x86/cpu/amd: Provide a separate accessor for Node ID
[linux-block.git] / arch / x86 / events / amd / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/perf_event.h>
3 #include <linux/jump_label.h>
4 #include <linux/export.h>
5 #include <linux/types.h>
6 #include <linux/init.h>
7 #include <linux/slab.h>
8 #include <linux/delay.h>
9 #include <linux/jiffies.h>
10 #include <asm/apicdef.h>
11 #include <asm/apic.h>
12 #include <asm/nmi.h>
13
14 #include "../perf_event.h"
15
16 static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp);
17 static unsigned long perf_nmi_window;
18
19 /* AMD Event 0xFFF: Merge.  Used with Large Increment per Cycle events */
20 #define AMD_MERGE_EVENT ((0xFULL << 32) | 0xFFULL)
21 #define AMD_MERGE_EVENT_ENABLE (AMD_MERGE_EVENT | ARCH_PERFMON_EVENTSEL_ENABLE)
22
23 /* PMC Enable and Overflow bits for PerfCntrGlobal* registers */
24 static u64 amd_pmu_global_cntr_mask __read_mostly;
25
26 static __initconst const u64 amd_hw_cache_event_ids
27                                 [PERF_COUNT_HW_CACHE_MAX]
28                                 [PERF_COUNT_HW_CACHE_OP_MAX]
29                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
30 {
31  [ C(L1D) ] = {
32         [ C(OP_READ) ] = {
33                 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
34                 [ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
35         },
36         [ C(OP_WRITE) ] = {
37                 [ C(RESULT_ACCESS) ] = 0,
38                 [ C(RESULT_MISS)   ] = 0,
39         },
40         [ C(OP_PREFETCH) ] = {
41                 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
42                 [ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
43         },
44  },
45  [ C(L1I ) ] = {
46         [ C(OP_READ) ] = {
47                 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
48                 [ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
49         },
50         [ C(OP_WRITE) ] = {
51                 [ C(RESULT_ACCESS) ] = -1,
52                 [ C(RESULT_MISS)   ] = -1,
53         },
54         [ C(OP_PREFETCH) ] = {
55                 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
56                 [ C(RESULT_MISS)   ] = 0,
57         },
58  },
59  [ C(LL  ) ] = {
60         [ C(OP_READ) ] = {
61                 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
62                 [ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
63         },
64         [ C(OP_WRITE) ] = {
65                 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
66                 [ C(RESULT_MISS)   ] = 0,
67         },
68         [ C(OP_PREFETCH) ] = {
69                 [ C(RESULT_ACCESS) ] = 0,
70                 [ C(RESULT_MISS)   ] = 0,
71         },
72  },
73  [ C(DTLB) ] = {
74         [ C(OP_READ) ] = {
75                 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
76                 [ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
77         },
78         [ C(OP_WRITE) ] = {
79                 [ C(RESULT_ACCESS) ] = 0,
80                 [ C(RESULT_MISS)   ] = 0,
81         },
82         [ C(OP_PREFETCH) ] = {
83                 [ C(RESULT_ACCESS) ] = 0,
84                 [ C(RESULT_MISS)   ] = 0,
85         },
86  },
87  [ C(ITLB) ] = {
88         [ C(OP_READ) ] = {
89                 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
90                 [ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
91         },
92         [ C(OP_WRITE) ] = {
93                 [ C(RESULT_ACCESS) ] = -1,
94                 [ C(RESULT_MISS)   ] = -1,
95         },
96         [ C(OP_PREFETCH) ] = {
97                 [ C(RESULT_ACCESS) ] = -1,
98                 [ C(RESULT_MISS)   ] = -1,
99         },
100  },
101  [ C(BPU ) ] = {
102         [ C(OP_READ) ] = {
103                 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
104                 [ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
105         },
106         [ C(OP_WRITE) ] = {
107                 [ C(RESULT_ACCESS) ] = -1,
108                 [ C(RESULT_MISS)   ] = -1,
109         },
110         [ C(OP_PREFETCH) ] = {
111                 [ C(RESULT_ACCESS) ] = -1,
112                 [ C(RESULT_MISS)   ] = -1,
113         },
114  },
115  [ C(NODE) ] = {
116         [ C(OP_READ) ] = {
117                 [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
118                 [ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
119         },
120         [ C(OP_WRITE) ] = {
121                 [ C(RESULT_ACCESS) ] = -1,
122                 [ C(RESULT_MISS)   ] = -1,
123         },
124         [ C(OP_PREFETCH) ] = {
125                 [ C(RESULT_ACCESS) ] = -1,
126                 [ C(RESULT_MISS)   ] = -1,
127         },
128  },
129 };
130
131 static __initconst const u64 amd_hw_cache_event_ids_f17h
132                                 [PERF_COUNT_HW_CACHE_MAX]
133                                 [PERF_COUNT_HW_CACHE_OP_MAX]
134                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
135 [C(L1D)] = {
136         [C(OP_READ)] = {
137                 [C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
138                 [C(RESULT_MISS)]   = 0xc860, /* L2$ access from DC Miss */
139         },
140         [C(OP_WRITE)] = {
141                 [C(RESULT_ACCESS)] = 0,
142                 [C(RESULT_MISS)]   = 0,
143         },
144         [C(OP_PREFETCH)] = {
145                 [C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
146                 [C(RESULT_MISS)]   = 0,
147         },
148 },
149 [C(L1I)] = {
150         [C(OP_READ)] = {
151                 [C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches  */
152                 [C(RESULT_MISS)]   = 0x0081, /* Instruction cache misses   */
153         },
154         [C(OP_WRITE)] = {
155                 [C(RESULT_ACCESS)] = -1,
156                 [C(RESULT_MISS)]   = -1,
157         },
158         [C(OP_PREFETCH)] = {
159                 [C(RESULT_ACCESS)] = 0,
160                 [C(RESULT_MISS)]   = 0,
161         },
162 },
163 [C(LL)] = {
164         [C(OP_READ)] = {
165                 [C(RESULT_ACCESS)] = 0,
166                 [C(RESULT_MISS)]   = 0,
167         },
168         [C(OP_WRITE)] = {
169                 [C(RESULT_ACCESS)] = 0,
170                 [C(RESULT_MISS)]   = 0,
171         },
172         [C(OP_PREFETCH)] = {
173                 [C(RESULT_ACCESS)] = 0,
174                 [C(RESULT_MISS)]   = 0,
175         },
176 },
177 [C(DTLB)] = {
178         [C(OP_READ)] = {
179                 [C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
180                 [C(RESULT_MISS)]   = 0xf045, /* L2 DTLB misses (PT walks) */
181         },
182         [C(OP_WRITE)] = {
183                 [C(RESULT_ACCESS)] = 0,
184                 [C(RESULT_MISS)]   = 0,
185         },
186         [C(OP_PREFETCH)] = {
187                 [C(RESULT_ACCESS)] = 0,
188                 [C(RESULT_MISS)]   = 0,
189         },
190 },
191 [C(ITLB)] = {
192         [C(OP_READ)] = {
193                 [C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
194                 [C(RESULT_MISS)]   = 0xff85, /* L1 ITLB misses, L2 misses */
195         },
196         [C(OP_WRITE)] = {
197                 [C(RESULT_ACCESS)] = -1,
198                 [C(RESULT_MISS)]   = -1,
199         },
200         [C(OP_PREFETCH)] = {
201                 [C(RESULT_ACCESS)] = -1,
202                 [C(RESULT_MISS)]   = -1,
203         },
204 },
205 [C(BPU)] = {
206         [C(OP_READ)] = {
207                 [C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr.      */
208                 [C(RESULT_MISS)]   = 0x00c3, /* Retired Mispredicted BI    */
209         },
210         [C(OP_WRITE)] = {
211                 [C(RESULT_ACCESS)] = -1,
212                 [C(RESULT_MISS)]   = -1,
213         },
214         [C(OP_PREFETCH)] = {
215                 [C(RESULT_ACCESS)] = -1,
216                 [C(RESULT_MISS)]   = -1,
217         },
218 },
219 [C(NODE)] = {
220         [C(OP_READ)] = {
221                 [C(RESULT_ACCESS)] = 0,
222                 [C(RESULT_MISS)]   = 0,
223         },
224         [C(OP_WRITE)] = {
225                 [C(RESULT_ACCESS)] = -1,
226                 [C(RESULT_MISS)]   = -1,
227         },
228         [C(OP_PREFETCH)] = {
229                 [C(RESULT_ACCESS)] = -1,
230                 [C(RESULT_MISS)]   = -1,
231         },
232 },
233 };
234
235 /*
236  * AMD Performance Monitor K7 and later, up to and including Family 16h:
237  */
238 static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
239 {
240         [PERF_COUNT_HW_CPU_CYCLES]              = 0x0076,
241         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
242         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x077d,
243         [PERF_COUNT_HW_CACHE_MISSES]            = 0x077e,
244         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c2,
245         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c3,
246         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
247         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = 0x00d1, /* "Dispatch stalls" event */
248 };
249
250 /*
251  * AMD Performance Monitor Family 17h and later:
252  */
253 static const u64 amd_f17h_perfmon_event_map[PERF_COUNT_HW_MAX] =
254 {
255         [PERF_COUNT_HW_CPU_CYCLES]              = 0x0076,
256         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
257         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0xff60,
258         [PERF_COUNT_HW_CACHE_MISSES]            = 0x0964,
259         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c2,
260         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c3,
261         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x0287,
262         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = 0x0187,
263 };
264
265 static u64 amd_pmu_event_map(int hw_event)
266 {
267         if (boot_cpu_data.x86 >= 0x17)
268                 return amd_f17h_perfmon_event_map[hw_event];
269
270         return amd_perfmon_event_map[hw_event];
271 }
272
273 /*
274  * Previously calculated offsets
275  */
276 static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
277 static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
278
279 /*
280  * Legacy CPUs:
281  *   4 counters starting at 0xc0010000 each offset by 1
282  *
283  * CPUs with core performance counter extensions:
284  *   6 counters starting at 0xc0010200 each offset by 2
285  */
286 static inline int amd_pmu_addr_offset(int index, bool eventsel)
287 {
288         int offset;
289
290         if (!index)
291                 return index;
292
293         if (eventsel)
294                 offset = event_offsets[index];
295         else
296                 offset = count_offsets[index];
297
298         if (offset)
299                 return offset;
300
301         if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
302                 offset = index;
303         else
304                 offset = index << 1;
305
306         if (eventsel)
307                 event_offsets[index] = offset;
308         else
309                 count_offsets[index] = offset;
310
311         return offset;
312 }
313
314 /*
315  * AMD64 events are detected based on their event codes.
316  */
317 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
318 {
319         return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
320 }
321
322 static inline bool amd_is_pair_event_code(struct hw_perf_event *hwc)
323 {
324         if (!(x86_pmu.flags & PMU_FL_PAIR))
325                 return false;
326
327         switch (amd_get_event_code(hwc)) {
328         case 0x003:     return true;    /* Retired SSE/AVX FLOPs */
329         default:        return false;
330         }
331 }
332
333 DEFINE_STATIC_CALL_RET0(amd_pmu_branch_hw_config, *x86_pmu.hw_config);
334
335 static int amd_core_hw_config(struct perf_event *event)
336 {
337         if (event->attr.exclude_host && event->attr.exclude_guest)
338                 /*
339                  * When HO == GO == 1 the hardware treats that as GO == HO == 0
340                  * and will count in both modes. We don't want to count in that
341                  * case so we emulate no-counting by setting US = OS = 0.
342                  */
343                 event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
344                                       ARCH_PERFMON_EVENTSEL_OS);
345         else if (event->attr.exclude_host)
346                 event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
347         else if (event->attr.exclude_guest)
348                 event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
349
350         if ((x86_pmu.flags & PMU_FL_PAIR) && amd_is_pair_event_code(&event->hw))
351                 event->hw.flags |= PERF_X86_EVENT_PAIR;
352
353         if (has_branch_stack(event))
354                 return static_call(amd_pmu_branch_hw_config)(event);
355
356         return 0;
357 }
358
359 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
360 {
361         return (hwc->config & 0xe0) == 0xe0;
362 }
363
364 static inline int amd_has_nb(struct cpu_hw_events *cpuc)
365 {
366         struct amd_nb *nb = cpuc->amd_nb;
367
368         return nb && nb->nb_id != -1;
369 }
370
371 static int amd_pmu_hw_config(struct perf_event *event)
372 {
373         int ret;
374
375         /* pass precise event sampling to ibs: */
376         if (event->attr.precise_ip && get_ibs_caps())
377                 return forward_event_to_ibs(event);
378
379         if (has_branch_stack(event) && !x86_pmu.lbr_nr)
380                 return -EOPNOTSUPP;
381
382         ret = x86_pmu_hw_config(event);
383         if (ret)
384                 return ret;
385
386         if (event->attr.type == PERF_TYPE_RAW)
387                 event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
388
389         return amd_core_hw_config(event);
390 }
391
392 static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
393                                            struct perf_event *event)
394 {
395         struct amd_nb *nb = cpuc->amd_nb;
396         int i;
397
398         /*
399          * need to scan whole list because event may not have
400          * been assigned during scheduling
401          *
402          * no race condition possible because event can only
403          * be removed on one CPU at a time AND PMU is disabled
404          * when we come here
405          */
406         for (i = 0; i < x86_pmu.num_counters; i++) {
407                 if (cmpxchg(nb->owners + i, event, NULL) == event)
408                         break;
409         }
410 }
411
412  /*
413   * AMD64 NorthBridge events need special treatment because
414   * counter access needs to be synchronized across all cores
415   * of a package. Refer to BKDG section 3.12
416   *
417   * NB events are events measuring L3 cache, Hypertransport
418   * traffic. They are identified by an event code >= 0xe00.
419   * They measure events on the NorthBride which is shared
420   * by all cores on a package. NB events are counted on a
421   * shared set of counters. When a NB event is programmed
422   * in a counter, the data actually comes from a shared
423   * counter. Thus, access to those counters needs to be
424   * synchronized.
425   *
426   * We implement the synchronization such that no two cores
427   * can be measuring NB events using the same counters. Thus,
428   * we maintain a per-NB allocation table. The available slot
429   * is propagated using the event_constraint structure.
430   *
431   * We provide only one choice for each NB event based on
432   * the fact that only NB events have restrictions. Consequently,
433   * if a counter is available, there is a guarantee the NB event
434   * will be assigned to it. If no slot is available, an empty
435   * constraint is returned and scheduling will eventually fail
436   * for this event.
437   *
438   * Note that all cores attached the same NB compete for the same
439   * counters to host NB events, this is why we use atomic ops. Some
440   * multi-chip CPUs may have more than one NB.
441   *
442   * Given that resources are allocated (cmpxchg), they must be
443   * eventually freed for others to use. This is accomplished by
444   * calling __amd_put_nb_event_constraints()
445   *
446   * Non NB events are not impacted by this restriction.
447   */
448 static struct event_constraint *
449 __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
450                                struct event_constraint *c)
451 {
452         struct hw_perf_event *hwc = &event->hw;
453         struct amd_nb *nb = cpuc->amd_nb;
454         struct perf_event *old;
455         int idx, new = -1;
456
457         if (!c)
458                 c = &unconstrained;
459
460         if (cpuc->is_fake)
461                 return c;
462
463         /*
464          * detect if already present, if so reuse
465          *
466          * cannot merge with actual allocation
467          * because of possible holes
468          *
469          * event can already be present yet not assigned (in hwc->idx)
470          * because of successive calls to x86_schedule_events() from
471          * hw_perf_group_sched_in() without hw_perf_enable()
472          */
473         for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
474                 if (new == -1 || hwc->idx == idx)
475                         /* assign free slot, prefer hwc->idx */
476                         old = cmpxchg(nb->owners + idx, NULL, event);
477                 else if (nb->owners[idx] == event)
478                         /* event already present */
479                         old = event;
480                 else
481                         continue;
482
483                 if (old && old != event)
484                         continue;
485
486                 /* reassign to this slot */
487                 if (new != -1)
488                         cmpxchg(nb->owners + new, event, NULL);
489                 new = idx;
490
491                 /* already present, reuse */
492                 if (old == event)
493                         break;
494         }
495
496         if (new == -1)
497                 return &emptyconstraint;
498
499         return &nb->event_constraints[new];
500 }
501
502 static struct amd_nb *amd_alloc_nb(int cpu)
503 {
504         struct amd_nb *nb;
505         int i;
506
507         nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
508         if (!nb)
509                 return NULL;
510
511         nb->nb_id = -1;
512
513         /*
514          * initialize all possible NB constraints
515          */
516         for (i = 0; i < x86_pmu.num_counters; i++) {
517                 __set_bit(i, nb->event_constraints[i].idxmsk);
518                 nb->event_constraints[i].weight = 1;
519         }
520         return nb;
521 }
522
523 typedef void (amd_pmu_branch_reset_t)(void);
524 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_reset, amd_pmu_branch_reset_t);
525
526 static void amd_pmu_cpu_reset(int cpu)
527 {
528         if (x86_pmu.lbr_nr)
529                 static_call(amd_pmu_branch_reset)();
530
531         if (x86_pmu.version < 2)
532                 return;
533
534         /* Clear enable bits i.e. PerfCntrGlobalCtl.PerfCntrEn */
535         wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 0);
536
537         /*
538          * Clear freeze and overflow bits i.e. PerfCntrGLobalStatus.LbrFreeze
539          * and PerfCntrGLobalStatus.PerfCntrOvfl
540          */
541         wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
542                GLOBAL_STATUS_LBRS_FROZEN | amd_pmu_global_cntr_mask);
543 }
544
545 static int amd_pmu_cpu_prepare(int cpu)
546 {
547         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
548
549         cpuc->lbr_sel = kzalloc_node(sizeof(struct er_account), GFP_KERNEL,
550                                      cpu_to_node(cpu));
551         if (!cpuc->lbr_sel)
552                 return -ENOMEM;
553
554         WARN_ON_ONCE(cpuc->amd_nb);
555
556         if (!x86_pmu.amd_nb_constraints)
557                 return 0;
558
559         cpuc->amd_nb = amd_alloc_nb(cpu);
560         if (cpuc->amd_nb)
561                 return 0;
562
563         kfree(cpuc->lbr_sel);
564         cpuc->lbr_sel = NULL;
565
566         return -ENOMEM;
567 }
568
569 static void amd_pmu_cpu_starting(int cpu)
570 {
571         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
572         void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
573         struct amd_nb *nb;
574         int i, nb_id;
575
576         cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
577         amd_pmu_cpu_reset(cpu);
578
579         if (!x86_pmu.amd_nb_constraints)
580                 return;
581
582         nb_id = topology_amd_node_id(cpu);
583         WARN_ON_ONCE(nb_id == BAD_APICID);
584
585         for_each_online_cpu(i) {
586                 nb = per_cpu(cpu_hw_events, i).amd_nb;
587                 if (WARN_ON_ONCE(!nb))
588                         continue;
589
590                 if (nb->nb_id == nb_id) {
591                         *onln = cpuc->amd_nb;
592                         cpuc->amd_nb = nb;
593                         break;
594                 }
595         }
596
597         cpuc->amd_nb->nb_id = nb_id;
598         cpuc->amd_nb->refcnt++;
599 }
600
601 static void amd_pmu_cpu_dead(int cpu)
602 {
603         struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
604
605         kfree(cpuhw->lbr_sel);
606         cpuhw->lbr_sel = NULL;
607         amd_pmu_cpu_reset(cpu);
608
609         if (!x86_pmu.amd_nb_constraints)
610                 return;
611
612         if (cpuhw->amd_nb) {
613                 struct amd_nb *nb = cpuhw->amd_nb;
614
615                 if (nb->nb_id == -1 || --nb->refcnt == 0)
616                         kfree(nb);
617
618                 cpuhw->amd_nb = NULL;
619         }
620 }
621
622 static inline void amd_pmu_set_global_ctl(u64 ctl)
623 {
624         wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, ctl);
625 }
626
627 static inline u64 amd_pmu_get_global_status(void)
628 {
629         u64 status;
630
631         /* PerfCntrGlobalStatus is read-only */
632         rdmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, status);
633
634         return status;
635 }
636
637 static inline void amd_pmu_ack_global_status(u64 status)
638 {
639         /*
640          * PerfCntrGlobalStatus is read-only but an overflow acknowledgment
641          * mechanism exists; writing 1 to a bit in PerfCntrGlobalStatusClr
642          * clears the same bit in PerfCntrGlobalStatus
643          */
644
645         wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, status);
646 }
647
648 static bool amd_pmu_test_overflow_topbit(int idx)
649 {
650         u64 counter;
651
652         rdmsrl(x86_pmu_event_addr(idx), counter);
653
654         return !(counter & BIT_ULL(x86_pmu.cntval_bits - 1));
655 }
656
657 static bool amd_pmu_test_overflow_status(int idx)
658 {
659         return amd_pmu_get_global_status() & BIT_ULL(idx);
660 }
661
662 DEFINE_STATIC_CALL(amd_pmu_test_overflow, amd_pmu_test_overflow_topbit);
663
664 /*
665  * When a PMC counter overflows, an NMI is used to process the event and
666  * reset the counter. NMI latency can result in the counter being updated
667  * before the NMI can run, which can result in what appear to be spurious
668  * NMIs. This function is intended to wait for the NMI to run and reset
669  * the counter to avoid possible unhandled NMI messages.
670  */
671 #define OVERFLOW_WAIT_COUNT     50
672
673 static void amd_pmu_wait_on_overflow(int idx)
674 {
675         unsigned int i;
676
677         /*
678          * Wait for the counter to be reset if it has overflowed. This loop
679          * should exit very, very quickly, but just in case, don't wait
680          * forever...
681          */
682         for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
683                 if (!static_call(amd_pmu_test_overflow)(idx))
684                         break;
685
686                 /* Might be in IRQ context, so can't sleep */
687                 udelay(1);
688         }
689 }
690
691 static void amd_pmu_check_overflow(void)
692 {
693         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
694         int idx;
695
696         /*
697          * This shouldn't be called from NMI context, but add a safeguard here
698          * to return, since if we're in NMI context we can't wait for an NMI
699          * to reset an overflowed counter value.
700          */
701         if (in_nmi())
702                 return;
703
704         /*
705          * Check each counter for overflow and wait for it to be reset by the
706          * NMI if it has overflowed. This relies on the fact that all active
707          * counters are always enabled when this function is called and
708          * ARCH_PERFMON_EVENTSEL_INT is always set.
709          */
710         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
711                 if (!test_bit(idx, cpuc->active_mask))
712                         continue;
713
714                 amd_pmu_wait_on_overflow(idx);
715         }
716 }
717
718 static void amd_pmu_enable_event(struct perf_event *event)
719 {
720         x86_pmu_enable_event(event);
721 }
722
723 static void amd_pmu_enable_all(int added)
724 {
725         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
726         int idx;
727
728         amd_brs_enable_all();
729
730         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
731                 /* only activate events which are marked as active */
732                 if (!test_bit(idx, cpuc->active_mask))
733                         continue;
734
735                 amd_pmu_enable_event(cpuc->events[idx]);
736         }
737 }
738
739 static void amd_pmu_v2_enable_event(struct perf_event *event)
740 {
741         struct hw_perf_event *hwc = &event->hw;
742
743         /*
744          * Testing cpu_hw_events.enabled should be skipped in this case unlike
745          * in x86_pmu_enable_event().
746          *
747          * Since cpu_hw_events.enabled is set only after returning from
748          * x86_pmu_start(), the PMCs must be programmed and kept ready.
749          * Counting starts only after x86_pmu_enable_all() is called.
750          */
751         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
752 }
753
754 static __always_inline void amd_pmu_core_enable_all(void)
755 {
756         amd_pmu_set_global_ctl(amd_pmu_global_cntr_mask);
757 }
758
759 static void amd_pmu_v2_enable_all(int added)
760 {
761         amd_pmu_lbr_enable_all();
762         amd_pmu_core_enable_all();
763 }
764
765 static void amd_pmu_disable_event(struct perf_event *event)
766 {
767         x86_pmu_disable_event(event);
768
769         /*
770          * This can be called from NMI context (via x86_pmu_stop). The counter
771          * may have overflowed, but either way, we'll never see it get reset
772          * by the NMI if we're already in the NMI. And the NMI latency support
773          * below will take care of any pending NMI that might have been
774          * generated by the overflow.
775          */
776         if (in_nmi())
777                 return;
778
779         amd_pmu_wait_on_overflow(event->hw.idx);
780 }
781
782 static void amd_pmu_disable_all(void)
783 {
784         amd_brs_disable_all();
785         x86_pmu_disable_all();
786         amd_pmu_check_overflow();
787 }
788
789 static __always_inline void amd_pmu_core_disable_all(void)
790 {
791         amd_pmu_set_global_ctl(0);
792 }
793
794 static void amd_pmu_v2_disable_all(void)
795 {
796         amd_pmu_core_disable_all();
797         amd_pmu_lbr_disable_all();
798         amd_pmu_check_overflow();
799 }
800
801 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_add, *x86_pmu.add);
802
803 static void amd_pmu_add_event(struct perf_event *event)
804 {
805         if (needs_branch_stack(event))
806                 static_call(amd_pmu_branch_add)(event);
807 }
808
809 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_del, *x86_pmu.del);
810
811 static void amd_pmu_del_event(struct perf_event *event)
812 {
813         if (needs_branch_stack(event))
814                 static_call(amd_pmu_branch_del)(event);
815 }
816
817 /*
818  * Because of NMI latency, if multiple PMC counters are active or other sources
819  * of NMIs are received, the perf NMI handler can handle one or more overflowed
820  * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
821  * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
822  * back-to-back NMI support won't be active. This PMC handler needs to take into
823  * account that this can occur, otherwise this could result in unknown NMI
824  * messages being issued. Examples of this is PMC overflow while in the NMI
825  * handler when multiple PMCs are active or PMC overflow while handling some
826  * other source of an NMI.
827  *
828  * Attempt to mitigate this by creating an NMI window in which un-handled NMIs
829  * received during this window will be claimed. This prevents extending the
830  * window past when it is possible that latent NMIs should be received. The
831  * per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has
832  * handled a counter. When an un-handled NMI is received, it will be claimed
833  * only if arriving within that window.
834  */
835 static inline int amd_pmu_adjust_nmi_window(int handled)
836 {
837         /*
838          * If a counter was handled, record a timestamp such that un-handled
839          * NMIs will be claimed if arriving within that window.
840          */
841         if (handled) {
842                 this_cpu_write(perf_nmi_tstamp, jiffies + perf_nmi_window);
843
844                 return handled;
845         }
846
847         if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp)))
848                 return NMI_DONE;
849
850         return NMI_HANDLED;
851 }
852
853 static int amd_pmu_handle_irq(struct pt_regs *regs)
854 {
855         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
856         int handled;
857         int pmu_enabled;
858
859         /*
860          * Save the PMU state.
861          * It needs to be restored when leaving the handler.
862          */
863         pmu_enabled = cpuc->enabled;
864         cpuc->enabled = 0;
865
866         amd_brs_disable_all();
867
868         /* Drain BRS is in use (could be inactive) */
869         if (cpuc->lbr_users)
870                 amd_brs_drain();
871
872         /* Process any counter overflows */
873         handled = x86_pmu_handle_irq(regs);
874
875         cpuc->enabled = pmu_enabled;
876         if (pmu_enabled)
877                 amd_brs_enable_all();
878
879         return amd_pmu_adjust_nmi_window(handled);
880 }
881
882 static int amd_pmu_v2_handle_irq(struct pt_regs *regs)
883 {
884         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
885         struct perf_sample_data data;
886         struct hw_perf_event *hwc;
887         struct perf_event *event;
888         int handled = 0, idx;
889         u64 reserved, status, mask;
890         bool pmu_enabled;
891
892         /*
893          * Save the PMU state as it needs to be restored when leaving the
894          * handler
895          */
896         pmu_enabled = cpuc->enabled;
897         cpuc->enabled = 0;
898
899         /* Stop counting but do not disable LBR */
900         amd_pmu_core_disable_all();
901
902         status = amd_pmu_get_global_status();
903
904         /* Check if any overflows are pending */
905         if (!status)
906                 goto done;
907
908         /* Read branch records before unfreezing */
909         if (status & GLOBAL_STATUS_LBRS_FROZEN) {
910                 amd_pmu_lbr_read();
911                 status &= ~GLOBAL_STATUS_LBRS_FROZEN;
912         }
913
914         reserved = status & ~amd_pmu_global_cntr_mask;
915         if (reserved)
916                 pr_warn_once("Reserved PerfCntrGlobalStatus bits are set (0x%llx), please consider updating microcode\n",
917                              reserved);
918
919         /* Clear any reserved bits set by buggy microcode */
920         status &= amd_pmu_global_cntr_mask;
921
922         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
923                 if (!test_bit(idx, cpuc->active_mask))
924                         continue;
925
926                 event = cpuc->events[idx];
927                 hwc = &event->hw;
928                 x86_perf_event_update(event);
929                 mask = BIT_ULL(idx);
930
931                 if (!(status & mask))
932                         continue;
933
934                 /* Event overflow */
935                 handled++;
936                 status &= ~mask;
937                 perf_sample_data_init(&data, 0, hwc->last_period);
938
939                 if (!x86_perf_event_set_period(event))
940                         continue;
941
942                 if (has_branch_stack(event))
943                         perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
944
945                 if (perf_event_overflow(event, &data, regs))
946                         x86_pmu_stop(event, 0);
947         }
948
949         /*
950          * It should never be the case that some overflows are not handled as
951          * the corresponding PMCs are expected to be inactive according to the
952          * active_mask
953          */
954         WARN_ON(status > 0);
955
956         /* Clear overflow and freeze bits */
957         amd_pmu_ack_global_status(~status);
958
959         /*
960          * Unmasking the LVTPC is not required as the Mask (M) bit of the LVT
961          * PMI entry is not set by the local APIC when a PMC overflow occurs
962          */
963         inc_irq_stat(apic_perf_irqs);
964
965 done:
966         cpuc->enabled = pmu_enabled;
967
968         /* Resume counting only if PMU is active */
969         if (pmu_enabled)
970                 amd_pmu_core_enable_all();
971
972         return amd_pmu_adjust_nmi_window(handled);
973 }
974
975 static struct event_constraint *
976 amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
977                           struct perf_event *event)
978 {
979         /*
980          * if not NB event or no NB, then no constraints
981          */
982         if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
983                 return &unconstrained;
984
985         return __amd_get_nb_event_constraints(cpuc, event, NULL);
986 }
987
988 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
989                                       struct perf_event *event)
990 {
991         if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
992                 __amd_put_nb_event_constraints(cpuc, event);
993 }
994
995 PMU_FORMAT_ATTR(event,  "config:0-7,32-35");
996 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
997 PMU_FORMAT_ATTR(edge,   "config:18"     );
998 PMU_FORMAT_ATTR(inv,    "config:23"     );
999 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
1000
1001 static struct attribute *amd_format_attr[] = {
1002         &format_attr_event.attr,
1003         &format_attr_umask.attr,
1004         &format_attr_edge.attr,
1005         &format_attr_inv.attr,
1006         &format_attr_cmask.attr,
1007         NULL,
1008 };
1009
1010 /* AMD Family 15h */
1011
1012 #define AMD_EVENT_TYPE_MASK     0x000000F0ULL
1013
1014 #define AMD_EVENT_FP            0x00000000ULL ... 0x00000010ULL
1015 #define AMD_EVENT_LS            0x00000020ULL ... 0x00000030ULL
1016 #define AMD_EVENT_DC            0x00000040ULL ... 0x00000050ULL
1017 #define AMD_EVENT_CU            0x00000060ULL ... 0x00000070ULL
1018 #define AMD_EVENT_IC_DE         0x00000080ULL ... 0x00000090ULL
1019 #define AMD_EVENT_EX_LS         0x000000C0ULL
1020 #define AMD_EVENT_DE            0x000000D0ULL
1021 #define AMD_EVENT_NB            0x000000E0ULL ... 0x000000F0ULL
1022
1023 /*
1024  * AMD family 15h event code/PMC mappings:
1025  *
1026  * type = event_code & 0x0F0:
1027  *
1028  * 0x000        FP      PERF_CTL[5:3]
1029  * 0x010        FP      PERF_CTL[5:3]
1030  * 0x020        LS      PERF_CTL[5:0]
1031  * 0x030        LS      PERF_CTL[5:0]
1032  * 0x040        DC      PERF_CTL[5:0]
1033  * 0x050        DC      PERF_CTL[5:0]
1034  * 0x060        CU      PERF_CTL[2:0]
1035  * 0x070        CU      PERF_CTL[2:0]
1036  * 0x080        IC/DE   PERF_CTL[2:0]
1037  * 0x090        IC/DE   PERF_CTL[2:0]
1038  * 0x0A0        ---
1039  * 0x0B0        ---
1040  * 0x0C0        EX/LS   PERF_CTL[5:0]
1041  * 0x0D0        DE      PERF_CTL[2:0]
1042  * 0x0E0        NB      NB_PERF_CTL[3:0]
1043  * 0x0F0        NB      NB_PERF_CTL[3:0]
1044  *
1045  * Exceptions:
1046  *
1047  * 0x000        FP      PERF_CTL[3], PERF_CTL[5:3] (*)
1048  * 0x003        FP      PERF_CTL[3]
1049  * 0x004        FP      PERF_CTL[3], PERF_CTL[5:3] (*)
1050  * 0x00B        FP      PERF_CTL[3]
1051  * 0x00D        FP      PERF_CTL[3]
1052  * 0x023        DE      PERF_CTL[2:0]
1053  * 0x02D        LS      PERF_CTL[3]
1054  * 0x02E        LS      PERF_CTL[3,0]
1055  * 0x031        LS      PERF_CTL[2:0] (**)
1056  * 0x043        CU      PERF_CTL[2:0]
1057  * 0x045        CU      PERF_CTL[2:0]
1058  * 0x046        CU      PERF_CTL[2:0]
1059  * 0x054        CU      PERF_CTL[2:0]
1060  * 0x055        CU      PERF_CTL[2:0]
1061  * 0x08F        IC      PERF_CTL[0]
1062  * 0x187        DE      PERF_CTL[0]
1063  * 0x188        DE      PERF_CTL[0]
1064  * 0x0DB        EX      PERF_CTL[5:0]
1065  * 0x0DC        LS      PERF_CTL[5:0]
1066  * 0x0DD        LS      PERF_CTL[5:0]
1067  * 0x0DE        LS      PERF_CTL[5:0]
1068  * 0x0DF        LS      PERF_CTL[5:0]
1069  * 0x1C0        EX      PERF_CTL[5:3]
1070  * 0x1D6        EX      PERF_CTL[5:0]
1071  * 0x1D8        EX      PERF_CTL[5:0]
1072  *
1073  * (*)  depending on the umask all FPU counters may be used
1074  * (**) only one unitmask enabled at a time
1075  */
1076
1077 static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
1078 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
1079 static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
1080 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
1081 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
1082 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
1083
1084 static struct event_constraint *
1085 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
1086                                struct perf_event *event)
1087 {
1088         struct hw_perf_event *hwc = &event->hw;
1089         unsigned int event_code = amd_get_event_code(hwc);
1090
1091         switch (event_code & AMD_EVENT_TYPE_MASK) {
1092         case AMD_EVENT_FP:
1093                 switch (event_code) {
1094                 case 0x000:
1095                         if (!(hwc->config & 0x0000F000ULL))
1096                                 break;
1097                         if (!(hwc->config & 0x00000F00ULL))
1098                                 break;
1099                         return &amd_f15_PMC3;
1100                 case 0x004:
1101                         if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
1102                                 break;
1103                         return &amd_f15_PMC3;
1104                 case 0x003:
1105                 case 0x00B:
1106                 case 0x00D:
1107                         return &amd_f15_PMC3;
1108                 }
1109                 return &amd_f15_PMC53;
1110         case AMD_EVENT_LS:
1111         case AMD_EVENT_DC:
1112         case AMD_EVENT_EX_LS:
1113                 switch (event_code) {
1114                 case 0x023:
1115                 case 0x043:
1116                 case 0x045:
1117                 case 0x046:
1118                 case 0x054:
1119                 case 0x055:
1120                         return &amd_f15_PMC20;
1121                 case 0x02D:
1122                         return &amd_f15_PMC3;
1123                 case 0x02E:
1124                         return &amd_f15_PMC30;
1125                 case 0x031:
1126                         if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
1127                                 return &amd_f15_PMC20;
1128                         return &emptyconstraint;
1129                 case 0x1C0:
1130                         return &amd_f15_PMC53;
1131                 default:
1132                         return &amd_f15_PMC50;
1133                 }
1134         case AMD_EVENT_CU:
1135         case AMD_EVENT_IC_DE:
1136         case AMD_EVENT_DE:
1137                 switch (event_code) {
1138                 case 0x08F:
1139                 case 0x187:
1140                 case 0x188:
1141                         return &amd_f15_PMC0;
1142                 case 0x0DB ... 0x0DF:
1143                 case 0x1D6:
1144                 case 0x1D8:
1145                         return &amd_f15_PMC50;
1146                 default:
1147                         return &amd_f15_PMC20;
1148                 }
1149         case AMD_EVENT_NB:
1150                 /* moved to uncore.c */
1151                 return &emptyconstraint;
1152         default:
1153                 return &emptyconstraint;
1154         }
1155 }
1156
1157 static struct event_constraint pair_constraint;
1158
1159 static struct event_constraint *
1160 amd_get_event_constraints_f17h(struct cpu_hw_events *cpuc, int idx,
1161                                struct perf_event *event)
1162 {
1163         struct hw_perf_event *hwc = &event->hw;
1164
1165         if (amd_is_pair_event_code(hwc))
1166                 return &pair_constraint;
1167
1168         return &unconstrained;
1169 }
1170
1171 static void amd_put_event_constraints_f17h(struct cpu_hw_events *cpuc,
1172                                            struct perf_event *event)
1173 {
1174         struct hw_perf_event *hwc = &event->hw;
1175
1176         if (is_counter_pair(hwc))
1177                 --cpuc->n_pair;
1178 }
1179
1180 /*
1181  * Because of the way BRS operates with an inactive and active phases, and
1182  * the link to one counter, it is not possible to have two events using BRS
1183  * scheduled at the same time. There would be an issue with enforcing the
1184  * period of each one and given that the BRS saturates, it would not be possible
1185  * to guarantee correlated content for all events. Therefore, in situations
1186  * where multiple events want to use BRS, the kernel enforces mutual exclusion.
1187  * Exclusion is enforced by choosing only one counter for events using BRS.
1188  * The event scheduling logic will then automatically multiplex the
1189  * events and ensure that at most one event is actively using BRS.
1190  *
1191  * The BRS counter could be any counter, but there is no constraint on Fam19h,
1192  * therefore all counters are equal and thus we pick the first one: PMC0
1193  */
1194 static struct event_constraint amd_fam19h_brs_cntr0_constraint =
1195         EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK);
1196
1197 static struct event_constraint amd_fam19h_brs_pair_cntr0_constraint =
1198         __EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK, 1, 0, PERF_X86_EVENT_PAIR);
1199
1200 static struct event_constraint *
1201 amd_get_event_constraints_f19h(struct cpu_hw_events *cpuc, int idx,
1202                           struct perf_event *event)
1203 {
1204         struct hw_perf_event *hwc = &event->hw;
1205         bool has_brs = has_amd_brs(hwc);
1206
1207         /*
1208          * In case BRS is used with an event requiring a counter pair,
1209          * the kernel allows it but only on counter 0 & 1 to enforce
1210          * multiplexing requiring to protect BRS in case of multiple
1211          * BRS users
1212          */
1213         if (amd_is_pair_event_code(hwc)) {
1214                 return has_brs ? &amd_fam19h_brs_pair_cntr0_constraint
1215                                : &pair_constraint;
1216         }
1217
1218         if (has_brs)
1219                 return &amd_fam19h_brs_cntr0_constraint;
1220
1221         return &unconstrained;
1222 }
1223
1224
1225 static ssize_t amd_event_sysfs_show(char *page, u64 config)
1226 {
1227         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
1228                     (config & AMD64_EVENTSEL_EVENT) >> 24;
1229
1230         return x86_event_sysfs_show(page, config, event);
1231 }
1232
1233 static void amd_pmu_limit_period(struct perf_event *event, s64 *left)
1234 {
1235         /*
1236          * Decrease period by the depth of the BRS feature to get the last N
1237          * taken branches and approximate the desired period
1238          */
1239         if (has_branch_stack(event) && *left > x86_pmu.lbr_nr)
1240                 *left -= x86_pmu.lbr_nr;
1241 }
1242
1243 static __initconst const struct x86_pmu amd_pmu = {
1244         .name                   = "AMD",
1245         .handle_irq             = amd_pmu_handle_irq,
1246         .disable_all            = amd_pmu_disable_all,
1247         .enable_all             = amd_pmu_enable_all,
1248         .enable                 = amd_pmu_enable_event,
1249         .disable                = amd_pmu_disable_event,
1250         .hw_config              = amd_pmu_hw_config,
1251         .schedule_events        = x86_schedule_events,
1252         .eventsel               = MSR_K7_EVNTSEL0,
1253         .perfctr                = MSR_K7_PERFCTR0,
1254         .addr_offset            = amd_pmu_addr_offset,
1255         .event_map              = amd_pmu_event_map,
1256         .max_events             = ARRAY_SIZE(amd_perfmon_event_map),
1257         .num_counters           = AMD64_NUM_COUNTERS,
1258         .add                    = amd_pmu_add_event,
1259         .del                    = amd_pmu_del_event,
1260         .cntval_bits            = 48,
1261         .cntval_mask            = (1ULL << 48) - 1,
1262         .apic                   = 1,
1263         /* use highest bit to detect overflow */
1264         .max_period             = (1ULL << 47) - 1,
1265         .get_event_constraints  = amd_get_event_constraints,
1266         .put_event_constraints  = amd_put_event_constraints,
1267
1268         .format_attrs           = amd_format_attr,
1269         .events_sysfs_show      = amd_event_sysfs_show,
1270
1271         .cpu_prepare            = amd_pmu_cpu_prepare,
1272         .cpu_starting           = amd_pmu_cpu_starting,
1273         .cpu_dead               = amd_pmu_cpu_dead,
1274
1275         .amd_nb_constraints     = 1,
1276 };
1277
1278 static ssize_t branches_show(struct device *cdev,
1279                               struct device_attribute *attr,
1280                               char *buf)
1281 {
1282         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
1283 }
1284
1285 static DEVICE_ATTR_RO(branches);
1286
1287 static struct attribute *amd_pmu_branches_attrs[] = {
1288         &dev_attr_branches.attr,
1289         NULL,
1290 };
1291
1292 static umode_t
1293 amd_branches_is_visible(struct kobject *kobj, struct attribute *attr, int i)
1294 {
1295         return x86_pmu.lbr_nr ? attr->mode : 0;
1296 }
1297
1298 static struct attribute_group group_caps_amd_branches = {
1299         .name  = "caps",
1300         .attrs = amd_pmu_branches_attrs,
1301         .is_visible = amd_branches_is_visible,
1302 };
1303
1304 #ifdef CONFIG_PERF_EVENTS_AMD_BRS
1305
1306 EVENT_ATTR_STR(branch-brs, amd_branch_brs,
1307                "event=" __stringify(AMD_FAM19H_BRS_EVENT)"\n");
1308
1309 static struct attribute *amd_brs_events_attrs[] = {
1310         EVENT_PTR(amd_branch_brs),
1311         NULL,
1312 };
1313
1314 static umode_t
1315 amd_brs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
1316 {
1317         return static_cpu_has(X86_FEATURE_BRS) && x86_pmu.lbr_nr ?
1318                attr->mode : 0;
1319 }
1320
1321 static struct attribute_group group_events_amd_brs = {
1322         .name       = "events",
1323         .attrs      = amd_brs_events_attrs,
1324         .is_visible = amd_brs_is_visible,
1325 };
1326
1327 #endif  /* CONFIG_PERF_EVENTS_AMD_BRS */
1328
1329 static const struct attribute_group *amd_attr_update[] = {
1330         &group_caps_amd_branches,
1331 #ifdef CONFIG_PERF_EVENTS_AMD_BRS
1332         &group_events_amd_brs,
1333 #endif
1334         NULL,
1335 };
1336
1337 static int __init amd_core_pmu_init(void)
1338 {
1339         union cpuid_0x80000022_ebx ebx;
1340         u64 even_ctr_mask = 0ULL;
1341         int i;
1342
1343         if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
1344                 return 0;
1345
1346         /* Avoid calculating the value each time in the NMI handler */
1347         perf_nmi_window = msecs_to_jiffies(100);
1348
1349         /*
1350          * If core performance counter extensions exists, we must use
1351          * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
1352          * amd_pmu_addr_offset().
1353          */
1354         x86_pmu.eventsel        = MSR_F15H_PERF_CTL;
1355         x86_pmu.perfctr         = MSR_F15H_PERF_CTR;
1356         x86_pmu.num_counters    = AMD64_NUM_COUNTERS_CORE;
1357
1358         /* Check for Performance Monitoring v2 support */
1359         if (boot_cpu_has(X86_FEATURE_PERFMON_V2)) {
1360                 ebx.full = cpuid_ebx(EXT_PERFMON_DEBUG_FEATURES);
1361
1362                 /* Update PMU version for later usage */
1363                 x86_pmu.version = 2;
1364
1365                 /* Find the number of available Core PMCs */
1366                 x86_pmu.num_counters = ebx.split.num_core_pmc;
1367
1368                 amd_pmu_global_cntr_mask = (1ULL << x86_pmu.num_counters) - 1;
1369
1370                 /* Update PMC handling functions */
1371                 x86_pmu.enable_all = amd_pmu_v2_enable_all;
1372                 x86_pmu.disable_all = amd_pmu_v2_disable_all;
1373                 x86_pmu.enable = amd_pmu_v2_enable_event;
1374                 x86_pmu.handle_irq = amd_pmu_v2_handle_irq;
1375                 static_call_update(amd_pmu_test_overflow, amd_pmu_test_overflow_status);
1376         }
1377
1378         /*
1379          * AMD Core perfctr has separate MSRs for the NB events, see
1380          * the amd/uncore.c driver.
1381          */
1382         x86_pmu.amd_nb_constraints = 0;
1383
1384         if (boot_cpu_data.x86 == 0x15) {
1385                 pr_cont("Fam15h ");
1386                 x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
1387         }
1388         if (boot_cpu_data.x86 >= 0x17) {
1389                 pr_cont("Fam17h+ ");
1390                 /*
1391                  * Family 17h and compatibles have constraints for Large
1392                  * Increment per Cycle events: they may only be assigned an
1393                  * even numbered counter that has a consecutive adjacent odd
1394                  * numbered counter following it.
1395                  */
1396                 for (i = 0; i < x86_pmu.num_counters - 1; i += 2)
1397                         even_ctr_mask |= BIT_ULL(i);
1398
1399                 pair_constraint = (struct event_constraint)
1400                                     __EVENT_CONSTRAINT(0, even_ctr_mask, 0,
1401                                     x86_pmu.num_counters / 2, 0,
1402                                     PERF_X86_EVENT_PAIR);
1403
1404                 x86_pmu.get_event_constraints = amd_get_event_constraints_f17h;
1405                 x86_pmu.put_event_constraints = amd_put_event_constraints_f17h;
1406                 x86_pmu.perf_ctr_pair_en = AMD_MERGE_EVENT_ENABLE;
1407                 x86_pmu.flags |= PMU_FL_PAIR;
1408         }
1409
1410         /* LBR and BRS are mutually exclusive features */
1411         if (!amd_pmu_lbr_init()) {
1412                 /* LBR requires flushing on context switch */
1413                 x86_pmu.sched_task = amd_pmu_lbr_sched_task;
1414                 static_call_update(amd_pmu_branch_hw_config, amd_pmu_lbr_hw_config);
1415                 static_call_update(amd_pmu_branch_reset, amd_pmu_lbr_reset);
1416                 static_call_update(amd_pmu_branch_add, amd_pmu_lbr_add);
1417                 static_call_update(amd_pmu_branch_del, amd_pmu_lbr_del);
1418         } else if (!amd_brs_init()) {
1419                 /*
1420                  * BRS requires special event constraints and flushing on ctxsw.
1421                  */
1422                 x86_pmu.get_event_constraints = amd_get_event_constraints_f19h;
1423                 x86_pmu.sched_task = amd_pmu_brs_sched_task;
1424                 x86_pmu.limit_period = amd_pmu_limit_period;
1425
1426                 static_call_update(amd_pmu_branch_hw_config, amd_brs_hw_config);
1427                 static_call_update(amd_pmu_branch_reset, amd_brs_reset);
1428                 static_call_update(amd_pmu_branch_add, amd_pmu_brs_add);
1429                 static_call_update(amd_pmu_branch_del, amd_pmu_brs_del);
1430
1431                 /*
1432                  * put_event_constraints callback same as Fam17h, set above
1433                  */
1434
1435                 /* branch sampling must be stopped when entering low power */
1436                 amd_brs_lopwr_init();
1437         }
1438
1439         x86_pmu.attr_update = amd_attr_update;
1440
1441         pr_cont("core perfctr, ");
1442         return 0;
1443 }
1444
1445 __init int amd_pmu_init(void)
1446 {
1447         int ret;
1448
1449         /* Performance-monitoring supported from K7 and later: */
1450         if (boot_cpu_data.x86 < 6)
1451                 return -ENODEV;
1452
1453         x86_pmu = amd_pmu;
1454
1455         ret = amd_core_pmu_init();
1456         if (ret)
1457                 return ret;
1458
1459         if (num_possible_cpus() == 1) {
1460                 /*
1461                  * No point in allocating data structures to serialize
1462                  * against other CPUs, when there is only the one CPU.
1463                  */
1464                 x86_pmu.amd_nb_constraints = 0;
1465         }
1466
1467         if (boot_cpu_data.x86 >= 0x17)
1468                 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
1469         else
1470                 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));
1471
1472         return 0;
1473 }
1474
1475 static inline void amd_pmu_reload_virt(void)
1476 {
1477         if (x86_pmu.version >= 2) {
1478                 /*
1479                  * Clear global enable bits, reprogram the PERF_CTL
1480                  * registers with updated perf_ctr_virt_mask and then
1481                  * set global enable bits once again
1482                  */
1483                 amd_pmu_v2_disable_all();
1484                 amd_pmu_enable_all(0);
1485                 amd_pmu_v2_enable_all(0);
1486                 return;
1487         }
1488
1489         amd_pmu_disable_all();
1490         amd_pmu_enable_all(0);
1491 }
1492
1493 void amd_pmu_enable_virt(void)
1494 {
1495         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1496
1497         cpuc->perf_ctr_virt_mask = 0;
1498
1499         /* Reload all events */
1500         amd_pmu_reload_virt();
1501 }
1502 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
1503
1504 void amd_pmu_disable_virt(void)
1505 {
1506         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1507
1508         /*
1509          * We only mask out the Host-only bit so that host-only counting works
1510          * when SVM is disabled. If someone sets up a guest-only counter when
1511          * SVM is disabled the Guest-only bits still gets set and the counter
1512          * will not count anything.
1513          */
1514         cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
1515
1516         /* Reload all events */
1517         amd_pmu_reload_virt();
1518 }
1519 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);