Merge tag 'nfs-for-6.9-2' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[linux-block.git] / arch / x86 / events / amd / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/perf_event.h>
3 #include <linux/jump_label.h>
4 #include <linux/export.h>
5 #include <linux/types.h>
6 #include <linux/init.h>
7 #include <linux/slab.h>
8 #include <linux/delay.h>
9 #include <linux/jiffies.h>
10 #include <asm/apicdef.h>
11 #include <asm/apic.h>
12 #include <asm/nmi.h>
13
14 #include "../perf_event.h"
15
16 static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp);
17 static unsigned long perf_nmi_window;
18
19 /* AMD Event 0xFFF: Merge.  Used with Large Increment per Cycle events */
20 #define AMD_MERGE_EVENT ((0xFULL << 32) | 0xFFULL)
21 #define AMD_MERGE_EVENT_ENABLE (AMD_MERGE_EVENT | ARCH_PERFMON_EVENTSEL_ENABLE)
22
23 /* PMC Enable and Overflow bits for PerfCntrGlobal* registers */
24 static u64 amd_pmu_global_cntr_mask __read_mostly;
25
26 static __initconst const u64 amd_hw_cache_event_ids
27                                 [PERF_COUNT_HW_CACHE_MAX]
28                                 [PERF_COUNT_HW_CACHE_OP_MAX]
29                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
30 {
31  [ C(L1D) ] = {
32         [ C(OP_READ) ] = {
33                 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
34                 [ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
35         },
36         [ C(OP_WRITE) ] = {
37                 [ C(RESULT_ACCESS) ] = 0,
38                 [ C(RESULT_MISS)   ] = 0,
39         },
40         [ C(OP_PREFETCH) ] = {
41                 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
42                 [ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
43         },
44  },
45  [ C(L1I ) ] = {
46         [ C(OP_READ) ] = {
47                 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
48                 [ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
49         },
50         [ C(OP_WRITE) ] = {
51                 [ C(RESULT_ACCESS) ] = -1,
52                 [ C(RESULT_MISS)   ] = -1,
53         },
54         [ C(OP_PREFETCH) ] = {
55                 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
56                 [ C(RESULT_MISS)   ] = 0,
57         },
58  },
59  [ C(LL  ) ] = {
60         [ C(OP_READ) ] = {
61                 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
62                 [ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
63         },
64         [ C(OP_WRITE) ] = {
65                 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
66                 [ C(RESULT_MISS)   ] = 0,
67         },
68         [ C(OP_PREFETCH) ] = {
69                 [ C(RESULT_ACCESS) ] = 0,
70                 [ C(RESULT_MISS)   ] = 0,
71         },
72  },
73  [ C(DTLB) ] = {
74         [ C(OP_READ) ] = {
75                 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
76                 [ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
77         },
78         [ C(OP_WRITE) ] = {
79                 [ C(RESULT_ACCESS) ] = 0,
80                 [ C(RESULT_MISS)   ] = 0,
81         },
82         [ C(OP_PREFETCH) ] = {
83                 [ C(RESULT_ACCESS) ] = 0,
84                 [ C(RESULT_MISS)   ] = 0,
85         },
86  },
87  [ C(ITLB) ] = {
88         [ C(OP_READ) ] = {
89                 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
90                 [ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
91         },
92         [ C(OP_WRITE) ] = {
93                 [ C(RESULT_ACCESS) ] = -1,
94                 [ C(RESULT_MISS)   ] = -1,
95         },
96         [ C(OP_PREFETCH) ] = {
97                 [ C(RESULT_ACCESS) ] = -1,
98                 [ C(RESULT_MISS)   ] = -1,
99         },
100  },
101  [ C(BPU ) ] = {
102         [ C(OP_READ) ] = {
103                 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
104                 [ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
105         },
106         [ C(OP_WRITE) ] = {
107                 [ C(RESULT_ACCESS) ] = -1,
108                 [ C(RESULT_MISS)   ] = -1,
109         },
110         [ C(OP_PREFETCH) ] = {
111                 [ C(RESULT_ACCESS) ] = -1,
112                 [ C(RESULT_MISS)   ] = -1,
113         },
114  },
115  [ C(NODE) ] = {
116         [ C(OP_READ) ] = {
117                 [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
118                 [ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
119         },
120         [ C(OP_WRITE) ] = {
121                 [ C(RESULT_ACCESS) ] = -1,
122                 [ C(RESULT_MISS)   ] = -1,
123         },
124         [ C(OP_PREFETCH) ] = {
125                 [ C(RESULT_ACCESS) ] = -1,
126                 [ C(RESULT_MISS)   ] = -1,
127         },
128  },
129 };
130
131 static __initconst const u64 amd_hw_cache_event_ids_f17h
132                                 [PERF_COUNT_HW_CACHE_MAX]
133                                 [PERF_COUNT_HW_CACHE_OP_MAX]
134                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
135 [C(L1D)] = {
136         [C(OP_READ)] = {
137                 [C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
138                 [C(RESULT_MISS)]   = 0xc860, /* L2$ access from DC Miss */
139         },
140         [C(OP_WRITE)] = {
141                 [C(RESULT_ACCESS)] = 0,
142                 [C(RESULT_MISS)]   = 0,
143         },
144         [C(OP_PREFETCH)] = {
145                 [C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
146                 [C(RESULT_MISS)]   = 0,
147         },
148 },
149 [C(L1I)] = {
150         [C(OP_READ)] = {
151                 [C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches  */
152                 [C(RESULT_MISS)]   = 0x0081, /* Instruction cache misses   */
153         },
154         [C(OP_WRITE)] = {
155                 [C(RESULT_ACCESS)] = -1,
156                 [C(RESULT_MISS)]   = -1,
157         },
158         [C(OP_PREFETCH)] = {
159                 [C(RESULT_ACCESS)] = 0,
160                 [C(RESULT_MISS)]   = 0,
161         },
162 },
163 [C(LL)] = {
164         [C(OP_READ)] = {
165                 [C(RESULT_ACCESS)] = 0,
166                 [C(RESULT_MISS)]   = 0,
167         },
168         [C(OP_WRITE)] = {
169                 [C(RESULT_ACCESS)] = 0,
170                 [C(RESULT_MISS)]   = 0,
171         },
172         [C(OP_PREFETCH)] = {
173                 [C(RESULT_ACCESS)] = 0,
174                 [C(RESULT_MISS)]   = 0,
175         },
176 },
177 [C(DTLB)] = {
178         [C(OP_READ)] = {
179                 [C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
180                 [C(RESULT_MISS)]   = 0xf045, /* L2 DTLB misses (PT walks) */
181         },
182         [C(OP_WRITE)] = {
183                 [C(RESULT_ACCESS)] = 0,
184                 [C(RESULT_MISS)]   = 0,
185         },
186         [C(OP_PREFETCH)] = {
187                 [C(RESULT_ACCESS)] = 0,
188                 [C(RESULT_MISS)]   = 0,
189         },
190 },
191 [C(ITLB)] = {
192         [C(OP_READ)] = {
193                 [C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
194                 [C(RESULT_MISS)]   = 0xff85, /* L1 ITLB misses, L2 misses */
195         },
196         [C(OP_WRITE)] = {
197                 [C(RESULT_ACCESS)] = -1,
198                 [C(RESULT_MISS)]   = -1,
199         },
200         [C(OP_PREFETCH)] = {
201                 [C(RESULT_ACCESS)] = -1,
202                 [C(RESULT_MISS)]   = -1,
203         },
204 },
205 [C(BPU)] = {
206         [C(OP_READ)] = {
207                 [C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr.      */
208                 [C(RESULT_MISS)]   = 0x00c3, /* Retired Mispredicted BI    */
209         },
210         [C(OP_WRITE)] = {
211                 [C(RESULT_ACCESS)] = -1,
212                 [C(RESULT_MISS)]   = -1,
213         },
214         [C(OP_PREFETCH)] = {
215                 [C(RESULT_ACCESS)] = -1,
216                 [C(RESULT_MISS)]   = -1,
217         },
218 },
219 [C(NODE)] = {
220         [C(OP_READ)] = {
221                 [C(RESULT_ACCESS)] = 0,
222                 [C(RESULT_MISS)]   = 0,
223         },
224         [C(OP_WRITE)] = {
225                 [C(RESULT_ACCESS)] = -1,
226                 [C(RESULT_MISS)]   = -1,
227         },
228         [C(OP_PREFETCH)] = {
229                 [C(RESULT_ACCESS)] = -1,
230                 [C(RESULT_MISS)]   = -1,
231         },
232 },
233 };
234
235 /*
236  * AMD Performance Monitor K7 and later, up to and including Family 16h:
237  */
238 static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
239 {
240         [PERF_COUNT_HW_CPU_CYCLES]              = 0x0076,
241         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
242         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x077d,
243         [PERF_COUNT_HW_CACHE_MISSES]            = 0x077e,
244         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c2,
245         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c3,
246         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
247         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = 0x00d1, /* "Dispatch stalls" event */
248 };
249
250 /*
251  * AMD Performance Monitor Family 17h and later:
252  */
253 static const u64 amd_zen1_perfmon_event_map[PERF_COUNT_HW_MAX] =
254 {
255         [PERF_COUNT_HW_CPU_CYCLES]              = 0x0076,
256         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
257         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0xff60,
258         [PERF_COUNT_HW_CACHE_MISSES]            = 0x0964,
259         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c2,
260         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c3,
261         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x0287,
262         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = 0x0187,
263 };
264
265 static const u64 amd_zen2_perfmon_event_map[PERF_COUNT_HW_MAX] =
266 {
267         [PERF_COUNT_HW_CPU_CYCLES]              = 0x0076,
268         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
269         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0xff60,
270         [PERF_COUNT_HW_CACHE_MISSES]            = 0x0964,
271         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c2,
272         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c3,
273         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00a9,
274 };
275
276 static const u64 amd_zen4_perfmon_event_map[PERF_COUNT_HW_MAX] =
277 {
278         [PERF_COUNT_HW_CPU_CYCLES]              = 0x0076,
279         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
280         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0xff60,
281         [PERF_COUNT_HW_CACHE_MISSES]            = 0x0964,
282         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c2,
283         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c3,
284         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00a9,
285         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x100000120,
286 };
287
288 static u64 amd_pmu_event_map(int hw_event)
289 {
290         if (cpu_feature_enabled(X86_FEATURE_ZEN4) || boot_cpu_data.x86 >= 0x1a)
291                 return amd_zen4_perfmon_event_map[hw_event];
292
293         if (cpu_feature_enabled(X86_FEATURE_ZEN2) || boot_cpu_data.x86 >= 0x19)
294                 return amd_zen2_perfmon_event_map[hw_event];
295
296         if (cpu_feature_enabled(X86_FEATURE_ZEN1))
297                 return amd_zen1_perfmon_event_map[hw_event];
298
299         return amd_perfmon_event_map[hw_event];
300 }
301
302 /*
303  * Previously calculated offsets
304  */
305 static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
306 static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
307
308 /*
309  * Legacy CPUs:
310  *   4 counters starting at 0xc0010000 each offset by 1
311  *
312  * CPUs with core performance counter extensions:
313  *   6 counters starting at 0xc0010200 each offset by 2
314  */
315 static inline int amd_pmu_addr_offset(int index, bool eventsel)
316 {
317         int offset;
318
319         if (!index)
320                 return index;
321
322         if (eventsel)
323                 offset = event_offsets[index];
324         else
325                 offset = count_offsets[index];
326
327         if (offset)
328                 return offset;
329
330         if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
331                 offset = index;
332         else
333                 offset = index << 1;
334
335         if (eventsel)
336                 event_offsets[index] = offset;
337         else
338                 count_offsets[index] = offset;
339
340         return offset;
341 }
342
343 /*
344  * AMD64 events are detected based on their event codes.
345  */
346 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
347 {
348         return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
349 }
350
351 static inline bool amd_is_pair_event_code(struct hw_perf_event *hwc)
352 {
353         if (!(x86_pmu.flags & PMU_FL_PAIR))
354                 return false;
355
356         switch (amd_get_event_code(hwc)) {
357         case 0x003:     return true;    /* Retired SSE/AVX FLOPs */
358         default:        return false;
359         }
360 }
361
362 DEFINE_STATIC_CALL_RET0(amd_pmu_branch_hw_config, *x86_pmu.hw_config);
363
364 static int amd_core_hw_config(struct perf_event *event)
365 {
366         if (event->attr.exclude_host && event->attr.exclude_guest)
367                 /*
368                  * When HO == GO == 1 the hardware treats that as GO == HO == 0
369                  * and will count in both modes. We don't want to count in that
370                  * case so we emulate no-counting by setting US = OS = 0.
371                  */
372                 event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
373                                       ARCH_PERFMON_EVENTSEL_OS);
374         else if (event->attr.exclude_host)
375                 event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
376         else if (event->attr.exclude_guest)
377                 event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
378
379         if ((x86_pmu.flags & PMU_FL_PAIR) && amd_is_pair_event_code(&event->hw))
380                 event->hw.flags |= PERF_X86_EVENT_PAIR;
381
382         if (has_branch_stack(event))
383                 return static_call(amd_pmu_branch_hw_config)(event);
384
385         return 0;
386 }
387
388 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
389 {
390         return (hwc->config & 0xe0) == 0xe0;
391 }
392
393 static inline int amd_has_nb(struct cpu_hw_events *cpuc)
394 {
395         struct amd_nb *nb = cpuc->amd_nb;
396
397         return nb && nb->nb_id != -1;
398 }
399
400 static int amd_pmu_hw_config(struct perf_event *event)
401 {
402         int ret;
403
404         /* pass precise event sampling to ibs: */
405         if (event->attr.precise_ip && get_ibs_caps())
406                 return forward_event_to_ibs(event);
407
408         if (has_branch_stack(event) && !x86_pmu.lbr_nr)
409                 return -EOPNOTSUPP;
410
411         ret = x86_pmu_hw_config(event);
412         if (ret)
413                 return ret;
414
415         if (event->attr.type == PERF_TYPE_RAW)
416                 event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
417
418         return amd_core_hw_config(event);
419 }
420
421 static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
422                                            struct perf_event *event)
423 {
424         struct amd_nb *nb = cpuc->amd_nb;
425         int i;
426
427         /*
428          * need to scan whole list because event may not have
429          * been assigned during scheduling
430          *
431          * no race condition possible because event can only
432          * be removed on one CPU at a time AND PMU is disabled
433          * when we come here
434          */
435         for (i = 0; i < x86_pmu.num_counters; i++) {
436                 if (cmpxchg(nb->owners + i, event, NULL) == event)
437                         break;
438         }
439 }
440
441  /*
442   * AMD64 NorthBridge events need special treatment because
443   * counter access needs to be synchronized across all cores
444   * of a package. Refer to BKDG section 3.12
445   *
446   * NB events are events measuring L3 cache, Hypertransport
447   * traffic. They are identified by an event code >= 0xe00.
448   * They measure events on the NorthBride which is shared
449   * by all cores on a package. NB events are counted on a
450   * shared set of counters. When a NB event is programmed
451   * in a counter, the data actually comes from a shared
452   * counter. Thus, access to those counters needs to be
453   * synchronized.
454   *
455   * We implement the synchronization such that no two cores
456   * can be measuring NB events using the same counters. Thus,
457   * we maintain a per-NB allocation table. The available slot
458   * is propagated using the event_constraint structure.
459   *
460   * We provide only one choice for each NB event based on
461   * the fact that only NB events have restrictions. Consequently,
462   * if a counter is available, there is a guarantee the NB event
463   * will be assigned to it. If no slot is available, an empty
464   * constraint is returned and scheduling will eventually fail
465   * for this event.
466   *
467   * Note that all cores attached the same NB compete for the same
468   * counters to host NB events, this is why we use atomic ops. Some
469   * multi-chip CPUs may have more than one NB.
470   *
471   * Given that resources are allocated (cmpxchg), they must be
472   * eventually freed for others to use. This is accomplished by
473   * calling __amd_put_nb_event_constraints()
474   *
475   * Non NB events are not impacted by this restriction.
476   */
477 static struct event_constraint *
478 __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
479                                struct event_constraint *c)
480 {
481         struct hw_perf_event *hwc = &event->hw;
482         struct amd_nb *nb = cpuc->amd_nb;
483         struct perf_event *old;
484         int idx, new = -1;
485
486         if (!c)
487                 c = &unconstrained;
488
489         if (cpuc->is_fake)
490                 return c;
491
492         /*
493          * detect if already present, if so reuse
494          *
495          * cannot merge with actual allocation
496          * because of possible holes
497          *
498          * event can already be present yet not assigned (in hwc->idx)
499          * because of successive calls to x86_schedule_events() from
500          * hw_perf_group_sched_in() without hw_perf_enable()
501          */
502         for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
503                 if (new == -1 || hwc->idx == idx)
504                         /* assign free slot, prefer hwc->idx */
505                         old = cmpxchg(nb->owners + idx, NULL, event);
506                 else if (nb->owners[idx] == event)
507                         /* event already present */
508                         old = event;
509                 else
510                         continue;
511
512                 if (old && old != event)
513                         continue;
514
515                 /* reassign to this slot */
516                 if (new != -1)
517                         cmpxchg(nb->owners + new, event, NULL);
518                 new = idx;
519
520                 /* already present, reuse */
521                 if (old == event)
522                         break;
523         }
524
525         if (new == -1)
526                 return &emptyconstraint;
527
528         return &nb->event_constraints[new];
529 }
530
531 static struct amd_nb *amd_alloc_nb(int cpu)
532 {
533         struct amd_nb *nb;
534         int i;
535
536         nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
537         if (!nb)
538                 return NULL;
539
540         nb->nb_id = -1;
541
542         /*
543          * initialize all possible NB constraints
544          */
545         for (i = 0; i < x86_pmu.num_counters; i++) {
546                 __set_bit(i, nb->event_constraints[i].idxmsk);
547                 nb->event_constraints[i].weight = 1;
548         }
549         return nb;
550 }
551
552 typedef void (amd_pmu_branch_reset_t)(void);
553 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_reset, amd_pmu_branch_reset_t);
554
555 static void amd_pmu_cpu_reset(int cpu)
556 {
557         if (x86_pmu.lbr_nr)
558                 static_call(amd_pmu_branch_reset)();
559
560         if (x86_pmu.version < 2)
561                 return;
562
563         /* Clear enable bits i.e. PerfCntrGlobalCtl.PerfCntrEn */
564         wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 0);
565
566         /*
567          * Clear freeze and overflow bits i.e. PerfCntrGLobalStatus.LbrFreeze
568          * and PerfCntrGLobalStatus.PerfCntrOvfl
569          */
570         wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
571                GLOBAL_STATUS_LBRS_FROZEN | amd_pmu_global_cntr_mask);
572 }
573
574 static int amd_pmu_cpu_prepare(int cpu)
575 {
576         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
577
578         cpuc->lbr_sel = kzalloc_node(sizeof(struct er_account), GFP_KERNEL,
579                                      cpu_to_node(cpu));
580         if (!cpuc->lbr_sel)
581                 return -ENOMEM;
582
583         WARN_ON_ONCE(cpuc->amd_nb);
584
585         if (!x86_pmu.amd_nb_constraints)
586                 return 0;
587
588         cpuc->amd_nb = amd_alloc_nb(cpu);
589         if (cpuc->amd_nb)
590                 return 0;
591
592         kfree(cpuc->lbr_sel);
593         cpuc->lbr_sel = NULL;
594
595         return -ENOMEM;
596 }
597
598 static void amd_pmu_cpu_starting(int cpu)
599 {
600         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
601         void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
602         struct amd_nb *nb;
603         int i, nb_id;
604
605         cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
606         amd_pmu_cpu_reset(cpu);
607
608         if (!x86_pmu.amd_nb_constraints)
609                 return;
610
611         nb_id = topology_amd_node_id(cpu);
612         WARN_ON_ONCE(nb_id == BAD_APICID);
613
614         for_each_online_cpu(i) {
615                 nb = per_cpu(cpu_hw_events, i).amd_nb;
616                 if (WARN_ON_ONCE(!nb))
617                         continue;
618
619                 if (nb->nb_id == nb_id) {
620                         *onln = cpuc->amd_nb;
621                         cpuc->amd_nb = nb;
622                         break;
623                 }
624         }
625
626         cpuc->amd_nb->nb_id = nb_id;
627         cpuc->amd_nb->refcnt++;
628 }
629
630 static void amd_pmu_cpu_dead(int cpu)
631 {
632         struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
633
634         kfree(cpuhw->lbr_sel);
635         cpuhw->lbr_sel = NULL;
636
637         if (!x86_pmu.amd_nb_constraints)
638                 return;
639
640         if (cpuhw->amd_nb) {
641                 struct amd_nb *nb = cpuhw->amd_nb;
642
643                 if (nb->nb_id == -1 || --nb->refcnt == 0)
644                         kfree(nb);
645
646                 cpuhw->amd_nb = NULL;
647         }
648 }
649
650 static inline void amd_pmu_set_global_ctl(u64 ctl)
651 {
652         wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, ctl);
653 }
654
655 static inline u64 amd_pmu_get_global_status(void)
656 {
657         u64 status;
658
659         /* PerfCntrGlobalStatus is read-only */
660         rdmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, status);
661
662         return status;
663 }
664
665 static inline void amd_pmu_ack_global_status(u64 status)
666 {
667         /*
668          * PerfCntrGlobalStatus is read-only but an overflow acknowledgment
669          * mechanism exists; writing 1 to a bit in PerfCntrGlobalStatusClr
670          * clears the same bit in PerfCntrGlobalStatus
671          */
672
673         wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, status);
674 }
675
676 static bool amd_pmu_test_overflow_topbit(int idx)
677 {
678         u64 counter;
679
680         rdmsrl(x86_pmu_event_addr(idx), counter);
681
682         return !(counter & BIT_ULL(x86_pmu.cntval_bits - 1));
683 }
684
685 static bool amd_pmu_test_overflow_status(int idx)
686 {
687         return amd_pmu_get_global_status() & BIT_ULL(idx);
688 }
689
690 DEFINE_STATIC_CALL(amd_pmu_test_overflow, amd_pmu_test_overflow_topbit);
691
692 /*
693  * When a PMC counter overflows, an NMI is used to process the event and
694  * reset the counter. NMI latency can result in the counter being updated
695  * before the NMI can run, which can result in what appear to be spurious
696  * NMIs. This function is intended to wait for the NMI to run and reset
697  * the counter to avoid possible unhandled NMI messages.
698  */
699 #define OVERFLOW_WAIT_COUNT     50
700
701 static void amd_pmu_wait_on_overflow(int idx)
702 {
703         unsigned int i;
704
705         /*
706          * Wait for the counter to be reset if it has overflowed. This loop
707          * should exit very, very quickly, but just in case, don't wait
708          * forever...
709          */
710         for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
711                 if (!static_call(amd_pmu_test_overflow)(idx))
712                         break;
713
714                 /* Might be in IRQ context, so can't sleep */
715                 udelay(1);
716         }
717 }
718
719 static void amd_pmu_check_overflow(void)
720 {
721         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
722         int idx;
723
724         /*
725          * This shouldn't be called from NMI context, but add a safeguard here
726          * to return, since if we're in NMI context we can't wait for an NMI
727          * to reset an overflowed counter value.
728          */
729         if (in_nmi())
730                 return;
731
732         /*
733          * Check each counter for overflow and wait for it to be reset by the
734          * NMI if it has overflowed. This relies on the fact that all active
735          * counters are always enabled when this function is called and
736          * ARCH_PERFMON_EVENTSEL_INT is always set.
737          */
738         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
739                 if (!test_bit(idx, cpuc->active_mask))
740                         continue;
741
742                 amd_pmu_wait_on_overflow(idx);
743         }
744 }
745
746 static void amd_pmu_enable_event(struct perf_event *event)
747 {
748         x86_pmu_enable_event(event);
749 }
750
751 static void amd_pmu_enable_all(int added)
752 {
753         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
754         int idx;
755
756         amd_brs_enable_all();
757
758         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
759                 /* only activate events which are marked as active */
760                 if (!test_bit(idx, cpuc->active_mask))
761                         continue;
762
763                 amd_pmu_enable_event(cpuc->events[idx]);
764         }
765 }
766
767 static void amd_pmu_v2_enable_event(struct perf_event *event)
768 {
769         struct hw_perf_event *hwc = &event->hw;
770
771         /*
772          * Testing cpu_hw_events.enabled should be skipped in this case unlike
773          * in x86_pmu_enable_event().
774          *
775          * Since cpu_hw_events.enabled is set only after returning from
776          * x86_pmu_start(), the PMCs must be programmed and kept ready.
777          * Counting starts only after x86_pmu_enable_all() is called.
778          */
779         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
780 }
781
782 static __always_inline void amd_pmu_core_enable_all(void)
783 {
784         amd_pmu_set_global_ctl(amd_pmu_global_cntr_mask);
785 }
786
787 static void amd_pmu_v2_enable_all(int added)
788 {
789         amd_pmu_lbr_enable_all();
790         amd_pmu_core_enable_all();
791 }
792
793 static void amd_pmu_disable_event(struct perf_event *event)
794 {
795         x86_pmu_disable_event(event);
796
797         /*
798          * This can be called from NMI context (via x86_pmu_stop). The counter
799          * may have overflowed, but either way, we'll never see it get reset
800          * by the NMI if we're already in the NMI. And the NMI latency support
801          * below will take care of any pending NMI that might have been
802          * generated by the overflow.
803          */
804         if (in_nmi())
805                 return;
806
807         amd_pmu_wait_on_overflow(event->hw.idx);
808 }
809
810 static void amd_pmu_disable_all(void)
811 {
812         amd_brs_disable_all();
813         x86_pmu_disable_all();
814         amd_pmu_check_overflow();
815 }
816
817 static __always_inline void amd_pmu_core_disable_all(void)
818 {
819         amd_pmu_set_global_ctl(0);
820 }
821
822 static void amd_pmu_v2_disable_all(void)
823 {
824         amd_pmu_core_disable_all();
825         amd_pmu_lbr_disable_all();
826         amd_pmu_check_overflow();
827 }
828
829 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_add, *x86_pmu.add);
830
831 static void amd_pmu_add_event(struct perf_event *event)
832 {
833         if (needs_branch_stack(event))
834                 static_call(amd_pmu_branch_add)(event);
835 }
836
837 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_del, *x86_pmu.del);
838
839 static void amd_pmu_del_event(struct perf_event *event)
840 {
841         if (needs_branch_stack(event))
842                 static_call(amd_pmu_branch_del)(event);
843 }
844
845 /*
846  * Because of NMI latency, if multiple PMC counters are active or other sources
847  * of NMIs are received, the perf NMI handler can handle one or more overflowed
848  * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
849  * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
850  * back-to-back NMI support won't be active. This PMC handler needs to take into
851  * account that this can occur, otherwise this could result in unknown NMI
852  * messages being issued. Examples of this is PMC overflow while in the NMI
853  * handler when multiple PMCs are active or PMC overflow while handling some
854  * other source of an NMI.
855  *
856  * Attempt to mitigate this by creating an NMI window in which un-handled NMIs
857  * received during this window will be claimed. This prevents extending the
858  * window past when it is possible that latent NMIs should be received. The
859  * per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has
860  * handled a counter. When an un-handled NMI is received, it will be claimed
861  * only if arriving within that window.
862  */
863 static inline int amd_pmu_adjust_nmi_window(int handled)
864 {
865         /*
866          * If a counter was handled, record a timestamp such that un-handled
867          * NMIs will be claimed if arriving within that window.
868          */
869         if (handled) {
870                 this_cpu_write(perf_nmi_tstamp, jiffies + perf_nmi_window);
871
872                 return handled;
873         }
874
875         if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp)))
876                 return NMI_DONE;
877
878         return NMI_HANDLED;
879 }
880
881 static int amd_pmu_handle_irq(struct pt_regs *regs)
882 {
883         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
884         int handled;
885         int pmu_enabled;
886
887         /*
888          * Save the PMU state.
889          * It needs to be restored when leaving the handler.
890          */
891         pmu_enabled = cpuc->enabled;
892         cpuc->enabled = 0;
893
894         amd_brs_disable_all();
895
896         /* Drain BRS is in use (could be inactive) */
897         if (cpuc->lbr_users)
898                 amd_brs_drain();
899
900         /* Process any counter overflows */
901         handled = x86_pmu_handle_irq(regs);
902
903         cpuc->enabled = pmu_enabled;
904         if (pmu_enabled)
905                 amd_brs_enable_all();
906
907         return amd_pmu_adjust_nmi_window(handled);
908 }
909
910 static int amd_pmu_v2_handle_irq(struct pt_regs *regs)
911 {
912         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
913         struct perf_sample_data data;
914         struct hw_perf_event *hwc;
915         struct perf_event *event;
916         int handled = 0, idx;
917         u64 reserved, status, mask;
918         bool pmu_enabled;
919
920         /*
921          * Save the PMU state as it needs to be restored when leaving the
922          * handler
923          */
924         pmu_enabled = cpuc->enabled;
925         cpuc->enabled = 0;
926
927         /* Stop counting but do not disable LBR */
928         amd_pmu_core_disable_all();
929
930         status = amd_pmu_get_global_status();
931
932         /* Check if any overflows are pending */
933         if (!status)
934                 goto done;
935
936         /* Read branch records */
937         if (x86_pmu.lbr_nr) {
938                 amd_pmu_lbr_read();
939                 status &= ~GLOBAL_STATUS_LBRS_FROZEN;
940         }
941
942         reserved = status & ~amd_pmu_global_cntr_mask;
943         if (reserved)
944                 pr_warn_once("Reserved PerfCntrGlobalStatus bits are set (0x%llx), please consider updating microcode\n",
945                              reserved);
946
947         /* Clear any reserved bits set by buggy microcode */
948         status &= amd_pmu_global_cntr_mask;
949
950         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
951                 if (!test_bit(idx, cpuc->active_mask))
952                         continue;
953
954                 event = cpuc->events[idx];
955                 hwc = &event->hw;
956                 x86_perf_event_update(event);
957                 mask = BIT_ULL(idx);
958
959                 if (!(status & mask))
960                         continue;
961
962                 /* Event overflow */
963                 handled++;
964                 status &= ~mask;
965                 perf_sample_data_init(&data, 0, hwc->last_period);
966
967                 if (!x86_perf_event_set_period(event))
968                         continue;
969
970                 if (has_branch_stack(event))
971                         perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
972
973                 if (perf_event_overflow(event, &data, regs))
974                         x86_pmu_stop(event, 0);
975         }
976
977         /*
978          * It should never be the case that some overflows are not handled as
979          * the corresponding PMCs are expected to be inactive according to the
980          * active_mask
981          */
982         WARN_ON(status > 0);
983
984         /* Clear overflow and freeze bits */
985         amd_pmu_ack_global_status(~status);
986
987         /*
988          * Unmasking the LVTPC is not required as the Mask (M) bit of the LVT
989          * PMI entry is not set by the local APIC when a PMC overflow occurs
990          */
991         inc_irq_stat(apic_perf_irqs);
992
993 done:
994         cpuc->enabled = pmu_enabled;
995
996         /* Resume counting only if PMU is active */
997         if (pmu_enabled)
998                 amd_pmu_core_enable_all();
999
1000         return amd_pmu_adjust_nmi_window(handled);
1001 }
1002
1003 static struct event_constraint *
1004 amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1005                           struct perf_event *event)
1006 {
1007         /*
1008          * if not NB event or no NB, then no constraints
1009          */
1010         if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
1011                 return &unconstrained;
1012
1013         return __amd_get_nb_event_constraints(cpuc, event, NULL);
1014 }
1015
1016 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
1017                                       struct perf_event *event)
1018 {
1019         if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
1020                 __amd_put_nb_event_constraints(cpuc, event);
1021 }
1022
1023 PMU_FORMAT_ATTR(event,  "config:0-7,32-35");
1024 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
1025 PMU_FORMAT_ATTR(edge,   "config:18"     );
1026 PMU_FORMAT_ATTR(inv,    "config:23"     );
1027 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
1028
1029 static struct attribute *amd_format_attr[] = {
1030         &format_attr_event.attr,
1031         &format_attr_umask.attr,
1032         &format_attr_edge.attr,
1033         &format_attr_inv.attr,
1034         &format_attr_cmask.attr,
1035         NULL,
1036 };
1037
1038 /* AMD Family 15h */
1039
1040 #define AMD_EVENT_TYPE_MASK     0x000000F0ULL
1041
1042 #define AMD_EVENT_FP            0x00000000ULL ... 0x00000010ULL
1043 #define AMD_EVENT_LS            0x00000020ULL ... 0x00000030ULL
1044 #define AMD_EVENT_DC            0x00000040ULL ... 0x00000050ULL
1045 #define AMD_EVENT_CU            0x00000060ULL ... 0x00000070ULL
1046 #define AMD_EVENT_IC_DE         0x00000080ULL ... 0x00000090ULL
1047 #define AMD_EVENT_EX_LS         0x000000C0ULL
1048 #define AMD_EVENT_DE            0x000000D0ULL
1049 #define AMD_EVENT_NB            0x000000E0ULL ... 0x000000F0ULL
1050
1051 /*
1052  * AMD family 15h event code/PMC mappings:
1053  *
1054  * type = event_code & 0x0F0:
1055  *
1056  * 0x000        FP      PERF_CTL[5:3]
1057  * 0x010        FP      PERF_CTL[5:3]
1058  * 0x020        LS      PERF_CTL[5:0]
1059  * 0x030        LS      PERF_CTL[5:0]
1060  * 0x040        DC      PERF_CTL[5:0]
1061  * 0x050        DC      PERF_CTL[5:0]
1062  * 0x060        CU      PERF_CTL[2:0]
1063  * 0x070        CU      PERF_CTL[2:0]
1064  * 0x080        IC/DE   PERF_CTL[2:0]
1065  * 0x090        IC/DE   PERF_CTL[2:0]
1066  * 0x0A0        ---
1067  * 0x0B0        ---
1068  * 0x0C0        EX/LS   PERF_CTL[5:0]
1069  * 0x0D0        DE      PERF_CTL[2:0]
1070  * 0x0E0        NB      NB_PERF_CTL[3:0]
1071  * 0x0F0        NB      NB_PERF_CTL[3:0]
1072  *
1073  * Exceptions:
1074  *
1075  * 0x000        FP      PERF_CTL[3], PERF_CTL[5:3] (*)
1076  * 0x003        FP      PERF_CTL[3]
1077  * 0x004        FP      PERF_CTL[3], PERF_CTL[5:3] (*)
1078  * 0x00B        FP      PERF_CTL[3]
1079  * 0x00D        FP      PERF_CTL[3]
1080  * 0x023        DE      PERF_CTL[2:0]
1081  * 0x02D        LS      PERF_CTL[3]
1082  * 0x02E        LS      PERF_CTL[3,0]
1083  * 0x031        LS      PERF_CTL[2:0] (**)
1084  * 0x043        CU      PERF_CTL[2:0]
1085  * 0x045        CU      PERF_CTL[2:0]
1086  * 0x046        CU      PERF_CTL[2:0]
1087  * 0x054        CU      PERF_CTL[2:0]
1088  * 0x055        CU      PERF_CTL[2:0]
1089  * 0x08F        IC      PERF_CTL[0]
1090  * 0x187        DE      PERF_CTL[0]
1091  * 0x188        DE      PERF_CTL[0]
1092  * 0x0DB        EX      PERF_CTL[5:0]
1093  * 0x0DC        LS      PERF_CTL[5:0]
1094  * 0x0DD        LS      PERF_CTL[5:0]
1095  * 0x0DE        LS      PERF_CTL[5:0]
1096  * 0x0DF        LS      PERF_CTL[5:0]
1097  * 0x1C0        EX      PERF_CTL[5:3]
1098  * 0x1D6        EX      PERF_CTL[5:0]
1099  * 0x1D8        EX      PERF_CTL[5:0]
1100  *
1101  * (*)  depending on the umask all FPU counters may be used
1102  * (**) only one unitmask enabled at a time
1103  */
1104
1105 static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
1106 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
1107 static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
1108 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
1109 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
1110 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
1111
1112 static struct event_constraint *
1113 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
1114                                struct perf_event *event)
1115 {
1116         struct hw_perf_event *hwc = &event->hw;
1117         unsigned int event_code = amd_get_event_code(hwc);
1118
1119         switch (event_code & AMD_EVENT_TYPE_MASK) {
1120         case AMD_EVENT_FP:
1121                 switch (event_code) {
1122                 case 0x000:
1123                         if (!(hwc->config & 0x0000F000ULL))
1124                                 break;
1125                         if (!(hwc->config & 0x00000F00ULL))
1126                                 break;
1127                         return &amd_f15_PMC3;
1128                 case 0x004:
1129                         if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
1130                                 break;
1131                         return &amd_f15_PMC3;
1132                 case 0x003:
1133                 case 0x00B:
1134                 case 0x00D:
1135                         return &amd_f15_PMC3;
1136                 }
1137                 return &amd_f15_PMC53;
1138         case AMD_EVENT_LS:
1139         case AMD_EVENT_DC:
1140         case AMD_EVENT_EX_LS:
1141                 switch (event_code) {
1142                 case 0x023:
1143                 case 0x043:
1144                 case 0x045:
1145                 case 0x046:
1146                 case 0x054:
1147                 case 0x055:
1148                         return &amd_f15_PMC20;
1149                 case 0x02D:
1150                         return &amd_f15_PMC3;
1151                 case 0x02E:
1152                         return &amd_f15_PMC30;
1153                 case 0x031:
1154                         if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
1155                                 return &amd_f15_PMC20;
1156                         return &emptyconstraint;
1157                 case 0x1C0:
1158                         return &amd_f15_PMC53;
1159                 default:
1160                         return &amd_f15_PMC50;
1161                 }
1162         case AMD_EVENT_CU:
1163         case AMD_EVENT_IC_DE:
1164         case AMD_EVENT_DE:
1165                 switch (event_code) {
1166                 case 0x08F:
1167                 case 0x187:
1168                 case 0x188:
1169                         return &amd_f15_PMC0;
1170                 case 0x0DB ... 0x0DF:
1171                 case 0x1D6:
1172                 case 0x1D8:
1173                         return &amd_f15_PMC50;
1174                 default:
1175                         return &amd_f15_PMC20;
1176                 }
1177         case AMD_EVENT_NB:
1178                 /* moved to uncore.c */
1179                 return &emptyconstraint;
1180         default:
1181                 return &emptyconstraint;
1182         }
1183 }
1184
1185 static struct event_constraint pair_constraint;
1186
1187 static struct event_constraint *
1188 amd_get_event_constraints_f17h(struct cpu_hw_events *cpuc, int idx,
1189                                struct perf_event *event)
1190 {
1191         struct hw_perf_event *hwc = &event->hw;
1192
1193         if (amd_is_pair_event_code(hwc))
1194                 return &pair_constraint;
1195
1196         return &unconstrained;
1197 }
1198
1199 static void amd_put_event_constraints_f17h(struct cpu_hw_events *cpuc,
1200                                            struct perf_event *event)
1201 {
1202         struct hw_perf_event *hwc = &event->hw;
1203
1204         if (is_counter_pair(hwc))
1205                 --cpuc->n_pair;
1206 }
1207
1208 /*
1209  * Because of the way BRS operates with an inactive and active phases, and
1210  * the link to one counter, it is not possible to have two events using BRS
1211  * scheduled at the same time. There would be an issue with enforcing the
1212  * period of each one and given that the BRS saturates, it would not be possible
1213  * to guarantee correlated content for all events. Therefore, in situations
1214  * where multiple events want to use BRS, the kernel enforces mutual exclusion.
1215  * Exclusion is enforced by choosing only one counter for events using BRS.
1216  * The event scheduling logic will then automatically multiplex the
1217  * events and ensure that at most one event is actively using BRS.
1218  *
1219  * The BRS counter could be any counter, but there is no constraint on Fam19h,
1220  * therefore all counters are equal and thus we pick the first one: PMC0
1221  */
1222 static struct event_constraint amd_fam19h_brs_cntr0_constraint =
1223         EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK);
1224
1225 static struct event_constraint amd_fam19h_brs_pair_cntr0_constraint =
1226         __EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK, 1, 0, PERF_X86_EVENT_PAIR);
1227
1228 static struct event_constraint *
1229 amd_get_event_constraints_f19h(struct cpu_hw_events *cpuc, int idx,
1230                           struct perf_event *event)
1231 {
1232         struct hw_perf_event *hwc = &event->hw;
1233         bool has_brs = has_amd_brs(hwc);
1234
1235         /*
1236          * In case BRS is used with an event requiring a counter pair,
1237          * the kernel allows it but only on counter 0 & 1 to enforce
1238          * multiplexing requiring to protect BRS in case of multiple
1239          * BRS users
1240          */
1241         if (amd_is_pair_event_code(hwc)) {
1242                 return has_brs ? &amd_fam19h_brs_pair_cntr0_constraint
1243                                : &pair_constraint;
1244         }
1245
1246         if (has_brs)
1247                 return &amd_fam19h_brs_cntr0_constraint;
1248
1249         return &unconstrained;
1250 }
1251
1252
1253 static ssize_t amd_event_sysfs_show(char *page, u64 config)
1254 {
1255         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
1256                     (config & AMD64_EVENTSEL_EVENT) >> 24;
1257
1258         return x86_event_sysfs_show(page, config, event);
1259 }
1260
1261 static void amd_pmu_limit_period(struct perf_event *event, s64 *left)
1262 {
1263         /*
1264          * Decrease period by the depth of the BRS feature to get the last N
1265          * taken branches and approximate the desired period
1266          */
1267         if (has_branch_stack(event) && *left > x86_pmu.lbr_nr)
1268                 *left -= x86_pmu.lbr_nr;
1269 }
1270
1271 static __initconst const struct x86_pmu amd_pmu = {
1272         .name                   = "AMD",
1273         .handle_irq             = amd_pmu_handle_irq,
1274         .disable_all            = amd_pmu_disable_all,
1275         .enable_all             = amd_pmu_enable_all,
1276         .enable                 = amd_pmu_enable_event,
1277         .disable                = amd_pmu_disable_event,
1278         .hw_config              = amd_pmu_hw_config,
1279         .schedule_events        = x86_schedule_events,
1280         .eventsel               = MSR_K7_EVNTSEL0,
1281         .perfctr                = MSR_K7_PERFCTR0,
1282         .addr_offset            = amd_pmu_addr_offset,
1283         .event_map              = amd_pmu_event_map,
1284         .max_events             = ARRAY_SIZE(amd_perfmon_event_map),
1285         .num_counters           = AMD64_NUM_COUNTERS,
1286         .add                    = amd_pmu_add_event,
1287         .del                    = amd_pmu_del_event,
1288         .cntval_bits            = 48,
1289         .cntval_mask            = (1ULL << 48) - 1,
1290         .apic                   = 1,
1291         /* use highest bit to detect overflow */
1292         .max_period             = (1ULL << 47) - 1,
1293         .get_event_constraints  = amd_get_event_constraints,
1294         .put_event_constraints  = amd_put_event_constraints,
1295
1296         .format_attrs           = amd_format_attr,
1297         .events_sysfs_show      = amd_event_sysfs_show,
1298
1299         .cpu_prepare            = amd_pmu_cpu_prepare,
1300         .cpu_starting           = amd_pmu_cpu_starting,
1301         .cpu_dead               = amd_pmu_cpu_dead,
1302
1303         .amd_nb_constraints     = 1,
1304 };
1305
1306 static ssize_t branches_show(struct device *cdev,
1307                               struct device_attribute *attr,
1308                               char *buf)
1309 {
1310         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
1311 }
1312
1313 static DEVICE_ATTR_RO(branches);
1314
1315 static struct attribute *amd_pmu_branches_attrs[] = {
1316         &dev_attr_branches.attr,
1317         NULL,
1318 };
1319
1320 static umode_t
1321 amd_branches_is_visible(struct kobject *kobj, struct attribute *attr, int i)
1322 {
1323         return x86_pmu.lbr_nr ? attr->mode : 0;
1324 }
1325
1326 static struct attribute_group group_caps_amd_branches = {
1327         .name  = "caps",
1328         .attrs = amd_pmu_branches_attrs,
1329         .is_visible = amd_branches_is_visible,
1330 };
1331
1332 #ifdef CONFIG_PERF_EVENTS_AMD_BRS
1333
1334 EVENT_ATTR_STR(branch-brs, amd_branch_brs,
1335                "event=" __stringify(AMD_FAM19H_BRS_EVENT)"\n");
1336
1337 static struct attribute *amd_brs_events_attrs[] = {
1338         EVENT_PTR(amd_branch_brs),
1339         NULL,
1340 };
1341
1342 static umode_t
1343 amd_brs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
1344 {
1345         return static_cpu_has(X86_FEATURE_BRS) && x86_pmu.lbr_nr ?
1346                attr->mode : 0;
1347 }
1348
1349 static struct attribute_group group_events_amd_brs = {
1350         .name       = "events",
1351         .attrs      = amd_brs_events_attrs,
1352         .is_visible = amd_brs_is_visible,
1353 };
1354
1355 #endif  /* CONFIG_PERF_EVENTS_AMD_BRS */
1356
1357 static const struct attribute_group *amd_attr_update[] = {
1358         &group_caps_amd_branches,
1359 #ifdef CONFIG_PERF_EVENTS_AMD_BRS
1360         &group_events_amd_brs,
1361 #endif
1362         NULL,
1363 };
1364
1365 static int __init amd_core_pmu_init(void)
1366 {
1367         union cpuid_0x80000022_ebx ebx;
1368         u64 even_ctr_mask = 0ULL;
1369         int i;
1370
1371         if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
1372                 return 0;
1373
1374         /* Avoid calculating the value each time in the NMI handler */
1375         perf_nmi_window = msecs_to_jiffies(100);
1376
1377         /*
1378          * If core performance counter extensions exists, we must use
1379          * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
1380          * amd_pmu_addr_offset().
1381          */
1382         x86_pmu.eventsel        = MSR_F15H_PERF_CTL;
1383         x86_pmu.perfctr         = MSR_F15H_PERF_CTR;
1384         x86_pmu.num_counters    = AMD64_NUM_COUNTERS_CORE;
1385
1386         /* Check for Performance Monitoring v2 support */
1387         if (boot_cpu_has(X86_FEATURE_PERFMON_V2)) {
1388                 ebx.full = cpuid_ebx(EXT_PERFMON_DEBUG_FEATURES);
1389
1390                 /* Update PMU version for later usage */
1391                 x86_pmu.version = 2;
1392
1393                 /* Find the number of available Core PMCs */
1394                 x86_pmu.num_counters = ebx.split.num_core_pmc;
1395
1396                 amd_pmu_global_cntr_mask = (1ULL << x86_pmu.num_counters) - 1;
1397
1398                 /* Update PMC handling functions */
1399                 x86_pmu.enable_all = amd_pmu_v2_enable_all;
1400                 x86_pmu.disable_all = amd_pmu_v2_disable_all;
1401                 x86_pmu.enable = amd_pmu_v2_enable_event;
1402                 x86_pmu.handle_irq = amd_pmu_v2_handle_irq;
1403                 static_call_update(amd_pmu_test_overflow, amd_pmu_test_overflow_status);
1404         }
1405
1406         /*
1407          * AMD Core perfctr has separate MSRs for the NB events, see
1408          * the amd/uncore.c driver.
1409          */
1410         x86_pmu.amd_nb_constraints = 0;
1411
1412         if (boot_cpu_data.x86 == 0x15) {
1413                 pr_cont("Fam15h ");
1414                 x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
1415         }
1416         if (boot_cpu_data.x86 >= 0x17) {
1417                 pr_cont("Fam17h+ ");
1418                 /*
1419                  * Family 17h and compatibles have constraints for Large
1420                  * Increment per Cycle events: they may only be assigned an
1421                  * even numbered counter that has a consecutive adjacent odd
1422                  * numbered counter following it.
1423                  */
1424                 for (i = 0; i < x86_pmu.num_counters - 1; i += 2)
1425                         even_ctr_mask |= BIT_ULL(i);
1426
1427                 pair_constraint = (struct event_constraint)
1428                                     __EVENT_CONSTRAINT(0, even_ctr_mask, 0,
1429                                     x86_pmu.num_counters / 2, 0,
1430                                     PERF_X86_EVENT_PAIR);
1431
1432                 x86_pmu.get_event_constraints = amd_get_event_constraints_f17h;
1433                 x86_pmu.put_event_constraints = amd_put_event_constraints_f17h;
1434                 x86_pmu.perf_ctr_pair_en = AMD_MERGE_EVENT_ENABLE;
1435                 x86_pmu.flags |= PMU_FL_PAIR;
1436         }
1437
1438         /* LBR and BRS are mutually exclusive features */
1439         if (!amd_pmu_lbr_init()) {
1440                 /* LBR requires flushing on context switch */
1441                 x86_pmu.sched_task = amd_pmu_lbr_sched_task;
1442                 static_call_update(amd_pmu_branch_hw_config, amd_pmu_lbr_hw_config);
1443                 static_call_update(amd_pmu_branch_reset, amd_pmu_lbr_reset);
1444                 static_call_update(amd_pmu_branch_add, amd_pmu_lbr_add);
1445                 static_call_update(amd_pmu_branch_del, amd_pmu_lbr_del);
1446         } else if (!amd_brs_init()) {
1447                 /*
1448                  * BRS requires special event constraints and flushing on ctxsw.
1449                  */
1450                 x86_pmu.get_event_constraints = amd_get_event_constraints_f19h;
1451                 x86_pmu.sched_task = amd_pmu_brs_sched_task;
1452                 x86_pmu.limit_period = amd_pmu_limit_period;
1453
1454                 static_call_update(amd_pmu_branch_hw_config, amd_brs_hw_config);
1455                 static_call_update(amd_pmu_branch_reset, amd_brs_reset);
1456                 static_call_update(amd_pmu_branch_add, amd_pmu_brs_add);
1457                 static_call_update(amd_pmu_branch_del, amd_pmu_brs_del);
1458
1459                 /*
1460                  * put_event_constraints callback same as Fam17h, set above
1461                  */
1462
1463                 /* branch sampling must be stopped when entering low power */
1464                 amd_brs_lopwr_init();
1465         }
1466
1467         x86_pmu.attr_update = amd_attr_update;
1468
1469         pr_cont("core perfctr, ");
1470         return 0;
1471 }
1472
1473 __init int amd_pmu_init(void)
1474 {
1475         int ret;
1476
1477         /* Performance-monitoring supported from K7 and later: */
1478         if (boot_cpu_data.x86 < 6)
1479                 return -ENODEV;
1480
1481         x86_pmu = amd_pmu;
1482
1483         ret = amd_core_pmu_init();
1484         if (ret)
1485                 return ret;
1486
1487         if (num_possible_cpus() == 1) {
1488                 /*
1489                  * No point in allocating data structures to serialize
1490                  * against other CPUs, when there is only the one CPU.
1491                  */
1492                 x86_pmu.amd_nb_constraints = 0;
1493         }
1494
1495         if (boot_cpu_data.x86 >= 0x17)
1496                 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
1497         else
1498                 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));
1499
1500         return 0;
1501 }
1502
1503 static inline void amd_pmu_reload_virt(void)
1504 {
1505         if (x86_pmu.version >= 2) {
1506                 /*
1507                  * Clear global enable bits, reprogram the PERF_CTL
1508                  * registers with updated perf_ctr_virt_mask and then
1509                  * set global enable bits once again
1510                  */
1511                 amd_pmu_v2_disable_all();
1512                 amd_pmu_enable_all(0);
1513                 amd_pmu_v2_enable_all(0);
1514                 return;
1515         }
1516
1517         amd_pmu_disable_all();
1518         amd_pmu_enable_all(0);
1519 }
1520
1521 void amd_pmu_enable_virt(void)
1522 {
1523         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1524
1525         cpuc->perf_ctr_virt_mask = 0;
1526
1527         /* Reload all events */
1528         amd_pmu_reload_virt();
1529 }
1530 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
1531
1532 void amd_pmu_disable_virt(void)
1533 {
1534         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1535
1536         /*
1537          * We only mask out the Host-only bit so that host-only counting works
1538          * when SVM is disabled. If someone sets up a guest-only counter when
1539          * SVM is disabled the Guest-only bits still gets set and the counter
1540          * will not count anything.
1541          */
1542         cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
1543
1544         /* Reload all events */
1545         amd_pmu_reload_virt();
1546 }
1547 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);