Merge branch 'stable/for-linus-5.2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / arch / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/diag.h>
41 #include <asm/switch_to.h>
42 #include <asm/facility.h>
43 #include <asm/ipl.h>
44 #include <asm/setup.h>
45 #include <asm/irq.h>
46 #include <asm/tlbflush.h>
47 #include <asm/vtimer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/vdso.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
53 #include <asm/sigp.h>
54 #include <asm/idle.h>
55 #include <asm/nmi.h>
56 #include <asm/stacktrace.h>
57 #include <asm/topology.h>
58 #include "entry.h"
59
60 enum {
61         ec_schedule = 0,
62         ec_call_function_single,
63         ec_stop_cpu,
64 };
65
66 enum {
67         CPU_STATE_STANDBY,
68         CPU_STATE_CONFIGURED,
69 };
70
71 static DEFINE_PER_CPU(struct cpu *, cpu_device);
72
73 struct pcpu {
74         struct lowcore *lowcore;        /* lowcore page(s) for the cpu */
75         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
76         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
77         signed char state;              /* physical cpu state */
78         signed char polarization;       /* physical polarization */
79         u16 address;                    /* physical cpu address */
80 };
81
82 static u8 boot_core_type;
83 static struct pcpu pcpu_devices[NR_CPUS];
84
85 unsigned int smp_cpu_mt_shift;
86 EXPORT_SYMBOL(smp_cpu_mt_shift);
87
88 unsigned int smp_cpu_mtid;
89 EXPORT_SYMBOL(smp_cpu_mtid);
90
91 #ifdef CONFIG_CRASH_DUMP
92 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
93 #endif
94
95 static unsigned int smp_max_threads __initdata = -1U;
96
97 static int __init early_nosmt(char *s)
98 {
99         smp_max_threads = 1;
100         return 0;
101 }
102 early_param("nosmt", early_nosmt);
103
104 static int __init early_smt(char *s)
105 {
106         get_option(&s, &smp_max_threads);
107         return 0;
108 }
109 early_param("smt", early_smt);
110
111 /*
112  * The smp_cpu_state_mutex must be held when changing the state or polarization
113  * member of a pcpu data structure within the pcpu_devices arreay.
114  */
115 DEFINE_MUTEX(smp_cpu_state_mutex);
116
117 /*
118  * Signal processor helper functions.
119  */
120 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
121 {
122         int cc;
123
124         while (1) {
125                 cc = __pcpu_sigp(addr, order, parm, NULL);
126                 if (cc != SIGP_CC_BUSY)
127                         return cc;
128                 cpu_relax();
129         }
130 }
131
132 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
133 {
134         int cc, retry;
135
136         for (retry = 0; ; retry++) {
137                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
138                 if (cc != SIGP_CC_BUSY)
139                         break;
140                 if (retry >= 3)
141                         udelay(10);
142         }
143         return cc;
144 }
145
146 static inline int pcpu_stopped(struct pcpu *pcpu)
147 {
148         u32 uninitialized_var(status);
149
150         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
151                         0, &status) != SIGP_CC_STATUS_STORED)
152                 return 0;
153         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
154 }
155
156 static inline int pcpu_running(struct pcpu *pcpu)
157 {
158         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
159                         0, NULL) != SIGP_CC_STATUS_STORED)
160                 return 1;
161         /* Status stored condition code is equivalent to cpu not running. */
162         return 0;
163 }
164
165 /*
166  * Find struct pcpu by cpu address.
167  */
168 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
169 {
170         int cpu;
171
172         for_each_cpu(cpu, mask)
173                 if (pcpu_devices[cpu].address == address)
174                         return pcpu_devices + cpu;
175         return NULL;
176 }
177
178 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
179 {
180         int order;
181
182         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
183                 return;
184         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
185         pcpu->ec_clk = get_tod_clock_fast();
186         pcpu_sigp_retry(pcpu, order, 0);
187 }
188
189 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
190 {
191         unsigned long async_stack, nodat_stack;
192         struct lowcore *lc;
193
194         if (pcpu != &pcpu_devices[0]) {
195                 pcpu->lowcore = (struct lowcore *)
196                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
197                 nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
198                 if (!pcpu->lowcore || !nodat_stack)
199                         goto out;
200         } else {
201                 nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
202         }
203         async_stack = stack_alloc();
204         if (!async_stack)
205                 goto out;
206         lc = pcpu->lowcore;
207         memcpy(lc, &S390_lowcore, 512);
208         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
209         lc->async_stack = async_stack + STACK_INIT_OFFSET;
210         lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
211         lc->cpu_nr = cpu;
212         lc->spinlock_lockval = arch_spin_lockval(cpu);
213         lc->spinlock_index = 0;
214         lc->br_r1_trampoline = 0x07f1;  /* br %r1 */
215         if (nmi_alloc_per_cpu(lc))
216                 goto out_async;
217         if (vdso_alloc_per_cpu(lc))
218                 goto out_mcesa;
219         lowcore_ptr[cpu] = lc;
220         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
221         return 0;
222
223 out_mcesa:
224         nmi_free_per_cpu(lc);
225 out_async:
226         stack_free(async_stack);
227 out:
228         if (pcpu != &pcpu_devices[0]) {
229                 free_pages(nodat_stack, THREAD_SIZE_ORDER);
230                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
231         }
232         return -ENOMEM;
233 }
234
235 #ifdef CONFIG_HOTPLUG_CPU
236
237 static void pcpu_free_lowcore(struct pcpu *pcpu)
238 {
239         unsigned long async_stack, nodat_stack, lowcore;
240
241         nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
242         async_stack = pcpu->lowcore->async_stack - STACK_INIT_OFFSET;
243         lowcore = (unsigned long) pcpu->lowcore;
244
245         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
246         lowcore_ptr[pcpu - pcpu_devices] = NULL;
247         vdso_free_per_cpu(pcpu->lowcore);
248         nmi_free_per_cpu(pcpu->lowcore);
249         stack_free(async_stack);
250         if (pcpu == &pcpu_devices[0])
251                 return;
252         free_pages(nodat_stack, THREAD_SIZE_ORDER);
253         free_pages(lowcore, LC_ORDER);
254 }
255
256 #endif /* CONFIG_HOTPLUG_CPU */
257
258 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
259 {
260         struct lowcore *lc = pcpu->lowcore;
261
262         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
263         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
264         lc->cpu_nr = cpu;
265         lc->spinlock_lockval = arch_spin_lockval(cpu);
266         lc->spinlock_index = 0;
267         lc->percpu_offset = __per_cpu_offset[cpu];
268         lc->kernel_asce = S390_lowcore.kernel_asce;
269         lc->machine_flags = S390_lowcore.machine_flags;
270         lc->user_timer = lc->system_timer =
271                 lc->steal_timer = lc->avg_steal_timer = 0;
272         __ctl_store(lc->cregs_save_area, 0, 15);
273         save_access_regs((unsigned int *) lc->access_regs_save_area);
274         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
275                sizeof(lc->stfle_fac_list));
276         memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
277                sizeof(lc->alt_stfle_fac_list));
278         arch_spin_lock_setup(cpu);
279 }
280
281 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
282 {
283         struct lowcore *lc = pcpu->lowcore;
284
285         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
286                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
287         lc->current_task = (unsigned long) tsk;
288         lc->lpp = LPP_MAGIC;
289         lc->current_pid = tsk->pid;
290         lc->user_timer = tsk->thread.user_timer;
291         lc->guest_timer = tsk->thread.guest_timer;
292         lc->system_timer = tsk->thread.system_timer;
293         lc->hardirq_timer = tsk->thread.hardirq_timer;
294         lc->softirq_timer = tsk->thread.softirq_timer;
295         lc->steal_timer = 0;
296 }
297
298 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
299 {
300         struct lowcore *lc = pcpu->lowcore;
301
302         lc->restart_stack = lc->nodat_stack;
303         lc->restart_fn = (unsigned long) func;
304         lc->restart_data = (unsigned long) data;
305         lc->restart_source = -1UL;
306         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
307 }
308
309 /*
310  * Call function via PSW restart on pcpu and stop the current cpu.
311  */
312 static void __pcpu_delegate(void (*func)(void*), void *data)
313 {
314         func(data);     /* should not return */
315 }
316
317 static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
318                                                 void (*func)(void *),
319                                                 void *data, unsigned long stack)
320 {
321         struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
322         unsigned long source_cpu = stap();
323
324         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
325         if (pcpu->address == source_cpu)
326                 CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
327         /* Stop target cpu (if func returns this stops the current cpu). */
328         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
329         /* Restart func on the target cpu and stop the current cpu. */
330         mem_assign_absolute(lc->restart_stack, stack);
331         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
332         mem_assign_absolute(lc->restart_data, (unsigned long) data);
333         mem_assign_absolute(lc->restart_source, source_cpu);
334         __bpon();
335         asm volatile(
336                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
337                 "       brc     2,0b    # busy, try again\n"
338                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
339                 "       brc     2,1b    # busy, try again\n"
340                 : : "d" (pcpu->address), "d" (source_cpu),
341                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
342                 : "0", "1", "cc");
343         for (;;) ;
344 }
345
346 /*
347  * Enable additional logical cpus for multi-threading.
348  */
349 static int pcpu_set_smt(unsigned int mtid)
350 {
351         int cc;
352
353         if (smp_cpu_mtid == mtid)
354                 return 0;
355         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
356         if (cc == 0) {
357                 smp_cpu_mtid = mtid;
358                 smp_cpu_mt_shift = 0;
359                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
360                         smp_cpu_mt_shift++;
361                 pcpu_devices[0].address = stap();
362         }
363         return cc;
364 }
365
366 /*
367  * Call function on an online CPU.
368  */
369 void smp_call_online_cpu(void (*func)(void *), void *data)
370 {
371         struct pcpu *pcpu;
372
373         /* Use the current cpu if it is online. */
374         pcpu = pcpu_find_address(cpu_online_mask, stap());
375         if (!pcpu)
376                 /* Use the first online cpu. */
377                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
378         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
379 }
380
381 /*
382  * Call function on the ipl CPU.
383  */
384 void smp_call_ipl_cpu(void (*func)(void *), void *data)
385 {
386         struct lowcore *lc = pcpu_devices->lowcore;
387
388         if (pcpu_devices[0].address == stap())
389                 lc = &S390_lowcore;
390
391         pcpu_delegate(&pcpu_devices[0], func, data,
392                       lc->nodat_stack);
393 }
394
395 int smp_find_processor_id(u16 address)
396 {
397         int cpu;
398
399         for_each_present_cpu(cpu)
400                 if (pcpu_devices[cpu].address == address)
401                         return cpu;
402         return -1;
403 }
404
405 bool arch_vcpu_is_preempted(int cpu)
406 {
407         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
408                 return false;
409         if (pcpu_running(pcpu_devices + cpu))
410                 return false;
411         return true;
412 }
413 EXPORT_SYMBOL(arch_vcpu_is_preempted);
414
415 void smp_yield_cpu(int cpu)
416 {
417         if (MACHINE_HAS_DIAG9C) {
418                 diag_stat_inc_norecursion(DIAG_STAT_X09C);
419                 asm volatile("diag %0,0,0x9c"
420                              : : "d" (pcpu_devices[cpu].address));
421         } else if (MACHINE_HAS_DIAG44) {
422                 diag_stat_inc_norecursion(DIAG_STAT_X044);
423                 asm volatile("diag 0,0,0x44");
424         }
425 }
426
427 /*
428  * Send cpus emergency shutdown signal. This gives the cpus the
429  * opportunity to complete outstanding interrupts.
430  */
431 void notrace smp_emergency_stop(void)
432 {
433         cpumask_t cpumask;
434         u64 end;
435         int cpu;
436
437         cpumask_copy(&cpumask, cpu_online_mask);
438         cpumask_clear_cpu(smp_processor_id(), &cpumask);
439
440         end = get_tod_clock() + (1000000UL << 12);
441         for_each_cpu(cpu, &cpumask) {
442                 struct pcpu *pcpu = pcpu_devices + cpu;
443                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
444                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
445                                    0, NULL) == SIGP_CC_BUSY &&
446                        get_tod_clock() < end)
447                         cpu_relax();
448         }
449         while (get_tod_clock() < end) {
450                 for_each_cpu(cpu, &cpumask)
451                         if (pcpu_stopped(pcpu_devices + cpu))
452                                 cpumask_clear_cpu(cpu, &cpumask);
453                 if (cpumask_empty(&cpumask))
454                         break;
455                 cpu_relax();
456         }
457 }
458 NOKPROBE_SYMBOL(smp_emergency_stop);
459
460 /*
461  * Stop all cpus but the current one.
462  */
463 void smp_send_stop(void)
464 {
465         int cpu;
466
467         /* Disable all interrupts/machine checks */
468         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
469         trace_hardirqs_off();
470
471         debug_set_critical();
472
473         if (oops_in_progress)
474                 smp_emergency_stop();
475
476         /* stop all processors */
477         for_each_online_cpu(cpu) {
478                 if (cpu == smp_processor_id())
479                         continue;
480                 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
481                 while (!pcpu_stopped(pcpu_devices + cpu))
482                         cpu_relax();
483         }
484 }
485
486 /*
487  * This is the main routine where commands issued by other
488  * cpus are handled.
489  */
490 static void smp_handle_ext_call(void)
491 {
492         unsigned long bits;
493
494         /* handle bit signal external calls */
495         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
496         if (test_bit(ec_stop_cpu, &bits))
497                 smp_stop_cpu();
498         if (test_bit(ec_schedule, &bits))
499                 scheduler_ipi();
500         if (test_bit(ec_call_function_single, &bits))
501                 generic_smp_call_function_single_interrupt();
502 }
503
504 static void do_ext_call_interrupt(struct ext_code ext_code,
505                                   unsigned int param32, unsigned long param64)
506 {
507         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
508         smp_handle_ext_call();
509 }
510
511 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
512 {
513         int cpu;
514
515         for_each_cpu(cpu, mask)
516                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
517 }
518
519 void arch_send_call_function_single_ipi(int cpu)
520 {
521         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
522 }
523
524 /*
525  * this function sends a 'reschedule' IPI to another CPU.
526  * it goes straight through and wastes no time serializing
527  * anything. Worst case is that we lose a reschedule ...
528  */
529 void smp_send_reschedule(int cpu)
530 {
531         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
532 }
533
534 /*
535  * parameter area for the set/clear control bit callbacks
536  */
537 struct ec_creg_mask_parms {
538         unsigned long orval;
539         unsigned long andval;
540         int cr;
541 };
542
543 /*
544  * callback for setting/clearing control bits
545  */
546 static void smp_ctl_bit_callback(void *info)
547 {
548         struct ec_creg_mask_parms *pp = info;
549         unsigned long cregs[16];
550
551         __ctl_store(cregs, 0, 15);
552         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
553         __ctl_load(cregs, 0, 15);
554 }
555
556 /*
557  * Set a bit in a control register of all cpus
558  */
559 void smp_ctl_set_bit(int cr, int bit)
560 {
561         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
562
563         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
564 }
565 EXPORT_SYMBOL(smp_ctl_set_bit);
566
567 /*
568  * Clear a bit in a control register of all cpus
569  */
570 void smp_ctl_clear_bit(int cr, int bit)
571 {
572         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
573
574         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
575 }
576 EXPORT_SYMBOL(smp_ctl_clear_bit);
577
578 #ifdef CONFIG_CRASH_DUMP
579
580 int smp_store_status(int cpu)
581 {
582         struct pcpu *pcpu = pcpu_devices + cpu;
583         unsigned long pa;
584
585         pa = __pa(&pcpu->lowcore->floating_pt_save_area);
586         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
587                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
588                 return -EIO;
589         if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
590                 return 0;
591         pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
592         if (MACHINE_HAS_GS)
593                 pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
594         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
595                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
596                 return -EIO;
597         return 0;
598 }
599
600 /*
601  * Collect CPU state of the previous, crashed system.
602  * There are four cases:
603  * 1) standard zfcp dump
604  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
605  *    The state for all CPUs except the boot CPU needs to be collected
606  *    with sigp stop-and-store-status. The boot CPU state is located in
607  *    the absolute lowcore of the memory stored in the HSA. The zcore code
608  *    will copy the boot CPU state from the HSA.
609  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
610  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
611  *    The state for all CPUs except the boot CPU needs to be collected
612  *    with sigp stop-and-store-status. The firmware or the boot-loader
613  *    stored the registers of the boot CPU in the absolute lowcore in the
614  *    memory of the old system.
615  * 3) kdump and the old kernel did not store the CPU state,
616  *    or stand-alone kdump for DASD
617  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
618  *    The state for all CPUs except the boot CPU needs to be collected
619  *    with sigp stop-and-store-status. The kexec code or the boot-loader
620  *    stored the registers of the boot CPU in the memory of the old system.
621  * 4) kdump and the old kernel stored the CPU state
622  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
623  *    This case does not exist for s390 anymore, setup_arch explicitly
624  *    deactivates the elfcorehdr= kernel parameter
625  */
626 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
627                                      bool is_boot_cpu, unsigned long page)
628 {
629         __vector128 *vxrs = (__vector128 *) page;
630
631         if (is_boot_cpu)
632                 vxrs = boot_cpu_vector_save_area;
633         else
634                 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
635         save_area_add_vxrs(sa, vxrs);
636 }
637
638 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
639                                      bool is_boot_cpu, unsigned long page)
640 {
641         void *regs = (void *) page;
642
643         if (is_boot_cpu)
644                 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
645         else
646                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
647         save_area_add_regs(sa, regs);
648 }
649
650 void __init smp_save_dump_cpus(void)
651 {
652         int addr, boot_cpu_addr, max_cpu_addr;
653         struct save_area *sa;
654         unsigned long page;
655         bool is_boot_cpu;
656
657         if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
658                 /* No previous system present, normal boot. */
659                 return;
660         /* Allocate a page as dumping area for the store status sigps */
661         page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
662         if (!page)
663                 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
664                       PAGE_SIZE, 1UL << 31);
665
666         /* Set multi-threading state to the previous system. */
667         pcpu_set_smt(sclp.mtid_prev);
668         boot_cpu_addr = stap();
669         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
670         for (addr = 0; addr <= max_cpu_addr; addr++) {
671                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
672                     SIGP_CC_NOT_OPERATIONAL)
673                         continue;
674                 is_boot_cpu = (addr == boot_cpu_addr);
675                 /* Allocate save area */
676                 sa = save_area_alloc(is_boot_cpu);
677                 if (!sa)
678                         panic("could not allocate memory for save area\n");
679                 if (MACHINE_HAS_VX)
680                         /* Get the vector registers */
681                         smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
682                 /*
683                  * For a zfcp dump OLDMEM_BASE == NULL and the registers
684                  * of the boot CPU are stored in the HSA. To retrieve
685                  * these registers an SCLP request is required which is
686                  * done by drivers/s390/char/zcore.c:init_cpu_info()
687                  */
688                 if (!is_boot_cpu || OLDMEM_BASE)
689                         /* Get the CPU registers */
690                         smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
691         }
692         memblock_free(page, PAGE_SIZE);
693         diag_dma_ops.diag308_reset();
694         pcpu_set_smt(0);
695 }
696 #endif /* CONFIG_CRASH_DUMP */
697
698 void smp_cpu_set_polarization(int cpu, int val)
699 {
700         pcpu_devices[cpu].polarization = val;
701 }
702
703 int smp_cpu_get_polarization(int cpu)
704 {
705         return pcpu_devices[cpu].polarization;
706 }
707
708 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
709 {
710         static int use_sigp_detection;
711         int address;
712
713         if (use_sigp_detection || sclp_get_core_info(info, early)) {
714                 use_sigp_detection = 1;
715                 for (address = 0;
716                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
717                      address += (1U << smp_cpu_mt_shift)) {
718                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
719                             SIGP_CC_NOT_OPERATIONAL)
720                                 continue;
721                         info->core[info->configured].core_id =
722                                 address >> smp_cpu_mt_shift;
723                         info->configured++;
724                 }
725                 info->combined = info->configured;
726         }
727 }
728
729 static int smp_add_present_cpu(int cpu);
730
731 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
732 {
733         struct pcpu *pcpu;
734         cpumask_t avail;
735         int cpu, nr, i, j;
736         u16 address;
737
738         nr = 0;
739         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
740         cpu = cpumask_first(&avail);
741         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
742                 if (sclp.has_core_type && info->core[i].type != boot_core_type)
743                         continue;
744                 address = info->core[i].core_id << smp_cpu_mt_shift;
745                 for (j = 0; j <= smp_cpu_mtid; j++) {
746                         if (pcpu_find_address(cpu_present_mask, address + j))
747                                 continue;
748                         pcpu = pcpu_devices + cpu;
749                         pcpu->address = address + j;
750                         pcpu->state =
751                                 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
752                                 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
753                         smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
754                         set_cpu_present(cpu, true);
755                         if (sysfs_add && smp_add_present_cpu(cpu) != 0)
756                                 set_cpu_present(cpu, false);
757                         else
758                                 nr++;
759                         cpu = cpumask_next(cpu, &avail);
760                         if (cpu >= nr_cpu_ids)
761                                 break;
762                 }
763         }
764         return nr;
765 }
766
767 void __init smp_detect_cpus(void)
768 {
769         unsigned int cpu, mtid, c_cpus, s_cpus;
770         struct sclp_core_info *info;
771         u16 address;
772
773         /* Get CPU information */
774         info = memblock_alloc(sizeof(*info), 8);
775         if (!info)
776                 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
777                       __func__, sizeof(*info), 8);
778         smp_get_core_info(info, 1);
779         /* Find boot CPU type */
780         if (sclp.has_core_type) {
781                 address = stap();
782                 for (cpu = 0; cpu < info->combined; cpu++)
783                         if (info->core[cpu].core_id == address) {
784                                 /* The boot cpu dictates the cpu type. */
785                                 boot_core_type = info->core[cpu].type;
786                                 break;
787                         }
788                 if (cpu >= info->combined)
789                         panic("Could not find boot CPU type");
790         }
791
792         /* Set multi-threading state for the current system */
793         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
794         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
795         pcpu_set_smt(mtid);
796
797         /* Print number of CPUs */
798         c_cpus = s_cpus = 0;
799         for (cpu = 0; cpu < info->combined; cpu++) {
800                 if (sclp.has_core_type &&
801                     info->core[cpu].type != boot_core_type)
802                         continue;
803                 if (cpu < info->configured)
804                         c_cpus += smp_cpu_mtid + 1;
805                 else
806                         s_cpus += smp_cpu_mtid + 1;
807         }
808         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
809
810         /* Add CPUs present at boot */
811         get_online_cpus();
812         __smp_rescan_cpus(info, 0);
813         put_online_cpus();
814         memblock_free_early((unsigned long)info, sizeof(*info));
815 }
816
817 static void smp_init_secondary(void)
818 {
819         int cpu = smp_processor_id();
820
821         S390_lowcore.last_update_clock = get_tod_clock();
822         restore_access_regs(S390_lowcore.access_regs_save_area);
823         cpu_init();
824         preempt_disable();
825         init_cpu_timer();
826         vtime_init();
827         pfault_init();
828         notify_cpu_starting(smp_processor_id());
829         if (topology_cpu_dedicated(cpu))
830                 set_cpu_flag(CIF_DEDICATED_CPU);
831         else
832                 clear_cpu_flag(CIF_DEDICATED_CPU);
833         set_cpu_online(smp_processor_id(), true);
834         inc_irq_stat(CPU_RST);
835         local_irq_enable();
836         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
837 }
838
839 /*
840  *      Activate a secondary processor.
841  */
842 static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
843 {
844         S390_lowcore.restart_stack = (unsigned long) restart_stack;
845         S390_lowcore.restart_fn = (unsigned long) do_restart;
846         S390_lowcore.restart_data = 0;
847         S390_lowcore.restart_source = -1UL;
848         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
849         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
850         CALL_ON_STACK(smp_init_secondary, S390_lowcore.kernel_stack, 0);
851 }
852
853 /* Upping and downing of CPUs */
854 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
855 {
856         struct pcpu *pcpu;
857         int base, i, rc;
858
859         pcpu = pcpu_devices + cpu;
860         if (pcpu->state != CPU_STATE_CONFIGURED)
861                 return -EIO;
862         base = smp_get_base_cpu(cpu);
863         for (i = 0; i <= smp_cpu_mtid; i++) {
864                 if (base + i < nr_cpu_ids)
865                         if (cpu_online(base + i))
866                                 break;
867         }
868         /*
869          * If this is the first CPU of the core to get online
870          * do an initial CPU reset.
871          */
872         if (i > smp_cpu_mtid &&
873             pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
874             SIGP_CC_ORDER_CODE_ACCEPTED)
875                 return -EIO;
876
877         rc = pcpu_alloc_lowcore(pcpu, cpu);
878         if (rc)
879                 return rc;
880         pcpu_prepare_secondary(pcpu, cpu);
881         pcpu_attach_task(pcpu, tidle);
882         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
883         /* Wait until cpu puts itself in the online & active maps */
884         while (!cpu_online(cpu))
885                 cpu_relax();
886         return 0;
887 }
888
889 static unsigned int setup_possible_cpus __initdata;
890
891 static int __init _setup_possible_cpus(char *s)
892 {
893         get_option(&s, &setup_possible_cpus);
894         return 0;
895 }
896 early_param("possible_cpus", _setup_possible_cpus);
897
898 #ifdef CONFIG_HOTPLUG_CPU
899
900 int __cpu_disable(void)
901 {
902         unsigned long cregs[16];
903
904         /* Handle possible pending IPIs */
905         smp_handle_ext_call();
906         set_cpu_online(smp_processor_id(), false);
907         /* Disable pseudo page faults on this cpu. */
908         pfault_fini();
909         /* Disable interrupt sources via control register. */
910         __ctl_store(cregs, 0, 15);
911         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
912         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
913         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
914         __ctl_load(cregs, 0, 15);
915         clear_cpu_flag(CIF_NOHZ_DELAY);
916         return 0;
917 }
918
919 void __cpu_die(unsigned int cpu)
920 {
921         struct pcpu *pcpu;
922
923         /* Wait until target cpu is down */
924         pcpu = pcpu_devices + cpu;
925         while (!pcpu_stopped(pcpu))
926                 cpu_relax();
927         pcpu_free_lowcore(pcpu);
928         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
929         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
930 }
931
932 void __noreturn cpu_die(void)
933 {
934         idle_task_exit();
935         __bpon();
936         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
937         for (;;) ;
938 }
939
940 #endif /* CONFIG_HOTPLUG_CPU */
941
942 void __init smp_fill_possible_mask(void)
943 {
944         unsigned int possible, sclp_max, cpu;
945
946         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
947         sclp_max = min(smp_max_threads, sclp_max);
948         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
949         possible = setup_possible_cpus ?: nr_cpu_ids;
950         possible = min(possible, sclp_max);
951         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
952                 set_cpu_possible(cpu, true);
953 }
954
955 void __init smp_prepare_cpus(unsigned int max_cpus)
956 {
957         /* request the 0x1201 emergency signal external interrupt */
958         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
959                 panic("Couldn't request external interrupt 0x1201");
960         /* request the 0x1202 external call external interrupt */
961         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
962                 panic("Couldn't request external interrupt 0x1202");
963 }
964
965 void __init smp_prepare_boot_cpu(void)
966 {
967         struct pcpu *pcpu = pcpu_devices;
968
969         WARN_ON(!cpu_present(0) || !cpu_online(0));
970         pcpu->state = CPU_STATE_CONFIGURED;
971         pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
972         S390_lowcore.percpu_offset = __per_cpu_offset[0];
973         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
974 }
975
976 void __init smp_cpus_done(unsigned int max_cpus)
977 {
978 }
979
980 void __init smp_setup_processor_id(void)
981 {
982         pcpu_devices[0].address = stap();
983         S390_lowcore.cpu_nr = 0;
984         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
985         S390_lowcore.spinlock_index = 0;
986 }
987
988 /*
989  * the frequency of the profiling timer can be changed
990  * by writing a multiplier value into /proc/profile.
991  *
992  * usually you want to run this on all CPUs ;)
993  */
994 int setup_profiling_timer(unsigned int multiplier)
995 {
996         return 0;
997 }
998
999 #ifdef CONFIG_HOTPLUG_CPU
1000 static ssize_t cpu_configure_show(struct device *dev,
1001                                   struct device_attribute *attr, char *buf)
1002 {
1003         ssize_t count;
1004
1005         mutex_lock(&smp_cpu_state_mutex);
1006         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1007         mutex_unlock(&smp_cpu_state_mutex);
1008         return count;
1009 }
1010
1011 static ssize_t cpu_configure_store(struct device *dev,
1012                                    struct device_attribute *attr,
1013                                    const char *buf, size_t count)
1014 {
1015         struct pcpu *pcpu;
1016         int cpu, val, rc, i;
1017         char delim;
1018
1019         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1020                 return -EINVAL;
1021         if (val != 0 && val != 1)
1022                 return -EINVAL;
1023         get_online_cpus();
1024         mutex_lock(&smp_cpu_state_mutex);
1025         rc = -EBUSY;
1026         /* disallow configuration changes of online cpus and cpu 0 */
1027         cpu = dev->id;
1028         cpu = smp_get_base_cpu(cpu);
1029         if (cpu == 0)
1030                 goto out;
1031         for (i = 0; i <= smp_cpu_mtid; i++)
1032                 if (cpu_online(cpu + i))
1033                         goto out;
1034         pcpu = pcpu_devices + cpu;
1035         rc = 0;
1036         switch (val) {
1037         case 0:
1038                 if (pcpu->state != CPU_STATE_CONFIGURED)
1039                         break;
1040                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1041                 if (rc)
1042                         break;
1043                 for (i = 0; i <= smp_cpu_mtid; i++) {
1044                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1045                                 continue;
1046                         pcpu[i].state = CPU_STATE_STANDBY;
1047                         smp_cpu_set_polarization(cpu + i,
1048                                                  POLARIZATION_UNKNOWN);
1049                 }
1050                 topology_expect_change();
1051                 break;
1052         case 1:
1053                 if (pcpu->state != CPU_STATE_STANDBY)
1054                         break;
1055                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1056                 if (rc)
1057                         break;
1058                 for (i = 0; i <= smp_cpu_mtid; i++) {
1059                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1060                                 continue;
1061                         pcpu[i].state = CPU_STATE_CONFIGURED;
1062                         smp_cpu_set_polarization(cpu + i,
1063                                                  POLARIZATION_UNKNOWN);
1064                 }
1065                 topology_expect_change();
1066                 break;
1067         default:
1068                 break;
1069         }
1070 out:
1071         mutex_unlock(&smp_cpu_state_mutex);
1072         put_online_cpus();
1073         return rc ? rc : count;
1074 }
1075 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1076 #endif /* CONFIG_HOTPLUG_CPU */
1077
1078 static ssize_t show_cpu_address(struct device *dev,
1079                                 struct device_attribute *attr, char *buf)
1080 {
1081         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1082 }
1083 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1084
1085 static struct attribute *cpu_common_attrs[] = {
1086 #ifdef CONFIG_HOTPLUG_CPU
1087         &dev_attr_configure.attr,
1088 #endif
1089         &dev_attr_address.attr,
1090         NULL,
1091 };
1092
1093 static struct attribute_group cpu_common_attr_group = {
1094         .attrs = cpu_common_attrs,
1095 };
1096
1097 static struct attribute *cpu_online_attrs[] = {
1098         &dev_attr_idle_count.attr,
1099         &dev_attr_idle_time_us.attr,
1100         NULL,
1101 };
1102
1103 static struct attribute_group cpu_online_attr_group = {
1104         .attrs = cpu_online_attrs,
1105 };
1106
1107 static int smp_cpu_online(unsigned int cpu)
1108 {
1109         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1110
1111         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1112 }
1113 static int smp_cpu_pre_down(unsigned int cpu)
1114 {
1115         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1116
1117         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1118         return 0;
1119 }
1120
1121 static int smp_add_present_cpu(int cpu)
1122 {
1123         struct device *s;
1124         struct cpu *c;
1125         int rc;
1126
1127         c = kzalloc(sizeof(*c), GFP_KERNEL);
1128         if (!c)
1129                 return -ENOMEM;
1130         per_cpu(cpu_device, cpu) = c;
1131         s = &c->dev;
1132         c->hotpluggable = 1;
1133         rc = register_cpu(c, cpu);
1134         if (rc)
1135                 goto out;
1136         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1137         if (rc)
1138                 goto out_cpu;
1139         rc = topology_cpu_init(c);
1140         if (rc)
1141                 goto out_topology;
1142         return 0;
1143
1144 out_topology:
1145         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1146 out_cpu:
1147 #ifdef CONFIG_HOTPLUG_CPU
1148         unregister_cpu(c);
1149 #endif
1150 out:
1151         return rc;
1152 }
1153
1154 #ifdef CONFIG_HOTPLUG_CPU
1155
1156 int __ref smp_rescan_cpus(void)
1157 {
1158         struct sclp_core_info *info;
1159         int nr;
1160
1161         info = kzalloc(sizeof(*info), GFP_KERNEL);
1162         if (!info)
1163                 return -ENOMEM;
1164         smp_get_core_info(info, 0);
1165         get_online_cpus();
1166         mutex_lock(&smp_cpu_state_mutex);
1167         nr = __smp_rescan_cpus(info, 1);
1168         mutex_unlock(&smp_cpu_state_mutex);
1169         put_online_cpus();
1170         kfree(info);
1171         if (nr)
1172                 topology_schedule_update();
1173         return 0;
1174 }
1175
1176 static ssize_t __ref rescan_store(struct device *dev,
1177                                   struct device_attribute *attr,
1178                                   const char *buf,
1179                                   size_t count)
1180 {
1181         int rc;
1182
1183         rc = lock_device_hotplug_sysfs();
1184         if (rc)
1185                 return rc;
1186         rc = smp_rescan_cpus();
1187         unlock_device_hotplug();
1188         return rc ? rc : count;
1189 }
1190 static DEVICE_ATTR_WO(rescan);
1191 #endif /* CONFIG_HOTPLUG_CPU */
1192
1193 static int __init s390_smp_init(void)
1194 {
1195         int cpu, rc = 0;
1196
1197 #ifdef CONFIG_HOTPLUG_CPU
1198         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1199         if (rc)
1200                 return rc;
1201 #endif
1202         for_each_present_cpu(cpu) {
1203                 rc = smp_add_present_cpu(cpu);
1204                 if (rc)
1205                         goto out;
1206         }
1207
1208         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1209                                smp_cpu_online, smp_cpu_pre_down);
1210         rc = rc <= 0 ? rc : 0;
1211 out:
1212         return rc;
1213 }
1214 subsys_initcall(s390_smp_init);