sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[linux-block.git] / arch / s390 / kernel / ptrace.c
1 /*
2  *  Ptrace user space interface.
3  *
4  *    Copyright IBM Corp. 1999, 2010
5  *    Author(s): Denis Joseph Barrow
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/mm.h>
13 #include <linux/smp.h>
14 #include <linux/errno.h>
15 #include <linux/ptrace.h>
16 #include <linux/user.h>
17 #include <linux/security.h>
18 #include <linux/audit.h>
19 #include <linux/signal.h>
20 #include <linux/elf.h>
21 #include <linux/regset.h>
22 #include <linux/tracehook.h>
23 #include <linux/seccomp.h>
24 #include <linux/compat.h>
25 #include <trace/syscall.h>
26 #include <asm/segment.h>
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/pgalloc.h>
30 #include <linux/uaccess.h>
31 #include <asm/unistd.h>
32 #include <asm/switch_to.h>
33 #include "entry.h"
34
35 #ifdef CONFIG_COMPAT
36 #include "compat_ptrace.h"
37 #endif
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/syscalls.h>
41
42 void update_cr_regs(struct task_struct *task)
43 {
44         struct pt_regs *regs = task_pt_regs(task);
45         struct thread_struct *thread = &task->thread;
46         struct per_regs old, new;
47
48         /* Take care of the enable/disable of transactional execution. */
49         if (MACHINE_HAS_TE) {
50                 unsigned long cr, cr_new;
51
52                 __ctl_store(cr, 0, 0);
53                 /* Set or clear transaction execution TXC bit 8. */
54                 cr_new = cr | (1UL << 55);
55                 if (task->thread.per_flags & PER_FLAG_NO_TE)
56                         cr_new &= ~(1UL << 55);
57                 if (cr_new != cr)
58                         __ctl_load(cr_new, 0, 0);
59                 /* Set or clear transaction execution TDC bits 62 and 63. */
60                 __ctl_store(cr, 2, 2);
61                 cr_new = cr & ~3UL;
62                 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
63                         if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
64                                 cr_new |= 1UL;
65                         else
66                                 cr_new |= 2UL;
67                 }
68                 if (cr_new != cr)
69                         __ctl_load(cr_new, 2, 2);
70         }
71         /* Copy user specified PER registers */
72         new.control = thread->per_user.control;
73         new.start = thread->per_user.start;
74         new.end = thread->per_user.end;
75
76         /* merge TIF_SINGLE_STEP into user specified PER registers. */
77         if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
78             test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
79                 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
80                         new.control |= PER_EVENT_BRANCH;
81                 else
82                         new.control |= PER_EVENT_IFETCH;
83                 new.control |= PER_CONTROL_SUSPENSION;
84                 new.control |= PER_EVENT_TRANSACTION_END;
85                 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
86                         new.control |= PER_EVENT_IFETCH;
87                 new.start = 0;
88                 new.end = -1UL;
89         }
90
91         /* Take care of the PER enablement bit in the PSW. */
92         if (!(new.control & PER_EVENT_MASK)) {
93                 regs->psw.mask &= ~PSW_MASK_PER;
94                 return;
95         }
96         regs->psw.mask |= PSW_MASK_PER;
97         __ctl_store(old, 9, 11);
98         if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
99                 __ctl_load(new, 9, 11);
100 }
101
102 void user_enable_single_step(struct task_struct *task)
103 {
104         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
105         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
106 }
107
108 void user_disable_single_step(struct task_struct *task)
109 {
110         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
111         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
112 }
113
114 void user_enable_block_step(struct task_struct *task)
115 {
116         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
117         set_tsk_thread_flag(task, TIF_BLOCK_STEP);
118 }
119
120 /*
121  * Called by kernel/ptrace.c when detaching..
122  *
123  * Clear all debugging related fields.
124  */
125 void ptrace_disable(struct task_struct *task)
126 {
127         memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
128         memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
129         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
130         clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
131         task->thread.per_flags = 0;
132 }
133
134 #define __ADDR_MASK 7
135
136 static inline unsigned long __peek_user_per(struct task_struct *child,
137                                             addr_t addr)
138 {
139         struct per_struct_kernel *dummy = NULL;
140
141         if (addr == (addr_t) &dummy->cr9)
142                 /* Control bits of the active per set. */
143                 return test_thread_flag(TIF_SINGLE_STEP) ?
144                         PER_EVENT_IFETCH : child->thread.per_user.control;
145         else if (addr == (addr_t) &dummy->cr10)
146                 /* Start address of the active per set. */
147                 return test_thread_flag(TIF_SINGLE_STEP) ?
148                         0 : child->thread.per_user.start;
149         else if (addr == (addr_t) &dummy->cr11)
150                 /* End address of the active per set. */
151                 return test_thread_flag(TIF_SINGLE_STEP) ?
152                         -1UL : child->thread.per_user.end;
153         else if (addr == (addr_t) &dummy->bits)
154                 /* Single-step bit. */
155                 return test_thread_flag(TIF_SINGLE_STEP) ?
156                         (1UL << (BITS_PER_LONG - 1)) : 0;
157         else if (addr == (addr_t) &dummy->starting_addr)
158                 /* Start address of the user specified per set. */
159                 return child->thread.per_user.start;
160         else if (addr == (addr_t) &dummy->ending_addr)
161                 /* End address of the user specified per set. */
162                 return child->thread.per_user.end;
163         else if (addr == (addr_t) &dummy->perc_atmid)
164                 /* PER code, ATMID and AI of the last PER trap */
165                 return (unsigned long)
166                         child->thread.per_event.cause << (BITS_PER_LONG - 16);
167         else if (addr == (addr_t) &dummy->address)
168                 /* Address of the last PER trap */
169                 return child->thread.per_event.address;
170         else if (addr == (addr_t) &dummy->access_id)
171                 /* Access id of the last PER trap */
172                 return (unsigned long)
173                         child->thread.per_event.paid << (BITS_PER_LONG - 8);
174         return 0;
175 }
176
177 /*
178  * Read the word at offset addr from the user area of a process. The
179  * trouble here is that the information is littered over different
180  * locations. The process registers are found on the kernel stack,
181  * the floating point stuff and the trace settings are stored in
182  * the task structure. In addition the different structures in
183  * struct user contain pad bytes that should be read as zeroes.
184  * Lovely...
185  */
186 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
187 {
188         struct user *dummy = NULL;
189         addr_t offset, tmp;
190
191         if (addr < (addr_t) &dummy->regs.acrs) {
192                 /*
193                  * psw and gprs are stored on the stack
194                  */
195                 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
196                 if (addr == (addr_t) &dummy->regs.psw.mask) {
197                         /* Return a clean psw mask. */
198                         tmp &= PSW_MASK_USER | PSW_MASK_RI;
199                         tmp |= PSW_USER_BITS;
200                 }
201
202         } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
203                 /*
204                  * access registers are stored in the thread structure
205                  */
206                 offset = addr - (addr_t) &dummy->regs.acrs;
207                 /*
208                  * Very special case: old & broken 64 bit gdb reading
209                  * from acrs[15]. Result is a 64 bit value. Read the
210                  * 32 bit acrs[15] value and shift it by 32. Sick...
211                  */
212                 if (addr == (addr_t) &dummy->regs.acrs[15])
213                         tmp = ((unsigned long) child->thread.acrs[15]) << 32;
214                 else
215                         tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
216
217         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
218                 /*
219                  * orig_gpr2 is stored on the kernel stack
220                  */
221                 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
222
223         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
224                 /*
225                  * prevent reads of padding hole between
226                  * orig_gpr2 and fp_regs on s390.
227                  */
228                 tmp = 0;
229
230         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
231                 /*
232                  * floating point control reg. is in the thread structure
233                  */
234                 tmp = child->thread.fpu.fpc;
235                 tmp <<= BITS_PER_LONG - 32;
236
237         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
238                 /*
239                  * floating point regs. are either in child->thread.fpu
240                  * or the child->thread.fpu.vxrs array
241                  */
242                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
243                 if (MACHINE_HAS_VX)
244                         tmp = *(addr_t *)
245                                ((addr_t) child->thread.fpu.vxrs + 2*offset);
246                 else
247                         tmp = *(addr_t *)
248                                ((addr_t) child->thread.fpu.fprs + offset);
249
250         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
251                 /*
252                  * Handle access to the per_info structure.
253                  */
254                 addr -= (addr_t) &dummy->regs.per_info;
255                 tmp = __peek_user_per(child, addr);
256
257         } else
258                 tmp = 0;
259
260         return tmp;
261 }
262
263 static int
264 peek_user(struct task_struct *child, addr_t addr, addr_t data)
265 {
266         addr_t tmp, mask;
267
268         /*
269          * Stupid gdb peeks/pokes the access registers in 64 bit with
270          * an alignment of 4. Programmers from hell...
271          */
272         mask = __ADDR_MASK;
273         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
274             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
275                 mask = 3;
276         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
277                 return -EIO;
278
279         tmp = __peek_user(child, addr);
280         return put_user(tmp, (addr_t __user *) data);
281 }
282
283 static inline void __poke_user_per(struct task_struct *child,
284                                    addr_t addr, addr_t data)
285 {
286         struct per_struct_kernel *dummy = NULL;
287
288         /*
289          * There are only three fields in the per_info struct that the
290          * debugger user can write to.
291          * 1) cr9: the debugger wants to set a new PER event mask
292          * 2) starting_addr: the debugger wants to set a new starting
293          *    address to use with the PER event mask.
294          * 3) ending_addr: the debugger wants to set a new ending
295          *    address to use with the PER event mask.
296          * The user specified PER event mask and the start and end
297          * addresses are used only if single stepping is not in effect.
298          * Writes to any other field in per_info are ignored.
299          */
300         if (addr == (addr_t) &dummy->cr9)
301                 /* PER event mask of the user specified per set. */
302                 child->thread.per_user.control =
303                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
304         else if (addr == (addr_t) &dummy->starting_addr)
305                 /* Starting address of the user specified per set. */
306                 child->thread.per_user.start = data;
307         else if (addr == (addr_t) &dummy->ending_addr)
308                 /* Ending address of the user specified per set. */
309                 child->thread.per_user.end = data;
310 }
311
312 /*
313  * Write a word to the user area of a process at location addr. This
314  * operation does have an additional problem compared to peek_user.
315  * Stores to the program status word and on the floating point
316  * control register needs to get checked for validity.
317  */
318 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
319 {
320         struct user *dummy = NULL;
321         addr_t offset;
322
323         if (addr < (addr_t) &dummy->regs.acrs) {
324                 /*
325                  * psw and gprs are stored on the stack
326                  */
327                 if (addr == (addr_t) &dummy->regs.psw.mask) {
328                         unsigned long mask = PSW_MASK_USER;
329
330                         mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
331                         if ((data ^ PSW_USER_BITS) & ~mask)
332                                 /* Invalid psw mask. */
333                                 return -EINVAL;
334                         if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
335                                 /* Invalid address-space-control bits */
336                                 return -EINVAL;
337                         if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
338                                 /* Invalid addressing mode bits */
339                                 return -EINVAL;
340                 }
341                 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
342
343         } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
344                 /*
345                  * access registers are stored in the thread structure
346                  */
347                 offset = addr - (addr_t) &dummy->regs.acrs;
348                 /*
349                  * Very special case: old & broken 64 bit gdb writing
350                  * to acrs[15] with a 64 bit value. Ignore the lower
351                  * half of the value and write the upper 32 bit to
352                  * acrs[15]. Sick...
353                  */
354                 if (addr == (addr_t) &dummy->regs.acrs[15])
355                         child->thread.acrs[15] = (unsigned int) (data >> 32);
356                 else
357                         *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
358
359         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
360                 /*
361                  * orig_gpr2 is stored on the kernel stack
362                  */
363                 task_pt_regs(child)->orig_gpr2 = data;
364
365         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
366                 /*
367                  * prevent writes of padding hole between
368                  * orig_gpr2 and fp_regs on s390.
369                  */
370                 return 0;
371
372         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
373                 /*
374                  * floating point control reg. is in the thread structure
375                  */
376                 if ((unsigned int) data != 0 ||
377                     test_fp_ctl(data >> (BITS_PER_LONG - 32)))
378                         return -EINVAL;
379                 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
380
381         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
382                 /*
383                  * floating point regs. are either in child->thread.fpu
384                  * or the child->thread.fpu.vxrs array
385                  */
386                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
387                 if (MACHINE_HAS_VX)
388                         *(addr_t *)((addr_t)
389                                 child->thread.fpu.vxrs + 2*offset) = data;
390                 else
391                         *(addr_t *)((addr_t)
392                                 child->thread.fpu.fprs + offset) = data;
393
394         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
395                 /*
396                  * Handle access to the per_info structure.
397                  */
398                 addr -= (addr_t) &dummy->regs.per_info;
399                 __poke_user_per(child, addr, data);
400
401         }
402
403         return 0;
404 }
405
406 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
407 {
408         addr_t mask;
409
410         /*
411          * Stupid gdb peeks/pokes the access registers in 64 bit with
412          * an alignment of 4. Programmers from hell indeed...
413          */
414         mask = __ADDR_MASK;
415         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
416             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
417                 mask = 3;
418         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
419                 return -EIO;
420
421         return __poke_user(child, addr, data);
422 }
423
424 long arch_ptrace(struct task_struct *child, long request,
425                  unsigned long addr, unsigned long data)
426 {
427         ptrace_area parea; 
428         int copied, ret;
429
430         switch (request) {
431         case PTRACE_PEEKUSR:
432                 /* read the word at location addr in the USER area. */
433                 return peek_user(child, addr, data);
434
435         case PTRACE_POKEUSR:
436                 /* write the word at location addr in the USER area */
437                 return poke_user(child, addr, data);
438
439         case PTRACE_PEEKUSR_AREA:
440         case PTRACE_POKEUSR_AREA:
441                 if (copy_from_user(&parea, (void __force __user *) addr,
442                                                         sizeof(parea)))
443                         return -EFAULT;
444                 addr = parea.kernel_addr;
445                 data = parea.process_addr;
446                 copied = 0;
447                 while (copied < parea.len) {
448                         if (request == PTRACE_PEEKUSR_AREA)
449                                 ret = peek_user(child, addr, data);
450                         else {
451                                 addr_t utmp;
452                                 if (get_user(utmp,
453                                              (addr_t __force __user *) data))
454                                         return -EFAULT;
455                                 ret = poke_user(child, addr, utmp);
456                         }
457                         if (ret)
458                                 return ret;
459                         addr += sizeof(unsigned long);
460                         data += sizeof(unsigned long);
461                         copied += sizeof(unsigned long);
462                 }
463                 return 0;
464         case PTRACE_GET_LAST_BREAK:
465                 put_user(child->thread.last_break,
466                          (unsigned long __user *) data);
467                 return 0;
468         case PTRACE_ENABLE_TE:
469                 if (!MACHINE_HAS_TE)
470                         return -EIO;
471                 child->thread.per_flags &= ~PER_FLAG_NO_TE;
472                 return 0;
473         case PTRACE_DISABLE_TE:
474                 if (!MACHINE_HAS_TE)
475                         return -EIO;
476                 child->thread.per_flags |= PER_FLAG_NO_TE;
477                 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
478                 return 0;
479         case PTRACE_TE_ABORT_RAND:
480                 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
481                         return -EIO;
482                 switch (data) {
483                 case 0UL:
484                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
485                         break;
486                 case 1UL:
487                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
488                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
489                         break;
490                 case 2UL:
491                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
492                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
493                         break;
494                 default:
495                         return -EINVAL;
496                 }
497                 return 0;
498         default:
499                 return ptrace_request(child, request, addr, data);
500         }
501 }
502
503 #ifdef CONFIG_COMPAT
504 /*
505  * Now the fun part starts... a 31 bit program running in the
506  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
507  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
508  * to handle, the difference to the 64 bit versions of the requests
509  * is that the access is done in multiples of 4 byte instead of
510  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
511  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
512  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
513  * is a 31 bit program too, the content of struct user can be
514  * emulated. A 31 bit program peeking into the struct user of
515  * a 64 bit program is a no-no.
516  */
517
518 /*
519  * Same as peek_user_per but for a 31 bit program.
520  */
521 static inline __u32 __peek_user_per_compat(struct task_struct *child,
522                                            addr_t addr)
523 {
524         struct compat_per_struct_kernel *dummy32 = NULL;
525
526         if (addr == (addr_t) &dummy32->cr9)
527                 /* Control bits of the active per set. */
528                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
529                         PER_EVENT_IFETCH : child->thread.per_user.control;
530         else if (addr == (addr_t) &dummy32->cr10)
531                 /* Start address of the active per set. */
532                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
533                         0 : child->thread.per_user.start;
534         else if (addr == (addr_t) &dummy32->cr11)
535                 /* End address of the active per set. */
536                 return test_thread_flag(TIF_SINGLE_STEP) ?
537                         PSW32_ADDR_INSN : child->thread.per_user.end;
538         else if (addr == (addr_t) &dummy32->bits)
539                 /* Single-step bit. */
540                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
541                         0x80000000 : 0;
542         else if (addr == (addr_t) &dummy32->starting_addr)
543                 /* Start address of the user specified per set. */
544                 return (__u32) child->thread.per_user.start;
545         else if (addr == (addr_t) &dummy32->ending_addr)
546                 /* End address of the user specified per set. */
547                 return (__u32) child->thread.per_user.end;
548         else if (addr == (addr_t) &dummy32->perc_atmid)
549                 /* PER code, ATMID and AI of the last PER trap */
550                 return (__u32) child->thread.per_event.cause << 16;
551         else if (addr == (addr_t) &dummy32->address)
552                 /* Address of the last PER trap */
553                 return (__u32) child->thread.per_event.address;
554         else if (addr == (addr_t) &dummy32->access_id)
555                 /* Access id of the last PER trap */
556                 return (__u32) child->thread.per_event.paid << 24;
557         return 0;
558 }
559
560 /*
561  * Same as peek_user but for a 31 bit program.
562  */
563 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
564 {
565         struct compat_user *dummy32 = NULL;
566         addr_t offset;
567         __u32 tmp;
568
569         if (addr < (addr_t) &dummy32->regs.acrs) {
570                 struct pt_regs *regs = task_pt_regs(child);
571                 /*
572                  * psw and gprs are stored on the stack
573                  */
574                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
575                         /* Fake a 31 bit psw mask. */
576                         tmp = (__u32)(regs->psw.mask >> 32);
577                         tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
578                         tmp |= PSW32_USER_BITS;
579                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
580                         /* Fake a 31 bit psw address. */
581                         tmp = (__u32) regs->psw.addr |
582                                 (__u32)(regs->psw.mask & PSW_MASK_BA);
583                 } else {
584                         /* gpr 0-15 */
585                         tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
586                 }
587         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
588                 /*
589                  * access registers are stored in the thread structure
590                  */
591                 offset = addr - (addr_t) &dummy32->regs.acrs;
592                 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
593
594         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
595                 /*
596                  * orig_gpr2 is stored on the kernel stack
597                  */
598                 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
599
600         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
601                 /*
602                  * prevent reads of padding hole between
603                  * orig_gpr2 and fp_regs on s390.
604                  */
605                 tmp = 0;
606
607         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
608                 /*
609                  * floating point control reg. is in the thread structure
610                  */
611                 tmp = child->thread.fpu.fpc;
612
613         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
614                 /*
615                  * floating point regs. are either in child->thread.fpu
616                  * or the child->thread.fpu.vxrs array
617                  */
618                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
619                 if (MACHINE_HAS_VX)
620                         tmp = *(__u32 *)
621                                ((addr_t) child->thread.fpu.vxrs + 2*offset);
622                 else
623                         tmp = *(__u32 *)
624                                ((addr_t) child->thread.fpu.fprs + offset);
625
626         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
627                 /*
628                  * Handle access to the per_info structure.
629                  */
630                 addr -= (addr_t) &dummy32->regs.per_info;
631                 tmp = __peek_user_per_compat(child, addr);
632
633         } else
634                 tmp = 0;
635
636         return tmp;
637 }
638
639 static int peek_user_compat(struct task_struct *child,
640                             addr_t addr, addr_t data)
641 {
642         __u32 tmp;
643
644         if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
645                 return -EIO;
646
647         tmp = __peek_user_compat(child, addr);
648         return put_user(tmp, (__u32 __user *) data);
649 }
650
651 /*
652  * Same as poke_user_per but for a 31 bit program.
653  */
654 static inline void __poke_user_per_compat(struct task_struct *child,
655                                           addr_t addr, __u32 data)
656 {
657         struct compat_per_struct_kernel *dummy32 = NULL;
658
659         if (addr == (addr_t) &dummy32->cr9)
660                 /* PER event mask of the user specified per set. */
661                 child->thread.per_user.control =
662                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
663         else if (addr == (addr_t) &dummy32->starting_addr)
664                 /* Starting address of the user specified per set. */
665                 child->thread.per_user.start = data;
666         else if (addr == (addr_t) &dummy32->ending_addr)
667                 /* Ending address of the user specified per set. */
668                 child->thread.per_user.end = data;
669 }
670
671 /*
672  * Same as poke_user but for a 31 bit program.
673  */
674 static int __poke_user_compat(struct task_struct *child,
675                               addr_t addr, addr_t data)
676 {
677         struct compat_user *dummy32 = NULL;
678         __u32 tmp = (__u32) data;
679         addr_t offset;
680
681         if (addr < (addr_t) &dummy32->regs.acrs) {
682                 struct pt_regs *regs = task_pt_regs(child);
683                 /*
684                  * psw, gprs, acrs and orig_gpr2 are stored on the stack
685                  */
686                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
687                         __u32 mask = PSW32_MASK_USER;
688
689                         mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
690                         /* Build a 64 bit psw mask from 31 bit mask. */
691                         if ((tmp ^ PSW32_USER_BITS) & ~mask)
692                                 /* Invalid psw mask. */
693                                 return -EINVAL;
694                         if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
695                                 /* Invalid address-space-control bits */
696                                 return -EINVAL;
697                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
698                                 (regs->psw.mask & PSW_MASK_BA) |
699                                 (__u64)(tmp & mask) << 32;
700                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
701                         /* Build a 64 bit psw address from 31 bit address. */
702                         regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
703                         /* Transfer 31 bit amode bit to psw mask. */
704                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
705                                 (__u64)(tmp & PSW32_ADDR_AMODE);
706                 } else {
707                         /* gpr 0-15 */
708                         *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
709                 }
710         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
711                 /*
712                  * access registers are stored in the thread structure
713                  */
714                 offset = addr - (addr_t) &dummy32->regs.acrs;
715                 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
716
717         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
718                 /*
719                  * orig_gpr2 is stored on the kernel stack
720                  */
721                 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
722
723         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
724                 /*
725                  * prevent writess of padding hole between
726                  * orig_gpr2 and fp_regs on s390.
727                  */
728                 return 0;
729
730         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
731                 /*
732                  * floating point control reg. is in the thread structure
733                  */
734                 if (test_fp_ctl(tmp))
735                         return -EINVAL;
736                 child->thread.fpu.fpc = data;
737
738         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
739                 /*
740                  * floating point regs. are either in child->thread.fpu
741                  * or the child->thread.fpu.vxrs array
742                  */
743                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
744                 if (MACHINE_HAS_VX)
745                         *(__u32 *)((addr_t)
746                                 child->thread.fpu.vxrs + 2*offset) = tmp;
747                 else
748                         *(__u32 *)((addr_t)
749                                 child->thread.fpu.fprs + offset) = tmp;
750
751         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
752                 /*
753                  * Handle access to the per_info structure.
754                  */
755                 addr -= (addr_t) &dummy32->regs.per_info;
756                 __poke_user_per_compat(child, addr, data);
757         }
758
759         return 0;
760 }
761
762 static int poke_user_compat(struct task_struct *child,
763                             addr_t addr, addr_t data)
764 {
765         if (!is_compat_task() || (addr & 3) ||
766             addr > sizeof(struct compat_user) - 3)
767                 return -EIO;
768
769         return __poke_user_compat(child, addr, data);
770 }
771
772 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
773                         compat_ulong_t caddr, compat_ulong_t cdata)
774 {
775         unsigned long addr = caddr;
776         unsigned long data = cdata;
777         compat_ptrace_area parea;
778         int copied, ret;
779
780         switch (request) {
781         case PTRACE_PEEKUSR:
782                 /* read the word at location addr in the USER area. */
783                 return peek_user_compat(child, addr, data);
784
785         case PTRACE_POKEUSR:
786                 /* write the word at location addr in the USER area */
787                 return poke_user_compat(child, addr, data);
788
789         case PTRACE_PEEKUSR_AREA:
790         case PTRACE_POKEUSR_AREA:
791                 if (copy_from_user(&parea, (void __force __user *) addr,
792                                                         sizeof(parea)))
793                         return -EFAULT;
794                 addr = parea.kernel_addr;
795                 data = parea.process_addr;
796                 copied = 0;
797                 while (copied < parea.len) {
798                         if (request == PTRACE_PEEKUSR_AREA)
799                                 ret = peek_user_compat(child, addr, data);
800                         else {
801                                 __u32 utmp;
802                                 if (get_user(utmp,
803                                              (__u32 __force __user *) data))
804                                         return -EFAULT;
805                                 ret = poke_user_compat(child, addr, utmp);
806                         }
807                         if (ret)
808                                 return ret;
809                         addr += sizeof(unsigned int);
810                         data += sizeof(unsigned int);
811                         copied += sizeof(unsigned int);
812                 }
813                 return 0;
814         case PTRACE_GET_LAST_BREAK:
815                 put_user(child->thread.last_break,
816                          (unsigned int __user *) data);
817                 return 0;
818         }
819         return compat_ptrace_request(child, request, addr, data);
820 }
821 #endif
822
823 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
824 {
825         unsigned long mask = -1UL;
826
827         /*
828          * The sysc_tracesys code in entry.S stored the system
829          * call number to gprs[2].
830          */
831         if (test_thread_flag(TIF_SYSCALL_TRACE) &&
832             (tracehook_report_syscall_entry(regs) ||
833              regs->gprs[2] >= NR_syscalls)) {
834                 /*
835                  * Tracing decided this syscall should not happen or the
836                  * debugger stored an invalid system call number. Skip
837                  * the system call and the system call restart handling.
838                  */
839                 clear_pt_regs_flag(regs, PIF_SYSCALL);
840                 return -1;
841         }
842
843         /* Do the secure computing check after ptrace. */
844         if (secure_computing(NULL)) {
845                 /* seccomp failures shouldn't expose any additional code. */
846                 return -1;
847         }
848
849         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
850                 trace_sys_enter(regs, regs->gprs[2]);
851
852         if (is_compat_task())
853                 mask = 0xffffffff;
854
855         audit_syscall_entry(regs->gprs[2], regs->orig_gpr2 & mask,
856                             regs->gprs[3] &mask, regs->gprs[4] &mask,
857                             regs->gprs[5] &mask);
858
859         return regs->gprs[2];
860 }
861
862 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
863 {
864         audit_syscall_exit(regs);
865
866         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
867                 trace_sys_exit(regs, regs->gprs[2]);
868
869         if (test_thread_flag(TIF_SYSCALL_TRACE))
870                 tracehook_report_syscall_exit(regs, 0);
871 }
872
873 /*
874  * user_regset definitions.
875  */
876
877 static int s390_regs_get(struct task_struct *target,
878                          const struct user_regset *regset,
879                          unsigned int pos, unsigned int count,
880                          void *kbuf, void __user *ubuf)
881 {
882         if (target == current)
883                 save_access_regs(target->thread.acrs);
884
885         if (kbuf) {
886                 unsigned long *k = kbuf;
887                 while (count > 0) {
888                         *k++ = __peek_user(target, pos);
889                         count -= sizeof(*k);
890                         pos += sizeof(*k);
891                 }
892         } else {
893                 unsigned long __user *u = ubuf;
894                 while (count > 0) {
895                         if (__put_user(__peek_user(target, pos), u++))
896                                 return -EFAULT;
897                         count -= sizeof(*u);
898                         pos += sizeof(*u);
899                 }
900         }
901         return 0;
902 }
903
904 static int s390_regs_set(struct task_struct *target,
905                          const struct user_regset *regset,
906                          unsigned int pos, unsigned int count,
907                          const void *kbuf, const void __user *ubuf)
908 {
909         int rc = 0;
910
911         if (target == current)
912                 save_access_regs(target->thread.acrs);
913
914         if (kbuf) {
915                 const unsigned long *k = kbuf;
916                 while (count > 0 && !rc) {
917                         rc = __poke_user(target, pos, *k++);
918                         count -= sizeof(*k);
919                         pos += sizeof(*k);
920                 }
921         } else {
922                 const unsigned long  __user *u = ubuf;
923                 while (count > 0 && !rc) {
924                         unsigned long word;
925                         rc = __get_user(word, u++);
926                         if (rc)
927                                 break;
928                         rc = __poke_user(target, pos, word);
929                         count -= sizeof(*u);
930                         pos += sizeof(*u);
931                 }
932         }
933
934         if (rc == 0 && target == current)
935                 restore_access_regs(target->thread.acrs);
936
937         return rc;
938 }
939
940 static int s390_fpregs_get(struct task_struct *target,
941                            const struct user_regset *regset, unsigned int pos,
942                            unsigned int count, void *kbuf, void __user *ubuf)
943 {
944         _s390_fp_regs fp_regs;
945
946         if (target == current)
947                 save_fpu_regs();
948
949         fp_regs.fpc = target->thread.fpu.fpc;
950         fpregs_store(&fp_regs, &target->thread.fpu);
951
952         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
953                                    &fp_regs, 0, -1);
954 }
955
956 static int s390_fpregs_set(struct task_struct *target,
957                            const struct user_regset *regset, unsigned int pos,
958                            unsigned int count, const void *kbuf,
959                            const void __user *ubuf)
960 {
961         int rc = 0;
962         freg_t fprs[__NUM_FPRS];
963
964         if (target == current)
965                 save_fpu_regs();
966
967         if (MACHINE_HAS_VX)
968                 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
969         else
970                 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
971
972         /* If setting FPC, must validate it first. */
973         if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
974                 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
975                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
976                                         0, offsetof(s390_fp_regs, fprs));
977                 if (rc)
978                         return rc;
979                 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
980                         return -EINVAL;
981                 target->thread.fpu.fpc = ufpc[0];
982         }
983
984         if (rc == 0 && count > 0)
985                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
986                                         fprs, offsetof(s390_fp_regs, fprs), -1);
987         if (rc)
988                 return rc;
989
990         if (MACHINE_HAS_VX)
991                 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
992         else
993                 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
994
995         return rc;
996 }
997
998 static int s390_last_break_get(struct task_struct *target,
999                                const struct user_regset *regset,
1000                                unsigned int pos, unsigned int count,
1001                                void *kbuf, void __user *ubuf)
1002 {
1003         if (count > 0) {
1004                 if (kbuf) {
1005                         unsigned long *k = kbuf;
1006                         *k = target->thread.last_break;
1007                 } else {
1008                         unsigned long  __user *u = ubuf;
1009                         if (__put_user(target->thread.last_break, u))
1010                                 return -EFAULT;
1011                 }
1012         }
1013         return 0;
1014 }
1015
1016 static int s390_last_break_set(struct task_struct *target,
1017                                const struct user_regset *regset,
1018                                unsigned int pos, unsigned int count,
1019                                const void *kbuf, const void __user *ubuf)
1020 {
1021         return 0;
1022 }
1023
1024 static int s390_tdb_get(struct task_struct *target,
1025                         const struct user_regset *regset,
1026                         unsigned int pos, unsigned int count,
1027                         void *kbuf, void __user *ubuf)
1028 {
1029         struct pt_regs *regs = task_pt_regs(target);
1030         unsigned char *data;
1031
1032         if (!(regs->int_code & 0x200))
1033                 return -ENODATA;
1034         data = target->thread.trap_tdb;
1035         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1036 }
1037
1038 static int s390_tdb_set(struct task_struct *target,
1039                         const struct user_regset *regset,
1040                         unsigned int pos, unsigned int count,
1041                         const void *kbuf, const void __user *ubuf)
1042 {
1043         return 0;
1044 }
1045
1046 static int s390_vxrs_low_get(struct task_struct *target,
1047                              const struct user_regset *regset,
1048                              unsigned int pos, unsigned int count,
1049                              void *kbuf, void __user *ubuf)
1050 {
1051         __u64 vxrs[__NUM_VXRS_LOW];
1052         int i;
1053
1054         if (!MACHINE_HAS_VX)
1055                 return -ENODEV;
1056         if (target == current)
1057                 save_fpu_regs();
1058         for (i = 0; i < __NUM_VXRS_LOW; i++)
1059                 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1060         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1061 }
1062
1063 static int s390_vxrs_low_set(struct task_struct *target,
1064                              const struct user_regset *regset,
1065                              unsigned int pos, unsigned int count,
1066                              const void *kbuf, const void __user *ubuf)
1067 {
1068         __u64 vxrs[__NUM_VXRS_LOW];
1069         int i, rc;
1070
1071         if (!MACHINE_HAS_VX)
1072                 return -ENODEV;
1073         if (target == current)
1074                 save_fpu_regs();
1075
1076         for (i = 0; i < __NUM_VXRS_LOW; i++)
1077                 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1078
1079         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1080         if (rc == 0)
1081                 for (i = 0; i < __NUM_VXRS_LOW; i++)
1082                         *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1083
1084         return rc;
1085 }
1086
1087 static int s390_vxrs_high_get(struct task_struct *target,
1088                               const struct user_regset *regset,
1089                               unsigned int pos, unsigned int count,
1090                               void *kbuf, void __user *ubuf)
1091 {
1092         __vector128 vxrs[__NUM_VXRS_HIGH];
1093
1094         if (!MACHINE_HAS_VX)
1095                 return -ENODEV;
1096         if (target == current)
1097                 save_fpu_regs();
1098         memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1099
1100         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1101 }
1102
1103 static int s390_vxrs_high_set(struct task_struct *target,
1104                               const struct user_regset *regset,
1105                               unsigned int pos, unsigned int count,
1106                               const void *kbuf, const void __user *ubuf)
1107 {
1108         int rc;
1109
1110         if (!MACHINE_HAS_VX)
1111                 return -ENODEV;
1112         if (target == current)
1113                 save_fpu_regs();
1114
1115         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1116                                 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1117         return rc;
1118 }
1119
1120 static int s390_system_call_get(struct task_struct *target,
1121                                 const struct user_regset *regset,
1122                                 unsigned int pos, unsigned int count,
1123                                 void *kbuf, void __user *ubuf)
1124 {
1125         unsigned int *data = &target->thread.system_call;
1126         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1127                                    data, 0, sizeof(unsigned int));
1128 }
1129
1130 static int s390_system_call_set(struct task_struct *target,
1131                                 const struct user_regset *regset,
1132                                 unsigned int pos, unsigned int count,
1133                                 const void *kbuf, const void __user *ubuf)
1134 {
1135         unsigned int *data = &target->thread.system_call;
1136         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1137                                   data, 0, sizeof(unsigned int));
1138 }
1139
1140 static const struct user_regset s390_regsets[] = {
1141         {
1142                 .core_note_type = NT_PRSTATUS,
1143                 .n = sizeof(s390_regs) / sizeof(long),
1144                 .size = sizeof(long),
1145                 .align = sizeof(long),
1146                 .get = s390_regs_get,
1147                 .set = s390_regs_set,
1148         },
1149         {
1150                 .core_note_type = NT_PRFPREG,
1151                 .n = sizeof(s390_fp_regs) / sizeof(long),
1152                 .size = sizeof(long),
1153                 .align = sizeof(long),
1154                 .get = s390_fpregs_get,
1155                 .set = s390_fpregs_set,
1156         },
1157         {
1158                 .core_note_type = NT_S390_SYSTEM_CALL,
1159                 .n = 1,
1160                 .size = sizeof(unsigned int),
1161                 .align = sizeof(unsigned int),
1162                 .get = s390_system_call_get,
1163                 .set = s390_system_call_set,
1164         },
1165         {
1166                 .core_note_type = NT_S390_LAST_BREAK,
1167                 .n = 1,
1168                 .size = sizeof(long),
1169                 .align = sizeof(long),
1170                 .get = s390_last_break_get,
1171                 .set = s390_last_break_set,
1172         },
1173         {
1174                 .core_note_type = NT_S390_TDB,
1175                 .n = 1,
1176                 .size = 256,
1177                 .align = 1,
1178                 .get = s390_tdb_get,
1179                 .set = s390_tdb_set,
1180         },
1181         {
1182                 .core_note_type = NT_S390_VXRS_LOW,
1183                 .n = __NUM_VXRS_LOW,
1184                 .size = sizeof(__u64),
1185                 .align = sizeof(__u64),
1186                 .get = s390_vxrs_low_get,
1187                 .set = s390_vxrs_low_set,
1188         },
1189         {
1190                 .core_note_type = NT_S390_VXRS_HIGH,
1191                 .n = __NUM_VXRS_HIGH,
1192                 .size = sizeof(__vector128),
1193                 .align = sizeof(__vector128),
1194                 .get = s390_vxrs_high_get,
1195                 .set = s390_vxrs_high_set,
1196         },
1197 };
1198
1199 static const struct user_regset_view user_s390_view = {
1200         .name = UTS_MACHINE,
1201         .e_machine = EM_S390,
1202         .regsets = s390_regsets,
1203         .n = ARRAY_SIZE(s390_regsets)
1204 };
1205
1206 #ifdef CONFIG_COMPAT
1207 static int s390_compat_regs_get(struct task_struct *target,
1208                                 const struct user_regset *regset,
1209                                 unsigned int pos, unsigned int count,
1210                                 void *kbuf, void __user *ubuf)
1211 {
1212         if (target == current)
1213                 save_access_regs(target->thread.acrs);
1214
1215         if (kbuf) {
1216                 compat_ulong_t *k = kbuf;
1217                 while (count > 0) {
1218                         *k++ = __peek_user_compat(target, pos);
1219                         count -= sizeof(*k);
1220                         pos += sizeof(*k);
1221                 }
1222         } else {
1223                 compat_ulong_t __user *u = ubuf;
1224                 while (count > 0) {
1225                         if (__put_user(__peek_user_compat(target, pos), u++))
1226                                 return -EFAULT;
1227                         count -= sizeof(*u);
1228                         pos += sizeof(*u);
1229                 }
1230         }
1231         return 0;
1232 }
1233
1234 static int s390_compat_regs_set(struct task_struct *target,
1235                                 const struct user_regset *regset,
1236                                 unsigned int pos, unsigned int count,
1237                                 const void *kbuf, const void __user *ubuf)
1238 {
1239         int rc = 0;
1240
1241         if (target == current)
1242                 save_access_regs(target->thread.acrs);
1243
1244         if (kbuf) {
1245                 const compat_ulong_t *k = kbuf;
1246                 while (count > 0 && !rc) {
1247                         rc = __poke_user_compat(target, pos, *k++);
1248                         count -= sizeof(*k);
1249                         pos += sizeof(*k);
1250                 }
1251         } else {
1252                 const compat_ulong_t  __user *u = ubuf;
1253                 while (count > 0 && !rc) {
1254                         compat_ulong_t word;
1255                         rc = __get_user(word, u++);
1256                         if (rc)
1257                                 break;
1258                         rc = __poke_user_compat(target, pos, word);
1259                         count -= sizeof(*u);
1260                         pos += sizeof(*u);
1261                 }
1262         }
1263
1264         if (rc == 0 && target == current)
1265                 restore_access_regs(target->thread.acrs);
1266
1267         return rc;
1268 }
1269
1270 static int s390_compat_regs_high_get(struct task_struct *target,
1271                                      const struct user_regset *regset,
1272                                      unsigned int pos, unsigned int count,
1273                                      void *kbuf, void __user *ubuf)
1274 {
1275         compat_ulong_t *gprs_high;
1276
1277         gprs_high = (compat_ulong_t *)
1278                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1279         if (kbuf) {
1280                 compat_ulong_t *k = kbuf;
1281                 while (count > 0) {
1282                         *k++ = *gprs_high;
1283                         gprs_high += 2;
1284                         count -= sizeof(*k);
1285                 }
1286         } else {
1287                 compat_ulong_t __user *u = ubuf;
1288                 while (count > 0) {
1289                         if (__put_user(*gprs_high, u++))
1290                                 return -EFAULT;
1291                         gprs_high += 2;
1292                         count -= sizeof(*u);
1293                 }
1294         }
1295         return 0;
1296 }
1297
1298 static int s390_compat_regs_high_set(struct task_struct *target,
1299                                      const struct user_regset *regset,
1300                                      unsigned int pos, unsigned int count,
1301                                      const void *kbuf, const void __user *ubuf)
1302 {
1303         compat_ulong_t *gprs_high;
1304         int rc = 0;
1305
1306         gprs_high = (compat_ulong_t *)
1307                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1308         if (kbuf) {
1309                 const compat_ulong_t *k = kbuf;
1310                 while (count > 0) {
1311                         *gprs_high = *k++;
1312                         *gprs_high += 2;
1313                         count -= sizeof(*k);
1314                 }
1315         } else {
1316                 const compat_ulong_t  __user *u = ubuf;
1317                 while (count > 0 && !rc) {
1318                         unsigned long word;
1319                         rc = __get_user(word, u++);
1320                         if (rc)
1321                                 break;
1322                         *gprs_high = word;
1323                         *gprs_high += 2;
1324                         count -= sizeof(*u);
1325                 }
1326         }
1327
1328         return rc;
1329 }
1330
1331 static int s390_compat_last_break_get(struct task_struct *target,
1332                                       const struct user_regset *regset,
1333                                       unsigned int pos, unsigned int count,
1334                                       void *kbuf, void __user *ubuf)
1335 {
1336         compat_ulong_t last_break;
1337
1338         if (count > 0) {
1339                 last_break = target->thread.last_break;
1340                 if (kbuf) {
1341                         unsigned long *k = kbuf;
1342                         *k = last_break;
1343                 } else {
1344                         unsigned long  __user *u = ubuf;
1345                         if (__put_user(last_break, u))
1346                                 return -EFAULT;
1347                 }
1348         }
1349         return 0;
1350 }
1351
1352 static int s390_compat_last_break_set(struct task_struct *target,
1353                                       const struct user_regset *regset,
1354                                       unsigned int pos, unsigned int count,
1355                                       const void *kbuf, const void __user *ubuf)
1356 {
1357         return 0;
1358 }
1359
1360 static const struct user_regset s390_compat_regsets[] = {
1361         {
1362                 .core_note_type = NT_PRSTATUS,
1363                 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1364                 .size = sizeof(compat_long_t),
1365                 .align = sizeof(compat_long_t),
1366                 .get = s390_compat_regs_get,
1367                 .set = s390_compat_regs_set,
1368         },
1369         {
1370                 .core_note_type = NT_PRFPREG,
1371                 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1372                 .size = sizeof(compat_long_t),
1373                 .align = sizeof(compat_long_t),
1374                 .get = s390_fpregs_get,
1375                 .set = s390_fpregs_set,
1376         },
1377         {
1378                 .core_note_type = NT_S390_SYSTEM_CALL,
1379                 .n = 1,
1380                 .size = sizeof(compat_uint_t),
1381                 .align = sizeof(compat_uint_t),
1382                 .get = s390_system_call_get,
1383                 .set = s390_system_call_set,
1384         },
1385         {
1386                 .core_note_type = NT_S390_LAST_BREAK,
1387                 .n = 1,
1388                 .size = sizeof(long),
1389                 .align = sizeof(long),
1390                 .get = s390_compat_last_break_get,
1391                 .set = s390_compat_last_break_set,
1392         },
1393         {
1394                 .core_note_type = NT_S390_TDB,
1395                 .n = 1,
1396                 .size = 256,
1397                 .align = 1,
1398                 .get = s390_tdb_get,
1399                 .set = s390_tdb_set,
1400         },
1401         {
1402                 .core_note_type = NT_S390_VXRS_LOW,
1403                 .n = __NUM_VXRS_LOW,
1404                 .size = sizeof(__u64),
1405                 .align = sizeof(__u64),
1406                 .get = s390_vxrs_low_get,
1407                 .set = s390_vxrs_low_set,
1408         },
1409         {
1410                 .core_note_type = NT_S390_VXRS_HIGH,
1411                 .n = __NUM_VXRS_HIGH,
1412                 .size = sizeof(__vector128),
1413                 .align = sizeof(__vector128),
1414                 .get = s390_vxrs_high_get,
1415                 .set = s390_vxrs_high_set,
1416         },
1417         {
1418                 .core_note_type = NT_S390_HIGH_GPRS,
1419                 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1420                 .size = sizeof(compat_long_t),
1421                 .align = sizeof(compat_long_t),
1422                 .get = s390_compat_regs_high_get,
1423                 .set = s390_compat_regs_high_set,
1424         },
1425 };
1426
1427 static const struct user_regset_view user_s390_compat_view = {
1428         .name = "s390",
1429         .e_machine = EM_S390,
1430         .regsets = s390_compat_regsets,
1431         .n = ARRAY_SIZE(s390_compat_regsets)
1432 };
1433 #endif
1434
1435 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1436 {
1437 #ifdef CONFIG_COMPAT
1438         if (test_tsk_thread_flag(task, TIF_31BIT))
1439                 return &user_s390_compat_view;
1440 #endif
1441         return &user_s390_view;
1442 }
1443
1444 static const char *gpr_names[NUM_GPRS] = {
1445         "r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1446         "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1447 };
1448
1449 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1450 {
1451         if (offset >= NUM_GPRS)
1452                 return 0;
1453         return regs->gprs[offset];
1454 }
1455
1456 int regs_query_register_offset(const char *name)
1457 {
1458         unsigned long offset;
1459
1460         if (!name || *name != 'r')
1461                 return -EINVAL;
1462         if (kstrtoul(name + 1, 10, &offset))
1463                 return -EINVAL;
1464         if (offset >= NUM_GPRS)
1465                 return -EINVAL;
1466         return offset;
1467 }
1468
1469 const char *regs_query_register_name(unsigned int offset)
1470 {
1471         if (offset >= NUM_GPRS)
1472                 return NULL;
1473         return gpr_names[offset];
1474 }
1475
1476 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1477 {
1478         unsigned long ksp = kernel_stack_pointer(regs);
1479
1480         return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1481 }
1482
1483 /**
1484  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1485  * @regs:pt_regs which contains kernel stack pointer.
1486  * @n:stack entry number.
1487  *
1488  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1489  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1490  * this returns 0.
1491  */
1492 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1493 {
1494         unsigned long addr;
1495
1496         addr = kernel_stack_pointer(regs) + n * sizeof(long);
1497         if (!regs_within_kernel_stack(regs, addr))
1498                 return 0;
1499         return *(unsigned long *)addr;
1500 }