Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-block.git] / arch / s390 / pci / pci_irq.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define KMSG_COMPONENT "zpci"
3 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
4
5 #include <linux/kernel.h>
6 #include <linux/irq.h>
7 #include <linux/kernel_stat.h>
8 #include <linux/pci.h>
9 #include <linux/msi.h>
10 #include <linux/smp.h>
11
12 #include <asm/isc.h>
13 #include <asm/airq.h>
14 #include <asm/tpi.h>
15
16 static enum {FLOATING, DIRECTED} irq_delivery;
17
18 /*
19  * summary bit vector
20  * FLOATING - summary bit per function
21  * DIRECTED - summary bit per cpu (only used in fallback path)
22  */
23 static struct airq_iv *zpci_sbv;
24
25 /*
26  * interrupt bit vectors
27  * FLOATING - interrupt bit vector per function
28  * DIRECTED - interrupt bit vector per cpu
29  */
30 static struct airq_iv **zpci_ibv;
31
32 /* Modify PCI: Register floating adapter interruptions */
33 static int zpci_set_airq(struct zpci_dev *zdev)
34 {
35         u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT);
36         struct zpci_fib fib = {0};
37         u8 status;
38
39         fib.fmt0.isc = PCI_ISC;
40         fib.fmt0.sum = 1;       /* enable summary notifications */
41         fib.fmt0.noi = airq_iv_end(zdev->aibv);
42         fib.fmt0.aibv = virt_to_phys(zdev->aibv->vector);
43         fib.fmt0.aibvo = 0;     /* each zdev has its own interrupt vector */
44         fib.fmt0.aisb = virt_to_phys(zpci_sbv->vector) + (zdev->aisb / 64) * 8;
45         fib.fmt0.aisbo = zdev->aisb & 63;
46         fib.gd = zdev->gisa;
47
48         return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
49 }
50
51 /* Modify PCI: Unregister floating adapter interruptions */
52 static int zpci_clear_airq(struct zpci_dev *zdev)
53 {
54         u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT);
55         struct zpci_fib fib = {0};
56         u8 cc, status;
57
58         fib.gd = zdev->gisa;
59
60         cc = zpci_mod_fc(req, &fib, &status);
61         if (cc == 3 || (cc == 1 && status == 24))
62                 /* Function already gone or IRQs already deregistered. */
63                 cc = 0;
64
65         return cc ? -EIO : 0;
66 }
67
68 /* Modify PCI: Register CPU directed interruptions */
69 static int zpci_set_directed_irq(struct zpci_dev *zdev)
70 {
71         u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D);
72         struct zpci_fib fib = {0};
73         u8 status;
74
75         fib.fmt = 1;
76         fib.fmt1.noi = zdev->msi_nr_irqs;
77         fib.fmt1.dibvo = zdev->msi_first_bit;
78         fib.gd = zdev->gisa;
79
80         return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
81 }
82
83 /* Modify PCI: Unregister CPU directed interruptions */
84 static int zpci_clear_directed_irq(struct zpci_dev *zdev)
85 {
86         u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D);
87         struct zpci_fib fib = {0};
88         u8 cc, status;
89
90         fib.fmt = 1;
91         fib.gd = zdev->gisa;
92         cc = zpci_mod_fc(req, &fib, &status);
93         if (cc == 3 || (cc == 1 && status == 24))
94                 /* Function already gone or IRQs already deregistered. */
95                 cc = 0;
96
97         return cc ? -EIO : 0;
98 }
99
100 /* Register adapter interruptions */
101 static int zpci_set_irq(struct zpci_dev *zdev)
102 {
103         int rc;
104
105         if (irq_delivery == DIRECTED)
106                 rc = zpci_set_directed_irq(zdev);
107         else
108                 rc = zpci_set_airq(zdev);
109
110         if (!rc)
111                 zdev->irqs_registered = 1;
112
113         return rc;
114 }
115
116 /* Clear adapter interruptions */
117 static int zpci_clear_irq(struct zpci_dev *zdev)
118 {
119         int rc;
120
121         if (irq_delivery == DIRECTED)
122                 rc = zpci_clear_directed_irq(zdev);
123         else
124                 rc = zpci_clear_airq(zdev);
125
126         if (!rc)
127                 zdev->irqs_registered = 0;
128
129         return rc;
130 }
131
132 static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest,
133                                  bool force)
134 {
135         struct msi_desc *entry = irq_data_get_msi_desc(data);
136         struct msi_msg msg = entry->msg;
137         int cpu_addr = smp_cpu_get_cpu_address(cpumask_first(dest));
138
139         msg.address_lo &= 0xff0000ff;
140         msg.address_lo |= (cpu_addr << 8);
141         pci_write_msi_msg(data->irq, &msg);
142
143         return IRQ_SET_MASK_OK;
144 }
145
146 static struct irq_chip zpci_irq_chip = {
147         .name = "PCI-MSI",
148         .irq_unmask = pci_msi_unmask_irq,
149         .irq_mask = pci_msi_mask_irq,
150 };
151
152 static void zpci_handle_cpu_local_irq(bool rescan)
153 {
154         struct airq_iv *dibv = zpci_ibv[smp_processor_id()];
155         union zpci_sic_iib iib = {{0}};
156         unsigned long bit;
157         int irqs_on = 0;
158
159         for (bit = 0;;) {
160                 /* Scan the directed IRQ bit vector */
161                 bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv));
162                 if (bit == -1UL) {
163                         if (!rescan || irqs_on++)
164                                 /* End of second scan with interrupts on. */
165                                 break;
166                         /* First scan complete, re-enable interrupts. */
167                         if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &iib))
168                                 break;
169                         bit = 0;
170                         continue;
171                 }
172                 inc_irq_stat(IRQIO_MSI);
173                 generic_handle_irq(airq_iv_get_data(dibv, bit));
174         }
175 }
176
177 struct cpu_irq_data {
178         call_single_data_t csd;
179         atomic_t scheduled;
180 };
181 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data);
182
183 static void zpci_handle_remote_irq(void *data)
184 {
185         atomic_t *scheduled = data;
186
187         do {
188                 zpci_handle_cpu_local_irq(false);
189         } while (atomic_dec_return(scheduled));
190 }
191
192 static void zpci_handle_fallback_irq(void)
193 {
194         struct cpu_irq_data *cpu_data;
195         union zpci_sic_iib iib = {{0}};
196         unsigned long cpu;
197         int irqs_on = 0;
198
199         for (cpu = 0;;) {
200                 cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv));
201                 if (cpu == -1UL) {
202                         if (irqs_on++)
203                                 /* End of second scan with interrupts on. */
204                                 break;
205                         /* First scan complete, re-enable interrupts. */
206                         if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib))
207                                 break;
208                         cpu = 0;
209                         continue;
210                 }
211                 cpu_data = &per_cpu(irq_data, cpu);
212                 if (atomic_inc_return(&cpu_data->scheduled) > 1)
213                         continue;
214
215                 INIT_CSD(&cpu_data->csd, zpci_handle_remote_irq, &cpu_data->scheduled);
216                 smp_call_function_single_async(cpu, &cpu_data->csd);
217         }
218 }
219
220 static void zpci_directed_irq_handler(struct airq_struct *airq,
221                                       struct tpi_info *tpi_info)
222 {
223         bool floating = !tpi_info->directed_irq;
224
225         if (floating) {
226                 inc_irq_stat(IRQIO_PCF);
227                 zpci_handle_fallback_irq();
228         } else {
229                 inc_irq_stat(IRQIO_PCD);
230                 zpci_handle_cpu_local_irq(true);
231         }
232 }
233
234 static void zpci_floating_irq_handler(struct airq_struct *airq,
235                                       struct tpi_info *tpi_info)
236 {
237         union zpci_sic_iib iib = {{0}};
238         unsigned long si, ai;
239         struct airq_iv *aibv;
240         int irqs_on = 0;
241
242         inc_irq_stat(IRQIO_PCF);
243         for (si = 0;;) {
244                 /* Scan adapter summary indicator bit vector */
245                 si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv));
246                 if (si == -1UL) {
247                         if (irqs_on++)
248                                 /* End of second scan with interrupts on. */
249                                 break;
250                         /* First scan complete, re-enable interrupts. */
251                         if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib))
252                                 break;
253                         si = 0;
254                         continue;
255                 }
256
257                 /* Scan the adapter interrupt vector for this device. */
258                 aibv = zpci_ibv[si];
259                 for (ai = 0;;) {
260                         ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv));
261                         if (ai == -1UL)
262                                 break;
263                         inc_irq_stat(IRQIO_MSI);
264                         airq_iv_lock(aibv, ai);
265                         generic_handle_irq(airq_iv_get_data(aibv, ai));
266                         airq_iv_unlock(aibv, ai);
267                 }
268         }
269 }
270
271 static int __alloc_airq(struct zpci_dev *zdev, int msi_vecs,
272                         unsigned long *bit)
273 {
274         if (irq_delivery == DIRECTED) {
275                 /* Allocate cpu vector bits */
276                 *bit = airq_iv_alloc(zpci_ibv[0], msi_vecs);
277                 if (*bit == -1UL)
278                         return -EIO;
279         } else {
280                 /* Allocate adapter summary indicator bit */
281                 *bit = airq_iv_alloc_bit(zpci_sbv);
282                 if (*bit == -1UL)
283                         return -EIO;
284                 zdev->aisb = *bit;
285
286                 /* Create adapter interrupt vector */
287                 zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK, NULL);
288                 if (!zdev->aibv)
289                         return -ENOMEM;
290
291                 /* Wire up shortcut pointer */
292                 zpci_ibv[*bit] = zdev->aibv;
293                 /* Each function has its own interrupt vector */
294                 *bit = 0;
295         }
296         return 0;
297 }
298
299 int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
300 {
301         unsigned int hwirq, msi_vecs, irqs_per_msi, i, cpu;
302         struct zpci_dev *zdev = to_zpci(pdev);
303         struct msi_desc *msi;
304         struct msi_msg msg;
305         unsigned long bit;
306         int cpu_addr;
307         int rc, irq;
308
309         zdev->aisb = -1UL;
310         zdev->msi_first_bit = -1U;
311
312         msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
313         if (msi_vecs < nvec) {
314                 pr_info("%s requested %d irqs, allocate system limit of %d",
315                         pci_name(pdev), nvec, zdev->max_msi);
316         }
317
318         rc = __alloc_airq(zdev, msi_vecs, &bit);
319         if (rc < 0)
320                 return rc;
321
322         /*
323          * Request MSI interrupts:
324          * When using MSI, nvec_used interrupt sources and their irq
325          * descriptors are controlled through one msi descriptor.
326          * Thus the outer loop over msi descriptors shall run only once,
327          * while two inner loops iterate over the interrupt vectors.
328          * When using MSI-X, each interrupt vector/irq descriptor
329          * is bound to exactly one msi descriptor (nvec_used is one).
330          * So the inner loops are executed once, while the outer iterates
331          * over the MSI-X descriptors.
332          */
333         hwirq = bit;
334         msi_for_each_desc(msi, &pdev->dev, MSI_DESC_NOTASSOCIATED) {
335                 if (hwirq - bit >= msi_vecs)
336                         break;
337                 irqs_per_msi = min_t(unsigned int, msi_vecs, msi->nvec_used);
338                 irq = __irq_alloc_descs(-1, 0, irqs_per_msi, 0, THIS_MODULE,
339                                         (irq_delivery == DIRECTED) ?
340                                         msi->affinity : NULL);
341                 if (irq < 0)
342                         return -ENOMEM;
343
344                 for (i = 0; i < irqs_per_msi; i++) {
345                         rc = irq_set_msi_desc_off(irq, i, msi);
346                         if (rc)
347                                 return rc;
348                         irq_set_chip_and_handler(irq + i, &zpci_irq_chip,
349                                                  handle_percpu_irq);
350                 }
351
352                 msg.data = hwirq - bit;
353                 if (irq_delivery == DIRECTED) {
354                         if (msi->affinity)
355                                 cpu = cpumask_first(&msi->affinity->mask);
356                         else
357                                 cpu = 0;
358                         cpu_addr = smp_cpu_get_cpu_address(cpu);
359
360                         msg.address_lo = zdev->msi_addr & 0xff0000ff;
361                         msg.address_lo |= (cpu_addr << 8);
362
363                         for_each_possible_cpu(cpu) {
364                                 for (i = 0; i < irqs_per_msi; i++)
365                                         airq_iv_set_data(zpci_ibv[cpu],
366                                                          hwirq + i, irq + i);
367                         }
368                 } else {
369                         msg.address_lo = zdev->msi_addr & 0xffffffff;
370                         for (i = 0; i < irqs_per_msi; i++)
371                                 airq_iv_set_data(zdev->aibv, hwirq + i, irq + i);
372                 }
373                 msg.address_hi = zdev->msi_addr >> 32;
374                 pci_write_msi_msg(irq, &msg);
375                 hwirq += irqs_per_msi;
376         }
377
378         zdev->msi_first_bit = bit;
379         zdev->msi_nr_irqs = hwirq - bit;
380
381         rc = zpci_set_irq(zdev);
382         if (rc)
383                 return rc;
384
385         return (zdev->msi_nr_irqs == nvec) ? 0 : zdev->msi_nr_irqs;
386 }
387
388 void arch_teardown_msi_irqs(struct pci_dev *pdev)
389 {
390         struct zpci_dev *zdev = to_zpci(pdev);
391         struct msi_desc *msi;
392         unsigned int i;
393         int rc;
394
395         /* Disable interrupts */
396         rc = zpci_clear_irq(zdev);
397         if (rc)
398                 return;
399
400         /* Release MSI interrupts */
401         msi_for_each_desc(msi, &pdev->dev, MSI_DESC_ASSOCIATED) {
402                 for (i = 0; i < msi->nvec_used; i++) {
403                         irq_set_msi_desc(msi->irq + i, NULL);
404                         irq_free_desc(msi->irq + i);
405                 }
406                 msi->msg.address_lo = 0;
407                 msi->msg.address_hi = 0;
408                 msi->msg.data = 0;
409                 msi->irq = 0;
410         }
411
412         if (zdev->aisb != -1UL) {
413                 zpci_ibv[zdev->aisb] = NULL;
414                 airq_iv_free_bit(zpci_sbv, zdev->aisb);
415                 zdev->aisb = -1UL;
416         }
417         if (zdev->aibv) {
418                 airq_iv_release(zdev->aibv);
419                 zdev->aibv = NULL;
420         }
421
422         if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U)
423                 airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs);
424 }
425
426 bool arch_restore_msi_irqs(struct pci_dev *pdev)
427 {
428         struct zpci_dev *zdev = to_zpci(pdev);
429
430         if (!zdev->irqs_registered)
431                 zpci_set_irq(zdev);
432         return true;
433 }
434
435 static struct airq_struct zpci_airq = {
436         .handler = zpci_floating_irq_handler,
437         .isc = PCI_ISC,
438 };
439
440 static void __init cpu_enable_directed_irq(void *unused)
441 {
442         union zpci_sic_iib iib = {{0}};
443         union zpci_sic_iib ziib = {{0}};
444
445         iib.cdiib.dibv_addr = virt_to_phys(zpci_ibv[smp_processor_id()]->vector);
446
447         zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib);
448         zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &ziib);
449 }
450
451 static int __init zpci_directed_irq_init(void)
452 {
453         union zpci_sic_iib iib = {{0}};
454         unsigned int cpu;
455
456         zpci_sbv = airq_iv_create(num_possible_cpus(), 0, NULL);
457         if (!zpci_sbv)
458                 return -ENOMEM;
459
460         iib.diib.isc = PCI_ISC;
461         iib.diib.nr_cpus = num_possible_cpus();
462         iib.diib.disb_addr = virt_to_phys(zpci_sbv->vector);
463         zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib);
464
465         zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv),
466                            GFP_KERNEL);
467         if (!zpci_ibv)
468                 return -ENOMEM;
469
470         for_each_possible_cpu(cpu) {
471                 /*
472                  * Per CPU IRQ vectors look the same but bit-allocation
473                  * is only done on the first vector.
474                  */
475                 zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE,
476                                                AIRQ_IV_DATA |
477                                                AIRQ_IV_CACHELINE |
478                                                (!cpu ? AIRQ_IV_ALLOC : 0), NULL);
479                 if (!zpci_ibv[cpu])
480                         return -ENOMEM;
481         }
482         on_each_cpu(cpu_enable_directed_irq, NULL, 1);
483
484         zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity;
485
486         return 0;
487 }
488
489 static int __init zpci_floating_irq_init(void)
490 {
491         zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL);
492         if (!zpci_ibv)
493                 return -ENOMEM;
494
495         zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC, NULL);
496         if (!zpci_sbv)
497                 goto out_free;
498
499         return 0;
500
501 out_free:
502         kfree(zpci_ibv);
503         return -ENOMEM;
504 }
505
506 int __init zpci_irq_init(void)
507 {
508         union zpci_sic_iib iib = {{0}};
509         int rc;
510
511         irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING;
512         if (s390_pci_force_floating)
513                 irq_delivery = FLOATING;
514
515         if (irq_delivery == DIRECTED)
516                 zpci_airq.handler = zpci_directed_irq_handler;
517
518         rc = register_adapter_interrupt(&zpci_airq);
519         if (rc)
520                 goto out;
521         /* Set summary to 1 to be called every time for the ISC. */
522         *zpci_airq.lsi_ptr = 1;
523
524         switch (irq_delivery) {
525         case FLOATING:
526                 rc = zpci_floating_irq_init();
527                 break;
528         case DIRECTED:
529                 rc = zpci_directed_irq_init();
530                 break;
531         }
532
533         if (rc)
534                 goto out_airq;
535
536         /*
537          * Enable floating IRQs (with suppression after one IRQ). When using
538          * directed IRQs this enables the fallback path.
539          */
540         zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib);
541
542         return 0;
543 out_airq:
544         unregister_adapter_interrupt(&zpci_airq);
545 out:
546         return rc;
547 }
548
549 void __init zpci_irq_exit(void)
550 {
551         unsigned int cpu;
552
553         if (irq_delivery == DIRECTED) {
554                 for_each_possible_cpu(cpu) {
555                         airq_iv_release(zpci_ibv[cpu]);
556                 }
557         }
558         kfree(zpci_ibv);
559         if (zpci_sbv)
560                 airq_iv_release(zpci_sbv);
561         unregister_adapter_interrupt(&zpci_airq);
562 }