Merge branch 'drm-fixes-4.19' of git://people.freedesktop.org/~agd5f/linux into drm...
[linux-2.6-block.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <linux/swap.h>
21 #include <linux/swapops.h>
22 #include <asm/pgtable.h>
23 #include <asm/pgalloc.h>
24 #include <asm/tlb.h>
25 #include <asm/setup.h>
26 #include <asm/hugetlb.h>
27 #include <asm/pte-walk.h>
28
29
30 #ifdef CONFIG_HUGETLB_PAGE
31
32 #define PAGE_SHIFT_64K  16
33 #define PAGE_SHIFT_512K 19
34 #define PAGE_SHIFT_8M   23
35 #define PAGE_SHIFT_16M  24
36 #define PAGE_SHIFT_16G  34
37
38 bool hugetlb_disabled = false;
39
40 unsigned int HPAGE_SHIFT;
41 EXPORT_SYMBOL(HPAGE_SHIFT);
42
43 #define hugepd_none(hpd)        (hpd_val(hpd) == 0)
44
45 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
46 {
47         /*
48          * Only called for hugetlbfs pages, hence can ignore THP and the
49          * irq disabled walk.
50          */
51         return __find_linux_pte(mm->pgd, addr, NULL, NULL);
52 }
53
54 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
55                            unsigned long address, unsigned int pdshift,
56                            unsigned int pshift, spinlock_t *ptl)
57 {
58         struct kmem_cache *cachep;
59         pte_t *new;
60         int i;
61         int num_hugepd;
62
63         if (pshift >= pdshift) {
64                 cachep = hugepte_cache;
65                 num_hugepd = 1 << (pshift - pdshift);
66         } else {
67                 cachep = PGT_CACHE(pdshift - pshift);
68                 num_hugepd = 1;
69         }
70
71         new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
72
73         BUG_ON(pshift > HUGEPD_SHIFT_MASK);
74         BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
75
76         if (! new)
77                 return -ENOMEM;
78
79         /*
80          * Make sure other cpus find the hugepd set only after a
81          * properly initialized page table is visible to them.
82          * For more details look for comment in __pte_alloc().
83          */
84         smp_wmb();
85
86         spin_lock(ptl);
87         /*
88          * We have multiple higher-level entries that point to the same
89          * actual pte location.  Fill in each as we go and backtrack on error.
90          * We need all of these so the DTLB pgtable walk code can find the
91          * right higher-level entry without knowing if it's a hugepage or not.
92          */
93         for (i = 0; i < num_hugepd; i++, hpdp++) {
94                 if (unlikely(!hugepd_none(*hpdp)))
95                         break;
96                 else {
97 #ifdef CONFIG_PPC_BOOK3S_64
98                         *hpdp = __hugepd(__pa(new) |
99                                          (shift_to_mmu_psize(pshift) << 2));
100 #elif defined(CONFIG_PPC_8xx)
101                         *hpdp = __hugepd(__pa(new) | _PMD_USER |
102                                          (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
103                                           _PMD_PAGE_512K) | _PMD_PRESENT);
104 #else
105                         /* We use the old format for PPC_FSL_BOOK3E */
106                         *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
107 #endif
108                 }
109         }
110         /* If we bailed from the for loop early, an error occurred, clean up */
111         if (i < num_hugepd) {
112                 for (i = i - 1 ; i >= 0; i--, hpdp--)
113                         *hpdp = __hugepd(0);
114                 kmem_cache_free(cachep, new);
115         }
116         spin_unlock(ptl);
117         return 0;
118 }
119
120 /*
121  * At this point we do the placement change only for BOOK3S 64. This would
122  * possibly work on other subarchs.
123  */
124 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
125 {
126         pgd_t *pg;
127         pud_t *pu;
128         pmd_t *pm;
129         hugepd_t *hpdp = NULL;
130         unsigned pshift = __ffs(sz);
131         unsigned pdshift = PGDIR_SHIFT;
132         spinlock_t *ptl;
133
134         addr &= ~(sz-1);
135         pg = pgd_offset(mm, addr);
136
137 #ifdef CONFIG_PPC_BOOK3S_64
138         if (pshift == PGDIR_SHIFT)
139                 /* 16GB huge page */
140                 return (pte_t *) pg;
141         else if (pshift > PUD_SHIFT) {
142                 /*
143                  * We need to use hugepd table
144                  */
145                 ptl = &mm->page_table_lock;
146                 hpdp = (hugepd_t *)pg;
147         } else {
148                 pdshift = PUD_SHIFT;
149                 pu = pud_alloc(mm, pg, addr);
150                 if (pshift == PUD_SHIFT)
151                         return (pte_t *)pu;
152                 else if (pshift > PMD_SHIFT) {
153                         ptl = pud_lockptr(mm, pu);
154                         hpdp = (hugepd_t *)pu;
155                 } else {
156                         pdshift = PMD_SHIFT;
157                         pm = pmd_alloc(mm, pu, addr);
158                         if (pshift == PMD_SHIFT)
159                                 /* 16MB hugepage */
160                                 return (pte_t *)pm;
161                         else {
162                                 ptl = pmd_lockptr(mm, pm);
163                                 hpdp = (hugepd_t *)pm;
164                         }
165                 }
166         }
167 #else
168         if (pshift >= PGDIR_SHIFT) {
169                 ptl = &mm->page_table_lock;
170                 hpdp = (hugepd_t *)pg;
171         } else {
172                 pdshift = PUD_SHIFT;
173                 pu = pud_alloc(mm, pg, addr);
174                 if (pshift >= PUD_SHIFT) {
175                         ptl = pud_lockptr(mm, pu);
176                         hpdp = (hugepd_t *)pu;
177                 } else {
178                         pdshift = PMD_SHIFT;
179                         pm = pmd_alloc(mm, pu, addr);
180                         ptl = pmd_lockptr(mm, pm);
181                         hpdp = (hugepd_t *)pm;
182                 }
183         }
184 #endif
185         if (!hpdp)
186                 return NULL;
187
188         BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
189
190         if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
191                                                   pdshift, pshift, ptl))
192                 return NULL;
193
194         return hugepte_offset(*hpdp, addr, pdshift);
195 }
196
197 #ifdef CONFIG_PPC_BOOK3S_64
198 /*
199  * Tracks gpages after the device tree is scanned and before the
200  * huge_boot_pages list is ready on pseries.
201  */
202 #define MAX_NUMBER_GPAGES       1024
203 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
204 __initdata static unsigned nr_gpages;
205
206 /*
207  * Build list of addresses of gigantic pages.  This function is used in early
208  * boot before the buddy allocator is setup.
209  */
210 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
211 {
212         if (!addr)
213                 return;
214         while (number_of_pages > 0) {
215                 gpage_freearray[nr_gpages] = addr;
216                 nr_gpages++;
217                 number_of_pages--;
218                 addr += page_size;
219         }
220 }
221
222 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
223 {
224         struct huge_bootmem_page *m;
225         if (nr_gpages == 0)
226                 return 0;
227         m = phys_to_virt(gpage_freearray[--nr_gpages]);
228         gpage_freearray[nr_gpages] = 0;
229         list_add(&m->list, &huge_boot_pages);
230         m->hstate = hstate;
231         return 1;
232 }
233 #endif
234
235
236 int __init alloc_bootmem_huge_page(struct hstate *h)
237 {
238
239 #ifdef CONFIG_PPC_BOOK3S_64
240         if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
241                 return pseries_alloc_bootmem_huge_page(h);
242 #endif
243         return __alloc_bootmem_huge_page(h);
244 }
245
246 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
247 #define HUGEPD_FREELIST_SIZE \
248         ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
249
250 struct hugepd_freelist {
251         struct rcu_head rcu;
252         unsigned int index;
253         void *ptes[0];
254 };
255
256 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
257
258 static void hugepd_free_rcu_callback(struct rcu_head *head)
259 {
260         struct hugepd_freelist *batch =
261                 container_of(head, struct hugepd_freelist, rcu);
262         unsigned int i;
263
264         for (i = 0; i < batch->index; i++)
265                 kmem_cache_free(hugepte_cache, batch->ptes[i]);
266
267         free_page((unsigned long)batch);
268 }
269
270 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
271 {
272         struct hugepd_freelist **batchp;
273
274         batchp = &get_cpu_var(hugepd_freelist_cur);
275
276         if (atomic_read(&tlb->mm->mm_users) < 2 ||
277             mm_is_thread_local(tlb->mm)) {
278                 kmem_cache_free(hugepte_cache, hugepte);
279                 put_cpu_var(hugepd_freelist_cur);
280                 return;
281         }
282
283         if (*batchp == NULL) {
284                 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
285                 (*batchp)->index = 0;
286         }
287
288         (*batchp)->ptes[(*batchp)->index++] = hugepte;
289         if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
290                 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
291                 *batchp = NULL;
292         }
293         put_cpu_var(hugepd_freelist_cur);
294 }
295 #else
296 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
297 #endif
298
299 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
300                               unsigned long start, unsigned long end,
301                               unsigned long floor, unsigned long ceiling)
302 {
303         pte_t *hugepte = hugepd_page(*hpdp);
304         int i;
305
306         unsigned long pdmask = ~((1UL << pdshift) - 1);
307         unsigned int num_hugepd = 1;
308         unsigned int shift = hugepd_shift(*hpdp);
309
310         /* Note: On fsl the hpdp may be the first of several */
311         if (shift > pdshift)
312                 num_hugepd = 1 << (shift - pdshift);
313
314         start &= pdmask;
315         if (start < floor)
316                 return;
317         if (ceiling) {
318                 ceiling &= pdmask;
319                 if (! ceiling)
320                         return;
321         }
322         if (end - 1 > ceiling - 1)
323                 return;
324
325         for (i = 0; i < num_hugepd; i++, hpdp++)
326                 *hpdp = __hugepd(0);
327
328         if (shift >= pdshift)
329                 hugepd_free(tlb, hugepte);
330         else
331                 pgtable_free_tlb(tlb, hugepte,
332                                  get_hugepd_cache_index(pdshift - shift));
333 }
334
335 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
336                                    unsigned long addr, unsigned long end,
337                                    unsigned long floor, unsigned long ceiling)
338 {
339         pmd_t *pmd;
340         unsigned long next;
341         unsigned long start;
342
343         start = addr;
344         do {
345                 unsigned long more;
346
347                 pmd = pmd_offset(pud, addr);
348                 next = pmd_addr_end(addr, end);
349                 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
350                         /*
351                          * if it is not hugepd pointer, we should already find
352                          * it cleared.
353                          */
354                         WARN_ON(!pmd_none_or_clear_bad(pmd));
355                         continue;
356                 }
357                 /*
358                  * Increment next by the size of the huge mapping since
359                  * there may be more than one entry at this level for a
360                  * single hugepage, but all of them point to
361                  * the same kmem cache that holds the hugepte.
362                  */
363                 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
364                 if (more > next)
365                         next = more;
366
367                 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
368                                   addr, next, floor, ceiling);
369         } while (addr = next, addr != end);
370
371         start &= PUD_MASK;
372         if (start < floor)
373                 return;
374         if (ceiling) {
375                 ceiling &= PUD_MASK;
376                 if (!ceiling)
377                         return;
378         }
379         if (end - 1 > ceiling - 1)
380                 return;
381
382         pmd = pmd_offset(pud, start);
383         pud_clear(pud);
384         pmd_free_tlb(tlb, pmd, start);
385         mm_dec_nr_pmds(tlb->mm);
386 }
387
388 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
389                                    unsigned long addr, unsigned long end,
390                                    unsigned long floor, unsigned long ceiling)
391 {
392         pud_t *pud;
393         unsigned long next;
394         unsigned long start;
395
396         start = addr;
397         do {
398                 pud = pud_offset(pgd, addr);
399                 next = pud_addr_end(addr, end);
400                 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
401                         if (pud_none_or_clear_bad(pud))
402                                 continue;
403                         hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
404                                                ceiling);
405                 } else {
406                         unsigned long more;
407                         /*
408                          * Increment next by the size of the huge mapping since
409                          * there may be more than one entry at this level for a
410                          * single hugepage, but all of them point to
411                          * the same kmem cache that holds the hugepte.
412                          */
413                         more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
414                         if (more > next)
415                                 next = more;
416
417                         free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
418                                           addr, next, floor, ceiling);
419                 }
420         } while (addr = next, addr != end);
421
422         start &= PGDIR_MASK;
423         if (start < floor)
424                 return;
425         if (ceiling) {
426                 ceiling &= PGDIR_MASK;
427                 if (!ceiling)
428                         return;
429         }
430         if (end - 1 > ceiling - 1)
431                 return;
432
433         pud = pud_offset(pgd, start);
434         pgd_clear(pgd);
435         pud_free_tlb(tlb, pud, start);
436         mm_dec_nr_puds(tlb->mm);
437 }
438
439 /*
440  * This function frees user-level page tables of a process.
441  */
442 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
443                             unsigned long addr, unsigned long end,
444                             unsigned long floor, unsigned long ceiling)
445 {
446         pgd_t *pgd;
447         unsigned long next;
448
449         /*
450          * Because there are a number of different possible pagetable
451          * layouts for hugepage ranges, we limit knowledge of how
452          * things should be laid out to the allocation path
453          * (huge_pte_alloc(), above).  Everything else works out the
454          * structure as it goes from information in the hugepd
455          * pointers.  That means that we can't here use the
456          * optimization used in the normal page free_pgd_range(), of
457          * checking whether we're actually covering a large enough
458          * range to have to do anything at the top level of the walk
459          * instead of at the bottom.
460          *
461          * To make sense of this, you should probably go read the big
462          * block comment at the top of the normal free_pgd_range(),
463          * too.
464          */
465
466         do {
467                 next = pgd_addr_end(addr, end);
468                 pgd = pgd_offset(tlb->mm, addr);
469                 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
470                         if (pgd_none_or_clear_bad(pgd))
471                                 continue;
472                         hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
473                 } else {
474                         unsigned long more;
475                         /*
476                          * Increment next by the size of the huge mapping since
477                          * there may be more than one entry at the pgd level
478                          * for a single hugepage, but all of them point to the
479                          * same kmem cache that holds the hugepte.
480                          */
481                         more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
482                         if (more > next)
483                                 next = more;
484
485                         free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
486                                           addr, next, floor, ceiling);
487                 }
488         } while (addr = next, addr != end);
489 }
490
491 struct page *follow_huge_pd(struct vm_area_struct *vma,
492                             unsigned long address, hugepd_t hpd,
493                             int flags, int pdshift)
494 {
495         pte_t *ptep;
496         spinlock_t *ptl;
497         struct page *page = NULL;
498         unsigned long mask;
499         int shift = hugepd_shift(hpd);
500         struct mm_struct *mm = vma->vm_mm;
501
502 retry:
503         /*
504          * hugepage directory entries are protected by mm->page_table_lock
505          * Use this instead of huge_pte_lockptr
506          */
507         ptl = &mm->page_table_lock;
508         spin_lock(ptl);
509
510         ptep = hugepte_offset(hpd, address, pdshift);
511         if (pte_present(*ptep)) {
512                 mask = (1UL << shift) - 1;
513                 page = pte_page(*ptep);
514                 page += ((address & mask) >> PAGE_SHIFT);
515                 if (flags & FOLL_GET)
516                         get_page(page);
517         } else {
518                 if (is_hugetlb_entry_migration(*ptep)) {
519                         spin_unlock(ptl);
520                         __migration_entry_wait(mm, ptep, ptl);
521                         goto retry;
522                 }
523         }
524         spin_unlock(ptl);
525         return page;
526 }
527
528 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
529                                       unsigned long sz)
530 {
531         unsigned long __boundary = (addr + sz) & ~(sz-1);
532         return (__boundary - 1 < end - 1) ? __boundary : end;
533 }
534
535 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
536                 unsigned long end, int write, struct page **pages, int *nr)
537 {
538         pte_t *ptep;
539         unsigned long sz = 1UL << hugepd_shift(hugepd);
540         unsigned long next;
541
542         ptep = hugepte_offset(hugepd, addr, pdshift);
543         do {
544                 next = hugepte_addr_end(addr, end, sz);
545                 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
546                         return 0;
547         } while (ptep++, addr = next, addr != end);
548
549         return 1;
550 }
551
552 #ifdef CONFIG_PPC_MM_SLICES
553 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
554                                         unsigned long len, unsigned long pgoff,
555                                         unsigned long flags)
556 {
557         struct hstate *hstate = hstate_file(file);
558         int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
559
560 #ifdef CONFIG_PPC_RADIX_MMU
561         if (radix_enabled())
562                 return radix__hugetlb_get_unmapped_area(file, addr, len,
563                                                        pgoff, flags);
564 #endif
565         return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
566 }
567 #endif
568
569 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
570 {
571 #ifdef CONFIG_PPC_MM_SLICES
572         /* With radix we don't use slice, so derive it from vma*/
573         if (!radix_enabled()) {
574                 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
575
576                 return 1UL << mmu_psize_to_shift(psize);
577         }
578 #endif
579         return vma_kernel_pagesize(vma);
580 }
581
582 static inline bool is_power_of_4(unsigned long x)
583 {
584         if (is_power_of_2(x))
585                 return (__ilog2(x) % 2) ? false : true;
586         return false;
587 }
588
589 static int __init add_huge_page_size(unsigned long long size)
590 {
591         int shift = __ffs(size);
592         int mmu_psize;
593
594         /* Check that it is a page size supported by the hardware and
595          * that it fits within pagetable and slice limits. */
596         if (size <= PAGE_SIZE)
597                 return -EINVAL;
598 #if defined(CONFIG_PPC_FSL_BOOK3E)
599         if (!is_power_of_4(size))
600                 return -EINVAL;
601 #elif !defined(CONFIG_PPC_8xx)
602         if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
603                 return -EINVAL;
604 #endif
605
606         if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
607                 return -EINVAL;
608
609 #ifdef CONFIG_PPC_BOOK3S_64
610         /*
611          * We need to make sure that for different page sizes reported by
612          * firmware we only add hugetlb support for page sizes that can be
613          * supported by linux page table layout.
614          * For now we have
615          * Radix: 2M and 1G
616          * Hash: 16M and 16G
617          */
618         if (radix_enabled()) {
619                 if (mmu_psize != MMU_PAGE_2M && mmu_psize != MMU_PAGE_1G)
620                         return -EINVAL;
621         } else {
622                 if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
623                         return -EINVAL;
624         }
625 #endif
626
627         BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
628
629         /* Return if huge page size has already been setup */
630         if (size_to_hstate(size))
631                 return 0;
632
633         hugetlb_add_hstate(shift - PAGE_SHIFT);
634
635         return 0;
636 }
637
638 static int __init hugepage_setup_sz(char *str)
639 {
640         unsigned long long size;
641
642         size = memparse(str, &str);
643
644         if (add_huge_page_size(size) != 0) {
645                 hugetlb_bad_size();
646                 pr_err("Invalid huge page size specified(%llu)\n", size);
647         }
648
649         return 1;
650 }
651 __setup("hugepagesz=", hugepage_setup_sz);
652
653 struct kmem_cache *hugepte_cache;
654 static int __init hugetlbpage_init(void)
655 {
656         int psize;
657
658         if (hugetlb_disabled) {
659                 pr_info("HugeTLB support is disabled!\n");
660                 return 0;
661         }
662
663 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
664         if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
665                 return -ENODEV;
666 #endif
667         for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
668                 unsigned shift;
669                 unsigned pdshift;
670
671                 if (!mmu_psize_defs[psize].shift)
672                         continue;
673
674                 shift = mmu_psize_to_shift(psize);
675
676 #ifdef CONFIG_PPC_BOOK3S_64
677                 if (shift > PGDIR_SHIFT)
678                         continue;
679                 else if (shift > PUD_SHIFT)
680                         pdshift = PGDIR_SHIFT;
681                 else if (shift > PMD_SHIFT)
682                         pdshift = PUD_SHIFT;
683                 else
684                         pdshift = PMD_SHIFT;
685 #else
686                 if (shift < PUD_SHIFT)
687                         pdshift = PMD_SHIFT;
688                 else if (shift < PGDIR_SHIFT)
689                         pdshift = PUD_SHIFT;
690                 else
691                         pdshift = PGDIR_SHIFT;
692 #endif
693
694                 if (add_huge_page_size(1ULL << shift) < 0)
695                         continue;
696                 /*
697                  * if we have pdshift and shift value same, we don't
698                  * use pgt cache for hugepd.
699                  */
700                 if (pdshift > shift)
701                         pgtable_cache_add(pdshift - shift, NULL);
702 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
703                 else if (!hugepte_cache) {
704                         /*
705                          * Create a kmem cache for hugeptes.  The bottom bits in
706                          * the pte have size information encoded in them, so
707                          * align them to allow this
708                          */
709                         hugepte_cache = kmem_cache_create("hugepte-cache",
710                                                           sizeof(pte_t),
711                                                           HUGEPD_SHIFT_MASK + 1,
712                                                           0, NULL);
713                         if (hugepte_cache == NULL)
714                                 panic("%s: Unable to create kmem cache "
715                                       "for hugeptes\n", __func__);
716
717                 }
718 #endif
719         }
720
721 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
722         /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
723         if (mmu_psize_defs[MMU_PAGE_4M].shift)
724                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
725         else if (mmu_psize_defs[MMU_PAGE_512K].shift)
726                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
727 #else
728         /* Set default large page size. Currently, we pick 16M or 1M
729          * depending on what is available
730          */
731         if (mmu_psize_defs[MMU_PAGE_16M].shift)
732                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
733         else if (mmu_psize_defs[MMU_PAGE_1M].shift)
734                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
735         else if (mmu_psize_defs[MMU_PAGE_2M].shift)
736                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
737 #endif
738         return 0;
739 }
740
741 arch_initcall(hugetlbpage_init);
742
743 void flush_dcache_icache_hugepage(struct page *page)
744 {
745         int i;
746         void *start;
747
748         BUG_ON(!PageCompound(page));
749
750         for (i = 0; i < (1UL << compound_order(page)); i++) {
751                 if (!PageHighMem(page)) {
752                         __flush_dcache_icache(page_address(page+i));
753                 } else {
754                         start = kmap_atomic(page+i);
755                         __flush_dcache_icache(start);
756                         kunmap_atomic(start);
757                 }
758         }
759 }
760
761 #endif /* CONFIG_HUGETLB_PAGE */
762
763 /*
764  * We have 4 cases for pgds and pmds:
765  * (1) invalid (all zeroes)
766  * (2) pointer to next table, as normal; bottom 6 bits == 0
767  * (3) leaf pte for huge page _PAGE_PTE set
768  * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
769  *
770  * So long as we atomically load page table pointers we are safe against teardown,
771  * we can follow the address down to the the page and take a ref on it.
772  * This function need to be called with interrupts disabled. We use this variant
773  * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
774  */
775 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
776                         bool *is_thp, unsigned *hpage_shift)
777 {
778         pgd_t pgd, *pgdp;
779         pud_t pud, *pudp;
780         pmd_t pmd, *pmdp;
781         pte_t *ret_pte;
782         hugepd_t *hpdp = NULL;
783         unsigned pdshift = PGDIR_SHIFT;
784
785         if (hpage_shift)
786                 *hpage_shift = 0;
787
788         if (is_thp)
789                 *is_thp = false;
790
791         pgdp = pgdir + pgd_index(ea);
792         pgd  = READ_ONCE(*pgdp);
793         /*
794          * Always operate on the local stack value. This make sure the
795          * value don't get updated by a parallel THP split/collapse,
796          * page fault or a page unmap. The return pte_t * is still not
797          * stable. So should be checked there for above conditions.
798          */
799         if (pgd_none(pgd))
800                 return NULL;
801         else if (pgd_huge(pgd)) {
802                 ret_pte = (pte_t *) pgdp;
803                 goto out;
804         } else if (is_hugepd(__hugepd(pgd_val(pgd))))
805                 hpdp = (hugepd_t *)&pgd;
806         else {
807                 /*
808                  * Even if we end up with an unmap, the pgtable will not
809                  * be freed, because we do an rcu free and here we are
810                  * irq disabled
811                  */
812                 pdshift = PUD_SHIFT;
813                 pudp = pud_offset(&pgd, ea);
814                 pud  = READ_ONCE(*pudp);
815
816                 if (pud_none(pud))
817                         return NULL;
818                 else if (pud_huge(pud)) {
819                         ret_pte = (pte_t *) pudp;
820                         goto out;
821                 } else if (is_hugepd(__hugepd(pud_val(pud))))
822                         hpdp = (hugepd_t *)&pud;
823                 else {
824                         pdshift = PMD_SHIFT;
825                         pmdp = pmd_offset(&pud, ea);
826                         pmd  = READ_ONCE(*pmdp);
827                         /*
828                          * A hugepage collapse is captured by pmd_none, because
829                          * it mark the pmd none and do a hpte invalidate.
830                          */
831                         if (pmd_none(pmd))
832                                 return NULL;
833
834                         if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
835                                 if (is_thp)
836                                         *is_thp = true;
837                                 ret_pte = (pte_t *) pmdp;
838                                 goto out;
839                         }
840
841                         if (pmd_huge(pmd)) {
842                                 ret_pte = (pte_t *) pmdp;
843                                 goto out;
844                         } else if (is_hugepd(__hugepd(pmd_val(pmd))))
845                                 hpdp = (hugepd_t *)&pmd;
846                         else
847                                 return pte_offset_kernel(&pmd, ea);
848                 }
849         }
850         if (!hpdp)
851                 return NULL;
852
853         ret_pte = hugepte_offset(*hpdp, ea, pdshift);
854         pdshift = hugepd_shift(*hpdp);
855 out:
856         if (hpage_shift)
857                 *hpage_shift = pdshift;
858         return ret_pte;
859 }
860 EXPORT_SYMBOL_GPL(__find_linux_pte);
861
862 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
863                 unsigned long end, int write, struct page **pages, int *nr)
864 {
865         unsigned long pte_end;
866         struct page *head, *page;
867         pte_t pte;
868         int refs;
869
870         pte_end = (addr + sz) & ~(sz-1);
871         if (pte_end < end)
872                 end = pte_end;
873
874         pte = READ_ONCE(*ptep);
875
876         if (!pte_access_permitted(pte, write))
877                 return 0;
878
879         /* hugepages are never "special" */
880         VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
881
882         refs = 0;
883         head = pte_page(pte);
884
885         page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
886         do {
887                 VM_BUG_ON(compound_head(page) != head);
888                 pages[*nr] = page;
889                 (*nr)++;
890                 page++;
891                 refs++;
892         } while (addr += PAGE_SIZE, addr != end);
893
894         if (!page_cache_add_speculative(head, refs)) {
895                 *nr -= refs;
896                 return 0;
897         }
898
899         if (unlikely(pte_val(pte) != pte_val(*ptep))) {
900                 /* Could be optimized better */
901                 *nr -= refs;
902                 while (refs--)
903                         put_page(head);
904                 return 0;
905         }
906
907         return 1;
908 }