1 // SPDX-License-Identifier: GPL-2.0
3 * srmmu.c: SRMMU specific routines for memory management.
5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
57 EXPORT_SYMBOL(vac_cache_size);
60 extern struct resource sparc_iomap;
62 extern unsigned long last_valid_pfn;
64 static pgd_t *srmmu_swapper_pg_dir;
66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
67 EXPORT_SYMBOL(sparc32_cachetlb_ops);
70 const struct sparc32_cachetlb_ops *local_ops;
72 #define FLUSH_BEGIN(mm)
75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
79 int flush_page_for_dma_global = 1;
83 ctxd_t *srmmu_ctx_table_phys;
84 static ctxd_t *srmmu_context_table;
86 int viking_mxcc_present;
87 static DEFINE_SPINLOCK(srmmu_context_spinlock);
89 static int is_hypersparc;
91 static int srmmu_cache_pagetables;
93 /* these will be initialized in srmmu_nocache_calcsize() */
94 static unsigned long srmmu_nocache_size;
95 static unsigned long srmmu_nocache_end;
97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
100 /* The context table is a nocache user with the biggest alignment needs. */
101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
103 void *srmmu_nocache_pool;
104 static struct bit_map srmmu_nocache_map;
106 static inline int srmmu_pmd_none(pmd_t pmd)
107 { return !(pmd_val(pmd) & 0xFFFFFFF); }
109 /* XXX should we hyper_flush_whole_icache here - Anton */
110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
114 pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115 set_pte((pte_t *)ctxp, pte);
119 * Locations of MSI Registers.
121 #define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */
124 * Useful bits in the MSI Registers.
126 #define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */
128 static void msi_set_sync(void)
130 __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131 "andn %%g3, %2, %%g3\n\t"
132 "sta %%g3, [%0] %1\n\t" : :
133 "r" (MSI_MBUS_ARBEN),
134 "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
137 void pmd_set(pmd_t *pmdp, pte_t *ptep)
139 unsigned long ptp = __nocache_pa(ptep) >> 4;
140 set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
144 * size: bytes to allocate in the nocache area.
145 * align: bytes, number to align at.
146 * Returns the virtual address of the allocated area.
148 static void *__srmmu_get_nocache(int size, int align)
150 int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
154 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
158 if (size & (minsz - 1)) {
159 printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
163 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
165 offset = bit_map_string_get(&srmmu_nocache_map,
166 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
167 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
169 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
170 size, (int) srmmu_nocache_size,
171 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
175 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
179 void *srmmu_get_nocache(int size, int align)
183 tmp = __srmmu_get_nocache(size, align);
186 memset(tmp, 0, size);
191 void srmmu_free_nocache(void *addr, int size)
196 vaddr = (unsigned long)addr;
197 if (vaddr < SRMMU_NOCACHE_VADDR) {
198 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
199 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
202 if (vaddr + size > srmmu_nocache_end) {
203 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
204 vaddr, srmmu_nocache_end);
207 if (!is_power_of_2(size)) {
208 printk("Size 0x%x is not a power of 2\n", size);
211 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
212 printk("Size 0x%x is too small\n", size);
215 if (vaddr & (size - 1)) {
216 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
220 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
221 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
223 bit_map_clear(&srmmu_nocache_map, offset, size);
226 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
229 /* Return how much physical memory we have. */
230 static unsigned long __init probe_memory(void)
232 unsigned long total = 0;
235 for (i = 0; sp_banks[i].num_bytes; i++)
236 total += sp_banks[i].num_bytes;
242 * Reserve nocache dynamically proportionally to the amount of
243 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
245 static void __init srmmu_nocache_calcsize(void)
247 unsigned long sysmemavail = probe_memory() / 1024;
248 int srmmu_nocache_npages;
250 srmmu_nocache_npages =
251 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
253 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
254 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
255 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
256 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
258 /* anything above 1280 blows up */
259 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
260 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
262 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
263 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
266 static void __init srmmu_nocache_init(void)
268 void *srmmu_nocache_bitmap;
269 unsigned int bitmap_bits;
275 unsigned long paddr, vaddr;
276 unsigned long pteval;
278 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
280 srmmu_nocache_pool = memblock_alloc_or_panic(srmmu_nocache_size,
281 SRMMU_NOCACHE_ALIGN_MAX);
282 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
284 srmmu_nocache_bitmap =
285 memblock_alloc_or_panic(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
287 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
289 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
290 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
291 init_mm.pgd = srmmu_swapper_pg_dir;
293 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
295 paddr = __pa((unsigned long)srmmu_nocache_pool);
296 vaddr = SRMMU_NOCACHE_VADDR;
298 while (vaddr < srmmu_nocache_end) {
299 pgd = pgd_offset_k(vaddr);
300 p4d = p4d_offset(pgd, vaddr);
301 pud = pud_offset(p4d, vaddr);
302 pmd = pmd_offset(__nocache_fix(pud), vaddr);
303 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
305 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
307 if (srmmu_cache_pagetables)
308 pteval |= SRMMU_CACHE;
310 set_pte(__nocache_fix(pte), __pte(pteval));
320 pgd_t *get_pgd_fast(void)
324 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
326 pgd_t *init = pgd_offset_k(0);
327 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
328 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
329 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
336 * Hardware needs alignment to 256 only, but we align to whole page size
337 * to reduce fragmentation problems due to the buddy principle.
338 * XXX Provide actual fragmentation statistics in /proc.
340 * Alignments up to the page size are the same for physical and virtual
341 * addresses of the nocache area.
343 pgtable_t pte_alloc_one(struct mm_struct *mm)
348 if (!(ptep = pte_alloc_one_kernel(mm)))
350 page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
351 spin_lock(&mm->page_table_lock);
352 if (page_ref_inc_return(page) == 2 &&
353 !pagetable_pte_ctor(mm, page_ptdesc(page))) {
357 spin_unlock(&mm->page_table_lock);
362 void pte_free(struct mm_struct *mm, pgtable_t ptep)
366 page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
367 spin_lock(&mm->page_table_lock);
368 if (page_ref_dec_return(page) == 1)
369 pagetable_dtor(page_ptdesc(page));
370 spin_unlock(&mm->page_table_lock);
372 srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
375 /* context handling - a dynamically sized pool is used */
376 #define NO_CONTEXT -1
379 struct ctx_list *next;
380 struct ctx_list *prev;
381 unsigned int ctx_number;
382 struct mm_struct *ctx_mm;
385 static struct ctx_list *ctx_list_pool;
386 static struct ctx_list ctx_free;
387 static struct ctx_list ctx_used;
389 /* At boot time we determine the number of contexts */
390 static int num_contexts;
392 static inline void remove_from_ctx_list(struct ctx_list *entry)
394 entry->next->prev = entry->prev;
395 entry->prev->next = entry->next;
398 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
401 (entry->prev = head->prev)->next = entry;
404 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
405 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
408 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
410 struct ctx_list *ctxp;
412 ctxp = ctx_free.next;
413 if (ctxp != &ctx_free) {
414 remove_from_ctx_list(ctxp);
415 add_to_used_ctxlist(ctxp);
416 mm->context = ctxp->ctx_number;
420 ctxp = ctx_used.next;
421 if (ctxp->ctx_mm == old_mm)
423 if (ctxp == &ctx_used)
424 panic("out of mmu contexts");
425 flush_cache_mm(ctxp->ctx_mm);
426 flush_tlb_mm(ctxp->ctx_mm);
427 remove_from_ctx_list(ctxp);
428 add_to_used_ctxlist(ctxp);
429 ctxp->ctx_mm->context = NO_CONTEXT;
431 mm->context = ctxp->ctx_number;
434 static inline void free_context(int context)
436 struct ctx_list *ctx_old;
438 ctx_old = ctx_list_pool + context;
439 remove_from_ctx_list(ctx_old);
440 add_to_free_ctxlist(ctx_old);
443 static void __init sparc_context_init(int numctx)
448 size = numctx * sizeof(struct ctx_list);
449 ctx_list_pool = memblock_alloc_or_panic(size, SMP_CACHE_BYTES);
451 for (ctx = 0; ctx < numctx; ctx++) {
452 struct ctx_list *clist;
454 clist = (ctx_list_pool + ctx);
455 clist->ctx_number = ctx;
456 clist->ctx_mm = NULL;
458 ctx_free.next = ctx_free.prev = &ctx_free;
459 ctx_used.next = ctx_used.prev = &ctx_used;
460 for (ctx = 0; ctx < numctx; ctx++)
461 add_to_free_ctxlist(ctx_list_pool + ctx);
464 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
465 struct task_struct *tsk)
469 if (mm->context == NO_CONTEXT) {
470 spin_lock_irqsave(&srmmu_context_spinlock, flags);
471 alloc_context(old_mm, mm);
472 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
473 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
476 if (sparc_cpu_model == sparc_leon)
480 hyper_flush_whole_icache();
482 srmmu_set_context(mm->context);
485 /* Low level IO area allocation on the SRMMU. */
486 static inline void srmmu_mapioaddr(unsigned long physaddr,
487 unsigned long virt_addr, int bus_type)
496 physaddr &= PAGE_MASK;
497 pgdp = pgd_offset_k(virt_addr);
498 p4dp = p4d_offset(pgdp, virt_addr);
499 pudp = pud_offset(p4dp, virt_addr);
500 pmdp = pmd_offset(pudp, virt_addr);
501 ptep = pte_offset_kernel(pmdp, virt_addr);
502 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
504 /* I need to test whether this is consistent over all
505 * sun4m's. The bus_type represents the upper 4 bits of
506 * 36-bit physical address on the I/O space lines...
508 tmp |= (bus_type << 28);
510 __flush_page_to_ram(virt_addr);
511 set_pte(ptep, __pte(tmp));
514 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
515 unsigned long xva, unsigned int len)
519 srmmu_mapioaddr(xpa, xva, bus);
526 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
535 pgdp = pgd_offset_k(virt_addr);
536 p4dp = p4d_offset(pgdp, virt_addr);
537 pudp = pud_offset(p4dp, virt_addr);
538 pmdp = pmd_offset(pudp, virt_addr);
539 ptep = pte_offset_kernel(pmdp, virt_addr);
541 /* No need to flush uncacheable page. */
545 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
549 srmmu_unmapioaddr(virt_addr);
550 virt_addr += PAGE_SIZE;
556 extern void tsunami_flush_cache_all(void);
557 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
558 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
559 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
560 extern void tsunami_flush_page_to_ram(unsigned long page);
561 extern void tsunami_flush_page_for_dma(unsigned long page);
562 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
563 extern void tsunami_flush_tlb_all(void);
564 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
565 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
566 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
567 extern void tsunami_setup_blockops(void);
570 extern void swift_flush_cache_all(void);
571 extern void swift_flush_cache_mm(struct mm_struct *mm);
572 extern void swift_flush_cache_range(struct vm_area_struct *vma,
573 unsigned long start, unsigned long end);
574 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
575 extern void swift_flush_page_to_ram(unsigned long page);
576 extern void swift_flush_page_for_dma(unsigned long page);
577 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
578 extern void swift_flush_tlb_all(void);
579 extern void swift_flush_tlb_mm(struct mm_struct *mm);
580 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
581 unsigned long start, unsigned long end);
582 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
584 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
585 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
590 if ((ctx1 = vma->vm_mm->context) != -1) {
591 cctx = srmmu_get_context();
592 /* Is context # ever different from current context? P3 */
594 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
595 srmmu_set_context(ctx1);
596 swift_flush_page(page);
597 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
598 "r" (page), "i" (ASI_M_FLUSH_PROBE));
599 srmmu_set_context(cctx);
601 /* Rm. prot. bits from virt. c. */
602 /* swift_flush_cache_all(); */
603 /* swift_flush_cache_page(vma, page); */
604 swift_flush_page(page);
606 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
607 "r" (page), "i" (ASI_M_FLUSH_PROBE));
608 /* same as above: srmmu_flush_tlb_page() */
615 * The following are all MBUS based SRMMU modules, and therefore could
616 * be found in a multiprocessor configuration. On the whole, these
617 * chips seems to be much more touchy about DVMA and page tables
618 * with respect to cache coherency.
622 extern void viking_flush_cache_all(void);
623 extern void viking_flush_cache_mm(struct mm_struct *mm);
624 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
626 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
627 extern void viking_flush_page_to_ram(unsigned long page);
628 extern void viking_flush_page_for_dma(unsigned long page);
629 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
630 extern void viking_flush_page(unsigned long page);
631 extern void viking_mxcc_flush_page(unsigned long page);
632 extern void viking_flush_tlb_all(void);
633 extern void viking_flush_tlb_mm(struct mm_struct *mm);
634 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
636 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
638 extern void sun4dsmp_flush_tlb_all(void);
639 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
640 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
642 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
646 extern void hypersparc_flush_cache_all(void);
647 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
648 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
649 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
650 extern void hypersparc_flush_page_to_ram(unsigned long page);
651 extern void hypersparc_flush_page_for_dma(unsigned long page);
652 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
653 extern void hypersparc_flush_tlb_all(void);
654 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
655 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
656 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
657 extern void hypersparc_setup_blockops(void);
660 * NOTE: All of this startup code assumes the low 16mb (approx.) of
661 * kernel mappings are done with one single contiguous chunk of
662 * ram. On small ram machines (classics mainly) we only get
663 * around 8mb mapped for us.
666 static void __init early_pgtable_allocfail(char *type)
668 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
672 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
681 while (start < end) {
682 pgdp = pgd_offset_k(start);
683 p4dp = p4d_offset(pgdp, start);
684 pudp = pud_offset(p4dp, start);
685 if (pud_none(*__nocache_fix(pudp))) {
686 pmdp = __srmmu_get_nocache(
687 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
689 early_pgtable_allocfail("pmd");
690 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
691 pud_set(__nocache_fix(pudp), pmdp);
693 pmdp = pmd_offset(__nocache_fix(pudp), start);
694 if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
695 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
697 early_pgtable_allocfail("pte");
698 memset(__nocache_fix(ptep), 0, PTE_SIZE);
699 pmd_set(__nocache_fix(pmdp), ptep);
701 if (start > (0xffffffffUL - PMD_SIZE))
703 start = (start + PMD_SIZE) & PMD_MASK;
707 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
716 while (start < end) {
717 pgdp = pgd_offset_k(start);
718 p4dp = p4d_offset(pgdp, start);
719 pudp = pud_offset(p4dp, start);
720 if (pud_none(*pudp)) {
721 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
723 early_pgtable_allocfail("pmd");
724 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
725 pud_set((pud_t *)pgdp, pmdp);
727 pmdp = pmd_offset(pudp, start);
728 if (srmmu_pmd_none(*pmdp)) {
729 ptep = __srmmu_get_nocache(PTE_SIZE,
732 early_pgtable_allocfail("pte");
733 memset(ptep, 0, PTE_SIZE);
736 if (start > (0xffffffffUL - PMD_SIZE))
738 start = (start + PMD_SIZE) & PMD_MASK;
742 /* These flush types are not available on all chips... */
743 static inline unsigned long srmmu_probe(unsigned long vaddr)
745 unsigned long retval;
747 if (sparc_cpu_model != sparc_leon) {
750 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
752 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
754 retval = leon_swprobe(vaddr, NULL);
760 * This is much cleaner than poking around physical address space
761 * looking at the prom's page table directly which is what most
762 * other OS's do. Yuck... this is much better.
764 static void __init srmmu_inherit_prom_mappings(unsigned long start,
767 unsigned long probed;
774 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
776 while (start <= end) {
778 break; /* probably wrap around */
779 if (start == 0xfef00000)
780 start = KADB_DEBUGGER_BEGVM;
781 probed = srmmu_probe(start);
783 /* continue probing until we find an entry */
788 /* A red snapper, see what it really is. */
790 addr = start - PAGE_SIZE;
792 if (!(start & ~(PMD_MASK))) {
793 if (srmmu_probe(addr + PMD_SIZE) == probed)
797 if (!(start & ~(PGDIR_MASK))) {
798 if (srmmu_probe(addr + PGDIR_SIZE) == probed)
802 pgdp = pgd_offset_k(start);
803 p4dp = p4d_offset(pgdp, start);
804 pudp = pud_offset(p4dp, start);
806 *__nocache_fix(pgdp) = __pgd(probed);
810 if (pud_none(*__nocache_fix(pudp))) {
811 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
812 SRMMU_PMD_TABLE_SIZE);
814 early_pgtable_allocfail("pmd");
815 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
816 pud_set(__nocache_fix(pudp), pmdp);
818 pmdp = pmd_offset(__nocache_fix(pudp), start);
820 *(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
824 if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
825 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
827 early_pgtable_allocfail("pte");
828 memset(__nocache_fix(ptep), 0, PTE_SIZE);
829 pmd_set(__nocache_fix(pmdp), ptep);
831 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
832 *__nocache_fix(ptep) = __pte(probed);
837 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
839 /* Create a third-level SRMMU 16MB page mapping. */
840 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
842 pgd_t *pgdp = pgd_offset_k(vaddr);
843 unsigned long big_pte;
845 big_pte = KERNEL_PTE(phys_base >> 4);
846 *__nocache_fix(pgdp) = __pgd(big_pte);
849 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
850 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
852 unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
853 unsigned long vstart = (vbase & PGDIR_MASK);
854 unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
855 /* Map "low" memory only */
856 const unsigned long min_vaddr = PAGE_OFFSET;
857 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
859 if (vstart < min_vaddr || vstart >= max_vaddr)
862 if (vend > max_vaddr || vend < min_vaddr)
865 while (vstart < vend) {
866 do_large_mapping(vstart, pstart);
867 vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
872 static void __init map_kernel(void)
877 do_large_mapping(PAGE_OFFSET, phys_base);
880 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
881 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
885 void (*poke_srmmu)(void) = NULL;
887 void __init srmmu_paging_init(void)
897 unsigned long pages_avail;
899 init_mm.context = (unsigned long) NO_CONTEXT;
900 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
902 if (sparc_cpu_model == sun4d)
903 num_contexts = 65536; /* We know it is Viking */
905 /* Find the number of contexts on the srmmu. */
906 cpunode = prom_getchild(prom_root_node);
908 while (cpunode != 0) {
909 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
910 if (!strcmp(node_str, "cpu")) {
911 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
914 cpunode = prom_getsibling(cpunode);
919 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
924 last_valid_pfn = bootmem_init(&pages_avail);
926 srmmu_nocache_calcsize();
927 srmmu_nocache_init();
928 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
931 /* ctx table has to be physically aligned to its size */
932 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
933 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
935 for (i = 0; i < num_contexts; i++)
936 srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
939 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
941 /* Stop from hanging here... */
942 local_ops->tlb_all();
948 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
949 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
951 srmmu_allocate_ptable_skeleton(
952 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
953 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
955 pgd = pgd_offset_k(PKMAP_BASE);
956 p4d = p4d_offset(pgd, PKMAP_BASE);
957 pud = pud_offset(p4d, PKMAP_BASE);
958 pmd = pmd_offset(pud, PKMAP_BASE);
959 pte = pte_offset_kernel(pmd, PKMAP_BASE);
960 pkmap_page_table = pte;
965 sparc_context_init(num_contexts);
968 unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
970 max_zone_pfn[ZONE_DMA] = max_low_pfn;
971 max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
972 max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
974 free_area_init(max_zone_pfn);
978 void mmu_info(struct seq_file *m)
983 "nocache total\t: %ld\n"
984 "nocache used\t: %d\n",
988 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
991 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
993 mm->context = NO_CONTEXT;
997 void destroy_context(struct mm_struct *mm)
1001 if (mm->context != NO_CONTEXT) {
1003 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1005 spin_lock_irqsave(&srmmu_context_spinlock, flags);
1006 free_context(mm->context);
1007 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1008 mm->context = NO_CONTEXT;
1012 /* Init various srmmu chip types. */
1013 static void __init srmmu_is_bad(void)
1015 prom_printf("Could not determine SRMMU chip type.\n");
1019 static void __init init_vac_layout(void)
1026 unsigned long max_size = 0;
1027 unsigned long min_line_size = 0x10000000;
1030 nd = prom_getchild(prom_root_node);
1031 while ((nd = prom_getsibling(nd)) != 0) {
1032 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1033 if (!strcmp(node_str, "cpu")) {
1034 vac_line_size = prom_getint(nd, "cache-line-size");
1035 if (vac_line_size == -1) {
1036 prom_printf("can't determine cache-line-size, halting.\n");
1039 cache_lines = prom_getint(nd, "cache-nlines");
1040 if (cache_lines == -1) {
1041 prom_printf("can't determine cache-nlines, halting.\n");
1045 vac_cache_size = cache_lines * vac_line_size;
1047 if (vac_cache_size > max_size)
1048 max_size = vac_cache_size;
1049 if (vac_line_size < min_line_size)
1050 min_line_size = vac_line_size;
1051 //FIXME: cpus not contiguous!!
1053 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1061 prom_printf("No CPU nodes found, halting.\n");
1065 vac_cache_size = max_size;
1066 vac_line_size = min_line_size;
1068 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1069 (int)vac_cache_size, (int)vac_line_size);
1072 static void poke_hypersparc(void)
1074 volatile unsigned long clear;
1075 unsigned long mreg = srmmu_get_mmureg();
1077 hyper_flush_unconditional_combined();
1079 mreg &= ~(HYPERSPARC_CWENABLE);
1080 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1081 mreg |= (HYPERSPARC_CMODE);
1083 srmmu_set_mmureg(mreg);
1085 #if 0 /* XXX I think this is bad news... -DaveM */
1086 hyper_clear_all_tags();
1089 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1090 hyper_flush_whole_icache();
1091 clear = srmmu_get_faddr();
1092 clear = srmmu_get_fstatus();
1095 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1096 .cache_all = hypersparc_flush_cache_all,
1097 .cache_mm = hypersparc_flush_cache_mm,
1098 .cache_page = hypersparc_flush_cache_page,
1099 .cache_range = hypersparc_flush_cache_range,
1100 .tlb_all = hypersparc_flush_tlb_all,
1101 .tlb_mm = hypersparc_flush_tlb_mm,
1102 .tlb_page = hypersparc_flush_tlb_page,
1103 .tlb_range = hypersparc_flush_tlb_range,
1104 .page_to_ram = hypersparc_flush_page_to_ram,
1105 .sig_insns = hypersparc_flush_sig_insns,
1106 .page_for_dma = hypersparc_flush_page_for_dma,
1109 static void __init init_hypersparc(void)
1111 srmmu_name = "ROSS HyperSparc";
1112 srmmu_modtype = HyperSparc;
1117 sparc32_cachetlb_ops = &hypersparc_ops;
1119 poke_srmmu = poke_hypersparc;
1121 hypersparc_setup_blockops();
1124 static void poke_swift(void)
1128 /* Clear any crap from the cache or else... */
1129 swift_flush_cache_all();
1131 /* Enable I & D caches */
1132 mreg = srmmu_get_mmureg();
1133 mreg |= (SWIFT_IE | SWIFT_DE);
1135 * The Swift branch folding logic is completely broken. At
1136 * trap time, if things are just right, if can mistakenly
1137 * think that a trap is coming from kernel mode when in fact
1138 * it is coming from user mode (it mis-executes the branch in
1139 * the trap code). So you see things like crashme completely
1140 * hosing your machine which is completely unacceptable. Turn
1141 * this shit off... nice job Fujitsu.
1143 mreg &= ~(SWIFT_BF);
1144 srmmu_set_mmureg(mreg);
1147 static const struct sparc32_cachetlb_ops swift_ops = {
1148 .cache_all = swift_flush_cache_all,
1149 .cache_mm = swift_flush_cache_mm,
1150 .cache_page = swift_flush_cache_page,
1151 .cache_range = swift_flush_cache_range,
1152 .tlb_all = swift_flush_tlb_all,
1153 .tlb_mm = swift_flush_tlb_mm,
1154 .tlb_page = swift_flush_tlb_page,
1155 .tlb_range = swift_flush_tlb_range,
1156 .page_to_ram = swift_flush_page_to_ram,
1157 .sig_insns = swift_flush_sig_insns,
1158 .page_for_dma = swift_flush_page_for_dma,
1161 #define SWIFT_MASKID_ADDR 0x10003018
1162 static void __init init_swift(void)
1164 unsigned long swift_rev;
1166 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1167 "srl %0, 0x18, %0\n\t" :
1169 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1170 srmmu_name = "Fujitsu Swift";
1171 switch (swift_rev) {
1176 srmmu_modtype = Swift_lots_o_bugs;
1177 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1179 * Gee george, I wonder why Sun is so hush hush about
1180 * this hardware bug... really braindamage stuff going
1181 * on here. However I think we can find a way to avoid
1182 * all of the workaround overhead under Linux. Basically,
1183 * any page fault can cause kernel pages to become user
1184 * accessible (the mmu gets confused and clears some of
1185 * the ACC bits in kernel ptes). Aha, sounds pretty
1186 * horrible eh? But wait, after extensive testing it appears
1187 * that if you use pgd_t level large kernel pte's (like the
1188 * 4MB pages on the Pentium) the bug does not get tripped
1189 * at all. This avoids almost all of the major overhead.
1190 * Welcome to a world where your vendor tells you to,
1191 * "apply this kernel patch" instead of "sorry for the
1192 * broken hardware, send it back and we'll give you
1193 * properly functioning parts"
1198 srmmu_modtype = Swift_bad_c;
1199 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1201 * You see Sun allude to this hardware bug but never
1202 * admit things directly, they'll say things like,
1203 * "the Swift chip cache problems" or similar.
1207 srmmu_modtype = Swift_ok;
1211 sparc32_cachetlb_ops = &swift_ops;
1212 flush_page_for_dma_global = 0;
1215 * Are you now convinced that the Swift is one of the
1216 * biggest VLSI abortions of all time? Bravo Fujitsu!
1217 * Fujitsu, the !#?!%$'d up processor people. I bet if
1218 * you examined the microcode of the Swift you'd find
1219 * XXX's all over the place.
1221 poke_srmmu = poke_swift;
1224 static void turbosparc_flush_cache_all(void)
1226 flush_user_windows();
1227 turbosparc_idflash_clear();
1230 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1233 flush_user_windows();
1234 turbosparc_idflash_clear();
1238 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1240 FLUSH_BEGIN(vma->vm_mm)
1241 flush_user_windows();
1242 turbosparc_idflash_clear();
1246 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1248 FLUSH_BEGIN(vma->vm_mm)
1249 flush_user_windows();
1250 if (vma->vm_flags & VM_EXEC)
1251 turbosparc_flush_icache();
1252 turbosparc_flush_dcache();
1256 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1257 static void turbosparc_flush_page_to_ram(unsigned long page)
1259 #ifdef TURBOSPARC_WRITEBACK
1260 volatile unsigned long clear;
1262 if (srmmu_probe(page))
1263 turbosparc_flush_page_cache(page);
1264 clear = srmmu_get_fstatus();
1268 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1272 static void turbosparc_flush_page_for_dma(unsigned long page)
1274 turbosparc_flush_dcache();
1277 static void turbosparc_flush_tlb_all(void)
1279 srmmu_flush_whole_tlb();
1282 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1285 srmmu_flush_whole_tlb();
1289 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1291 FLUSH_BEGIN(vma->vm_mm)
1292 srmmu_flush_whole_tlb();
1296 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1298 FLUSH_BEGIN(vma->vm_mm)
1299 srmmu_flush_whole_tlb();
1304 static void poke_turbosparc(void)
1306 unsigned long mreg = srmmu_get_mmureg();
1307 unsigned long ccreg;
1309 /* Clear any crap from the cache or else... */
1310 turbosparc_flush_cache_all();
1311 /* Temporarily disable I & D caches */
1312 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1313 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1314 srmmu_set_mmureg(mreg);
1316 ccreg = turbosparc_get_ccreg();
1318 #ifdef TURBOSPARC_WRITEBACK
1319 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1320 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1321 /* Write-back D-cache, emulate VLSI
1322 * abortion number three, not number one */
1324 /* For now let's play safe, optimize later */
1325 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1326 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1327 ccreg &= ~(TURBOSPARC_uS2);
1328 /* Emulate VLSI abortion number three, not number one */
1331 switch (ccreg & 7) {
1332 case 0: /* No SE cache */
1333 case 7: /* Test mode */
1336 ccreg |= (TURBOSPARC_SCENABLE);
1338 turbosparc_set_ccreg(ccreg);
1340 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1341 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1342 srmmu_set_mmureg(mreg);
1345 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1346 .cache_all = turbosparc_flush_cache_all,
1347 .cache_mm = turbosparc_flush_cache_mm,
1348 .cache_page = turbosparc_flush_cache_page,
1349 .cache_range = turbosparc_flush_cache_range,
1350 .tlb_all = turbosparc_flush_tlb_all,
1351 .tlb_mm = turbosparc_flush_tlb_mm,
1352 .tlb_page = turbosparc_flush_tlb_page,
1353 .tlb_range = turbosparc_flush_tlb_range,
1354 .page_to_ram = turbosparc_flush_page_to_ram,
1355 .sig_insns = turbosparc_flush_sig_insns,
1356 .page_for_dma = turbosparc_flush_page_for_dma,
1359 static void __init init_turbosparc(void)
1361 srmmu_name = "Fujitsu TurboSparc";
1362 srmmu_modtype = TurboSparc;
1363 sparc32_cachetlb_ops = &turbosparc_ops;
1364 poke_srmmu = poke_turbosparc;
1367 static void poke_tsunami(void)
1369 unsigned long mreg = srmmu_get_mmureg();
1371 tsunami_flush_icache();
1372 tsunami_flush_dcache();
1373 mreg &= ~TSUNAMI_ITD;
1374 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1375 srmmu_set_mmureg(mreg);
1378 static const struct sparc32_cachetlb_ops tsunami_ops = {
1379 .cache_all = tsunami_flush_cache_all,
1380 .cache_mm = tsunami_flush_cache_mm,
1381 .cache_page = tsunami_flush_cache_page,
1382 .cache_range = tsunami_flush_cache_range,
1383 .tlb_all = tsunami_flush_tlb_all,
1384 .tlb_mm = tsunami_flush_tlb_mm,
1385 .tlb_page = tsunami_flush_tlb_page,
1386 .tlb_range = tsunami_flush_tlb_range,
1387 .page_to_ram = tsunami_flush_page_to_ram,
1388 .sig_insns = tsunami_flush_sig_insns,
1389 .page_for_dma = tsunami_flush_page_for_dma,
1392 static void __init init_tsunami(void)
1395 * Tsunami's pretty sane, Sun and TI actually got it
1396 * somewhat right this time. Fujitsu should have
1397 * taken some lessons from them.
1400 srmmu_name = "TI Tsunami";
1401 srmmu_modtype = Tsunami;
1402 sparc32_cachetlb_ops = &tsunami_ops;
1403 poke_srmmu = poke_tsunami;
1405 tsunami_setup_blockops();
1408 static void poke_viking(void)
1410 unsigned long mreg = srmmu_get_mmureg();
1411 static int smp_catch;
1413 if (viking_mxcc_present) {
1414 unsigned long mxcc_control = mxcc_get_creg();
1416 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1417 mxcc_control &= ~(MXCC_CTL_RRC);
1418 mxcc_set_creg(mxcc_control);
1421 * We don't need memory parity checks.
1422 * XXX This is a mess, have to dig out later. ecd.
1423 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1426 /* We do cache ptables on MXCC. */
1427 mreg |= VIKING_TCENABLE;
1429 unsigned long bpreg;
1431 mreg &= ~(VIKING_TCENABLE);
1433 /* Must disable mixed-cmd mode here for other cpu's. */
1434 bpreg = viking_get_bpreg();
1435 bpreg &= ~(VIKING_ACTION_MIX);
1436 viking_set_bpreg(bpreg);
1438 /* Just in case PROM does something funny. */
1443 mreg |= VIKING_SPENABLE;
1444 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1445 mreg |= VIKING_SBENABLE;
1446 mreg &= ~(VIKING_ACENABLE);
1447 srmmu_set_mmureg(mreg);
1450 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1451 .cache_all = viking_flush_cache_all,
1452 .cache_mm = viking_flush_cache_mm,
1453 .cache_page = viking_flush_cache_page,
1454 .cache_range = viking_flush_cache_range,
1455 .tlb_all = viking_flush_tlb_all,
1456 .tlb_mm = viking_flush_tlb_mm,
1457 .tlb_page = viking_flush_tlb_page,
1458 .tlb_range = viking_flush_tlb_range,
1459 .page_to_ram = viking_flush_page_to_ram,
1460 .sig_insns = viking_flush_sig_insns,
1461 .page_for_dma = viking_flush_page_for_dma,
1465 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1466 * perform the local TLB flush and all the other cpus will see it.
1467 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1468 * that requires that we add some synchronization to these flushes.
1470 * The bug is that the fifo which keeps track of all the pending TLB
1471 * broadcasts in the system is an entry or two too small, so if we
1472 * have too many going at once we'll overflow that fifo and lose a TLB
1473 * flush resulting in corruption.
1475 * Our workaround is to take a global spinlock around the TLB flushes,
1476 * which guarentees we won't ever have too many pending. It's a big
1477 * hammer, but a semaphore like system to make sure we only have N TLB
1478 * flushes going at once will require SMP locking anyways so there's
1479 * no real value in trying any harder than this.
1481 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1482 .cache_all = viking_flush_cache_all,
1483 .cache_mm = viking_flush_cache_mm,
1484 .cache_page = viking_flush_cache_page,
1485 .cache_range = viking_flush_cache_range,
1486 .tlb_all = sun4dsmp_flush_tlb_all,
1487 .tlb_mm = sun4dsmp_flush_tlb_mm,
1488 .tlb_page = sun4dsmp_flush_tlb_page,
1489 .tlb_range = sun4dsmp_flush_tlb_range,
1490 .page_to_ram = viking_flush_page_to_ram,
1491 .sig_insns = viking_flush_sig_insns,
1492 .page_for_dma = viking_flush_page_for_dma,
1496 static void __init init_viking(void)
1498 unsigned long mreg = srmmu_get_mmureg();
1500 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1501 if (mreg & VIKING_MMODE) {
1502 srmmu_name = "TI Viking";
1503 viking_mxcc_present = 0;
1507 * We need this to make sure old viking takes no hits
1508 * on its cache for dma snoops to workaround the
1509 * "load from non-cacheable memory" interrupt bug.
1510 * This is only necessary because of the new way in
1511 * which we use the IOMMU.
1513 viking_ops.page_for_dma = viking_flush_page;
1515 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1517 flush_page_for_dma_global = 0;
1519 srmmu_name = "TI Viking/MXCC";
1520 viking_mxcc_present = 1;
1521 srmmu_cache_pagetables = 1;
1524 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1527 if (sparc_cpu_model == sun4d)
1528 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1529 &viking_sun4d_smp_ops;
1532 poke_srmmu = poke_viking;
1535 /* Probe for the srmmu chip version. */
1536 static void __init get_srmmu_type(void)
1538 unsigned long mreg, psr;
1539 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1541 srmmu_modtype = SRMMU_INVAL_MOD;
1544 mreg = srmmu_get_mmureg(); psr = get_psr();
1545 mod_typ = (mreg & 0xf0000000) >> 28;
1546 mod_rev = (mreg & 0x0f000000) >> 24;
1547 psr_typ = (psr >> 28) & 0xf;
1548 psr_vers = (psr >> 24) & 0xf;
1550 /* First, check for sparc-leon. */
1551 if (sparc_cpu_model == sparc_leon) {
1556 /* Second, check for HyperSparc or Cypress. */
1560 /* UP or MP Hypersparc */
1572 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1579 /* Now Fujitsu TurboSparc. It might happen that it is
1580 * in Swift emulation mode, so we will check later...
1582 if (psr_typ == 0 && psr_vers == 5) {
1587 /* Next check for Fujitsu Swift. */
1588 if (psr_typ == 0 && psr_vers == 4) {
1592 /* Look if it is not a TurboSparc emulating Swift... */
1593 cpunode = prom_getchild(prom_root_node);
1594 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1595 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1596 if (!strcmp(node_str, "cpu")) {
1597 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1598 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1610 /* Now the Viking family of srmmu. */
1613 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1618 /* Finally the Tsunami. */
1619 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1629 /* Local cross-calls. */
1630 static void smp_flush_page_for_dma(unsigned long page)
1632 xc1(local_ops->page_for_dma, page);
1633 local_ops->page_for_dma(page);
1636 static void smp_flush_cache_all(void)
1638 xc0(local_ops->cache_all);
1639 local_ops->cache_all();
1642 static void smp_flush_tlb_all(void)
1644 xc0(local_ops->tlb_all);
1645 local_ops->tlb_all();
1648 static bool any_other_mm_cpus(struct mm_struct *mm)
1650 return cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids;
1653 static void smp_flush_cache_mm(struct mm_struct *mm)
1655 if (mm->context != NO_CONTEXT) {
1656 if (any_other_mm_cpus(mm))
1657 xc1(local_ops->cache_mm, (unsigned long)mm);
1658 local_ops->cache_mm(mm);
1662 static void smp_flush_tlb_mm(struct mm_struct *mm)
1664 if (mm->context != NO_CONTEXT) {
1665 if (any_other_mm_cpus(mm)) {
1666 xc1(local_ops->tlb_mm, (unsigned long)mm);
1667 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1668 cpumask_copy(mm_cpumask(mm),
1669 cpumask_of(smp_processor_id()));
1671 local_ops->tlb_mm(mm);
1675 static void smp_flush_cache_range(struct vm_area_struct *vma,
1676 unsigned long start,
1679 struct mm_struct *mm = vma->vm_mm;
1681 if (mm->context != NO_CONTEXT) {
1682 if (any_other_mm_cpus(mm))
1683 xc3(local_ops->cache_range, (unsigned long)vma, start,
1685 local_ops->cache_range(vma, start, end);
1689 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1690 unsigned long start,
1693 struct mm_struct *mm = vma->vm_mm;
1695 if (mm->context != NO_CONTEXT) {
1696 if (any_other_mm_cpus(mm))
1697 xc3(local_ops->tlb_range, (unsigned long)vma, start,
1699 local_ops->tlb_range(vma, start, end);
1703 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1705 struct mm_struct *mm = vma->vm_mm;
1707 if (mm->context != NO_CONTEXT) {
1708 if (any_other_mm_cpus(mm))
1709 xc2(local_ops->cache_page, (unsigned long)vma, page);
1710 local_ops->cache_page(vma, page);
1714 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1716 struct mm_struct *mm = vma->vm_mm;
1718 if (mm->context != NO_CONTEXT) {
1719 if (any_other_mm_cpus(mm))
1720 xc2(local_ops->tlb_page, (unsigned long)vma, page);
1721 local_ops->tlb_page(vma, page);
1725 static void smp_flush_page_to_ram(unsigned long page)
1727 /* Current theory is that those who call this are the one's
1728 * who have just dirtied their cache with the pages contents
1729 * in kernel space, therefore we only run this on local cpu.
1731 * XXX This experiment failed, research further... -DaveM
1734 xc1(local_ops->page_to_ram, page);
1736 local_ops->page_to_ram(page);
1739 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1741 if (any_other_mm_cpus(mm))
1742 xc2(local_ops->sig_insns, (unsigned long)mm, insn_addr);
1743 local_ops->sig_insns(mm, insn_addr);
1746 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1747 .cache_all = smp_flush_cache_all,
1748 .cache_mm = smp_flush_cache_mm,
1749 .cache_page = smp_flush_cache_page,
1750 .cache_range = smp_flush_cache_range,
1751 .tlb_all = smp_flush_tlb_all,
1752 .tlb_mm = smp_flush_tlb_mm,
1753 .tlb_page = smp_flush_tlb_page,
1754 .tlb_range = smp_flush_tlb_range,
1755 .page_to_ram = smp_flush_page_to_ram,
1756 .sig_insns = smp_flush_sig_insns,
1757 .page_for_dma = smp_flush_page_for_dma,
1761 /* Load up routines and constants for sun4m and sun4d mmu */
1762 void __init load_mmu(void)
1768 /* El switcheroo... */
1769 local_ops = sparc32_cachetlb_ops;
1771 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1772 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1773 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1774 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1775 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1778 if (poke_srmmu == poke_viking) {
1779 /* Avoid unnecessary cross calls. */
1780 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1781 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1782 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1783 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1785 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1786 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1787 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1790 /* It really is const after this point. */
1791 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1795 if (sparc_cpu_model != sun4d)
1798 if (sparc_cpu_model == sun4d)
1800 else if (sparc_cpu_model == sparc_leon)