libnvdimm/dax: Pick the right alignment default when creating dax devices
[linux-2.6-block.git] / arch / powerpc / perf / callchain.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance counter callchain support - powerpc architecture code
4  *
5  * Copyright © 2009 Paul Mackerras, IBM Corporation.
6  */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/perf_event.h>
10 #include <linux/percpu.h>
11 #include <linux/uaccess.h>
12 #include <linux/mm.h>
13 #include <asm/ptrace.h>
14 #include <asm/pgtable.h>
15 #include <asm/sigcontext.h>
16 #include <asm/ucontext.h>
17 #include <asm/vdso.h>
18 #ifdef CONFIG_PPC64
19 #include "../kernel/ppc32.h"
20 #endif
21 #include <asm/pte-walk.h>
22
23
24 /*
25  * Is sp valid as the address of the next kernel stack frame after prev_sp?
26  * The next frame may be in a different stack area but should not go
27  * back down in the same stack area.
28  */
29 static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
30 {
31         if (sp & 0xf)
32                 return 0;               /* must be 16-byte aligned */
33         if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
34                 return 0;
35         if (sp >= prev_sp + STACK_FRAME_MIN_SIZE)
36                 return 1;
37         /*
38          * sp could decrease when we jump off an interrupt stack
39          * back to the regular process stack.
40          */
41         if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
42                 return 1;
43         return 0;
44 }
45
46 void
47 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
48 {
49         unsigned long sp, next_sp;
50         unsigned long next_ip;
51         unsigned long lr;
52         long level = 0;
53         unsigned long *fp;
54
55         lr = regs->link;
56         sp = regs->gpr[1];
57         perf_callchain_store(entry, perf_instruction_pointer(regs));
58
59         if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
60                 return;
61
62         for (;;) {
63                 fp = (unsigned long *) sp;
64                 next_sp = fp[0];
65
66                 if (next_sp == sp + STACK_INT_FRAME_SIZE &&
67                     fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
68                         /*
69                          * This looks like an interrupt frame for an
70                          * interrupt that occurred in the kernel
71                          */
72                         regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
73                         next_ip = regs->nip;
74                         lr = regs->link;
75                         level = 0;
76                         perf_callchain_store_context(entry, PERF_CONTEXT_KERNEL);
77
78                 } else {
79                         if (level == 0)
80                                 next_ip = lr;
81                         else
82                                 next_ip = fp[STACK_FRAME_LR_SAVE];
83
84                         /*
85                          * We can't tell which of the first two addresses
86                          * we get are valid, but we can filter out the
87                          * obviously bogus ones here.  We replace them
88                          * with 0 rather than removing them entirely so
89                          * that userspace can tell which is which.
90                          */
91                         if ((level == 1 && next_ip == lr) ||
92                             (level <= 1 && !kernel_text_address(next_ip)))
93                                 next_ip = 0;
94
95                         ++level;
96                 }
97
98                 perf_callchain_store(entry, next_ip);
99                 if (!valid_next_sp(next_sp, sp))
100                         return;
101                 sp = next_sp;
102         }
103 }
104
105 #ifdef CONFIG_PPC64
106 /*
107  * On 64-bit we don't want to invoke hash_page on user addresses from
108  * interrupt context, so if the access faults, we read the page tables
109  * to find which page (if any) is mapped and access it directly.
110  */
111 static int read_user_stack_slow(void __user *ptr, void *buf, int nb)
112 {
113         int ret = -EFAULT;
114         pgd_t *pgdir;
115         pte_t *ptep, pte;
116         unsigned shift;
117         unsigned long addr = (unsigned long) ptr;
118         unsigned long offset;
119         unsigned long pfn, flags;
120         void *kaddr;
121
122         pgdir = current->mm->pgd;
123         if (!pgdir)
124                 return -EFAULT;
125
126         local_irq_save(flags);
127         ptep = find_current_mm_pte(pgdir, addr, NULL, &shift);
128         if (!ptep)
129                 goto err_out;
130         if (!shift)
131                 shift = PAGE_SHIFT;
132
133         /* align address to page boundary */
134         offset = addr & ((1UL << shift) - 1);
135
136         pte = READ_ONCE(*ptep);
137         if (!pte_present(pte) || !pte_user(pte))
138                 goto err_out;
139         pfn = pte_pfn(pte);
140         if (!page_is_ram(pfn))
141                 goto err_out;
142
143         /* no highmem to worry about here */
144         kaddr = pfn_to_kaddr(pfn);
145         memcpy(buf, kaddr + offset, nb);
146         ret = 0;
147 err_out:
148         local_irq_restore(flags);
149         return ret;
150 }
151
152 static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
153 {
154         if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
155             ((unsigned long)ptr & 7))
156                 return -EFAULT;
157
158         pagefault_disable();
159         if (!__get_user_inatomic(*ret, ptr)) {
160                 pagefault_enable();
161                 return 0;
162         }
163         pagefault_enable();
164
165         return read_user_stack_slow(ptr, ret, 8);
166 }
167
168 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
169 {
170         if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
171             ((unsigned long)ptr & 3))
172                 return -EFAULT;
173
174         pagefault_disable();
175         if (!__get_user_inatomic(*ret, ptr)) {
176                 pagefault_enable();
177                 return 0;
178         }
179         pagefault_enable();
180
181         return read_user_stack_slow(ptr, ret, 4);
182 }
183
184 static inline int valid_user_sp(unsigned long sp, int is_64)
185 {
186         if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32)
187                 return 0;
188         return 1;
189 }
190
191 /*
192  * 64-bit user processes use the same stack frame for RT and non-RT signals.
193  */
194 struct signal_frame_64 {
195         char            dummy[__SIGNAL_FRAMESIZE];
196         struct ucontext uc;
197         unsigned long   unused[2];
198         unsigned int    tramp[6];
199         struct siginfo  *pinfo;
200         void            *puc;
201         struct siginfo  info;
202         char            abigap[288];
203 };
204
205 static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
206 {
207         if (nip == fp + offsetof(struct signal_frame_64, tramp))
208                 return 1;
209         if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
210             nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
211                 return 1;
212         return 0;
213 }
214
215 /*
216  * Do some sanity checking on the signal frame pointed to by sp.
217  * We check the pinfo and puc pointers in the frame.
218  */
219 static int sane_signal_64_frame(unsigned long sp)
220 {
221         struct signal_frame_64 __user *sf;
222         unsigned long pinfo, puc;
223
224         sf = (struct signal_frame_64 __user *) sp;
225         if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
226             read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
227                 return 0;
228         return pinfo == (unsigned long) &sf->info &&
229                 puc == (unsigned long) &sf->uc;
230 }
231
232 static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
233                                    struct pt_regs *regs)
234 {
235         unsigned long sp, next_sp;
236         unsigned long next_ip;
237         unsigned long lr;
238         long level = 0;
239         struct signal_frame_64 __user *sigframe;
240         unsigned long __user *fp, *uregs;
241
242         next_ip = perf_instruction_pointer(regs);
243         lr = regs->link;
244         sp = regs->gpr[1];
245         perf_callchain_store(entry, next_ip);
246
247         while (entry->nr < entry->max_stack) {
248                 fp = (unsigned long __user *) sp;
249                 if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp))
250                         return;
251                 if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
252                         return;
253
254                 /*
255                  * Note: the next_sp - sp >= signal frame size check
256                  * is true when next_sp < sp, which can happen when
257                  * transitioning from an alternate signal stack to the
258                  * normal stack.
259                  */
260                 if (next_sp - sp >= sizeof(struct signal_frame_64) &&
261                     (is_sigreturn_64_address(next_ip, sp) ||
262                      (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
263                     sane_signal_64_frame(sp)) {
264                         /*
265                          * This looks like an signal frame
266                          */
267                         sigframe = (struct signal_frame_64 __user *) sp;
268                         uregs = sigframe->uc.uc_mcontext.gp_regs;
269                         if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
270                             read_user_stack_64(&uregs[PT_LNK], &lr) ||
271                             read_user_stack_64(&uregs[PT_R1], &sp))
272                                 return;
273                         level = 0;
274                         perf_callchain_store_context(entry, PERF_CONTEXT_USER);
275                         perf_callchain_store(entry, next_ip);
276                         continue;
277                 }
278
279                 if (level == 0)
280                         next_ip = lr;
281                 perf_callchain_store(entry, next_ip);
282                 ++level;
283                 sp = next_sp;
284         }
285 }
286
287 static inline int current_is_64bit(void)
288 {
289         /*
290          * We can't use test_thread_flag() here because we may be on an
291          * interrupt stack, and the thread flags don't get copied over
292          * from the thread_info on the main stack to the interrupt stack.
293          */
294         return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT);
295 }
296
297 #else  /* CONFIG_PPC64 */
298 /*
299  * On 32-bit we just access the address and let hash_page create a
300  * HPTE if necessary, so there is no need to fall back to reading
301  * the page tables.  Since this is called at interrupt level,
302  * do_page_fault() won't treat a DSI as a page fault.
303  */
304 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
305 {
306         int rc;
307
308         if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
309             ((unsigned long)ptr & 3))
310                 return -EFAULT;
311
312         pagefault_disable();
313         rc = __get_user_inatomic(*ret, ptr);
314         pagefault_enable();
315
316         return rc;
317 }
318
319 static inline void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
320                                           struct pt_regs *regs)
321 {
322 }
323
324 static inline int current_is_64bit(void)
325 {
326         return 0;
327 }
328
329 static inline int valid_user_sp(unsigned long sp, int is_64)
330 {
331         if (!sp || (sp & 7) || sp > TASK_SIZE - 32)
332                 return 0;
333         return 1;
334 }
335
336 #define __SIGNAL_FRAMESIZE32    __SIGNAL_FRAMESIZE
337 #define sigcontext32            sigcontext
338 #define mcontext32              mcontext
339 #define ucontext32              ucontext
340 #define compat_siginfo_t        struct siginfo
341
342 #endif /* CONFIG_PPC64 */
343
344 /*
345  * Layout for non-RT signal frames
346  */
347 struct signal_frame_32 {
348         char                    dummy[__SIGNAL_FRAMESIZE32];
349         struct sigcontext32     sctx;
350         struct mcontext32       mctx;
351         int                     abigap[56];
352 };
353
354 /*
355  * Layout for RT signal frames
356  */
357 struct rt_signal_frame_32 {
358         char                    dummy[__SIGNAL_FRAMESIZE32 + 16];
359         compat_siginfo_t        info;
360         struct ucontext32       uc;
361         int                     abigap[56];
362 };
363
364 static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
365 {
366         if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
367                 return 1;
368         if (vdso32_sigtramp && current->mm->context.vdso_base &&
369             nip == current->mm->context.vdso_base + vdso32_sigtramp)
370                 return 1;
371         return 0;
372 }
373
374 static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
375 {
376         if (nip == fp + offsetof(struct rt_signal_frame_32,
377                                  uc.uc_mcontext.mc_pad))
378                 return 1;
379         if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
380             nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
381                 return 1;
382         return 0;
383 }
384
385 static int sane_signal_32_frame(unsigned int sp)
386 {
387         struct signal_frame_32 __user *sf;
388         unsigned int regs;
389
390         sf = (struct signal_frame_32 __user *) (unsigned long) sp;
391         if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
392                 return 0;
393         return regs == (unsigned long) &sf->mctx;
394 }
395
396 static int sane_rt_signal_32_frame(unsigned int sp)
397 {
398         struct rt_signal_frame_32 __user *sf;
399         unsigned int regs;
400
401         sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
402         if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
403                 return 0;
404         return regs == (unsigned long) &sf->uc.uc_mcontext;
405 }
406
407 static unsigned int __user *signal_frame_32_regs(unsigned int sp,
408                                 unsigned int next_sp, unsigned int next_ip)
409 {
410         struct mcontext32 __user *mctx = NULL;
411         struct signal_frame_32 __user *sf;
412         struct rt_signal_frame_32 __user *rt_sf;
413
414         /*
415          * Note: the next_sp - sp >= signal frame size check
416          * is true when next_sp < sp, for example, when
417          * transitioning from an alternate signal stack to the
418          * normal stack.
419          */
420         if (next_sp - sp >= sizeof(struct signal_frame_32) &&
421             is_sigreturn_32_address(next_ip, sp) &&
422             sane_signal_32_frame(sp)) {
423                 sf = (struct signal_frame_32 __user *) (unsigned long) sp;
424                 mctx = &sf->mctx;
425         }
426
427         if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
428             is_rt_sigreturn_32_address(next_ip, sp) &&
429             sane_rt_signal_32_frame(sp)) {
430                 rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
431                 mctx = &rt_sf->uc.uc_mcontext;
432         }
433
434         if (!mctx)
435                 return NULL;
436         return mctx->mc_gregs;
437 }
438
439 static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
440                                    struct pt_regs *regs)
441 {
442         unsigned int sp, next_sp;
443         unsigned int next_ip;
444         unsigned int lr;
445         long level = 0;
446         unsigned int __user *fp, *uregs;
447
448         next_ip = perf_instruction_pointer(regs);
449         lr = regs->link;
450         sp = regs->gpr[1];
451         perf_callchain_store(entry, next_ip);
452
453         while (entry->nr < entry->max_stack) {
454                 fp = (unsigned int __user *) (unsigned long) sp;
455                 if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp))
456                         return;
457                 if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
458                         return;
459
460                 uregs = signal_frame_32_regs(sp, next_sp, next_ip);
461                 if (!uregs && level <= 1)
462                         uregs = signal_frame_32_regs(sp, next_sp, lr);
463                 if (uregs) {
464                         /*
465                          * This looks like an signal frame, so restart
466                          * the stack trace with the values in it.
467                          */
468                         if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
469                             read_user_stack_32(&uregs[PT_LNK], &lr) ||
470                             read_user_stack_32(&uregs[PT_R1], &sp))
471                                 return;
472                         level = 0;
473                         perf_callchain_store_context(entry, PERF_CONTEXT_USER);
474                         perf_callchain_store(entry, next_ip);
475                         continue;
476                 }
477
478                 if (level == 0)
479                         next_ip = lr;
480                 perf_callchain_store(entry, next_ip);
481                 ++level;
482                 sp = next_sp;
483         }
484 }
485
486 void
487 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
488 {
489         if (current_is_64bit())
490                 perf_callchain_user_64(entry, regs);
491         else
492                 perf_callchain_user_32(entry, regs);
493 }