Merge tag 'tags/bcm2835-drivers-next-2019-03-12' into soc/fixes
[linux-2.6-block.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/moduleparam.h>
19 #include <linux/swap.h>
20 #include <linux/swapops.h>
21 #include <linux/kmemleak.h>
22 #include <asm/pgtable.h>
23 #include <asm/pgalloc.h>
24 #include <asm/tlb.h>
25 #include <asm/setup.h>
26 #include <asm/hugetlb.h>
27 #include <asm/pte-walk.h>
28
29
30 #ifdef CONFIG_HUGETLB_PAGE
31
32 #define PAGE_SHIFT_64K  16
33 #define PAGE_SHIFT_512K 19
34 #define PAGE_SHIFT_8M   23
35 #define PAGE_SHIFT_16M  24
36 #define PAGE_SHIFT_16G  34
37
38 bool hugetlb_disabled = false;
39
40 unsigned int HPAGE_SHIFT;
41 EXPORT_SYMBOL(HPAGE_SHIFT);
42
43 #define hugepd_none(hpd)        (hpd_val(hpd) == 0)
44
45 #define PTE_T_ORDER     (__builtin_ffs(sizeof(pte_t)) - __builtin_ffs(sizeof(void *)))
46
47 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
48 {
49         /*
50          * Only called for hugetlbfs pages, hence can ignore THP and the
51          * irq disabled walk.
52          */
53         return __find_linux_pte(mm->pgd, addr, NULL, NULL);
54 }
55
56 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
57                            unsigned long address, unsigned int pdshift,
58                            unsigned int pshift, spinlock_t *ptl)
59 {
60         struct kmem_cache *cachep;
61         pte_t *new;
62         int i;
63         int num_hugepd;
64
65         if (pshift >= pdshift) {
66                 cachep = PGT_CACHE(PTE_T_ORDER);
67                 num_hugepd = 1 << (pshift - pdshift);
68         } else if (IS_ENABLED(CONFIG_PPC_8xx)) {
69                 cachep = PGT_CACHE(PTE_INDEX_SIZE);
70                 num_hugepd = 1;
71         } else {
72                 cachep = PGT_CACHE(pdshift - pshift);
73                 num_hugepd = 1;
74         }
75
76         new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
77
78         BUG_ON(pshift > HUGEPD_SHIFT_MASK);
79         BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
80
81         if (! new)
82                 return -ENOMEM;
83
84         /*
85          * Make sure other cpus find the hugepd set only after a
86          * properly initialized page table is visible to them.
87          * For more details look for comment in __pte_alloc().
88          */
89         smp_wmb();
90
91         spin_lock(ptl);
92         /*
93          * We have multiple higher-level entries that point to the same
94          * actual pte location.  Fill in each as we go and backtrack on error.
95          * We need all of these so the DTLB pgtable walk code can find the
96          * right higher-level entry without knowing if it's a hugepage or not.
97          */
98         for (i = 0; i < num_hugepd; i++, hpdp++) {
99                 if (unlikely(!hugepd_none(*hpdp)))
100                         break;
101                 else {
102 #ifdef CONFIG_PPC_BOOK3S_64
103                         *hpdp = __hugepd(__pa(new) | HUGEPD_VAL_BITS |
104                                          (shift_to_mmu_psize(pshift) << 2));
105 #elif defined(CONFIG_PPC_8xx)
106                         *hpdp = __hugepd(__pa(new) | _PMD_USER |
107                                          (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
108                                           _PMD_PAGE_512K) | _PMD_PRESENT);
109 #else
110                         /* We use the old format for PPC_FSL_BOOK3E */
111                         *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
112 #endif
113                 }
114         }
115         /* If we bailed from the for loop early, an error occurred, clean up */
116         if (i < num_hugepd) {
117                 for (i = i - 1 ; i >= 0; i--, hpdp--)
118                         *hpdp = __hugepd(0);
119                 kmem_cache_free(cachep, new);
120         } else {
121                 kmemleak_ignore(new);
122         }
123         spin_unlock(ptl);
124         return 0;
125 }
126
127 /*
128  * At this point we do the placement change only for BOOK3S 64. This would
129  * possibly work on other subarchs.
130  */
131 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
132 {
133         pgd_t *pg;
134         pud_t *pu;
135         pmd_t *pm;
136         hugepd_t *hpdp = NULL;
137         unsigned pshift = __ffs(sz);
138         unsigned pdshift = PGDIR_SHIFT;
139         spinlock_t *ptl;
140
141         addr &= ~(sz-1);
142         pg = pgd_offset(mm, addr);
143
144 #ifdef CONFIG_PPC_BOOK3S_64
145         if (pshift == PGDIR_SHIFT)
146                 /* 16GB huge page */
147                 return (pte_t *) pg;
148         else if (pshift > PUD_SHIFT) {
149                 /*
150                  * We need to use hugepd table
151                  */
152                 ptl = &mm->page_table_lock;
153                 hpdp = (hugepd_t *)pg;
154         } else {
155                 pdshift = PUD_SHIFT;
156                 pu = pud_alloc(mm, pg, addr);
157                 if (pshift == PUD_SHIFT)
158                         return (pte_t *)pu;
159                 else if (pshift > PMD_SHIFT) {
160                         ptl = pud_lockptr(mm, pu);
161                         hpdp = (hugepd_t *)pu;
162                 } else {
163                         pdshift = PMD_SHIFT;
164                         pm = pmd_alloc(mm, pu, addr);
165                         if (pshift == PMD_SHIFT)
166                                 /* 16MB hugepage */
167                                 return (pte_t *)pm;
168                         else {
169                                 ptl = pmd_lockptr(mm, pm);
170                                 hpdp = (hugepd_t *)pm;
171                         }
172                 }
173         }
174 #else
175         if (pshift >= PGDIR_SHIFT) {
176                 ptl = &mm->page_table_lock;
177                 hpdp = (hugepd_t *)pg;
178         } else {
179                 pdshift = PUD_SHIFT;
180                 pu = pud_alloc(mm, pg, addr);
181                 if (pshift >= PUD_SHIFT) {
182                         ptl = pud_lockptr(mm, pu);
183                         hpdp = (hugepd_t *)pu;
184                 } else {
185                         pdshift = PMD_SHIFT;
186                         pm = pmd_alloc(mm, pu, addr);
187                         ptl = pmd_lockptr(mm, pm);
188                         hpdp = (hugepd_t *)pm;
189                 }
190         }
191 #endif
192         if (!hpdp)
193                 return NULL;
194
195         BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
196
197         if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
198                                                   pdshift, pshift, ptl))
199                 return NULL;
200
201         return hugepte_offset(*hpdp, addr, pdshift);
202 }
203
204 #ifdef CONFIG_PPC_BOOK3S_64
205 /*
206  * Tracks gpages after the device tree is scanned and before the
207  * huge_boot_pages list is ready on pseries.
208  */
209 #define MAX_NUMBER_GPAGES       1024
210 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
211 __initdata static unsigned nr_gpages;
212
213 /*
214  * Build list of addresses of gigantic pages.  This function is used in early
215  * boot before the buddy allocator is setup.
216  */
217 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
218 {
219         if (!addr)
220                 return;
221         while (number_of_pages > 0) {
222                 gpage_freearray[nr_gpages] = addr;
223                 nr_gpages++;
224                 number_of_pages--;
225                 addr += page_size;
226         }
227 }
228
229 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
230 {
231         struct huge_bootmem_page *m;
232         if (nr_gpages == 0)
233                 return 0;
234         m = phys_to_virt(gpage_freearray[--nr_gpages]);
235         gpage_freearray[nr_gpages] = 0;
236         list_add(&m->list, &huge_boot_pages);
237         m->hstate = hstate;
238         return 1;
239 }
240 #endif
241
242
243 int __init alloc_bootmem_huge_page(struct hstate *h)
244 {
245
246 #ifdef CONFIG_PPC_BOOK3S_64
247         if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
248                 return pseries_alloc_bootmem_huge_page(h);
249 #endif
250         return __alloc_bootmem_huge_page(h);
251 }
252
253 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
254 #define HUGEPD_FREELIST_SIZE \
255         ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
256
257 struct hugepd_freelist {
258         struct rcu_head rcu;
259         unsigned int index;
260         void *ptes[0];
261 };
262
263 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
264
265 static void hugepd_free_rcu_callback(struct rcu_head *head)
266 {
267         struct hugepd_freelist *batch =
268                 container_of(head, struct hugepd_freelist, rcu);
269         unsigned int i;
270
271         for (i = 0; i < batch->index; i++)
272                 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
273
274         free_page((unsigned long)batch);
275 }
276
277 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
278 {
279         struct hugepd_freelist **batchp;
280
281         batchp = &get_cpu_var(hugepd_freelist_cur);
282
283         if (atomic_read(&tlb->mm->mm_users) < 2 ||
284             mm_is_thread_local(tlb->mm)) {
285                 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
286                 put_cpu_var(hugepd_freelist_cur);
287                 return;
288         }
289
290         if (*batchp == NULL) {
291                 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
292                 (*batchp)->index = 0;
293         }
294
295         (*batchp)->ptes[(*batchp)->index++] = hugepte;
296         if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
297                 call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
298                 *batchp = NULL;
299         }
300         put_cpu_var(hugepd_freelist_cur);
301 }
302 #else
303 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
304 #endif
305
306 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
307                               unsigned long start, unsigned long end,
308                               unsigned long floor, unsigned long ceiling)
309 {
310         pte_t *hugepte = hugepd_page(*hpdp);
311         int i;
312
313         unsigned long pdmask = ~((1UL << pdshift) - 1);
314         unsigned int num_hugepd = 1;
315         unsigned int shift = hugepd_shift(*hpdp);
316
317         /* Note: On fsl the hpdp may be the first of several */
318         if (shift > pdshift)
319                 num_hugepd = 1 << (shift - pdshift);
320
321         start &= pdmask;
322         if (start < floor)
323                 return;
324         if (ceiling) {
325                 ceiling &= pdmask;
326                 if (! ceiling)
327                         return;
328         }
329         if (end - 1 > ceiling - 1)
330                 return;
331
332         for (i = 0; i < num_hugepd; i++, hpdp++)
333                 *hpdp = __hugepd(0);
334
335         if (shift >= pdshift)
336                 hugepd_free(tlb, hugepte);
337         else if (IS_ENABLED(CONFIG_PPC_8xx))
338                 pgtable_free_tlb(tlb, hugepte,
339                                  get_hugepd_cache_index(PTE_INDEX_SIZE));
340         else
341                 pgtable_free_tlb(tlb, hugepte,
342                                  get_hugepd_cache_index(pdshift - shift));
343 }
344
345 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
346                                    unsigned long addr, unsigned long end,
347                                    unsigned long floor, unsigned long ceiling)
348 {
349         pmd_t *pmd;
350         unsigned long next;
351         unsigned long start;
352
353         start = addr;
354         do {
355                 unsigned long more;
356
357                 pmd = pmd_offset(pud, addr);
358                 next = pmd_addr_end(addr, end);
359                 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
360                         /*
361                          * if it is not hugepd pointer, we should already find
362                          * it cleared.
363                          */
364                         WARN_ON(!pmd_none_or_clear_bad(pmd));
365                         continue;
366                 }
367                 /*
368                  * Increment next by the size of the huge mapping since
369                  * there may be more than one entry at this level for a
370                  * single hugepage, but all of them point to
371                  * the same kmem cache that holds the hugepte.
372                  */
373                 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
374                 if (more > next)
375                         next = more;
376
377                 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
378                                   addr, next, floor, ceiling);
379         } while (addr = next, addr != end);
380
381         start &= PUD_MASK;
382         if (start < floor)
383                 return;
384         if (ceiling) {
385                 ceiling &= PUD_MASK;
386                 if (!ceiling)
387                         return;
388         }
389         if (end - 1 > ceiling - 1)
390                 return;
391
392         pmd = pmd_offset(pud, start);
393         pud_clear(pud);
394         pmd_free_tlb(tlb, pmd, start);
395         mm_dec_nr_pmds(tlb->mm);
396 }
397
398 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
399                                    unsigned long addr, unsigned long end,
400                                    unsigned long floor, unsigned long ceiling)
401 {
402         pud_t *pud;
403         unsigned long next;
404         unsigned long start;
405
406         start = addr;
407         do {
408                 pud = pud_offset(pgd, addr);
409                 next = pud_addr_end(addr, end);
410                 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
411                         if (pud_none_or_clear_bad(pud))
412                                 continue;
413                         hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
414                                                ceiling);
415                 } else {
416                         unsigned long more;
417                         /*
418                          * Increment next by the size of the huge mapping since
419                          * there may be more than one entry at this level for a
420                          * single hugepage, but all of them point to
421                          * the same kmem cache that holds the hugepte.
422                          */
423                         more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
424                         if (more > next)
425                                 next = more;
426
427                         free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
428                                           addr, next, floor, ceiling);
429                 }
430         } while (addr = next, addr != end);
431
432         start &= PGDIR_MASK;
433         if (start < floor)
434                 return;
435         if (ceiling) {
436                 ceiling &= PGDIR_MASK;
437                 if (!ceiling)
438                         return;
439         }
440         if (end - 1 > ceiling - 1)
441                 return;
442
443         pud = pud_offset(pgd, start);
444         pgd_clear(pgd);
445         pud_free_tlb(tlb, pud, start);
446         mm_dec_nr_puds(tlb->mm);
447 }
448
449 /*
450  * This function frees user-level page tables of a process.
451  */
452 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
453                             unsigned long addr, unsigned long end,
454                             unsigned long floor, unsigned long ceiling)
455 {
456         pgd_t *pgd;
457         unsigned long next;
458
459         /*
460          * Because there are a number of different possible pagetable
461          * layouts for hugepage ranges, we limit knowledge of how
462          * things should be laid out to the allocation path
463          * (huge_pte_alloc(), above).  Everything else works out the
464          * structure as it goes from information in the hugepd
465          * pointers.  That means that we can't here use the
466          * optimization used in the normal page free_pgd_range(), of
467          * checking whether we're actually covering a large enough
468          * range to have to do anything at the top level of the walk
469          * instead of at the bottom.
470          *
471          * To make sense of this, you should probably go read the big
472          * block comment at the top of the normal free_pgd_range(),
473          * too.
474          */
475
476         do {
477                 next = pgd_addr_end(addr, end);
478                 pgd = pgd_offset(tlb->mm, addr);
479                 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
480                         if (pgd_none_or_clear_bad(pgd))
481                                 continue;
482                         hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
483                 } else {
484                         unsigned long more;
485                         /*
486                          * Increment next by the size of the huge mapping since
487                          * there may be more than one entry at the pgd level
488                          * for a single hugepage, but all of them point to the
489                          * same kmem cache that holds the hugepte.
490                          */
491                         more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
492                         if (more > next)
493                                 next = more;
494
495                         free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
496                                           addr, next, floor, ceiling);
497                 }
498         } while (addr = next, addr != end);
499 }
500
501 struct page *follow_huge_pd(struct vm_area_struct *vma,
502                             unsigned long address, hugepd_t hpd,
503                             int flags, int pdshift)
504 {
505         pte_t *ptep;
506         spinlock_t *ptl;
507         struct page *page = NULL;
508         unsigned long mask;
509         int shift = hugepd_shift(hpd);
510         struct mm_struct *mm = vma->vm_mm;
511
512 retry:
513         /*
514          * hugepage directory entries are protected by mm->page_table_lock
515          * Use this instead of huge_pte_lockptr
516          */
517         ptl = &mm->page_table_lock;
518         spin_lock(ptl);
519
520         ptep = hugepte_offset(hpd, address, pdshift);
521         if (pte_present(*ptep)) {
522                 mask = (1UL << shift) - 1;
523                 page = pte_page(*ptep);
524                 page += ((address & mask) >> PAGE_SHIFT);
525                 if (flags & FOLL_GET)
526                         get_page(page);
527         } else {
528                 if (is_hugetlb_entry_migration(*ptep)) {
529                         spin_unlock(ptl);
530                         __migration_entry_wait(mm, ptep, ptl);
531                         goto retry;
532                 }
533         }
534         spin_unlock(ptl);
535         return page;
536 }
537
538 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
539                                       unsigned long sz)
540 {
541         unsigned long __boundary = (addr + sz) & ~(sz-1);
542         return (__boundary - 1 < end - 1) ? __boundary : end;
543 }
544
545 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
546                 unsigned long end, int write, struct page **pages, int *nr)
547 {
548         pte_t *ptep;
549         unsigned long sz = 1UL << hugepd_shift(hugepd);
550         unsigned long next;
551
552         ptep = hugepte_offset(hugepd, addr, pdshift);
553         do {
554                 next = hugepte_addr_end(addr, end, sz);
555                 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
556                         return 0;
557         } while (ptep++, addr = next, addr != end);
558
559         return 1;
560 }
561
562 #ifdef CONFIG_PPC_MM_SLICES
563 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
564                                         unsigned long len, unsigned long pgoff,
565                                         unsigned long flags)
566 {
567         struct hstate *hstate = hstate_file(file);
568         int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
569
570 #ifdef CONFIG_PPC_RADIX_MMU
571         if (radix_enabled())
572                 return radix__hugetlb_get_unmapped_area(file, addr, len,
573                                                        pgoff, flags);
574 #endif
575         return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
576 }
577 #endif
578
579 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
580 {
581 #ifdef CONFIG_PPC_MM_SLICES
582         /* With radix we don't use slice, so derive it from vma*/
583         if (!radix_enabled()) {
584                 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
585
586                 return 1UL << mmu_psize_to_shift(psize);
587         }
588 #endif
589         return vma_kernel_pagesize(vma);
590 }
591
592 static inline bool is_power_of_4(unsigned long x)
593 {
594         if (is_power_of_2(x))
595                 return (__ilog2(x) % 2) ? false : true;
596         return false;
597 }
598
599 static int __init add_huge_page_size(unsigned long long size)
600 {
601         int shift = __ffs(size);
602         int mmu_psize;
603
604         /* Check that it is a page size supported by the hardware and
605          * that it fits within pagetable and slice limits. */
606         if (size <= PAGE_SIZE)
607                 return -EINVAL;
608 #if defined(CONFIG_PPC_FSL_BOOK3E)
609         if (!is_power_of_4(size))
610                 return -EINVAL;
611 #elif !defined(CONFIG_PPC_8xx)
612         if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
613                 return -EINVAL;
614 #endif
615
616         if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
617                 return -EINVAL;
618
619 #ifdef CONFIG_PPC_BOOK3S_64
620         /*
621          * We need to make sure that for different page sizes reported by
622          * firmware we only add hugetlb support for page sizes that can be
623          * supported by linux page table layout.
624          * For now we have
625          * Radix: 2M and 1G
626          * Hash: 16M and 16G
627          */
628         if (radix_enabled()) {
629                 if (mmu_psize != MMU_PAGE_2M && mmu_psize != MMU_PAGE_1G)
630                         return -EINVAL;
631         } else {
632                 if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
633                         return -EINVAL;
634         }
635 #endif
636
637         BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
638
639         /* Return if huge page size has already been setup */
640         if (size_to_hstate(size))
641                 return 0;
642
643         hugetlb_add_hstate(shift - PAGE_SHIFT);
644
645         return 0;
646 }
647
648 static int __init hugepage_setup_sz(char *str)
649 {
650         unsigned long long size;
651
652         size = memparse(str, &str);
653
654         if (add_huge_page_size(size) != 0) {
655                 hugetlb_bad_size();
656                 pr_err("Invalid huge page size specified(%llu)\n", size);
657         }
658
659         return 1;
660 }
661 __setup("hugepagesz=", hugepage_setup_sz);
662
663 static int __init hugetlbpage_init(void)
664 {
665         int psize;
666
667         if (hugetlb_disabled) {
668                 pr_info("HugeTLB support is disabled!\n");
669                 return 0;
670         }
671
672 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
673         if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
674                 return -ENODEV;
675 #endif
676         for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
677                 unsigned shift;
678                 unsigned pdshift;
679
680                 if (!mmu_psize_defs[psize].shift)
681                         continue;
682
683                 shift = mmu_psize_to_shift(psize);
684
685 #ifdef CONFIG_PPC_BOOK3S_64
686                 if (shift > PGDIR_SHIFT)
687                         continue;
688                 else if (shift > PUD_SHIFT)
689                         pdshift = PGDIR_SHIFT;
690                 else if (shift > PMD_SHIFT)
691                         pdshift = PUD_SHIFT;
692                 else
693                         pdshift = PMD_SHIFT;
694 #else
695                 if (shift < PUD_SHIFT)
696                         pdshift = PMD_SHIFT;
697                 else if (shift < PGDIR_SHIFT)
698                         pdshift = PUD_SHIFT;
699                 else
700                         pdshift = PGDIR_SHIFT;
701 #endif
702
703                 if (add_huge_page_size(1ULL << shift) < 0)
704                         continue;
705                 /*
706                  * if we have pdshift and shift value same, we don't
707                  * use pgt cache for hugepd.
708                  */
709                 if (pdshift > shift && IS_ENABLED(CONFIG_PPC_8xx))
710                         pgtable_cache_add(PTE_INDEX_SIZE);
711                 else if (pdshift > shift)
712                         pgtable_cache_add(pdshift - shift);
713 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
714                 else
715                         pgtable_cache_add(PTE_T_ORDER);
716 #endif
717         }
718
719 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
720         /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
721         if (mmu_psize_defs[MMU_PAGE_4M].shift)
722                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
723         else if (mmu_psize_defs[MMU_PAGE_512K].shift)
724                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
725 #else
726         /* Set default large page size. Currently, we pick 16M or 1M
727          * depending on what is available
728          */
729         if (mmu_psize_defs[MMU_PAGE_16M].shift)
730                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
731         else if (mmu_psize_defs[MMU_PAGE_1M].shift)
732                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
733         else if (mmu_psize_defs[MMU_PAGE_2M].shift)
734                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
735 #endif
736         return 0;
737 }
738
739 arch_initcall(hugetlbpage_init);
740
741 void flush_dcache_icache_hugepage(struct page *page)
742 {
743         int i;
744         void *start;
745
746         BUG_ON(!PageCompound(page));
747
748         for (i = 0; i < (1UL << compound_order(page)); i++) {
749                 if (!PageHighMem(page)) {
750                         __flush_dcache_icache(page_address(page+i));
751                 } else {
752                         start = kmap_atomic(page+i);
753                         __flush_dcache_icache(start);
754                         kunmap_atomic(start);
755                 }
756         }
757 }
758
759 #endif /* CONFIG_HUGETLB_PAGE */
760
761 /*
762  * We have 4 cases for pgds and pmds:
763  * (1) invalid (all zeroes)
764  * (2) pointer to next table, as normal; bottom 6 bits == 0
765  * (3) leaf pte for huge page _PAGE_PTE set
766  * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
767  *
768  * So long as we atomically load page table pointers we are safe against teardown,
769  * we can follow the address down to the the page and take a ref on it.
770  * This function need to be called with interrupts disabled. We use this variant
771  * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
772  */
773 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
774                         bool *is_thp, unsigned *hpage_shift)
775 {
776         pgd_t pgd, *pgdp;
777         pud_t pud, *pudp;
778         pmd_t pmd, *pmdp;
779         pte_t *ret_pte;
780         hugepd_t *hpdp = NULL;
781         unsigned pdshift = PGDIR_SHIFT;
782
783         if (hpage_shift)
784                 *hpage_shift = 0;
785
786         if (is_thp)
787                 *is_thp = false;
788
789         pgdp = pgdir + pgd_index(ea);
790         pgd  = READ_ONCE(*pgdp);
791         /*
792          * Always operate on the local stack value. This make sure the
793          * value don't get updated by a parallel THP split/collapse,
794          * page fault or a page unmap. The return pte_t * is still not
795          * stable. So should be checked there for above conditions.
796          */
797         if (pgd_none(pgd))
798                 return NULL;
799         else if (pgd_huge(pgd)) {
800                 ret_pte = (pte_t *) pgdp;
801                 goto out;
802         } else if (is_hugepd(__hugepd(pgd_val(pgd))))
803                 hpdp = (hugepd_t *)&pgd;
804         else {
805                 /*
806                  * Even if we end up with an unmap, the pgtable will not
807                  * be freed, because we do an rcu free and here we are
808                  * irq disabled
809                  */
810                 pdshift = PUD_SHIFT;
811                 pudp = pud_offset(&pgd, ea);
812                 pud  = READ_ONCE(*pudp);
813
814                 if (pud_none(pud))
815                         return NULL;
816                 else if (pud_huge(pud)) {
817                         ret_pte = (pte_t *) pudp;
818                         goto out;
819                 } else if (is_hugepd(__hugepd(pud_val(pud))))
820                         hpdp = (hugepd_t *)&pud;
821                 else {
822                         pdshift = PMD_SHIFT;
823                         pmdp = pmd_offset(&pud, ea);
824                         pmd  = READ_ONCE(*pmdp);
825                         /*
826                          * A hugepage collapse is captured by pmd_none, because
827                          * it mark the pmd none and do a hpte invalidate.
828                          */
829                         if (pmd_none(pmd))
830                                 return NULL;
831
832                         if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
833                                 if (is_thp)
834                                         *is_thp = true;
835                                 ret_pte = (pte_t *) pmdp;
836                                 goto out;
837                         }
838                         /*
839                          * pmd_large check below will handle the swap pmd pte
840                          * we need to do both the check because they are config
841                          * dependent.
842                          */
843                         if (pmd_huge(pmd) || pmd_large(pmd)) {
844                                 ret_pte = (pte_t *) pmdp;
845                                 goto out;
846                         } else if (is_hugepd(__hugepd(pmd_val(pmd))))
847                                 hpdp = (hugepd_t *)&pmd;
848                         else
849                                 return pte_offset_kernel(&pmd, ea);
850                 }
851         }
852         if (!hpdp)
853                 return NULL;
854
855         ret_pte = hugepte_offset(*hpdp, ea, pdshift);
856         pdshift = hugepd_shift(*hpdp);
857 out:
858         if (hpage_shift)
859                 *hpage_shift = pdshift;
860         return ret_pte;
861 }
862 EXPORT_SYMBOL_GPL(__find_linux_pte);
863
864 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
865                 unsigned long end, int write, struct page **pages, int *nr)
866 {
867         unsigned long pte_end;
868         struct page *head, *page;
869         pte_t pte;
870         int refs;
871
872         pte_end = (addr + sz) & ~(sz-1);
873         if (pte_end < end)
874                 end = pte_end;
875
876         pte = READ_ONCE(*ptep);
877
878         if (!pte_access_permitted(pte, write))
879                 return 0;
880
881         /* hugepages are never "special" */
882         VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
883
884         refs = 0;
885         head = pte_page(pte);
886
887         page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
888         do {
889                 VM_BUG_ON(compound_head(page) != head);
890                 pages[*nr] = page;
891                 (*nr)++;
892                 page++;
893                 refs++;
894         } while (addr += PAGE_SIZE, addr != end);
895
896         if (!page_cache_add_speculative(head, refs)) {
897                 *nr -= refs;
898                 return 0;
899         }
900
901         if (unlikely(pte_val(pte) != pte_val(*ptep))) {
902                 /* Could be optimized better */
903                 *nr -= refs;
904                 while (refs--)
905                         put_page(head);
906                 return 0;
907         }
908
909         return 1;
910 }