c44cabce7dd8d1d14618d09cc74155061cb2372b
[linux-2.6-block.git] / arch / riscv / kvm / vcpu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  *
5  * Authors:
6  *     Anup Patel <anup.patel@wdc.com>
7  */
8
9 #include <linux/bitops.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kdebug.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sched/signal.h>
18 #include <linux/fs.h>
19 #include <linux/kvm_host.h>
20 #include <asm/csr.h>
21 #include <asm/hwcap.h>
22
23 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
24         KVM_GENERIC_VCPU_STATS(),
25         STATS_DESC_COUNTER(VCPU, ecall_exit_stat),
26         STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
27         STATS_DESC_COUNTER(VCPU, mmio_exit_user),
28         STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
29         STATS_DESC_COUNTER(VCPU, exits)
30 };
31
32 const struct kvm_stats_header kvm_vcpu_stats_header = {
33         .name_size = KVM_STATS_NAME_SIZE,
34         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
35         .id_offset = sizeof(struct kvm_stats_header),
36         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
37         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
38                        sizeof(kvm_vcpu_stats_desc),
39 };
40
41 #ifdef CONFIG_FPU
42 static void kvm_riscv_vcpu_fp_reset(struct kvm_vcpu *vcpu)
43 {
44         unsigned long isa = vcpu->arch.isa;
45         struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
46
47         cntx->sstatus &= ~SR_FS;
48         if (riscv_isa_extension_available(&isa, f) ||
49             riscv_isa_extension_available(&isa, d))
50                 cntx->sstatus |= SR_FS_INITIAL;
51         else
52                 cntx->sstatus |= SR_FS_OFF;
53 }
54
55 static void kvm_riscv_vcpu_fp_clean(struct kvm_cpu_context *cntx)
56 {
57         cntx->sstatus &= ~SR_FS;
58         cntx->sstatus |= SR_FS_CLEAN;
59 }
60
61 static void kvm_riscv_vcpu_guest_fp_save(struct kvm_cpu_context *cntx,
62                                          unsigned long isa)
63 {
64         if ((cntx->sstatus & SR_FS) == SR_FS_DIRTY) {
65                 if (riscv_isa_extension_available(&isa, d))
66                         __kvm_riscv_fp_d_save(cntx);
67                 else if (riscv_isa_extension_available(&isa, f))
68                         __kvm_riscv_fp_f_save(cntx);
69                 kvm_riscv_vcpu_fp_clean(cntx);
70         }
71 }
72
73 static void kvm_riscv_vcpu_guest_fp_restore(struct kvm_cpu_context *cntx,
74                                             unsigned long isa)
75 {
76         if ((cntx->sstatus & SR_FS) != SR_FS_OFF) {
77                 if (riscv_isa_extension_available(&isa, d))
78                         __kvm_riscv_fp_d_restore(cntx);
79                 else if (riscv_isa_extension_available(&isa, f))
80                         __kvm_riscv_fp_f_restore(cntx);
81                 kvm_riscv_vcpu_fp_clean(cntx);
82         }
83 }
84
85 static void kvm_riscv_vcpu_host_fp_save(struct kvm_cpu_context *cntx)
86 {
87         /* No need to check host sstatus as it can be modified outside */
88         if (riscv_isa_extension_available(NULL, d))
89                 __kvm_riscv_fp_d_save(cntx);
90         else if (riscv_isa_extension_available(NULL, f))
91                 __kvm_riscv_fp_f_save(cntx);
92 }
93
94 static void kvm_riscv_vcpu_host_fp_restore(struct kvm_cpu_context *cntx)
95 {
96         if (riscv_isa_extension_available(NULL, d))
97                 __kvm_riscv_fp_d_restore(cntx);
98         else if (riscv_isa_extension_available(NULL, f))
99                 __kvm_riscv_fp_f_restore(cntx);
100 }
101 #else
102 static void kvm_riscv_vcpu_fp_reset(struct kvm_vcpu *vcpu)
103 {
104 }
105 static void kvm_riscv_vcpu_guest_fp_save(struct kvm_cpu_context *cntx,
106                                          unsigned long isa)
107 {
108 }
109 static void kvm_riscv_vcpu_guest_fp_restore(struct kvm_cpu_context *cntx,
110                                             unsigned long isa)
111 {
112 }
113 static void kvm_riscv_vcpu_host_fp_save(struct kvm_cpu_context *cntx)
114 {
115 }
116 static void kvm_riscv_vcpu_host_fp_restore(struct kvm_cpu_context *cntx)
117 {
118 }
119 #endif
120
121 #define KVM_RISCV_ISA_ALLOWED   (riscv_isa_extension_mask(a) | \
122                                  riscv_isa_extension_mask(c) | \
123                                  riscv_isa_extension_mask(d) | \
124                                  riscv_isa_extension_mask(f) | \
125                                  riscv_isa_extension_mask(i) | \
126                                  riscv_isa_extension_mask(m) | \
127                                  riscv_isa_extension_mask(s) | \
128                                  riscv_isa_extension_mask(u))
129
130 static void kvm_riscv_reset_vcpu(struct kvm_vcpu *vcpu)
131 {
132         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
133         struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
134         struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
135         struct kvm_cpu_context *reset_cntx = &vcpu->arch.guest_reset_context;
136
137         memcpy(csr, reset_csr, sizeof(*csr));
138
139         memcpy(cntx, reset_cntx, sizeof(*cntx));
140
141         kvm_riscv_vcpu_fp_reset(vcpu);
142
143         kvm_riscv_vcpu_timer_reset(vcpu);
144
145         WRITE_ONCE(vcpu->arch.irqs_pending, 0);
146         WRITE_ONCE(vcpu->arch.irqs_pending_mask, 0);
147 }
148
149 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
150 {
151         return 0;
152 }
153
154 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
155 {
156         struct kvm_cpu_context *cntx;
157
158         /* Mark this VCPU never ran */
159         vcpu->arch.ran_atleast_once = false;
160
161         /* Setup ISA features available to VCPU */
162         vcpu->arch.isa = riscv_isa_extension_base(NULL) & KVM_RISCV_ISA_ALLOWED;
163
164         /* Setup reset state of shadow SSTATUS and HSTATUS CSRs */
165         cntx = &vcpu->arch.guest_reset_context;
166         cntx->sstatus = SR_SPP | SR_SPIE;
167         cntx->hstatus = 0;
168         cntx->hstatus |= HSTATUS_VTW;
169         cntx->hstatus |= HSTATUS_SPVP;
170         cntx->hstatus |= HSTATUS_SPV;
171
172         /* Setup VCPU timer */
173         kvm_riscv_vcpu_timer_init(vcpu);
174
175         /* Reset VCPU */
176         kvm_riscv_reset_vcpu(vcpu);
177
178         return 0;
179 }
180
181 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
182 {
183 }
184
185 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
186 {
187         /* Cleanup VCPU timer */
188         kvm_riscv_vcpu_timer_deinit(vcpu);
189
190         /* Flush the pages pre-allocated for Stage2 page table mappings */
191         kvm_riscv_stage2_flush_cache(vcpu);
192 }
193
194 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
195 {
196         return kvm_riscv_vcpu_has_interrupts(vcpu, 1UL << IRQ_VS_TIMER);
197 }
198
199 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
200 {
201 }
202
203 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
204 {
205 }
206
207 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
208 {
209         return (kvm_riscv_vcpu_has_interrupts(vcpu, -1UL) &&
210                 !vcpu->arch.power_off && !vcpu->arch.pause);
211 }
212
213 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
214 {
215         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
216 }
217
218 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
219 {
220         return (vcpu->arch.guest_context.sstatus & SR_SPP) ? true : false;
221 }
222
223 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
224 {
225         return VM_FAULT_SIGBUS;
226 }
227
228 static int kvm_riscv_vcpu_get_reg_config(struct kvm_vcpu *vcpu,
229                                          const struct kvm_one_reg *reg)
230 {
231         unsigned long __user *uaddr =
232                         (unsigned long __user *)(unsigned long)reg->addr;
233         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
234                                             KVM_REG_SIZE_MASK |
235                                             KVM_REG_RISCV_CONFIG);
236         unsigned long reg_val;
237
238         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
239                 return -EINVAL;
240
241         switch (reg_num) {
242         case KVM_REG_RISCV_CONFIG_REG(isa):
243                 reg_val = vcpu->arch.isa;
244                 break;
245         default:
246                 return -EINVAL;
247         };
248
249         if (copy_to_user(uaddr, &reg_val, KVM_REG_SIZE(reg->id)))
250                 return -EFAULT;
251
252         return 0;
253 }
254
255 static int kvm_riscv_vcpu_set_reg_config(struct kvm_vcpu *vcpu,
256                                          const struct kvm_one_reg *reg)
257 {
258         unsigned long __user *uaddr =
259                         (unsigned long __user *)(unsigned long)reg->addr;
260         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
261                                             KVM_REG_SIZE_MASK |
262                                             KVM_REG_RISCV_CONFIG);
263         unsigned long reg_val;
264
265         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
266                 return -EINVAL;
267
268         if (copy_from_user(&reg_val, uaddr, KVM_REG_SIZE(reg->id)))
269                 return -EFAULT;
270
271         switch (reg_num) {
272         case KVM_REG_RISCV_CONFIG_REG(isa):
273                 if (!vcpu->arch.ran_atleast_once) {
274                         vcpu->arch.isa = reg_val;
275                         vcpu->arch.isa &= riscv_isa_extension_base(NULL);
276                         vcpu->arch.isa &= KVM_RISCV_ISA_ALLOWED;
277                         kvm_riscv_vcpu_fp_reset(vcpu);
278                 } else {
279                         return -EOPNOTSUPP;
280                 }
281                 break;
282         default:
283                 return -EINVAL;
284         };
285
286         return 0;
287 }
288
289 static int kvm_riscv_vcpu_get_reg_core(struct kvm_vcpu *vcpu,
290                                        const struct kvm_one_reg *reg)
291 {
292         struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
293         unsigned long __user *uaddr =
294                         (unsigned long __user *)(unsigned long)reg->addr;
295         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
296                                             KVM_REG_SIZE_MASK |
297                                             KVM_REG_RISCV_CORE);
298         unsigned long reg_val;
299
300         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
301                 return -EINVAL;
302         if (reg_num >= sizeof(struct kvm_riscv_core) / sizeof(unsigned long))
303                 return -EINVAL;
304
305         if (reg_num == KVM_REG_RISCV_CORE_REG(regs.pc))
306                 reg_val = cntx->sepc;
307         else if (KVM_REG_RISCV_CORE_REG(regs.pc) < reg_num &&
308                  reg_num <= KVM_REG_RISCV_CORE_REG(regs.t6))
309                 reg_val = ((unsigned long *)cntx)[reg_num];
310         else if (reg_num == KVM_REG_RISCV_CORE_REG(mode))
311                 reg_val = (cntx->sstatus & SR_SPP) ?
312                                 KVM_RISCV_MODE_S : KVM_RISCV_MODE_U;
313         else
314                 return -EINVAL;
315
316         if (copy_to_user(uaddr, &reg_val, KVM_REG_SIZE(reg->id)))
317                 return -EFAULT;
318
319         return 0;
320 }
321
322 static int kvm_riscv_vcpu_set_reg_core(struct kvm_vcpu *vcpu,
323                                        const struct kvm_one_reg *reg)
324 {
325         struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
326         unsigned long __user *uaddr =
327                         (unsigned long __user *)(unsigned long)reg->addr;
328         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
329                                             KVM_REG_SIZE_MASK |
330                                             KVM_REG_RISCV_CORE);
331         unsigned long reg_val;
332
333         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
334                 return -EINVAL;
335         if (reg_num >= sizeof(struct kvm_riscv_core) / sizeof(unsigned long))
336                 return -EINVAL;
337
338         if (copy_from_user(&reg_val, uaddr, KVM_REG_SIZE(reg->id)))
339                 return -EFAULT;
340
341         if (reg_num == KVM_REG_RISCV_CORE_REG(regs.pc))
342                 cntx->sepc = reg_val;
343         else if (KVM_REG_RISCV_CORE_REG(regs.pc) < reg_num &&
344                  reg_num <= KVM_REG_RISCV_CORE_REG(regs.t6))
345                 ((unsigned long *)cntx)[reg_num] = reg_val;
346         else if (reg_num == KVM_REG_RISCV_CORE_REG(mode)) {
347                 if (reg_val == KVM_RISCV_MODE_S)
348                         cntx->sstatus |= SR_SPP;
349                 else
350                         cntx->sstatus &= ~SR_SPP;
351         } else
352                 return -EINVAL;
353
354         return 0;
355 }
356
357 static int kvm_riscv_vcpu_get_reg_csr(struct kvm_vcpu *vcpu,
358                                       const struct kvm_one_reg *reg)
359 {
360         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
361         unsigned long __user *uaddr =
362                         (unsigned long __user *)(unsigned long)reg->addr;
363         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
364                                             KVM_REG_SIZE_MASK |
365                                             KVM_REG_RISCV_CSR);
366         unsigned long reg_val;
367
368         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
369                 return -EINVAL;
370         if (reg_num >= sizeof(struct kvm_riscv_csr) / sizeof(unsigned long))
371                 return -EINVAL;
372
373         if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) {
374                 kvm_riscv_vcpu_flush_interrupts(vcpu);
375                 reg_val = (csr->hvip >> VSIP_TO_HVIP_SHIFT) & VSIP_VALID_MASK;
376         } else
377                 reg_val = ((unsigned long *)csr)[reg_num];
378
379         if (copy_to_user(uaddr, &reg_val, KVM_REG_SIZE(reg->id)))
380                 return -EFAULT;
381
382         return 0;
383 }
384
385 static int kvm_riscv_vcpu_set_reg_csr(struct kvm_vcpu *vcpu,
386                                       const struct kvm_one_reg *reg)
387 {
388         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
389         unsigned long __user *uaddr =
390                         (unsigned long __user *)(unsigned long)reg->addr;
391         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
392                                             KVM_REG_SIZE_MASK |
393                                             KVM_REG_RISCV_CSR);
394         unsigned long reg_val;
395
396         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
397                 return -EINVAL;
398         if (reg_num >= sizeof(struct kvm_riscv_csr) / sizeof(unsigned long))
399                 return -EINVAL;
400
401         if (copy_from_user(&reg_val, uaddr, KVM_REG_SIZE(reg->id)))
402                 return -EFAULT;
403
404         if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) {
405                 reg_val &= VSIP_VALID_MASK;
406                 reg_val <<= VSIP_TO_HVIP_SHIFT;
407         }
408
409         ((unsigned long *)csr)[reg_num] = reg_val;
410
411         if (reg_num == KVM_REG_RISCV_CSR_REG(sip))
412                 WRITE_ONCE(vcpu->arch.irqs_pending_mask, 0);
413
414         return 0;
415 }
416
417 static int kvm_riscv_vcpu_get_reg_fp(struct kvm_vcpu *vcpu,
418                                      const struct kvm_one_reg *reg,
419                                      unsigned long rtype)
420 {
421         struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
422         unsigned long isa = vcpu->arch.isa;
423         unsigned long __user *uaddr =
424                         (unsigned long __user *)(unsigned long)reg->addr;
425         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
426                                             KVM_REG_SIZE_MASK |
427                                             rtype);
428         void *reg_val;
429
430         if ((rtype == KVM_REG_RISCV_FP_F) &&
431             riscv_isa_extension_available(&isa, f)) {
432                 if (KVM_REG_SIZE(reg->id) != sizeof(u32))
433                         return -EINVAL;
434                 if (reg_num == KVM_REG_RISCV_FP_F_REG(fcsr))
435                         reg_val = &cntx->fp.f.fcsr;
436                 else if ((KVM_REG_RISCV_FP_F_REG(f[0]) <= reg_num) &&
437                           reg_num <= KVM_REG_RISCV_FP_F_REG(f[31]))
438                         reg_val = &cntx->fp.f.f[reg_num];
439                 else
440                         return -EINVAL;
441         } else if ((rtype == KVM_REG_RISCV_FP_D) &&
442                    riscv_isa_extension_available(&isa, d)) {
443                 if (reg_num == KVM_REG_RISCV_FP_D_REG(fcsr)) {
444                         if (KVM_REG_SIZE(reg->id) != sizeof(u32))
445                                 return -EINVAL;
446                         reg_val = &cntx->fp.d.fcsr;
447                 } else if ((KVM_REG_RISCV_FP_D_REG(f[0]) <= reg_num) &&
448                            reg_num <= KVM_REG_RISCV_FP_D_REG(f[31])) {
449                         if (KVM_REG_SIZE(reg->id) != sizeof(u64))
450                                 return -EINVAL;
451                         reg_val = &cntx->fp.d.f[reg_num];
452                 } else
453                         return -EINVAL;
454         } else
455                 return -EINVAL;
456
457         if (copy_to_user(uaddr, reg_val, KVM_REG_SIZE(reg->id)))
458                 return -EFAULT;
459
460         return 0;
461 }
462
463 static int kvm_riscv_vcpu_set_reg_fp(struct kvm_vcpu *vcpu,
464                                      const struct kvm_one_reg *reg,
465                                      unsigned long rtype)
466 {
467         struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
468         unsigned long isa = vcpu->arch.isa;
469         unsigned long __user *uaddr =
470                         (unsigned long __user *)(unsigned long)reg->addr;
471         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
472                                             KVM_REG_SIZE_MASK |
473                                             rtype);
474         void *reg_val;
475
476         if ((rtype == KVM_REG_RISCV_FP_F) &&
477             riscv_isa_extension_available(&isa, f)) {
478                 if (KVM_REG_SIZE(reg->id) != sizeof(u32))
479                         return -EINVAL;
480                 if (reg_num == KVM_REG_RISCV_FP_F_REG(fcsr))
481                         reg_val = &cntx->fp.f.fcsr;
482                 else if ((KVM_REG_RISCV_FP_F_REG(f[0]) <= reg_num) &&
483                           reg_num <= KVM_REG_RISCV_FP_F_REG(f[31]))
484                         reg_val = &cntx->fp.f.f[reg_num];
485                 else
486                         return -EINVAL;
487         } else if ((rtype == KVM_REG_RISCV_FP_D) &&
488                    riscv_isa_extension_available(&isa, d)) {
489                 if (reg_num == KVM_REG_RISCV_FP_D_REG(fcsr)) {
490                         if (KVM_REG_SIZE(reg->id) != sizeof(u32))
491                                 return -EINVAL;
492                         reg_val = &cntx->fp.d.fcsr;
493                 } else if ((KVM_REG_RISCV_FP_D_REG(f[0]) <= reg_num) &&
494                            reg_num <= KVM_REG_RISCV_FP_D_REG(f[31])) {
495                         if (KVM_REG_SIZE(reg->id) != sizeof(u64))
496                                 return -EINVAL;
497                         reg_val = &cntx->fp.d.f[reg_num];
498                 } else
499                         return -EINVAL;
500         } else
501                 return -EINVAL;
502
503         if (copy_from_user(reg_val, uaddr, KVM_REG_SIZE(reg->id)))
504                 return -EFAULT;
505
506         return 0;
507 }
508
509 static int kvm_riscv_vcpu_set_reg(struct kvm_vcpu *vcpu,
510                                   const struct kvm_one_reg *reg)
511 {
512         if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CONFIG)
513                 return kvm_riscv_vcpu_set_reg_config(vcpu, reg);
514         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CORE)
515                 return kvm_riscv_vcpu_set_reg_core(vcpu, reg);
516         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CSR)
517                 return kvm_riscv_vcpu_set_reg_csr(vcpu, reg);
518         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_TIMER)
519                 return kvm_riscv_vcpu_set_reg_timer(vcpu, reg);
520         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_F)
521                 return kvm_riscv_vcpu_set_reg_fp(vcpu, reg,
522                                                  KVM_REG_RISCV_FP_F);
523         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_D)
524                 return kvm_riscv_vcpu_set_reg_fp(vcpu, reg,
525                                                  KVM_REG_RISCV_FP_D);
526
527         return -EINVAL;
528 }
529
530 static int kvm_riscv_vcpu_get_reg(struct kvm_vcpu *vcpu,
531                                   const struct kvm_one_reg *reg)
532 {
533         if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CONFIG)
534                 return kvm_riscv_vcpu_get_reg_config(vcpu, reg);
535         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CORE)
536                 return kvm_riscv_vcpu_get_reg_core(vcpu, reg);
537         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CSR)
538                 return kvm_riscv_vcpu_get_reg_csr(vcpu, reg);
539         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_TIMER)
540                 return kvm_riscv_vcpu_get_reg_timer(vcpu, reg);
541         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_F)
542                 return kvm_riscv_vcpu_get_reg_fp(vcpu, reg,
543                                                  KVM_REG_RISCV_FP_F);
544         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_D)
545                 return kvm_riscv_vcpu_get_reg_fp(vcpu, reg,
546                                                  KVM_REG_RISCV_FP_D);
547
548         return -EINVAL;
549 }
550
551 long kvm_arch_vcpu_async_ioctl(struct file *filp,
552                                unsigned int ioctl, unsigned long arg)
553 {
554         struct kvm_vcpu *vcpu = filp->private_data;
555         void __user *argp = (void __user *)arg;
556
557         if (ioctl == KVM_INTERRUPT) {
558                 struct kvm_interrupt irq;
559
560                 if (copy_from_user(&irq, argp, sizeof(irq)))
561                         return -EFAULT;
562
563                 if (irq.irq == KVM_INTERRUPT_SET)
564                         return kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_EXT);
565                 else
566                         return kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_EXT);
567         }
568
569         return -ENOIOCTLCMD;
570 }
571
572 long kvm_arch_vcpu_ioctl(struct file *filp,
573                          unsigned int ioctl, unsigned long arg)
574 {
575         struct kvm_vcpu *vcpu = filp->private_data;
576         void __user *argp = (void __user *)arg;
577         long r = -EINVAL;
578
579         switch (ioctl) {
580         case KVM_SET_ONE_REG:
581         case KVM_GET_ONE_REG: {
582                 struct kvm_one_reg reg;
583
584                 r = -EFAULT;
585                 if (copy_from_user(&reg, argp, sizeof(reg)))
586                         break;
587
588                 if (ioctl == KVM_SET_ONE_REG)
589                         r = kvm_riscv_vcpu_set_reg(vcpu, &reg);
590                 else
591                         r = kvm_riscv_vcpu_get_reg(vcpu, &reg);
592                 break;
593         }
594         default:
595                 break;
596         }
597
598         return r;
599 }
600
601 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
602                                   struct kvm_sregs *sregs)
603 {
604         return -EINVAL;
605 }
606
607 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
608                                   struct kvm_sregs *sregs)
609 {
610         return -EINVAL;
611 }
612
613 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
614 {
615         return -EINVAL;
616 }
617
618 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
619 {
620         return -EINVAL;
621 }
622
623 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
624                                   struct kvm_translation *tr)
625 {
626         return -EINVAL;
627 }
628
629 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
630 {
631         return -EINVAL;
632 }
633
634 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
635 {
636         return -EINVAL;
637 }
638
639 void kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu *vcpu)
640 {
641         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
642         unsigned long mask, val;
643
644         if (READ_ONCE(vcpu->arch.irqs_pending_mask)) {
645                 mask = xchg_acquire(&vcpu->arch.irqs_pending_mask, 0);
646                 val = READ_ONCE(vcpu->arch.irqs_pending) & mask;
647
648                 csr->hvip &= ~mask;
649                 csr->hvip |= val;
650         }
651 }
652
653 void kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu *vcpu)
654 {
655         unsigned long hvip;
656         struct kvm_vcpu_arch *v = &vcpu->arch;
657         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
658
659         /* Read current HVIP and VSIE CSRs */
660         csr->vsie = csr_read(CSR_VSIE);
661
662         /* Sync-up HVIP.VSSIP bit changes does by Guest */
663         hvip = csr_read(CSR_HVIP);
664         if ((csr->hvip ^ hvip) & (1UL << IRQ_VS_SOFT)) {
665                 if (hvip & (1UL << IRQ_VS_SOFT)) {
666                         if (!test_and_set_bit(IRQ_VS_SOFT,
667                                               &v->irqs_pending_mask))
668                                 set_bit(IRQ_VS_SOFT, &v->irqs_pending);
669                 } else {
670                         if (!test_and_set_bit(IRQ_VS_SOFT,
671                                               &v->irqs_pending_mask))
672                                 clear_bit(IRQ_VS_SOFT, &v->irqs_pending);
673                 }
674         }
675 }
676
677 int kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
678 {
679         if (irq != IRQ_VS_SOFT &&
680             irq != IRQ_VS_TIMER &&
681             irq != IRQ_VS_EXT)
682                 return -EINVAL;
683
684         set_bit(irq, &vcpu->arch.irqs_pending);
685         smp_mb__before_atomic();
686         set_bit(irq, &vcpu->arch.irqs_pending_mask);
687
688         kvm_vcpu_kick(vcpu);
689
690         return 0;
691 }
692
693 int kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
694 {
695         if (irq != IRQ_VS_SOFT &&
696             irq != IRQ_VS_TIMER &&
697             irq != IRQ_VS_EXT)
698                 return -EINVAL;
699
700         clear_bit(irq, &vcpu->arch.irqs_pending);
701         smp_mb__before_atomic();
702         set_bit(irq, &vcpu->arch.irqs_pending_mask);
703
704         return 0;
705 }
706
707 bool kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu *vcpu, unsigned long mask)
708 {
709         unsigned long ie = ((vcpu->arch.guest_csr.vsie & VSIP_VALID_MASK)
710                             << VSIP_TO_HVIP_SHIFT) & mask;
711
712         return (READ_ONCE(vcpu->arch.irqs_pending) & ie) ? true : false;
713 }
714
715 void kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
716 {
717         vcpu->arch.power_off = true;
718         kvm_make_request(KVM_REQ_SLEEP, vcpu);
719         kvm_vcpu_kick(vcpu);
720 }
721
722 void kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
723 {
724         vcpu->arch.power_off = false;
725         kvm_vcpu_wake_up(vcpu);
726 }
727
728 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
729                                     struct kvm_mp_state *mp_state)
730 {
731         if (vcpu->arch.power_off)
732                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
733         else
734                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
735
736         return 0;
737 }
738
739 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
740                                     struct kvm_mp_state *mp_state)
741 {
742         int ret = 0;
743
744         switch (mp_state->mp_state) {
745         case KVM_MP_STATE_RUNNABLE:
746                 vcpu->arch.power_off = false;
747                 break;
748         case KVM_MP_STATE_STOPPED:
749                 kvm_riscv_vcpu_power_off(vcpu);
750                 break;
751         default:
752                 ret = -EINVAL;
753         }
754
755         return ret;
756 }
757
758 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
759                                         struct kvm_guest_debug *dbg)
760 {
761         /* TODO; To be implemented later. */
762         return -EINVAL;
763 }
764
765 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
766 {
767         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
768
769         csr_write(CSR_VSSTATUS, csr->vsstatus);
770         csr_write(CSR_VSIE, csr->vsie);
771         csr_write(CSR_VSTVEC, csr->vstvec);
772         csr_write(CSR_VSSCRATCH, csr->vsscratch);
773         csr_write(CSR_VSEPC, csr->vsepc);
774         csr_write(CSR_VSCAUSE, csr->vscause);
775         csr_write(CSR_VSTVAL, csr->vstval);
776         csr_write(CSR_HVIP, csr->hvip);
777         csr_write(CSR_VSATP, csr->vsatp);
778
779         kvm_riscv_stage2_update_hgatp(vcpu);
780
781         kvm_riscv_vcpu_timer_restore(vcpu);
782
783         kvm_riscv_vcpu_host_fp_save(&vcpu->arch.host_context);
784         kvm_riscv_vcpu_guest_fp_restore(&vcpu->arch.guest_context,
785                                         vcpu->arch.isa);
786
787         vcpu->cpu = cpu;
788 }
789
790 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
791 {
792         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
793
794         vcpu->cpu = -1;
795
796         kvm_riscv_vcpu_guest_fp_save(&vcpu->arch.guest_context,
797                                      vcpu->arch.isa);
798         kvm_riscv_vcpu_host_fp_restore(&vcpu->arch.host_context);
799
800         csr_write(CSR_HGATP, 0);
801
802         csr->vsstatus = csr_read(CSR_VSSTATUS);
803         csr->vsie = csr_read(CSR_VSIE);
804         csr->vstvec = csr_read(CSR_VSTVEC);
805         csr->vsscratch = csr_read(CSR_VSSCRATCH);
806         csr->vsepc = csr_read(CSR_VSEPC);
807         csr->vscause = csr_read(CSR_VSCAUSE);
808         csr->vstval = csr_read(CSR_VSTVAL);
809         csr->hvip = csr_read(CSR_HVIP);
810         csr->vsatp = csr_read(CSR_VSATP);
811 }
812
813 static void kvm_riscv_check_vcpu_requests(struct kvm_vcpu *vcpu)
814 {
815         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
816
817         if (kvm_request_pending(vcpu)) {
818                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) {
819                         rcuwait_wait_event(wait,
820                                 (!vcpu->arch.power_off) && (!vcpu->arch.pause),
821                                 TASK_INTERRUPTIBLE);
822
823                         if (vcpu->arch.power_off || vcpu->arch.pause) {
824                                 /*
825                                  * Awaken to handle a signal, request to
826                                  * sleep again later.
827                                  */
828                                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
829                         }
830                 }
831
832                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
833                         kvm_riscv_reset_vcpu(vcpu);
834
835                 if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu))
836                         kvm_riscv_stage2_update_hgatp(vcpu);
837
838                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
839                         __kvm_riscv_hfence_gvma_all();
840         }
841 }
842
843 static void kvm_riscv_update_hvip(struct kvm_vcpu *vcpu)
844 {
845         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
846
847         csr_write(CSR_HVIP, csr->hvip);
848 }
849
850 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
851 {
852         int ret;
853         struct kvm_cpu_trap trap;
854         struct kvm_run *run = vcpu->run;
855
856         /* Mark this VCPU ran at least once */
857         vcpu->arch.ran_atleast_once = true;
858
859         vcpu->arch.srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
860
861         /* Process MMIO value returned from user-space */
862         if (run->exit_reason == KVM_EXIT_MMIO) {
863                 ret = kvm_riscv_vcpu_mmio_return(vcpu, vcpu->run);
864                 if (ret) {
865                         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx);
866                         return ret;
867                 }
868         }
869
870         /* Process SBI value returned from user-space */
871         if (run->exit_reason == KVM_EXIT_RISCV_SBI) {
872                 ret = kvm_riscv_vcpu_sbi_return(vcpu, vcpu->run);
873                 if (ret) {
874                         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx);
875                         return ret;
876                 }
877         }
878
879         if (run->immediate_exit) {
880                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx);
881                 return -EINTR;
882         }
883
884         vcpu_load(vcpu);
885
886         kvm_sigset_activate(vcpu);
887
888         ret = 1;
889         run->exit_reason = KVM_EXIT_UNKNOWN;
890         while (ret > 0) {
891                 /* Check conditions before entering the guest */
892                 cond_resched();
893
894                 kvm_riscv_stage2_vmid_update(vcpu);
895
896                 kvm_riscv_check_vcpu_requests(vcpu);
897
898                 preempt_disable();
899
900                 local_irq_disable();
901
902                 /*
903                  * Exit if we have a signal pending so that we can deliver
904                  * the signal to user space.
905                  */
906                 if (signal_pending(current)) {
907                         ret = -EINTR;
908                         run->exit_reason = KVM_EXIT_INTR;
909                 }
910
911                 /*
912                  * Ensure we set mode to IN_GUEST_MODE after we disable
913                  * interrupts and before the final VCPU requests check.
914                  * See the comment in kvm_vcpu_exiting_guest_mode() and
915                  * Documentation/virtual/kvm/vcpu-requests.rst
916                  */
917                 vcpu->mode = IN_GUEST_MODE;
918
919                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx);
920                 smp_mb__after_srcu_read_unlock();
921
922                 /*
923                  * We might have got VCPU interrupts updated asynchronously
924                  * so update it in HW.
925                  */
926                 kvm_riscv_vcpu_flush_interrupts(vcpu);
927
928                 /* Update HVIP CSR for current CPU */
929                 kvm_riscv_update_hvip(vcpu);
930
931                 if (ret <= 0 ||
932                     kvm_riscv_stage2_vmid_ver_changed(&vcpu->kvm->arch.vmid) ||
933                     kvm_request_pending(vcpu)) {
934                         vcpu->mode = OUTSIDE_GUEST_MODE;
935                         local_irq_enable();
936                         preempt_enable();
937                         vcpu->arch.srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
938                         continue;
939                 }
940
941                 guest_enter_irqoff();
942
943                 __kvm_riscv_switch_to(&vcpu->arch);
944
945                 vcpu->mode = OUTSIDE_GUEST_MODE;
946                 vcpu->stat.exits++;
947
948                 /*
949                  * Save SCAUSE, STVAL, HTVAL, and HTINST because we might
950                  * get an interrupt between __kvm_riscv_switch_to() and
951                  * local_irq_enable() which can potentially change CSRs.
952                  */
953                 trap.sepc = vcpu->arch.guest_context.sepc;
954                 trap.scause = csr_read(CSR_SCAUSE);
955                 trap.stval = csr_read(CSR_STVAL);
956                 trap.htval = csr_read(CSR_HTVAL);
957                 trap.htinst = csr_read(CSR_HTINST);
958
959                 /* Syncup interrupts state with HW */
960                 kvm_riscv_vcpu_sync_interrupts(vcpu);
961
962                 /*
963                  * We may have taken a host interrupt in VS/VU-mode (i.e.
964                  * while executing the guest). This interrupt is still
965                  * pending, as we haven't serviced it yet!
966                  *
967                  * We're now back in HS-mode with interrupts disabled
968                  * so enabling the interrupts now will have the effect
969                  * of taking the interrupt again, in HS-mode this time.
970                  */
971                 local_irq_enable();
972
973                 /*
974                  * We do local_irq_enable() before calling guest_exit() so
975                  * that if a timer interrupt hits while running the guest
976                  * we account that tick as being spent in the guest. We
977                  * enable preemption after calling guest_exit() so that if
978                  * we get preempted we make sure ticks after that is not
979                  * counted as guest time.
980                  */
981                 guest_exit();
982
983                 preempt_enable();
984
985                 vcpu->arch.srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
986
987                 ret = kvm_riscv_vcpu_exit(vcpu, run, &trap);
988         }
989
990         kvm_sigset_deactivate(vcpu);
991
992         vcpu_put(vcpu);
993
994         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx);
995
996         return ret;
997 }