Merge branch 'akpm' (patches from Andrew)
[linux-2.6-block.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <linux/swap.h>
21 #include <linux/swapops.h>
22 #include <linux/kmemleak.h>
23 #include <asm/pgtable.h>
24 #include <asm/pgalloc.h>
25 #include <asm/tlb.h>
26 #include <asm/setup.h>
27 #include <asm/hugetlb.h>
28 #include <asm/pte-walk.h>
29
30
31 #ifdef CONFIG_HUGETLB_PAGE
32
33 #define PAGE_SHIFT_64K  16
34 #define PAGE_SHIFT_512K 19
35 #define PAGE_SHIFT_8M   23
36 #define PAGE_SHIFT_16M  24
37 #define PAGE_SHIFT_16G  34
38
39 bool hugetlb_disabled = false;
40
41 unsigned int HPAGE_SHIFT;
42 EXPORT_SYMBOL(HPAGE_SHIFT);
43
44 #define hugepd_none(hpd)        (hpd_val(hpd) == 0)
45
46 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
47 {
48         /*
49          * Only called for hugetlbfs pages, hence can ignore THP and the
50          * irq disabled walk.
51          */
52         return __find_linux_pte(mm->pgd, addr, NULL, NULL);
53 }
54
55 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
56                            unsigned long address, unsigned int pdshift,
57                            unsigned int pshift, spinlock_t *ptl)
58 {
59         struct kmem_cache *cachep;
60         pte_t *new;
61         int i;
62         int num_hugepd;
63
64         if (pshift >= pdshift) {
65                 cachep = hugepte_cache;
66                 num_hugepd = 1 << (pshift - pdshift);
67         } else {
68                 cachep = PGT_CACHE(pdshift - pshift);
69                 num_hugepd = 1;
70         }
71
72         new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
73
74         BUG_ON(pshift > HUGEPD_SHIFT_MASK);
75         BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
76
77         if (! new)
78                 return -ENOMEM;
79
80         /*
81          * Make sure other cpus find the hugepd set only after a
82          * properly initialized page table is visible to them.
83          * For more details look for comment in __pte_alloc().
84          */
85         smp_wmb();
86
87         spin_lock(ptl);
88         /*
89          * We have multiple higher-level entries that point to the same
90          * actual pte location.  Fill in each as we go and backtrack on error.
91          * We need all of these so the DTLB pgtable walk code can find the
92          * right higher-level entry without knowing if it's a hugepage or not.
93          */
94         for (i = 0; i < num_hugepd; i++, hpdp++) {
95                 if (unlikely(!hugepd_none(*hpdp)))
96                         break;
97                 else {
98 #ifdef CONFIG_PPC_BOOK3S_64
99                         *hpdp = __hugepd(__pa(new) | HUGEPD_VAL_BITS |
100                                          (shift_to_mmu_psize(pshift) << 2));
101 #elif defined(CONFIG_PPC_8xx)
102                         *hpdp = __hugepd(__pa(new) | _PMD_USER |
103                                          (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
104                                           _PMD_PAGE_512K) | _PMD_PRESENT);
105 #else
106                         /* We use the old format for PPC_FSL_BOOK3E */
107                         *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
108 #endif
109                 }
110         }
111         /* If we bailed from the for loop early, an error occurred, clean up */
112         if (i < num_hugepd) {
113                 for (i = i - 1 ; i >= 0; i--, hpdp--)
114                         *hpdp = __hugepd(0);
115                 kmem_cache_free(cachep, new);
116         } else {
117                 kmemleak_ignore(new);
118         }
119         spin_unlock(ptl);
120         return 0;
121 }
122
123 /*
124  * At this point we do the placement change only for BOOK3S 64. This would
125  * possibly work on other subarchs.
126  */
127 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
128 {
129         pgd_t *pg;
130         pud_t *pu;
131         pmd_t *pm;
132         hugepd_t *hpdp = NULL;
133         unsigned pshift = __ffs(sz);
134         unsigned pdshift = PGDIR_SHIFT;
135         spinlock_t *ptl;
136
137         addr &= ~(sz-1);
138         pg = pgd_offset(mm, addr);
139
140 #ifdef CONFIG_PPC_BOOK3S_64
141         if (pshift == PGDIR_SHIFT)
142                 /* 16GB huge page */
143                 return (pte_t *) pg;
144         else if (pshift > PUD_SHIFT) {
145                 /*
146                  * We need to use hugepd table
147                  */
148                 ptl = &mm->page_table_lock;
149                 hpdp = (hugepd_t *)pg;
150         } else {
151                 pdshift = PUD_SHIFT;
152                 pu = pud_alloc(mm, pg, addr);
153                 if (pshift == PUD_SHIFT)
154                         return (pte_t *)pu;
155                 else if (pshift > PMD_SHIFT) {
156                         ptl = pud_lockptr(mm, pu);
157                         hpdp = (hugepd_t *)pu;
158                 } else {
159                         pdshift = PMD_SHIFT;
160                         pm = pmd_alloc(mm, pu, addr);
161                         if (pshift == PMD_SHIFT)
162                                 /* 16MB hugepage */
163                                 return (pte_t *)pm;
164                         else {
165                                 ptl = pmd_lockptr(mm, pm);
166                                 hpdp = (hugepd_t *)pm;
167                         }
168                 }
169         }
170 #else
171         if (pshift >= PGDIR_SHIFT) {
172                 ptl = &mm->page_table_lock;
173                 hpdp = (hugepd_t *)pg;
174         } else {
175                 pdshift = PUD_SHIFT;
176                 pu = pud_alloc(mm, pg, addr);
177                 if (pshift >= PUD_SHIFT) {
178                         ptl = pud_lockptr(mm, pu);
179                         hpdp = (hugepd_t *)pu;
180                 } else {
181                         pdshift = PMD_SHIFT;
182                         pm = pmd_alloc(mm, pu, addr);
183                         ptl = pmd_lockptr(mm, pm);
184                         hpdp = (hugepd_t *)pm;
185                 }
186         }
187 #endif
188         if (!hpdp)
189                 return NULL;
190
191         BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
192
193         if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
194                                                   pdshift, pshift, ptl))
195                 return NULL;
196
197         return hugepte_offset(*hpdp, addr, pdshift);
198 }
199
200 #ifdef CONFIG_PPC_BOOK3S_64
201 /*
202  * Tracks gpages after the device tree is scanned and before the
203  * huge_boot_pages list is ready on pseries.
204  */
205 #define MAX_NUMBER_GPAGES       1024
206 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
207 __initdata static unsigned nr_gpages;
208
209 /*
210  * Build list of addresses of gigantic pages.  This function is used in early
211  * boot before the buddy allocator is setup.
212  */
213 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
214 {
215         if (!addr)
216                 return;
217         while (number_of_pages > 0) {
218                 gpage_freearray[nr_gpages] = addr;
219                 nr_gpages++;
220                 number_of_pages--;
221                 addr += page_size;
222         }
223 }
224
225 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
226 {
227         struct huge_bootmem_page *m;
228         if (nr_gpages == 0)
229                 return 0;
230         m = phys_to_virt(gpage_freearray[--nr_gpages]);
231         gpage_freearray[nr_gpages] = 0;
232         list_add(&m->list, &huge_boot_pages);
233         m->hstate = hstate;
234         return 1;
235 }
236 #endif
237
238
239 int __init alloc_bootmem_huge_page(struct hstate *h)
240 {
241
242 #ifdef CONFIG_PPC_BOOK3S_64
243         if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
244                 return pseries_alloc_bootmem_huge_page(h);
245 #endif
246         return __alloc_bootmem_huge_page(h);
247 }
248
249 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
250 #define HUGEPD_FREELIST_SIZE \
251         ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
252
253 struct hugepd_freelist {
254         struct rcu_head rcu;
255         unsigned int index;
256         void *ptes[0];
257 };
258
259 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
260
261 static void hugepd_free_rcu_callback(struct rcu_head *head)
262 {
263         struct hugepd_freelist *batch =
264                 container_of(head, struct hugepd_freelist, rcu);
265         unsigned int i;
266
267         for (i = 0; i < batch->index; i++)
268                 kmem_cache_free(hugepte_cache, batch->ptes[i]);
269
270         free_page((unsigned long)batch);
271 }
272
273 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
274 {
275         struct hugepd_freelist **batchp;
276
277         batchp = &get_cpu_var(hugepd_freelist_cur);
278
279         if (atomic_read(&tlb->mm->mm_users) < 2 ||
280             mm_is_thread_local(tlb->mm)) {
281                 kmem_cache_free(hugepte_cache, hugepte);
282                 put_cpu_var(hugepd_freelist_cur);
283                 return;
284         }
285
286         if (*batchp == NULL) {
287                 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
288                 (*batchp)->index = 0;
289         }
290
291         (*batchp)->ptes[(*batchp)->index++] = hugepte;
292         if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
293                 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
294                 *batchp = NULL;
295         }
296         put_cpu_var(hugepd_freelist_cur);
297 }
298 #else
299 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
300 #endif
301
302 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
303                               unsigned long start, unsigned long end,
304                               unsigned long floor, unsigned long ceiling)
305 {
306         pte_t *hugepte = hugepd_page(*hpdp);
307         int i;
308
309         unsigned long pdmask = ~((1UL << pdshift) - 1);
310         unsigned int num_hugepd = 1;
311         unsigned int shift = hugepd_shift(*hpdp);
312
313         /* Note: On fsl the hpdp may be the first of several */
314         if (shift > pdshift)
315                 num_hugepd = 1 << (shift - pdshift);
316
317         start &= pdmask;
318         if (start < floor)
319                 return;
320         if (ceiling) {
321                 ceiling &= pdmask;
322                 if (! ceiling)
323                         return;
324         }
325         if (end - 1 > ceiling - 1)
326                 return;
327
328         for (i = 0; i < num_hugepd; i++, hpdp++)
329                 *hpdp = __hugepd(0);
330
331         if (shift >= pdshift)
332                 hugepd_free(tlb, hugepte);
333         else
334                 pgtable_free_tlb(tlb, hugepte,
335                                  get_hugepd_cache_index(pdshift - shift));
336 }
337
338 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
339                                    unsigned long addr, unsigned long end,
340                                    unsigned long floor, unsigned long ceiling)
341 {
342         pmd_t *pmd;
343         unsigned long next;
344         unsigned long start;
345
346         start = addr;
347         do {
348                 unsigned long more;
349
350                 pmd = pmd_offset(pud, addr);
351                 next = pmd_addr_end(addr, end);
352                 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
353                         /*
354                          * if it is not hugepd pointer, we should already find
355                          * it cleared.
356                          */
357                         WARN_ON(!pmd_none_or_clear_bad(pmd));
358                         continue;
359                 }
360                 /*
361                  * Increment next by the size of the huge mapping since
362                  * there may be more than one entry at this level for a
363                  * single hugepage, but all of them point to
364                  * the same kmem cache that holds the hugepte.
365                  */
366                 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
367                 if (more > next)
368                         next = more;
369
370                 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
371                                   addr, next, floor, ceiling);
372         } while (addr = next, addr != end);
373
374         start &= PUD_MASK;
375         if (start < floor)
376                 return;
377         if (ceiling) {
378                 ceiling &= PUD_MASK;
379                 if (!ceiling)
380                         return;
381         }
382         if (end - 1 > ceiling - 1)
383                 return;
384
385         pmd = pmd_offset(pud, start);
386         pud_clear(pud);
387         pmd_free_tlb(tlb, pmd, start);
388         mm_dec_nr_pmds(tlb->mm);
389 }
390
391 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
392                                    unsigned long addr, unsigned long end,
393                                    unsigned long floor, unsigned long ceiling)
394 {
395         pud_t *pud;
396         unsigned long next;
397         unsigned long start;
398
399         start = addr;
400         do {
401                 pud = pud_offset(pgd, addr);
402                 next = pud_addr_end(addr, end);
403                 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
404                         if (pud_none_or_clear_bad(pud))
405                                 continue;
406                         hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
407                                                ceiling);
408                 } else {
409                         unsigned long more;
410                         /*
411                          * Increment next by the size of the huge mapping since
412                          * there may be more than one entry at this level for a
413                          * single hugepage, but all of them point to
414                          * the same kmem cache that holds the hugepte.
415                          */
416                         more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
417                         if (more > next)
418                                 next = more;
419
420                         free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
421                                           addr, next, floor, ceiling);
422                 }
423         } while (addr = next, addr != end);
424
425         start &= PGDIR_MASK;
426         if (start < floor)
427                 return;
428         if (ceiling) {
429                 ceiling &= PGDIR_MASK;
430                 if (!ceiling)
431                         return;
432         }
433         if (end - 1 > ceiling - 1)
434                 return;
435
436         pud = pud_offset(pgd, start);
437         pgd_clear(pgd);
438         pud_free_tlb(tlb, pud, start);
439         mm_dec_nr_puds(tlb->mm);
440 }
441
442 /*
443  * This function frees user-level page tables of a process.
444  */
445 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
446                             unsigned long addr, unsigned long end,
447                             unsigned long floor, unsigned long ceiling)
448 {
449         pgd_t *pgd;
450         unsigned long next;
451
452         /*
453          * Because there are a number of different possible pagetable
454          * layouts for hugepage ranges, we limit knowledge of how
455          * things should be laid out to the allocation path
456          * (huge_pte_alloc(), above).  Everything else works out the
457          * structure as it goes from information in the hugepd
458          * pointers.  That means that we can't here use the
459          * optimization used in the normal page free_pgd_range(), of
460          * checking whether we're actually covering a large enough
461          * range to have to do anything at the top level of the walk
462          * instead of at the bottom.
463          *
464          * To make sense of this, you should probably go read the big
465          * block comment at the top of the normal free_pgd_range(),
466          * too.
467          */
468
469         do {
470                 next = pgd_addr_end(addr, end);
471                 pgd = pgd_offset(tlb->mm, addr);
472                 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
473                         if (pgd_none_or_clear_bad(pgd))
474                                 continue;
475                         hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
476                 } else {
477                         unsigned long more;
478                         /*
479                          * Increment next by the size of the huge mapping since
480                          * there may be more than one entry at the pgd level
481                          * for a single hugepage, but all of them point to the
482                          * same kmem cache that holds the hugepte.
483                          */
484                         more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
485                         if (more > next)
486                                 next = more;
487
488                         free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
489                                           addr, next, floor, ceiling);
490                 }
491         } while (addr = next, addr != end);
492 }
493
494 struct page *follow_huge_pd(struct vm_area_struct *vma,
495                             unsigned long address, hugepd_t hpd,
496                             int flags, int pdshift)
497 {
498         pte_t *ptep;
499         spinlock_t *ptl;
500         struct page *page = NULL;
501         unsigned long mask;
502         int shift = hugepd_shift(hpd);
503         struct mm_struct *mm = vma->vm_mm;
504
505 retry:
506         /*
507          * hugepage directory entries are protected by mm->page_table_lock
508          * Use this instead of huge_pte_lockptr
509          */
510         ptl = &mm->page_table_lock;
511         spin_lock(ptl);
512
513         ptep = hugepte_offset(hpd, address, pdshift);
514         if (pte_present(*ptep)) {
515                 mask = (1UL << shift) - 1;
516                 page = pte_page(*ptep);
517                 page += ((address & mask) >> PAGE_SHIFT);
518                 if (flags & FOLL_GET)
519                         get_page(page);
520         } else {
521                 if (is_hugetlb_entry_migration(*ptep)) {
522                         spin_unlock(ptl);
523                         __migration_entry_wait(mm, ptep, ptl);
524                         goto retry;
525                 }
526         }
527         spin_unlock(ptl);
528         return page;
529 }
530
531 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
532                                       unsigned long sz)
533 {
534         unsigned long __boundary = (addr + sz) & ~(sz-1);
535         return (__boundary - 1 < end - 1) ? __boundary : end;
536 }
537
538 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
539                 unsigned long end, int write, struct page **pages, int *nr)
540 {
541         pte_t *ptep;
542         unsigned long sz = 1UL << hugepd_shift(hugepd);
543         unsigned long next;
544
545         ptep = hugepte_offset(hugepd, addr, pdshift);
546         do {
547                 next = hugepte_addr_end(addr, end, sz);
548                 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
549                         return 0;
550         } while (ptep++, addr = next, addr != end);
551
552         return 1;
553 }
554
555 #ifdef CONFIG_PPC_MM_SLICES
556 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
557                                         unsigned long len, unsigned long pgoff,
558                                         unsigned long flags)
559 {
560         struct hstate *hstate = hstate_file(file);
561         int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
562
563 #ifdef CONFIG_PPC_RADIX_MMU
564         if (radix_enabled())
565                 return radix__hugetlb_get_unmapped_area(file, addr, len,
566                                                        pgoff, flags);
567 #endif
568         return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
569 }
570 #endif
571
572 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
573 {
574 #ifdef CONFIG_PPC_MM_SLICES
575         /* With radix we don't use slice, so derive it from vma*/
576         if (!radix_enabled()) {
577                 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
578
579                 return 1UL << mmu_psize_to_shift(psize);
580         }
581 #endif
582         return vma_kernel_pagesize(vma);
583 }
584
585 static inline bool is_power_of_4(unsigned long x)
586 {
587         if (is_power_of_2(x))
588                 return (__ilog2(x) % 2) ? false : true;
589         return false;
590 }
591
592 static int __init add_huge_page_size(unsigned long long size)
593 {
594         int shift = __ffs(size);
595         int mmu_psize;
596
597         /* Check that it is a page size supported by the hardware and
598          * that it fits within pagetable and slice limits. */
599         if (size <= PAGE_SIZE)
600                 return -EINVAL;
601 #if defined(CONFIG_PPC_FSL_BOOK3E)
602         if (!is_power_of_4(size))
603                 return -EINVAL;
604 #elif !defined(CONFIG_PPC_8xx)
605         if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
606                 return -EINVAL;
607 #endif
608
609         if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
610                 return -EINVAL;
611
612 #ifdef CONFIG_PPC_BOOK3S_64
613         /*
614          * We need to make sure that for different page sizes reported by
615          * firmware we only add hugetlb support for page sizes that can be
616          * supported by linux page table layout.
617          * For now we have
618          * Radix: 2M and 1G
619          * Hash: 16M and 16G
620          */
621         if (radix_enabled()) {
622                 if (mmu_psize != MMU_PAGE_2M && mmu_psize != MMU_PAGE_1G)
623                         return -EINVAL;
624         } else {
625                 if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
626                         return -EINVAL;
627         }
628 #endif
629
630         BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
631
632         /* Return if huge page size has already been setup */
633         if (size_to_hstate(size))
634                 return 0;
635
636         hugetlb_add_hstate(shift - PAGE_SHIFT);
637
638         return 0;
639 }
640
641 static int __init hugepage_setup_sz(char *str)
642 {
643         unsigned long long size;
644
645         size = memparse(str, &str);
646
647         if (add_huge_page_size(size) != 0) {
648                 hugetlb_bad_size();
649                 pr_err("Invalid huge page size specified(%llu)\n", size);
650         }
651
652         return 1;
653 }
654 __setup("hugepagesz=", hugepage_setup_sz);
655
656 struct kmem_cache *hugepte_cache;
657 static int __init hugetlbpage_init(void)
658 {
659         int psize;
660
661         if (hugetlb_disabled) {
662                 pr_info("HugeTLB support is disabled!\n");
663                 return 0;
664         }
665
666 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
667         if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
668                 return -ENODEV;
669 #endif
670         for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
671                 unsigned shift;
672                 unsigned pdshift;
673
674                 if (!mmu_psize_defs[psize].shift)
675                         continue;
676
677                 shift = mmu_psize_to_shift(psize);
678
679 #ifdef CONFIG_PPC_BOOK3S_64
680                 if (shift > PGDIR_SHIFT)
681                         continue;
682                 else if (shift > PUD_SHIFT)
683                         pdshift = PGDIR_SHIFT;
684                 else if (shift > PMD_SHIFT)
685                         pdshift = PUD_SHIFT;
686                 else
687                         pdshift = PMD_SHIFT;
688 #else
689                 if (shift < PUD_SHIFT)
690                         pdshift = PMD_SHIFT;
691                 else if (shift < PGDIR_SHIFT)
692                         pdshift = PUD_SHIFT;
693                 else
694                         pdshift = PGDIR_SHIFT;
695 #endif
696
697                 if (add_huge_page_size(1ULL << shift) < 0)
698                         continue;
699                 /*
700                  * if we have pdshift and shift value same, we don't
701                  * use pgt cache for hugepd.
702                  */
703                 if (pdshift > shift)
704                         pgtable_cache_add(pdshift - shift, NULL);
705 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
706                 else if (!hugepte_cache) {
707                         /*
708                          * Create a kmem cache for hugeptes.  The bottom bits in
709                          * the pte have size information encoded in them, so
710                          * align them to allow this
711                          */
712                         hugepte_cache = kmem_cache_create("hugepte-cache",
713                                                           sizeof(pte_t),
714                                                           HUGEPD_SHIFT_MASK + 1,
715                                                           0, NULL);
716                         if (hugepte_cache == NULL)
717                                 panic("%s: Unable to create kmem cache "
718                                       "for hugeptes\n", __func__);
719
720                 }
721 #endif
722         }
723
724 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
725         /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
726         if (mmu_psize_defs[MMU_PAGE_4M].shift)
727                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
728         else if (mmu_psize_defs[MMU_PAGE_512K].shift)
729                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
730 #else
731         /* Set default large page size. Currently, we pick 16M or 1M
732          * depending on what is available
733          */
734         if (mmu_psize_defs[MMU_PAGE_16M].shift)
735                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
736         else if (mmu_psize_defs[MMU_PAGE_1M].shift)
737                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
738         else if (mmu_psize_defs[MMU_PAGE_2M].shift)
739                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
740 #endif
741         return 0;
742 }
743
744 arch_initcall(hugetlbpage_init);
745
746 void flush_dcache_icache_hugepage(struct page *page)
747 {
748         int i;
749         void *start;
750
751         BUG_ON(!PageCompound(page));
752
753         for (i = 0; i < (1UL << compound_order(page)); i++) {
754                 if (!PageHighMem(page)) {
755                         __flush_dcache_icache(page_address(page+i));
756                 } else {
757                         start = kmap_atomic(page+i);
758                         __flush_dcache_icache(start);
759                         kunmap_atomic(start);
760                 }
761         }
762 }
763
764 #endif /* CONFIG_HUGETLB_PAGE */
765
766 /*
767  * We have 4 cases for pgds and pmds:
768  * (1) invalid (all zeroes)
769  * (2) pointer to next table, as normal; bottom 6 bits == 0
770  * (3) leaf pte for huge page _PAGE_PTE set
771  * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
772  *
773  * So long as we atomically load page table pointers we are safe against teardown,
774  * we can follow the address down to the the page and take a ref on it.
775  * This function need to be called with interrupts disabled. We use this variant
776  * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
777  */
778 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
779                         bool *is_thp, unsigned *hpage_shift)
780 {
781         pgd_t pgd, *pgdp;
782         pud_t pud, *pudp;
783         pmd_t pmd, *pmdp;
784         pte_t *ret_pte;
785         hugepd_t *hpdp = NULL;
786         unsigned pdshift = PGDIR_SHIFT;
787
788         if (hpage_shift)
789                 *hpage_shift = 0;
790
791         if (is_thp)
792                 *is_thp = false;
793
794         pgdp = pgdir + pgd_index(ea);
795         pgd  = READ_ONCE(*pgdp);
796         /*
797          * Always operate on the local stack value. This make sure the
798          * value don't get updated by a parallel THP split/collapse,
799          * page fault or a page unmap. The return pte_t * is still not
800          * stable. So should be checked there for above conditions.
801          */
802         if (pgd_none(pgd))
803                 return NULL;
804         else if (pgd_huge(pgd)) {
805                 ret_pte = (pte_t *) pgdp;
806                 goto out;
807         } else if (is_hugepd(__hugepd(pgd_val(pgd))))
808                 hpdp = (hugepd_t *)&pgd;
809         else {
810                 /*
811                  * Even if we end up with an unmap, the pgtable will not
812                  * be freed, because we do an rcu free and here we are
813                  * irq disabled
814                  */
815                 pdshift = PUD_SHIFT;
816                 pudp = pud_offset(&pgd, ea);
817                 pud  = READ_ONCE(*pudp);
818
819                 if (pud_none(pud))
820                         return NULL;
821                 else if (pud_huge(pud)) {
822                         ret_pte = (pte_t *) pudp;
823                         goto out;
824                 } else if (is_hugepd(__hugepd(pud_val(pud))))
825                         hpdp = (hugepd_t *)&pud;
826                 else {
827                         pdshift = PMD_SHIFT;
828                         pmdp = pmd_offset(&pud, ea);
829                         pmd  = READ_ONCE(*pmdp);
830                         /*
831                          * A hugepage collapse is captured by pmd_none, because
832                          * it mark the pmd none and do a hpte invalidate.
833                          */
834                         if (pmd_none(pmd))
835                                 return NULL;
836
837                         if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
838                                 if (is_thp)
839                                         *is_thp = true;
840                                 ret_pte = (pte_t *) pmdp;
841                                 goto out;
842                         }
843                         /*
844                          * pmd_large check below will handle the swap pmd pte
845                          * we need to do both the check because they are config
846                          * dependent.
847                          */
848                         if (pmd_huge(pmd) || pmd_large(pmd)) {
849                                 ret_pte = (pte_t *) pmdp;
850                                 goto out;
851                         } else if (is_hugepd(__hugepd(pmd_val(pmd))))
852                                 hpdp = (hugepd_t *)&pmd;
853                         else
854                                 return pte_offset_kernel(&pmd, ea);
855                 }
856         }
857         if (!hpdp)
858                 return NULL;
859
860         ret_pte = hugepte_offset(*hpdp, ea, pdshift);
861         pdshift = hugepd_shift(*hpdp);
862 out:
863         if (hpage_shift)
864                 *hpage_shift = pdshift;
865         return ret_pte;
866 }
867 EXPORT_SYMBOL_GPL(__find_linux_pte);
868
869 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
870                 unsigned long end, int write, struct page **pages, int *nr)
871 {
872         unsigned long pte_end;
873         struct page *head, *page;
874         pte_t pte;
875         int refs;
876
877         pte_end = (addr + sz) & ~(sz-1);
878         if (pte_end < end)
879                 end = pte_end;
880
881         pte = READ_ONCE(*ptep);
882
883         if (!pte_access_permitted(pte, write))
884                 return 0;
885
886         /* hugepages are never "special" */
887         VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
888
889         refs = 0;
890         head = pte_page(pte);
891
892         page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
893         do {
894                 VM_BUG_ON(compound_head(page) != head);
895                 pages[*nr] = page;
896                 (*nr)++;
897                 page++;
898                 refs++;
899         } while (addr += PAGE_SIZE, addr != end);
900
901         if (!page_cache_add_speculative(head, refs)) {
902                 *nr -= refs;
903                 return 0;
904         }
905
906         if (unlikely(pte_val(pte) != pte_val(*ptep))) {
907                 /* Could be optimized better */
908                 *nr -= refs;
909                 while (refs--)
910                         put_page(head);
911                 return 0;
912         }
913
914         return 1;
915 }