mm: remove include/linux/bootmem.h
[linux-2.6-block.git] / arch / s390 / kernel / crash_dump.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * S390 kdump implementation
4  *
5  * Copyright IBM Corp. 2011
6  * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
7  */
8
9 #include <linux/crash_dump.h>
10 #include <asm/lowcore.h>
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/slab.h>
16 #include <linux/memblock.h>
17 #include <linux/elf.h>
18 #include <asm/asm-offsets.h>
19 #include <asm/os_info.h>
20 #include <asm/elf.h>
21 #include <asm/ipl.h>
22 #include <asm/sclp.h>
23
24 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
25 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
26 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
27
28 static struct memblock_region oldmem_region;
29
30 static struct memblock_type oldmem_type = {
31         .cnt = 1,
32         .max = 1,
33         .total_size = 0,
34         .regions = &oldmem_region,
35         .name = "oldmem",
36 };
37
38 struct save_area {
39         struct list_head list;
40         u64 psw[2];
41         u64 ctrs[16];
42         u64 gprs[16];
43         u32 acrs[16];
44         u64 fprs[16];
45         u32 fpc;
46         u32 prefix;
47         u64 todpreg;
48         u64 timer;
49         u64 todcmp;
50         u64 vxrs_low[16];
51         __vector128 vxrs_high[16];
52 };
53
54 static LIST_HEAD(dump_save_areas);
55
56 /*
57  * Allocate a save area
58  */
59 struct save_area * __init save_area_alloc(bool is_boot_cpu)
60 {
61         struct save_area *sa;
62
63         sa = (void *) memblock_phys_alloc(sizeof(*sa), 8);
64         if (is_boot_cpu)
65                 list_add(&sa->list, &dump_save_areas);
66         else
67                 list_add_tail(&sa->list, &dump_save_areas);
68         return sa;
69 }
70
71 /*
72  * Return the address of the save area for the boot CPU
73  */
74 struct save_area * __init save_area_boot_cpu(void)
75 {
76         return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
77 }
78
79 /*
80  * Copy CPU registers into the save area
81  */
82 void __init save_area_add_regs(struct save_area *sa, void *regs)
83 {
84         struct lowcore *lc;
85
86         lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
87         memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
88         memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
89         memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
90         memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
91         memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
92         memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
93         memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
94         memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
95         memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
96         memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
97 }
98
99 /*
100  * Copy vector registers into the save area
101  */
102 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
103 {
104         int i;
105
106         /* Copy lower halves of vector registers 0-15 */
107         for (i = 0; i < 16; i++)
108                 memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
109         /* Copy vector registers 16-31 */
110         memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
111 }
112
113 /*
114  * Return physical address for virtual address
115  */
116 static inline void *load_real_addr(void *addr)
117 {
118         unsigned long real_addr;
119
120         asm volatile(
121                    "    lra     %0,0(%1)\n"
122                    "    jz      0f\n"
123                    "    la      %0,0\n"
124                    "0:"
125                    : "=a" (real_addr) : "a" (addr) : "cc");
126         return (void *)real_addr;
127 }
128
129 /*
130  * Copy memory of the old, dumped system to a kernel space virtual address
131  */
132 int copy_oldmem_kernel(void *dst, void *src, size_t count)
133 {
134         unsigned long from, len;
135         void *ra;
136         int rc;
137
138         while (count) {
139                 from = __pa(src);
140                 if (!OLDMEM_BASE && from < sclp.hsa_size) {
141                         /* Copy from zfcpdump HSA area */
142                         len = min(count, sclp.hsa_size - from);
143                         rc = memcpy_hsa_kernel(dst, from, len);
144                         if (rc)
145                                 return rc;
146                 } else {
147                         /* Check for swapped kdump oldmem areas */
148                         if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
149                                 from -= OLDMEM_BASE;
150                                 len = min(count, OLDMEM_SIZE - from);
151                         } else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
152                                 len = min(count, OLDMEM_SIZE - from);
153                                 from += OLDMEM_BASE;
154                         } else {
155                                 len = count;
156                         }
157                         if (is_vmalloc_or_module_addr(dst)) {
158                                 ra = load_real_addr(dst);
159                                 len = min(PAGE_SIZE - offset_in_page(ra), len);
160                         } else {
161                                 ra = dst;
162                         }
163                         if (memcpy_real(ra, (void *) from, len))
164                                 return -EFAULT;
165                 }
166                 dst += len;
167                 src += len;
168                 count -= len;
169         }
170         return 0;
171 }
172
173 /*
174  * Copy memory of the old, dumped system to a user space virtual address
175  */
176 static int copy_oldmem_user(void __user *dst, void *src, size_t count)
177 {
178         unsigned long from, len;
179         int rc;
180
181         while (count) {
182                 from = __pa(src);
183                 if (!OLDMEM_BASE && from < sclp.hsa_size) {
184                         /* Copy from zfcpdump HSA area */
185                         len = min(count, sclp.hsa_size - from);
186                         rc = memcpy_hsa_user(dst, from, len);
187                         if (rc)
188                                 return rc;
189                 } else {
190                         /* Check for swapped kdump oldmem areas */
191                         if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
192                                 from -= OLDMEM_BASE;
193                                 len = min(count, OLDMEM_SIZE - from);
194                         } else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
195                                 len = min(count, OLDMEM_SIZE - from);
196                                 from += OLDMEM_BASE;
197                         } else {
198                                 len = count;
199                         }
200                         rc = copy_to_user_real(dst, (void *) from, count);
201                         if (rc)
202                                 return rc;
203                 }
204                 dst += len;
205                 src += len;
206                 count -= len;
207         }
208         return 0;
209 }
210
211 /*
212  * Copy one page from "oldmem"
213  */
214 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
215                          unsigned long offset, int userbuf)
216 {
217         void *src;
218         int rc;
219
220         if (!csize)
221                 return 0;
222         src = (void *) (pfn << PAGE_SHIFT) + offset;
223         if (userbuf)
224                 rc = copy_oldmem_user((void __force __user *) buf, src, csize);
225         else
226                 rc = copy_oldmem_kernel((void *) buf, src, csize);
227         return rc;
228 }
229
230 /*
231  * Remap "oldmem" for kdump
232  *
233  * For the kdump reserved memory this functions performs a swap operation:
234  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
235  */
236 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
237                                         unsigned long from, unsigned long pfn,
238                                         unsigned long size, pgprot_t prot)
239 {
240         unsigned long size_old;
241         int rc;
242
243         if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
244                 size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
245                 rc = remap_pfn_range(vma, from,
246                                      pfn + (OLDMEM_BASE >> PAGE_SHIFT),
247                                      size_old, prot);
248                 if (rc || size == size_old)
249                         return rc;
250                 size -= size_old;
251                 from += size_old;
252                 pfn += size_old >> PAGE_SHIFT;
253         }
254         return remap_pfn_range(vma, from, pfn, size, prot);
255 }
256
257 /*
258  * Remap "oldmem" for zfcpdump
259  *
260  * We only map available memory above HSA size. Memory below HSA size
261  * is read on demand using the copy_oldmem_page() function.
262  */
263 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
264                                            unsigned long from,
265                                            unsigned long pfn,
266                                            unsigned long size, pgprot_t prot)
267 {
268         unsigned long hsa_end = sclp.hsa_size;
269         unsigned long size_hsa;
270
271         if (pfn < hsa_end >> PAGE_SHIFT) {
272                 size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
273                 if (size == size_hsa)
274                         return 0;
275                 size -= size_hsa;
276                 from += size_hsa;
277                 pfn += size_hsa >> PAGE_SHIFT;
278         }
279         return remap_pfn_range(vma, from, pfn, size, prot);
280 }
281
282 /*
283  * Remap "oldmem" for kdump or zfcpdump
284  */
285 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
286                            unsigned long pfn, unsigned long size, pgprot_t prot)
287 {
288         if (OLDMEM_BASE)
289                 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
290         else
291                 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
292                                                        prot);
293 }
294
295 static const char *nt_name(Elf64_Word type)
296 {
297         const char *name = "LINUX";
298
299         if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
300                 name = KEXEC_CORE_NOTE_NAME;
301         return name;
302 }
303
304 /*
305  * Initialize ELF note
306  */
307 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
308                           const char *name)
309 {
310         Elf64_Nhdr *note;
311         u64 len;
312
313         note = (Elf64_Nhdr *)buf;
314         note->n_namesz = strlen(name) + 1;
315         note->n_descsz = d_len;
316         note->n_type = type;
317         len = sizeof(Elf64_Nhdr);
318
319         memcpy(buf + len, name, note->n_namesz);
320         len = roundup(len + note->n_namesz, 4);
321
322         memcpy(buf + len, desc, note->n_descsz);
323         len = roundup(len + note->n_descsz, 4);
324
325         return PTR_ADD(buf, len);
326 }
327
328 static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
329 {
330         return nt_init_name(buf, type, desc, d_len, nt_name(type));
331 }
332
333 /*
334  * Calculate the size of ELF note
335  */
336 static size_t nt_size_name(int d_len, const char *name)
337 {
338         size_t size;
339
340         size = sizeof(Elf64_Nhdr);
341         size += roundup(strlen(name) + 1, 4);
342         size += roundup(d_len, 4);
343
344         return size;
345 }
346
347 static inline size_t nt_size(Elf64_Word type, int d_len)
348 {
349         return nt_size_name(d_len, nt_name(type));
350 }
351
352 /*
353  * Fill ELF notes for one CPU with save area registers
354  */
355 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
356 {
357         struct elf_prstatus nt_prstatus;
358         elf_fpregset_t nt_fpregset;
359
360         /* Prepare prstatus note */
361         memset(&nt_prstatus, 0, sizeof(nt_prstatus));
362         memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
363         memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
364         memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
365         nt_prstatus.pr_pid = cpu;
366         /* Prepare fpregset (floating point) note */
367         memset(&nt_fpregset, 0, sizeof(nt_fpregset));
368         memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
369         memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
370         /* Create ELF notes for the CPU */
371         ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
372         ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
373         ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
374         ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
375         ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
376         ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
377         ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
378         if (MACHINE_HAS_VX) {
379                 ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
380                               &sa->vxrs_high, sizeof(sa->vxrs_high));
381                 ptr = nt_init(ptr, NT_S390_VXRS_LOW,
382                               &sa->vxrs_low, sizeof(sa->vxrs_low));
383         }
384         return ptr;
385 }
386
387 /*
388  * Calculate size of ELF notes per cpu
389  */
390 static size_t get_cpu_elf_notes_size(void)
391 {
392         struct save_area *sa = NULL;
393         size_t size;
394
395         size =  nt_size(NT_PRSTATUS, sizeof(struct elf_prstatus));
396         size +=  nt_size(NT_PRFPREG, sizeof(elf_fpregset_t));
397         size +=  nt_size(NT_S390_TIMER, sizeof(sa->timer));
398         size +=  nt_size(NT_S390_TODCMP, sizeof(sa->todcmp));
399         size +=  nt_size(NT_S390_TODPREG, sizeof(sa->todpreg));
400         size +=  nt_size(NT_S390_CTRS, sizeof(sa->ctrs));
401         size +=  nt_size(NT_S390_PREFIX, sizeof(sa->prefix));
402         if (MACHINE_HAS_VX) {
403                 size += nt_size(NT_S390_VXRS_HIGH, sizeof(sa->vxrs_high));
404                 size += nt_size(NT_S390_VXRS_LOW, sizeof(sa->vxrs_low));
405         }
406
407         return size;
408 }
409
410 /*
411  * Initialize prpsinfo note (new kernel)
412  */
413 static void *nt_prpsinfo(void *ptr)
414 {
415         struct elf_prpsinfo prpsinfo;
416
417         memset(&prpsinfo, 0, sizeof(prpsinfo));
418         prpsinfo.pr_sname = 'R';
419         strcpy(prpsinfo.pr_fname, "vmlinux");
420         return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
421 }
422
423 /*
424  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
425  */
426 static void *get_vmcoreinfo_old(unsigned long *size)
427 {
428         char nt_name[11], *vmcoreinfo;
429         Elf64_Nhdr note;
430         void *addr;
431
432         if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
433                 return NULL;
434         memset(nt_name, 0, sizeof(nt_name));
435         if (copy_oldmem_kernel(&note, addr, sizeof(note)))
436                 return NULL;
437         if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
438                                sizeof(nt_name) - 1))
439                 return NULL;
440         if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0)
441                 return NULL;
442         vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL);
443         if (!vmcoreinfo)
444                 return NULL;
445         if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) {
446                 kfree(vmcoreinfo);
447                 return NULL;
448         }
449         *size = note.n_descsz;
450         return vmcoreinfo;
451 }
452
453 /*
454  * Initialize vmcoreinfo note (new kernel)
455  */
456 static void *nt_vmcoreinfo(void *ptr)
457 {
458         const char *name = VMCOREINFO_NOTE_NAME;
459         unsigned long size;
460         void *vmcoreinfo;
461
462         vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
463         if (vmcoreinfo)
464                 return nt_init_name(ptr, 0, vmcoreinfo, size, name);
465
466         vmcoreinfo = get_vmcoreinfo_old(&size);
467         if (!vmcoreinfo)
468                 return ptr;
469         ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name);
470         kfree(vmcoreinfo);
471         return ptr;
472 }
473
474 static size_t nt_vmcoreinfo_size(void)
475 {
476         const char *name = VMCOREINFO_NOTE_NAME;
477         unsigned long size;
478         void *vmcoreinfo;
479
480         vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
481         if (vmcoreinfo)
482                 return nt_size_name(size, name);
483
484         vmcoreinfo = get_vmcoreinfo_old(&size);
485         if (!vmcoreinfo)
486                 return 0;
487
488         kfree(vmcoreinfo);
489         return nt_size_name(size, name);
490 }
491
492 /*
493  * Initialize final note (needed for /proc/vmcore code)
494  */
495 static void *nt_final(void *ptr)
496 {
497         Elf64_Nhdr *note;
498
499         note = (Elf64_Nhdr *) ptr;
500         note->n_namesz = 0;
501         note->n_descsz = 0;
502         note->n_type = 0;
503         return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
504 }
505
506 /*
507  * Initialize ELF header (new kernel)
508  */
509 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
510 {
511         memset(ehdr, 0, sizeof(*ehdr));
512         memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
513         ehdr->e_ident[EI_CLASS] = ELFCLASS64;
514         ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
515         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
516         memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
517         ehdr->e_type = ET_CORE;
518         ehdr->e_machine = EM_S390;
519         ehdr->e_version = EV_CURRENT;
520         ehdr->e_phoff = sizeof(Elf64_Ehdr);
521         ehdr->e_ehsize = sizeof(Elf64_Ehdr);
522         ehdr->e_phentsize = sizeof(Elf64_Phdr);
523         ehdr->e_phnum = mem_chunk_cnt + 1;
524         return ehdr + 1;
525 }
526
527 /*
528  * Return CPU count for ELF header (new kernel)
529  */
530 static int get_cpu_cnt(void)
531 {
532         struct save_area *sa;
533         int cpus = 0;
534
535         list_for_each_entry(sa, &dump_save_areas, list)
536                 if (sa->prefix != 0)
537                         cpus++;
538         return cpus;
539 }
540
541 /*
542  * Return memory chunk count for ELF header (new kernel)
543  */
544 static int get_mem_chunk_cnt(void)
545 {
546         int cnt = 0;
547         u64 idx;
548
549         for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
550                            MEMBLOCK_NONE, NULL, NULL, NULL)
551                 cnt++;
552         return cnt;
553 }
554
555 /*
556  * Initialize ELF loads (new kernel)
557  */
558 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
559 {
560         phys_addr_t start, end;
561         u64 idx;
562
563         for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
564                            MEMBLOCK_NONE, &start, &end, NULL) {
565                 phdr->p_filesz = end - start;
566                 phdr->p_type = PT_LOAD;
567                 phdr->p_offset = start;
568                 phdr->p_vaddr = start;
569                 phdr->p_paddr = start;
570                 phdr->p_memsz = end - start;
571                 phdr->p_flags = PF_R | PF_W | PF_X;
572                 phdr->p_align = PAGE_SIZE;
573                 phdr++;
574         }
575 }
576
577 /*
578  * Initialize notes (new kernel)
579  */
580 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
581 {
582         struct save_area *sa;
583         void *ptr_start = ptr;
584         int cpu;
585
586         ptr = nt_prpsinfo(ptr);
587
588         cpu = 1;
589         list_for_each_entry(sa, &dump_save_areas, list)
590                 if (sa->prefix != 0)
591                         ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
592         ptr = nt_vmcoreinfo(ptr);
593         ptr = nt_final(ptr);
594         memset(phdr, 0, sizeof(*phdr));
595         phdr->p_type = PT_NOTE;
596         phdr->p_offset = notes_offset;
597         phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
598         phdr->p_memsz = phdr->p_filesz;
599         return ptr;
600 }
601
602 static size_t get_elfcorehdr_size(int mem_chunk_cnt)
603 {
604         size_t size;
605
606         size = sizeof(Elf64_Ehdr);
607         /* PT_NOTES */
608         size += sizeof(Elf64_Phdr);
609         /* nt_prpsinfo */
610         size += nt_size(NT_PRPSINFO, sizeof(struct elf_prpsinfo));
611         /* regsets */
612         size += get_cpu_cnt() * get_cpu_elf_notes_size();
613         /* nt_vmcoreinfo */
614         size += nt_vmcoreinfo_size();
615         /* nt_final */
616         size += sizeof(Elf64_Nhdr);
617         /* PT_LOADS */
618         size += mem_chunk_cnt * sizeof(Elf64_Phdr);
619
620         return size;
621 }
622
623 /*
624  * Create ELF core header (new kernel)
625  */
626 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
627 {
628         Elf64_Phdr *phdr_notes, *phdr_loads;
629         int mem_chunk_cnt;
630         void *ptr, *hdr;
631         u32 alloc_size;
632         u64 hdr_off;
633
634         /* If we are not in kdump or zfcpdump mode return */
635         if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
636                 return 0;
637         /* If we cannot get HSA size for zfcpdump return error */
638         if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
639                 return -ENODEV;
640
641         /* For kdump, exclude previous crashkernel memory */
642         if (OLDMEM_BASE) {
643                 oldmem_region.base = OLDMEM_BASE;
644                 oldmem_region.size = OLDMEM_SIZE;
645                 oldmem_type.total_size = OLDMEM_SIZE;
646         }
647
648         mem_chunk_cnt = get_mem_chunk_cnt();
649
650         alloc_size = get_elfcorehdr_size(mem_chunk_cnt);
651
652         hdr = kzalloc(alloc_size, GFP_KERNEL);
653
654         /* Without elfcorehdr /proc/vmcore cannot be created. Thus creating
655          * a dump with this crash kernel will fail. Panic now to allow other
656          * dump mechanisms to take over.
657          */
658         if (!hdr)
659                 panic("s390 kdump allocating elfcorehdr failed");
660
661         /* Init elf header */
662         ptr = ehdr_init(hdr, mem_chunk_cnt);
663         /* Init program headers */
664         phdr_notes = ptr;
665         ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
666         phdr_loads = ptr;
667         ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
668         /* Init notes */
669         hdr_off = PTR_DIFF(ptr, hdr);
670         ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
671         /* Init loads */
672         hdr_off = PTR_DIFF(ptr, hdr);
673         loads_init(phdr_loads, hdr_off);
674         *addr = (unsigned long long) hdr;
675         *size = (unsigned long long) hdr_off;
676         BUG_ON(elfcorehdr_size > alloc_size);
677         return 0;
678 }
679
680 /*
681  * Free ELF core header (new kernel)
682  */
683 void elfcorehdr_free(unsigned long long addr)
684 {
685         kfree((void *)(unsigned long)addr);
686 }
687
688 /*
689  * Read from ELF header
690  */
691 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
692 {
693         void *src = (void *)(unsigned long)*ppos;
694
695         memcpy(buf, src, count);
696         *ppos += count;
697         return count;
698 }
699
700 /*
701  * Read from ELF notes data
702  */
703 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
704 {
705         void *src = (void *)(unsigned long)*ppos;
706
707         memcpy(buf, src, count);
708         *ppos += count;
709         return count;
710 }