduling = intel_start_scheduling;
5067         x86_pmu.commit_scheduling = intel_commit_scheduling;
5068         x86_pmu.stop_scheduling = intel_stop_scheduling;
5069 }
5070
5071 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
5072 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
5073
5074 /* Haswell special events */
5075 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
5076 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
5077 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
5078 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
5079 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
5080 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
5081 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
5082 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
5083 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
5084 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
5085 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
5086 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
5087
5088 static struct attribute *hsw_events_attrs[] = {
5089         EVENT_PTR(td_slots_issued),
5090         EVENT_PTR(td_slots_retired),
5091         EVENT_PTR(td_fetch_bubbles),
5092         EVENT_PTR(td_total_slots),
5093         EVENT_PTR(td_total_slots_scale),
5094         EVENT_PTR(td_recovery_bubbles),
5095         EVENT_PTR(td_recovery_bubbles_scale),
5096         NULL
5097 };
5098
5099 static struct attribute *hsw_mem_events_attrs[] = {
5100         EVENT_PTR(mem_ld_hsw),
5101         EVENT_PTR(mem_st_hsw),
5102         NULL,
5103 };
5104
5105 static struct attribute *hsw_tsx_events_attrs[] = {
5106         EVENT_PTR(tx_start),
5107         EVENT_PTR(tx_commit),
5108         EVENT_PTR(tx_abort),
5109         EVENT_PTR(tx_capacity),
5110         EVENT_PTR(tx_conflict),
5111         EVENT_PTR(el_start),
5112         EVENT_PTR(el_commit),
5113         EVENT_PTR(el_abort),
5114         EVENT_PTR(el_capacity),
5115         EVENT_PTR(el_conflict),
5116         EVENT_PTR(cycles_t),
5117         EVENT_PTR(cycles_ct),
5118         NULL
5119 };
5120
5121 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
5122 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
5123 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
5124 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
5125
5126 static struct attribute *icl_events_attrs[] = {
5127         EVENT_PTR(mem_ld_hsw),
5128         EVENT_PTR(mem_st_hsw),
5129         NULL,
5130 };
5131
5132 static struct attribute *icl_td_events_attrs[] = {
5133         EVENT_PTR(slots),
5134         EVENT_PTR(td_retiring),
5135         EVENT_PTR(td_bad_spec),
5136         EVENT_PTR(td_fe_bound),
5137         EVENT_PTR(td_be_bound),
5138         NULL,
5139 };
5140
5141 static struct attribute *icl_tsx_events_attrs[] = {
5142         EVENT_PTR(tx_start),
5143         EVENT_PTR(tx_abort),
5144         EVENT_PTR(tx_commit),
5145         EVENT_PTR(tx_capacity_read),
5146         EVENT_PTR(tx_capacity_write),
5147         EVENT_PTR(tx_conflict),
5148         EVENT_PTR(el_start),
5149         EVENT_PTR(el_abort),
5150         EVENT_PTR(el_commit),
5151         EVENT_PTR(el_capacity_read),
5152         EVENT_PTR(el_capacity_write),
5153         EVENT_PTR(el_conflict),
5154         EVENT_PTR(cycles_t),
5155         EVENT_PTR(cycles_ct),
5156         NULL,
5157 };
5158
5159
5160 EVENT_ATTR_STR(mem-stores,      mem_st_spr,     "event=0xcd,umask=0x2");
5161 EVENT_ATTR_STR(mem-loads-aux,   mem_ld_aux,     "event=0x03,umask=0x82");
5162
5163 static struct attribute *spr_events_attrs[] = {
5164         EVENT_PTR(mem_ld_hsw),
5165         EVENT_PTR(mem_st_spr),
5166         EVENT_PTR(mem_ld_aux),
5167         NULL,
5168 };
5169
5170 static struct attribute *spr_td_events_attrs[] = {
5171         EVENT_PTR(slots),
5172         EVENT_PTR(td_retiring),
5173         EVENT_PTR(td_bad_spec),
5174         EVENT_PTR(td_fe_bound),
5175         EVENT_PTR(td_be_bound),
5176         EVENT_PTR(td_heavy_ops),
5177         EVENT_PTR(td_br_mispredict),
5178         EVENT_PTR(td_fetch_lat),
5179         EVENT_PTR(td_mem_bound),
5180         NULL,
5181 };
5182
5183 static struct attribute *spr_tsx_events_attrs[] = {
5184         EVENT_PTR(tx_start),
5185         EVENT_PTR(tx_abort),
5186         EVENT_PTR(tx_commit),
5187         EVENT_PTR(tx_capacity_read),
5188         EVENT_PTR(tx_capacity_write),
5189         EVENT_PTR(tx_conflict),
5190         EVENT_PTR(cycles_t),
5191         EVENT_PTR(cycles_ct),
5192         NULL,
5193 };
5194
5195 static ssize_t freeze_on_smi_show(struct device *cdev,
5196                                   struct device_attribute *attr,
5197                                   char *buf)
5198 {
5199         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5200 }
5201
5202 static DEFINE_MUTEX(freeze_on_smi_mutex);
5203
5204 static ssize_t freeze_on_smi_store(struct device *cdev,
5205                                    struct device_attribute *attr,
5206                                    const char *buf, size_t count)
5207 {
5208         unsigned long val;
5209         ssize_t ret;
5210
5211         ret = kstrtoul(buf, 0, &val);
5212         if (ret)
5213                 return ret;
5214
5215         if (val > 1)
5216                 return -EINVAL;
5217
5218         mutex_lock(&freeze_on_smi_mutex);
5219
5220         if (x86_pmu.attr_freeze_on_smi == val)
5221                 goto done;
5222
5223         x86_pmu.attr_freeze_on_smi = val;
5224
5225         cpus_read_lock();
5226         on_each_cpu(flip_smm_bit, &val, 1);
5227         cpus_read_unlock();
5228 done:
5229         mutex_unlock(&freeze_on_smi_mutex);
5230
5231         return count;
5232 }
5233
5234 static void update_tfa_sched(void *ignored)
5235 {
5236         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5237
5238         /*
5239          * check if PMC3 is used
5240          * and if so force schedule out for all event types all contexts
5241          */
5242         if (test_bit(3, cpuc->active_mask))
5243                 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5244 }
5245
5246 static ssize_t show_sysctl_tfa(struct device *cdev,
5247                               struct device_attribute *attr,
5248                               char *buf)
5249 {
5250         return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5251 }
5252
5253 static ssize_t set_sysctl_tfa(struct device *cdev,
5254                               struct device_attribute *attr,
5255                               const char *buf, size_t count)
5256 {
5257         bool val;
5258         ssize_t ret;
5259
5260         ret = kstrtobool(buf, &val);
5261         if (ret)
5262                 return ret;
5263
5264         /* no change */
5265         if (val == allow_tsx_force_abort)
5266                 return count;
5267
5268         allow_tsx_force_abort = val;
5269
5270         cpus_read_lock();
5271         on_each_cpu(update_tfa_sched, NULL, 1);
5272         cpus_read_unlock();
5273
5274         return count;
5275 }
5276
5277
5278 static DEVICE_ATTR_RW(freeze_on_smi);
5279
5280 static ssize_t branches_show(struct device *cdev,
5281                              struct device_attribute *attr,
5282                              char *buf)
5283 {
5284         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5285 }
5286
5287 static DEVICE_ATTR_RO(branches);
5288
5289 static struct attribute *lbr_attrs[] = {
5290         &dev_attr_branches.attr,
5291         NULL
5292 };
5293
5294 static char pmu_name_str[30];
5295
5296 static ssize_t pmu_name_show(struct device *cdev,
5297                              struct device_attribute *attr,
5298                              char *buf)
5299 {
5300         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5301 }
5302
5303 static DEVICE_ATTR_RO(pmu_name);
5304
5305 static struct attribute *intel_pmu_caps_attrs[] = {
5306        &dev_attr_pmu_name.attr,
5307        NULL
5308 };
5309
5310 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5311                    show_sysctl_tfa,
5312                    set_sysctl_tfa);
5313
5314 static struct attribute *intel_pmu_attrs[] = {
5315         &dev_attr_freeze_on_smi.attr,
5316         &dev_attr_allow_tsx_force_abort.attr,
5317         NULL,
5318 };
5319
5320 static umode_t
5321 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5322 {
5323         return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5324 }
5325
5326 static umode_t
5327 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5328 {
5329         return x86_pmu.pebs ? attr->mode : 0;
5330 }
5331
5332 static umode_t
5333 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5334 {
5335         return x86_pmu.lbr_nr ? attr->mode : 0;
5336 }
5337
5338 static umode_t
5339 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5340 {
5341         return x86_pmu.version >= 2 ? attr->mode : 0;
5342 }
5343
5344 static umode_t
5345 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5346 {
5347         if (attr == &dev_attr_allow_tsx_force_abort.attr)
5348                 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5349
5350         return attr->mode;
5351 }
5352
5353 static struct attribute_group group_events_td  = {
5354         .name = "events",
5355 };
5356
5357 static struct attribute_group group_events_mem = {
5358         .name       = "events",
5359         .is_visible = pebs_is_visible,
5360 };
5361
5362 static struct attribute_group group_events_tsx = {
5363         .name       = "events",
5364         .is_visible = tsx_is_visible,
5365 };
5366
5367 static struct attribute_group group_caps_gen = {
5368         .name  = "caps",
5369         .attrs = intel_pmu_caps_attrs,
5370 };
5371
5372 static struct attribute_group group_caps_lbr = {
5373         .name       = "caps",
5374         .attrs      = lbr_attrs,
5375         .is_visible = lbr_is_visible,
5376 };
5377
5378 static struct attribute_group group_format_extra = {
5379         .name       = "format",
5380         .is_visible = exra_is_visible,
5381 };
5382
5383 static struct attribute_group group_format_extra_skl = {
5384         .name       = "format",
5385         .is_visible = exra_is_visible,
5386 };
5387
5388 static struct attribute_group group_default = {
5389         .attrs      = intel_pmu_attrs,
5390         .is_visible = default_is_visible,
5391 };
5392
5393 static const struct attribute_group *attr_update[] = {
5394         &group_events_td,
5395         &group_events_mem,
5396         &group_events_tsx,
5397         &group_caps_gen,
5398         &group_caps_lbr,
5399         &group_format_extra,
5400         &group_format_extra_skl,
5401         &group_default,
5402         NULL,
5403 };
5404
5405 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5406 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5407 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5408 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5409 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5410 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5411 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5412 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5413 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5414
5415 static struct attribute *adl_hybrid_events_attrs[] = {
5416         EVENT_PTR(slots_adl),
5417         EVENT_PTR(td_retiring_adl),
5418         EVENT_PTR(td_bad_spec_adl),
5419         EVENT_PTR(td_fe_bound_adl),
5420         EVENT_PTR(td_be_bound_adl),
5421         EVENT_PTR(td_heavy_ops_adl),
5422         EVENT_PTR(td_br_mis_adl),
5423         EVENT_PTR(td_fetch_lat_adl),
5424         EVENT_PTR(td_mem_bound_adl),
5425         NULL,
5426 };
5427
5428 /* Must be in IDX order */
5429 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5430 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5431 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5432
5433 static struct attribute *adl_hybrid_mem_attrs[] = {
5434         EVENT_PTR(mem_ld_adl),
5435         EVENT_PTR(mem_st_adl),
5436         EVENT_PTR(mem_ld_aux_adl),
5437         NULL,
5438 };
5439
5440 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5441 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5442 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5443 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5444 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5445 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5446 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5447 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5448
5449 static struct attribute *adl_hybrid_tsx_attrs[] = {
5450         EVENT_PTR(tx_start_adl),
5451         EVENT_PTR(tx_abort_adl),
5452         EVENT_PTR(tx_commit_adl),
5453         EVENT_PTR(tx_capacity_read_adl),
5454         EVENT_PTR(tx_capacity_write_adl),
5455         EVENT_PTR(tx_conflict_adl),
5456         EVENT_PTR(cycles_t_adl),
5457         EVENT_PTR(cycles_ct_adl),
5458         NULL,
5459 };
5460
5461 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5462 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5463 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5464 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5465 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5466
5467 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5468         FORMAT_HYBRID_PTR(in_tx),
5469         FORMAT_HYBRID_PTR(in_tx_cp),
5470         FORMAT_HYBRID_PTR(offcore_rsp),
5471         FORMAT_HYBRID_PTR(ldlat),
5472         FORMAT_HYBRID_PTR(frontend),
5473         NULL,
5474 };
5475
5476 static struct attribute *adl_hybrid_extra_attr[] = {
5477         FORMAT_HYBRID_PTR(offcore_rsp),
5478         FORMAT_HYBRID_PTR(ldlat),
5479         FORMAT_HYBRID_PTR(frontend),
5480         NULL,
5481 };
5482
5483 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5484 {
5485         struct device *dev = kobj_to_dev(kobj);
5486         struct x86_hybrid_pmu *pmu =
5487                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5488         struct perf_pmu_events_hybrid_attr *pmu_attr =
5489                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5490
5491         return pmu->cpu_type & pmu_attr->pmu_type;
5492 }
5493
5494 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5495                                         struct attribute *attr, int i)
5496 {
5497         return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5498 }
5499
5500 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5501 {
5502         int cpu = cpumask_first(&pmu->supported_cpus);
5503
5504         return (cpu >= nr_cpu_ids) ? -1 : cpu;
5505 }
5506
5507 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5508                                      struct attribute *attr, int i)
5509 {
5510         struct device *dev = kobj_to_dev(kobj);
5511         struct x86_hybrid_pmu *pmu =
5512                  container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5513         int cpu = hybrid_find_supported_cpu(pmu);
5514
5515         return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5516 }
5517
5518 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5519                                         struct attribute *attr, int i)
5520 {
5521         struct device *dev = kobj_to_dev(kobj);
5522         struct x86_hybrid_pmu *pmu =
5523                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5524         struct perf_pmu_format_hybrid_attr *pmu_attr =
5525                 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5526         int cpu = hybrid_find_supported_cpu(pmu);
5527
5528         return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5529 }
5530
5531 static struct attribute_group hybrid_group_events_td  = {
5532         .name           = "events",
5533         .is_visible     = hybrid_events_is_visible,
5534 };
5535
5536 static struct attribute_group hybrid_group_events_mem = {
5537         .name           = "events",
5538         .is_visible     = hybrid_events_is_visible,
5539 };
5540
5541 static struct attribute_group hybrid_group_events_tsx = {
5542         .name           = "events",
5543         .is_visible     = hybrid_tsx_is_visible,
5544 };
5545
5546 static struct attribute_group hybrid_group_format_extra = {
5547         .name           = "format",
5548         .is_visible     = hybrid_format_is_visible,
5549 };
5550
5551 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5552                                           struct device_attribute *attr,
5553                                           char *buf)
5554 {
5555         struct x86_hybrid_pmu *pmu =
5556                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5557
5558         return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5559 }
5560
5561 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5562 static struct attribute *intel_hybrid_cpus_attrs[] = {
5563         &dev_attr_cpus.attr,
5564         NULL,
5565 };
5566
5567 static struct attribute_group hybrid_group_cpus = {
5568         .attrs          = intel_hybrid_cpus_attrs,
5569 };
5570
5571 static const struct attribute_group *hybrid_attr_update[] = {
5572         &hybrid_group_events_td,
5573         &hybrid_group_events_mem,
5574         &hybrid_group_events_tsx,
5575         &group_caps_gen,
5576         &group_caps_lbr,
5577         &hybrid_group_format_extra,
5578         &group_default,
5579         &hybrid_group_cpus,
5580         NULL,
5581 };
5582
5583 static struct attribute *empty_attrs;
5584
5585 static void intel_pmu_check_num_counters(int *num_counters,
5586                                          int *num_counters_fixed,
5587                                          u64 *intel_ctrl, u64 fixed_mask)
5588 {
5589         if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5590                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5591                      *num_counters, INTEL_PMC_MAX_GENERIC);
5592                 *num_counters = INTEL_PMC_MAX_GENERIC;
5593         }
5594         *intel_ctrl = (1ULL << *num_counters) - 1;
5595
5596         if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5597                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5598                      *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5599                 *num_counters_fixed = INTEL_PMC_MAX_FIXED;
5600         }
5601
5602         *intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5603 }
5604
5605 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5606                                               int num_counters,
5607                                               int num_counters_fixed,
5608                                               u64 intel_ctrl)
5609 {
5610         struct event_constraint *c;
5611
5612         if (!event_constraints)
5613                 return;
5614
5615         /*
5616          * event on fixed counter2 (REF_CYCLES) only works on this
5617          * counter, so do not extend mask to generic counters
5618          */
5619         for_each_event_constraint(c, event_constraints) {
5620                 /*
5621                  * Don't extend the topdown slots and metrics
5622                  * events to the generic counters.
5623                  */
5624                 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5625                         /*
5626                          * Disable topdown slots and metrics events,
5627                          * if slots event is not in CPUID.
5628                          */
5629                         if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5630                                 c->idxmsk64 = 0;
5631                         c->weight = hweight64(c->idxmsk64);
5632                         continue;
5633                 }
5634
5635                 if (c->cmask == FIXED_EVENT_FLAGS) {
5636                         /* Disabled fixed counters which are not in CPUID */
5637                         c->idxmsk64 &= intel_ctrl;
5638
5639                         /*
5640                          * Don't extend the pseudo-encoding to the
5641                          * generic counters
5642                          */
5643                         if (!use_fixed_pseudo_encoding(c->code))
5644                                 c->idxmsk64 |= (1ULL << num_counters) - 1;
5645                 }
5646                 c->idxmsk64 &=
5647                         ~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5648                 c->weight = hweight64(c->idxmsk64);
5649         }
5650 }
5651
5652 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5653 {
5654         struct extra_reg *er;
5655
5656         /*
5657          * Access extra MSR may cause #GP under certain circumstances.
5658          * E.g. KVM doesn't support offcore event
5659          * Check all extra_regs here.
5660          */
5661         if (!extra_regs)
5662                 return;
5663
5664         for (er = extra_regs; er->msr; er++) {
5665                 er->extra_msr_access = check_msr(er->msr, 0x11UL);
5666                 /* Disable LBR select mapping */
5667                 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5668                         x86_pmu.lbr_sel_map = NULL;
5669         }
5670 }
5671
5672 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5673 {
5674         struct x86_hybrid_pmu *pmu;
5675         int i;
5676
5677         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5678                 pmu = &x86_pmu.hybrid_pmu[i];
5679
5680                 intel_pmu_check_num_counters(&pmu->num_counters,
5681                                              &pmu->num_counters_fixed,
5682                                              &pmu->intel_ctrl,
5683                                              fixed_mask);
5684
5685                 if (pmu->intel_cap.perf_metrics) {
5686                         pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5687                         pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5688                 }
5689
5690                 if (pmu->intel_cap.pebs_output_pt_available)
5691                         pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5692
5693                 intel_pmu_check_event_constraints(pmu->event_constraints,
5694                                                   pmu->num_counters,
5695                                                   pmu->num_counters_fixed,
5696                                                   pmu->intel_ctrl);
5697
5698                 intel_pmu_check_extra_regs(pmu->extra_regs);
5699         }
5700 }
5701
5702 __init int intel_pmu_init(void)
5703 {
5704         struct attribute **extra_skl_attr = &empty_attrs;
5705         struct attribute **extra_attr = &empty_attrs;
5706         struct attribute **td_attr    = &empty_attrs;
5707         struct attribute **mem_attr   = &empty_attrs;
5708         struct attribute **tsx_attr   = &empty_attrs;
5709         union cpuid10_edx edx;
5710         union cpuid10_eax eax;
5711         union cpuid10_ebx ebx;
5712         unsigned int fixed_mask;
5713         bool pmem = false;
5714         int version, i;
5715         char *name;
5716         struct x86_hybrid_pmu *pmu;
5717
5718         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5719                 switch (boot_cpu_data.x86) {
5720                 case 0x6:
5721                         return p6_pmu_init();
5722                 case 0xb:
5723                         return knc_pmu_init();
5724                 case 0xf:
5725                         return p4_pmu_init();
5726                 }
5727                 return -ENODEV;
5728         }
5729
5730         /*
5731          * Check whether the Architectural PerfMon supports
5732          * Branch Misses Retired hw_event or not.
5733          */
5734         cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5735         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5736                 return -ENODEV;
5737
5738         version = eax.split.version_id;
5739         if (version < 2)
5740                 x86_pmu = core_pmu;
5741         else
5742                 x86_pmu = intel_pmu;
5743
5744         x86_pmu.version                 = version;
5745         x86_pmu.num_counters            = eax.split.num_counters;
5746         x86_pmu.cntval_bits             = eax.split.bit_width;
5747         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
5748
5749         x86_pmu.events_maskl            = ebx.full;
5750         x86_pmu.events_mask_len         = eax.split.mask_length;
5751
5752         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5753         x86_pmu.pebs_capable            = PEBS_COUNTER_MASK;
5754
5755         /*
5756          * Quirk: v2 perfmon does not report fixed-purpose events, so
5757          * assume at least 3 events, when not running in a hypervisor:
5758          */
5759         if (version > 1 && version < 5) {
5760                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5761
5762                 x86_pmu.num_counters_fixed =
5763                         max((int)edx.split.num_counters_fixed, assume);
5764
5765                 fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5766         } else if (version >= 5)
5767                 x86_pmu.num_counters_fixed = fls(fixed_mask);
5768
5769         if (boot_cpu_has(X86_FEATURE_PDCM)) {
5770                 u64 capabilities;
5771
5772                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5773                 x86_pmu.intel_cap.capabilities = capabilities;
5774         }
5775
5776         if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5777                 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5778                 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5779         }
5780
5781         if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5782                 intel_pmu_arch_lbr_init();
5783
5784         intel_ds_init();
5785
5786         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5787
5788         if (version >= 5) {
5789                 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5790                 if (x86_pmu.intel_cap.anythread_deprecated)
5791                         pr_cont(" AnyThread deprecated, ");
5792         }
5793
5794         /*
5795          * Install the hw-cache-events table:
5796          */
5797         switch (boot_cpu_data.x86_model) {
5798         case INTEL_FAM6_CORE_YONAH:
5799                 pr_cont("Core events, ");
5800                 name = "core";
5801                 break;
5802
5803         case INTEL_FAM6_CORE2_MEROM:
5804                 x86_add_quirk(intel_clovertown_quirk);
5805                 fallthrough;
5806
5807         case INTEL_FAM6_CORE2_MEROM_L:
5808         case INTEL_FAM6_CORE2_PENRYN:
5809         case INTEL_FAM6_CORE2_DUNNINGTON:
5810                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5811                        sizeof(hw_cache_event_ids));
5812
5813                 intel_pmu_lbr_init_core();
5814
5815                 x86_pmu.event_constraints = intel_core2_event_constraints;
5816                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5817                 pr_cont("Core2 events, ");
5818                 name = "core2";
5819                 break;
5820
5821         case INTEL_FAM6_NEHALEM:
5822         case INTEL_FAM6_NEHALEM_EP:
5823         case INTEL_FAM6_NEHALEM_EX:
5824                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5825                        sizeof(hw_cache_event_ids));
5826                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5827                        sizeof(hw_cache_extra_regs));
5828
5829                 intel_pmu_lbr_init_nhm();
5830
5831                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
5832                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5833                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5834                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
5835                 x86_pmu.limit_period = nhm_limit_period;
5836
5837                 mem_attr = nhm_mem_events_attrs;
5838
5839                 /* UOPS_ISSUED.STALLED_CYCLES */
5840                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5841                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5842                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5843                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5844                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5845
5846                 intel_pmu_pebs_data_source_nhm();
5847                 x86_add_quirk(intel_nehalem_quirk);
5848                 x86_pmu.pebs_no_tlb = 1;
5849                 extra_attr = nhm_format_attr;
5850
5851                 pr_cont("Nehalem events, ");
5852                 name = "nehalem";
5853                 break;
5854
5855         case INTEL_FAM6_ATOM_BONNELL:
5856         case INTEL_FAM6_ATOM_BONNELL_MID:
5857         case INTEL_FAM6_ATOM_SALTWELL:
5858         case INTEL_FAM6_ATOM_SALTWELL_MID:
5859         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5860                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5861                        sizeof(hw_cache_event_ids));
5862
5863                 intel_pmu_lbr_init_atom();
5864
5865                 x86_pmu.event_constraints = intel_gen_event_constraints;
5866                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5867                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5868                 pr_cont("Atom events, ");
5869                 name = "bonnell";
5870                 break;
5871
5872         case INTEL_FAM6_ATOM_SILVERMONT:
5873         case INTEL_FAM6_ATOM_SILVERMONT_D:
5874         case INTEL_FAM6_ATOM_SILVERMONT_MID:
5875         case INTEL_FAM6_ATOM_AIRMONT:
5876         case INTEL_FAM6_ATOM_AIRMONT_MID:
5877                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5878                         sizeof(hw_cache_event_ids));
5879                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5880                        sizeof(hw_cache_extra_regs));
5881
5882                 intel_pmu_lbr_init_slm();
5883
5884                 x86_pmu.event_constraints = intel_slm_event_constraints;
5885                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5886                 x86_pmu.extra_regs = intel_slm_extra_regs;
5887                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5888                 td_attr = slm_events_attrs;
5889                 extra_attr = slm_format_attr;
5890                 pr_cont("Silvermont events, ");
5891                 name = "silvermont";
5892                 break;
5893
5894         case INTEL_FAM6_ATOM_GOLDMONT:
5895         case INTEL_FAM6_ATOM_GOLDMONT_D:
5896                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5897                        sizeof(hw_cache_event_ids));
5898                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5899                        sizeof(hw_cache_extra_regs));
5900
5901                 intel_pmu_lbr_init_skl();
5902
5903                 x86_pmu.event_constraints = intel_slm_event_constraints;
5904                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5905                 x86_pmu.extra_regs = intel_glm_extra_regs;
5906                 /*
5907                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5908                  * for precise cycles.
5909                  * :pp is identical to :ppp
5910                  */
5911                 x86_pmu.pebs_aliases = NULL;
5912                 x86_pmu.pebs_prec_dist = true;
5913                 x86_pmu.lbr_pt_coexist = true;
5914                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5915                 td_attr = glm_events_attrs;
5916                 extra_attr = slm_format_attr;
5917                 pr_cont("Goldmont events, ");
5918                 name = "goldmont";
5919                 break;
5920
5921         case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5922                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5923                        sizeof(hw_cache_event_ids));
5924                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5925                        sizeof(hw_cache_extra_regs));
5926
5927                 intel_pmu_lbr_init_skl();
5928
5929                 x86_pmu.event_constraints = intel_slm_event_constraints;
5930                 x86_pmu.extra_regs = intel_glm_extra_regs;
5931                 /*
5932                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5933                  * for precise cycles.
5934                  */
5935                 x86_pmu.pebs_aliases = NULL;
5936                 x86_pmu.pebs_prec_dist = true;
5937                 x86_pmu.lbr_pt_coexist = true;
5938                 x86_pmu.pebs_capable = ~0ULL;
5939                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5940                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
5941                 x86_pmu.get_event_constraints = glp_get_event_constraints;
5942                 td_attr = glm_events_attrs;
5943                 /* Goldmont Plus has 4-wide pipeline */
5944                 event_attr_td_total_slots_scale_glm.event_str = "4";
5945                 extra_attr = slm_format_attr;
5946                 pr_cont("Goldmont plus events, ");
5947                 name = "goldmont_plus";
5948                 break;
5949
5950         case INTEL_FAM6_ATOM_TREMONT_D:
5951         case INTEL_FAM6_ATOM_TREMONT:
5952         case INTEL_FAM6_ATOM_TREMONT_L:
5953                 x86_pmu.late_ack = true;
5954                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5955                        sizeof(hw_cache_event_ids));
5956                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5957                        sizeof(hw_cache_extra_regs));
5958                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5959
5960                 intel_pmu_lbr_init_skl();
5961
5962                 x86_pmu.event_constraints = intel_slm_event_constraints;
5963                 x86_pmu.extra_regs = intel_tnt_extra_regs;
5964                 /*
5965                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5966                  * for precise cycles.
5967                  */
5968                 x86_pmu.pebs_aliases = NULL;
5969                 x86_pmu.pebs_prec_dist = true;
5970                 x86_pmu.lbr_pt_coexist = true;
5971                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5972                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
5973                 td_attr = tnt_events_attrs;
5974                 extra_attr = slm_format_attr;
5975                 pr_cont("Tremont events, ");
5976                 name = "Tremont";
5977                 break;
5978
5979         case INTEL_FAM6_WESTMERE:
5980         case INTEL_FAM6_WESTMERE_EP:
5981         case INTEL_FAM6_WESTMERE_EX:
5982                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5983                        sizeof(hw_cache_event_ids));
5984                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5985                        sizeof(hw_cache_extra_regs));
5986
5987                 intel_pmu_lbr_init_nhm();
5988
5989                 x86_pmu.event_constraints = intel_westmere_event_constraints;
5990                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5991                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5992                 x86_pmu.extra_regs = intel_westmere_extra_regs;
5993                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5994
5995                 mem_attr = nhm_mem_events_attrs;
5996
5997                 /* UOPS_ISSUED.STALLED_CYCLES */
5998                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5999                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6000                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6001                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6002                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6003
6004                 intel_pmu_pebs_data_source_nhm();
6005                 extra_attr = nhm_format_attr;
6006                 pr_cont("Westmere events, ");
6007                 name = "westmere";
6008                 break;
6009
6010         case INTEL_FAM6_SANDYBRIDGE:
6011         case INTEL_FAM6_SANDYBRIDGE_X:
6012                 x86_add_quirk(intel_sandybridge_quirk);
6013                 x86_add_quirk(intel_ht_bug);
6014                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6015                        sizeof(hw_cache_event_ids));
6016                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6017                        sizeof(hw_cache_extra_regs));
6018
6019                 intel_pmu_lbr_init_snb();
6020
6021                 x86_pmu.event_constraints = intel_snb_event_constraints;
6022                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
6023                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
6024                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
6025                         x86_pmu.extra_regs = intel_snbep_extra_regs;
6026                 else
6027                         x86_pmu.extra_regs = intel_snb_extra_regs;
6028
6029
6030                 /* all extra regs are per-cpu when HT is on */
6031                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6032                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6033
6034                 td_attr  = snb_events_attrs;
6035                 mem_attr = snb_mem_events_attrs;
6036
6037                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6038                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6039                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6040                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
6041                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6042                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
6043
6044                 extra_attr = nhm_format_attr;
6045
6046                 pr_cont("SandyBridge events, ");
6047                 name = "sandybridge";
6048                 break;
6049
6050         case INTEL_FAM6_IVYBRIDGE:
6051         case INTEL_FAM6_IVYBRIDGE_X:
6052                 x86_add_quirk(intel_ht_bug);
6053                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6054                        sizeof(hw_cache_event_ids));
6055                 /* dTLB-load-misses on IVB is different than SNB */
6056                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
6057
6058                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6059                        sizeof(hw_cache_extra_regs));
6060
6061                 intel_pmu_lbr_init_snb();
6062
6063                 x86_pmu.event_constraints = intel_ivb_event_constraints;
6064                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
6065                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6066                 x86_pmu.pebs_prec_dist = true;
6067                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
6068                         x86_pmu.extra_regs = intel_snbep_extra_regs;
6069                 else
6070                         x86_pmu.extra_regs = intel_snb_extra_regs;
6071                 /* all extra regs are per-cpu when HT is on */
6072                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6073                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6074
6075                 td_attr  = snb_events_attrs;
6076                 mem_attr = snb_mem_events_attrs;
6077
6078                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6079                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6080                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6081
6082                 extra_attr = nhm_format_attr;
6083
6084                 pr_cont("IvyBridge events, ");
6085                 name = "ivybridge";
6086                 break;
6087
6088
6089         case INTEL_FAM6_HASWELL:
6090         case INTEL_FAM6_HASWELL_X:
6091         case INTEL_FAM6_HASWELL_L:
6092         case INTEL_FAM6_HASWELL_G:
6093                 x86_add_quirk(intel_ht_bug);
6094                 x86_add_quirk(intel_pebs_isolation_quirk);
6095                 x86_pmu.late_ack = true;
6096                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6097                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6098
6099                 intel_pmu_lbr_init_hsw();
6100
6101                 x86_pmu.event_constraints = intel_hsw_event_constraints;
6102                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
6103                 x86_pmu.extra_regs = intel_snbep_extra_regs;
6104                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6105                 x86_pmu.pebs_prec_dist = true;
6106                 /* all extra regs are per-cpu when HT is on */
6107                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6108                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6109
6110                 x86_pmu.hw_config = hsw_hw_config;
6111                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6112                 x86_pmu.lbr_double_abort = true;
6113                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6114                         hsw_format_attr : nhm_format_attr;
6115                 td_attr  = hsw_events_attrs;
6116                 mem_attr = hsw_mem_events_attrs;
6117                 tsx_attr = hsw_tsx_events_attrs;
6118                 pr_cont("Haswell events, ");
6119                 name = "haswell";
6120                 break;
6121
6122         case INTEL_FAM6_BROADWELL:
6123         case INTEL_FAM6_BROADWELL_D:
6124         case INTEL_FAM6_BROADWELL_G:
6125         case INTEL_FAM6_BROADWELL_X:
6126                 x86_add_quirk(intel_pebs_isolation_quirk);
6127                 x86_pmu.late_ack = true;
6128                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6129                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6130
6131                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
6132                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
6133                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
6134                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
6135                                                                           HSW_SNOOP_DRAM;
6136                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
6137                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6138                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
6139                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6140
6141                 intel_pmu_lbr_init_hsw();
6142
6143                 x86_pmu.event_constraints = intel_bdw_event_constraints;
6144                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6145                 x86_pmu.extra_regs = intel_snbep_extra_regs;
6146                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6147                 x86_pmu.pebs_prec_dist = true;
6148                 /* all extra regs are per-cpu when HT is on */
6149                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6150                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6151
6152                 x86_pmu.hw_config = hsw_hw_config;
6153                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6154                 x86_pmu.limit_period = bdw_limit_period;
6155                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6156                         hsw_format_attr : nhm_format_attr;
6157                 td_attr  = hsw_events_attrs;
6158                 mem_attr = hsw_mem_events_attrs;
6159                 tsx_attr = hsw_tsx_events_attrs;
6160                 pr_cont("Broadwell events, ");
6161                 name = "broadwell";
6162                 break;
6163
6164         case INTEL_FAM6_XEON_PHI_KNL:
6165         case INTEL_FAM6_XEON_PHI_KNM:
6166                 memcpy(hw_cache_event_ids,
6167                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6168                 memcpy(hw_cache_extra_regs,
6169                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6170                 intel_pmu_lbr_init_knl();
6171
6172                 x86_pmu.event_constraints = intel_slm_event_constraints;
6173                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6174                 x86_pmu.extra_regs = intel_knl_extra_regs;
6175
6176                 /* all extra regs are per-cpu when HT is on */
6177                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6178                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6179                 extra_attr = slm_format_attr;
6180                 pr_cont("Knights Landing/Mill events, ");
6181                 name = "knights-landing";
6182                 break;
6183
6184         case INTEL_FAM6_SKYLAKE_X:
6185                 pmem = true;
6186                 fallthrough;
6187         case INTEL_FAM6_SKYLAKE_L:
6188         case INTEL_FAM6_SKYLAKE:
6189         case INTEL_FAM6_KABYLAKE_L:
6190         case INTEL_FAM6_KABYLAKE:
6191         case INTEL_FAM6_COMETLAKE_L:
6192         case INTEL_FAM6_COMETLAKE:
6193                 x86_add_quirk(intel_pebs_isolation_quirk);
6194                 x86_pmu.late_ack = true;
6195                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6196                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6197                 intel_pmu_lbr_init_skl();
6198
6199                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6200                 event_attr_td_recovery_bubbles.event_str_noht =
6201                         "event=0xd,umask=0x1,cmask=1";
6202                 event_attr_td_recovery_bubbles.event_str_ht =
6203                         "event=0xd,umask=0x1,cmask=1,any=1";
6204
6205                 x86_pmu.event_constraints = intel_skl_event_constraints;
6206                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6207                 x86_pmu.extra_regs = intel_skl_extra_regs;
6208                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6209                 x86_pmu.pebs_prec_dist = true;
6210                 /* all extra regs are per-cpu when HT is on */
6211                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6212                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6213
6214                 x86_pmu.hw_config = hsw_hw_config;
6215                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6216                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6217                         hsw_format_attr : nhm_format_attr;
6218                 extra_skl_attr = skl_format_attr;
6219                 td_attr  = hsw_events_attrs;
6220                 mem_attr = hsw_mem_events_attrs;
6221                 tsx_attr = hsw_tsx_events_attrs;
6222                 intel_pmu_pebs_data_source_skl(pmem);
6223
6224                 /*
6225                  * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6226                  * TSX force abort hooks are not required on these systems. Only deploy
6227                  * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6228                  */
6229                 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6230                    !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6231                         x86_pmu.flags |= PMU_FL_TFA;
6232                         x86_pmu.get_event_constraints = tfa_get_event_constraints;
6233                         x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6234                         x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6235                 }
6236
6237                 pr_cont("Skylake events, ");
6238                 name = "skylake";
6239                 break;
6240
6241         case INTEL_FAM6_ICELAKE_X:
6242         case INTEL_FAM6_ICELAKE_D:
6243                 x86_pmu.pebs_ept = 1;
6244                 pmem = true;
6245                 fallthrough;
6246         case INTEL_FAM6_ICELAKE_L:
6247         case INTEL_FAM6_ICELAKE:
6248         case INTEL_FAM6_TIGERLAKE_L:
6249         case INTEL_FAM6_TIGERLAKE:
6250         case INTEL_FAM6_ROCKETLAKE:
6251                 x86_pmu.late_ack = true;
6252                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6253                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6254                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6255                 intel_pmu_lbr_init_skl();
6256
6257                 x86_pmu.event_constraints = intel_icl_event_constraints;
6258                 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6259                 x86_pmu.extra_regs = intel_icl_extra_regs;
6260                 x86_pmu.pebs_aliases = NULL;
6261                 x86_pmu.pebs_prec_dist = true;
6262                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6263                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6264
6265                 x86_pmu.hw_config = hsw_hw_config;
6266                 x86_pmu.get_event_constraints = icl_get_event_constraints;
6267                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6268                         hsw_format_attr : nhm_format_attr;
6269                 extra_skl_attr = skl_format_attr;
6270                 mem_attr = icl_events_attrs;
6271                 td_attr = icl_td_events_attrs;
6272                 tsx_attr = icl_tsx_events_attrs;
6273                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6274                 x86_pmu.lbr_pt_coexist = true;
6275                 intel_pmu_pebs_data_source_skl(pmem);
6276                 x86_pmu.num_topdown_events = 4;
6277                 x86_pmu.update_topdown_event = icl_update_topdown_event;
6278                 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6279                 pr_cont("Icelake events, ");
6280                 name = "icelake";
6281                 break;
6282
6283         case INTEL_FAM6_SAPPHIRERAPIDS_X:
6284                 pmem = true;
6285                 x86_pmu.late_ack = true;
6286                 memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6287                 memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6288
6289                 x86_pmu.event_constraints = intel_spr_event_constraints;
6290                 x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6291                 x86_pmu.extra_regs = intel_spr_extra_regs;
6292                 x86_pmu.limit_period = spr_limit_period;
6293                 x86_pmu.pebs_aliases = NULL;
6294                 x86_pmu.pebs_prec_dist = true;
6295                 x86_pmu.pebs_block = true;
6296                 x86_pmu.pebs_capable = ~0ULL;
6297                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6298                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6299                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6300                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6301                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6302
6303                 x86_pmu.hw_config = hsw_hw_config;
6304                 x86_pmu.get_event_constraints = spr_get_event_constraints;
6305                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6306                         hsw_format_attr : nhm_format_attr;
6307                 extra_skl_attr = skl_format_attr;
6308                 mem_attr = spr_events_attrs;
6309                 td_attr = spr_td_events_attrs;
6310                 tsx_attr = spr_tsx_events_attrs;
6311                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6312                 x86_pmu.lbr_pt_coexist = true;
6313                 intel_pmu_pebs_data_source_skl(pmem);
6314                 x86_pmu.num_topdown_events = 8;
6315                 x86_pmu.update_topdown_event = icl_update_topdown_event;
6316                 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6317                 pr_cont("Sapphire Rapids events, ");
6318                 name = "sapphire_rapids";
6319                 break;
6320
6321         case INTEL_FAM6_ALDERLAKE:
6322         case INTEL_FAM6_ALDERLAKE_L:
6323         case INTEL_FAM6_ALDERLAKE_N:
6324         case INTEL_FAM6_RAPTORLAKE:
6325         case INTEL_FAM6_RAPTORLAKE_P:
6326                 /*
6327                  * Alder Lake has 2 types of CPU, core and atom.
6328                  *
6329                  * Initialize the common PerfMon capabilities here.
6330                  */
6331                 x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6332                                              sizeof(struct x86_hybrid_pmu),
6333                                              GFP_KERNEL);
6334                 if (!x86_pmu.hybrid_pmu)
6335                         return -ENOMEM;
6336                 static_branch_enable(&perf_is_hybrid);
6337                 x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6338
6339                 x86_pmu.pebs_aliases = NULL;
6340                 x86_pmu.pebs_prec_dist = true;
6341                 x86_pmu.pebs_block = true;
6342                 x86_pmu.pebs_capable = ~0ULL;
6343                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6344                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6345                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6346                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6347                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6348                 x86_pmu.lbr_pt_coexist = true;
6349                 intel_pmu_pebs_data_source_adl();
6350                 x86_pmu.pebs_latency_data = adl_latency_data_small;
6351                 x86_pmu.num_topdown_events = 8;
6352                 x86_pmu.update_topdown_event = adl_update_topdown_event;
6353                 x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;
6354
6355                 x86_pmu.filter_match = intel_pmu_filter_match;
6356                 x86_pmu.get_event_constraints = adl_get_event_constraints;
6357                 x86_pmu.hw_config = adl_hw_config;
6358                 x86_pmu.limit_period = spr_limit_period;
6359                 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6360                 /*
6361                  * The rtm_abort_event is used to check whether to enable GPRs
6362                  * for the RTM abort event. Atom doesn't have the RTM abort
6363                  * event. There is no harmful to set it in the common
6364                  * x86_pmu.rtm_abort_event.
6365                  */
6366                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6367
6368                 td_attr = adl_hybrid_events_attrs;
6369                 mem_attr = adl_hybrid_mem_attrs;
6370                 tsx_attr = adl_hybrid_tsx_attrs;
6371                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6372                         adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6373
6374                 /* Initialize big core specific PerfMon capabilities.*/
6375                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6376                 pmu->name = "cpu_core";
6377                 pmu->cpu_type = hybrid_big;
6378                 pmu->late_ack = true;
6379                 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6380                         pmu->num_counters = x86_pmu.num_counters + 2;
6381                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6382                 } else {
6383                         pmu->num_counters = x86_pmu.num_counters;
6384                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6385                 }
6386
6387                 /*
6388                  * Quirk: For some Alder Lake machine, when all E-cores are disabled in
6389                  * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
6390                  * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
6391                  * mistakenly add extra counters for P-cores. Correct the number of
6392                  * counters here.
6393                  */
6394                 if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
6395                         pmu->num_counters = x86_pmu.num_counters;
6396                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6397                 }
6398
6399                 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6400                 pmu->unconstrained = (struct event_constraint)
6401                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6402                                                            0, pmu->num_counters, 0, 0);
6403                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6404                 pmu->intel_cap.perf_metrics = 1;
6405                 pmu->intel_cap.pebs_output_pt_available = 0;
6406
6407                 memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6408                 memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6409                 pmu->event_constraints = intel_spr_event_constraints;
6410                 pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6411                 pmu->extra_regs = intel_spr_extra_regs;
6412
6413                 /* Initialize Atom core specific PerfMon capabilities.*/
6414                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6415                 pmu->name = "cpu_atom";
6416                 pmu->cpu_type = hybrid_small;
6417                 pmu->mid_ack = true;
6418                 pmu->num_counters = x86_pmu.num_counters;
6419                 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6420                 pmu->max_pebs_events = x86_pmu.max_pebs_events;
6421                 pmu->unconstrained = (struct event_constraint)
6422                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6423                                                            0, pmu->num_counters, 0, 0);
6424                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6425                 pmu->intel_cap.perf_metrics = 0;
6426                 pmu->intel_cap.pebs_output_pt_available = 1;
6427
6428                 memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6429                 memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6430                 pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6431                 pmu->event_constraints = intel_slm_event_constraints;
6432                 pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6433                 pmu->extra_regs = intel_grt_extra_regs;
6434                 pr_cont("Alderlake Hybrid events, ");
6435                 name = "alderlake_hybrid";
6436                 break;
6437
6438         default:
6439                 switch (x86_pmu.version) {
6440                 case 1:
6441                         x86_pmu.event_constraints = intel_v1_event_constraints;
6442                         pr_cont("generic architected perfmon v1, ");
6443                         name = "generic_arch_v1";
6444                         break;
6445                 case 2:
6446                 case 3:
6447                 case 4:
6448                         /*
6449                          * default constraints for v2 and up
6450                          */
6451                         x86_pmu.event_constraints = intel_gen_event_constraints;
6452                         pr_cont("generic architected perfmon, ");
6453                         name = "generic_arch_v2+";
6454                         break;
6455                 default:
6456                         /*
6457                          * The default constraints for v5 and up can support up to
6458                          * 16 fixed counters. For the fixed counters 4 and later,
6459                          * the pseudo-encoding is applied.
6460                          * The constraints may be cut according to the CPUID enumeration
6461                          * by inserting the EVENT_CONSTRAINT_END.
6462                          */
6463                         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED)
6464                                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
6465                         intel_v5_gen_event_constraints[x86_pmu.num_counters_fixed].weight = -1;
6466                         x86_pmu.event_constraints = intel_v5_gen_event_constraints;
6467                         pr_cont("generic architected perfmon, ");
6468                         name = "generic_arch_v5+";
6469                         break;
6470                 }
6471         }
6472
6473         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6474
6475         if (!is_hybrid()) {
6476                 group_events_td.attrs  = td_attr;
6477                 group_events_mem.attrs = mem_attr;
6478                 group_events_tsx.attrs = tsx_attr;
6479                 group_format_extra.attrs = extra_attr;
6480                 group_format_extra_skl.attrs = extra_skl_attr;
6481
6482                 x86_pmu.attr_update = attr_update;
6483         } else {
6484                 hybrid_group_events_td.attrs  = td_attr;
6485                 hybrid_group_events_mem.attrs = mem_attr;
6486                 hybrid_group_events_tsx.attrs = tsx_attr;
6487                 hybrid_group_format_extra.attrs = extra_attr;
6488
6489                 x86_pmu.attr_update = hybrid_attr_update;
6490         }
6491
6492         intel_pmu_check_num_counters(&x86_pmu.num_counters,
6493                                      &x86_pmu.num_counters_fixed,
6494                                      &x86_pmu.intel_ctrl,
6495                                      (u64)fixed_mask);
6496
6497         /* AnyThread may be deprecated on arch perfmon v5 or later */
6498         if (x86_pmu.intel_cap.anythread_deprecated)
6499                 x86_pmu.format_attrs = intel_arch_formats_attr;
6500
6501         intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6502                                           x86_pmu.num_counters,
6503                                           x86_pmu.num_counters_fixed,
6504                                           x86_pmu.intel_ctrl);
6505         /*
6506          * Access LBR MSR may cause #GP under certain circumstances.
6507          * Check all LBR MSR here.
6508          * Disable LBR access if any LBR MSRs can not be accessed.
6509          */
6510         if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6511                 x86_pmu.lbr_nr = 0;
6512         for (i = 0; i < x86_pmu.lbr_nr; i++) {
6513                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6514                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6515                         x86_pmu.lbr_nr = 0;
6516         }
6517
6518         if (x86_pmu.lbr_nr) {
6519                 intel_pmu_lbr_init();
6520
6521                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6522
6523                 /* only support branch_stack snapshot for perfmon >= v2 */
6524                 if (x86_pmu.disable_all == intel_pmu_disable_all) {
6525                         if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
6526                                 static_call_update(perf_snapshot_branch_stack,
6527                                                    intel_pmu_snapshot_arch_branch_stack);
6528                         } else {
6529                                 static_call_update(perf_snapshot_branch_stack,
6530                                                    intel_pmu_snapshot_branch_stack);
6531                         }
6532                 }
6533         }
6534
6535         intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6536
6537         /* Support full width counters using alternative MSR range */
6538         if (x86_pmu.intel_cap.full_width_write) {
6539                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6540                 x86_pmu.perfctr = MSR_IA32_PMC0;
6541                 pr_cont("full-width counters, ");
6542         }
6543
6544         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6545                 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6546
6547         if (is_hybrid())
6548                 intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6549
6550         intel_aux_output_init();
6551
6552         return 0;
6553 }
6554
6555 /*
6556  * HT bug: phase 2 init
6557  * Called once we have valid topology information to check
6558  * whether or not HT is enabled
6559  * If HT is off, then we disable the workaround
6560  */
6561 static __init int fixup_ht_bug(void)
6562 {
6563         int c;
6564         /*
6565          * problem not present on this CPU model, nothing to do
6566          */
6567         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6568                 return 0;
6569
6570         if (topology_max_smt_threads() > 1) {
6571                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6572                 return 0;
6573         }
6574
6575         cpus_read_lock();
6576
6577         hardlockup_detector_perf_stop();
6578
6579         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6580
6581         x86_pmu.start_scheduling = NULL;
6582         x86_pmu.commit_scheduling = NULL;
6583         x86_pmu.stop_scheduling = NULL;
6584
6585         hardlockup_detector_perf_restart();
6586
6587         for_each_online_cpu(c)
6588                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6589
6590         cpus_read_unlock();
6591         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6592         return 0;
6593 }
6594 subsys_initcall(fixup_ht_bug)