powerpc/mm/hash64: Map all the kernel regions in the same 0xc range
[linux-2.6-block.git] / arch / powerpc / mm / slb.c
1 /*
2  * PowerPC64 SLB support.
3  *
4  * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
5  * Based on earlier code written by:
6  * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
7  *    Copyright (c) 2001 Dave Engebretsen
8  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
9  *
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16
17 #include <asm/asm-prototypes.h>
18 #include <asm/pgtable.h>
19 #include <asm/mmu.h>
20 #include <asm/mmu_context.h>
21 #include <asm/paca.h>
22 #include <asm/ppc-opcode.h>
23 #include <asm/cputable.h>
24 #include <asm/cacheflush.h>
25 #include <asm/smp.h>
26 #include <linux/compiler.h>
27 #include <linux/context_tracking.h>
28 #include <linux/mm_types.h>
29
30 #include <asm/udbg.h>
31 #include <asm/code-patching.h>
32
33 enum slb_index {
34         LINEAR_INDEX    = 0, /* Kernel linear map  (0xc000000000000000) */
35         KSTACK_INDEX    = 1, /* Kernel stack map */
36 };
37
38 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea);
39
40 #define slb_esid_mask(ssize)    \
41         (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
42
43 static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
44                                          enum slb_index index)
45 {
46         return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
47 }
48
49 static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
50                                          unsigned long flags)
51 {
52         return (vsid << slb_vsid_shift(ssize)) | flags |
53                 ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
54 }
55
56 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
57                                          unsigned long flags)
58 {
59         return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
60 }
61
62 static void assert_slb_presence(bool present, unsigned long ea)
63 {
64 #ifdef CONFIG_DEBUG_VM
65         unsigned long tmp;
66
67         WARN_ON_ONCE(mfmsr() & MSR_EE);
68
69         if (!cpu_has_feature(CPU_FTR_ARCH_206))
70                 return;
71
72         /*
73          * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware
74          * ignores all other bits from 0-27, so just clear them all.
75          */
76         ea &= ~((1UL << 28) - 1);
77         asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0");
78
79         WARN_ON(present == (tmp == 0));
80 #endif
81 }
82
83 static inline void slb_shadow_update(unsigned long ea, int ssize,
84                                      unsigned long flags,
85                                      enum slb_index index)
86 {
87         struct slb_shadow *p = get_slb_shadow();
88
89         /*
90          * Clear the ESID first so the entry is not valid while we are
91          * updating it.  No write barriers are needed here, provided
92          * we only update the current CPU's SLB shadow buffer.
93          */
94         WRITE_ONCE(p->save_area[index].esid, 0);
95         WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
96         WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
97 }
98
99 static inline void slb_shadow_clear(enum slb_index index)
100 {
101         WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
102 }
103
104 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
105                                         unsigned long flags,
106                                         enum slb_index index)
107 {
108         /*
109          * Updating the shadow buffer before writing the SLB ensures
110          * we don't get a stale entry here if we get preempted by PHYP
111          * between these two statements.
112          */
113         slb_shadow_update(ea, ssize, flags, index);
114
115         assert_slb_presence(false, ea);
116         asm volatile("slbmte  %0,%1" :
117                      : "r" (mk_vsid_data(ea, ssize, flags)),
118                        "r" (mk_esid_data(ea, ssize, index))
119                      : "memory" );
120 }
121
122 /*
123  * Insert bolted entries into SLB (which may not be empty, so don't clear
124  * slb_cache_ptr).
125  */
126 void __slb_restore_bolted_realmode(void)
127 {
128         struct slb_shadow *p = get_slb_shadow();
129         enum slb_index index;
130
131          /* No isync needed because realmode. */
132         for (index = 0; index < SLB_NUM_BOLTED; index++) {
133                 asm volatile("slbmte  %0,%1" :
134                      : "r" (be64_to_cpu(p->save_area[index].vsid)),
135                        "r" (be64_to_cpu(p->save_area[index].esid)));
136         }
137
138         assert_slb_presence(true, local_paca->kstack);
139 }
140
141 /*
142  * Insert the bolted entries into an empty SLB.
143  */
144 void slb_restore_bolted_realmode(void)
145 {
146         __slb_restore_bolted_realmode();
147         get_paca()->slb_cache_ptr = 0;
148
149         get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
150         get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
151 }
152
153 /*
154  * This flushes all SLB entries including 0, so it must be realmode.
155  */
156 void slb_flush_all_realmode(void)
157 {
158         asm volatile("slbmte %0,%0; slbia" : : "r" (0));
159 }
160
161 /*
162  * This flushes non-bolted entries, it can be run in virtual mode. Must
163  * be called with interrupts disabled.
164  */
165 void slb_flush_and_restore_bolted(void)
166 {
167         struct slb_shadow *p = get_slb_shadow();
168
169         BUILD_BUG_ON(SLB_NUM_BOLTED != 2);
170
171         WARN_ON(!irqs_disabled());
172
173         /*
174          * We can't take a PMU exception in the following code, so hard
175          * disable interrupts.
176          */
177         hard_irq_disable();
178
179         asm volatile("isync\n"
180                      "slbia\n"
181                      "slbmte  %0, %1\n"
182                      "isync\n"
183                      :: "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].vsid)),
184                         "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].esid))
185                      : "memory");
186         assert_slb_presence(true, get_paca()->kstack);
187
188         get_paca()->slb_cache_ptr = 0;
189
190         get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
191         get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
192 }
193
194 void slb_save_contents(struct slb_entry *slb_ptr)
195 {
196         int i;
197         unsigned long e, v;
198
199         /* Save slb_cache_ptr value. */
200         get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr;
201
202         if (!slb_ptr)
203                 return;
204
205         for (i = 0; i < mmu_slb_size; i++) {
206                 asm volatile("slbmfee  %0,%1" : "=r" (e) : "r" (i));
207                 asm volatile("slbmfev  %0,%1" : "=r" (v) : "r" (i));
208                 slb_ptr->esid = e;
209                 slb_ptr->vsid = v;
210                 slb_ptr++;
211         }
212 }
213
214 void slb_dump_contents(struct slb_entry *slb_ptr)
215 {
216         int i, n;
217         unsigned long e, v;
218         unsigned long llp;
219
220         if (!slb_ptr)
221                 return;
222
223         pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());
224         pr_err("Last SLB entry inserted at slot %d\n", get_paca()->stab_rr);
225
226         for (i = 0; i < mmu_slb_size; i++) {
227                 e = slb_ptr->esid;
228                 v = slb_ptr->vsid;
229                 slb_ptr++;
230
231                 if (!e && !v)
232                         continue;
233
234                 pr_err("%02d %016lx %016lx\n", i, e, v);
235
236                 if (!(e & SLB_ESID_V)) {
237                         pr_err("\n");
238                         continue;
239                 }
240                 llp = v & SLB_VSID_LLP;
241                 if (v & SLB_VSID_B_1T) {
242                         pr_err("  1T  ESID=%9lx  VSID=%13lx LLP:%3lx\n",
243                                GET_ESID_1T(e),
244                                (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp);
245                 } else {
246                         pr_err(" 256M ESID=%9lx  VSID=%13lx LLP:%3lx\n",
247                                GET_ESID(e),
248                                (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp);
249                 }
250         }
251         pr_err("----------------------------------\n");
252
253         /* Dump slb cache entires as well. */
254         pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr);
255         pr_err("Valid SLB cache entries:\n");
256         n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES);
257         for (i = 0; i < n; i++)
258                 pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
259         pr_err("Rest of SLB cache entries:\n");
260         for (i = n; i < SLB_CACHE_ENTRIES; i++)
261                 pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
262 }
263
264 void slb_vmalloc_update(void)
265 {
266         /*
267          * vmalloc is not bolted, so just have to flush non-bolted.
268          */
269         slb_flush_and_restore_bolted();
270 }
271
272 static bool preload_hit(struct thread_info *ti, unsigned long esid)
273 {
274         unsigned char i;
275
276         for (i = 0; i < ti->slb_preload_nr; i++) {
277                 unsigned char idx;
278
279                 idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
280                 if (esid == ti->slb_preload_esid[idx])
281                         return true;
282         }
283         return false;
284 }
285
286 static bool preload_add(struct thread_info *ti, unsigned long ea)
287 {
288         unsigned char idx;
289         unsigned long esid;
290
291         if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
292                 /* EAs are stored >> 28 so 256MB segments don't need clearing */
293                 if (ea & ESID_MASK_1T)
294                         ea &= ESID_MASK_1T;
295         }
296
297         esid = ea >> SID_SHIFT;
298
299         if (preload_hit(ti, esid))
300                 return false;
301
302         idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR;
303         ti->slb_preload_esid[idx] = esid;
304         if (ti->slb_preload_nr == SLB_PRELOAD_NR)
305                 ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
306         else
307                 ti->slb_preload_nr++;
308
309         return true;
310 }
311
312 static void preload_age(struct thread_info *ti)
313 {
314         if (!ti->slb_preload_nr)
315                 return;
316         ti->slb_preload_nr--;
317         ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
318 }
319
320 void slb_setup_new_exec(void)
321 {
322         struct thread_info *ti = current_thread_info();
323         struct mm_struct *mm = current->mm;
324         unsigned long exec = 0x10000000;
325
326         WARN_ON(irqs_disabled());
327
328         /*
329          * preload cache can only be used to determine whether a SLB
330          * entry exists if it does not start to overflow.
331          */
332         if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR)
333                 return;
334
335         hard_irq_disable();
336
337         /*
338          * We have no good place to clear the slb preload cache on exec,
339          * flush_thread is about the earliest arch hook but that happens
340          * after we switch to the mm and have aleady preloaded the SLBEs.
341          *
342          * For the most part that's probably okay to use entries from the
343          * previous exec, they will age out if unused. It may turn out to
344          * be an advantage to clear the cache before switching to it,
345          * however.
346          */
347
348         /*
349          * preload some userspace segments into the SLB.
350          * Almost all 32 and 64bit PowerPC executables are linked at
351          * 0x10000000 so it makes sense to preload this segment.
352          */
353         if (!is_kernel_addr(exec)) {
354                 if (preload_add(ti, exec))
355                         slb_allocate_user(mm, exec);
356         }
357
358         /* Libraries and mmaps. */
359         if (!is_kernel_addr(mm->mmap_base)) {
360                 if (preload_add(ti, mm->mmap_base))
361                         slb_allocate_user(mm, mm->mmap_base);
362         }
363
364         /* see switch_slb */
365         asm volatile("isync" : : : "memory");
366
367         local_irq_enable();
368 }
369
370 void preload_new_slb_context(unsigned long start, unsigned long sp)
371 {
372         struct thread_info *ti = current_thread_info();
373         struct mm_struct *mm = current->mm;
374         unsigned long heap = mm->start_brk;
375
376         WARN_ON(irqs_disabled());
377
378         /* see above */
379         if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR)
380                 return;
381
382         hard_irq_disable();
383
384         /* Userspace entry address. */
385         if (!is_kernel_addr(start)) {
386                 if (preload_add(ti, start))
387                         slb_allocate_user(mm, start);
388         }
389
390         /* Top of stack, grows down. */
391         if (!is_kernel_addr(sp)) {
392                 if (preload_add(ti, sp))
393                         slb_allocate_user(mm, sp);
394         }
395
396         /* Bottom of heap, grows up. */
397         if (heap && !is_kernel_addr(heap)) {
398                 if (preload_add(ti, heap))
399                         slb_allocate_user(mm, heap);
400         }
401
402         /* see switch_slb */
403         asm volatile("isync" : : : "memory");
404
405         local_irq_enable();
406 }
407
408
409 /* Flush all user entries from the segment table of the current processor. */
410 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
411 {
412         struct thread_info *ti = task_thread_info(tsk);
413         unsigned char i;
414
415         /*
416          * We need interrupts hard-disabled here, not just soft-disabled,
417          * so that a PMU interrupt can't occur, which might try to access
418          * user memory (to get a stack trace) and possible cause an SLB miss
419          * which would update the slb_cache/slb_cache_ptr fields in the PACA.
420          */
421         hard_irq_disable();
422         asm volatile("isync" : : : "memory");
423         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
424                 /*
425                  * SLBIA IH=3 invalidates all Class=1 SLBEs and their
426                  * associated lookaside structures, which matches what
427                  * switch_slb wants. So ARCH_300 does not use the slb
428                  * cache.
429                  */
430                 asm volatile(PPC_SLBIA(3));
431         } else {
432                 unsigned long offset = get_paca()->slb_cache_ptr;
433
434                 if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
435                     offset <= SLB_CACHE_ENTRIES) {
436                         unsigned long slbie_data = 0;
437
438                         for (i = 0; i < offset; i++) {
439                                 unsigned long ea;
440
441                                 ea = (unsigned long)
442                                         get_paca()->slb_cache[i] << SID_SHIFT;
443                                 /*
444                                  * Could assert_slb_presence(true) here, but
445                                  * hypervisor or machine check could have come
446                                  * in and removed the entry at this point.
447                                  */
448
449                                 slbie_data = ea;
450                                 slbie_data |= user_segment_size(slbie_data)
451                                                 << SLBIE_SSIZE_SHIFT;
452                                 slbie_data |= SLBIE_C; /* user slbs have C=1 */
453                                 asm volatile("slbie %0" : : "r" (slbie_data));
454                         }
455
456                         /* Workaround POWER5 < DD2.1 issue */
457                         if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1)
458                                 asm volatile("slbie %0" : : "r" (slbie_data));
459
460                 } else {
461                         struct slb_shadow *p = get_slb_shadow();
462                         unsigned long ksp_esid_data =
463                                 be64_to_cpu(p->save_area[KSTACK_INDEX].esid);
464                         unsigned long ksp_vsid_data =
465                                 be64_to_cpu(p->save_area[KSTACK_INDEX].vsid);
466
467                         asm volatile(PPC_SLBIA(1) "\n"
468                                      "slbmte    %0,%1\n"
469                                      "isync"
470                                      :: "r"(ksp_vsid_data),
471                                         "r"(ksp_esid_data));
472
473                         get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
474                 }
475
476                 get_paca()->slb_cache_ptr = 0;
477         }
478         get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
479
480         copy_mm_to_paca(mm);
481
482         /*
483          * We gradually age out SLBs after a number of context switches to
484          * reduce reload overhead of unused entries (like we do with FP/VEC
485          * reload). Each time we wrap 256 switches, take an entry out of the
486          * SLB preload cache.
487          */
488         tsk->thread.load_slb++;
489         if (!tsk->thread.load_slb) {
490                 unsigned long pc = KSTK_EIP(tsk);
491
492                 preload_age(ti);
493                 preload_add(ti, pc);
494         }
495
496         for (i = 0; i < ti->slb_preload_nr; i++) {
497                 unsigned char idx;
498                 unsigned long ea;
499
500                 idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
501                 ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT;
502
503                 slb_allocate_user(mm, ea);
504         }
505
506         /*
507          * Synchronize slbmte preloads with possible subsequent user memory
508          * address accesses by the kernel (user mode won't happen until
509          * rfid, which is safe).
510          */
511         asm volatile("isync" : : : "memory");
512 }
513
514 void slb_set_size(u16 size)
515 {
516         mmu_slb_size = size;
517 }
518
519 void slb_initialize(void)
520 {
521         unsigned long linear_llp, vmalloc_llp, io_llp;
522         unsigned long lflags;
523         static int slb_encoding_inited;
524 #ifdef CONFIG_SPARSEMEM_VMEMMAP
525         unsigned long vmemmap_llp;
526 #endif
527
528         /* Prepare our SLB miss handler based on our page size */
529         linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
530         io_llp = mmu_psize_defs[mmu_io_psize].sllp;
531         vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
532         get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
533 #ifdef CONFIG_SPARSEMEM_VMEMMAP
534         vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
535 #endif
536         if (!slb_encoding_inited) {
537                 slb_encoding_inited = 1;
538                 pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
539                 pr_devel("SLB: io      LLP = %04lx\n", io_llp);
540 #ifdef CONFIG_SPARSEMEM_VMEMMAP
541                 pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
542 #endif
543         }
544
545         get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
546         get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
547         get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
548
549         lflags = SLB_VSID_KERNEL | linear_llp;
550
551         /* Invalidate the entire SLB (even entry 0) & all the ERATS */
552         asm volatile("isync":::"memory");
553         asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
554         asm volatile("isync; slbia; isync":::"memory");
555         create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
556
557         /* For the boot cpu, we're running on the stack in init_thread_union,
558          * which is in the first segment of the linear mapping, and also
559          * get_paca()->kstack hasn't been initialized yet.
560          * For secondary cpus, we need to bolt the kernel stack entry now.
561          */
562         slb_shadow_clear(KSTACK_INDEX);
563         if (raw_smp_processor_id() != boot_cpuid &&
564             (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
565                 create_shadowed_slbe(get_paca()->kstack,
566                                      mmu_kernel_ssize, lflags, KSTACK_INDEX);
567
568         asm volatile("isync":::"memory");
569 }
570
571 static void slb_cache_update(unsigned long esid_data)
572 {
573         int slb_cache_index;
574
575         if (cpu_has_feature(CPU_FTR_ARCH_300))
576                 return; /* ISAv3.0B and later does not use slb_cache */
577
578         /*
579          * Now update slb cache entries
580          */
581         slb_cache_index = local_paca->slb_cache_ptr;
582         if (slb_cache_index < SLB_CACHE_ENTRIES) {
583                 /*
584                  * We have space in slb cache for optimized switch_slb().
585                  * Top 36 bits from esid_data as per ISA
586                  */
587                 local_paca->slb_cache[slb_cache_index++] = esid_data >> 28;
588                 local_paca->slb_cache_ptr++;
589         } else {
590                 /*
591                  * Our cache is full and the current cache content strictly
592                  * doesn't indicate the active SLB conents. Bump the ptr
593                  * so that switch_slb() will ignore the cache.
594                  */
595                 local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
596         }
597 }
598
599 static enum slb_index alloc_slb_index(bool kernel)
600 {
601         enum slb_index index;
602
603         /*
604          * The allocation bitmaps can become out of synch with the SLB
605          * when the _switch code does slbie when bolting a new stack
606          * segment and it must not be anywhere else in the SLB. This leaves
607          * a kernel allocated entry that is unused in the SLB. With very
608          * large systems or small segment sizes, the bitmaps could slowly
609          * fill with these entries. They will eventually be cleared out
610          * by the round robin allocator in that case, so it's probably not
611          * worth accounting for.
612          */
613
614         /*
615          * SLBs beyond 32 entries are allocated with stab_rr only
616          * POWER7/8/9 have 32 SLB entries, this could be expanded if a
617          * future CPU has more.
618          */
619         if (local_paca->slb_used_bitmap != U32_MAX) {
620                 index = ffz(local_paca->slb_used_bitmap);
621                 local_paca->slb_used_bitmap |= 1U << index;
622                 if (kernel)
623                         local_paca->slb_kern_bitmap |= 1U << index;
624         } else {
625                 /* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
626                 index = local_paca->stab_rr;
627                 if (index < (mmu_slb_size - 1))
628                         index++;
629                 else
630                         index = SLB_NUM_BOLTED;
631                 local_paca->stab_rr = index;
632                 if (index < 32) {
633                         if (kernel)
634                                 local_paca->slb_kern_bitmap |= 1U << index;
635                         else
636                                 local_paca->slb_kern_bitmap &= ~(1U << index);
637                 }
638         }
639         BUG_ON(index < SLB_NUM_BOLTED);
640
641         return index;
642 }
643
644 static long slb_insert_entry(unsigned long ea, unsigned long context,
645                                 unsigned long flags, int ssize, bool kernel)
646 {
647         unsigned long vsid;
648         unsigned long vsid_data, esid_data;
649         enum slb_index index;
650
651         vsid = get_vsid(context, ea, ssize);
652         if (!vsid)
653                 return -EFAULT;
654
655         /*
656          * There must not be a kernel SLB fault in alloc_slb_index or before
657          * slbmte here or the allocation bitmaps could get out of whack with
658          * the SLB.
659          *
660          * User SLB faults or preloads take this path which might get inlined
661          * into the caller, so add compiler barriers here to ensure unsafe
662          * memory accesses do not come between.
663          */
664         barrier();
665
666         index = alloc_slb_index(kernel);
667
668         vsid_data = __mk_vsid_data(vsid, ssize, flags);
669         esid_data = mk_esid_data(ea, ssize, index);
670
671         /*
672          * No need for an isync before or after this slbmte. The exception
673          * we enter with and the rfid we exit with are context synchronizing.
674          * User preloads should add isync afterwards in case the kernel
675          * accesses user memory before it returns to userspace with rfid.
676          */
677         assert_slb_presence(false, ea);
678         asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data));
679
680         barrier();
681
682         if (!kernel)
683                 slb_cache_update(esid_data);
684
685         return 0;
686 }
687
688 static long slb_allocate_kernel(unsigned long ea, unsigned long id)
689 {
690         unsigned long context;
691         unsigned long flags;
692         int ssize;
693
694         if (id == KERNEL_REGION_ID) {
695
696                 /* We only support upto MAX_PHYSMEM_BITS */
697                 if ((ea & EA_MASK) > (1UL << MAX_PHYSMEM_BITS))
698                         return -EFAULT;
699
700                 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp;
701
702 #ifdef CONFIG_SPARSEMEM_VMEMMAP
703         } else if (id == VMEMMAP_REGION_ID) {
704
705                 if (ea >= H_VMEMMAP_END)
706                         return -EFAULT;
707
708                 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp;
709 #endif
710         } else if (id == VMALLOC_REGION_ID) {
711
712                 if (ea >= H_VMALLOC_END)
713                         return -EFAULT;
714
715                 flags = local_paca->vmalloc_sllp;
716
717         } else if (id == IO_REGION_ID) {
718
719                 if (ea >= H_KERN_IO_END)
720                         return -EFAULT;
721
722                 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp;
723
724         } else {
725                 return -EFAULT;
726         }
727
728         ssize = MMU_SEGSIZE_1T;
729         if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
730                 ssize = MMU_SEGSIZE_256M;
731
732         context = get_kernel_context(ea);
733
734         return slb_insert_entry(ea, context, flags, ssize, true);
735 }
736
737 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea)
738 {
739         unsigned long context;
740         unsigned long flags;
741         int bpsize;
742         int ssize;
743
744         /*
745          * consider this as bad access if we take a SLB miss
746          * on an address above addr limit.
747          */
748         if (ea >= mm_ctx_slb_addr_limit(&mm->context))
749                 return -EFAULT;
750
751         context = get_user_context(&mm->context, ea);
752         if (!context)
753                 return -EFAULT;
754
755         if (unlikely(ea >= H_PGTABLE_RANGE)) {
756                 WARN_ON(1);
757                 return -EFAULT;
758         }
759
760         ssize = user_segment_size(ea);
761
762         bpsize = get_slice_psize(mm, ea);
763         flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
764
765         return slb_insert_entry(ea, context, flags, ssize, false);
766 }
767
768 long do_slb_fault(struct pt_regs *regs, unsigned long ea)
769 {
770         unsigned long id = get_region_id(ea);
771
772         /* IRQs are not reconciled here, so can't check irqs_disabled */
773         VM_WARN_ON(mfmsr() & MSR_EE);
774
775         if (unlikely(!(regs->msr & MSR_RI)))
776                 return -EINVAL;
777
778         /*
779          * SLB kernel faults must be very careful not to touch anything
780          * that is not bolted. E.g., PACA and global variables are okay,
781          * mm->context stuff is not.
782          *
783          * SLB user faults can access all of kernel memory, but must be
784          * careful not to touch things like IRQ state because it is not
785          * "reconciled" here. The difficulty is that we must use
786          * fast_exception_return to return from kernel SLB faults without
787          * looking at possible non-bolted memory. We could test user vs
788          * kernel faults in the interrupt handler asm and do a full fault,
789          * reconcile, ret_from_except for user faults which would make them
790          * first class kernel code. But for performance it's probably nicer
791          * if they go via fast_exception_return too.
792          */
793         if (id >= KERNEL_REGION_ID) {
794                 long err;
795 #ifdef CONFIG_DEBUG_VM
796                 /* Catch recursive kernel SLB faults. */
797                 BUG_ON(local_paca->in_kernel_slb_handler);
798                 local_paca->in_kernel_slb_handler = 1;
799 #endif
800                 err = slb_allocate_kernel(ea, id);
801 #ifdef CONFIG_DEBUG_VM
802                 local_paca->in_kernel_slb_handler = 0;
803 #endif
804                 return err;
805         } else {
806                 struct mm_struct *mm = current->mm;
807                 long err;
808
809                 if (unlikely(!mm))
810                         return -EFAULT;
811
812                 err = slb_allocate_user(mm, ea);
813                 if (!err)
814                         preload_add(current_thread_info(), ea);
815
816                 return err;
817         }
818 }
819
820 void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err)
821 {
822         if (err == -EFAULT) {
823                 if (user_mode(regs))
824                         _exception(SIGSEGV, regs, SEGV_BNDERR, ea);
825                 else
826                         bad_page_fault(regs, ea, SIGSEGV);
827         } else if (err == -EINVAL) {
828                 unrecoverable_exception(regs);
829         } else {
830                 BUG();
831         }
832 }