mm: remove include/linux/bootmem.h
[linux-2.6-block.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/memblock.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/iommu.h>
25 #include <linux/rculist.h>
26 #include <linux/sizes.h>
27
28 #include <asm/sections.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/pci-bridge.h>
32 #include <asm/machdep.h>
33 #include <asm/msi_bitmap.h>
34 #include <asm/ppc-pci.h>
35 #include <asm/opal.h>
36 #include <asm/iommu.h>
37 #include <asm/tce.h>
38 #include <asm/xics.h>
39 #include <asm/debugfs.h>
40 #include <asm/firmware.h>
41 #include <asm/pnv-pci.h>
42 #include <asm/mmzone.h>
43
44 #include <misc/cxl-base.h>
45
46 #include "powernv.h"
47 #include "pci.h"
48 #include "../../../../drivers/pci/pci.h"
49
50 #define PNV_IODA1_M64_NUM       16      /* Number of M64 BARs   */
51 #define PNV_IODA1_M64_SEGS      8       /* Segments per M64 BAR */
52 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
53
54 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
55                                               "NPU_OCAPI" };
56
57 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
58                             const char *fmt, ...)
59 {
60         struct va_format vaf;
61         va_list args;
62         char pfix[32];
63
64         va_start(args, fmt);
65
66         vaf.fmt = fmt;
67         vaf.va = &args;
68
69         if (pe->flags & PNV_IODA_PE_DEV)
70                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
71         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
72                 sprintf(pfix, "%04x:%02x     ",
73                         pci_domain_nr(pe->pbus), pe->pbus->number);
74 #ifdef CONFIG_PCI_IOV
75         else if (pe->flags & PNV_IODA_PE_VF)
76                 sprintf(pfix, "%04x:%02x:%2x.%d",
77                         pci_domain_nr(pe->parent_dev->bus),
78                         (pe->rid & 0xff00) >> 8,
79                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
80 #endif /* CONFIG_PCI_IOV*/
81
82         printk("%spci %s: [PE# %.2x] %pV",
83                level, pfix, pe->pe_number, &vaf);
84
85         va_end(args);
86 }
87
88 static bool pnv_iommu_bypass_disabled __read_mostly;
89 static bool pci_reset_phbs __read_mostly;
90
91 static int __init iommu_setup(char *str)
92 {
93         if (!str)
94                 return -EINVAL;
95
96         while (*str) {
97                 if (!strncmp(str, "nobypass", 8)) {
98                         pnv_iommu_bypass_disabled = true;
99                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
100                         break;
101                 }
102                 str += strcspn(str, ",");
103                 if (*str == ',')
104                         str++;
105         }
106
107         return 0;
108 }
109 early_param("iommu", iommu_setup);
110
111 static int __init pci_reset_phbs_setup(char *str)
112 {
113         pci_reset_phbs = true;
114         return 0;
115 }
116
117 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
118
119 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
120 {
121         /*
122          * WARNING: We cannot rely on the resource flags. The Linux PCI
123          * allocation code sometimes decides to put a 64-bit prefetchable
124          * BAR in the 32-bit window, so we have to compare the addresses.
125          *
126          * For simplicity we only test resource start.
127          */
128         return (r->start >= phb->ioda.m64_base &&
129                 r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
130 }
131
132 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
133 {
134         unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
135
136         return (resource_flags & flags) == flags;
137 }
138
139 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
140 {
141         s64 rc;
142
143         phb->ioda.pe_array[pe_no].phb = phb;
144         phb->ioda.pe_array[pe_no].pe_number = pe_no;
145
146         /*
147          * Clear the PE frozen state as it might be put into frozen state
148          * in the last PCI remove path. It's not harmful to do so when the
149          * PE is already in unfrozen state.
150          */
151         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
152                                        OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
153         if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
154                 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
155                         __func__, rc, phb->hose->global_number, pe_no);
156
157         return &phb->ioda.pe_array[pe_no];
158 }
159
160 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
161 {
162         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
163                 pr_warn("%s: Invalid PE %x on PHB#%x\n",
164                         __func__, pe_no, phb->hose->global_number);
165                 return;
166         }
167
168         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
169                 pr_debug("%s: PE %x was reserved on PHB#%x\n",
170                          __func__, pe_no, phb->hose->global_number);
171
172         pnv_ioda_init_pe(phb, pe_no);
173 }
174
175 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
176 {
177         long pe;
178
179         for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
180                 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
181                         return pnv_ioda_init_pe(phb, pe);
182         }
183
184         return NULL;
185 }
186
187 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
188 {
189         struct pnv_phb *phb = pe->phb;
190         unsigned int pe_num = pe->pe_number;
191
192         WARN_ON(pe->pdev);
193
194         memset(pe, 0, sizeof(struct pnv_ioda_pe));
195         clear_bit(pe_num, phb->ioda.pe_alloc);
196 }
197
198 /* The default M64 BAR is shared by all PEs */
199 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
200 {
201         const char *desc;
202         struct resource *r;
203         s64 rc;
204
205         /* Configure the default M64 BAR */
206         rc = opal_pci_set_phb_mem_window(phb->opal_id,
207                                          OPAL_M64_WINDOW_TYPE,
208                                          phb->ioda.m64_bar_idx,
209                                          phb->ioda.m64_base,
210                                          0, /* unused */
211                                          phb->ioda.m64_size);
212         if (rc != OPAL_SUCCESS) {
213                 desc = "configuring";
214                 goto fail;
215         }
216
217         /* Enable the default M64 BAR */
218         rc = opal_pci_phb_mmio_enable(phb->opal_id,
219                                       OPAL_M64_WINDOW_TYPE,
220                                       phb->ioda.m64_bar_idx,
221                                       OPAL_ENABLE_M64_SPLIT);
222         if (rc != OPAL_SUCCESS) {
223                 desc = "enabling";
224                 goto fail;
225         }
226
227         /*
228          * Exclude the segments for reserved and root bus PE, which
229          * are first or last two PEs.
230          */
231         r = &phb->hose->mem_resources[1];
232         if (phb->ioda.reserved_pe_idx == 0)
233                 r->start += (2 * phb->ioda.m64_segsize);
234         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
235                 r->end -= (2 * phb->ioda.m64_segsize);
236         else
237                 pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
238                         phb->ioda.reserved_pe_idx);
239
240         return 0;
241
242 fail:
243         pr_warn("  Failure %lld %s M64 BAR#%d\n",
244                 rc, desc, phb->ioda.m64_bar_idx);
245         opal_pci_phb_mmio_enable(phb->opal_id,
246                                  OPAL_M64_WINDOW_TYPE,
247                                  phb->ioda.m64_bar_idx,
248                                  OPAL_DISABLE_M64);
249         return -EIO;
250 }
251
252 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
253                                          unsigned long *pe_bitmap)
254 {
255         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
256         struct pnv_phb *phb = hose->private_data;
257         struct resource *r;
258         resource_size_t base, sgsz, start, end;
259         int segno, i;
260
261         base = phb->ioda.m64_base;
262         sgsz = phb->ioda.m64_segsize;
263         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
264                 r = &pdev->resource[i];
265                 if (!r->parent || !pnv_pci_is_m64(phb, r))
266                         continue;
267
268                 start = _ALIGN_DOWN(r->start - base, sgsz);
269                 end = _ALIGN_UP(r->end - base, sgsz);
270                 for (segno = start / sgsz; segno < end / sgsz; segno++) {
271                         if (pe_bitmap)
272                                 set_bit(segno, pe_bitmap);
273                         else
274                                 pnv_ioda_reserve_pe(phb, segno);
275                 }
276         }
277 }
278
279 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
280 {
281         struct resource *r;
282         int index;
283
284         /*
285          * There are 16 M64 BARs, each of which has 8 segments. So
286          * there are as many M64 segments as the maximum number of
287          * PEs, which is 128.
288          */
289         for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
290                 unsigned long base, segsz = phb->ioda.m64_segsize;
291                 int64_t rc;
292
293                 base = phb->ioda.m64_base +
294                        index * PNV_IODA1_M64_SEGS * segsz;
295                 rc = opal_pci_set_phb_mem_window(phb->opal_id,
296                                 OPAL_M64_WINDOW_TYPE, index, base, 0,
297                                 PNV_IODA1_M64_SEGS * segsz);
298                 if (rc != OPAL_SUCCESS) {
299                         pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
300                                 rc, phb->hose->global_number, index);
301                         goto fail;
302                 }
303
304                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
305                                 OPAL_M64_WINDOW_TYPE, index,
306                                 OPAL_ENABLE_M64_SPLIT);
307                 if (rc != OPAL_SUCCESS) {
308                         pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
309                                 rc, phb->hose->global_number, index);
310                         goto fail;
311                 }
312         }
313
314         /*
315          * Exclude the segments for reserved and root bus PE, which
316          * are first or last two PEs.
317          */
318         r = &phb->hose->mem_resources[1];
319         if (phb->ioda.reserved_pe_idx == 0)
320                 r->start += (2 * phb->ioda.m64_segsize);
321         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
322                 r->end -= (2 * phb->ioda.m64_segsize);
323         else
324                 WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
325                      phb->ioda.reserved_pe_idx, phb->hose->global_number);
326
327         return 0;
328
329 fail:
330         for ( ; index >= 0; index--)
331                 opal_pci_phb_mmio_enable(phb->opal_id,
332                         OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
333
334         return -EIO;
335 }
336
337 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
338                                     unsigned long *pe_bitmap,
339                                     bool all)
340 {
341         struct pci_dev *pdev;
342
343         list_for_each_entry(pdev, &bus->devices, bus_list) {
344                 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
345
346                 if (all && pdev->subordinate)
347                         pnv_ioda_reserve_m64_pe(pdev->subordinate,
348                                                 pe_bitmap, all);
349         }
350 }
351
352 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
353 {
354         struct pci_controller *hose = pci_bus_to_host(bus);
355         struct pnv_phb *phb = hose->private_data;
356         struct pnv_ioda_pe *master_pe, *pe;
357         unsigned long size, *pe_alloc;
358         int i;
359
360         /* Root bus shouldn't use M64 */
361         if (pci_is_root_bus(bus))
362                 return NULL;
363
364         /* Allocate bitmap */
365         size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
366         pe_alloc = kzalloc(size, GFP_KERNEL);
367         if (!pe_alloc) {
368                 pr_warn("%s: Out of memory !\n",
369                         __func__);
370                 return NULL;
371         }
372
373         /* Figure out reserved PE numbers by the PE */
374         pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
375
376         /*
377          * the current bus might not own M64 window and that's all
378          * contributed by its child buses. For the case, we needn't
379          * pick M64 dependent PE#.
380          */
381         if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
382                 kfree(pe_alloc);
383                 return NULL;
384         }
385
386         /*
387          * Figure out the master PE and put all slave PEs to master
388          * PE's list to form compound PE.
389          */
390         master_pe = NULL;
391         i = -1;
392         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
393                 phb->ioda.total_pe_num) {
394                 pe = &phb->ioda.pe_array[i];
395
396                 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
397                 if (!master_pe) {
398                         pe->flags |= PNV_IODA_PE_MASTER;
399                         INIT_LIST_HEAD(&pe->slaves);
400                         master_pe = pe;
401                 } else {
402                         pe->flags |= PNV_IODA_PE_SLAVE;
403                         pe->master = master_pe;
404                         list_add_tail(&pe->list, &master_pe->slaves);
405                 }
406
407                 /*
408                  * P7IOC supports M64DT, which helps mapping M64 segment
409                  * to one particular PE#. However, PHB3 has fixed mapping
410                  * between M64 segment and PE#. In order to have same logic
411                  * for P7IOC and PHB3, we enforce fixed mapping between M64
412                  * segment and PE# on P7IOC.
413                  */
414                 if (phb->type == PNV_PHB_IODA1) {
415                         int64_t rc;
416
417                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
418                                         pe->pe_number, OPAL_M64_WINDOW_TYPE,
419                                         pe->pe_number / PNV_IODA1_M64_SEGS,
420                                         pe->pe_number % PNV_IODA1_M64_SEGS);
421                         if (rc != OPAL_SUCCESS)
422                                 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
423                                         __func__, rc, phb->hose->global_number,
424                                         pe->pe_number);
425                 }
426         }
427
428         kfree(pe_alloc);
429         return master_pe;
430 }
431
432 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
433 {
434         struct pci_controller *hose = phb->hose;
435         struct device_node *dn = hose->dn;
436         struct resource *res;
437         u32 m64_range[2], i;
438         const __be32 *r;
439         u64 pci_addr;
440
441         if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
442                 pr_info("  Not support M64 window\n");
443                 return;
444         }
445
446         if (!firmware_has_feature(FW_FEATURE_OPAL)) {
447                 pr_info("  Firmware too old to support M64 window\n");
448                 return;
449         }
450
451         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
452         if (!r) {
453                 pr_info("  No <ibm,opal-m64-window> on %pOF\n",
454                         dn);
455                 return;
456         }
457
458         /*
459          * Find the available M64 BAR range and pickup the last one for
460          * covering the whole 64-bits space. We support only one range.
461          */
462         if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
463                                        m64_range, 2)) {
464                 /* In absence of the property, assume 0..15 */
465                 m64_range[0] = 0;
466                 m64_range[1] = 16;
467         }
468         /* We only support 64 bits in our allocator */
469         if (m64_range[1] > 63) {
470                 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
471                         __func__, m64_range[1], phb->hose->global_number);
472                 m64_range[1] = 63;
473         }
474         /* Empty range, no m64 */
475         if (m64_range[1] <= m64_range[0]) {
476                 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
477                         __func__, phb->hose->global_number);
478                 return;
479         }
480
481         /* Configure M64 informations */
482         res = &hose->mem_resources[1];
483         res->name = dn->full_name;
484         res->start = of_translate_address(dn, r + 2);
485         res->end = res->start + of_read_number(r + 4, 2) - 1;
486         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
487         pci_addr = of_read_number(r, 2);
488         hose->mem_offset[1] = res->start - pci_addr;
489
490         phb->ioda.m64_size = resource_size(res);
491         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
492         phb->ioda.m64_base = pci_addr;
493
494         /* This lines up nicely with the display from processing OF ranges */
495         pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
496                 res->start, res->end, pci_addr, m64_range[0],
497                 m64_range[0] + m64_range[1] - 1);
498
499         /* Mark all M64 used up by default */
500         phb->ioda.m64_bar_alloc = (unsigned long)-1;
501
502         /* Use last M64 BAR to cover M64 window */
503         m64_range[1]--;
504         phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
505
506         pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
507
508         /* Mark remaining ones free */
509         for (i = m64_range[0]; i < m64_range[1]; i++)
510                 clear_bit(i, &phb->ioda.m64_bar_alloc);
511
512         /*
513          * Setup init functions for M64 based on IODA version, IODA3 uses
514          * the IODA2 code.
515          */
516         if (phb->type == PNV_PHB_IODA1)
517                 phb->init_m64 = pnv_ioda1_init_m64;
518         else
519                 phb->init_m64 = pnv_ioda2_init_m64;
520         phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
521         phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
522 }
523
524 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
525 {
526         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
527         struct pnv_ioda_pe *slave;
528         s64 rc;
529
530         /* Fetch master PE */
531         if (pe->flags & PNV_IODA_PE_SLAVE) {
532                 pe = pe->master;
533                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
534                         return;
535
536                 pe_no = pe->pe_number;
537         }
538
539         /* Freeze master PE */
540         rc = opal_pci_eeh_freeze_set(phb->opal_id,
541                                      pe_no,
542                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
543         if (rc != OPAL_SUCCESS) {
544                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
545                         __func__, rc, phb->hose->global_number, pe_no);
546                 return;
547         }
548
549         /* Freeze slave PEs */
550         if (!(pe->flags & PNV_IODA_PE_MASTER))
551                 return;
552
553         list_for_each_entry(slave, &pe->slaves, list) {
554                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
555                                              slave->pe_number,
556                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
557                 if (rc != OPAL_SUCCESS)
558                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
559                                 __func__, rc, phb->hose->global_number,
560                                 slave->pe_number);
561         }
562 }
563
564 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
565 {
566         struct pnv_ioda_pe *pe, *slave;
567         s64 rc;
568
569         /* Find master PE */
570         pe = &phb->ioda.pe_array[pe_no];
571         if (pe->flags & PNV_IODA_PE_SLAVE) {
572                 pe = pe->master;
573                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
574                 pe_no = pe->pe_number;
575         }
576
577         /* Clear frozen state for master PE */
578         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
579         if (rc != OPAL_SUCCESS) {
580                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
581                         __func__, rc, opt, phb->hose->global_number, pe_no);
582                 return -EIO;
583         }
584
585         if (!(pe->flags & PNV_IODA_PE_MASTER))
586                 return 0;
587
588         /* Clear frozen state for slave PEs */
589         list_for_each_entry(slave, &pe->slaves, list) {
590                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
591                                              slave->pe_number,
592                                              opt);
593                 if (rc != OPAL_SUCCESS) {
594                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
595                                 __func__, rc, opt, phb->hose->global_number,
596                                 slave->pe_number);
597                         return -EIO;
598                 }
599         }
600
601         return 0;
602 }
603
604 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
605 {
606         struct pnv_ioda_pe *slave, *pe;
607         u8 fstate, state;
608         __be16 pcierr;
609         s64 rc;
610
611         /* Sanity check on PE number */
612         if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
613                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
614
615         /*
616          * Fetch the master PE and the PE instance might be
617          * not initialized yet.
618          */
619         pe = &phb->ioda.pe_array[pe_no];
620         if (pe->flags & PNV_IODA_PE_SLAVE) {
621                 pe = pe->master;
622                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
623                 pe_no = pe->pe_number;
624         }
625
626         /* Check the master PE */
627         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
628                                         &state, &pcierr, NULL);
629         if (rc != OPAL_SUCCESS) {
630                 pr_warn("%s: Failure %lld getting "
631                         "PHB#%x-PE#%x state\n",
632                         __func__, rc,
633                         phb->hose->global_number, pe_no);
634                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
635         }
636
637         /* Check the slave PE */
638         if (!(pe->flags & PNV_IODA_PE_MASTER))
639                 return state;
640
641         list_for_each_entry(slave, &pe->slaves, list) {
642                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
643                                                 slave->pe_number,
644                                                 &fstate,
645                                                 &pcierr,
646                                                 NULL);
647                 if (rc != OPAL_SUCCESS) {
648                         pr_warn("%s: Failure %lld getting "
649                                 "PHB#%x-PE#%x state\n",
650                                 __func__, rc,
651                                 phb->hose->global_number, slave->pe_number);
652                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
653                 }
654
655                 /*
656                  * Override the result based on the ascending
657                  * priority.
658                  */
659                 if (fstate > state)
660                         state = fstate;
661         }
662
663         return state;
664 }
665
666 /* Currently those 2 are only used when MSIs are enabled, this will change
667  * but in the meantime, we need to protect them to avoid warnings
668  */
669 #ifdef CONFIG_PCI_MSI
670 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
671 {
672         struct pci_controller *hose = pci_bus_to_host(dev->bus);
673         struct pnv_phb *phb = hose->private_data;
674         struct pci_dn *pdn = pci_get_pdn(dev);
675
676         if (!pdn)
677                 return NULL;
678         if (pdn->pe_number == IODA_INVALID_PE)
679                 return NULL;
680         return &phb->ioda.pe_array[pdn->pe_number];
681 }
682 #endif /* CONFIG_PCI_MSI */
683
684 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
685                                   struct pnv_ioda_pe *parent,
686                                   struct pnv_ioda_pe *child,
687                                   bool is_add)
688 {
689         const char *desc = is_add ? "adding" : "removing";
690         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
691                               OPAL_REMOVE_PE_FROM_DOMAIN;
692         struct pnv_ioda_pe *slave;
693         long rc;
694
695         /* Parent PE affects child PE */
696         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
697                                 child->pe_number, op);
698         if (rc != OPAL_SUCCESS) {
699                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
700                         rc, desc);
701                 return -ENXIO;
702         }
703
704         if (!(child->flags & PNV_IODA_PE_MASTER))
705                 return 0;
706
707         /* Compound case: parent PE affects slave PEs */
708         list_for_each_entry(slave, &child->slaves, list) {
709                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
710                                         slave->pe_number, op);
711                 if (rc != OPAL_SUCCESS) {
712                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
713                                 rc, desc);
714                         return -ENXIO;
715                 }
716         }
717
718         return 0;
719 }
720
721 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
722                               struct pnv_ioda_pe *pe,
723                               bool is_add)
724 {
725         struct pnv_ioda_pe *slave;
726         struct pci_dev *pdev = NULL;
727         int ret;
728
729         /*
730          * Clear PE frozen state. If it's master PE, we need
731          * clear slave PE frozen state as well.
732          */
733         if (is_add) {
734                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
735                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
736                 if (pe->flags & PNV_IODA_PE_MASTER) {
737                         list_for_each_entry(slave, &pe->slaves, list)
738                                 opal_pci_eeh_freeze_clear(phb->opal_id,
739                                                           slave->pe_number,
740                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
741                 }
742         }
743
744         /*
745          * Associate PE in PELT. We need add the PE into the
746          * corresponding PELT-V as well. Otherwise, the error
747          * originated from the PE might contribute to other
748          * PEs.
749          */
750         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
751         if (ret)
752                 return ret;
753
754         /* For compound PEs, any one affects all of them */
755         if (pe->flags & PNV_IODA_PE_MASTER) {
756                 list_for_each_entry(slave, &pe->slaves, list) {
757                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
758                         if (ret)
759                                 return ret;
760                 }
761         }
762
763         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
764                 pdev = pe->pbus->self;
765         else if (pe->flags & PNV_IODA_PE_DEV)
766                 pdev = pe->pdev->bus->self;
767 #ifdef CONFIG_PCI_IOV
768         else if (pe->flags & PNV_IODA_PE_VF)
769                 pdev = pe->parent_dev;
770 #endif /* CONFIG_PCI_IOV */
771         while (pdev) {
772                 struct pci_dn *pdn = pci_get_pdn(pdev);
773                 struct pnv_ioda_pe *parent;
774
775                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
776                         parent = &phb->ioda.pe_array[pdn->pe_number];
777                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
778                         if (ret)
779                                 return ret;
780                 }
781
782                 pdev = pdev->bus->self;
783         }
784
785         return 0;
786 }
787
788 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
789 {
790         struct pci_dev *parent;
791         uint8_t bcomp, dcomp, fcomp;
792         int64_t rc;
793         long rid_end, rid;
794
795         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
796         if (pe->pbus) {
797                 int count;
798
799                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
800                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
801                 parent = pe->pbus->self;
802                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
803                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
804                 else
805                         count = 1;
806
807                 switch(count) {
808                 case  1: bcomp = OpalPciBusAll;         break;
809                 case  2: bcomp = OpalPciBus7Bits;       break;
810                 case  4: bcomp = OpalPciBus6Bits;       break;
811                 case  8: bcomp = OpalPciBus5Bits;       break;
812                 case 16: bcomp = OpalPciBus4Bits;       break;
813                 case 32: bcomp = OpalPciBus3Bits;       break;
814                 default:
815                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
816                                 count);
817                         /* Do an exact match only */
818                         bcomp = OpalPciBusAll;
819                 }
820                 rid_end = pe->rid + (count << 8);
821         } else {
822 #ifdef CONFIG_PCI_IOV
823                 if (pe->flags & PNV_IODA_PE_VF)
824                         parent = pe->parent_dev;
825                 else
826 #endif
827                         parent = pe->pdev->bus->self;
828                 bcomp = OpalPciBusAll;
829                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
830                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
831                 rid_end = pe->rid + 1;
832         }
833
834         /* Clear the reverse map */
835         for (rid = pe->rid; rid < rid_end; rid++)
836                 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
837
838         /* Release from all parents PELT-V */
839         while (parent) {
840                 struct pci_dn *pdn = pci_get_pdn(parent);
841                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
842                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
843                                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
844                         /* XXX What to do in case of error ? */
845                 }
846                 parent = parent->bus->self;
847         }
848
849         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
850                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
851
852         /* Disassociate PE in PELT */
853         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
854                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
855         if (rc)
856                 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
857         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
858                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
859         if (rc)
860                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
861
862         pe->pbus = NULL;
863         pe->pdev = NULL;
864 #ifdef CONFIG_PCI_IOV
865         pe->parent_dev = NULL;
866 #endif
867
868         return 0;
869 }
870
871 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
872 {
873         struct pci_dev *parent;
874         uint8_t bcomp, dcomp, fcomp;
875         long rc, rid_end, rid;
876
877         /* Bus validation ? */
878         if (pe->pbus) {
879                 int count;
880
881                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
882                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
883                 parent = pe->pbus->self;
884                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
885                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
886                 else
887                         count = 1;
888
889                 switch(count) {
890                 case  1: bcomp = OpalPciBusAll;         break;
891                 case  2: bcomp = OpalPciBus7Bits;       break;
892                 case  4: bcomp = OpalPciBus6Bits;       break;
893                 case  8: bcomp = OpalPciBus5Bits;       break;
894                 case 16: bcomp = OpalPciBus4Bits;       break;
895                 case 32: bcomp = OpalPciBus3Bits;       break;
896                 default:
897                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
898                                 count);
899                         /* Do an exact match only */
900                         bcomp = OpalPciBusAll;
901                 }
902                 rid_end = pe->rid + (count << 8);
903         } else {
904 #ifdef CONFIG_PCI_IOV
905                 if (pe->flags & PNV_IODA_PE_VF)
906                         parent = pe->parent_dev;
907                 else
908 #endif /* CONFIG_PCI_IOV */
909                         parent = pe->pdev->bus->self;
910                 bcomp = OpalPciBusAll;
911                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
912                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
913                 rid_end = pe->rid + 1;
914         }
915
916         /*
917          * Associate PE in PELT. We need add the PE into the
918          * corresponding PELT-V as well. Otherwise, the error
919          * originated from the PE might contribute to other
920          * PEs.
921          */
922         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
923                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
924         if (rc) {
925                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
926                 return -ENXIO;
927         }
928
929         /*
930          * Configure PELTV. NPUs don't have a PELTV table so skip
931          * configuration on them.
932          */
933         if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
934                 pnv_ioda_set_peltv(phb, pe, true);
935
936         /* Setup reverse map */
937         for (rid = pe->rid; rid < rid_end; rid++)
938                 phb->ioda.pe_rmap[rid] = pe->pe_number;
939
940         /* Setup one MVTs on IODA1 */
941         if (phb->type != PNV_PHB_IODA1) {
942                 pe->mve_number = 0;
943                 goto out;
944         }
945
946         pe->mve_number = pe->pe_number;
947         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
948         if (rc != OPAL_SUCCESS) {
949                 pe_err(pe, "OPAL error %ld setting up MVE %x\n",
950                        rc, pe->mve_number);
951                 pe->mve_number = -1;
952         } else {
953                 rc = opal_pci_set_mve_enable(phb->opal_id,
954                                              pe->mve_number, OPAL_ENABLE_MVE);
955                 if (rc) {
956                         pe_err(pe, "OPAL error %ld enabling MVE %x\n",
957                                rc, pe->mve_number);
958                         pe->mve_number = -1;
959                 }
960         }
961
962 out:
963         return 0;
964 }
965
966 #ifdef CONFIG_PCI_IOV
967 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
968 {
969         struct pci_dn *pdn = pci_get_pdn(dev);
970         int i;
971         struct resource *res, res2;
972         resource_size_t size;
973         u16 num_vfs;
974
975         if (!dev->is_physfn)
976                 return -EINVAL;
977
978         /*
979          * "offset" is in VFs.  The M64 windows are sized so that when they
980          * are segmented, each segment is the same size as the IOV BAR.
981          * Each segment is in a separate PE, and the high order bits of the
982          * address are the PE number.  Therefore, each VF's BAR is in a
983          * separate PE, and changing the IOV BAR start address changes the
984          * range of PEs the VFs are in.
985          */
986         num_vfs = pdn->num_vfs;
987         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
988                 res = &dev->resource[i + PCI_IOV_RESOURCES];
989                 if (!res->flags || !res->parent)
990                         continue;
991
992                 /*
993                  * The actual IOV BAR range is determined by the start address
994                  * and the actual size for num_vfs VFs BAR.  This check is to
995                  * make sure that after shifting, the range will not overlap
996                  * with another device.
997                  */
998                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
999                 res2.flags = res->flags;
1000                 res2.start = res->start + (size * offset);
1001                 res2.end = res2.start + (size * num_vfs) - 1;
1002
1003                 if (res2.end > res->end) {
1004                         dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
1005                                 i, &res2, res, num_vfs, offset);
1006                         return -EBUSY;
1007                 }
1008         }
1009
1010         /*
1011          * Since M64 BAR shares segments among all possible 256 PEs,
1012          * we have to shift the beginning of PF IOV BAR to make it start from
1013          * the segment which belongs to the PE number assigned to the first VF.
1014          * This creates a "hole" in the /proc/iomem which could be used for
1015          * allocating other resources so we reserve this area below and
1016          * release when IOV is released.
1017          */
1018         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1019                 res = &dev->resource[i + PCI_IOV_RESOURCES];
1020                 if (!res->flags || !res->parent)
1021                         continue;
1022
1023                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1024                 res2 = *res;
1025                 res->start += size * offset;
1026
1027                 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1028                          i, &res2, res, (offset > 0) ? "En" : "Dis",
1029                          num_vfs, offset);
1030
1031                 if (offset < 0) {
1032                         devm_release_resource(&dev->dev, &pdn->holes[i]);
1033                         memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1034                 }
1035
1036                 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1037
1038                 if (offset > 0) {
1039                         pdn->holes[i].start = res2.start;
1040                         pdn->holes[i].end = res2.start + size * offset - 1;
1041                         pdn->holes[i].flags = IORESOURCE_BUS;
1042                         pdn->holes[i].name = "pnv_iov_reserved";
1043                         devm_request_resource(&dev->dev, res->parent,
1044                                         &pdn->holes[i]);
1045                 }
1046         }
1047         return 0;
1048 }
1049 #endif /* CONFIG_PCI_IOV */
1050
1051 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1052 {
1053         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1054         struct pnv_phb *phb = hose->private_data;
1055         struct pci_dn *pdn = pci_get_pdn(dev);
1056         struct pnv_ioda_pe *pe;
1057
1058         if (!pdn) {
1059                 pr_err("%s: Device tree node not associated properly\n",
1060                            pci_name(dev));
1061                 return NULL;
1062         }
1063         if (pdn->pe_number != IODA_INVALID_PE)
1064                 return NULL;
1065
1066         pe = pnv_ioda_alloc_pe(phb);
1067         if (!pe) {
1068                 pr_warn("%s: Not enough PE# available, disabling device\n",
1069                         pci_name(dev));
1070                 return NULL;
1071         }
1072
1073         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1074          * pointer in the PE data structure, both should be destroyed at the
1075          * same time. However, this needs to be looked at more closely again
1076          * once we actually start removing things (Hotplug, SR-IOV, ...)
1077          *
1078          * At some point we want to remove the PDN completely anyways
1079          */
1080         pci_dev_get(dev);
1081         pdn->pe_number = pe->pe_number;
1082         pe->flags = PNV_IODA_PE_DEV;
1083         pe->pdev = dev;
1084         pe->pbus = NULL;
1085         pe->mve_number = -1;
1086         pe->rid = dev->bus->number << 8 | pdn->devfn;
1087
1088         pe_info(pe, "Associated device to PE\n");
1089
1090         if (pnv_ioda_configure_pe(phb, pe)) {
1091                 /* XXX What do we do here ? */
1092                 pnv_ioda_free_pe(pe);
1093                 pdn->pe_number = IODA_INVALID_PE;
1094                 pe->pdev = NULL;
1095                 pci_dev_put(dev);
1096                 return NULL;
1097         }
1098
1099         /* Put PE to the list */
1100         list_add_tail(&pe->list, &phb->ioda.pe_list);
1101
1102         return pe;
1103 }
1104
1105 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1106 {
1107         struct pci_dev *dev;
1108
1109         list_for_each_entry(dev, &bus->devices, bus_list) {
1110                 struct pci_dn *pdn = pci_get_pdn(dev);
1111
1112                 if (pdn == NULL) {
1113                         pr_warn("%s: No device node associated with device !\n",
1114                                 pci_name(dev));
1115                         continue;
1116                 }
1117
1118                 /*
1119                  * In partial hotplug case, the PCI device might be still
1120                  * associated with the PE and needn't attach it to the PE
1121                  * again.
1122                  */
1123                 if (pdn->pe_number != IODA_INVALID_PE)
1124                         continue;
1125
1126                 pe->device_count++;
1127                 pdn->pe_number = pe->pe_number;
1128                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1129                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
1130         }
1131 }
1132
1133 /*
1134  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1135  * single PCI bus. Another one that contains the primary PCI bus and its
1136  * subordinate PCI devices and buses. The second type of PE is normally
1137  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1138  */
1139 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1140 {
1141         struct pci_controller *hose = pci_bus_to_host(bus);
1142         struct pnv_phb *phb = hose->private_data;
1143         struct pnv_ioda_pe *pe = NULL;
1144         unsigned int pe_num;
1145
1146         /*
1147          * In partial hotplug case, the PE instance might be still alive.
1148          * We should reuse it instead of allocating a new one.
1149          */
1150         pe_num = phb->ioda.pe_rmap[bus->number << 8];
1151         if (pe_num != IODA_INVALID_PE) {
1152                 pe = &phb->ioda.pe_array[pe_num];
1153                 pnv_ioda_setup_same_PE(bus, pe);
1154                 return NULL;
1155         }
1156
1157         /* PE number for root bus should have been reserved */
1158         if (pci_is_root_bus(bus) &&
1159             phb->ioda.root_pe_idx != IODA_INVALID_PE)
1160                 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1161
1162         /* Check if PE is determined by M64 */
1163         if (!pe && phb->pick_m64_pe)
1164                 pe = phb->pick_m64_pe(bus, all);
1165
1166         /* The PE number isn't pinned by M64 */
1167         if (!pe)
1168                 pe = pnv_ioda_alloc_pe(phb);
1169
1170         if (!pe) {
1171                 pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1172                         __func__, pci_domain_nr(bus), bus->number);
1173                 return NULL;
1174         }
1175
1176         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1177         pe->pbus = bus;
1178         pe->pdev = NULL;
1179         pe->mve_number = -1;
1180         pe->rid = bus->busn_res.start << 8;
1181
1182         if (all)
1183                 pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1184                         bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1185         else
1186                 pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1187                         bus->busn_res.start, pe->pe_number);
1188
1189         if (pnv_ioda_configure_pe(phb, pe)) {
1190                 /* XXX What do we do here ? */
1191                 pnv_ioda_free_pe(pe);
1192                 pe->pbus = NULL;
1193                 return NULL;
1194         }
1195
1196         /* Associate it with all child devices */
1197         pnv_ioda_setup_same_PE(bus, pe);
1198
1199         /* Put PE to the list */
1200         list_add_tail(&pe->list, &phb->ioda.pe_list);
1201
1202         return pe;
1203 }
1204
1205 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1206 {
1207         int pe_num, found_pe = false, rc;
1208         long rid;
1209         struct pnv_ioda_pe *pe;
1210         struct pci_dev *gpu_pdev;
1211         struct pci_dn *npu_pdn;
1212         struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1213         struct pnv_phb *phb = hose->private_data;
1214
1215         /*
1216          * Due to a hardware errata PE#0 on the NPU is reserved for
1217          * error handling. This means we only have three PEs remaining
1218          * which need to be assigned to four links, implying some
1219          * links must share PEs.
1220          *
1221          * To achieve this we assign PEs such that NPUs linking the
1222          * same GPU get assigned the same PE.
1223          */
1224         gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1225         for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1226                 pe = &phb->ioda.pe_array[pe_num];
1227                 if (!pe->pdev)
1228                         continue;
1229
1230                 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1231                         /*
1232                          * This device has the same peer GPU so should
1233                          * be assigned the same PE as the existing
1234                          * peer NPU.
1235                          */
1236                         dev_info(&npu_pdev->dev,
1237                                 "Associating to existing PE %x\n", pe_num);
1238                         pci_dev_get(npu_pdev);
1239                         npu_pdn = pci_get_pdn(npu_pdev);
1240                         rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1241                         npu_pdn->pe_number = pe_num;
1242                         phb->ioda.pe_rmap[rid] = pe->pe_number;
1243
1244                         /* Map the PE to this link */
1245                         rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1246                                         OpalPciBusAll,
1247                                         OPAL_COMPARE_RID_DEVICE_NUMBER,
1248                                         OPAL_COMPARE_RID_FUNCTION_NUMBER,
1249                                         OPAL_MAP_PE);
1250                         WARN_ON(rc != OPAL_SUCCESS);
1251                         found_pe = true;
1252                         break;
1253                 }
1254         }
1255
1256         if (!found_pe)
1257                 /*
1258                  * Could not find an existing PE so allocate a new
1259                  * one.
1260                  */
1261                 return pnv_ioda_setup_dev_PE(npu_pdev);
1262         else
1263                 return pe;
1264 }
1265
1266 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1267 {
1268         struct pci_dev *pdev;
1269
1270         list_for_each_entry(pdev, &bus->devices, bus_list)
1271                 pnv_ioda_setup_npu_PE(pdev);
1272 }
1273
1274 static void pnv_pci_ioda_setup_PEs(void)
1275 {
1276         struct pci_controller *hose, *tmp;
1277         struct pnv_phb *phb;
1278         struct pci_bus *bus;
1279         struct pci_dev *pdev;
1280
1281         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1282                 phb = hose->private_data;
1283                 if (phb->type == PNV_PHB_NPU_NVLINK) {
1284                         /* PE#0 is needed for error reporting */
1285                         pnv_ioda_reserve_pe(phb, 0);
1286                         pnv_ioda_setup_npu_PEs(hose->bus);
1287                         if (phb->model == PNV_PHB_MODEL_NPU2)
1288                                 pnv_npu2_init(phb);
1289                 }
1290                 if (phb->type == PNV_PHB_NPU_OCAPI) {
1291                         bus = hose->bus;
1292                         list_for_each_entry(pdev, &bus->devices, bus_list)
1293                                 pnv_ioda_setup_dev_PE(pdev);
1294                 }
1295         }
1296 }
1297
1298 #ifdef CONFIG_PCI_IOV
1299 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1300 {
1301         struct pci_bus        *bus;
1302         struct pci_controller *hose;
1303         struct pnv_phb        *phb;
1304         struct pci_dn         *pdn;
1305         int                    i, j;
1306         int                    m64_bars;
1307
1308         bus = pdev->bus;
1309         hose = pci_bus_to_host(bus);
1310         phb = hose->private_data;
1311         pdn = pci_get_pdn(pdev);
1312
1313         if (pdn->m64_single_mode)
1314                 m64_bars = num_vfs;
1315         else
1316                 m64_bars = 1;
1317
1318         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1319                 for (j = 0; j < m64_bars; j++) {
1320                         if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1321                                 continue;
1322                         opal_pci_phb_mmio_enable(phb->opal_id,
1323                                 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1324                         clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1325                         pdn->m64_map[j][i] = IODA_INVALID_M64;
1326                 }
1327
1328         kfree(pdn->m64_map);
1329         return 0;
1330 }
1331
1332 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1333 {
1334         struct pci_bus        *bus;
1335         struct pci_controller *hose;
1336         struct pnv_phb        *phb;
1337         struct pci_dn         *pdn;
1338         unsigned int           win;
1339         struct resource       *res;
1340         int                    i, j;
1341         int64_t                rc;
1342         int                    total_vfs;
1343         resource_size_t        size, start;
1344         int                    pe_num;
1345         int                    m64_bars;
1346
1347         bus = pdev->bus;
1348         hose = pci_bus_to_host(bus);
1349         phb = hose->private_data;
1350         pdn = pci_get_pdn(pdev);
1351         total_vfs = pci_sriov_get_totalvfs(pdev);
1352
1353         if (pdn->m64_single_mode)
1354                 m64_bars = num_vfs;
1355         else
1356                 m64_bars = 1;
1357
1358         pdn->m64_map = kmalloc_array(m64_bars,
1359                                      sizeof(*pdn->m64_map),
1360                                      GFP_KERNEL);
1361         if (!pdn->m64_map)
1362                 return -ENOMEM;
1363         /* Initialize the m64_map to IODA_INVALID_M64 */
1364         for (i = 0; i < m64_bars ; i++)
1365                 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1366                         pdn->m64_map[i][j] = IODA_INVALID_M64;
1367
1368
1369         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1370                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1371                 if (!res->flags || !res->parent)
1372                         continue;
1373
1374                 for (j = 0; j < m64_bars; j++) {
1375                         do {
1376                                 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1377                                                 phb->ioda.m64_bar_idx + 1, 0);
1378
1379                                 if (win >= phb->ioda.m64_bar_idx + 1)
1380                                         goto m64_failed;
1381                         } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1382
1383                         pdn->m64_map[j][i] = win;
1384
1385                         if (pdn->m64_single_mode) {
1386                                 size = pci_iov_resource_size(pdev,
1387                                                         PCI_IOV_RESOURCES + i);
1388                                 start = res->start + size * j;
1389                         } else {
1390                                 size = resource_size(res);
1391                                 start = res->start;
1392                         }
1393
1394                         /* Map the M64 here */
1395                         if (pdn->m64_single_mode) {
1396                                 pe_num = pdn->pe_num_map[j];
1397                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1398                                                 pe_num, OPAL_M64_WINDOW_TYPE,
1399                                                 pdn->m64_map[j][i], 0);
1400                         }
1401
1402                         rc = opal_pci_set_phb_mem_window(phb->opal_id,
1403                                                  OPAL_M64_WINDOW_TYPE,
1404                                                  pdn->m64_map[j][i],
1405                                                  start,
1406                                                  0, /* unused */
1407                                                  size);
1408
1409
1410                         if (rc != OPAL_SUCCESS) {
1411                                 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1412                                         win, rc);
1413                                 goto m64_failed;
1414                         }
1415
1416                         if (pdn->m64_single_mode)
1417                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1418                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1419                         else
1420                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1421                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1422
1423                         if (rc != OPAL_SUCCESS) {
1424                                 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1425                                         win, rc);
1426                                 goto m64_failed;
1427                         }
1428                 }
1429         }
1430         return 0;
1431
1432 m64_failed:
1433         pnv_pci_vf_release_m64(pdev, num_vfs);
1434         return -EBUSY;
1435 }
1436
1437 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1438                 int num);
1439
1440 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1441 {
1442         struct iommu_table    *tbl;
1443         int64_t               rc;
1444
1445         tbl = pe->table_group.tables[0];
1446         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1447         if (rc)
1448                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1449
1450         pnv_pci_ioda2_set_bypass(pe, false);
1451         if (pe->table_group.group) {
1452                 iommu_group_put(pe->table_group.group);
1453                 BUG_ON(pe->table_group.group);
1454         }
1455         iommu_tce_table_put(tbl);
1456 }
1457
1458 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1459 {
1460         struct pci_bus        *bus;
1461         struct pci_controller *hose;
1462         struct pnv_phb        *phb;
1463         struct pnv_ioda_pe    *pe, *pe_n;
1464         struct pci_dn         *pdn;
1465
1466         bus = pdev->bus;
1467         hose = pci_bus_to_host(bus);
1468         phb = hose->private_data;
1469         pdn = pci_get_pdn(pdev);
1470
1471         if (!pdev->is_physfn)
1472                 return;
1473
1474         list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1475                 if (pe->parent_dev != pdev)
1476                         continue;
1477
1478                 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1479
1480                 /* Remove from list */
1481                 mutex_lock(&phb->ioda.pe_list_mutex);
1482                 list_del(&pe->list);
1483                 mutex_unlock(&phb->ioda.pe_list_mutex);
1484
1485                 pnv_ioda_deconfigure_pe(phb, pe);
1486
1487                 pnv_ioda_free_pe(pe);
1488         }
1489 }
1490
1491 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1492 {
1493         struct pci_bus        *bus;
1494         struct pci_controller *hose;
1495         struct pnv_phb        *phb;
1496         struct pnv_ioda_pe    *pe;
1497         struct pci_dn         *pdn;
1498         u16                    num_vfs, i;
1499
1500         bus = pdev->bus;
1501         hose = pci_bus_to_host(bus);
1502         phb = hose->private_data;
1503         pdn = pci_get_pdn(pdev);
1504         num_vfs = pdn->num_vfs;
1505
1506         /* Release VF PEs */
1507         pnv_ioda_release_vf_PE(pdev);
1508
1509         if (phb->type == PNV_PHB_IODA2) {
1510                 if (!pdn->m64_single_mode)
1511                         pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1512
1513                 /* Release M64 windows */
1514                 pnv_pci_vf_release_m64(pdev, num_vfs);
1515
1516                 /* Release PE numbers */
1517                 if (pdn->m64_single_mode) {
1518                         for (i = 0; i < num_vfs; i++) {
1519                                 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1520                                         continue;
1521
1522                                 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1523                                 pnv_ioda_free_pe(pe);
1524                         }
1525                 } else
1526                         bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1527                 /* Releasing pe_num_map */
1528                 kfree(pdn->pe_num_map);
1529         }
1530 }
1531
1532 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1533                                        struct pnv_ioda_pe *pe);
1534 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1535 {
1536         struct pci_bus        *bus;
1537         struct pci_controller *hose;
1538         struct pnv_phb        *phb;
1539         struct pnv_ioda_pe    *pe;
1540         int                    pe_num;
1541         u16                    vf_index;
1542         struct pci_dn         *pdn;
1543
1544         bus = pdev->bus;
1545         hose = pci_bus_to_host(bus);
1546         phb = hose->private_data;
1547         pdn = pci_get_pdn(pdev);
1548
1549         if (!pdev->is_physfn)
1550                 return;
1551
1552         /* Reserve PE for each VF */
1553         for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1554                 if (pdn->m64_single_mode)
1555                         pe_num = pdn->pe_num_map[vf_index];
1556                 else
1557                         pe_num = *pdn->pe_num_map + vf_index;
1558
1559                 pe = &phb->ioda.pe_array[pe_num];
1560                 pe->pe_number = pe_num;
1561                 pe->phb = phb;
1562                 pe->flags = PNV_IODA_PE_VF;
1563                 pe->pbus = NULL;
1564                 pe->parent_dev = pdev;
1565                 pe->mve_number = -1;
1566                 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1567                            pci_iov_virtfn_devfn(pdev, vf_index);
1568
1569                 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1570                         hose->global_number, pdev->bus->number,
1571                         PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1572                         PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1573
1574                 if (pnv_ioda_configure_pe(phb, pe)) {
1575                         /* XXX What do we do here ? */
1576                         pnv_ioda_free_pe(pe);
1577                         pe->pdev = NULL;
1578                         continue;
1579                 }
1580
1581                 /* Put PE to the list */
1582                 mutex_lock(&phb->ioda.pe_list_mutex);
1583                 list_add_tail(&pe->list, &phb->ioda.pe_list);
1584                 mutex_unlock(&phb->ioda.pe_list_mutex);
1585
1586                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1587         }
1588 }
1589
1590 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1591 {
1592         struct pci_bus        *bus;
1593         struct pci_controller *hose;
1594         struct pnv_phb        *phb;
1595         struct pnv_ioda_pe    *pe;
1596         struct pci_dn         *pdn;
1597         int                    ret;
1598         u16                    i;
1599
1600         bus = pdev->bus;
1601         hose = pci_bus_to_host(bus);
1602         phb = hose->private_data;
1603         pdn = pci_get_pdn(pdev);
1604
1605         if (phb->type == PNV_PHB_IODA2) {
1606                 if (!pdn->vfs_expanded) {
1607                         dev_info(&pdev->dev, "don't support this SRIOV device"
1608                                 " with non 64bit-prefetchable IOV BAR\n");
1609                         return -ENOSPC;
1610                 }
1611
1612                 /*
1613                  * When M64 BARs functions in Single PE mode, the number of VFs
1614                  * could be enabled must be less than the number of M64 BARs.
1615                  */
1616                 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1617                         dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1618                         return -EBUSY;
1619                 }
1620
1621                 /* Allocating pe_num_map */
1622                 if (pdn->m64_single_mode)
1623                         pdn->pe_num_map = kmalloc_array(num_vfs,
1624                                                         sizeof(*pdn->pe_num_map),
1625                                                         GFP_KERNEL);
1626                 else
1627                         pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1628
1629                 if (!pdn->pe_num_map)
1630                         return -ENOMEM;
1631
1632                 if (pdn->m64_single_mode)
1633                         for (i = 0; i < num_vfs; i++)
1634                                 pdn->pe_num_map[i] = IODA_INVALID_PE;
1635
1636                 /* Calculate available PE for required VFs */
1637                 if (pdn->m64_single_mode) {
1638                         for (i = 0; i < num_vfs; i++) {
1639                                 pe = pnv_ioda_alloc_pe(phb);
1640                                 if (!pe) {
1641                                         ret = -EBUSY;
1642                                         goto m64_failed;
1643                                 }
1644
1645                                 pdn->pe_num_map[i] = pe->pe_number;
1646                         }
1647                 } else {
1648                         mutex_lock(&phb->ioda.pe_alloc_mutex);
1649                         *pdn->pe_num_map = bitmap_find_next_zero_area(
1650                                 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1651                                 0, num_vfs, 0);
1652                         if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1653                                 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1654                                 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1655                                 kfree(pdn->pe_num_map);
1656                                 return -EBUSY;
1657                         }
1658                         bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1659                         mutex_unlock(&phb->ioda.pe_alloc_mutex);
1660                 }
1661                 pdn->num_vfs = num_vfs;
1662
1663                 /* Assign M64 window accordingly */
1664                 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1665                 if (ret) {
1666                         dev_info(&pdev->dev, "Not enough M64 window resources\n");
1667                         goto m64_failed;
1668                 }
1669
1670                 /*
1671                  * When using one M64 BAR to map one IOV BAR, we need to shift
1672                  * the IOV BAR according to the PE# allocated to the VFs.
1673                  * Otherwise, the PE# for the VF will conflict with others.
1674                  */
1675                 if (!pdn->m64_single_mode) {
1676                         ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1677                         if (ret)
1678                                 goto m64_failed;
1679                 }
1680         }
1681
1682         /* Setup VF PEs */
1683         pnv_ioda_setup_vf_PE(pdev, num_vfs);
1684
1685         return 0;
1686
1687 m64_failed:
1688         if (pdn->m64_single_mode) {
1689                 for (i = 0; i < num_vfs; i++) {
1690                         if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1691                                 continue;
1692
1693                         pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1694                         pnv_ioda_free_pe(pe);
1695                 }
1696         } else
1697                 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1698
1699         /* Releasing pe_num_map */
1700         kfree(pdn->pe_num_map);
1701
1702         return ret;
1703 }
1704
1705 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
1706 {
1707         pnv_pci_sriov_disable(pdev);
1708
1709         /* Release PCI data */
1710         remove_dev_pci_data(pdev);
1711         return 0;
1712 }
1713
1714 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1715 {
1716         /* Allocate PCI data */
1717         add_dev_pci_data(pdev);
1718
1719         return pnv_pci_sriov_enable(pdev, num_vfs);
1720 }
1721 #endif /* CONFIG_PCI_IOV */
1722
1723 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1724 {
1725         struct pci_dn *pdn = pci_get_pdn(pdev);
1726         struct pnv_ioda_pe *pe;
1727
1728         /*
1729          * The function can be called while the PE#
1730          * hasn't been assigned. Do nothing for the
1731          * case.
1732          */
1733         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1734                 return;
1735
1736         pe = &phb->ioda.pe_array[pdn->pe_number];
1737         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1738         set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1739         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1740         /*
1741          * Note: iommu_add_device() will fail here as
1742          * for physical PE: the device is already added by now;
1743          * for virtual PE: sysfs entries are not ready yet and
1744          * tce_iommu_bus_notifier will add the device to a group later.
1745          */
1746 }
1747
1748 static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe)
1749 {
1750         unsigned short vendor = 0;
1751         struct pci_dev *pdev;
1752
1753         if (pe->device_count == 1)
1754                 return true;
1755
1756         /* pe->pdev should be set if it's a single device, pe->pbus if not */
1757         if (!pe->pbus)
1758                 return true;
1759
1760         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
1761                 if (!vendor) {
1762                         vendor = pdev->vendor;
1763                         continue;
1764                 }
1765
1766                 if (pdev->vendor != vendor)
1767                         return false;
1768         }
1769
1770         return true;
1771 }
1772
1773 /*
1774  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1775  *
1776  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1777  * Devices can only access more than that if bit 59 of the PCI address is set
1778  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1779  * Many PCI devices are not capable of addressing that many bits, and as a
1780  * result are limited to the 4GB of virtual memory made available to 32-bit
1781  * devices in TVE#0.
1782  *
1783  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1784  * devices by configuring the virtual memory past the first 4GB inaccessible
1785  * by 64-bit DMAs.  This should only be used by devices that want more than
1786  * 4GB, and only on PEs that have no 32-bit devices.
1787  *
1788  * Currently this will only work on PHB3 (POWER8).
1789  */
1790 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1791 {
1792         u64 window_size, table_size, tce_count, addr;
1793         struct page *table_pages;
1794         u64 tce_order = 28; /* 256MB TCEs */
1795         __be64 *tces;
1796         s64 rc;
1797
1798         /*
1799          * Window size needs to be a power of two, but needs to account for
1800          * shifting memory by the 4GB offset required to skip 32bit space.
1801          */
1802         window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1803         tce_count = window_size >> tce_order;
1804         table_size = tce_count << 3;
1805
1806         if (table_size < PAGE_SIZE)
1807                 table_size = PAGE_SIZE;
1808
1809         table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1810                                        get_order(table_size));
1811         if (!table_pages)
1812                 goto err;
1813
1814         tces = page_address(table_pages);
1815         if (!tces)
1816                 goto err;
1817
1818         memset(tces, 0, table_size);
1819
1820         for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1821                 tces[(addr + (1ULL << 32)) >> tce_order] =
1822                         cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1823         }
1824
1825         rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1826                                         pe->pe_number,
1827                                         /* reconfigure window 0 */
1828                                         (pe->pe_number << 1) + 0,
1829                                         1,
1830                                         __pa(tces),
1831                                         table_size,
1832                                         1 << tce_order);
1833         if (rc == OPAL_SUCCESS) {
1834                 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1835                 return 0;
1836         }
1837 err:
1838         pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1839         return -EIO;
1840 }
1841
1842 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1843 {
1844         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1845         struct pnv_phb *phb = hose->private_data;
1846         struct pci_dn *pdn = pci_get_pdn(pdev);
1847         struct pnv_ioda_pe *pe;
1848         uint64_t top;
1849         bool bypass = false;
1850         s64 rc;
1851
1852         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1853                 return -ENODEV;
1854
1855         pe = &phb->ioda.pe_array[pdn->pe_number];
1856         if (pe->tce_bypass_enabled) {
1857                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1858                 bypass = (dma_mask >= top);
1859         }
1860
1861         if (bypass) {
1862                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1863                 set_dma_ops(&pdev->dev, &dma_nommu_ops);
1864         } else {
1865                 /*
1866                  * If the device can't set the TCE bypass bit but still wants
1867                  * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1868                  * bypass the 32-bit region and be usable for 64-bit DMAs.
1869                  * The device needs to be able to address all of this space.
1870                  */
1871                 if (dma_mask >> 32 &&
1872                     dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1873                     pnv_pci_ioda_pe_single_vendor(pe) &&
1874                     phb->model == PNV_PHB_MODEL_PHB3) {
1875                         /* Configure the bypass mode */
1876                         rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1877                         if (rc)
1878                                 return rc;
1879                         /* 4GB offset bypasses 32-bit space */
1880                         set_dma_offset(&pdev->dev, (1ULL << 32));
1881                         set_dma_ops(&pdev->dev, &dma_nommu_ops);
1882                 } else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) {
1883                         /*
1884                          * Fail the request if a DMA mask between 32 and 64 bits
1885                          * was requested but couldn't be fulfilled. Ideally we
1886                          * would do this for 64-bits but historically we have
1887                          * always fallen back to 32-bits.
1888                          */
1889                         return -ENOMEM;
1890                 } else {
1891                         dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1892                         set_dma_ops(&pdev->dev, &dma_iommu_ops);
1893                 }
1894         }
1895         *pdev->dev.dma_mask = dma_mask;
1896
1897         /* Update peer npu devices */
1898         pnv_npu_try_dma_set_bypass(pdev, bypass);
1899
1900         return 0;
1901 }
1902
1903 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1904 {
1905         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1906         struct pnv_phb *phb = hose->private_data;
1907         struct pci_dn *pdn = pci_get_pdn(pdev);
1908         struct pnv_ioda_pe *pe;
1909         u64 end, mask;
1910
1911         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1912                 return 0;
1913
1914         pe = &phb->ioda.pe_array[pdn->pe_number];
1915         if (!pe->tce_bypass_enabled)
1916                 return __dma_get_required_mask(&pdev->dev);
1917
1918
1919         end = pe->tce_bypass_base + memblock_end_of_DRAM();
1920         mask = 1ULL << (fls64(end) - 1);
1921         mask += mask - 1;
1922
1923         return mask;
1924 }
1925
1926 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1927                                    struct pci_bus *bus,
1928                                    bool add_to_group)
1929 {
1930         struct pci_dev *dev;
1931
1932         list_for_each_entry(dev, &bus->devices, bus_list) {
1933                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1934                 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1935                 if (add_to_group)
1936                         iommu_add_device(&dev->dev);
1937
1938                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1939                         pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1940                                         add_to_group);
1941         }
1942 }
1943
1944 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1945                                                      bool real_mode)
1946 {
1947         return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1948                 (phb->regs + 0x210);
1949 }
1950
1951 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1952                 unsigned long index, unsigned long npages, bool rm)
1953 {
1954         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1955                         &tbl->it_group_list, struct iommu_table_group_link,
1956                         next);
1957         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1958                         struct pnv_ioda_pe, table_group);
1959         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1960         unsigned long start, end, inc;
1961
1962         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1963         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1964                         npages - 1);
1965
1966         /* p7ioc-style invalidation, 2 TCEs per write */
1967         start |= (1ull << 63);
1968         end |= (1ull << 63);
1969         inc = 16;
1970         end |= inc - 1; /* round up end to be different than start */
1971
1972         mb(); /* Ensure above stores are visible */
1973         while (start <= end) {
1974                 if (rm)
1975                         __raw_rm_writeq_be(start, invalidate);
1976                 else
1977                         __raw_writeq_be(start, invalidate);
1978
1979                 start += inc;
1980         }
1981
1982         /*
1983          * The iommu layer will do another mb() for us on build()
1984          * and we don't care on free()
1985          */
1986 }
1987
1988 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1989                 long npages, unsigned long uaddr,
1990                 enum dma_data_direction direction,
1991                 unsigned long attrs)
1992 {
1993         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1994                         attrs);
1995
1996         if (!ret)
1997                 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1998
1999         return ret;
2000 }
2001
2002 #ifdef CONFIG_IOMMU_API
2003 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
2004                 unsigned long *hpa, enum dma_data_direction *direction)
2005 {
2006         long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
2007
2008         if (!ret)
2009                 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
2010
2011         return ret;
2012 }
2013
2014 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
2015                 unsigned long *hpa, enum dma_data_direction *direction)
2016 {
2017         long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2018
2019         if (!ret)
2020                 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
2021
2022         return ret;
2023 }
2024 #endif
2025
2026 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
2027                 long npages)
2028 {
2029         pnv_tce_free(tbl, index, npages);
2030
2031         pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2032 }
2033
2034 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
2035         .set = pnv_ioda1_tce_build,
2036 #ifdef CONFIG_IOMMU_API
2037         .exchange = pnv_ioda1_tce_xchg,
2038         .exchange_rm = pnv_ioda1_tce_xchg_rm,
2039         .useraddrptr = pnv_tce_useraddrptr,
2040 #endif
2041         .clear = pnv_ioda1_tce_free,
2042         .get = pnv_tce_get,
2043 };
2044
2045 #define PHB3_TCE_KILL_INVAL_ALL         PPC_BIT(0)
2046 #define PHB3_TCE_KILL_INVAL_PE          PPC_BIT(1)
2047 #define PHB3_TCE_KILL_INVAL_ONE         PPC_BIT(2)
2048
2049 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2050 {
2051         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
2052         const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
2053
2054         mb(); /* Ensure previous TCE table stores are visible */
2055         if (rm)
2056                 __raw_rm_writeq_be(val, invalidate);
2057         else
2058                 __raw_writeq_be(val, invalidate);
2059 }
2060
2061 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2062 {
2063         /* 01xb - invalidate TCEs that match the specified PE# */
2064         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2065         unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2066
2067         mb(); /* Ensure above stores are visible */
2068         __raw_writeq_be(val, invalidate);
2069 }
2070
2071 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2072                                         unsigned shift, unsigned long index,
2073                                         unsigned long npages)
2074 {
2075         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2076         unsigned long start, end, inc;
2077
2078         /* We'll invalidate DMA address in PE scope */
2079         start = PHB3_TCE_KILL_INVAL_ONE;
2080         start |= (pe->pe_number & 0xFF);
2081         end = start;
2082
2083         /* Figure out the start, end and step */
2084         start |= (index << shift);
2085         end |= ((index + npages - 1) << shift);
2086         inc = (0x1ull << shift);
2087         mb();
2088
2089         while (start <= end) {
2090                 if (rm)
2091                         __raw_rm_writeq_be(start, invalidate);
2092                 else
2093                         __raw_writeq_be(start, invalidate);
2094                 start += inc;
2095         }
2096 }
2097
2098 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2099 {
2100         struct pnv_phb *phb = pe->phb;
2101
2102         if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2103                 pnv_pci_phb3_tce_invalidate_pe(pe);
2104         else
2105                 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2106                                   pe->pe_number, 0, 0, 0);
2107 }
2108
2109 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2110                 unsigned long index, unsigned long npages, bool rm)
2111 {
2112         struct iommu_table_group_link *tgl;
2113
2114         list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2115                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2116                                 struct pnv_ioda_pe, table_group);
2117                 struct pnv_phb *phb = pe->phb;
2118                 unsigned int shift = tbl->it_page_shift;
2119
2120                 /*
2121                  * NVLink1 can use the TCE kill register directly as
2122                  * it's the same as PHB3. NVLink2 is different and
2123                  * should go via the OPAL call.
2124                  */
2125                 if (phb->model == PNV_PHB_MODEL_NPU) {
2126                         /*
2127                          * The NVLink hardware does not support TCE kill
2128                          * per TCE entry so we have to invalidate
2129                          * the entire cache for it.
2130                          */
2131                         pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2132                         continue;
2133                 }
2134                 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2135                         pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2136                                                     index, npages);
2137                 else
2138                         opal_pci_tce_kill(phb->opal_id,
2139                                           OPAL_PCI_TCE_KILL_PAGES,
2140                                           pe->pe_number, 1u << shift,
2141                                           index << shift, npages);
2142         }
2143 }
2144
2145 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2146 {
2147         if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2148                 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2149         else
2150                 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2151 }
2152
2153 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2154                 long npages, unsigned long uaddr,
2155                 enum dma_data_direction direction,
2156                 unsigned long attrs)
2157 {
2158         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2159                         attrs);
2160
2161         if (!ret)
2162                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2163
2164         return ret;
2165 }
2166
2167 #ifdef CONFIG_IOMMU_API
2168 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2169                 unsigned long *hpa, enum dma_data_direction *direction)
2170 {
2171         long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
2172
2173         if (!ret)
2174                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2175
2176         return ret;
2177 }
2178
2179 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2180                 unsigned long *hpa, enum dma_data_direction *direction)
2181 {
2182         long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2183
2184         if (!ret)
2185                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2186
2187         return ret;
2188 }
2189 #endif
2190
2191 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2192                 long npages)
2193 {
2194         pnv_tce_free(tbl, index, npages);
2195
2196         pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2197 }
2198
2199 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2200         .set = pnv_ioda2_tce_build,
2201 #ifdef CONFIG_IOMMU_API
2202         .exchange = pnv_ioda2_tce_xchg,
2203         .exchange_rm = pnv_ioda2_tce_xchg_rm,
2204         .useraddrptr = pnv_tce_useraddrptr,
2205 #endif
2206         .clear = pnv_ioda2_tce_free,
2207         .get = pnv_tce_get,
2208         .free = pnv_pci_ioda2_table_free_pages,
2209 };
2210
2211 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2212 {
2213         unsigned int *weight = (unsigned int *)data;
2214
2215         /* This is quite simplistic. The "base" weight of a device
2216          * is 10. 0 means no DMA is to be accounted for it.
2217          */
2218         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2219                 return 0;
2220
2221         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2222             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2223             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2224                 *weight += 3;
2225         else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2226                 *weight += 15;
2227         else
2228                 *weight += 10;
2229
2230         return 0;
2231 }
2232
2233 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2234 {
2235         unsigned int weight = 0;
2236
2237         /* SRIOV VF has same DMA32 weight as its PF */
2238 #ifdef CONFIG_PCI_IOV
2239         if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2240                 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2241                 return weight;
2242         }
2243 #endif
2244
2245         if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2246                 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2247         } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2248                 struct pci_dev *pdev;
2249
2250                 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2251                         pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2252         } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2253                 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2254         }
2255
2256         return weight;
2257 }
2258
2259 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2260                                        struct pnv_ioda_pe *pe)
2261 {
2262
2263         struct page *tce_mem = NULL;
2264         struct iommu_table *tbl;
2265         unsigned int weight, total_weight = 0;
2266         unsigned int tce32_segsz, base, segs, avail, i;
2267         int64_t rc;
2268         void *addr;
2269
2270         /* XXX FIXME: Handle 64-bit only DMA devices */
2271         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2272         /* XXX FIXME: Allocate multi-level tables on PHB3 */
2273         weight = pnv_pci_ioda_pe_dma_weight(pe);
2274         if (!weight)
2275                 return;
2276
2277         pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2278                      &total_weight);
2279         segs = (weight * phb->ioda.dma32_count) / total_weight;
2280         if (!segs)
2281                 segs = 1;
2282
2283         /*
2284          * Allocate contiguous DMA32 segments. We begin with the expected
2285          * number of segments. With one more attempt, the number of DMA32
2286          * segments to be allocated is decreased by one until one segment
2287          * is allocated successfully.
2288          */
2289         do {
2290                 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2291                         for (avail = 0, i = base; i < base + segs; i++) {
2292                                 if (phb->ioda.dma32_segmap[i] ==
2293                                     IODA_INVALID_PE)
2294                                         avail++;
2295                         }
2296
2297                         if (avail == segs)
2298                                 goto found;
2299                 }
2300         } while (--segs);
2301
2302         if (!segs) {
2303                 pe_warn(pe, "No available DMA32 segments\n");
2304                 return;
2305         }
2306
2307 found:
2308         tbl = pnv_pci_table_alloc(phb->hose->node);
2309         if (WARN_ON(!tbl))
2310                 return;
2311
2312         iommu_register_group(&pe->table_group, phb->hose->global_number,
2313                         pe->pe_number);
2314         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2315
2316         /* Grab a 32-bit TCE table */
2317         pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2318                 weight, total_weight, base, segs);
2319         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2320                 base * PNV_IODA1_DMA32_SEGSIZE,
2321                 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2322
2323         /* XXX Currently, we allocate one big contiguous table for the
2324          * TCEs. We only really need one chunk per 256M of TCE space
2325          * (ie per segment) but that's an optimization for later, it
2326          * requires some added smarts with our get/put_tce implementation
2327          *
2328          * Each TCE page is 4KB in size and each TCE entry occupies 8
2329          * bytes
2330          */
2331         tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2332         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2333                                    get_order(tce32_segsz * segs));
2334         if (!tce_mem) {
2335                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2336                 goto fail;
2337         }
2338         addr = page_address(tce_mem);
2339         memset(addr, 0, tce32_segsz * segs);
2340
2341         /* Configure HW */
2342         for (i = 0; i < segs; i++) {
2343                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2344                                               pe->pe_number,
2345                                               base + i, 1,
2346                                               __pa(addr) + tce32_segsz * i,
2347                                               tce32_segsz, IOMMU_PAGE_SIZE_4K);
2348                 if (rc) {
2349                         pe_err(pe, " Failed to configure 32-bit TCE table,"
2350                                " err %ld\n", rc);
2351                         goto fail;
2352                 }
2353         }
2354
2355         /* Setup DMA32 segment mapping */
2356         for (i = base; i < base + segs; i++)
2357                 phb->ioda.dma32_segmap[i] = pe->pe_number;
2358
2359         /* Setup linux iommu table */
2360         pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2361                                   base * PNV_IODA1_DMA32_SEGSIZE,
2362                                   IOMMU_PAGE_SHIFT_4K);
2363
2364         tbl->it_ops = &pnv_ioda1_iommu_ops;
2365         pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2366         pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2367         iommu_init_table(tbl, phb->hose->node);
2368
2369         if (pe->flags & PNV_IODA_PE_DEV) {
2370                 /*
2371                  * Setting table base here only for carrying iommu_group
2372                  * further down to let iommu_add_device() do the job.
2373                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2374                  */
2375                 set_iommu_table_base(&pe->pdev->dev, tbl);
2376                 iommu_add_device(&pe->pdev->dev);
2377         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2378                 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2379
2380         return;
2381  fail:
2382         /* XXX Failure: Try to fallback to 64-bit only ? */
2383         if (tce_mem)
2384                 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2385         if (tbl) {
2386                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2387                 iommu_tce_table_put(tbl);
2388         }
2389 }
2390
2391 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2392                 int num, struct iommu_table *tbl)
2393 {
2394         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2395                         table_group);
2396         struct pnv_phb *phb = pe->phb;
2397         int64_t rc;
2398         const unsigned long size = tbl->it_indirect_levels ?
2399                         tbl->it_level_size : tbl->it_size;
2400         const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2401         const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2402
2403         pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2404                         start_addr, start_addr + win_size - 1,
2405                         IOMMU_PAGE_SIZE(tbl));
2406
2407         /*
2408          * Map TCE table through TVT. The TVE index is the PE number
2409          * shifted by 1 bit for 32-bits DMA space.
2410          */
2411         rc = opal_pci_map_pe_dma_window(phb->opal_id,
2412                         pe->pe_number,
2413                         (pe->pe_number << 1) + num,
2414                         tbl->it_indirect_levels + 1,
2415                         __pa(tbl->it_base),
2416                         size << 3,
2417                         IOMMU_PAGE_SIZE(tbl));
2418         if (rc) {
2419                 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2420                 return rc;
2421         }
2422
2423         pnv_pci_link_table_and_group(phb->hose->node, num,
2424                         tbl, &pe->table_group);
2425         pnv_pci_ioda2_tce_invalidate_pe(pe);
2426
2427         return 0;
2428 }
2429
2430 void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2431 {
2432         uint16_t window_id = (pe->pe_number << 1 ) + 1;
2433         int64_t rc;
2434
2435         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2436         if (enable) {
2437                 phys_addr_t top = memblock_end_of_DRAM();
2438
2439                 top = roundup_pow_of_two(top);
2440                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2441                                                      pe->pe_number,
2442                                                      window_id,
2443                                                      pe->tce_bypass_base,
2444                                                      top);
2445         } else {
2446                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2447                                                      pe->pe_number,
2448                                                      window_id,
2449                                                      pe->tce_bypass_base,
2450                                                      0);
2451         }
2452         if (rc)
2453                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2454         else
2455                 pe->tce_bypass_enabled = enable;
2456 }
2457
2458 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2459                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2460                 bool alloc_userspace_copy, struct iommu_table **ptbl)
2461 {
2462         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2463                         table_group);
2464         int nid = pe->phb->hose->node;
2465         __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2466         long ret;
2467         struct iommu_table *tbl;
2468
2469         tbl = pnv_pci_table_alloc(nid);
2470         if (!tbl)
2471                 return -ENOMEM;
2472
2473         tbl->it_ops = &pnv_ioda2_iommu_ops;
2474
2475         ret = pnv_pci_ioda2_table_alloc_pages(nid,
2476                         bus_offset, page_shift, window_size,
2477                         levels, alloc_userspace_copy, tbl);
2478         if (ret) {
2479                 iommu_tce_table_put(tbl);
2480                 return ret;
2481         }
2482
2483         *ptbl = tbl;
2484
2485         return 0;
2486 }
2487
2488 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2489 {
2490         struct iommu_table *tbl = NULL;
2491         long rc;
2492
2493         /*
2494          * crashkernel= specifies the kdump kernel's maximum memory at
2495          * some offset and there is no guaranteed the result is a power
2496          * of 2, which will cause errors later.
2497          */
2498         const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2499
2500         /*
2501          * In memory constrained environments, e.g. kdump kernel, the
2502          * DMA window can be larger than available memory, which will
2503          * cause errors later.
2504          */
2505         const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2506
2507         rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2508                         IOMMU_PAGE_SHIFT_4K,
2509                         window_size,
2510                         POWERNV_IOMMU_DEFAULT_LEVELS, false, &tbl);
2511         if (rc) {
2512                 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2513                                 rc);
2514                 return rc;
2515         }
2516
2517         iommu_init_table(tbl, pe->phb->hose->node);
2518
2519         rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2520         if (rc) {
2521                 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2522                                 rc);
2523                 iommu_tce_table_put(tbl);
2524                 return rc;
2525         }
2526
2527         if (!pnv_iommu_bypass_disabled)
2528                 pnv_pci_ioda2_set_bypass(pe, true);
2529
2530         /*
2531          * Setting table base here only for carrying iommu_group
2532          * further down to let iommu_add_device() do the job.
2533          * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2534          */
2535         if (pe->flags & PNV_IODA_PE_DEV)
2536                 set_iommu_table_base(&pe->pdev->dev, tbl);
2537
2538         return 0;
2539 }
2540
2541 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2542 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2543                 int num)
2544 {
2545         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2546                         table_group);
2547         struct pnv_phb *phb = pe->phb;
2548         long ret;
2549
2550         pe_info(pe, "Removing DMA window #%d\n", num);
2551
2552         ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2553                         (pe->pe_number << 1) + num,
2554                         0/* levels */, 0/* table address */,
2555                         0/* table size */, 0/* page size */);
2556         if (ret)
2557                 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2558         else
2559                 pnv_pci_ioda2_tce_invalidate_pe(pe);
2560
2561         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2562
2563         return ret;
2564 }
2565 #endif
2566
2567 #ifdef CONFIG_IOMMU_API
2568 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2569                 __u64 window_size, __u32 levels)
2570 {
2571         unsigned long bytes = 0;
2572         const unsigned window_shift = ilog2(window_size);
2573         unsigned entries_shift = window_shift - page_shift;
2574         unsigned table_shift = entries_shift + 3;
2575         unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2576         unsigned long direct_table_size;
2577
2578         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2579                         !is_power_of_2(window_size))
2580                 return 0;
2581
2582         /* Calculate a direct table size from window_size and levels */
2583         entries_shift = (entries_shift + levels - 1) / levels;
2584         table_shift = entries_shift + 3;
2585         table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2586         direct_table_size =  1UL << table_shift;
2587
2588         for ( ; levels; --levels) {
2589                 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2590
2591                 tce_table_size /= direct_table_size;
2592                 tce_table_size <<= 3;
2593                 tce_table_size = max_t(unsigned long,
2594                                 tce_table_size, direct_table_size);
2595         }
2596
2597         return bytes + bytes; /* one for HW table, one for userspace copy */
2598 }
2599
2600 static long pnv_pci_ioda2_create_table_userspace(
2601                 struct iommu_table_group *table_group,
2602                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2603                 struct iommu_table **ptbl)
2604 {
2605         return pnv_pci_ioda2_create_table(table_group,
2606                         num, page_shift, window_size, levels, true, ptbl);
2607 }
2608
2609 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2610 {
2611         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2612                                                 table_group);
2613         /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2614         struct iommu_table *tbl = pe->table_group.tables[0];
2615
2616         pnv_pci_ioda2_set_bypass(pe, false);
2617         pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2618         if (pe->pbus)
2619                 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2620         iommu_tce_table_put(tbl);
2621 }
2622
2623 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2624 {
2625         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2626                                                 table_group);
2627
2628         pnv_pci_ioda2_setup_default_config(pe);
2629         if (pe->pbus)
2630                 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2631 }
2632
2633 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2634         .get_table_size = pnv_pci_ioda2_get_table_size,
2635         .create_table = pnv_pci_ioda2_create_table_userspace,
2636         .set_window = pnv_pci_ioda2_set_window,
2637         .unset_window = pnv_pci_ioda2_unset_window,
2638         .take_ownership = pnv_ioda2_take_ownership,
2639         .release_ownership = pnv_ioda2_release_ownership,
2640 };
2641
2642 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2643 {
2644         struct pci_controller *hose;
2645         struct pnv_phb *phb;
2646         struct pnv_ioda_pe **ptmppe = opaque;
2647         struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2648         struct pci_dn *pdn = pci_get_pdn(pdev);
2649
2650         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2651                 return 0;
2652
2653         hose = pci_bus_to_host(pdev->bus);
2654         phb = hose->private_data;
2655         if (phb->type != PNV_PHB_NPU_NVLINK)
2656                 return 0;
2657
2658         *ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2659
2660         return 1;
2661 }
2662
2663 /*
2664  * This returns PE of associated NPU.
2665  * This assumes that NPU is in the same IOMMU group with GPU and there is
2666  * no other PEs.
2667  */
2668 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2669                 struct iommu_table_group *table_group)
2670 {
2671         struct pnv_ioda_pe *npe = NULL;
2672         int ret = iommu_group_for_each_dev(table_group->group, &npe,
2673                         gpe_table_group_to_npe_cb);
2674
2675         BUG_ON(!ret || !npe);
2676
2677         return npe;
2678 }
2679
2680 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2681                 int num, struct iommu_table *tbl)
2682 {
2683         struct pnv_ioda_pe *npe = gpe_table_group_to_npe(table_group);
2684         int num2 = (num == 0) ? 1 : 0;
2685         long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2686
2687         if (ret)
2688                 return ret;
2689
2690         if (table_group->tables[num2])
2691                 pnv_npu_unset_window(npe, num2);
2692
2693         ret = pnv_npu_set_window(npe, num, tbl);
2694         if (ret) {
2695                 pnv_pci_ioda2_unset_window(table_group, num);
2696                 if (table_group->tables[num2])
2697                         pnv_npu_set_window(npe, num2,
2698                                         table_group->tables[num2]);
2699         }
2700
2701         return ret;
2702 }
2703
2704 static long pnv_pci_ioda2_npu_unset_window(
2705                 struct iommu_table_group *table_group,
2706                 int num)
2707 {
2708         struct pnv_ioda_pe *npe = gpe_table_group_to_npe(table_group);
2709         int num2 = (num == 0) ? 1 : 0;
2710         long ret = pnv_pci_ioda2_unset_window(table_group, num);
2711
2712         if (ret)
2713                 return ret;
2714
2715         if (!npe->table_group.tables[num])
2716                 return 0;
2717
2718         ret = pnv_npu_unset_window(npe, num);
2719         if (ret)
2720                 return ret;
2721
2722         if (table_group->tables[num2])
2723                 ret = pnv_npu_set_window(npe, num2, table_group->tables[num2]);
2724
2725         return ret;
2726 }
2727
2728 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2729 {
2730         /*
2731          * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2732          * the iommu_table if 32bit DMA is enabled.
2733          */
2734         pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2735         pnv_ioda2_take_ownership(table_group);
2736 }
2737
2738 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2739         .get_table_size = pnv_pci_ioda2_get_table_size,
2740         .create_table = pnv_pci_ioda2_create_table_userspace,
2741         .set_window = pnv_pci_ioda2_npu_set_window,
2742         .unset_window = pnv_pci_ioda2_npu_unset_window,
2743         .take_ownership = pnv_ioda2_npu_take_ownership,
2744         .release_ownership = pnv_ioda2_release_ownership,
2745 };
2746
2747 static void pnv_pci_ioda_setup_iommu_api(void)
2748 {
2749         struct pci_controller *hose, *tmp;
2750         struct pnv_phb *phb;
2751         struct pnv_ioda_pe *pe, *gpe;
2752
2753         /*
2754          * Now we have all PHBs discovered, time to add NPU devices to
2755          * the corresponding IOMMU groups.
2756          */
2757         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2758                 phb = hose->private_data;
2759
2760                 if (phb->type != PNV_PHB_NPU_NVLINK)
2761                         continue;
2762
2763                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2764                         gpe = pnv_pci_npu_setup_iommu(pe);
2765                         if (gpe)
2766                                 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2767                 }
2768         }
2769 }
2770 #else /* !CONFIG_IOMMU_API */
2771 static void pnv_pci_ioda_setup_iommu_api(void) { };
2772 #endif
2773
2774 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb)
2775 {
2776         struct pci_controller *hose = phb->hose;
2777         struct device_node *dn = hose->dn;
2778         unsigned long mask = 0;
2779         int i, rc, count;
2780         u32 val;
2781
2782         count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes");
2783         if (count <= 0) {
2784                 mask = SZ_4K | SZ_64K;
2785                 /* Add 16M for POWER8 by default */
2786                 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2787                                 !cpu_has_feature(CPU_FTR_ARCH_300))
2788                         mask |= SZ_16M | SZ_256M;
2789                 return mask;
2790         }
2791
2792         for (i = 0; i < count; i++) {
2793                 rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes",
2794                                                 i, &val);
2795                 if (rc == 0)
2796                         mask |= 1ULL << val;
2797         }
2798
2799         return mask;
2800 }
2801
2802 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2803                                        struct pnv_ioda_pe *pe)
2804 {
2805         int64_t rc;
2806
2807         if (!pnv_pci_ioda_pe_dma_weight(pe))
2808                 return;
2809
2810         /* TVE #1 is selected by PCI address bit 59 */
2811         pe->tce_bypass_base = 1ull << 59;
2812
2813         iommu_register_group(&pe->table_group, phb->hose->global_number,
2814                         pe->pe_number);
2815
2816         /* The PE will reserve all possible 32-bits space */
2817         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2818                 phb->ioda.m32_pci_base);
2819
2820         /* Setup linux iommu table */
2821         pe->table_group.tce32_start = 0;
2822         pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2823         pe->table_group.max_dynamic_windows_supported =
2824                         IOMMU_TABLE_GROUP_MAX_TABLES;
2825         pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2826         pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2827 #ifdef CONFIG_IOMMU_API
2828         pe->table_group.ops = &pnv_pci_ioda2_ops;
2829 #endif
2830
2831         rc = pnv_pci_ioda2_setup_default_config(pe);
2832         if (rc)
2833                 return;
2834
2835         if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2836                 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2837 }
2838
2839 #ifdef CONFIG_PCI_MSI
2840 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2841 {
2842         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2843                                            ioda.irq_chip);
2844
2845         return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2846 }
2847
2848 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2849 {
2850         int64_t rc;
2851         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2852         struct irq_chip *chip = irq_data_get_irq_chip(d);
2853
2854         rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2855         WARN_ON_ONCE(rc);
2856
2857         icp_native_eoi(d);
2858 }
2859
2860
2861 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2862 {
2863         struct irq_data *idata;
2864         struct irq_chip *ichip;
2865
2866         /* The MSI EOI OPAL call is only needed on PHB3 */
2867         if (phb->model != PNV_PHB_MODEL_PHB3)
2868                 return;
2869
2870         if (!phb->ioda.irq_chip_init) {
2871                 /*
2872                  * First time we setup an MSI IRQ, we need to setup the
2873                  * corresponding IRQ chip to route correctly.
2874                  */
2875                 idata = irq_get_irq_data(virq);
2876                 ichip = irq_data_get_irq_chip(idata);
2877                 phb->ioda.irq_chip_init = 1;
2878                 phb->ioda.irq_chip = *ichip;
2879                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2880         }
2881         irq_set_chip(virq, &phb->ioda.irq_chip);
2882 }
2883
2884 /*
2885  * Returns true iff chip is something that we could call
2886  * pnv_opal_pci_msi_eoi for.
2887  */
2888 bool is_pnv_opal_msi(struct irq_chip *chip)
2889 {
2890         return chip->irq_eoi == pnv_ioda2_msi_eoi;
2891 }
2892 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2893
2894 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2895                                   unsigned int hwirq, unsigned int virq,
2896                                   unsigned int is_64, struct msi_msg *msg)
2897 {
2898         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2899         unsigned int xive_num = hwirq - phb->msi_base;
2900         __be32 data;
2901         int rc;
2902
2903         /* No PE assigned ? bail out ... no MSI for you ! */
2904         if (pe == NULL)
2905                 return -ENXIO;
2906
2907         /* Check if we have an MVE */
2908         if (pe->mve_number < 0)
2909                 return -ENXIO;
2910
2911         /* Force 32-bit MSI on some broken devices */
2912         if (dev->no_64bit_msi)
2913                 is_64 = 0;
2914
2915         /* Assign XIVE to PE */
2916         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2917         if (rc) {
2918                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2919                         pci_name(dev), rc, xive_num);
2920                 return -EIO;
2921         }
2922
2923         if (is_64) {
2924                 __be64 addr64;
2925
2926                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2927                                      &addr64, &data);
2928                 if (rc) {
2929                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2930                                 pci_name(dev), rc);
2931                         return -EIO;
2932                 }
2933                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2934                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2935         } else {
2936                 __be32 addr32;
2937
2938                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2939                                      &addr32, &data);
2940                 if (rc) {
2941                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2942                                 pci_name(dev), rc);
2943                         return -EIO;
2944                 }
2945                 msg->address_hi = 0;
2946                 msg->address_lo = be32_to_cpu(addr32);
2947         }
2948         msg->data = be32_to_cpu(data);
2949
2950         pnv_set_msi_irq_chip(phb, virq);
2951
2952         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2953                  " address=%x_%08x data=%x PE# %x\n",
2954                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2955                  msg->address_hi, msg->address_lo, data, pe->pe_number);
2956
2957         return 0;
2958 }
2959
2960 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2961 {
2962         unsigned int count;
2963         const __be32 *prop = of_get_property(phb->hose->dn,
2964                                              "ibm,opal-msi-ranges", NULL);
2965         if (!prop) {
2966                 /* BML Fallback */
2967                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2968         }
2969         if (!prop)
2970                 return;
2971
2972         phb->msi_base = be32_to_cpup(prop);
2973         count = be32_to_cpup(prop + 1);
2974         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2975                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2976                        phb->hose->global_number);
2977                 return;
2978         }
2979
2980         phb->msi_setup = pnv_pci_ioda_msi_setup;
2981         phb->msi32_support = 1;
2982         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2983                 count, phb->msi_base);
2984 }
2985 #else
2986 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2987 #endif /* CONFIG_PCI_MSI */
2988
2989 #ifdef CONFIG_PCI_IOV
2990 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2991 {
2992         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2993         struct pnv_phb *phb = hose->private_data;
2994         const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2995         struct resource *res;
2996         int i;
2997         resource_size_t size, total_vf_bar_sz;
2998         struct pci_dn *pdn;
2999         int mul, total_vfs;
3000
3001         if (!pdev->is_physfn || pci_dev_is_added(pdev))
3002                 return;
3003
3004         pdn = pci_get_pdn(pdev);
3005         pdn->vfs_expanded = 0;
3006         pdn->m64_single_mode = false;
3007
3008         total_vfs = pci_sriov_get_totalvfs(pdev);
3009         mul = phb->ioda.total_pe_num;
3010         total_vf_bar_sz = 0;
3011
3012         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3013                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3014                 if (!res->flags || res->parent)
3015                         continue;
3016                 if (!pnv_pci_is_m64_flags(res->flags)) {
3017                         dev_warn(&pdev->dev, "Don't support SR-IOV with"
3018                                         " non M64 VF BAR%d: %pR. \n",
3019                                  i, res);
3020                         goto truncate_iov;
3021                 }
3022
3023                 total_vf_bar_sz += pci_iov_resource_size(pdev,
3024                                 i + PCI_IOV_RESOURCES);
3025
3026                 /*
3027                  * If bigger than quarter of M64 segment size, just round up
3028                  * power of two.
3029                  *
3030                  * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
3031                  * with other devices, IOV BAR size is expanded to be
3032                  * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
3033                  * segment size , the expanded size would equal to half of the
3034                  * whole M64 space size, which will exhaust the M64 Space and
3035                  * limit the system flexibility.  This is a design decision to
3036                  * set the boundary to quarter of the M64 segment size.
3037                  */
3038                 if (total_vf_bar_sz > gate) {
3039                         mul = roundup_pow_of_two(total_vfs);
3040                         dev_info(&pdev->dev,
3041                                 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
3042                                 total_vf_bar_sz, gate, mul);
3043                         pdn->m64_single_mode = true;
3044                         break;
3045                 }
3046         }
3047
3048         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3049                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3050                 if (!res->flags || res->parent)
3051                         continue;
3052
3053                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
3054                 /*
3055                  * On PHB3, the minimum size alignment of M64 BAR in single
3056                  * mode is 32MB.
3057                  */
3058                 if (pdn->m64_single_mode && (size < SZ_32M))
3059                         goto truncate_iov;
3060                 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3061                 res->end = res->start + size * mul - 1;
3062                 dev_dbg(&pdev->dev, "                       %pR\n", res);
3063                 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3064                          i, res, mul);
3065         }
3066         pdn->vfs_expanded = mul;
3067
3068         return;
3069
3070 truncate_iov:
3071         /* To save MMIO space, IOV BAR is truncated. */
3072         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3073                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3074                 res->flags = 0;
3075                 res->end = res->start - 1;
3076         }
3077 }
3078 #endif /* CONFIG_PCI_IOV */
3079
3080 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3081                                   struct resource *res)
3082 {
3083         struct pnv_phb *phb = pe->phb;
3084         struct pci_bus_region region;
3085         int index;
3086         int64_t rc;
3087
3088         if (!res || !res->flags || res->start > res->end)
3089                 return;
3090
3091         if (res->flags & IORESOURCE_IO) {
3092                 region.start = res->start - phb->ioda.io_pci_base;
3093                 region.end   = res->end - phb->ioda.io_pci_base;
3094                 index = region.start / phb->ioda.io_segsize;
3095
3096                 while (index < phb->ioda.total_pe_num &&
3097                        region.start <= region.end) {
3098                         phb->ioda.io_segmap[index] = pe->pe_number;
3099                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3100                                 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3101                         if (rc != OPAL_SUCCESS) {
3102                                 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3103                                        __func__, rc, index, pe->pe_number);
3104                                 break;
3105                         }
3106
3107                         region.start += phb->ioda.io_segsize;
3108                         index++;
3109                 }
3110         } else if ((res->flags & IORESOURCE_MEM) &&
3111                    !pnv_pci_is_m64(phb, res)) {
3112                 region.start = res->start -
3113                                phb->hose->mem_offset[0] -
3114                                phb->ioda.m32_pci_base;
3115                 region.end   = res->end -
3116                                phb->hose->mem_offset[0] -
3117                                phb->ioda.m32_pci_base;
3118                 index = region.start / phb->ioda.m32_segsize;
3119
3120                 while (index < phb->ioda.total_pe_num &&
3121                        region.start <= region.end) {
3122                         phb->ioda.m32_segmap[index] = pe->pe_number;
3123                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3124                                 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3125                         if (rc != OPAL_SUCCESS) {
3126                                 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3127                                        __func__, rc, index, pe->pe_number);
3128                                 break;
3129                         }
3130
3131                         region.start += phb->ioda.m32_segsize;
3132                         index++;
3133                 }
3134         }
3135 }
3136
3137 /*
3138  * This function is supposed to be called on basis of PE from top
3139  * to bottom style. So the the I/O or MMIO segment assigned to
3140  * parent PE could be overridden by its child PEs if necessary.
3141  */
3142 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3143 {
3144         struct pci_dev *pdev;
3145         int i;
3146
3147         /*
3148          * NOTE: We only care PCI bus based PE for now. For PCI
3149          * device based PE, for example SRIOV sensitive VF should
3150          * be figured out later.
3151          */
3152         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3153
3154         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3155                 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3156                         pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3157
3158                 /*
3159                  * If the PE contains all subordinate PCI buses, the
3160                  * windows of the child bridges should be mapped to
3161                  * the PE as well.
3162                  */
3163                 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3164                         continue;
3165                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3166                         pnv_ioda_setup_pe_res(pe,
3167                                 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3168         }
3169 }
3170
3171 #ifdef CONFIG_DEBUG_FS
3172 static int pnv_pci_diag_data_set(void *data, u64 val)
3173 {
3174         struct pci_controller *hose;
3175         struct pnv_phb *phb;
3176         s64 ret;
3177
3178         if (val != 1ULL)
3179                 return -EINVAL;
3180
3181         hose = (struct pci_controller *)data;
3182         if (!hose || !hose->private_data)
3183                 return -ENODEV;
3184
3185         phb = hose->private_data;
3186
3187         /* Retrieve the diag data from firmware */
3188         ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3189                                           phb->diag_data_size);
3190         if (ret != OPAL_SUCCESS)
3191                 return -EIO;
3192
3193         /* Print the diag data to the kernel log */
3194         pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3195         return 0;
3196 }
3197
3198 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3199                         pnv_pci_diag_data_set, "%llu\n");
3200
3201 #endif /* CONFIG_DEBUG_FS */
3202
3203 static void pnv_pci_ioda_create_dbgfs(void)
3204 {
3205 #ifdef CONFIG_DEBUG_FS
3206         struct pci_controller *hose, *tmp;
3207         struct pnv_phb *phb;
3208         char name[16];
3209
3210         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3211                 phb = hose->private_data;
3212
3213                 /* Notify initialization of PHB done */
3214                 phb->initialized = 1;
3215
3216                 sprintf(name, "PCI%04x", hose->global_number);
3217                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3218                 if (!phb->dbgfs) {
3219                         pr_warn("%s: Error on creating debugfs on PHB#%x\n",
3220                                 __func__, hose->global_number);
3221                         continue;
3222                 }
3223
3224                 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3225                                     &pnv_pci_diag_data_fops);
3226         }
3227 #endif /* CONFIG_DEBUG_FS */
3228 }
3229
3230 static void pnv_pci_enable_bridge(struct pci_bus *bus)
3231 {
3232         struct pci_dev *dev = bus->self;
3233         struct pci_bus *child;
3234
3235         /* Empty bus ? bail */
3236         if (list_empty(&bus->devices))
3237                 return;
3238
3239         /*
3240          * If there's a bridge associated with that bus enable it. This works
3241          * around races in the generic code if the enabling is done during
3242          * parallel probing. This can be removed once those races have been
3243          * fixed.
3244          */
3245         if (dev) {
3246                 int rc = pci_enable_device(dev);
3247                 if (rc)
3248                         pci_err(dev, "Error enabling bridge (%d)\n", rc);
3249                 pci_set_master(dev);
3250         }
3251
3252         /* Perform the same to child busses */
3253         list_for_each_entry(child, &bus->children, node)
3254                 pnv_pci_enable_bridge(child);
3255 }
3256
3257 static void pnv_pci_enable_bridges(void)
3258 {
3259         struct pci_controller *hose;
3260
3261         list_for_each_entry(hose, &hose_list, list_node)
3262                 pnv_pci_enable_bridge(hose->bus);
3263 }
3264
3265 static void pnv_pci_ioda_fixup(void)
3266 {
3267         pnv_pci_ioda_setup_PEs();
3268         pnv_pci_ioda_setup_iommu_api();
3269         pnv_pci_ioda_create_dbgfs();
3270
3271         pnv_pci_enable_bridges();
3272
3273 #ifdef CONFIG_EEH
3274         pnv_eeh_post_init();
3275 #endif
3276 }
3277
3278 /*
3279  * Returns the alignment for I/O or memory windows for P2P
3280  * bridges. That actually depends on how PEs are segmented.
3281  * For now, we return I/O or M32 segment size for PE sensitive
3282  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3283  * 1MiB for memory) will be returned.
3284  *
3285  * The current PCI bus might be put into one PE, which was
3286  * create against the parent PCI bridge. For that case, we
3287  * needn't enlarge the alignment so that we can save some
3288  * resources.
3289  */
3290 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3291                                                 unsigned long type)
3292 {
3293         struct pci_dev *bridge;
3294         struct pci_controller *hose = pci_bus_to_host(bus);
3295         struct pnv_phb *phb = hose->private_data;
3296         int num_pci_bridges = 0;
3297
3298         bridge = bus->self;
3299         while (bridge) {
3300                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3301                         num_pci_bridges++;
3302                         if (num_pci_bridges >= 2)
3303                                 return 1;
3304                 }
3305
3306                 bridge = bridge->bus->self;
3307         }
3308
3309         /*
3310          * We fall back to M32 if M64 isn't supported. We enforce the M64
3311          * alignment for any 64-bit resource, PCIe doesn't care and
3312          * bridges only do 64-bit prefetchable anyway.
3313          */
3314         if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3315                 return phb->ioda.m64_segsize;
3316         if (type & IORESOURCE_MEM)
3317                 return phb->ioda.m32_segsize;
3318
3319         return phb->ioda.io_segsize;
3320 }
3321
3322 /*
3323  * We are updating root port or the upstream port of the
3324  * bridge behind the root port with PHB's windows in order
3325  * to accommodate the changes on required resources during
3326  * PCI (slot) hotplug, which is connected to either root
3327  * port or the downstream ports of PCIe switch behind the
3328  * root port.
3329  */
3330 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3331                                            unsigned long type)
3332 {
3333         struct pci_controller *hose = pci_bus_to_host(bus);
3334         struct pnv_phb *phb = hose->private_data;
3335         struct pci_dev *bridge = bus->self;
3336         struct resource *r, *w;
3337         bool msi_region = false;
3338         int i;
3339
3340         /* Check if we need apply fixup to the bridge's windows */
3341         if (!pci_is_root_bus(bridge->bus) &&
3342             !pci_is_root_bus(bridge->bus->self->bus))
3343                 return;
3344
3345         /* Fixup the resources */
3346         for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3347                 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3348                 if (!r->flags || !r->parent)
3349                         continue;
3350
3351                 w = NULL;
3352                 if (r->flags & type & IORESOURCE_IO)
3353                         w = &hose->io_resource;
3354                 else if (pnv_pci_is_m64(phb, r) &&
3355                          (type & IORESOURCE_PREFETCH) &&
3356                          phb->ioda.m64_segsize)
3357                         w = &hose->mem_resources[1];
3358                 else if (r->flags & type & IORESOURCE_MEM) {
3359                         w = &hose->mem_resources[0];
3360                         msi_region = true;
3361                 }
3362
3363                 r->start = w->start;
3364                 r->end = w->end;
3365
3366                 /* The 64KB 32-bits MSI region shouldn't be included in
3367                  * the 32-bits bridge window. Otherwise, we can see strange
3368                  * issues. One of them is EEH error observed on Garrison.
3369                  *
3370                  * Exclude top 1MB region which is the minimal alignment of
3371                  * 32-bits bridge window.
3372                  */
3373                 if (msi_region) {
3374                         r->end += 0x10000;
3375                         r->end -= 0x100000;
3376                 }
3377         }
3378 }
3379
3380 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3381 {
3382         struct pci_controller *hose = pci_bus_to_host(bus);
3383         struct pnv_phb *phb = hose->private_data;
3384         struct pci_dev *bridge = bus->self;
3385         struct pnv_ioda_pe *pe;
3386         bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3387
3388         /* Extend bridge's windows if necessary */
3389         pnv_pci_fixup_bridge_resources(bus, type);
3390
3391         /* The PE for root bus should be realized before any one else */
3392         if (!phb->ioda.root_pe_populated) {
3393                 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3394                 if (pe) {
3395                         phb->ioda.root_pe_idx = pe->pe_number;
3396                         phb->ioda.root_pe_populated = true;
3397                 }
3398         }
3399
3400         /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3401         if (list_empty(&bus->devices))
3402                 return;
3403
3404         /* Reserve PEs according to used M64 resources */
3405         if (phb->reserve_m64_pe)
3406                 phb->reserve_m64_pe(bus, NULL, all);
3407
3408         /*
3409          * Assign PE. We might run here because of partial hotplug.
3410          * For the case, we just pick up the existing PE and should
3411          * not allocate resources again.
3412          */
3413         pe = pnv_ioda_setup_bus_PE(bus, all);
3414         if (!pe)
3415                 return;
3416
3417         pnv_ioda_setup_pe_seg(pe);
3418         switch (phb->type) {
3419         case PNV_PHB_IODA1:
3420                 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3421                 break;
3422         case PNV_PHB_IODA2:
3423                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3424                 break;
3425         default:
3426                 pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3427                         __func__, phb->hose->global_number, phb->type);
3428         }
3429 }
3430
3431 static resource_size_t pnv_pci_default_alignment(void)
3432 {
3433         return PAGE_SIZE;
3434 }
3435
3436 #ifdef CONFIG_PCI_IOV
3437 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3438                                                       int resno)
3439 {
3440         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3441         struct pnv_phb *phb = hose->private_data;
3442         struct pci_dn *pdn = pci_get_pdn(pdev);
3443         resource_size_t align;
3444
3445         /*
3446          * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3447          * SR-IOV. While from hardware perspective, the range mapped by M64
3448          * BAR should be size aligned.
3449          *
3450          * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3451          * powernv-specific hardware restriction is gone. But if just use the
3452          * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3453          * in one segment of M64 #15, which introduces the PE conflict between
3454          * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3455          * m64_segsize.
3456          *
3457          * This function returns the total IOV BAR size if M64 BAR is in
3458          * Shared PE mode or just VF BAR size if not.
3459          * If the M64 BAR is in Single PE mode, return the VF BAR size or
3460          * M64 segment size if IOV BAR size is less.
3461          */
3462         align = pci_iov_resource_size(pdev, resno);
3463         if (!pdn->vfs_expanded)
3464                 return align;
3465         if (pdn->m64_single_mode)
3466                 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3467
3468         return pdn->vfs_expanded * align;
3469 }
3470 #endif /* CONFIG_PCI_IOV */
3471
3472 /* Prevent enabling devices for which we couldn't properly
3473  * assign a PE
3474  */
3475 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3476 {
3477         struct pci_controller *hose = pci_bus_to_host(dev->bus);
3478         struct pnv_phb *phb = hose->private_data;
3479         struct pci_dn *pdn;
3480
3481         /* The function is probably called while the PEs have
3482          * not be created yet. For example, resource reassignment
3483          * during PCI probe period. We just skip the check if
3484          * PEs isn't ready.
3485          */
3486         if (!phb->initialized)
3487                 return true;
3488
3489         pdn = pci_get_pdn(dev);
3490         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3491                 return false;
3492
3493         return true;
3494 }
3495
3496 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3497                                        int num)
3498 {
3499         struct pnv_ioda_pe *pe = container_of(table_group,
3500                                               struct pnv_ioda_pe, table_group);
3501         struct pnv_phb *phb = pe->phb;
3502         unsigned int idx;
3503         long rc;
3504
3505         pe_info(pe, "Removing DMA window #%d\n", num);
3506         for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3507                 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3508                         continue;
3509
3510                 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3511                                                 idx, 0, 0ul, 0ul, 0ul);
3512                 if (rc != OPAL_SUCCESS) {
3513                         pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3514                                 rc, idx);
3515                         return rc;
3516                 }
3517
3518                 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3519         }
3520
3521         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3522         return OPAL_SUCCESS;
3523 }
3524
3525 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3526 {
3527         unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3528         struct iommu_table *tbl = pe->table_group.tables[0];
3529         int64_t rc;
3530
3531         if (!weight)
3532                 return;
3533
3534         rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3535         if (rc != OPAL_SUCCESS)
3536                 return;
3537
3538         pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3539         if (pe->table_group.group) {
3540                 iommu_group_put(pe->table_group.group);
3541                 WARN_ON(pe->table_group.group);
3542         }
3543
3544         free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3545         iommu_tce_table_put(tbl);
3546 }
3547
3548 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3549 {
3550         struct iommu_table *tbl = pe->table_group.tables[0];
3551         unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3552 #ifdef CONFIG_IOMMU_API
3553         int64_t rc;
3554 #endif
3555
3556         if (!weight)
3557                 return;
3558
3559 #ifdef CONFIG_IOMMU_API
3560         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3561         if (rc)
3562                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3563 #endif
3564
3565         pnv_pci_ioda2_set_bypass(pe, false);
3566         if (pe->table_group.group) {
3567                 iommu_group_put(pe->table_group.group);
3568                 WARN_ON(pe->table_group.group);
3569         }
3570
3571         iommu_tce_table_put(tbl);
3572 }
3573
3574 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3575                                  unsigned short win,
3576                                  unsigned int *map)
3577 {
3578         struct pnv_phb *phb = pe->phb;
3579         int idx;
3580         int64_t rc;
3581
3582         for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3583                 if (map[idx] != pe->pe_number)
3584                         continue;
3585
3586                 if (win == OPAL_M64_WINDOW_TYPE)
3587                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3588                                         phb->ioda.reserved_pe_idx, win,
3589                                         idx / PNV_IODA1_M64_SEGS,
3590                                         idx % PNV_IODA1_M64_SEGS);
3591                 else
3592                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3593                                         phb->ioda.reserved_pe_idx, win, 0, idx);
3594
3595                 if (rc != OPAL_SUCCESS)
3596                         pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3597                                 rc, win, idx);
3598
3599                 map[idx] = IODA_INVALID_PE;
3600         }
3601 }
3602
3603 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3604 {
3605         struct pnv_phb *phb = pe->phb;
3606
3607         if (phb->type == PNV_PHB_IODA1) {
3608                 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3609                                      phb->ioda.io_segmap);
3610                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3611                                      phb->ioda.m32_segmap);
3612                 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3613                                      phb->ioda.m64_segmap);
3614         } else if (phb->type == PNV_PHB_IODA2) {
3615                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3616                                      phb->ioda.m32_segmap);
3617         }
3618 }
3619
3620 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3621 {
3622         struct pnv_phb *phb = pe->phb;
3623         struct pnv_ioda_pe *slave, *tmp;
3624
3625         list_del(&pe->list);
3626         switch (phb->type) {
3627         case PNV_PHB_IODA1:
3628                 pnv_pci_ioda1_release_pe_dma(pe);
3629                 break;
3630         case PNV_PHB_IODA2:
3631                 pnv_pci_ioda2_release_pe_dma(pe);
3632                 break;
3633         default:
3634                 WARN_ON(1);
3635         }
3636
3637         pnv_ioda_release_pe_seg(pe);
3638         pnv_ioda_deconfigure_pe(pe->phb, pe);
3639
3640         /* Release slave PEs in the compound PE */
3641         if (pe->flags & PNV_IODA_PE_MASTER) {
3642                 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3643                         list_del(&slave->list);
3644                         pnv_ioda_free_pe(slave);
3645                 }
3646         }
3647
3648         /*
3649          * The PE for root bus can be removed because of hotplug in EEH
3650          * recovery for fenced PHB error. We need to mark the PE dead so
3651          * that it can be populated again in PCI hot add path. The PE
3652          * shouldn't be destroyed as it's the global reserved resource.
3653          */
3654         if (phb->ioda.root_pe_populated &&
3655             phb->ioda.root_pe_idx == pe->pe_number)
3656                 phb->ioda.root_pe_populated = false;
3657         else
3658                 pnv_ioda_free_pe(pe);
3659 }
3660
3661 static void pnv_pci_release_device(struct pci_dev *pdev)
3662 {
3663         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3664         struct pnv_phb *phb = hose->private_data;
3665         struct pci_dn *pdn = pci_get_pdn(pdev);
3666         struct pnv_ioda_pe *pe;
3667
3668         if (pdev->is_virtfn)
3669                 return;
3670
3671         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3672                 return;
3673
3674         /*
3675          * PCI hotplug can happen as part of EEH error recovery. The @pdn
3676          * isn't removed and added afterwards in this scenario. We should
3677          * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3678          * device count is decreased on removing devices while failing to
3679          * be increased on adding devices. It leads to unbalanced PE's device
3680          * count and eventually make normal PCI hotplug path broken.
3681          */
3682         pe = &phb->ioda.pe_array[pdn->pe_number];
3683         pdn->pe_number = IODA_INVALID_PE;
3684
3685         WARN_ON(--pe->device_count < 0);
3686         if (pe->device_count == 0)
3687                 pnv_ioda_release_pe(pe);
3688 }
3689
3690 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3691 {
3692         struct pnv_phb *phb = hose->private_data;
3693
3694         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3695                        OPAL_ASSERT_RESET);
3696 }
3697
3698 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3699         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3700         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3701 #ifdef CONFIG_PCI_MSI
3702         .setup_msi_irqs         = pnv_setup_msi_irqs,
3703         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3704 #endif
3705         .enable_device_hook     = pnv_pci_enable_device_hook,
3706         .release_device         = pnv_pci_release_device,
3707         .window_alignment       = pnv_pci_window_alignment,
3708         .setup_bridge           = pnv_pci_setup_bridge,
3709         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3710         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3711         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3712         .shutdown               = pnv_pci_ioda_shutdown,
3713 };
3714
3715 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3716 {
3717         dev_err_once(&npdev->dev,
3718                         "%s operation unsupported for NVLink devices\n",
3719                         __func__);
3720         return -EPERM;
3721 }
3722
3723 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3724         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3725 #ifdef CONFIG_PCI_MSI
3726         .setup_msi_irqs         = pnv_setup_msi_irqs,
3727         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3728 #endif
3729         .enable_device_hook     = pnv_pci_enable_device_hook,
3730         .window_alignment       = pnv_pci_window_alignment,
3731         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3732         .dma_set_mask           = pnv_npu_dma_set_mask,
3733         .shutdown               = pnv_pci_ioda_shutdown,
3734 };
3735
3736 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
3737         .enable_device_hook     = pnv_pci_enable_device_hook,
3738         .window_alignment       = pnv_pci_window_alignment,
3739         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3740         .shutdown               = pnv_pci_ioda_shutdown,
3741 };
3742
3743 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3744                                          u64 hub_id, int ioda_type)
3745 {
3746         struct pci_controller *hose;
3747         struct pnv_phb *phb;
3748         unsigned long size, m64map_off, m32map_off, pemap_off;
3749         unsigned long iomap_off = 0, dma32map_off = 0;
3750         struct resource r;
3751         const __be64 *prop64;
3752         const __be32 *prop32;
3753         int len;
3754         unsigned int segno;
3755         u64 phb_id;
3756         void *aux;
3757         long rc;
3758
3759         if (!of_device_is_available(np))
3760                 return;
3761
3762         pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
3763
3764         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3765         if (!prop64) {
3766                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3767                 return;
3768         }
3769         phb_id = be64_to_cpup(prop64);
3770         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3771
3772         phb = memblock_alloc(sizeof(*phb), 0);
3773
3774         /* Allocate PCI controller */
3775         phb->hose = hose = pcibios_alloc_controller(np);
3776         if (!phb->hose) {
3777                 pr_err("  Can't allocate PCI controller for %pOF\n",
3778                        np);
3779                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3780                 return;
3781         }
3782
3783         spin_lock_init(&phb->lock);
3784         prop32 = of_get_property(np, "bus-range", &len);
3785         if (prop32 && len == 8) {
3786                 hose->first_busno = be32_to_cpu(prop32[0]);
3787                 hose->last_busno = be32_to_cpu(prop32[1]);
3788         } else {
3789                 pr_warn("  Broken <bus-range> on %pOF\n", np);
3790                 hose->first_busno = 0;
3791                 hose->last_busno = 0xff;
3792         }
3793         hose->private_data = phb;
3794         phb->hub_id = hub_id;
3795         phb->opal_id = phb_id;
3796         phb->type = ioda_type;
3797         mutex_init(&phb->ioda.pe_alloc_mutex);
3798
3799         /* Detect specific models for error handling */
3800         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3801                 phb->model = PNV_PHB_MODEL_P7IOC;
3802         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3803                 phb->model = PNV_PHB_MODEL_PHB3;
3804         else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3805                 phb->model = PNV_PHB_MODEL_NPU;
3806         else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3807                 phb->model = PNV_PHB_MODEL_NPU2;
3808         else
3809                 phb->model = PNV_PHB_MODEL_UNKNOWN;
3810
3811         /* Initialize diagnostic data buffer */
3812         prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3813         if (prop32)
3814                 phb->diag_data_size = be32_to_cpup(prop32);
3815         else
3816                 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3817
3818         phb->diag_data = memblock_alloc(phb->diag_data_size, 0);
3819
3820         /* Parse 32-bit and IO ranges (if any) */
3821         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3822
3823         /* Get registers */
3824         if (!of_address_to_resource(np, 0, &r)) {
3825                 phb->regs_phys = r.start;
3826                 phb->regs = ioremap(r.start, resource_size(&r));
3827                 if (phb->regs == NULL)
3828                         pr_err("  Failed to map registers !\n");
3829         }
3830
3831         /* Initialize more IODA stuff */
3832         phb->ioda.total_pe_num = 1;
3833         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3834         if (prop32)
3835                 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3836         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3837         if (prop32)
3838                 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3839
3840         /* Invalidate RID to PE# mapping */
3841         for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3842                 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3843
3844         /* Parse 64-bit MMIO range */
3845         pnv_ioda_parse_m64_window(phb);
3846
3847         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3848         /* FW Has already off top 64k of M32 space (MSI space) */
3849         phb->ioda.m32_size += 0x10000;
3850
3851         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3852         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3853         phb->ioda.io_size = hose->pci_io_size;
3854         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3855         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3856
3857         /* Calculate how many 32-bit TCE segments we have */
3858         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3859                                 PNV_IODA1_DMA32_SEGSIZE;
3860
3861         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3862         size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3863                         sizeof(unsigned long));
3864         m64map_off = size;
3865         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3866         m32map_off = size;
3867         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3868         if (phb->type == PNV_PHB_IODA1) {
3869                 iomap_off = size;
3870                 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3871                 dma32map_off = size;
3872                 size += phb->ioda.dma32_count *
3873                         sizeof(phb->ioda.dma32_segmap[0]);
3874         }
3875         pemap_off = size;
3876         size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3877         aux = memblock_alloc(size, 0);
3878         phb->ioda.pe_alloc = aux;
3879         phb->ioda.m64_segmap = aux + m64map_off;
3880         phb->ioda.m32_segmap = aux + m32map_off;
3881         for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3882                 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3883                 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3884         }
3885         if (phb->type == PNV_PHB_IODA1) {
3886                 phb->ioda.io_segmap = aux + iomap_off;
3887                 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3888                         phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3889
3890                 phb->ioda.dma32_segmap = aux + dma32map_off;
3891                 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3892                         phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3893         }
3894         phb->ioda.pe_array = aux + pemap_off;
3895
3896         /*
3897          * Choose PE number for root bus, which shouldn't have
3898          * M64 resources consumed by its child devices. To pick
3899          * the PE number adjacent to the reserved one if possible.
3900          */
3901         pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3902         if (phb->ioda.reserved_pe_idx == 0) {
3903                 phb->ioda.root_pe_idx = 1;
3904                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3905         } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3906                 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3907                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3908         } else {
3909                 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3910         }
3911
3912         INIT_LIST_HEAD(&phb->ioda.pe_list);
3913         mutex_init(&phb->ioda.pe_list_mutex);
3914
3915         /* Calculate how many 32-bit TCE segments we have */
3916         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3917                                 PNV_IODA1_DMA32_SEGSIZE;
3918
3919 #if 0 /* We should really do that ... */
3920         rc = opal_pci_set_phb_mem_window(opal->phb_id,
3921                                          window_type,
3922                                          window_num,
3923                                          starting_real_address,
3924                                          starting_pci_address,
3925                                          segment_size);
3926 #endif
3927
3928         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3929                 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3930                 phb->ioda.m32_size, phb->ioda.m32_segsize);
3931         if (phb->ioda.m64_size)
3932                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3933                         phb->ioda.m64_size, phb->ioda.m64_segsize);
3934         if (phb->ioda.io_size)
3935                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
3936                         phb->ioda.io_size, phb->ioda.io_segsize);
3937
3938
3939         phb->hose->ops = &pnv_pci_ops;
3940         phb->get_pe_state = pnv_ioda_get_pe_state;
3941         phb->freeze_pe = pnv_ioda_freeze_pe;
3942         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3943
3944         /* Setup MSI support */
3945         pnv_pci_init_ioda_msis(phb);
3946
3947         /*
3948          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3949          * to let the PCI core do resource assignment. It's supposed
3950          * that the PCI core will do correct I/O and MMIO alignment
3951          * for the P2P bridge bars so that each PCI bus (excluding
3952          * the child P2P bridges) can form individual PE.
3953          */
3954         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3955
3956         switch (phb->type) {
3957         case PNV_PHB_NPU_NVLINK:
3958                 hose->controller_ops = pnv_npu_ioda_controller_ops;
3959                 break;
3960         case PNV_PHB_NPU_OCAPI:
3961                 hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3962                 break;
3963         default:
3964                 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3965                 hose->controller_ops = pnv_pci_ioda_controller_ops;
3966         }
3967
3968         ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3969
3970 #ifdef CONFIG_PCI_IOV
3971         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3972         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3973         ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3974         ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3975 #endif
3976
3977         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3978
3979         /* Reset IODA tables to a clean state */
3980         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3981         if (rc)
3982                 pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3983
3984         /*
3985          * If we're running in kdump kernel, the previous kernel never
3986          * shutdown PCI devices correctly. We already got IODA table
3987          * cleaned out. So we have to issue PHB reset to stop all PCI
3988          * transactions from previous kernel. The ppc_pci_reset_phbs
3989          * kernel parameter will force this reset too.
3990          */
3991         if (is_kdump_kernel() || pci_reset_phbs) {
3992                 pr_info("  Issue PHB reset ...\n");
3993                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3994                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3995         }
3996
3997         /* Remove M64 resource if we can't configure it successfully */
3998         if (!phb->init_m64 || phb->init_m64(phb))
3999                 hose->mem_resources[1].flags = 0;
4000 }
4001
4002 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
4003 {
4004         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
4005 }
4006
4007 void __init pnv_pci_init_npu_phb(struct device_node *np)
4008 {
4009         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
4010 }
4011
4012 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
4013 {
4014         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
4015 }
4016
4017 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
4018 {
4019         struct pci_controller *hose = pci_bus_to_host(dev->bus);
4020         struct pnv_phb *phb = hose->private_data;
4021
4022         if (!machine_is(powernv))
4023                 return;
4024
4025         if (phb->type == PNV_PHB_NPU_OCAPI)
4026                 dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
4027 }
4028 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
4029
4030 void __init pnv_pci_init_ioda_hub(struct device_node *np)
4031 {
4032         struct device_node *phbn;
4033         const __be64 *prop64;
4034         u64 hub_id;
4035
4036         pr_info("Probing IODA IO-Hub %pOF\n", np);
4037
4038         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
4039         if (!prop64) {
4040                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
4041                 return;
4042         }
4043         hub_id = be64_to_cpup(prop64);
4044         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
4045
4046         /* Count child PHBs */
4047         for_each_child_of_node(np, phbn) {
4048                 /* Look for IODA1 PHBs */
4049                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
4050                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
4051         }
4052 }