Merge tag 'char-misc-5.2-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
43
44 #include "perf_event.h"
45
46 struct x86_pmu x86_pmu __read_mostly;
47
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49         .enabled = 1,
50 };
51
52 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
53
54 u64 __read_mostly hw_cache_event_ids
55                                 [PERF_COUNT_HW_CACHE_MAX]
56                                 [PERF_COUNT_HW_CACHE_OP_MAX]
57                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59                                 [PERF_COUNT_HW_CACHE_MAX]
60                                 [PERF_COUNT_HW_CACHE_OP_MAX]
61                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
62
63 /*
64  * Propagate event elapsed time into the generic event.
65  * Can only be executed on the CPU where the event is active.
66  * Returns the delta events processed.
67  */
68 u64 x86_perf_event_update(struct perf_event *event)
69 {
70         struct hw_perf_event *hwc = &event->hw;
71         int shift = 64 - x86_pmu.cntval_bits;
72         u64 prev_raw_count, new_raw_count;
73         int idx = hwc->idx;
74         u64 delta;
75
76         if (idx == INTEL_PMC_IDX_FIXED_BTS)
77                 return 0;
78
79         /*
80          * Careful: an NMI might modify the previous event value.
81          *
82          * Our tactic to handle this is to first atomically read and
83          * exchange a new raw count - then add that new-prev delta
84          * count to the generic event atomically:
85          */
86 again:
87         prev_raw_count = local64_read(&hwc->prev_count);
88         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
89
90         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91                                         new_raw_count) != prev_raw_count)
92                 goto again;
93
94         /*
95          * Now we have the new raw value and have updated the prev
96          * timestamp already. We can now calculate the elapsed delta
97          * (event-)time and add that to the generic event.
98          *
99          * Careful, not all hw sign-extends above the physical width
100          * of the count.
101          */
102         delta = (new_raw_count << shift) - (prev_raw_count << shift);
103         delta >>= shift;
104
105         local64_add(delta, &event->count);
106         local64_sub(delta, &hwc->period_left);
107
108         return new_raw_count;
109 }
110
111 /*
112  * Find and validate any extra registers to set up.
113  */
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 {
116         struct hw_perf_event_extra *reg;
117         struct extra_reg *er;
118
119         reg = &event->hw.extra_reg;
120
121         if (!x86_pmu.extra_regs)
122                 return 0;
123
124         for (er = x86_pmu.extra_regs; er->msr; er++) {
125                 if (er->event != (config & er->config_mask))
126                         continue;
127                 if (event->attr.config1 & ~er->valid_mask)
128                         return -EINVAL;
129                 /* Check if the extra msrs can be safely accessed*/
130                 if (!er->extra_msr_access)
131                         return -ENXIO;
132
133                 reg->idx = er->idx;
134                 reg->config = event->attr.config1;
135                 reg->reg = er->msr;
136                 break;
137         }
138         return 0;
139 }
140
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
144
145 #ifdef CONFIG_X86_LOCAL_APIC
146
147 static bool reserve_pmc_hardware(void)
148 {
149         int i;
150
151         for (i = 0; i < x86_pmu.num_counters; i++) {
152                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
153                         goto perfctr_fail;
154         }
155
156         for (i = 0; i < x86_pmu.num_counters; i++) {
157                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
158                         goto eventsel_fail;
159         }
160
161         return true;
162
163 eventsel_fail:
164         for (i--; i >= 0; i--)
165                 release_evntsel_nmi(x86_pmu_config_addr(i));
166
167         i = x86_pmu.num_counters;
168
169 perfctr_fail:
170         for (i--; i >= 0; i--)
171                 release_perfctr_nmi(x86_pmu_event_addr(i));
172
173         return false;
174 }
175
176 static void release_pmc_hardware(void)
177 {
178         int i;
179
180         for (i = 0; i < x86_pmu.num_counters; i++) {
181                 release_perfctr_nmi(x86_pmu_event_addr(i));
182                 release_evntsel_nmi(x86_pmu_config_addr(i));
183         }
184 }
185
186 #else
187
188 static bool reserve_pmc_hardware(void) { return true; }
189 static void release_pmc_hardware(void) {}
190
191 #endif
192
193 static bool check_hw_exists(void)
194 {
195         u64 val, val_fail = -1, val_new= ~0;
196         int i, reg, reg_fail = -1, ret = 0;
197         int bios_fail = 0;
198         int reg_safe = -1;
199
200         /*
201          * Check to see if the BIOS enabled any of the counters, if so
202          * complain and bail.
203          */
204         for (i = 0; i < x86_pmu.num_counters; i++) {
205                 reg = x86_pmu_config_addr(i);
206                 ret = rdmsrl_safe(reg, &val);
207                 if (ret)
208                         goto msr_fail;
209                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210                         bios_fail = 1;
211                         val_fail = val;
212                         reg_fail = reg;
213                 } else {
214                         reg_safe = i;
215                 }
216         }
217
218         if (x86_pmu.num_counters_fixed) {
219                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220                 ret = rdmsrl_safe(reg, &val);
221                 if (ret)
222                         goto msr_fail;
223                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224                         if (val & (0x03 << i*4)) {
225                                 bios_fail = 1;
226                                 val_fail = val;
227                                 reg_fail = reg;
228                         }
229                 }
230         }
231
232         /*
233          * If all the counters are enabled, the below test will always
234          * fail.  The tools will also become useless in this scenario.
235          * Just fail and disable the hardware counters.
236          */
237
238         if (reg_safe == -1) {
239                 reg = reg_safe;
240                 goto msr_fail;
241         }
242
243         /*
244          * Read the current value, change it and read it back to see if it
245          * matches, this is needed to detect certain hardware emulators
246          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247          */
248         reg = x86_pmu_event_addr(reg_safe);
249         if (rdmsrl_safe(reg, &val))
250                 goto msr_fail;
251         val ^= 0xffffUL;
252         ret = wrmsrl_safe(reg, val);
253         ret |= rdmsrl_safe(reg, &val_new);
254         if (ret || val != val_new)
255                 goto msr_fail;
256
257         /*
258          * We still allow the PMU driver to operate:
259          */
260         if (bios_fail) {
261                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
263                               reg_fail, val_fail);
264         }
265
266         return true;
267
268 msr_fail:
269         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270                 pr_cont("PMU not available due to virtualization, using software events only.\n");
271         } else {
272                 pr_cont("Broken PMU hardware detected, using software events only.\n");
273                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
274                        reg, val_new);
275         }
276
277         return false;
278 }
279
280 static void hw_perf_event_destroy(struct perf_event *event)
281 {
282         x86_release_hardware();
283         atomic_dec(&active_events);
284 }
285
286 void hw_perf_lbr_event_destroy(struct perf_event *event)
287 {
288         hw_perf_event_destroy(event);
289
290         /* undo the lbr/bts event accounting */
291         x86_del_exclusive(x86_lbr_exclusive_lbr);
292 }
293
294 static inline int x86_pmu_initialized(void)
295 {
296         return x86_pmu.handle_irq != NULL;
297 }
298
299 static inline int
300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
301 {
302         struct perf_event_attr *attr = &event->attr;
303         unsigned int cache_type, cache_op, cache_result;
304         u64 config, val;
305
306         config = attr->config;
307
308         cache_type = (config >> 0) & 0xff;
309         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310                 return -EINVAL;
311         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
312
313         cache_op = (config >>  8) & 0xff;
314         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
315                 return -EINVAL;
316         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
317
318         cache_result = (config >> 16) & 0xff;
319         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
320                 return -EINVAL;
321         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
322
323         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
324
325         if (val == 0)
326                 return -ENOENT;
327
328         if (val == -1)
329                 return -EINVAL;
330
331         hwc->config |= val;
332         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333         return x86_pmu_extra_regs(val, event);
334 }
335
336 int x86_reserve_hardware(void)
337 {
338         int err = 0;
339
340         if (!atomic_inc_not_zero(&pmc_refcount)) {
341                 mutex_lock(&pmc_reserve_mutex);
342                 if (atomic_read(&pmc_refcount) == 0) {
343                         if (!reserve_pmc_hardware())
344                                 err = -EBUSY;
345                         else
346                                 reserve_ds_buffers();
347                 }
348                 if (!err)
349                         atomic_inc(&pmc_refcount);
350                 mutex_unlock(&pmc_reserve_mutex);
351         }
352
353         return err;
354 }
355
356 void x86_release_hardware(void)
357 {
358         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359                 release_pmc_hardware();
360                 release_ds_buffers();
361                 mutex_unlock(&pmc_reserve_mutex);
362         }
363 }
364
365 /*
366  * Check if we can create event of a certain type (that no conflicting events
367  * are present).
368  */
369 int x86_add_exclusive(unsigned int what)
370 {
371         int i;
372
373         /*
374          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375          * LBR and BTS are still mutually exclusive.
376          */
377         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
378                 return 0;
379
380         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
381                 mutex_lock(&pmc_reserve_mutex);
382                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
383                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
384                                 goto fail_unlock;
385                 }
386                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
387                 mutex_unlock(&pmc_reserve_mutex);
388         }
389
390         atomic_inc(&active_events);
391         return 0;
392
393 fail_unlock:
394         mutex_unlock(&pmc_reserve_mutex);
395         return -EBUSY;
396 }
397
398 void x86_del_exclusive(unsigned int what)
399 {
400         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
401                 return;
402
403         atomic_dec(&x86_pmu.lbr_exclusive[what]);
404         atomic_dec(&active_events);
405 }
406
407 int x86_setup_perfctr(struct perf_event *event)
408 {
409         struct perf_event_attr *attr = &event->attr;
410         struct hw_perf_event *hwc = &event->hw;
411         u64 config;
412
413         if (!is_sampling_event(event)) {
414                 hwc->sample_period = x86_pmu.max_period;
415                 hwc->last_period = hwc->sample_period;
416                 local64_set(&hwc->period_left, hwc->sample_period);
417         }
418
419         if (attr->type == PERF_TYPE_RAW)
420                 return x86_pmu_extra_regs(event->attr.config, event);
421
422         if (attr->type == PERF_TYPE_HW_CACHE)
423                 return set_ext_hw_attr(hwc, event);
424
425         if (attr->config >= x86_pmu.max_events)
426                 return -EINVAL;
427
428         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
429
430         /*
431          * The generic map:
432          */
433         config = x86_pmu.event_map(attr->config);
434
435         if (config == 0)
436                 return -ENOENT;
437
438         if (config == -1LL)
439                 return -EINVAL;
440
441         hwc->config |= config;
442
443         return 0;
444 }
445
446 /*
447  * check that branch_sample_type is compatible with
448  * settings needed for precise_ip > 1 which implies
449  * using the LBR to capture ALL taken branches at the
450  * priv levels of the measurement
451  */
452 static inline int precise_br_compat(struct perf_event *event)
453 {
454         u64 m = event->attr.branch_sample_type;
455         u64 b = 0;
456
457         /* must capture all branches */
458         if (!(m & PERF_SAMPLE_BRANCH_ANY))
459                 return 0;
460
461         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
462
463         if (!event->attr.exclude_user)
464                 b |= PERF_SAMPLE_BRANCH_USER;
465
466         if (!event->attr.exclude_kernel)
467                 b |= PERF_SAMPLE_BRANCH_KERNEL;
468
469         /*
470          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
471          */
472
473         return m == b;
474 }
475
476 int x86_pmu_max_precise(void)
477 {
478         int precise = 0;
479
480         /* Support for constant skid */
481         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
482                 precise++;
483
484                 /* Support for IP fixup */
485                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
486                         precise++;
487
488                 if (x86_pmu.pebs_prec_dist)
489                         precise++;
490         }
491         return precise;
492 }
493
494 int x86_pmu_hw_config(struct perf_event *event)
495 {
496         if (event->attr.precise_ip) {
497                 int precise = x86_pmu_max_precise();
498
499                 if (event->attr.precise_ip > precise)
500                         return -EOPNOTSUPP;
501
502                 /* There's no sense in having PEBS for non sampling events: */
503                 if (!is_sampling_event(event))
504                         return -EINVAL;
505         }
506         /*
507          * check that PEBS LBR correction does not conflict with
508          * whatever the user is asking with attr->branch_sample_type
509          */
510         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
511                 u64 *br_type = &event->attr.branch_sample_type;
512
513                 if (has_branch_stack(event)) {
514                         if (!precise_br_compat(event))
515                                 return -EOPNOTSUPP;
516
517                         /* branch_sample_type is compatible */
518
519                 } else {
520                         /*
521                          * user did not specify  branch_sample_type
522                          *
523                          * For PEBS fixups, we capture all
524                          * the branches at the priv level of the
525                          * event.
526                          */
527                         *br_type = PERF_SAMPLE_BRANCH_ANY;
528
529                         if (!event->attr.exclude_user)
530                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
531
532                         if (!event->attr.exclude_kernel)
533                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
534                 }
535         }
536
537         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
538                 event->attach_state |= PERF_ATTACH_TASK_DATA;
539
540         /*
541          * Generate PMC IRQs:
542          * (keep 'enabled' bit clear for now)
543          */
544         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
545
546         /*
547          * Count user and OS events unless requested not to
548          */
549         if (!event->attr.exclude_user)
550                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
551         if (!event->attr.exclude_kernel)
552                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
553
554         if (event->attr.type == PERF_TYPE_RAW)
555                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
556
557         if (event->attr.sample_period && x86_pmu.limit_period) {
558                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
559                                 event->attr.sample_period)
560                         return -EINVAL;
561         }
562
563         /* sample_regs_user never support XMM registers */
564         if (unlikely(event->attr.sample_regs_user & PEBS_XMM_REGS))
565                 return -EINVAL;
566         /*
567          * Besides the general purpose registers, XMM registers may
568          * be collected in PEBS on some platforms, e.g. Icelake
569          */
570         if (unlikely(event->attr.sample_regs_intr & PEBS_XMM_REGS)) {
571                 if (x86_pmu.pebs_no_xmm_regs)
572                         return -EINVAL;
573
574                 if (!event->attr.precise_ip)
575                         return -EINVAL;
576         }
577
578         return x86_setup_perfctr(event);
579 }
580
581 /*
582  * Setup the hardware configuration for a given attr_type
583  */
584 static int __x86_pmu_event_init(struct perf_event *event)
585 {
586         int err;
587
588         if (!x86_pmu_initialized())
589                 return -ENODEV;
590
591         err = x86_reserve_hardware();
592         if (err)
593                 return err;
594
595         atomic_inc(&active_events);
596         event->destroy = hw_perf_event_destroy;
597
598         event->hw.idx = -1;
599         event->hw.last_cpu = -1;
600         event->hw.last_tag = ~0ULL;
601
602         /* mark unused */
603         event->hw.extra_reg.idx = EXTRA_REG_NONE;
604         event->hw.branch_reg.idx = EXTRA_REG_NONE;
605
606         return x86_pmu.hw_config(event);
607 }
608
609 void x86_pmu_disable_all(void)
610 {
611         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
612         int idx;
613
614         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
615                 u64 val;
616
617                 if (!test_bit(idx, cpuc->active_mask))
618                         continue;
619                 rdmsrl(x86_pmu_config_addr(idx), val);
620                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
621                         continue;
622                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
623                 wrmsrl(x86_pmu_config_addr(idx), val);
624         }
625 }
626
627 /*
628  * There may be PMI landing after enabled=0. The PMI hitting could be before or
629  * after disable_all.
630  *
631  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
632  * It will not be re-enabled in the NMI handler again, because enabled=0. After
633  * handling the NMI, disable_all will be called, which will not change the
634  * state either. If PMI hits after disable_all, the PMU is already disabled
635  * before entering NMI handler. The NMI handler will not change the state
636  * either.
637  *
638  * So either situation is harmless.
639  */
640 static void x86_pmu_disable(struct pmu *pmu)
641 {
642         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
643
644         if (!x86_pmu_initialized())
645                 return;
646
647         if (!cpuc->enabled)
648                 return;
649
650         cpuc->n_added = 0;
651         cpuc->enabled = 0;
652         barrier();
653
654         x86_pmu.disable_all();
655 }
656
657 void x86_pmu_enable_all(int added)
658 {
659         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
660         int idx;
661
662         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
663                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
664
665                 if (!test_bit(idx, cpuc->active_mask))
666                         continue;
667
668                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
669         }
670 }
671
672 static struct pmu pmu;
673
674 static inline int is_x86_event(struct perf_event *event)
675 {
676         return event->pmu == &pmu;
677 }
678
679 struct pmu *x86_get_pmu(void)
680 {
681         return &pmu;
682 }
683 /*
684  * Event scheduler state:
685  *
686  * Assign events iterating over all events and counters, beginning
687  * with events with least weights first. Keep the current iterator
688  * state in struct sched_state.
689  */
690 struct sched_state {
691         int     weight;
692         int     event;          /* event index */
693         int     counter;        /* counter index */
694         int     unassigned;     /* number of events to be assigned left */
695         int     nr_gp;          /* number of GP counters used */
696         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
697 };
698
699 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
700 #define SCHED_STATES_MAX        2
701
702 struct perf_sched {
703         int                     max_weight;
704         int                     max_events;
705         int                     max_gp;
706         int                     saved_states;
707         struct event_constraint **constraints;
708         struct sched_state      state;
709         struct sched_state      saved[SCHED_STATES_MAX];
710 };
711
712 /*
713  * Initialize interator that runs through all events and counters.
714  */
715 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
716                             int num, int wmin, int wmax, int gpmax)
717 {
718         int idx;
719
720         memset(sched, 0, sizeof(*sched));
721         sched->max_events       = num;
722         sched->max_weight       = wmax;
723         sched->max_gp           = gpmax;
724         sched->constraints      = constraints;
725
726         for (idx = 0; idx < num; idx++) {
727                 if (constraints[idx]->weight == wmin)
728                         break;
729         }
730
731         sched->state.event      = idx;          /* start with min weight */
732         sched->state.weight     = wmin;
733         sched->state.unassigned = num;
734 }
735
736 static void perf_sched_save_state(struct perf_sched *sched)
737 {
738         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
739                 return;
740
741         sched->saved[sched->saved_states] = sched->state;
742         sched->saved_states++;
743 }
744
745 static bool perf_sched_restore_state(struct perf_sched *sched)
746 {
747         if (!sched->saved_states)
748                 return false;
749
750         sched->saved_states--;
751         sched->state = sched->saved[sched->saved_states];
752
753         /* continue with next counter: */
754         clear_bit(sched->state.counter++, sched->state.used);
755
756         return true;
757 }
758
759 /*
760  * Select a counter for the current event to schedule. Return true on
761  * success.
762  */
763 static bool __perf_sched_find_counter(struct perf_sched *sched)
764 {
765         struct event_constraint *c;
766         int idx;
767
768         if (!sched->state.unassigned)
769                 return false;
770
771         if (sched->state.event >= sched->max_events)
772                 return false;
773
774         c = sched->constraints[sched->state.event];
775         /* Prefer fixed purpose counters */
776         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
777                 idx = INTEL_PMC_IDX_FIXED;
778                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
779                         if (!__test_and_set_bit(idx, sched->state.used))
780                                 goto done;
781                 }
782         }
783
784         /* Grab the first unused counter starting with idx */
785         idx = sched->state.counter;
786         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
787                 if (!__test_and_set_bit(idx, sched->state.used)) {
788                         if (sched->state.nr_gp++ >= sched->max_gp)
789                                 return false;
790
791                         goto done;
792                 }
793         }
794
795         return false;
796
797 done:
798         sched->state.counter = idx;
799
800         if (c->overlap)
801                 perf_sched_save_state(sched);
802
803         return true;
804 }
805
806 static bool perf_sched_find_counter(struct perf_sched *sched)
807 {
808         while (!__perf_sched_find_counter(sched)) {
809                 if (!perf_sched_restore_state(sched))
810                         return false;
811         }
812
813         return true;
814 }
815
816 /*
817  * Go through all unassigned events and find the next one to schedule.
818  * Take events with the least weight first. Return true on success.
819  */
820 static bool perf_sched_next_event(struct perf_sched *sched)
821 {
822         struct event_constraint *c;
823
824         if (!sched->state.unassigned || !--sched->state.unassigned)
825                 return false;
826
827         do {
828                 /* next event */
829                 sched->state.event++;
830                 if (sched->state.event >= sched->max_events) {
831                         /* next weight */
832                         sched->state.event = 0;
833                         sched->state.weight++;
834                         if (sched->state.weight > sched->max_weight)
835                                 return false;
836                 }
837                 c = sched->constraints[sched->state.event];
838         } while (c->weight != sched->state.weight);
839
840         sched->state.counter = 0;       /* start with first counter */
841
842         return true;
843 }
844
845 /*
846  * Assign a counter for each event.
847  */
848 int perf_assign_events(struct event_constraint **constraints, int n,
849                         int wmin, int wmax, int gpmax, int *assign)
850 {
851         struct perf_sched sched;
852
853         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
854
855         do {
856                 if (!perf_sched_find_counter(&sched))
857                         break;  /* failed */
858                 if (assign)
859                         assign[sched.state.event] = sched.state.counter;
860         } while (perf_sched_next_event(&sched));
861
862         return sched.state.unassigned;
863 }
864 EXPORT_SYMBOL_GPL(perf_assign_events);
865
866 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
867 {
868         struct event_constraint *c;
869         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
870         struct perf_event *e;
871         int n0, i, wmin, wmax, unsched = 0;
872         struct hw_perf_event *hwc;
873
874         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
875
876         /*
877          * Compute the number of events already present; see x86_pmu_add(),
878          * validate_group() and x86_pmu_commit_txn(). For the former two
879          * cpuc->n_events hasn't been updated yet, while for the latter
880          * cpuc->n_txn contains the number of events added in the current
881          * transaction.
882          */
883         n0 = cpuc->n_events;
884         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
885                 n0 -= cpuc->n_txn;
886
887         if (x86_pmu.start_scheduling)
888                 x86_pmu.start_scheduling(cpuc);
889
890         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
891                 c = cpuc->event_constraint[i];
892
893                 /*
894                  * Previously scheduled events should have a cached constraint,
895                  * while new events should not have one.
896                  */
897                 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
898
899                 /*
900                  * Request constraints for new events; or for those events that
901                  * have a dynamic constraint -- for those the constraint can
902                  * change due to external factors (sibling state, allow_tfa).
903                  */
904                 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
905                         c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
906                         cpuc->event_constraint[i] = c;
907                 }
908
909                 wmin = min(wmin, c->weight);
910                 wmax = max(wmax, c->weight);
911         }
912
913         /*
914          * fastpath, try to reuse previous register
915          */
916         for (i = 0; i < n; i++) {
917                 hwc = &cpuc->event_list[i]->hw;
918                 c = cpuc->event_constraint[i];
919
920                 /* never assigned */
921                 if (hwc->idx == -1)
922                         break;
923
924                 /* constraint still honored */
925                 if (!test_bit(hwc->idx, c->idxmsk))
926                         break;
927
928                 /* not already used */
929                 if (test_bit(hwc->idx, used_mask))
930                         break;
931
932                 __set_bit(hwc->idx, used_mask);
933                 if (assign)
934                         assign[i] = hwc->idx;
935         }
936
937         /* slow path */
938         if (i != n) {
939                 int gpmax = x86_pmu.num_counters;
940
941                 /*
942                  * Do not allow scheduling of more than half the available
943                  * generic counters.
944                  *
945                  * This helps avoid counter starvation of sibling thread by
946                  * ensuring at most half the counters cannot be in exclusive
947                  * mode. There is no designated counters for the limits. Any
948                  * N/2 counters can be used. This helps with events with
949                  * specific counter constraints.
950                  */
951                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
952                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
953                         gpmax /= 2;
954
955                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
956                                              wmax, gpmax, assign);
957         }
958
959         /*
960          * In case of success (unsched = 0), mark events as committed,
961          * so we do not put_constraint() in case new events are added
962          * and fail to be scheduled
963          *
964          * We invoke the lower level commit callback to lock the resource
965          *
966          * We do not need to do all of this in case we are called to
967          * validate an event group (assign == NULL)
968          */
969         if (!unsched && assign) {
970                 for (i = 0; i < n; i++) {
971                         e = cpuc->event_list[i];
972                         if (x86_pmu.commit_scheduling)
973                                 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
974                 }
975         } else {
976                 for (i = n0; i < n; i++) {
977                         e = cpuc->event_list[i];
978
979                         /*
980                          * release events that failed scheduling
981                          */
982                         if (x86_pmu.put_event_constraints)
983                                 x86_pmu.put_event_constraints(cpuc, e);
984
985                         cpuc->event_constraint[i] = NULL;
986                 }
987         }
988
989         if (x86_pmu.stop_scheduling)
990                 x86_pmu.stop_scheduling(cpuc);
991
992         return unsched ? -EINVAL : 0;
993 }
994
995 /*
996  * dogrp: true if must collect siblings events (group)
997  * returns total number of events and error code
998  */
999 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1000 {
1001         struct perf_event *event;
1002         int n, max_count;
1003
1004         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1005
1006         /* current number of events already accepted */
1007         n = cpuc->n_events;
1008
1009         if (is_x86_event(leader)) {
1010                 if (n >= max_count)
1011                         return -EINVAL;
1012                 cpuc->event_list[n] = leader;
1013                 n++;
1014         }
1015         if (!dogrp)
1016                 return n;
1017
1018         for_each_sibling_event(event, leader) {
1019                 if (!is_x86_event(event) ||
1020                     event->state <= PERF_EVENT_STATE_OFF)
1021                         continue;
1022
1023                 if (n >= max_count)
1024                         return -EINVAL;
1025
1026                 cpuc->event_list[n] = event;
1027                 n++;
1028         }
1029         return n;
1030 }
1031
1032 static inline void x86_assign_hw_event(struct perf_event *event,
1033                                 struct cpu_hw_events *cpuc, int i)
1034 {
1035         struct hw_perf_event *hwc = &event->hw;
1036
1037         hwc->idx = cpuc->assign[i];
1038         hwc->last_cpu = smp_processor_id();
1039         hwc->last_tag = ++cpuc->tags[i];
1040
1041         if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1042                 hwc->config_base = 0;
1043                 hwc->event_base = 0;
1044         } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1045                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1046                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1047                 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1048         } else {
1049                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1050                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1051                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1052         }
1053 }
1054
1055 /**
1056  * x86_perf_rdpmc_index - Return PMC counter used for event
1057  * @event: the perf_event to which the PMC counter was assigned
1058  *
1059  * The counter assigned to this performance event may change if interrupts
1060  * are enabled. This counter should thus never be used while interrupts are
1061  * enabled. Before this function is used to obtain the assigned counter the
1062  * event should be checked for validity using, for example,
1063  * perf_event_read_local(), within the same interrupt disabled section in
1064  * which this counter is planned to be used.
1065  *
1066  * Return: The index of the performance monitoring counter assigned to
1067  * @perf_event.
1068  */
1069 int x86_perf_rdpmc_index(struct perf_event *event)
1070 {
1071         lockdep_assert_irqs_disabled();
1072
1073         return event->hw.event_base_rdpmc;
1074 }
1075
1076 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1077                                         struct cpu_hw_events *cpuc,
1078                                         int i)
1079 {
1080         return hwc->idx == cpuc->assign[i] &&
1081                 hwc->last_cpu == smp_processor_id() &&
1082                 hwc->last_tag == cpuc->tags[i];
1083 }
1084
1085 static void x86_pmu_start(struct perf_event *event, int flags);
1086
1087 static void x86_pmu_enable(struct pmu *pmu)
1088 {
1089         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1090         struct perf_event *event;
1091         struct hw_perf_event *hwc;
1092         int i, added = cpuc->n_added;
1093
1094         if (!x86_pmu_initialized())
1095                 return;
1096
1097         if (cpuc->enabled)
1098                 return;
1099
1100         if (cpuc->n_added) {
1101                 int n_running = cpuc->n_events - cpuc->n_added;
1102                 /*
1103                  * apply assignment obtained either from
1104                  * hw_perf_group_sched_in() or x86_pmu_enable()
1105                  *
1106                  * step1: save events moving to new counters
1107                  */
1108                 for (i = 0; i < n_running; i++) {
1109                         event = cpuc->event_list[i];
1110                         hwc = &event->hw;
1111
1112                         /*
1113                          * we can avoid reprogramming counter if:
1114                          * - assigned same counter as last time
1115                          * - running on same CPU as last time
1116                          * - no other event has used the counter since
1117                          */
1118                         if (hwc->idx == -1 ||
1119                             match_prev_assignment(hwc, cpuc, i))
1120                                 continue;
1121
1122                         /*
1123                          * Ensure we don't accidentally enable a stopped
1124                          * counter simply because we rescheduled.
1125                          */
1126                         if (hwc->state & PERF_HES_STOPPED)
1127                                 hwc->state |= PERF_HES_ARCH;
1128
1129                         x86_pmu_stop(event, PERF_EF_UPDATE);
1130                 }
1131
1132                 /*
1133                  * step2: reprogram moved events into new counters
1134                  */
1135                 for (i = 0; i < cpuc->n_events; i++) {
1136                         event = cpuc->event_list[i];
1137                         hwc = &event->hw;
1138
1139                         if (!match_prev_assignment(hwc, cpuc, i))
1140                                 x86_assign_hw_event(event, cpuc, i);
1141                         else if (i < n_running)
1142                                 continue;
1143
1144                         if (hwc->state & PERF_HES_ARCH)
1145                                 continue;
1146
1147                         x86_pmu_start(event, PERF_EF_RELOAD);
1148                 }
1149                 cpuc->n_added = 0;
1150                 perf_events_lapic_init();
1151         }
1152
1153         cpuc->enabled = 1;
1154         barrier();
1155
1156         x86_pmu.enable_all(added);
1157 }
1158
1159 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1160
1161 /*
1162  * Set the next IRQ period, based on the hwc->period_left value.
1163  * To be called with the event disabled in hw:
1164  */
1165 int x86_perf_event_set_period(struct perf_event *event)
1166 {
1167         struct hw_perf_event *hwc = &event->hw;
1168         s64 left = local64_read(&hwc->period_left);
1169         s64 period = hwc->sample_period;
1170         int ret = 0, idx = hwc->idx;
1171
1172         if (idx == INTEL_PMC_IDX_FIXED_BTS)
1173                 return 0;
1174
1175         /*
1176          * If we are way outside a reasonable range then just skip forward:
1177          */
1178         if (unlikely(left <= -period)) {
1179                 left = period;
1180                 local64_set(&hwc->period_left, left);
1181                 hwc->last_period = period;
1182                 ret = 1;
1183         }
1184
1185         if (unlikely(left <= 0)) {
1186                 left += period;
1187                 local64_set(&hwc->period_left, left);
1188                 hwc->last_period = period;
1189                 ret = 1;
1190         }
1191         /*
1192          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1193          */
1194         if (unlikely(left < 2))
1195                 left = 2;
1196
1197         if (left > x86_pmu.max_period)
1198                 left = x86_pmu.max_period;
1199
1200         if (x86_pmu.limit_period)
1201                 left = x86_pmu.limit_period(event, left);
1202
1203         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1204
1205         /*
1206          * The hw event starts counting from this event offset,
1207          * mark it to be able to extra future deltas:
1208          */
1209         local64_set(&hwc->prev_count, (u64)-left);
1210
1211         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1212
1213         /*
1214          * Due to erratum on certan cpu we need
1215          * a second write to be sure the register
1216          * is updated properly
1217          */
1218         if (x86_pmu.perfctr_second_write) {
1219                 wrmsrl(hwc->event_base,
1220                         (u64)(-left) & x86_pmu.cntval_mask);
1221         }
1222
1223         perf_event_update_userpage(event);
1224
1225         return ret;
1226 }
1227
1228 void x86_pmu_enable_event(struct perf_event *event)
1229 {
1230         if (__this_cpu_read(cpu_hw_events.enabled))
1231                 __x86_pmu_enable_event(&event->hw,
1232                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1233 }
1234
1235 /*
1236  * Add a single event to the PMU.
1237  *
1238  * The event is added to the group of enabled events
1239  * but only if it can be scehduled with existing events.
1240  */
1241 static int x86_pmu_add(struct perf_event *event, int flags)
1242 {
1243         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1244         struct hw_perf_event *hwc;
1245         int assign[X86_PMC_IDX_MAX];
1246         int n, n0, ret;
1247
1248         hwc = &event->hw;
1249
1250         n0 = cpuc->n_events;
1251         ret = n = collect_events(cpuc, event, false);
1252         if (ret < 0)
1253                 goto out;
1254
1255         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1256         if (!(flags & PERF_EF_START))
1257                 hwc->state |= PERF_HES_ARCH;
1258
1259         /*
1260          * If group events scheduling transaction was started,
1261          * skip the schedulability test here, it will be performed
1262          * at commit time (->commit_txn) as a whole.
1263          *
1264          * If commit fails, we'll call ->del() on all events
1265          * for which ->add() was called.
1266          */
1267         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1268                 goto done_collect;
1269
1270         ret = x86_pmu.schedule_events(cpuc, n, assign);
1271         if (ret)
1272                 goto out;
1273         /*
1274          * copy new assignment, now we know it is possible
1275          * will be used by hw_perf_enable()
1276          */
1277         memcpy(cpuc->assign, assign, n*sizeof(int));
1278
1279 done_collect:
1280         /*
1281          * Commit the collect_events() state. See x86_pmu_del() and
1282          * x86_pmu_*_txn().
1283          */
1284         cpuc->n_events = n;
1285         cpuc->n_added += n - n0;
1286         cpuc->n_txn += n - n0;
1287
1288         if (x86_pmu.add) {
1289                 /*
1290                  * This is before x86_pmu_enable() will call x86_pmu_start(),
1291                  * so we enable LBRs before an event needs them etc..
1292                  */
1293                 x86_pmu.add(event);
1294         }
1295
1296         ret = 0;
1297 out:
1298         return ret;
1299 }
1300
1301 static void x86_pmu_start(struct perf_event *event, int flags)
1302 {
1303         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1304         int idx = event->hw.idx;
1305
1306         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1307                 return;
1308
1309         if (WARN_ON_ONCE(idx == -1))
1310                 return;
1311
1312         if (flags & PERF_EF_RELOAD) {
1313                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1314                 x86_perf_event_set_period(event);
1315         }
1316
1317         event->hw.state = 0;
1318
1319         cpuc->events[idx] = event;
1320         __set_bit(idx, cpuc->active_mask);
1321         __set_bit(idx, cpuc->running);
1322         x86_pmu.enable(event);
1323         perf_event_update_userpage(event);
1324 }
1325
1326 void perf_event_print_debug(void)
1327 {
1328         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1329         u64 pebs, debugctl;
1330         struct cpu_hw_events *cpuc;
1331         unsigned long flags;
1332         int cpu, idx;
1333
1334         if (!x86_pmu.num_counters)
1335                 return;
1336
1337         local_irq_save(flags);
1338
1339         cpu = smp_processor_id();
1340         cpuc = &per_cpu(cpu_hw_events, cpu);
1341
1342         if (x86_pmu.version >= 2) {
1343                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1344                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1345                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1346                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1347
1348                 pr_info("\n");
1349                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1350                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1351                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1352                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1353                 if (x86_pmu.pebs_constraints) {
1354                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1355                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1356                 }
1357                 if (x86_pmu.lbr_nr) {
1358                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1359                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1360                 }
1361         }
1362         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1363
1364         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1365                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1366                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1367
1368                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1369
1370                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1371                         cpu, idx, pmc_ctrl);
1372                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1373                         cpu, idx, pmc_count);
1374                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1375                         cpu, idx, prev_left);
1376         }
1377         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1378                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1379
1380                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1381                         cpu, idx, pmc_count);
1382         }
1383         local_irq_restore(flags);
1384 }
1385
1386 void x86_pmu_stop(struct perf_event *event, int flags)
1387 {
1388         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1389         struct hw_perf_event *hwc = &event->hw;
1390
1391         if (test_bit(hwc->idx, cpuc->active_mask)) {
1392                 x86_pmu.disable(event);
1393                 __clear_bit(hwc->idx, cpuc->active_mask);
1394                 cpuc->events[hwc->idx] = NULL;
1395                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1396                 hwc->state |= PERF_HES_STOPPED;
1397         }
1398
1399         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1400                 /*
1401                  * Drain the remaining delta count out of a event
1402                  * that we are disabling:
1403                  */
1404                 x86_perf_event_update(event);
1405                 hwc->state |= PERF_HES_UPTODATE;
1406         }
1407 }
1408
1409 static void x86_pmu_del(struct perf_event *event, int flags)
1410 {
1411         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1412         int i;
1413
1414         /*
1415          * If we're called during a txn, we only need to undo x86_pmu.add.
1416          * The events never got scheduled and ->cancel_txn will truncate
1417          * the event_list.
1418          *
1419          * XXX assumes any ->del() called during a TXN will only be on
1420          * an event added during that same TXN.
1421          */
1422         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1423                 goto do_del;
1424
1425         /*
1426          * Not a TXN, therefore cleanup properly.
1427          */
1428         x86_pmu_stop(event, PERF_EF_UPDATE);
1429
1430         for (i = 0; i < cpuc->n_events; i++) {
1431                 if (event == cpuc->event_list[i])
1432                         break;
1433         }
1434
1435         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1436                 return;
1437
1438         /* If we have a newly added event; make sure to decrease n_added. */
1439         if (i >= cpuc->n_events - cpuc->n_added)
1440                 --cpuc->n_added;
1441
1442         if (x86_pmu.put_event_constraints)
1443                 x86_pmu.put_event_constraints(cpuc, event);
1444
1445         /* Delete the array entry. */
1446         while (++i < cpuc->n_events) {
1447                 cpuc->event_list[i-1] = cpuc->event_list[i];
1448                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1449         }
1450         cpuc->event_constraint[i-1] = NULL;
1451         --cpuc->n_events;
1452
1453         perf_event_update_userpage(event);
1454
1455 do_del:
1456         if (x86_pmu.del) {
1457                 /*
1458                  * This is after x86_pmu_stop(); so we disable LBRs after any
1459                  * event can need them etc..
1460                  */
1461                 x86_pmu.del(event);
1462         }
1463 }
1464
1465 int x86_pmu_handle_irq(struct pt_regs *regs)
1466 {
1467         struct perf_sample_data data;
1468         struct cpu_hw_events *cpuc;
1469         struct perf_event *event;
1470         int idx, handled = 0;
1471         u64 val;
1472
1473         cpuc = this_cpu_ptr(&cpu_hw_events);
1474
1475         /*
1476          * Some chipsets need to unmask the LVTPC in a particular spot
1477          * inside the nmi handler.  As a result, the unmasking was pushed
1478          * into all the nmi handlers.
1479          *
1480          * This generic handler doesn't seem to have any issues where the
1481          * unmasking occurs so it was left at the top.
1482          */
1483         apic_write(APIC_LVTPC, APIC_DM_NMI);
1484
1485         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1486                 if (!test_bit(idx, cpuc->active_mask))
1487                         continue;
1488
1489                 event = cpuc->events[idx];
1490
1491                 val = x86_perf_event_update(event);
1492                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1493                         continue;
1494
1495                 /*
1496                  * event overflow
1497                  */
1498                 handled++;
1499                 perf_sample_data_init(&data, 0, event->hw.last_period);
1500
1501                 if (!x86_perf_event_set_period(event))
1502                         continue;
1503
1504                 if (perf_event_overflow(event, &data, regs))
1505                         x86_pmu_stop(event, 0);
1506         }
1507
1508         if (handled)
1509                 inc_irq_stat(apic_perf_irqs);
1510
1511         return handled;
1512 }
1513
1514 void perf_events_lapic_init(void)
1515 {
1516         if (!x86_pmu.apic || !x86_pmu_initialized())
1517                 return;
1518
1519         /*
1520          * Always use NMI for PMU
1521          */
1522         apic_write(APIC_LVTPC, APIC_DM_NMI);
1523 }
1524
1525 static int
1526 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1527 {
1528         u64 start_clock;
1529         u64 finish_clock;
1530         int ret;
1531
1532         /*
1533          * All PMUs/events that share this PMI handler should make sure to
1534          * increment active_events for their events.
1535          */
1536         if (!atomic_read(&active_events))
1537                 return NMI_DONE;
1538
1539         start_clock = sched_clock();
1540         ret = x86_pmu.handle_irq(regs);
1541         finish_clock = sched_clock();
1542
1543         perf_sample_event_took(finish_clock - start_clock);
1544
1545         return ret;
1546 }
1547 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1548
1549 struct event_constraint emptyconstraint;
1550 struct event_constraint unconstrained;
1551
1552 static int x86_pmu_prepare_cpu(unsigned int cpu)
1553 {
1554         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1555         int i;
1556
1557         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1558                 cpuc->kfree_on_online[i] = NULL;
1559         if (x86_pmu.cpu_prepare)
1560                 return x86_pmu.cpu_prepare(cpu);
1561         return 0;
1562 }
1563
1564 static int x86_pmu_dead_cpu(unsigned int cpu)
1565 {
1566         if (x86_pmu.cpu_dead)
1567                 x86_pmu.cpu_dead(cpu);
1568         return 0;
1569 }
1570
1571 static int x86_pmu_online_cpu(unsigned int cpu)
1572 {
1573         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1574         int i;
1575
1576         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1577                 kfree(cpuc->kfree_on_online[i]);
1578                 cpuc->kfree_on_online[i] = NULL;
1579         }
1580         return 0;
1581 }
1582
1583 static int x86_pmu_starting_cpu(unsigned int cpu)
1584 {
1585         if (x86_pmu.cpu_starting)
1586                 x86_pmu.cpu_starting(cpu);
1587         return 0;
1588 }
1589
1590 static int x86_pmu_dying_cpu(unsigned int cpu)
1591 {
1592         if (x86_pmu.cpu_dying)
1593                 x86_pmu.cpu_dying(cpu);
1594         return 0;
1595 }
1596
1597 static void __init pmu_check_apic(void)
1598 {
1599         if (boot_cpu_has(X86_FEATURE_APIC))
1600                 return;
1601
1602         x86_pmu.apic = 0;
1603         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1604         pr_info("no hardware sampling interrupt available.\n");
1605
1606         /*
1607          * If we have a PMU initialized but no APIC
1608          * interrupts, we cannot sample hardware
1609          * events (user-space has to fall back and
1610          * sample via a hrtimer based software event):
1611          */
1612         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1613
1614 }
1615
1616 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1617         .name = "format",
1618         .attrs = NULL,
1619 };
1620
1621 /*
1622  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1623  * out of events_attr attributes.
1624  */
1625 static void __init filter_events(struct attribute **attrs)
1626 {
1627         struct device_attribute *d;
1628         struct perf_pmu_events_attr *pmu_attr;
1629         int offset = 0;
1630         int i, j;
1631
1632         for (i = 0; attrs[i]; i++) {
1633                 d = (struct device_attribute *)attrs[i];
1634                 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1635                 /* str trumps id */
1636                 if (pmu_attr->event_str)
1637                         continue;
1638                 if (x86_pmu.event_map(i + offset))
1639                         continue;
1640
1641                 for (j = i; attrs[j]; j++)
1642                         attrs[j] = attrs[j + 1];
1643
1644                 /* Check the shifted attr. */
1645                 i--;
1646
1647                 /*
1648                  * event_map() is index based, the attrs array is organized
1649                  * by increasing event index. If we shift the events, then
1650                  * we need to compensate for the event_map(), otherwise
1651                  * we are looking up the wrong event in the map
1652                  */
1653                 offset++;
1654         }
1655 }
1656
1657 /* Merge two pointer arrays */
1658 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1659 {
1660         struct attribute **new;
1661         int j, i;
1662
1663         for (j = 0; a && a[j]; j++)
1664                 ;
1665         for (i = 0; b && b[i]; i++)
1666                 j++;
1667         j++;
1668
1669         new = kmalloc_array(j, sizeof(struct attribute *), GFP_KERNEL);
1670         if (!new)
1671                 return NULL;
1672
1673         j = 0;
1674         for (i = 0; a && a[i]; i++)
1675                 new[j++] = a[i];
1676         for (i = 0; b && b[i]; i++)
1677                 new[j++] = b[i];
1678         new[j] = NULL;
1679
1680         return new;
1681 }
1682
1683 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1684 {
1685         struct perf_pmu_events_attr *pmu_attr = \
1686                 container_of(attr, struct perf_pmu_events_attr, attr);
1687         u64 config = x86_pmu.event_map(pmu_attr->id);
1688
1689         /* string trumps id */
1690         if (pmu_attr->event_str)
1691                 return sprintf(page, "%s", pmu_attr->event_str);
1692
1693         return x86_pmu.events_sysfs_show(page, config);
1694 }
1695 EXPORT_SYMBOL_GPL(events_sysfs_show);
1696
1697 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1698                           char *page)
1699 {
1700         struct perf_pmu_events_ht_attr *pmu_attr =
1701                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1702
1703         /*
1704          * Report conditional events depending on Hyper-Threading.
1705          *
1706          * This is overly conservative as usually the HT special
1707          * handling is not needed if the other CPU thread is idle.
1708          *
1709          * Note this does not (and cannot) handle the case when thread
1710          * siblings are invisible, for example with virtualization
1711          * if they are owned by some other guest.  The user tool
1712          * has to re-read when a thread sibling gets onlined later.
1713          */
1714         return sprintf(page, "%s",
1715                         topology_max_smt_threads() > 1 ?
1716                         pmu_attr->event_str_ht :
1717                         pmu_attr->event_str_noht);
1718 }
1719
1720 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1721 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1722 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1723 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1724 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1725 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1726 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1727 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1728 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1729 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1730
1731 static struct attribute *empty_attrs;
1732
1733 static struct attribute *events_attr[] = {
1734         EVENT_PTR(CPU_CYCLES),
1735         EVENT_PTR(INSTRUCTIONS),
1736         EVENT_PTR(CACHE_REFERENCES),
1737         EVENT_PTR(CACHE_MISSES),
1738         EVENT_PTR(BRANCH_INSTRUCTIONS),
1739         EVENT_PTR(BRANCH_MISSES),
1740         EVENT_PTR(BUS_CYCLES),
1741         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1742         EVENT_PTR(STALLED_CYCLES_BACKEND),
1743         EVENT_PTR(REF_CPU_CYCLES),
1744         NULL,
1745 };
1746
1747 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1748         .name = "events",
1749         .attrs = events_attr,
1750 };
1751
1752 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1753 {
1754         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1755         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1756         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1757         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1758         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1759         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1760         ssize_t ret;
1761
1762         /*
1763         * We have whole page size to spend and just little data
1764         * to write, so we can safely use sprintf.
1765         */
1766         ret = sprintf(page, "event=0x%02llx", event);
1767
1768         if (umask)
1769                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1770
1771         if (edge)
1772                 ret += sprintf(page + ret, ",edge");
1773
1774         if (pc)
1775                 ret += sprintf(page + ret, ",pc");
1776
1777         if (any)
1778                 ret += sprintf(page + ret, ",any");
1779
1780         if (inv)
1781                 ret += sprintf(page + ret, ",inv");
1782
1783         if (cmask)
1784                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1785
1786         ret += sprintf(page + ret, "\n");
1787
1788         return ret;
1789 }
1790
1791 static struct attribute_group x86_pmu_attr_group;
1792 static struct attribute_group x86_pmu_caps_group;
1793
1794 static int __init init_hw_perf_events(void)
1795 {
1796         struct x86_pmu_quirk *quirk;
1797         int err;
1798
1799         pr_info("Performance Events: ");
1800
1801         switch (boot_cpu_data.x86_vendor) {
1802         case X86_VENDOR_INTEL:
1803                 err = intel_pmu_init();
1804                 break;
1805         case X86_VENDOR_AMD:
1806                 err = amd_pmu_init();
1807                 break;
1808         case X86_VENDOR_HYGON:
1809                 err = amd_pmu_init();
1810                 x86_pmu.name = "HYGON";
1811                 break;
1812         default:
1813                 err = -ENOTSUPP;
1814         }
1815         if (err != 0) {
1816                 pr_cont("no PMU driver, software events only.\n");
1817                 return 0;
1818         }
1819
1820         pmu_check_apic();
1821
1822         /* sanity check that the hardware exists or is emulated */
1823         if (!check_hw_exists())
1824                 return 0;
1825
1826         pr_cont("%s PMU driver.\n", x86_pmu.name);
1827
1828         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1829
1830         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1831                 quirk->func();
1832
1833         if (!x86_pmu.intel_ctrl)
1834                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1835
1836         perf_events_lapic_init();
1837         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1838
1839         unconstrained = (struct event_constraint)
1840                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1841                                    0, x86_pmu.num_counters, 0, 0);
1842
1843         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1844
1845         if (x86_pmu.caps_attrs) {
1846                 struct attribute **tmp;
1847
1848                 tmp = merge_attr(x86_pmu_caps_group.attrs, x86_pmu.caps_attrs);
1849                 if (!WARN_ON(!tmp))
1850                         x86_pmu_caps_group.attrs = tmp;
1851         }
1852
1853         if (x86_pmu.event_attrs)
1854                 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1855
1856         if (!x86_pmu.events_sysfs_show)
1857                 x86_pmu_events_group.attrs = &empty_attrs;
1858         else
1859                 filter_events(x86_pmu_events_group.attrs);
1860
1861         if (x86_pmu.cpu_events) {
1862                 struct attribute **tmp;
1863
1864                 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1865                 if (!WARN_ON(!tmp))
1866                         x86_pmu_events_group.attrs = tmp;
1867         }
1868
1869         if (x86_pmu.attrs) {
1870                 struct attribute **tmp;
1871
1872                 tmp = merge_attr(x86_pmu_attr_group.attrs, x86_pmu.attrs);
1873                 if (!WARN_ON(!tmp))
1874                         x86_pmu_attr_group.attrs = tmp;
1875         }
1876
1877         pr_info("... version:                %d\n",     x86_pmu.version);
1878         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1879         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1880         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1881         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1882         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1883         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1884
1885         /*
1886          * Install callbacks. Core will call them for each online
1887          * cpu.
1888          */
1889         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1890                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1891         if (err)
1892                 return err;
1893
1894         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1895                                 "perf/x86:starting", x86_pmu_starting_cpu,
1896                                 x86_pmu_dying_cpu);
1897         if (err)
1898                 goto out;
1899
1900         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1901                                 x86_pmu_online_cpu, NULL);
1902         if (err)
1903                 goto out1;
1904
1905         err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1906         if (err)
1907                 goto out2;
1908
1909         return 0;
1910
1911 out2:
1912         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1913 out1:
1914         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1915 out:
1916         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1917         return err;
1918 }
1919 early_initcall(init_hw_perf_events);
1920
1921 static inline void x86_pmu_read(struct perf_event *event)
1922 {
1923         if (x86_pmu.read)
1924                 return x86_pmu.read(event);
1925         x86_perf_event_update(event);
1926 }
1927
1928 /*
1929  * Start group events scheduling transaction
1930  * Set the flag to make pmu::enable() not perform the
1931  * schedulability test, it will be performed at commit time
1932  *
1933  * We only support PERF_PMU_TXN_ADD transactions. Save the
1934  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1935  * transactions.
1936  */
1937 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1938 {
1939         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1940
1941         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
1942
1943         cpuc->txn_flags = txn_flags;
1944         if (txn_flags & ~PERF_PMU_TXN_ADD)
1945                 return;
1946
1947         perf_pmu_disable(pmu);
1948         __this_cpu_write(cpu_hw_events.n_txn, 0);
1949 }
1950
1951 /*
1952  * Stop group events scheduling transaction
1953  * Clear the flag and pmu::enable() will perform the
1954  * schedulability test.
1955  */
1956 static void x86_pmu_cancel_txn(struct pmu *pmu)
1957 {
1958         unsigned int txn_flags;
1959         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1960
1961         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1962
1963         txn_flags = cpuc->txn_flags;
1964         cpuc->txn_flags = 0;
1965         if (txn_flags & ~PERF_PMU_TXN_ADD)
1966                 return;
1967
1968         /*
1969          * Truncate collected array by the number of events added in this
1970          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1971          */
1972         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1973         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1974         perf_pmu_enable(pmu);
1975 }
1976
1977 /*
1978  * Commit group events scheduling transaction
1979  * Perform the group schedulability test as a whole
1980  * Return 0 if success
1981  *
1982  * Does not cancel the transaction on failure; expects the caller to do this.
1983  */
1984 static int x86_pmu_commit_txn(struct pmu *pmu)
1985 {
1986         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1987         int assign[X86_PMC_IDX_MAX];
1988         int n, ret;
1989
1990         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1991
1992         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1993                 cpuc->txn_flags = 0;
1994                 return 0;
1995         }
1996
1997         n = cpuc->n_events;
1998
1999         if (!x86_pmu_initialized())
2000                 return -EAGAIN;
2001
2002         ret = x86_pmu.schedule_events(cpuc, n, assign);
2003         if (ret)
2004                 return ret;
2005
2006         /*
2007          * copy new assignment, now we know it is possible
2008          * will be used by hw_perf_enable()
2009          */
2010         memcpy(cpuc->assign, assign, n*sizeof(int));
2011
2012         cpuc->txn_flags = 0;
2013         perf_pmu_enable(pmu);
2014         return 0;
2015 }
2016 /*
2017  * a fake_cpuc is used to validate event groups. Due to
2018  * the extra reg logic, we need to also allocate a fake
2019  * per_core and per_cpu structure. Otherwise, group events
2020  * using extra reg may conflict without the kernel being
2021  * able to catch this when the last event gets added to
2022  * the group.
2023  */
2024 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2025 {
2026         intel_cpuc_finish(cpuc);
2027         kfree(cpuc);
2028 }
2029
2030 static struct cpu_hw_events *allocate_fake_cpuc(void)
2031 {
2032         struct cpu_hw_events *cpuc;
2033         int cpu = raw_smp_processor_id();
2034
2035         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2036         if (!cpuc)
2037                 return ERR_PTR(-ENOMEM);
2038         cpuc->is_fake = 1;
2039
2040         if (intel_cpuc_prepare(cpuc, cpu))
2041                 goto error;
2042
2043         return cpuc;
2044 error:
2045         free_fake_cpuc(cpuc);
2046         return ERR_PTR(-ENOMEM);
2047 }
2048
2049 /*
2050  * validate that we can schedule this event
2051  */
2052 static int validate_event(struct perf_event *event)
2053 {
2054         struct cpu_hw_events *fake_cpuc;
2055         struct event_constraint *c;
2056         int ret = 0;
2057
2058         fake_cpuc = allocate_fake_cpuc();
2059         if (IS_ERR(fake_cpuc))
2060                 return PTR_ERR(fake_cpuc);
2061
2062         c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2063
2064         if (!c || !c->weight)
2065                 ret = -EINVAL;
2066
2067         if (x86_pmu.put_event_constraints)
2068                 x86_pmu.put_event_constraints(fake_cpuc, event);
2069
2070         free_fake_cpuc(fake_cpuc);
2071
2072         return ret;
2073 }
2074
2075 /*
2076  * validate a single event group
2077  *
2078  * validation include:
2079  *      - check events are compatible which each other
2080  *      - events do not compete for the same counter
2081  *      - number of events <= number of counters
2082  *
2083  * validation ensures the group can be loaded onto the
2084  * PMU if it was the only group available.
2085  */
2086 static int validate_group(struct perf_event *event)
2087 {
2088         struct perf_event *leader = event->group_leader;
2089         struct cpu_hw_events *fake_cpuc;
2090         int ret = -EINVAL, n;
2091
2092         fake_cpuc = allocate_fake_cpuc();
2093         if (IS_ERR(fake_cpuc))
2094                 return PTR_ERR(fake_cpuc);
2095         /*
2096          * the event is not yet connected with its
2097          * siblings therefore we must first collect
2098          * existing siblings, then add the new event
2099          * before we can simulate the scheduling
2100          */
2101         n = collect_events(fake_cpuc, leader, true);
2102         if (n < 0)
2103                 goto out;
2104
2105         fake_cpuc->n_events = n;
2106         n = collect_events(fake_cpuc, event, false);
2107         if (n < 0)
2108                 goto out;
2109
2110         fake_cpuc->n_events = 0;
2111         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2112
2113 out:
2114         free_fake_cpuc(fake_cpuc);
2115         return ret;
2116 }
2117
2118 static int x86_pmu_event_init(struct perf_event *event)
2119 {
2120         struct pmu *tmp;
2121         int err;
2122
2123         switch (event->attr.type) {
2124         case PERF_TYPE_RAW:
2125         case PERF_TYPE_HARDWARE:
2126         case PERF_TYPE_HW_CACHE:
2127                 break;
2128
2129         default:
2130                 return -ENOENT;
2131         }
2132
2133         err = __x86_pmu_event_init(event);
2134         if (!err) {
2135                 /*
2136                  * we temporarily connect event to its pmu
2137                  * such that validate_group() can classify
2138                  * it as an x86 event using is_x86_event()
2139                  */
2140                 tmp = event->pmu;
2141                 event->pmu = &pmu;
2142
2143                 if (event->group_leader != event)
2144                         err = validate_group(event);
2145                 else
2146                         err = validate_event(event);
2147
2148                 event->pmu = tmp;
2149         }
2150         if (err) {
2151                 if (event->destroy)
2152                         event->destroy(event);
2153         }
2154
2155         if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2156             !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2157                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2158
2159         return err;
2160 }
2161
2162 static void refresh_pce(void *ignored)
2163 {
2164         load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
2165 }
2166
2167 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2168 {
2169         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2170                 return;
2171
2172         /*
2173          * This function relies on not being called concurrently in two
2174          * tasks in the same mm.  Otherwise one task could observe
2175          * perf_rdpmc_allowed > 1 and return all the way back to
2176          * userspace with CR4.PCE clear while another task is still
2177          * doing on_each_cpu_mask() to propagate CR4.PCE.
2178          *
2179          * For now, this can't happen because all callers hold mmap_sem
2180          * for write.  If this changes, we'll need a different solution.
2181          */
2182         lockdep_assert_held_exclusive(&mm->mmap_sem);
2183
2184         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2185                 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2186 }
2187
2188 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2189 {
2190
2191         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2192                 return;
2193
2194         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2195                 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2196 }
2197
2198 static int x86_pmu_event_idx(struct perf_event *event)
2199 {
2200         int idx = event->hw.idx;
2201
2202         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2203                 return 0;
2204
2205         if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2206                 idx -= INTEL_PMC_IDX_FIXED;
2207                 idx |= 1 << 30;
2208         }
2209
2210         return idx + 1;
2211 }
2212
2213 static ssize_t get_attr_rdpmc(struct device *cdev,
2214                               struct device_attribute *attr,
2215                               char *buf)
2216 {
2217         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2218 }
2219
2220 static ssize_t set_attr_rdpmc(struct device *cdev,
2221                               struct device_attribute *attr,
2222                               const char *buf, size_t count)
2223 {
2224         unsigned long val;
2225         ssize_t ret;
2226
2227         ret = kstrtoul(buf, 0, &val);
2228         if (ret)
2229                 return ret;
2230
2231         if (val > 2)
2232                 return -EINVAL;
2233
2234         if (x86_pmu.attr_rdpmc_broken)
2235                 return -ENOTSUPP;
2236
2237         if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2238                 /*
2239                  * Changing into or out of always available, aka
2240                  * perf-event-bypassing mode.  This path is extremely slow,
2241                  * but only root can trigger it, so it's okay.
2242                  */
2243                 if (val == 2)
2244                         static_branch_inc(&rdpmc_always_available_key);
2245                 else
2246                         static_branch_dec(&rdpmc_always_available_key);
2247                 on_each_cpu(refresh_pce, NULL, 1);
2248         }
2249
2250         x86_pmu.attr_rdpmc = val;
2251
2252         return count;
2253 }
2254
2255 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2256
2257 static struct attribute *x86_pmu_attrs[] = {
2258         &dev_attr_rdpmc.attr,
2259         NULL,
2260 };
2261
2262 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2263         .attrs = x86_pmu_attrs,
2264 };
2265
2266 static ssize_t max_precise_show(struct device *cdev,
2267                                   struct device_attribute *attr,
2268                                   char *buf)
2269 {
2270         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2271 }
2272
2273 static DEVICE_ATTR_RO(max_precise);
2274
2275 static struct attribute *x86_pmu_caps_attrs[] = {
2276         &dev_attr_max_precise.attr,
2277         NULL
2278 };
2279
2280 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2281         .name = "caps",
2282         .attrs = x86_pmu_caps_attrs,
2283 };
2284
2285 static const struct attribute_group *x86_pmu_attr_groups[] = {
2286         &x86_pmu_attr_group,
2287         &x86_pmu_format_group,
2288         &x86_pmu_events_group,
2289         &x86_pmu_caps_group,
2290         NULL,
2291 };
2292
2293 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2294 {
2295         if (x86_pmu.sched_task)
2296                 x86_pmu.sched_task(ctx, sched_in);
2297 }
2298
2299 void perf_check_microcode(void)
2300 {
2301         if (x86_pmu.check_microcode)
2302                 x86_pmu.check_microcode();
2303 }
2304
2305 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2306 {
2307         if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2308                 return -EINVAL;
2309
2310         if (value && x86_pmu.limit_period) {
2311                 if (x86_pmu.limit_period(event, value) > value)
2312                         return -EINVAL;
2313         }
2314
2315         return 0;
2316 }
2317
2318 static struct pmu pmu = {
2319         .pmu_enable             = x86_pmu_enable,
2320         .pmu_disable            = x86_pmu_disable,
2321
2322         .attr_groups            = x86_pmu_attr_groups,
2323
2324         .event_init             = x86_pmu_event_init,
2325
2326         .event_mapped           = x86_pmu_event_mapped,
2327         .event_unmapped         = x86_pmu_event_unmapped,
2328
2329         .add                    = x86_pmu_add,
2330         .del                    = x86_pmu_del,
2331         .start                  = x86_pmu_start,
2332         .stop                   = x86_pmu_stop,
2333         .read                   = x86_pmu_read,
2334
2335         .start_txn              = x86_pmu_start_txn,
2336         .cancel_txn             = x86_pmu_cancel_txn,
2337         .commit_txn             = x86_pmu_commit_txn,
2338
2339         .event_idx              = x86_pmu_event_idx,
2340         .sched_task             = x86_pmu_sched_task,
2341         .task_ctx_size          = sizeof(struct x86_perf_task_context),
2342         .check_period           = x86_pmu_check_period,
2343 };
2344
2345 void arch_perf_update_userpage(struct perf_event *event,
2346                                struct perf_event_mmap_page *userpg, u64 now)
2347 {
2348         struct cyc2ns_data data;
2349         u64 offset;
2350
2351         userpg->cap_user_time = 0;
2352         userpg->cap_user_time_zero = 0;
2353         userpg->cap_user_rdpmc =
2354                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2355         userpg->pmc_width = x86_pmu.cntval_bits;
2356
2357         if (!using_native_sched_clock() || !sched_clock_stable())
2358                 return;
2359
2360         cyc2ns_read_begin(&data);
2361
2362         offset = data.cyc2ns_offset + __sched_clock_offset;
2363
2364         /*
2365          * Internal timekeeping for enabled/running/stopped times
2366          * is always in the local_clock domain.
2367          */
2368         userpg->cap_user_time = 1;
2369         userpg->time_mult = data.cyc2ns_mul;
2370         userpg->time_shift = data.cyc2ns_shift;
2371         userpg->time_offset = offset - now;
2372
2373         /*
2374          * cap_user_time_zero doesn't make sense when we're using a different
2375          * time base for the records.
2376          */
2377         if (!event->attr.use_clockid) {
2378                 userpg->cap_user_time_zero = 1;
2379                 userpg->time_zero = offset;
2380         }
2381
2382         cyc2ns_read_end();
2383 }
2384
2385 /*
2386  * Determine whether the regs were taken from an irq/exception handler rather
2387  * than from perf_arch_fetch_caller_regs().
2388  */
2389 static bool perf_hw_regs(struct pt_regs *regs)
2390 {
2391         return regs->flags & X86_EFLAGS_FIXED;
2392 }
2393
2394 void
2395 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2396 {
2397         struct unwind_state state;
2398         unsigned long addr;
2399
2400         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2401                 /* TODO: We don't support guest os callchain now */
2402                 return;
2403         }
2404
2405         if (perf_hw_regs(regs)) {
2406                 if (perf_callchain_store(entry, regs->ip))
2407                         return;
2408                 unwind_start(&state, current, regs, NULL);
2409         } else {
2410                 unwind_start(&state, current, NULL, (void *)regs->sp);
2411         }
2412
2413         for (; !unwind_done(&state); unwind_next_frame(&state)) {
2414                 addr = unwind_get_return_address(&state);
2415                 if (!addr || perf_callchain_store(entry, addr))
2416                         return;
2417         }
2418 }
2419
2420 static inline int
2421 valid_user_frame(const void __user *fp, unsigned long size)
2422 {
2423         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2424 }
2425
2426 static unsigned long get_segment_base(unsigned int segment)
2427 {
2428         struct desc_struct *desc;
2429         unsigned int idx = segment >> 3;
2430
2431         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2432 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2433                 struct ldt_struct *ldt;
2434
2435                 /* IRQs are off, so this synchronizes with smp_store_release */
2436                 ldt = READ_ONCE(current->active_mm->context.ldt);
2437                 if (!ldt || idx >= ldt->nr_entries)
2438                         return 0;
2439
2440                 desc = &ldt->entries[idx];
2441 #else
2442                 return 0;
2443 #endif
2444         } else {
2445                 if (idx >= GDT_ENTRIES)
2446                         return 0;
2447
2448                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2449         }
2450
2451         return get_desc_base(desc);
2452 }
2453
2454 #ifdef CONFIG_IA32_EMULATION
2455
2456 #include <linux/compat.h>
2457
2458 static inline int
2459 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2460 {
2461         /* 32-bit process in 64-bit kernel. */
2462         unsigned long ss_base, cs_base;
2463         struct stack_frame_ia32 frame;
2464         const void __user *fp;
2465
2466         if (!test_thread_flag(TIF_IA32))
2467                 return 0;
2468
2469         cs_base = get_segment_base(regs->cs);
2470         ss_base = get_segment_base(regs->ss);
2471
2472         fp = compat_ptr(ss_base + regs->bp);
2473         pagefault_disable();
2474         while (entry->nr < entry->max_stack) {
2475                 unsigned long bytes;
2476                 frame.next_frame     = 0;
2477                 frame.return_address = 0;
2478
2479                 if (!valid_user_frame(fp, sizeof(frame)))
2480                         break;
2481
2482                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2483                 if (bytes != 0)
2484                         break;
2485                 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2486                 if (bytes != 0)
2487                         break;
2488
2489                 perf_callchain_store(entry, cs_base + frame.return_address);
2490                 fp = compat_ptr(ss_base + frame.next_frame);
2491         }
2492         pagefault_enable();
2493         return 1;
2494 }
2495 #else
2496 static inline int
2497 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2498 {
2499     return 0;
2500 }
2501 #endif
2502
2503 void
2504 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2505 {
2506         struct stack_frame frame;
2507         const unsigned long __user *fp;
2508
2509         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2510                 /* TODO: We don't support guest os callchain now */
2511                 return;
2512         }
2513
2514         /*
2515          * We don't know what to do with VM86 stacks.. ignore them for now.
2516          */
2517         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2518                 return;
2519
2520         fp = (unsigned long __user *)regs->bp;
2521
2522         perf_callchain_store(entry, regs->ip);
2523
2524         if (!nmi_uaccess_okay())
2525                 return;
2526
2527         if (perf_callchain_user32(regs, entry))
2528                 return;
2529
2530         pagefault_disable();
2531         while (entry->nr < entry->max_stack) {
2532                 unsigned long bytes;
2533
2534                 frame.next_frame             = NULL;
2535                 frame.return_address = 0;
2536
2537                 if (!valid_user_frame(fp, sizeof(frame)))
2538                         break;
2539
2540                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2541                 if (bytes != 0)
2542                         break;
2543                 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2544                 if (bytes != 0)
2545                         break;
2546
2547                 perf_callchain_store(entry, frame.return_address);
2548                 fp = (void __user *)frame.next_frame;
2549         }
2550         pagefault_enable();
2551 }
2552
2553 /*
2554  * Deal with code segment offsets for the various execution modes:
2555  *
2556  *   VM86 - the good olde 16 bit days, where the linear address is
2557  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2558  *
2559  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2560  *          to figure out what the 32bit base address is.
2561  *
2562  *    X32 - has TIF_X32 set, but is running in x86_64
2563  *
2564  * X86_64 - CS,DS,SS,ES are all zero based.
2565  */
2566 static unsigned long code_segment_base(struct pt_regs *regs)
2567 {
2568         /*
2569          * For IA32 we look at the GDT/LDT segment base to convert the
2570          * effective IP to a linear address.
2571          */
2572
2573 #ifdef CONFIG_X86_32
2574         /*
2575          * If we are in VM86 mode, add the segment offset to convert to a
2576          * linear address.
2577          */
2578         if (regs->flags & X86_VM_MASK)
2579                 return 0x10 * regs->cs;
2580
2581         if (user_mode(regs) && regs->cs != __USER_CS)
2582                 return get_segment_base(regs->cs);
2583 #else
2584         if (user_mode(regs) && !user_64bit_mode(regs) &&
2585             regs->cs != __USER32_CS)
2586                 return get_segment_base(regs->cs);
2587 #endif
2588         return 0;
2589 }
2590
2591 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2592 {
2593         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2594                 return perf_guest_cbs->get_guest_ip();
2595
2596         return regs->ip + code_segment_base(regs);
2597 }
2598
2599 unsigned long perf_misc_flags(struct pt_regs *regs)
2600 {
2601         int misc = 0;
2602
2603         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2604                 if (perf_guest_cbs->is_user_mode())
2605                         misc |= PERF_RECORD_MISC_GUEST_USER;
2606                 else
2607                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2608         } else {
2609                 if (user_mode(regs))
2610                         misc |= PERF_RECORD_MISC_USER;
2611                 else
2612                         misc |= PERF_RECORD_MISC_KERNEL;
2613         }
2614
2615         if (regs->flags & PERF_EFLAGS_EXACT)
2616                 misc |= PERF_RECORD_MISC_EXACT_IP;
2617
2618         return misc;
2619 }
2620
2621 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2622 {
2623         cap->version            = x86_pmu.version;
2624         cap->num_counters_gp    = x86_pmu.num_counters;
2625         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2626         cap->bit_width_gp       = x86_pmu.cntval_bits;
2627         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2628         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2629         cap->events_mask_len    = x86_pmu.events_mask_len;
2630 }
2631 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);