Merge tag 'mfd-for-linus-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[linux-2.6-block.git] / arch / s390 / mm / vmem.c
1 /*
2  *    Copyright IBM Corp. 2006
3  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4  */
5
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <linux/memblock.h>
14 #include <asm/cacheflush.h>
15 #include <asm/pgalloc.h>
16 #include <asm/pgtable.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
19 #include <asm/sections.h>
20
21 static DEFINE_MUTEX(vmem_mutex);
22
23 struct memory_segment {
24         struct list_head list;
25         unsigned long start;
26         unsigned long size;
27 };
28
29 static LIST_HEAD(mem_segs);
30
31 static void __ref *vmem_alloc_pages(unsigned int order)
32 {
33         unsigned long size = PAGE_SIZE << order;
34
35         if (slab_is_available())
36                 return (void *)__get_free_pages(GFP_KERNEL, order);
37         return (void *) memblock_alloc(size, size);
38 }
39
40 static inline pud_t *vmem_pud_alloc(void)
41 {
42         pud_t *pud = NULL;
43
44         pud = vmem_alloc_pages(2);
45         if (!pud)
46                 return NULL;
47         clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
48         return pud;
49 }
50
51 pmd_t *vmem_pmd_alloc(void)
52 {
53         pmd_t *pmd = NULL;
54
55         pmd = vmem_alloc_pages(2);
56         if (!pmd)
57                 return NULL;
58         clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
59         return pmd;
60 }
61
62 pte_t __ref *vmem_pte_alloc(void)
63 {
64         unsigned long size = PTRS_PER_PTE * sizeof(pte_t);
65         pte_t *pte;
66
67         if (slab_is_available())
68                 pte = (pte_t *) page_table_alloc(&init_mm);
69         else
70                 pte = (pte_t *) memblock_alloc(size, size);
71         if (!pte)
72                 return NULL;
73         clear_table((unsigned long *) pte, _PAGE_INVALID, size);
74         return pte;
75 }
76
77 /*
78  * Add a physical memory range to the 1:1 mapping.
79  */
80 static int vmem_add_mem(unsigned long start, unsigned long size)
81 {
82         unsigned long pages4k, pages1m, pages2g;
83         unsigned long end = start + size;
84         unsigned long address = start;
85         pgd_t *pg_dir;
86         pud_t *pu_dir;
87         pmd_t *pm_dir;
88         pte_t *pt_dir;
89         int ret = -ENOMEM;
90
91         pages4k = pages1m = pages2g = 0;
92         while (address < end) {
93                 pg_dir = pgd_offset_k(address);
94                 if (pgd_none(*pg_dir)) {
95                         pu_dir = vmem_pud_alloc();
96                         if (!pu_dir)
97                                 goto out;
98                         pgd_populate(&init_mm, pg_dir, pu_dir);
99                 }
100                 pu_dir = pud_offset(pg_dir, address);
101                 if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
102                     !(address & ~PUD_MASK) && (address + PUD_SIZE <= end) &&
103                      !debug_pagealloc_enabled()) {
104                         pud_val(*pu_dir) = address | pgprot_val(REGION3_KERNEL);
105                         address += PUD_SIZE;
106                         pages2g++;
107                         continue;
108                 }
109                 if (pud_none(*pu_dir)) {
110                         pm_dir = vmem_pmd_alloc();
111                         if (!pm_dir)
112                                 goto out;
113                         pud_populate(&init_mm, pu_dir, pm_dir);
114                 }
115                 pm_dir = pmd_offset(pu_dir, address);
116                 if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
117                     !(address & ~PMD_MASK) && (address + PMD_SIZE <= end) &&
118                     !debug_pagealloc_enabled()) {
119                         pmd_val(*pm_dir) = address | pgprot_val(SEGMENT_KERNEL);
120                         address += PMD_SIZE;
121                         pages1m++;
122                         continue;
123                 }
124                 if (pmd_none(*pm_dir)) {
125                         pt_dir = vmem_pte_alloc();
126                         if (!pt_dir)
127                                 goto out;
128                         pmd_populate(&init_mm, pm_dir, pt_dir);
129                 }
130
131                 pt_dir = pte_offset_kernel(pm_dir, address);
132                 pte_val(*pt_dir) = address |  pgprot_val(PAGE_KERNEL);
133                 address += PAGE_SIZE;
134                 pages4k++;
135         }
136         ret = 0;
137 out:
138         update_page_count(PG_DIRECT_MAP_4K, pages4k);
139         update_page_count(PG_DIRECT_MAP_1M, pages1m);
140         update_page_count(PG_DIRECT_MAP_2G, pages2g);
141         return ret;
142 }
143
144 /*
145  * Remove a physical memory range from the 1:1 mapping.
146  * Currently only invalidates page table entries.
147  */
148 static void vmem_remove_range(unsigned long start, unsigned long size)
149 {
150         unsigned long pages4k, pages1m, pages2g;
151         unsigned long end = start + size;
152         unsigned long address = start;
153         pgd_t *pg_dir;
154         pud_t *pu_dir;
155         pmd_t *pm_dir;
156         pte_t *pt_dir;
157
158         pages4k = pages1m = pages2g = 0;
159         while (address < end) {
160                 pg_dir = pgd_offset_k(address);
161                 if (pgd_none(*pg_dir)) {
162                         address += PGDIR_SIZE;
163                         continue;
164                 }
165                 pu_dir = pud_offset(pg_dir, address);
166                 if (pud_none(*pu_dir)) {
167                         address += PUD_SIZE;
168                         continue;
169                 }
170                 if (pud_large(*pu_dir)) {
171                         pud_clear(pu_dir);
172                         address += PUD_SIZE;
173                         pages2g++;
174                         continue;
175                 }
176                 pm_dir = pmd_offset(pu_dir, address);
177                 if (pmd_none(*pm_dir)) {
178                         address += PMD_SIZE;
179                         continue;
180                 }
181                 if (pmd_large(*pm_dir)) {
182                         pmd_clear(pm_dir);
183                         address += PMD_SIZE;
184                         pages1m++;
185                         continue;
186                 }
187                 pt_dir = pte_offset_kernel(pm_dir, address);
188                 pte_clear(&init_mm, address, pt_dir);
189                 address += PAGE_SIZE;
190                 pages4k++;
191         }
192         flush_tlb_kernel_range(start, end);
193         update_page_count(PG_DIRECT_MAP_4K, -pages4k);
194         update_page_count(PG_DIRECT_MAP_1M, -pages1m);
195         update_page_count(PG_DIRECT_MAP_2G, -pages2g);
196 }
197
198 /*
199  * Add a backed mem_map array to the virtual mem_map array.
200  */
201 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
202 {
203         unsigned long address = start;
204         pgd_t *pg_dir;
205         pud_t *pu_dir;
206         pmd_t *pm_dir;
207         pte_t *pt_dir;
208         int ret = -ENOMEM;
209
210         for (address = start; address < end;) {
211                 pg_dir = pgd_offset_k(address);
212                 if (pgd_none(*pg_dir)) {
213                         pu_dir = vmem_pud_alloc();
214                         if (!pu_dir)
215                                 goto out;
216                         pgd_populate(&init_mm, pg_dir, pu_dir);
217                 }
218
219                 pu_dir = pud_offset(pg_dir, address);
220                 if (pud_none(*pu_dir)) {
221                         pm_dir = vmem_pmd_alloc();
222                         if (!pm_dir)
223                                 goto out;
224                         pud_populate(&init_mm, pu_dir, pm_dir);
225                 }
226
227                 pm_dir = pmd_offset(pu_dir, address);
228                 if (pmd_none(*pm_dir)) {
229                         /* Use 1MB frames for vmemmap if available. We always
230                          * use large frames even if they are only partially
231                          * used.
232                          * Otherwise we would have also page tables since
233                          * vmemmap_populate gets called for each section
234                          * separately. */
235                         if (MACHINE_HAS_EDAT1) {
236                                 void *new_page;
237
238                                 new_page = vmemmap_alloc_block(PMD_SIZE, node);
239                                 if (!new_page)
240                                         goto out;
241                                 pmd_val(*pm_dir) = __pa(new_page) |
242                                         _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE;
243                                 address = (address + PMD_SIZE) & PMD_MASK;
244                                 continue;
245                         }
246                         pt_dir = vmem_pte_alloc();
247                         if (!pt_dir)
248                                 goto out;
249                         pmd_populate(&init_mm, pm_dir, pt_dir);
250                 } else if (pmd_large(*pm_dir)) {
251                         address = (address + PMD_SIZE) & PMD_MASK;
252                         continue;
253                 }
254
255                 pt_dir = pte_offset_kernel(pm_dir, address);
256                 if (pte_none(*pt_dir)) {
257                         void *new_page;
258
259                         new_page = vmemmap_alloc_block(PAGE_SIZE, node);
260                         if (!new_page)
261                                 goto out;
262                         pte_val(*pt_dir) =
263                                 __pa(new_page) | pgprot_val(PAGE_KERNEL);
264                 }
265                 address += PAGE_SIZE;
266         }
267         ret = 0;
268 out:
269         return ret;
270 }
271
272 void vmemmap_free(unsigned long start, unsigned long end)
273 {
274 }
275
276 /*
277  * Add memory segment to the segment list if it doesn't overlap with
278  * an already present segment.
279  */
280 static int insert_memory_segment(struct memory_segment *seg)
281 {
282         struct memory_segment *tmp;
283
284         if (seg->start + seg->size > VMEM_MAX_PHYS ||
285             seg->start + seg->size < seg->start)
286                 return -ERANGE;
287
288         list_for_each_entry(tmp, &mem_segs, list) {
289                 if (seg->start >= tmp->start + tmp->size)
290                         continue;
291                 if (seg->start + seg->size <= tmp->start)
292                         continue;
293                 return -ENOSPC;
294         }
295         list_add(&seg->list, &mem_segs);
296         return 0;
297 }
298
299 /*
300  * Remove memory segment from the segment list.
301  */
302 static void remove_memory_segment(struct memory_segment *seg)
303 {
304         list_del(&seg->list);
305 }
306
307 static void __remove_shared_memory(struct memory_segment *seg)
308 {
309         remove_memory_segment(seg);
310         vmem_remove_range(seg->start, seg->size);
311 }
312
313 int vmem_remove_mapping(unsigned long start, unsigned long size)
314 {
315         struct memory_segment *seg;
316         int ret;
317
318         mutex_lock(&vmem_mutex);
319
320         ret = -ENOENT;
321         list_for_each_entry(seg, &mem_segs, list) {
322                 if (seg->start == start && seg->size == size)
323                         break;
324         }
325
326         if (seg->start != start || seg->size != size)
327                 goto out;
328
329         ret = 0;
330         __remove_shared_memory(seg);
331         kfree(seg);
332 out:
333         mutex_unlock(&vmem_mutex);
334         return ret;
335 }
336
337 int vmem_add_mapping(unsigned long start, unsigned long size)
338 {
339         struct memory_segment *seg;
340         int ret;
341
342         mutex_lock(&vmem_mutex);
343         ret = -ENOMEM;
344         seg = kzalloc(sizeof(*seg), GFP_KERNEL);
345         if (!seg)
346                 goto out;
347         seg->start = start;
348         seg->size = size;
349
350         ret = insert_memory_segment(seg);
351         if (ret)
352                 goto out_free;
353
354         ret = vmem_add_mem(start, size);
355         if (ret)
356                 goto out_remove;
357         goto out;
358
359 out_remove:
360         __remove_shared_memory(seg);
361 out_free:
362         kfree(seg);
363 out:
364         mutex_unlock(&vmem_mutex);
365         return ret;
366 }
367
368 /*
369  * map whole physical memory to virtual memory (identity mapping)
370  * we reserve enough space in the vmalloc area for vmemmap to hotplug
371  * additional memory segments.
372  */
373 void __init vmem_map_init(void)
374 {
375         unsigned long size = _eshared - _stext;
376         struct memblock_region *reg;
377
378         for_each_memblock(memory, reg)
379                 vmem_add_mem(reg->base, reg->size);
380         set_memory_ro((unsigned long)_stext, size >> PAGE_SHIFT);
381         pr_info("Write protected kernel read-only data: %luk\n", size >> 10);
382 }
383
384 /*
385  * Convert memblock.memory  to a memory segment list so there is a single
386  * list that contains all memory segments.
387  */
388 static int __init vmem_convert_memory_chunk(void)
389 {
390         struct memblock_region *reg;
391         struct memory_segment *seg;
392
393         mutex_lock(&vmem_mutex);
394         for_each_memblock(memory, reg) {
395                 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
396                 if (!seg)
397                         panic("Out of memory...\n");
398                 seg->start = reg->base;
399                 seg->size = reg->size;
400                 insert_memory_segment(seg);
401         }
402         mutex_unlock(&vmem_mutex);
403         return 0;
404 }
405
406 core_initcall(vmem_convert_memory_chunk);