powerpc sstep: Add support for modsd, modud instructions
[linux-2.6-block.git] / arch / powerpc / lib / sstep.c
1 /*
2  * Single-step support.
3  *
4  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/kprobes.h>
13 #include <linux/ptrace.h>
14 #include <linux/prefetch.h>
15 #include <asm/sstep.h>
16 #include <asm/processor.h>
17 #include <linux/uaccess.h>
18 #include <asm/cpu_has_feature.h>
19 #include <asm/cputable.h>
20
21 extern char system_call_common[];
22
23 #ifdef CONFIG_PPC64
24 /* Bits in SRR1 that are copied from MSR */
25 #define MSR_MASK        0xffffffff87c0ffffUL
26 #else
27 #define MSR_MASK        0x87c0ffff
28 #endif
29
30 /* Bits in XER */
31 #define XER_SO          0x80000000U
32 #define XER_OV          0x40000000U
33 #define XER_CA          0x20000000U
34 #define XER_OV32        0x00080000U
35 #define XER_CA32        0x00040000U
36
37 #ifdef CONFIG_PPC_FPU
38 /*
39  * Functions in ldstfp.S
40  */
41 extern void get_fpr(int rn, double *p);
42 extern void put_fpr(int rn, const double *p);
43 extern void get_vr(int rn, __vector128 *p);
44 extern void put_vr(int rn, __vector128 *p);
45 extern void load_vsrn(int vsr, const void *p);
46 extern void store_vsrn(int vsr, void *p);
47 extern void conv_sp_to_dp(const float *sp, double *dp);
48 extern void conv_dp_to_sp(const double *dp, float *sp);
49 #endif
50
51 #ifdef __powerpc64__
52 /*
53  * Functions in quad.S
54  */
55 extern int do_lq(unsigned long ea, unsigned long *regs);
56 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
57 extern int do_lqarx(unsigned long ea, unsigned long *regs);
58 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
59                     unsigned int *crp);
60 #endif
61
62 #ifdef __LITTLE_ENDIAN__
63 #define IS_LE   1
64 #define IS_BE   0
65 #else
66 #define IS_LE   0
67 #define IS_BE   1
68 #endif
69
70 /*
71  * Emulate the truncation of 64 bit values in 32-bit mode.
72  */
73 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
74                                                         unsigned long val)
75 {
76 #ifdef __powerpc64__
77         if ((msr & MSR_64BIT) == 0)
78                 val &= 0xffffffffUL;
79 #endif
80         return val;
81 }
82
83 /*
84  * Determine whether a conditional branch instruction would branch.
85  */
86 static nokprobe_inline int branch_taken(unsigned int instr,
87                                         const struct pt_regs *regs,
88                                         struct instruction_op *op)
89 {
90         unsigned int bo = (instr >> 21) & 0x1f;
91         unsigned int bi;
92
93         if ((bo & 4) == 0) {
94                 /* decrement counter */
95                 op->type |= DECCTR;
96                 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
97                         return 0;
98         }
99         if ((bo & 0x10) == 0) {
100                 /* check bit from CR */
101                 bi = (instr >> 16) & 0x1f;
102                 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
103                         return 0;
104         }
105         return 1;
106 }
107
108 static nokprobe_inline long address_ok(struct pt_regs *regs,
109                                        unsigned long ea, int nb)
110 {
111         if (!user_mode(regs))
112                 return 1;
113         if (__access_ok(ea, nb, USER_DS))
114                 return 1;
115         if (__access_ok(ea, 1, USER_DS))
116                 /* Access overlaps the end of the user region */
117                 regs->dar = USER_DS.seg;
118         else
119                 regs->dar = ea;
120         return 0;
121 }
122
123 /*
124  * Calculate effective address for a D-form instruction
125  */
126 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
127                                               const struct pt_regs *regs)
128 {
129         int ra;
130         unsigned long ea;
131
132         ra = (instr >> 16) & 0x1f;
133         ea = (signed short) instr;              /* sign-extend */
134         if (ra)
135                 ea += regs->gpr[ra];
136
137         return ea;
138 }
139
140 #ifdef __powerpc64__
141 /*
142  * Calculate effective address for a DS-form instruction
143  */
144 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
145                                                const struct pt_regs *regs)
146 {
147         int ra;
148         unsigned long ea;
149
150         ra = (instr >> 16) & 0x1f;
151         ea = (signed short) (instr & ~3);       /* sign-extend */
152         if (ra)
153                 ea += regs->gpr[ra];
154
155         return ea;
156 }
157
158 /*
159  * Calculate effective address for a DQ-form instruction
160  */
161 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
162                                                const struct pt_regs *regs)
163 {
164         int ra;
165         unsigned long ea;
166
167         ra = (instr >> 16) & 0x1f;
168         ea = (signed short) (instr & ~0xf);     /* sign-extend */
169         if (ra)
170                 ea += regs->gpr[ra];
171
172         return ea;
173 }
174 #endif /* __powerpc64 */
175
176 /*
177  * Calculate effective address for an X-form instruction
178  */
179 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
180                                               const struct pt_regs *regs)
181 {
182         int ra, rb;
183         unsigned long ea;
184
185         ra = (instr >> 16) & 0x1f;
186         rb = (instr >> 11) & 0x1f;
187         ea = regs->gpr[rb];
188         if (ra)
189                 ea += regs->gpr[ra];
190
191         return ea;
192 }
193
194 /*
195  * Return the largest power of 2, not greater than sizeof(unsigned long),
196  * such that x is a multiple of it.
197  */
198 static nokprobe_inline unsigned long max_align(unsigned long x)
199 {
200         x |= sizeof(unsigned long);
201         return x & -x;          /* isolates rightmost bit */
202 }
203
204 static nokprobe_inline unsigned long byterev_2(unsigned long x)
205 {
206         return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
207 }
208
209 static nokprobe_inline unsigned long byterev_4(unsigned long x)
210 {
211         return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
212                 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
213 }
214
215 #ifdef __powerpc64__
216 static nokprobe_inline unsigned long byterev_8(unsigned long x)
217 {
218         return (byterev_4(x) << 32) | byterev_4(x >> 32);
219 }
220 #endif
221
222 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
223 {
224         switch (nb) {
225         case 2:
226                 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
227                 break;
228         case 4:
229                 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
230                 break;
231 #ifdef __powerpc64__
232         case 8:
233                 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
234                 break;
235         case 16: {
236                 unsigned long *up = (unsigned long *)ptr;
237                 unsigned long tmp;
238                 tmp = byterev_8(up[0]);
239                 up[0] = byterev_8(up[1]);
240                 up[1] = tmp;
241                 break;
242         }
243 #endif
244         default:
245                 WARN_ON_ONCE(1);
246         }
247 }
248
249 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
250                                             unsigned long ea, int nb,
251                                             struct pt_regs *regs)
252 {
253         int err = 0;
254         unsigned long x = 0;
255
256         switch (nb) {
257         case 1:
258                 err = __get_user(x, (unsigned char __user *) ea);
259                 break;
260         case 2:
261                 err = __get_user(x, (unsigned short __user *) ea);
262                 break;
263         case 4:
264                 err = __get_user(x, (unsigned int __user *) ea);
265                 break;
266 #ifdef __powerpc64__
267         case 8:
268                 err = __get_user(x, (unsigned long __user *) ea);
269                 break;
270 #endif
271         }
272         if (!err)
273                 *dest = x;
274         else
275                 regs->dar = ea;
276         return err;
277 }
278
279 /*
280  * Copy from userspace to a buffer, using the largest possible
281  * aligned accesses, up to sizeof(long).
282  */
283 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
284                                        struct pt_regs *regs)
285 {
286         int err = 0;
287         int c;
288
289         for (; nb > 0; nb -= c) {
290                 c = max_align(ea);
291                 if (c > nb)
292                         c = max_align(nb);
293                 switch (c) {
294                 case 1:
295                         err = __get_user(*dest, (unsigned char __user *) ea);
296                         break;
297                 case 2:
298                         err = __get_user(*(u16 *)dest,
299                                          (unsigned short __user *) ea);
300                         break;
301                 case 4:
302                         err = __get_user(*(u32 *)dest,
303                                          (unsigned int __user *) ea);
304                         break;
305 #ifdef __powerpc64__
306                 case 8:
307                         err = __get_user(*(unsigned long *)dest,
308                                          (unsigned long __user *) ea);
309                         break;
310 #endif
311                 }
312                 if (err) {
313                         regs->dar = ea;
314                         return err;
315                 }
316                 dest += c;
317                 ea += c;
318         }
319         return 0;
320 }
321
322 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
323                                               unsigned long ea, int nb,
324                                               struct pt_regs *regs)
325 {
326         union {
327                 unsigned long ul;
328                 u8 b[sizeof(unsigned long)];
329         } u;
330         int i;
331         int err;
332
333         u.ul = 0;
334         i = IS_BE ? sizeof(unsigned long) - nb : 0;
335         err = copy_mem_in(&u.b[i], ea, nb, regs);
336         if (!err)
337                 *dest = u.ul;
338         return err;
339 }
340
341 /*
342  * Read memory at address ea for nb bytes, return 0 for success
343  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
344  * If nb < sizeof(long), the result is right-justified on BE systems.
345  */
346 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
347                               struct pt_regs *regs)
348 {
349         if (!address_ok(regs, ea, nb))
350                 return -EFAULT;
351         if ((ea & (nb - 1)) == 0)
352                 return read_mem_aligned(dest, ea, nb, regs);
353         return read_mem_unaligned(dest, ea, nb, regs);
354 }
355 NOKPROBE_SYMBOL(read_mem);
356
357 static nokprobe_inline int write_mem_aligned(unsigned long val,
358                                              unsigned long ea, int nb,
359                                              struct pt_regs *regs)
360 {
361         int err = 0;
362
363         switch (nb) {
364         case 1:
365                 err = __put_user(val, (unsigned char __user *) ea);
366                 break;
367         case 2:
368                 err = __put_user(val, (unsigned short __user *) ea);
369                 break;
370         case 4:
371                 err = __put_user(val, (unsigned int __user *) ea);
372                 break;
373 #ifdef __powerpc64__
374         case 8:
375                 err = __put_user(val, (unsigned long __user *) ea);
376                 break;
377 #endif
378         }
379         if (err)
380                 regs->dar = ea;
381         return err;
382 }
383
384 /*
385  * Copy from a buffer to userspace, using the largest possible
386  * aligned accesses, up to sizeof(long).
387  */
388 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
389                                         struct pt_regs *regs)
390 {
391         int err = 0;
392         int c;
393
394         for (; nb > 0; nb -= c) {
395                 c = max_align(ea);
396                 if (c > nb)
397                         c = max_align(nb);
398                 switch (c) {
399                 case 1:
400                         err = __put_user(*dest, (unsigned char __user *) ea);
401                         break;
402                 case 2:
403                         err = __put_user(*(u16 *)dest,
404                                          (unsigned short __user *) ea);
405                         break;
406                 case 4:
407                         err = __put_user(*(u32 *)dest,
408                                          (unsigned int __user *) ea);
409                         break;
410 #ifdef __powerpc64__
411                 case 8:
412                         err = __put_user(*(unsigned long *)dest,
413                                          (unsigned long __user *) ea);
414                         break;
415 #endif
416                 }
417                 if (err) {
418                         regs->dar = ea;
419                         return err;
420                 }
421                 dest += c;
422                 ea += c;
423         }
424         return 0;
425 }
426
427 static nokprobe_inline int write_mem_unaligned(unsigned long val,
428                                                unsigned long ea, int nb,
429                                                struct pt_regs *regs)
430 {
431         union {
432                 unsigned long ul;
433                 u8 b[sizeof(unsigned long)];
434         } u;
435         int i;
436
437         u.ul = val;
438         i = IS_BE ? sizeof(unsigned long) - nb : 0;
439         return copy_mem_out(&u.b[i], ea, nb, regs);
440 }
441
442 /*
443  * Write memory at address ea for nb bytes, return 0 for success
444  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
445  */
446 static int write_mem(unsigned long val, unsigned long ea, int nb,
447                                struct pt_regs *regs)
448 {
449         if (!address_ok(regs, ea, nb))
450                 return -EFAULT;
451         if ((ea & (nb - 1)) == 0)
452                 return write_mem_aligned(val, ea, nb, regs);
453         return write_mem_unaligned(val, ea, nb, regs);
454 }
455 NOKPROBE_SYMBOL(write_mem);
456
457 #ifdef CONFIG_PPC_FPU
458 /*
459  * These access either the real FP register or the image in the
460  * thread_struct, depending on regs->msr & MSR_FP.
461  */
462 static int do_fp_load(struct instruction_op *op, unsigned long ea,
463                       struct pt_regs *regs, bool cross_endian)
464 {
465         int err, rn, nb;
466         union {
467                 int i;
468                 unsigned int u;
469                 float f;
470                 double d[2];
471                 unsigned long l[2];
472                 u8 b[2 * sizeof(double)];
473         } u;
474
475         nb = GETSIZE(op->type);
476         if (!address_ok(regs, ea, nb))
477                 return -EFAULT;
478         rn = op->reg;
479         err = copy_mem_in(u.b, ea, nb, regs);
480         if (err)
481                 return err;
482         if (unlikely(cross_endian)) {
483                 do_byte_reverse(u.b, min(nb, 8));
484                 if (nb == 16)
485                         do_byte_reverse(&u.b[8], 8);
486         }
487         preempt_disable();
488         if (nb == 4) {
489                 if (op->type & FPCONV)
490                         conv_sp_to_dp(&u.f, &u.d[0]);
491                 else if (op->type & SIGNEXT)
492                         u.l[0] = u.i;
493                 else
494                         u.l[0] = u.u;
495         }
496         if (regs->msr & MSR_FP)
497                 put_fpr(rn, &u.d[0]);
498         else
499                 current->thread.TS_FPR(rn) = u.l[0];
500         if (nb == 16) {
501                 /* lfdp */
502                 rn |= 1;
503                 if (regs->msr & MSR_FP)
504                         put_fpr(rn, &u.d[1]);
505                 else
506                         current->thread.TS_FPR(rn) = u.l[1];
507         }
508         preempt_enable();
509         return 0;
510 }
511 NOKPROBE_SYMBOL(do_fp_load);
512
513 static int do_fp_store(struct instruction_op *op, unsigned long ea,
514                        struct pt_regs *regs, bool cross_endian)
515 {
516         int rn, nb;
517         union {
518                 unsigned int u;
519                 float f;
520                 double d[2];
521                 unsigned long l[2];
522                 u8 b[2 * sizeof(double)];
523         } u;
524
525         nb = GETSIZE(op->type);
526         if (!address_ok(regs, ea, nb))
527                 return -EFAULT;
528         rn = op->reg;
529         preempt_disable();
530         if (regs->msr & MSR_FP)
531                 get_fpr(rn, &u.d[0]);
532         else
533                 u.l[0] = current->thread.TS_FPR(rn);
534         if (nb == 4) {
535                 if (op->type & FPCONV)
536                         conv_dp_to_sp(&u.d[0], &u.f);
537                 else
538                         u.u = u.l[0];
539         }
540         if (nb == 16) {
541                 rn |= 1;
542                 if (regs->msr & MSR_FP)
543                         get_fpr(rn, &u.d[1]);
544                 else
545                         u.l[1] = current->thread.TS_FPR(rn);
546         }
547         preempt_enable();
548         if (unlikely(cross_endian)) {
549                 do_byte_reverse(u.b, min(nb, 8));
550                 if (nb == 16)
551                         do_byte_reverse(&u.b[8], 8);
552         }
553         return copy_mem_out(u.b, ea, nb, regs);
554 }
555 NOKPROBE_SYMBOL(do_fp_store);
556 #endif
557
558 #ifdef CONFIG_ALTIVEC
559 /* For Altivec/VMX, no need to worry about alignment */
560 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
561                                        int size, struct pt_regs *regs,
562                                        bool cross_endian)
563 {
564         int err;
565         union {
566                 __vector128 v;
567                 u8 b[sizeof(__vector128)];
568         } u = {};
569
570         if (!address_ok(regs, ea & ~0xfUL, 16))
571                 return -EFAULT;
572         /* align to multiple of size */
573         ea &= ~(size - 1);
574         err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
575         if (err)
576                 return err;
577         if (unlikely(cross_endian))
578                 do_byte_reverse(&u.b[ea & 0xf], size);
579         preempt_disable();
580         if (regs->msr & MSR_VEC)
581                 put_vr(rn, &u.v);
582         else
583                 current->thread.vr_state.vr[rn] = u.v;
584         preempt_enable();
585         return 0;
586 }
587
588 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
589                                         int size, struct pt_regs *regs,
590                                         bool cross_endian)
591 {
592         union {
593                 __vector128 v;
594                 u8 b[sizeof(__vector128)];
595         } u;
596
597         if (!address_ok(regs, ea & ~0xfUL, 16))
598                 return -EFAULT;
599         /* align to multiple of size */
600         ea &= ~(size - 1);
601
602         preempt_disable();
603         if (regs->msr & MSR_VEC)
604                 get_vr(rn, &u.v);
605         else
606                 u.v = current->thread.vr_state.vr[rn];
607         preempt_enable();
608         if (unlikely(cross_endian))
609                 do_byte_reverse(&u.b[ea & 0xf], size);
610         return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
611 }
612 #endif /* CONFIG_ALTIVEC */
613
614 #ifdef __powerpc64__
615 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
616                                       int reg, bool cross_endian)
617 {
618         int err;
619
620         if (!address_ok(regs, ea, 16))
621                 return -EFAULT;
622         /* if aligned, should be atomic */
623         if ((ea & 0xf) == 0) {
624                 err = do_lq(ea, &regs->gpr[reg]);
625         } else {
626                 err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
627                 if (!err)
628                         err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
629         }
630         if (!err && unlikely(cross_endian))
631                 do_byte_reverse(&regs->gpr[reg], 16);
632         return err;
633 }
634
635 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
636                                        int reg, bool cross_endian)
637 {
638         int err;
639         unsigned long vals[2];
640
641         if (!address_ok(regs, ea, 16))
642                 return -EFAULT;
643         vals[0] = regs->gpr[reg];
644         vals[1] = regs->gpr[reg + 1];
645         if (unlikely(cross_endian))
646                 do_byte_reverse(vals, 16);
647
648         /* if aligned, should be atomic */
649         if ((ea & 0xf) == 0)
650                 return do_stq(ea, vals[0], vals[1]);
651
652         err = write_mem(vals[IS_LE], ea, 8, regs);
653         if (!err)
654                 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
655         return err;
656 }
657 #endif /* __powerpc64 */
658
659 #ifdef CONFIG_VSX
660 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
661                       const void *mem, bool rev)
662 {
663         int size, read_size;
664         int i, j;
665         const unsigned int *wp;
666         const unsigned short *hp;
667         const unsigned char *bp;
668
669         size = GETSIZE(op->type);
670         reg->d[0] = reg->d[1] = 0;
671
672         switch (op->element_size) {
673         case 16:
674                 /* whole vector; lxv[x] or lxvl[l] */
675                 if (size == 0)
676                         break;
677                 memcpy(reg, mem, size);
678                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
679                         rev = !rev;
680                 if (rev)
681                         do_byte_reverse(reg, 16);
682                 break;
683         case 8:
684                 /* scalar loads, lxvd2x, lxvdsx */
685                 read_size = (size >= 8) ? 8 : size;
686                 i = IS_LE ? 8 : 8 - read_size;
687                 memcpy(&reg->b[i], mem, read_size);
688                 if (rev)
689                         do_byte_reverse(&reg->b[i], 8);
690                 if (size < 8) {
691                         if (op->type & SIGNEXT) {
692                                 /* size == 4 is the only case here */
693                                 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
694                         } else if (op->vsx_flags & VSX_FPCONV) {
695                                 preempt_disable();
696                                 conv_sp_to_dp(&reg->fp[1 + IS_LE],
697                                               &reg->dp[IS_LE]);
698                                 preempt_enable();
699                         }
700                 } else {
701                         if (size == 16) {
702                                 unsigned long v = *(unsigned long *)(mem + 8);
703                                 reg->d[IS_BE] = !rev ? v : byterev_8(v);
704                         } else if (op->vsx_flags & VSX_SPLAT)
705                                 reg->d[IS_BE] = reg->d[IS_LE];
706                 }
707                 break;
708         case 4:
709                 /* lxvw4x, lxvwsx */
710                 wp = mem;
711                 for (j = 0; j < size / 4; ++j) {
712                         i = IS_LE ? 3 - j : j;
713                         reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
714                 }
715                 if (op->vsx_flags & VSX_SPLAT) {
716                         u32 val = reg->w[IS_LE ? 3 : 0];
717                         for (; j < 4; ++j) {
718                                 i = IS_LE ? 3 - j : j;
719                                 reg->w[i] = val;
720                         }
721                 }
722                 break;
723         case 2:
724                 /* lxvh8x */
725                 hp = mem;
726                 for (j = 0; j < size / 2; ++j) {
727                         i = IS_LE ? 7 - j : j;
728                         reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
729                 }
730                 break;
731         case 1:
732                 /* lxvb16x */
733                 bp = mem;
734                 for (j = 0; j < size; ++j) {
735                         i = IS_LE ? 15 - j : j;
736                         reg->b[i] = *bp++;
737                 }
738                 break;
739         }
740 }
741 EXPORT_SYMBOL_GPL(emulate_vsx_load);
742 NOKPROBE_SYMBOL(emulate_vsx_load);
743
744 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
745                        void *mem, bool rev)
746 {
747         int size, write_size;
748         int i, j;
749         union vsx_reg buf;
750         unsigned int *wp;
751         unsigned short *hp;
752         unsigned char *bp;
753
754         size = GETSIZE(op->type);
755
756         switch (op->element_size) {
757         case 16:
758                 /* stxv, stxvx, stxvl, stxvll */
759                 if (size == 0)
760                         break;
761                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
762                         rev = !rev;
763                 if (rev) {
764                         /* reverse 16 bytes */
765                         buf.d[0] = byterev_8(reg->d[1]);
766                         buf.d[1] = byterev_8(reg->d[0]);
767                         reg = &buf;
768                 }
769                 memcpy(mem, reg, size);
770                 break;
771         case 8:
772                 /* scalar stores, stxvd2x */
773                 write_size = (size >= 8) ? 8 : size;
774                 i = IS_LE ? 8 : 8 - write_size;
775                 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
776                         buf.d[0] = buf.d[1] = 0;
777                         preempt_disable();
778                         conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
779                         preempt_enable();
780                         reg = &buf;
781                 }
782                 memcpy(mem, &reg->b[i], write_size);
783                 if (size == 16)
784                         memcpy(mem + 8, &reg->d[IS_BE], 8);
785                 if (unlikely(rev)) {
786                         do_byte_reverse(mem, write_size);
787                         if (size == 16)
788                                 do_byte_reverse(mem + 8, 8);
789                 }
790                 break;
791         case 4:
792                 /* stxvw4x */
793                 wp = mem;
794                 for (j = 0; j < size / 4; ++j) {
795                         i = IS_LE ? 3 - j : j;
796                         *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
797                 }
798                 break;
799         case 2:
800                 /* stxvh8x */
801                 hp = mem;
802                 for (j = 0; j < size / 2; ++j) {
803                         i = IS_LE ? 7 - j : j;
804                         *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
805                 }
806                 break;
807         case 1:
808                 /* stvxb16x */
809                 bp = mem;
810                 for (j = 0; j < size; ++j) {
811                         i = IS_LE ? 15 - j : j;
812                         *bp++ = reg->b[i];
813                 }
814                 break;
815         }
816 }
817 EXPORT_SYMBOL_GPL(emulate_vsx_store);
818 NOKPROBE_SYMBOL(emulate_vsx_store);
819
820 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
821                                        unsigned long ea, struct pt_regs *regs,
822                                        bool cross_endian)
823 {
824         int reg = op->reg;
825         u8 mem[16];
826         union vsx_reg buf;
827         int size = GETSIZE(op->type);
828
829         if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
830                 return -EFAULT;
831
832         emulate_vsx_load(op, &buf, mem, cross_endian);
833         preempt_disable();
834         if (reg < 32) {
835                 /* FP regs + extensions */
836                 if (regs->msr & MSR_FP) {
837                         load_vsrn(reg, &buf);
838                 } else {
839                         current->thread.fp_state.fpr[reg][0] = buf.d[0];
840                         current->thread.fp_state.fpr[reg][1] = buf.d[1];
841                 }
842         } else {
843                 if (regs->msr & MSR_VEC)
844                         load_vsrn(reg, &buf);
845                 else
846                         current->thread.vr_state.vr[reg - 32] = buf.v;
847         }
848         preempt_enable();
849         return 0;
850 }
851
852 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
853                                         unsigned long ea, struct pt_regs *regs,
854                                         bool cross_endian)
855 {
856         int reg = op->reg;
857         u8 mem[16];
858         union vsx_reg buf;
859         int size = GETSIZE(op->type);
860
861         if (!address_ok(regs, ea, size))
862                 return -EFAULT;
863
864         preempt_disable();
865         if (reg < 32) {
866                 /* FP regs + extensions */
867                 if (regs->msr & MSR_FP) {
868                         store_vsrn(reg, &buf);
869                 } else {
870                         buf.d[0] = current->thread.fp_state.fpr[reg][0];
871                         buf.d[1] = current->thread.fp_state.fpr[reg][1];
872                 }
873         } else {
874                 if (regs->msr & MSR_VEC)
875                         store_vsrn(reg, &buf);
876                 else
877                         buf.v = current->thread.vr_state.vr[reg - 32];
878         }
879         preempt_enable();
880         emulate_vsx_store(op, &buf, mem, cross_endian);
881         return  copy_mem_out(mem, ea, size, regs);
882 }
883 #endif /* CONFIG_VSX */
884
885 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
886 {
887         int err;
888         unsigned long i, size;
889
890 #ifdef __powerpc64__
891         size = ppc64_caches.l1d.block_size;
892         if (!(regs->msr & MSR_64BIT))
893                 ea &= 0xffffffffUL;
894 #else
895         size = L1_CACHE_BYTES;
896 #endif
897         ea &= ~(size - 1);
898         if (!address_ok(regs, ea, size))
899                 return -EFAULT;
900         for (i = 0; i < size; i += sizeof(long)) {
901                 err = __put_user(0, (unsigned long __user *) (ea + i));
902                 if (err) {
903                         regs->dar = ea;
904                         return err;
905                 }
906         }
907         return 0;
908 }
909 NOKPROBE_SYMBOL(emulate_dcbz);
910
911 #define __put_user_asmx(x, addr, err, op, cr)           \
912         __asm__ __volatile__(                           \
913                 "1:     " op " %2,0,%3\n"               \
914                 "       mfcr    %1\n"                   \
915                 "2:\n"                                  \
916                 ".section .fixup,\"ax\"\n"              \
917                 "3:     li      %0,%4\n"                \
918                 "       b       2b\n"                   \
919                 ".previous\n"                           \
920                 EX_TABLE(1b, 3b)                        \
921                 : "=r" (err), "=r" (cr)                 \
922                 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
923
924 #define __get_user_asmx(x, addr, err, op)               \
925         __asm__ __volatile__(                           \
926                 "1:     "op" %1,0,%2\n"                 \
927                 "2:\n"                                  \
928                 ".section .fixup,\"ax\"\n"              \
929                 "3:     li      %0,%3\n"                \
930                 "       b       2b\n"                   \
931                 ".previous\n"                           \
932                 EX_TABLE(1b, 3b)                        \
933                 : "=r" (err), "=r" (x)                  \
934                 : "r" (addr), "i" (-EFAULT), "0" (err))
935
936 #define __cacheop_user_asmx(addr, err, op)              \
937         __asm__ __volatile__(                           \
938                 "1:     "op" 0,%1\n"                    \
939                 "2:\n"                                  \
940                 ".section .fixup,\"ax\"\n"              \
941                 "3:     li      %0,%3\n"                \
942                 "       b       2b\n"                   \
943                 ".previous\n"                           \
944                 EX_TABLE(1b, 3b)                        \
945                 : "=r" (err)                            \
946                 : "r" (addr), "i" (-EFAULT), "0" (err))
947
948 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
949                                     struct instruction_op *op)
950 {
951         long val = op->val;
952
953         op->type |= SETCC;
954         op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
955 #ifdef __powerpc64__
956         if (!(regs->msr & MSR_64BIT))
957                 val = (int) val;
958 #endif
959         if (val < 0)
960                 op->ccval |= 0x80000000;
961         else if (val > 0)
962                 op->ccval |= 0x40000000;
963         else
964                 op->ccval |= 0x20000000;
965 }
966
967 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
968 {
969         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
970                 if (val)
971                         op->xerval |= XER_CA32;
972                 else
973                         op->xerval &= ~XER_CA32;
974         }
975 }
976
977 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
978                                      struct instruction_op *op, int rd,
979                                      unsigned long val1, unsigned long val2,
980                                      unsigned long carry_in)
981 {
982         unsigned long val = val1 + val2;
983
984         if (carry_in)
985                 ++val;
986         op->type = COMPUTE + SETREG + SETXER;
987         op->reg = rd;
988         op->val = val;
989 #ifdef __powerpc64__
990         if (!(regs->msr & MSR_64BIT)) {
991                 val = (unsigned int) val;
992                 val1 = (unsigned int) val1;
993         }
994 #endif
995         op->xerval = regs->xer;
996         if (val < val1 || (carry_in && val == val1))
997                 op->xerval |= XER_CA;
998         else
999                 op->xerval &= ~XER_CA;
1000
1001         set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1002                         (carry_in && (unsigned int)val == (unsigned int)val1));
1003 }
1004
1005 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1006                                           struct instruction_op *op,
1007                                           long v1, long v2, int crfld)
1008 {
1009         unsigned int crval, shift;
1010
1011         op->type = COMPUTE + SETCC;
1012         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1013         if (v1 < v2)
1014                 crval |= 8;
1015         else if (v1 > v2)
1016                 crval |= 4;
1017         else
1018                 crval |= 2;
1019         shift = (7 - crfld) * 4;
1020         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1021 }
1022
1023 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1024                                             struct instruction_op *op,
1025                                             unsigned long v1,
1026                                             unsigned long v2, int crfld)
1027 {
1028         unsigned int crval, shift;
1029
1030         op->type = COMPUTE + SETCC;
1031         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1032         if (v1 < v2)
1033                 crval |= 8;
1034         else if (v1 > v2)
1035                 crval |= 4;
1036         else
1037                 crval |= 2;
1038         shift = (7 - crfld) * 4;
1039         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1040 }
1041
1042 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1043                                     struct instruction_op *op,
1044                                     unsigned long v1, unsigned long v2)
1045 {
1046         unsigned long long out_val, mask;
1047         int i;
1048
1049         out_val = 0;
1050         for (i = 0; i < 8; i++) {
1051                 mask = 0xffUL << (i * 8);
1052                 if ((v1 & mask) == (v2 & mask))
1053                         out_val |= mask;
1054         }
1055         op->val = out_val;
1056 }
1057
1058 /*
1059  * The size parameter is used to adjust the equivalent popcnt instruction.
1060  * popcntb = 8, popcntw = 32, popcntd = 64
1061  */
1062 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1063                                       struct instruction_op *op,
1064                                       unsigned long v1, int size)
1065 {
1066         unsigned long long out = v1;
1067
1068         out -= (out >> 1) & 0x5555555555555555ULL;
1069         out = (0x3333333333333333ULL & out) +
1070               (0x3333333333333333ULL & (out >> 2));
1071         out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1072
1073         if (size == 8) {        /* popcntb */
1074                 op->val = out;
1075                 return;
1076         }
1077         out += out >> 8;
1078         out += out >> 16;
1079         if (size == 32) {       /* popcntw */
1080                 op->val = out & 0x0000003f0000003fULL;
1081                 return;
1082         }
1083
1084         out = (out + (out >> 32)) & 0x7f;
1085         op->val = out;  /* popcntd */
1086 }
1087
1088 #ifdef CONFIG_PPC64
1089 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1090                                       struct instruction_op *op,
1091                                       unsigned long v1, unsigned long v2)
1092 {
1093         unsigned char perm, idx;
1094         unsigned int i;
1095
1096         perm = 0;
1097         for (i = 0; i < 8; i++) {
1098                 idx = (v1 >> (i * 8)) & 0xff;
1099                 if (idx < 64)
1100                         if (v2 & PPC_BIT(idx))
1101                                 perm |= 1 << i;
1102         }
1103         op->val = perm;
1104 }
1105 #endif /* CONFIG_PPC64 */
1106 /*
1107  * The size parameter adjusts the equivalent prty instruction.
1108  * prtyw = 32, prtyd = 64
1109  */
1110 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1111                                     struct instruction_op *op,
1112                                     unsigned long v, int size)
1113 {
1114         unsigned long long res = v ^ (v >> 8);
1115
1116         res ^= res >> 16;
1117         if (size == 32) {               /* prtyw */
1118                 op->val = res & 0x0000000100000001ULL;
1119                 return;
1120         }
1121
1122         res ^= res >> 32;
1123         op->val = res & 1;      /*prtyd */
1124 }
1125
1126 static nokprobe_inline int trap_compare(long v1, long v2)
1127 {
1128         int ret = 0;
1129
1130         if (v1 < v2)
1131                 ret |= 0x10;
1132         else if (v1 > v2)
1133                 ret |= 0x08;
1134         else
1135                 ret |= 0x04;
1136         if ((unsigned long)v1 < (unsigned long)v2)
1137                 ret |= 0x02;
1138         else if ((unsigned long)v1 > (unsigned long)v2)
1139                 ret |= 0x01;
1140         return ret;
1141 }
1142
1143 /*
1144  * Elements of 32-bit rotate and mask instructions.
1145  */
1146 #define MASK32(mb, me)  ((0xffffffffUL >> (mb)) + \
1147                          ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1148 #ifdef __powerpc64__
1149 #define MASK64_L(mb)    (~0UL >> (mb))
1150 #define MASK64_R(me)    ((signed long)-0x8000000000000000L >> (me))
1151 #define MASK64(mb, me)  (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1152 #define DATA32(x)       (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1153 #else
1154 #define DATA32(x)       (x)
1155 #endif
1156 #define ROTATE(x, n)    ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1157
1158 /*
1159  * Decode an instruction, and return information about it in *op
1160  * without changing *regs.
1161  * Integer arithmetic and logical instructions, branches, and barrier
1162  * instructions can be emulated just using the information in *op.
1163  *
1164  * Return value is 1 if the instruction can be emulated just by
1165  * updating *regs with the information in *op, -1 if we need the
1166  * GPRs but *regs doesn't contain the full register set, or 0
1167  * otherwise.
1168  */
1169 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1170                   unsigned int instr)
1171 {
1172         unsigned int opcode, ra, rb, rc, rd, spr, u;
1173         unsigned long int imm;
1174         unsigned long int val, val2;
1175         unsigned int mb, me, sh;
1176         long ival;
1177
1178         op->type = COMPUTE;
1179
1180         opcode = instr >> 26;
1181         switch (opcode) {
1182         case 16:        /* bc */
1183                 op->type = BRANCH;
1184                 imm = (signed short)(instr & 0xfffc);
1185                 if ((instr & 2) == 0)
1186                         imm += regs->nip;
1187                 op->val = truncate_if_32bit(regs->msr, imm);
1188                 if (instr & 1)
1189                         op->type |= SETLK;
1190                 if (branch_taken(instr, regs, op))
1191                         op->type |= BRTAKEN;
1192                 return 1;
1193 #ifdef CONFIG_PPC64
1194         case 17:        /* sc */
1195                 if ((instr & 0xfe2) == 2)
1196                         op->type = SYSCALL;
1197                 else
1198                         op->type = UNKNOWN;
1199                 return 0;
1200 #endif
1201         case 18:        /* b */
1202                 op->type = BRANCH | BRTAKEN;
1203                 imm = instr & 0x03fffffc;
1204                 if (imm & 0x02000000)
1205                         imm -= 0x04000000;
1206                 if ((instr & 2) == 0)
1207                         imm += regs->nip;
1208                 op->val = truncate_if_32bit(regs->msr, imm);
1209                 if (instr & 1)
1210                         op->type |= SETLK;
1211                 return 1;
1212         case 19:
1213                 switch ((instr >> 1) & 0x3ff) {
1214                 case 0:         /* mcrf */
1215                         op->type = COMPUTE + SETCC;
1216                         rd = 7 - ((instr >> 23) & 0x7);
1217                         ra = 7 - ((instr >> 18) & 0x7);
1218                         rd *= 4;
1219                         ra *= 4;
1220                         val = (regs->ccr >> ra) & 0xf;
1221                         op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1222                         return 1;
1223
1224                 case 16:        /* bclr */
1225                 case 528:       /* bcctr */
1226                         op->type = BRANCH;
1227                         imm = (instr & 0x400)? regs->ctr: regs->link;
1228                         op->val = truncate_if_32bit(regs->msr, imm);
1229                         if (instr & 1)
1230                                 op->type |= SETLK;
1231                         if (branch_taken(instr, regs, op))
1232                                 op->type |= BRTAKEN;
1233                         return 1;
1234
1235                 case 18:        /* rfid, scary */
1236                         if (regs->msr & MSR_PR)
1237                                 goto priv;
1238                         op->type = RFI;
1239                         return 0;
1240
1241                 case 150:       /* isync */
1242                         op->type = BARRIER | BARRIER_ISYNC;
1243                         return 1;
1244
1245                 case 33:        /* crnor */
1246                 case 129:       /* crandc */
1247                 case 193:       /* crxor */
1248                 case 225:       /* crnand */
1249                 case 257:       /* crand */
1250                 case 289:       /* creqv */
1251                 case 417:       /* crorc */
1252                 case 449:       /* cror */
1253                         op->type = COMPUTE + SETCC;
1254                         ra = (instr >> 16) & 0x1f;
1255                         rb = (instr >> 11) & 0x1f;
1256                         rd = (instr >> 21) & 0x1f;
1257                         ra = (regs->ccr >> (31 - ra)) & 1;
1258                         rb = (regs->ccr >> (31 - rb)) & 1;
1259                         val = (instr >> (6 + ra * 2 + rb)) & 1;
1260                         op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1261                                 (val << (31 - rd));
1262                         return 1;
1263                 }
1264                 break;
1265         case 31:
1266                 switch ((instr >> 1) & 0x3ff) {
1267                 case 598:       /* sync */
1268                         op->type = BARRIER + BARRIER_SYNC;
1269 #ifdef __powerpc64__
1270                         switch ((instr >> 21) & 3) {
1271                         case 1:         /* lwsync */
1272                                 op->type = BARRIER + BARRIER_LWSYNC;
1273                                 break;
1274                         case 2:         /* ptesync */
1275                                 op->type = BARRIER + BARRIER_PTESYNC;
1276                                 break;
1277                         }
1278 #endif
1279                         return 1;
1280
1281                 case 854:       /* eieio */
1282                         op->type = BARRIER + BARRIER_EIEIO;
1283                         return 1;
1284                 }
1285                 break;
1286         }
1287
1288         /* Following cases refer to regs->gpr[], so we need all regs */
1289         if (!FULL_REGS(regs))
1290                 return -1;
1291
1292         rd = (instr >> 21) & 0x1f;
1293         ra = (instr >> 16) & 0x1f;
1294         rb = (instr >> 11) & 0x1f;
1295         rc = (instr >> 6) & 0x1f;
1296
1297         switch (opcode) {
1298 #ifdef __powerpc64__
1299         case 2:         /* tdi */
1300                 if (rd & trap_compare(regs->gpr[ra], (short) instr))
1301                         goto trap;
1302                 return 1;
1303 #endif
1304         case 3:         /* twi */
1305                 if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
1306                         goto trap;
1307                 return 1;
1308
1309 #ifdef __powerpc64__
1310         case 4:
1311                 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1312                         return -1;
1313
1314                 switch (instr & 0x3f) {
1315                 case 48:        /* maddhd */
1316                         asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1317                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1318                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1319                         goto compute_done;
1320
1321                 case 49:        /* maddhdu */
1322                         asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1323                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1324                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1325                         goto compute_done;
1326
1327                 case 51:        /* maddld */
1328                         asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1329                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1330                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1331                         goto compute_done;
1332                 }
1333
1334                 /*
1335                  * There are other instructions from ISA 3.0 with the same
1336                  * primary opcode which do not have emulation support yet.
1337                  */
1338                 return -1;
1339 #endif
1340
1341         case 7:         /* mulli */
1342                 op->val = regs->gpr[ra] * (short) instr;
1343                 goto compute_done;
1344
1345         case 8:         /* subfic */
1346                 imm = (short) instr;
1347                 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1348                 return 1;
1349
1350         case 10:        /* cmpli */
1351                 imm = (unsigned short) instr;
1352                 val = regs->gpr[ra];
1353 #ifdef __powerpc64__
1354                 if ((rd & 1) == 0)
1355                         val = (unsigned int) val;
1356 #endif
1357                 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1358                 return 1;
1359
1360         case 11:        /* cmpi */
1361                 imm = (short) instr;
1362                 val = regs->gpr[ra];
1363 #ifdef __powerpc64__
1364                 if ((rd & 1) == 0)
1365                         val = (int) val;
1366 #endif
1367                 do_cmp_signed(regs, op, val, imm, rd >> 2);
1368                 return 1;
1369
1370         case 12:        /* addic */
1371                 imm = (short) instr;
1372                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1373                 return 1;
1374
1375         case 13:        /* addic. */
1376                 imm = (short) instr;
1377                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1378                 set_cr0(regs, op);
1379                 return 1;
1380
1381         case 14:        /* addi */
1382                 imm = (short) instr;
1383                 if (ra)
1384                         imm += regs->gpr[ra];
1385                 op->val = imm;
1386                 goto compute_done;
1387
1388         case 15:        /* addis */
1389                 imm = ((short) instr) << 16;
1390                 if (ra)
1391                         imm += regs->gpr[ra];
1392                 op->val = imm;
1393                 goto compute_done;
1394
1395         case 19:
1396                 if (((instr >> 1) & 0x1f) == 2) {
1397                         /* addpcis */
1398                         imm = (short) (instr & 0xffc1); /* d0 + d2 fields */
1399                         imm |= (instr >> 15) & 0x3e;    /* d1 field */
1400                         op->val = regs->nip + (imm << 16) + 4;
1401                         goto compute_done;
1402                 }
1403                 op->type = UNKNOWN;
1404                 return 0;
1405
1406         case 20:        /* rlwimi */
1407                 mb = (instr >> 6) & 0x1f;
1408                 me = (instr >> 1) & 0x1f;
1409                 val = DATA32(regs->gpr[rd]);
1410                 imm = MASK32(mb, me);
1411                 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1412                 goto logical_done;
1413
1414         case 21:        /* rlwinm */
1415                 mb = (instr >> 6) & 0x1f;
1416                 me = (instr >> 1) & 0x1f;
1417                 val = DATA32(regs->gpr[rd]);
1418                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1419                 goto logical_done;
1420
1421         case 23:        /* rlwnm */
1422                 mb = (instr >> 6) & 0x1f;
1423                 me = (instr >> 1) & 0x1f;
1424                 rb = regs->gpr[rb] & 0x1f;
1425                 val = DATA32(regs->gpr[rd]);
1426                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1427                 goto logical_done;
1428
1429         case 24:        /* ori */
1430                 op->val = regs->gpr[rd] | (unsigned short) instr;
1431                 goto logical_done_nocc;
1432
1433         case 25:        /* oris */
1434                 imm = (unsigned short) instr;
1435                 op->val = regs->gpr[rd] | (imm << 16);
1436                 goto logical_done_nocc;
1437
1438         case 26:        /* xori */
1439                 op->val = regs->gpr[rd] ^ (unsigned short) instr;
1440                 goto logical_done_nocc;
1441
1442         case 27:        /* xoris */
1443                 imm = (unsigned short) instr;
1444                 op->val = regs->gpr[rd] ^ (imm << 16);
1445                 goto logical_done_nocc;
1446
1447         case 28:        /* andi. */
1448                 op->val = regs->gpr[rd] & (unsigned short) instr;
1449                 set_cr0(regs, op);
1450                 goto logical_done_nocc;
1451
1452         case 29:        /* andis. */
1453                 imm = (unsigned short) instr;
1454                 op->val = regs->gpr[rd] & (imm << 16);
1455                 set_cr0(regs, op);
1456                 goto logical_done_nocc;
1457
1458 #ifdef __powerpc64__
1459         case 30:        /* rld* */
1460                 mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
1461                 val = regs->gpr[rd];
1462                 if ((instr & 0x10) == 0) {
1463                         sh = rb | ((instr & 2) << 4);
1464                         val = ROTATE(val, sh);
1465                         switch ((instr >> 2) & 3) {
1466                         case 0:         /* rldicl */
1467                                 val &= MASK64_L(mb);
1468                                 break;
1469                         case 1:         /* rldicr */
1470                                 val &= MASK64_R(mb);
1471                                 break;
1472                         case 2:         /* rldic */
1473                                 val &= MASK64(mb, 63 - sh);
1474                                 break;
1475                         case 3:         /* rldimi */
1476                                 imm = MASK64(mb, 63 - sh);
1477                                 val = (regs->gpr[ra] & ~imm) |
1478                                         (val & imm);
1479                         }
1480                         op->val = val;
1481                         goto logical_done;
1482                 } else {
1483                         sh = regs->gpr[rb] & 0x3f;
1484                         val = ROTATE(val, sh);
1485                         switch ((instr >> 1) & 7) {
1486                         case 0:         /* rldcl */
1487                                 op->val = val & MASK64_L(mb);
1488                                 goto logical_done;
1489                         case 1:         /* rldcr */
1490                                 op->val = val & MASK64_R(mb);
1491                                 goto logical_done;
1492                         }
1493                 }
1494 #endif
1495                 op->type = UNKNOWN;     /* illegal instruction */
1496                 return 0;
1497
1498         case 31:
1499                 /* isel occupies 32 minor opcodes */
1500                 if (((instr >> 1) & 0x1f) == 15) {
1501                         mb = (instr >> 6) & 0x1f; /* bc field */
1502                         val = (regs->ccr >> (31 - mb)) & 1;
1503                         val2 = (ra) ? regs->gpr[ra] : 0;
1504
1505                         op->val = (val) ? val2 : regs->gpr[rb];
1506                         goto compute_done;
1507                 }
1508
1509                 switch ((instr >> 1) & 0x3ff) {
1510                 case 4:         /* tw */
1511                         if (rd == 0x1f ||
1512                             (rd & trap_compare((int)regs->gpr[ra],
1513                                                (int)regs->gpr[rb])))
1514                                 goto trap;
1515                         return 1;
1516 #ifdef __powerpc64__
1517                 case 68:        /* td */
1518                         if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1519                                 goto trap;
1520                         return 1;
1521 #endif
1522                 case 83:        /* mfmsr */
1523                         if (regs->msr & MSR_PR)
1524                                 goto priv;
1525                         op->type = MFMSR;
1526                         op->reg = rd;
1527                         return 0;
1528                 case 146:       /* mtmsr */
1529                         if (regs->msr & MSR_PR)
1530                                 goto priv;
1531                         op->type = MTMSR;
1532                         op->reg = rd;
1533                         op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1534                         return 0;
1535 #ifdef CONFIG_PPC64
1536                 case 178:       /* mtmsrd */
1537                         if (regs->msr & MSR_PR)
1538                                 goto priv;
1539                         op->type = MTMSR;
1540                         op->reg = rd;
1541                         /* only MSR_EE and MSR_RI get changed if bit 15 set */
1542                         /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1543                         imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1544                         op->val = imm;
1545                         return 0;
1546 #endif
1547
1548                 case 19:        /* mfcr */
1549                         imm = 0xffffffffUL;
1550                         if ((instr >> 20) & 1) {
1551                                 imm = 0xf0000000UL;
1552                                 for (sh = 0; sh < 8; ++sh) {
1553                                         if (instr & (0x80000 >> sh))
1554                                                 break;
1555                                         imm >>= 4;
1556                                 }
1557                         }
1558                         op->val = regs->ccr & imm;
1559                         goto compute_done;
1560
1561                 case 144:       /* mtcrf */
1562                         op->type = COMPUTE + SETCC;
1563                         imm = 0xf0000000UL;
1564                         val = regs->gpr[rd];
1565                         op->ccval = regs->ccr;
1566                         for (sh = 0; sh < 8; ++sh) {
1567                                 if (instr & (0x80000 >> sh))
1568                                         op->ccval = (op->ccval & ~imm) |
1569                                                 (val & imm);
1570                                 imm >>= 4;
1571                         }
1572                         return 1;
1573
1574                 case 339:       /* mfspr */
1575                         spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1576                         op->type = MFSPR;
1577                         op->reg = rd;
1578                         op->spr = spr;
1579                         if (spr == SPRN_XER || spr == SPRN_LR ||
1580                             spr == SPRN_CTR)
1581                                 return 1;
1582                         return 0;
1583
1584                 case 467:       /* mtspr */
1585                         spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1586                         op->type = MTSPR;
1587                         op->val = regs->gpr[rd];
1588                         op->spr = spr;
1589                         if (spr == SPRN_XER || spr == SPRN_LR ||
1590                             spr == SPRN_CTR)
1591                                 return 1;
1592                         return 0;
1593
1594 /*
1595  * Compare instructions
1596  */
1597                 case 0: /* cmp */
1598                         val = regs->gpr[ra];
1599                         val2 = regs->gpr[rb];
1600 #ifdef __powerpc64__
1601                         if ((rd & 1) == 0) {
1602                                 /* word (32-bit) compare */
1603                                 val = (int) val;
1604                                 val2 = (int) val2;
1605                         }
1606 #endif
1607                         do_cmp_signed(regs, op, val, val2, rd >> 2);
1608                         return 1;
1609
1610                 case 32:        /* cmpl */
1611                         val = regs->gpr[ra];
1612                         val2 = regs->gpr[rb];
1613 #ifdef __powerpc64__
1614                         if ((rd & 1) == 0) {
1615                                 /* word (32-bit) compare */
1616                                 val = (unsigned int) val;
1617                                 val2 = (unsigned int) val2;
1618                         }
1619 #endif
1620                         do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1621                         return 1;
1622
1623                 case 508: /* cmpb */
1624                         do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1625                         goto logical_done_nocc;
1626
1627 /*
1628  * Arithmetic instructions
1629  */
1630                 case 8: /* subfc */
1631                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1632                                        regs->gpr[rb], 1);
1633                         goto arith_done;
1634 #ifdef __powerpc64__
1635                 case 9: /* mulhdu */
1636                         asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1637                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1638                         goto arith_done;
1639 #endif
1640                 case 10:        /* addc */
1641                         add_with_carry(regs, op, rd, regs->gpr[ra],
1642                                        regs->gpr[rb], 0);
1643                         goto arith_done;
1644
1645                 case 11:        /* mulhwu */
1646                         asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1647                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1648                         goto arith_done;
1649
1650                 case 40:        /* subf */
1651                         op->val = regs->gpr[rb] - regs->gpr[ra];
1652                         goto arith_done;
1653 #ifdef __powerpc64__
1654                 case 73:        /* mulhd */
1655                         asm("mulhd %0,%1,%2" : "=r" (op->val) :
1656                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1657                         goto arith_done;
1658 #endif
1659                 case 75:        /* mulhw */
1660                         asm("mulhw %0,%1,%2" : "=r" (op->val) :
1661                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1662                         goto arith_done;
1663
1664                 case 104:       /* neg */
1665                         op->val = -regs->gpr[ra];
1666                         goto arith_done;
1667
1668                 case 136:       /* subfe */
1669                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1670                                        regs->gpr[rb], regs->xer & XER_CA);
1671                         goto arith_done;
1672
1673                 case 138:       /* adde */
1674                         add_with_carry(regs, op, rd, regs->gpr[ra],
1675                                        regs->gpr[rb], regs->xer & XER_CA);
1676                         goto arith_done;
1677
1678                 case 200:       /* subfze */
1679                         add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1680                                        regs->xer & XER_CA);
1681                         goto arith_done;
1682
1683                 case 202:       /* addze */
1684                         add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1685                                        regs->xer & XER_CA);
1686                         goto arith_done;
1687
1688                 case 232:       /* subfme */
1689                         add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1690                                        regs->xer & XER_CA);
1691                         goto arith_done;
1692 #ifdef __powerpc64__
1693                 case 233:       /* mulld */
1694                         op->val = regs->gpr[ra] * regs->gpr[rb];
1695                         goto arith_done;
1696 #endif
1697                 case 234:       /* addme */
1698                         add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1699                                        regs->xer & XER_CA);
1700                         goto arith_done;
1701
1702                 case 235:       /* mullw */
1703                         op->val = (long)(int) regs->gpr[ra] *
1704                                 (int) regs->gpr[rb];
1705
1706                         goto arith_done;
1707 #ifdef __powerpc64__
1708                 case 265:       /* modud */
1709                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1710                                 return -1;
1711                         op->val = regs->gpr[ra] % regs->gpr[rb];
1712                         goto compute_done;
1713 #endif
1714                 case 266:       /* add */
1715                         op->val = regs->gpr[ra] + regs->gpr[rb];
1716                         goto arith_done;
1717
1718                 case 267:       /* moduw */
1719                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1720                                 return -1;
1721                         op->val = (unsigned int) regs->gpr[ra] %
1722                                 (unsigned int) regs->gpr[rb];
1723                         goto compute_done;
1724 #ifdef __powerpc64__
1725                 case 457:       /* divdu */
1726                         op->val = regs->gpr[ra] / regs->gpr[rb];
1727                         goto arith_done;
1728 #endif
1729                 case 459:       /* divwu */
1730                         op->val = (unsigned int) regs->gpr[ra] /
1731                                 (unsigned int) regs->gpr[rb];
1732                         goto arith_done;
1733 #ifdef __powerpc64__
1734                 case 489:       /* divd */
1735                         op->val = (long int) regs->gpr[ra] /
1736                                 (long int) regs->gpr[rb];
1737                         goto arith_done;
1738 #endif
1739                 case 491:       /* divw */
1740                         op->val = (int) regs->gpr[ra] /
1741                                 (int) regs->gpr[rb];
1742                         goto arith_done;
1743
1744                 case 755:       /* darn */
1745                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1746                                 return -1;
1747                         switch (ra & 0x3) {
1748                         case 0:
1749                                 /* 32-bit conditioned */
1750                                 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1751                                 goto compute_done;
1752
1753                         case 1:
1754                                 /* 64-bit conditioned */
1755                                 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
1756                                 goto compute_done;
1757
1758                         case 2:
1759                                 /* 64-bit raw */
1760                                 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
1761                                 goto compute_done;
1762                         }
1763
1764                         return -1;
1765 #ifdef __powerpc64__
1766                 case 777:       /* modsd */
1767                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1768                                 return -1;
1769                         op->val = (long int) regs->gpr[ra] %
1770                                 (long int) regs->gpr[rb];
1771                         goto compute_done;
1772 #endif
1773                 case 779:       /* modsw */
1774                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1775                                 return -1;
1776                         op->val = (int) regs->gpr[ra] %
1777                                 (int) regs->gpr[rb];
1778                         goto compute_done;
1779
1780
1781 /*
1782  * Logical instructions
1783  */
1784                 case 26:        /* cntlzw */
1785                         val = (unsigned int) regs->gpr[rd];
1786                         op->val = ( val ? __builtin_clz(val) : 32 );
1787                         goto logical_done;
1788 #ifdef __powerpc64__
1789                 case 58:        /* cntlzd */
1790                         val = regs->gpr[rd];
1791                         op->val = ( val ? __builtin_clzl(val) : 64 );
1792                         goto logical_done;
1793 #endif
1794                 case 28:        /* and */
1795                         op->val = regs->gpr[rd] & regs->gpr[rb];
1796                         goto logical_done;
1797
1798                 case 60:        /* andc */
1799                         op->val = regs->gpr[rd] & ~regs->gpr[rb];
1800                         goto logical_done;
1801
1802                 case 122:       /* popcntb */
1803                         do_popcnt(regs, op, regs->gpr[rd], 8);
1804                         goto logical_done_nocc;
1805
1806                 case 124:       /* nor */
1807                         op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1808                         goto logical_done;
1809
1810                 case 154:       /* prtyw */
1811                         do_prty(regs, op, regs->gpr[rd], 32);
1812                         goto logical_done_nocc;
1813
1814                 case 186:       /* prtyd */
1815                         do_prty(regs, op, regs->gpr[rd], 64);
1816                         goto logical_done_nocc;
1817 #ifdef CONFIG_PPC64
1818                 case 252:       /* bpermd */
1819                         do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1820                         goto logical_done_nocc;
1821 #endif
1822                 case 284:       /* xor */
1823                         op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1824                         goto logical_done;
1825
1826                 case 316:       /* xor */
1827                         op->val = regs->gpr[rd] ^ regs->gpr[rb];
1828                         goto logical_done;
1829
1830                 case 378:       /* popcntw */
1831                         do_popcnt(regs, op, regs->gpr[rd], 32);
1832                         goto logical_done_nocc;
1833
1834                 case 412:       /* orc */
1835                         op->val = regs->gpr[rd] | ~regs->gpr[rb];
1836                         goto logical_done;
1837
1838                 case 444:       /* or */
1839                         op->val = regs->gpr[rd] | regs->gpr[rb];
1840                         goto logical_done;
1841
1842                 case 476:       /* nand */
1843                         op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1844                         goto logical_done;
1845 #ifdef CONFIG_PPC64
1846                 case 506:       /* popcntd */
1847                         do_popcnt(regs, op, regs->gpr[rd], 64);
1848                         goto logical_done_nocc;
1849 #endif
1850                 case 538:       /* cnttzw */
1851                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1852                                 return -1;
1853                         val = (unsigned int) regs->gpr[rd];
1854                         op->val = (val ? __builtin_ctz(val) : 32);
1855                         goto logical_done;
1856 #ifdef __powerpc64__
1857                 case 570:       /* cnttzd */
1858                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1859                                 return -1;
1860                         val = regs->gpr[rd];
1861                         op->val = (val ? __builtin_ctzl(val) : 64);
1862                         goto logical_done;
1863 #endif
1864                 case 922:       /* extsh */
1865                         op->val = (signed short) regs->gpr[rd];
1866                         goto logical_done;
1867
1868                 case 954:       /* extsb */
1869                         op->val = (signed char) regs->gpr[rd];
1870                         goto logical_done;
1871 #ifdef __powerpc64__
1872                 case 986:       /* extsw */
1873                         op->val = (signed int) regs->gpr[rd];
1874                         goto logical_done;
1875 #endif
1876
1877 /*
1878  * Shift instructions
1879  */
1880                 case 24:        /* slw */
1881                         sh = regs->gpr[rb] & 0x3f;
1882                         if (sh < 32)
1883                                 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
1884                         else
1885                                 op->val = 0;
1886                         goto logical_done;
1887
1888                 case 536:       /* srw */
1889                         sh = regs->gpr[rb] & 0x3f;
1890                         if (sh < 32)
1891                                 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
1892                         else
1893                                 op->val = 0;
1894                         goto logical_done;
1895
1896                 case 792:       /* sraw */
1897                         op->type = COMPUTE + SETREG + SETXER;
1898                         sh = regs->gpr[rb] & 0x3f;
1899                         ival = (signed int) regs->gpr[rd];
1900                         op->val = ival >> (sh < 32 ? sh : 31);
1901                         op->xerval = regs->xer;
1902                         if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
1903                                 op->xerval |= XER_CA;
1904                         else
1905                                 op->xerval &= ~XER_CA;
1906                         set_ca32(op, op->xerval & XER_CA);
1907                         goto logical_done;
1908
1909                 case 824:       /* srawi */
1910                         op->type = COMPUTE + SETREG + SETXER;
1911                         sh = rb;
1912                         ival = (signed int) regs->gpr[rd];
1913                         op->val = ival >> sh;
1914                         op->xerval = regs->xer;
1915                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1916                                 op->xerval |= XER_CA;
1917                         else
1918                                 op->xerval &= ~XER_CA;
1919                         set_ca32(op, op->xerval & XER_CA);
1920                         goto logical_done;
1921
1922 #ifdef __powerpc64__
1923                 case 27:        /* sld */
1924                         sh = regs->gpr[rb] & 0x7f;
1925                         if (sh < 64)
1926                                 op->val = regs->gpr[rd] << sh;
1927                         else
1928                                 op->val = 0;
1929                         goto logical_done;
1930
1931                 case 539:       /* srd */
1932                         sh = regs->gpr[rb] & 0x7f;
1933                         if (sh < 64)
1934                                 op->val = regs->gpr[rd] >> sh;
1935                         else
1936                                 op->val = 0;
1937                         goto logical_done;
1938
1939                 case 794:       /* srad */
1940                         op->type = COMPUTE + SETREG + SETXER;
1941                         sh = regs->gpr[rb] & 0x7f;
1942                         ival = (signed long int) regs->gpr[rd];
1943                         op->val = ival >> (sh < 64 ? sh : 63);
1944                         op->xerval = regs->xer;
1945                         if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
1946                                 op->xerval |= XER_CA;
1947                         else
1948                                 op->xerval &= ~XER_CA;
1949                         set_ca32(op, op->xerval & XER_CA);
1950                         goto logical_done;
1951
1952                 case 826:       /* sradi with sh_5 = 0 */
1953                 case 827:       /* sradi with sh_5 = 1 */
1954                         op->type = COMPUTE + SETREG + SETXER;
1955                         sh = rb | ((instr & 2) << 4);
1956                         ival = (signed long int) regs->gpr[rd];
1957                         op->val = ival >> sh;
1958                         op->xerval = regs->xer;
1959                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1960                                 op->xerval |= XER_CA;
1961                         else
1962                                 op->xerval &= ~XER_CA;
1963                         set_ca32(op, op->xerval & XER_CA);
1964                         goto logical_done;
1965
1966                 case 890:       /* extswsli with sh_5 = 0 */
1967                 case 891:       /* extswsli with sh_5 = 1 */
1968                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1969                                 return -1;
1970                         op->type = COMPUTE + SETREG;
1971                         sh = rb | ((instr & 2) << 4);
1972                         val = (signed int) regs->gpr[rd];
1973                         if (sh)
1974                                 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
1975                         else
1976                                 op->val = val;
1977                         goto logical_done;
1978
1979 #endif /* __powerpc64__ */
1980
1981 /*
1982  * Cache instructions
1983  */
1984                 case 54:        /* dcbst */
1985                         op->type = MKOP(CACHEOP, DCBST, 0);
1986                         op->ea = xform_ea(instr, regs);
1987                         return 0;
1988
1989                 case 86:        /* dcbf */
1990                         op->type = MKOP(CACHEOP, DCBF, 0);
1991                         op->ea = xform_ea(instr, regs);
1992                         return 0;
1993
1994                 case 246:       /* dcbtst */
1995                         op->type = MKOP(CACHEOP, DCBTST, 0);
1996                         op->ea = xform_ea(instr, regs);
1997                         op->reg = rd;
1998                         return 0;
1999
2000                 case 278:       /* dcbt */
2001                         op->type = MKOP(CACHEOP, DCBTST, 0);
2002                         op->ea = xform_ea(instr, regs);
2003                         op->reg = rd;
2004                         return 0;
2005
2006                 case 982:       /* icbi */
2007                         op->type = MKOP(CACHEOP, ICBI, 0);
2008                         op->ea = xform_ea(instr, regs);
2009                         return 0;
2010
2011                 case 1014:      /* dcbz */
2012                         op->type = MKOP(CACHEOP, DCBZ, 0);
2013                         op->ea = xform_ea(instr, regs);
2014                         return 0;
2015                 }
2016                 break;
2017         }
2018
2019 /*
2020  * Loads and stores.
2021  */
2022         op->type = UNKNOWN;
2023         op->update_reg = ra;
2024         op->reg = rd;
2025         op->val = regs->gpr[rd];
2026         u = (instr >> 20) & UPDATE;
2027         op->vsx_flags = 0;
2028
2029         switch (opcode) {
2030         case 31:
2031                 u = instr & UPDATE;
2032                 op->ea = xform_ea(instr, regs);
2033                 switch ((instr >> 1) & 0x3ff) {
2034                 case 20:        /* lwarx */
2035                         op->type = MKOP(LARX, 0, 4);
2036                         break;
2037
2038                 case 150:       /* stwcx. */
2039                         op->type = MKOP(STCX, 0, 4);
2040                         break;
2041
2042 #ifdef __powerpc64__
2043                 case 84:        /* ldarx */
2044                         op->type = MKOP(LARX, 0, 8);
2045                         break;
2046
2047                 case 214:       /* stdcx. */
2048                         op->type = MKOP(STCX, 0, 8);
2049                         break;
2050
2051                 case 52:        /* lbarx */
2052                         op->type = MKOP(LARX, 0, 1);
2053                         break;
2054
2055                 case 694:       /* stbcx. */
2056                         op->type = MKOP(STCX, 0, 1);
2057                         break;
2058
2059                 case 116:       /* lharx */
2060                         op->type = MKOP(LARX, 0, 2);
2061                         break;
2062
2063                 case 726:       /* sthcx. */
2064                         op->type = MKOP(STCX, 0, 2);
2065                         break;
2066
2067                 case 276:       /* lqarx */
2068                         if (!((rd & 1) || rd == ra || rd == rb))
2069                                 op->type = MKOP(LARX, 0, 16);
2070                         break;
2071
2072                 case 182:       /* stqcx. */
2073                         if (!(rd & 1))
2074                                 op->type = MKOP(STCX, 0, 16);
2075                         break;
2076 #endif
2077
2078                 case 23:        /* lwzx */
2079                 case 55:        /* lwzux */
2080                         op->type = MKOP(LOAD, u, 4);
2081                         break;
2082
2083                 case 87:        /* lbzx */
2084                 case 119:       /* lbzux */
2085                         op->type = MKOP(LOAD, u, 1);
2086                         break;
2087
2088 #ifdef CONFIG_ALTIVEC
2089                 /*
2090                  * Note: for the load/store vector element instructions,
2091                  * bits of the EA say which field of the VMX register to use.
2092                  */
2093                 case 7:         /* lvebx */
2094                         op->type = MKOP(LOAD_VMX, 0, 1);
2095                         op->element_size = 1;
2096                         break;
2097
2098                 case 39:        /* lvehx */
2099                         op->type = MKOP(LOAD_VMX, 0, 2);
2100                         op->element_size = 2;
2101                         break;
2102
2103                 case 71:        /* lvewx */
2104                         op->type = MKOP(LOAD_VMX, 0, 4);
2105                         op->element_size = 4;
2106                         break;
2107
2108                 case 103:       /* lvx */
2109                 case 359:       /* lvxl */
2110                         op->type = MKOP(LOAD_VMX, 0, 16);
2111                         op->element_size = 16;
2112                         break;
2113
2114                 case 135:       /* stvebx */
2115                         op->type = MKOP(STORE_VMX, 0, 1);
2116                         op->element_size = 1;
2117                         break;
2118
2119                 case 167:       /* stvehx */
2120                         op->type = MKOP(STORE_VMX, 0, 2);
2121                         op->element_size = 2;
2122                         break;
2123
2124                 case 199:       /* stvewx */
2125                         op->type = MKOP(STORE_VMX, 0, 4);
2126                         op->element_size = 4;
2127                         break;
2128
2129                 case 231:       /* stvx */
2130                 case 487:       /* stvxl */
2131                         op->type = MKOP(STORE_VMX, 0, 16);
2132                         break;
2133 #endif /* CONFIG_ALTIVEC */
2134
2135 #ifdef __powerpc64__
2136                 case 21:        /* ldx */
2137                 case 53:        /* ldux */
2138                         op->type = MKOP(LOAD, u, 8);
2139                         break;
2140
2141                 case 149:       /* stdx */
2142                 case 181:       /* stdux */
2143                         op->type = MKOP(STORE, u, 8);
2144                         break;
2145 #endif
2146
2147                 case 151:       /* stwx */
2148                 case 183:       /* stwux */
2149                         op->type = MKOP(STORE, u, 4);
2150                         break;
2151
2152                 case 215:       /* stbx */
2153                 case 247:       /* stbux */
2154                         op->type = MKOP(STORE, u, 1);
2155                         break;
2156
2157                 case 279:       /* lhzx */
2158                 case 311:       /* lhzux */
2159                         op->type = MKOP(LOAD, u, 2);
2160                         break;
2161
2162 #ifdef __powerpc64__
2163                 case 341:       /* lwax */
2164                 case 373:       /* lwaux */
2165                         op->type = MKOP(LOAD, SIGNEXT | u, 4);
2166                         break;
2167 #endif
2168
2169                 case 343:       /* lhax */
2170                 case 375:       /* lhaux */
2171                         op->type = MKOP(LOAD, SIGNEXT | u, 2);
2172                         break;
2173
2174                 case 407:       /* sthx */
2175                 case 439:       /* sthux */
2176                         op->type = MKOP(STORE, u, 2);
2177                         break;
2178
2179 #ifdef __powerpc64__
2180                 case 532:       /* ldbrx */
2181                         op->type = MKOP(LOAD, BYTEREV, 8);
2182                         break;
2183
2184 #endif
2185                 case 533:       /* lswx */
2186                         op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2187                         break;
2188
2189                 case 534:       /* lwbrx */
2190                         op->type = MKOP(LOAD, BYTEREV, 4);
2191                         break;
2192
2193                 case 597:       /* lswi */
2194                         if (rb == 0)
2195                                 rb = 32;        /* # bytes to load */
2196                         op->type = MKOP(LOAD_MULTI, 0, rb);
2197                         op->ea = ra ? regs->gpr[ra] : 0;
2198                         break;
2199
2200 #ifdef CONFIG_PPC_FPU
2201                 case 535:       /* lfsx */
2202                 case 567:       /* lfsux */
2203                         op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2204                         break;
2205
2206                 case 599:       /* lfdx */
2207                 case 631:       /* lfdux */
2208                         op->type = MKOP(LOAD_FP, u, 8);
2209                         break;
2210
2211                 case 663:       /* stfsx */
2212                 case 695:       /* stfsux */
2213                         op->type = MKOP(STORE_FP, u | FPCONV, 4);
2214                         break;
2215
2216                 case 727:       /* stfdx */
2217                 case 759:       /* stfdux */
2218                         op->type = MKOP(STORE_FP, u, 8);
2219                         break;
2220
2221 #ifdef __powerpc64__
2222                 case 791:       /* lfdpx */
2223                         op->type = MKOP(LOAD_FP, 0, 16);
2224                         break;
2225
2226                 case 855:       /* lfiwax */
2227                         op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2228                         break;
2229
2230                 case 887:       /* lfiwzx */
2231                         op->type = MKOP(LOAD_FP, 0, 4);
2232                         break;
2233
2234                 case 919:       /* stfdpx */
2235                         op->type = MKOP(STORE_FP, 0, 16);
2236                         break;
2237
2238                 case 983:       /* stfiwx */
2239                         op->type = MKOP(STORE_FP, 0, 4);
2240                         break;
2241 #endif /* __powerpc64 */
2242 #endif /* CONFIG_PPC_FPU */
2243
2244 #ifdef __powerpc64__
2245                 case 660:       /* stdbrx */
2246                         op->type = MKOP(STORE, BYTEREV, 8);
2247                         op->val = byterev_8(regs->gpr[rd]);
2248                         break;
2249
2250 #endif
2251                 case 661:       /* stswx */
2252                         op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2253                         break;
2254
2255                 case 662:       /* stwbrx */
2256                         op->type = MKOP(STORE, BYTEREV, 4);
2257                         op->val = byterev_4(regs->gpr[rd]);
2258                         break;
2259
2260                 case 725:       /* stswi */
2261                         if (rb == 0)
2262                                 rb = 32;        /* # bytes to store */
2263                         op->type = MKOP(STORE_MULTI, 0, rb);
2264                         op->ea = ra ? regs->gpr[ra] : 0;
2265                         break;
2266
2267                 case 790:       /* lhbrx */
2268                         op->type = MKOP(LOAD, BYTEREV, 2);
2269                         break;
2270
2271                 case 918:       /* sthbrx */
2272                         op->type = MKOP(STORE, BYTEREV, 2);
2273                         op->val = byterev_2(regs->gpr[rd]);
2274                         break;
2275
2276 #ifdef CONFIG_VSX
2277                 case 12:        /* lxsiwzx */
2278                         op->reg = rd | ((instr & 1) << 5);
2279                         op->type = MKOP(LOAD_VSX, 0, 4);
2280                         op->element_size = 8;
2281                         break;
2282
2283                 case 76:        /* lxsiwax */
2284                         op->reg = rd | ((instr & 1) << 5);
2285                         op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2286                         op->element_size = 8;
2287                         break;
2288
2289                 case 140:       /* stxsiwx */
2290                         op->reg = rd | ((instr & 1) << 5);
2291                         op->type = MKOP(STORE_VSX, 0, 4);
2292                         op->element_size = 8;
2293                         break;
2294
2295                 case 268:       /* lxvx */
2296                         op->reg = rd | ((instr & 1) << 5);
2297                         op->type = MKOP(LOAD_VSX, 0, 16);
2298                         op->element_size = 16;
2299                         op->vsx_flags = VSX_CHECK_VEC;
2300                         break;
2301
2302                 case 269:       /* lxvl */
2303                 case 301: {     /* lxvll */
2304                         int nb;
2305                         op->reg = rd | ((instr & 1) << 5);
2306                         op->ea = ra ? regs->gpr[ra] : 0;
2307                         nb = regs->gpr[rb] & 0xff;
2308                         if (nb > 16)
2309                                 nb = 16;
2310                         op->type = MKOP(LOAD_VSX, 0, nb);
2311                         op->element_size = 16;
2312                         op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2313                                 VSX_CHECK_VEC;
2314                         break;
2315                 }
2316                 case 332:       /* lxvdsx */
2317                         op->reg = rd | ((instr & 1) << 5);
2318                         op->type = MKOP(LOAD_VSX, 0, 8);
2319                         op->element_size = 8;
2320                         op->vsx_flags = VSX_SPLAT;
2321                         break;
2322
2323                 case 364:       /* lxvwsx */
2324                         op->reg = rd | ((instr & 1) << 5);
2325                         op->type = MKOP(LOAD_VSX, 0, 4);
2326                         op->element_size = 4;
2327                         op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2328                         break;
2329
2330                 case 396:       /* stxvx */
2331                         op->reg = rd | ((instr & 1) << 5);
2332                         op->type = MKOP(STORE_VSX, 0, 16);
2333                         op->element_size = 16;
2334                         op->vsx_flags = VSX_CHECK_VEC;
2335                         break;
2336
2337                 case 397:       /* stxvl */
2338                 case 429: {     /* stxvll */
2339                         int nb;
2340                         op->reg = rd | ((instr & 1) << 5);
2341                         op->ea = ra ? regs->gpr[ra] : 0;
2342                         nb = regs->gpr[rb] & 0xff;
2343                         if (nb > 16)
2344                                 nb = 16;
2345                         op->type = MKOP(STORE_VSX, 0, nb);
2346                         op->element_size = 16;
2347                         op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2348                                 VSX_CHECK_VEC;
2349                         break;
2350                 }
2351                 case 524:       /* lxsspx */
2352                         op->reg = rd | ((instr & 1) << 5);
2353                         op->type = MKOP(LOAD_VSX, 0, 4);
2354                         op->element_size = 8;
2355                         op->vsx_flags = VSX_FPCONV;
2356                         break;
2357
2358                 case 588:       /* lxsdx */
2359                         op->reg = rd | ((instr & 1) << 5);
2360                         op->type = MKOP(LOAD_VSX, 0, 8);
2361                         op->element_size = 8;
2362                         break;
2363
2364                 case 652:       /* stxsspx */
2365                         op->reg = rd | ((instr & 1) << 5);
2366                         op->type = MKOP(STORE_VSX, 0, 4);
2367                         op->element_size = 8;
2368                         op->vsx_flags = VSX_FPCONV;
2369                         break;
2370
2371                 case 716:       /* stxsdx */
2372                         op->reg = rd | ((instr & 1) << 5);
2373                         op->type = MKOP(STORE_VSX, 0, 8);
2374                         op->element_size = 8;
2375                         break;
2376
2377                 case 780:       /* lxvw4x */
2378                         op->reg = rd | ((instr & 1) << 5);
2379                         op->type = MKOP(LOAD_VSX, 0, 16);
2380                         op->element_size = 4;
2381                         break;
2382
2383                 case 781:       /* lxsibzx */
2384                         op->reg = rd | ((instr & 1) << 5);
2385                         op->type = MKOP(LOAD_VSX, 0, 1);
2386                         op->element_size = 8;
2387                         op->vsx_flags = VSX_CHECK_VEC;
2388                         break;
2389
2390                 case 812:       /* lxvh8x */
2391                         op->reg = rd | ((instr & 1) << 5);
2392                         op->type = MKOP(LOAD_VSX, 0, 16);
2393                         op->element_size = 2;
2394                         op->vsx_flags = VSX_CHECK_VEC;
2395                         break;
2396
2397                 case 813:       /* lxsihzx */
2398                         op->reg = rd | ((instr & 1) << 5);
2399                         op->type = MKOP(LOAD_VSX, 0, 2);
2400                         op->element_size = 8;
2401                         op->vsx_flags = VSX_CHECK_VEC;
2402                         break;
2403
2404                 case 844:       /* lxvd2x */
2405                         op->reg = rd | ((instr & 1) << 5);
2406                         op->type = MKOP(LOAD_VSX, 0, 16);
2407                         op->element_size = 8;
2408                         break;
2409
2410                 case 876:       /* lxvb16x */
2411                         op->reg = rd | ((instr & 1) << 5);
2412                         op->type = MKOP(LOAD_VSX, 0, 16);
2413                         op->element_size = 1;
2414                         op->vsx_flags = VSX_CHECK_VEC;
2415                         break;
2416
2417                 case 908:       /* stxvw4x */
2418                         op->reg = rd | ((instr & 1) << 5);
2419                         op->type = MKOP(STORE_VSX, 0, 16);
2420                         op->element_size = 4;
2421                         break;
2422
2423                 case 909:       /* stxsibx */
2424                         op->reg = rd | ((instr & 1) << 5);
2425                         op->type = MKOP(STORE_VSX, 0, 1);
2426                         op->element_size = 8;
2427                         op->vsx_flags = VSX_CHECK_VEC;
2428                         break;
2429
2430                 case 940:       /* stxvh8x */
2431                         op->reg = rd | ((instr & 1) << 5);
2432                         op->type = MKOP(STORE_VSX, 0, 16);
2433                         op->element_size = 2;
2434                         op->vsx_flags = VSX_CHECK_VEC;
2435                         break;
2436
2437                 case 941:       /* stxsihx */
2438                         op->reg = rd | ((instr & 1) << 5);
2439                         op->type = MKOP(STORE_VSX, 0, 2);
2440                         op->element_size = 8;
2441                         op->vsx_flags = VSX_CHECK_VEC;
2442                         break;
2443
2444                 case 972:       /* stxvd2x */
2445                         op->reg = rd | ((instr & 1) << 5);
2446                         op->type = MKOP(STORE_VSX, 0, 16);
2447                         op->element_size = 8;
2448                         break;
2449
2450                 case 1004:      /* stxvb16x */
2451                         op->reg = rd | ((instr & 1) << 5);
2452                         op->type = MKOP(STORE_VSX, 0, 16);
2453                         op->element_size = 1;
2454                         op->vsx_flags = VSX_CHECK_VEC;
2455                         break;
2456
2457 #endif /* CONFIG_VSX */
2458                 }
2459                 break;
2460
2461         case 32:        /* lwz */
2462         case 33:        /* lwzu */
2463                 op->type = MKOP(LOAD, u, 4);
2464                 op->ea = dform_ea(instr, regs);
2465                 break;
2466
2467         case 34:        /* lbz */
2468         case 35:        /* lbzu */
2469                 op->type = MKOP(LOAD, u, 1);
2470                 op->ea = dform_ea(instr, regs);
2471                 break;
2472
2473         case 36:        /* stw */
2474         case 37:        /* stwu */
2475                 op->type = MKOP(STORE, u, 4);
2476                 op->ea = dform_ea(instr, regs);
2477                 break;
2478
2479         case 38:        /* stb */
2480         case 39:        /* stbu */
2481                 op->type = MKOP(STORE, u, 1);
2482                 op->ea = dform_ea(instr, regs);
2483                 break;
2484
2485         case 40:        /* lhz */
2486         case 41:        /* lhzu */
2487                 op->type = MKOP(LOAD, u, 2);
2488                 op->ea = dform_ea(instr, regs);
2489                 break;
2490
2491         case 42:        /* lha */
2492         case 43:        /* lhau */
2493                 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2494                 op->ea = dform_ea(instr, regs);
2495                 break;
2496
2497         case 44:        /* sth */
2498         case 45:        /* sthu */
2499                 op->type = MKOP(STORE, u, 2);
2500                 op->ea = dform_ea(instr, regs);
2501                 break;
2502
2503         case 46:        /* lmw */
2504                 if (ra >= rd)
2505                         break;          /* invalid form, ra in range to load */
2506                 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2507                 op->ea = dform_ea(instr, regs);
2508                 break;
2509
2510         case 47:        /* stmw */
2511                 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2512                 op->ea = dform_ea(instr, regs);
2513                 break;
2514
2515 #ifdef CONFIG_PPC_FPU
2516         case 48:        /* lfs */
2517         case 49:        /* lfsu */
2518                 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2519                 op->ea = dform_ea(instr, regs);
2520                 break;
2521
2522         case 50:        /* lfd */
2523         case 51:        /* lfdu */
2524                 op->type = MKOP(LOAD_FP, u, 8);
2525                 op->ea = dform_ea(instr, regs);
2526                 break;
2527
2528         case 52:        /* stfs */
2529         case 53:        /* stfsu */
2530                 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2531                 op->ea = dform_ea(instr, regs);
2532                 break;
2533
2534         case 54:        /* stfd */
2535         case 55:        /* stfdu */
2536                 op->type = MKOP(STORE_FP, u, 8);
2537                 op->ea = dform_ea(instr, regs);
2538                 break;
2539 #endif
2540
2541 #ifdef __powerpc64__
2542         case 56:        /* lq */
2543                 if (!((rd & 1) || (rd == ra)))
2544                         op->type = MKOP(LOAD, 0, 16);
2545                 op->ea = dqform_ea(instr, regs);
2546                 break;
2547 #endif
2548
2549 #ifdef CONFIG_VSX
2550         case 57:        /* lfdp, lxsd, lxssp */
2551                 op->ea = dsform_ea(instr, regs);
2552                 switch (instr & 3) {
2553                 case 0:         /* lfdp */
2554                         if (rd & 1)
2555                                 break;          /* reg must be even */
2556                         op->type = MKOP(LOAD_FP, 0, 16);
2557                         break;
2558                 case 2:         /* lxsd */
2559                         op->reg = rd + 32;
2560                         op->type = MKOP(LOAD_VSX, 0, 8);
2561                         op->element_size = 8;
2562                         op->vsx_flags = VSX_CHECK_VEC;
2563                         break;
2564                 case 3:         /* lxssp */
2565                         op->reg = rd + 32;
2566                         op->type = MKOP(LOAD_VSX, 0, 4);
2567                         op->element_size = 8;
2568                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2569                         break;
2570                 }
2571                 break;
2572 #endif /* CONFIG_VSX */
2573
2574 #ifdef __powerpc64__
2575         case 58:        /* ld[u], lwa */
2576                 op->ea = dsform_ea(instr, regs);
2577                 switch (instr & 3) {
2578                 case 0:         /* ld */
2579                         op->type = MKOP(LOAD, 0, 8);
2580                         break;
2581                 case 1:         /* ldu */
2582                         op->type = MKOP(LOAD, UPDATE, 8);
2583                         break;
2584                 case 2:         /* lwa */
2585                         op->type = MKOP(LOAD, SIGNEXT, 4);
2586                         break;
2587                 }
2588                 break;
2589 #endif
2590
2591 #ifdef CONFIG_VSX
2592         case 61:        /* stfdp, lxv, stxsd, stxssp, stxv */
2593                 switch (instr & 7) {
2594                 case 0:         /* stfdp with LSB of DS field = 0 */
2595                 case 4:         /* stfdp with LSB of DS field = 1 */
2596                         op->ea = dsform_ea(instr, regs);
2597                         op->type = MKOP(STORE_FP, 0, 16);
2598                         break;
2599
2600                 case 1:         /* lxv */
2601                         op->ea = dqform_ea(instr, regs);
2602                         if (instr & 8)
2603                                 op->reg = rd + 32;
2604                         op->type = MKOP(LOAD_VSX, 0, 16);
2605                         op->element_size = 16;
2606                         op->vsx_flags = VSX_CHECK_VEC;
2607                         break;
2608
2609                 case 2:         /* stxsd with LSB of DS field = 0 */
2610                 case 6:         /* stxsd with LSB of DS field = 1 */
2611                         op->ea = dsform_ea(instr, regs);
2612                         op->reg = rd + 32;
2613                         op->type = MKOP(STORE_VSX, 0, 8);
2614                         op->element_size = 8;
2615                         op->vsx_flags = VSX_CHECK_VEC;
2616                         break;
2617
2618                 case 3:         /* stxssp with LSB of DS field = 0 */
2619                 case 7:         /* stxssp with LSB of DS field = 1 */
2620                         op->ea = dsform_ea(instr, regs);
2621                         op->reg = rd + 32;
2622                         op->type = MKOP(STORE_VSX, 0, 4);
2623                         op->element_size = 8;
2624                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2625                         break;
2626
2627                 case 5:         /* stxv */
2628                         op->ea = dqform_ea(instr, regs);
2629                         if (instr & 8)
2630                                 op->reg = rd + 32;
2631                         op->type = MKOP(STORE_VSX, 0, 16);
2632                         op->element_size = 16;
2633                         op->vsx_flags = VSX_CHECK_VEC;
2634                         break;
2635                 }
2636                 break;
2637 #endif /* CONFIG_VSX */
2638
2639 #ifdef __powerpc64__
2640         case 62:        /* std[u] */
2641                 op->ea = dsform_ea(instr, regs);
2642                 switch (instr & 3) {
2643                 case 0:         /* std */
2644                         op->type = MKOP(STORE, 0, 8);
2645                         break;
2646                 case 1:         /* stdu */
2647                         op->type = MKOP(STORE, UPDATE, 8);
2648                         break;
2649                 case 2:         /* stq */
2650                         if (!(rd & 1))
2651                                 op->type = MKOP(STORE, 0, 16);
2652                         break;
2653                 }
2654                 break;
2655 #endif /* __powerpc64__ */
2656
2657         }
2658
2659 #ifdef CONFIG_VSX
2660         if ((GETTYPE(op->type) == LOAD_VSX ||
2661              GETTYPE(op->type) == STORE_VSX) &&
2662             !cpu_has_feature(CPU_FTR_VSX)) {
2663                 return -1;
2664         }
2665 #endif /* CONFIG_VSX */
2666
2667         return 0;
2668
2669  logical_done:
2670         if (instr & 1)
2671                 set_cr0(regs, op);
2672  logical_done_nocc:
2673         op->reg = ra;
2674         op->type |= SETREG;
2675         return 1;
2676
2677  arith_done:
2678         if (instr & 1)
2679                 set_cr0(regs, op);
2680  compute_done:
2681         op->reg = rd;
2682         op->type |= SETREG;
2683         return 1;
2684
2685  priv:
2686         op->type = INTERRUPT | 0x700;
2687         op->val = SRR1_PROGPRIV;
2688         return 0;
2689
2690  trap:
2691         op->type = INTERRUPT | 0x700;
2692         op->val = SRR1_PROGTRAP;
2693         return 0;
2694 }
2695 EXPORT_SYMBOL_GPL(analyse_instr);
2696 NOKPROBE_SYMBOL(analyse_instr);
2697
2698 /*
2699  * For PPC32 we always use stwu with r1 to change the stack pointer.
2700  * So this emulated store may corrupt the exception frame, now we
2701  * have to provide the exception frame trampoline, which is pushed
2702  * below the kprobed function stack. So we only update gpr[1] but
2703  * don't emulate the real store operation. We will do real store
2704  * operation safely in exception return code by checking this flag.
2705  */
2706 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
2707 {
2708 #ifdef CONFIG_PPC32
2709         /*
2710          * Check if we will touch kernel stack overflow
2711          */
2712         if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
2713                 printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
2714                 return -EINVAL;
2715         }
2716 #endif /* CONFIG_PPC32 */
2717         /*
2718          * Check if we already set since that means we'll
2719          * lose the previous value.
2720          */
2721         WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
2722         set_thread_flag(TIF_EMULATE_STACK_STORE);
2723         return 0;
2724 }
2725
2726 static nokprobe_inline void do_signext(unsigned long *valp, int size)
2727 {
2728         switch (size) {
2729         case 2:
2730                 *valp = (signed short) *valp;
2731                 break;
2732         case 4:
2733                 *valp = (signed int) *valp;
2734                 break;
2735         }
2736 }
2737
2738 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
2739 {
2740         switch (size) {
2741         case 2:
2742                 *valp = byterev_2(*valp);
2743                 break;
2744         case 4:
2745                 *valp = byterev_4(*valp);
2746                 break;
2747 #ifdef __powerpc64__
2748         case 8:
2749                 *valp = byterev_8(*valp);
2750                 break;
2751 #endif
2752         }
2753 }
2754
2755 /*
2756  * Emulate an instruction that can be executed just by updating
2757  * fields in *regs.
2758  */
2759 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
2760 {
2761         unsigned long next_pc;
2762
2763         next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
2764         switch (GETTYPE(op->type)) {
2765         case COMPUTE:
2766                 if (op->type & SETREG)
2767                         regs->gpr[op->reg] = op->val;
2768                 if (op->type & SETCC)
2769                         regs->ccr = op->ccval;
2770                 if (op->type & SETXER)
2771                         regs->xer = op->xerval;
2772                 break;
2773
2774         case BRANCH:
2775                 if (op->type & SETLK)
2776                         regs->link = next_pc;
2777                 if (op->type & BRTAKEN)
2778                         next_pc = op->val;
2779                 if (op->type & DECCTR)
2780                         --regs->ctr;
2781                 break;
2782
2783         case BARRIER:
2784                 switch (op->type & BARRIER_MASK) {
2785                 case BARRIER_SYNC:
2786                         mb();
2787                         break;
2788                 case BARRIER_ISYNC:
2789                         isync();
2790                         break;
2791                 case BARRIER_EIEIO:
2792                         eieio();
2793                         break;
2794                 case BARRIER_LWSYNC:
2795                         asm volatile("lwsync" : : : "memory");
2796                         break;
2797                 case BARRIER_PTESYNC:
2798                         asm volatile("ptesync" : : : "memory");
2799                         break;
2800                 }
2801                 break;
2802
2803         case MFSPR:
2804                 switch (op->spr) {
2805                 case SPRN_XER:
2806                         regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
2807                         break;
2808                 case SPRN_LR:
2809                         regs->gpr[op->reg] = regs->link;
2810                         break;
2811                 case SPRN_CTR:
2812                         regs->gpr[op->reg] = regs->ctr;
2813                         break;
2814                 default:
2815                         WARN_ON_ONCE(1);
2816                 }
2817                 break;
2818
2819         case MTSPR:
2820                 switch (op->spr) {
2821                 case SPRN_XER:
2822                         regs->xer = op->val & 0xffffffffUL;
2823                         break;
2824                 case SPRN_LR:
2825                         regs->link = op->val;
2826                         break;
2827                 case SPRN_CTR:
2828                         regs->ctr = op->val;
2829                         break;
2830                 default:
2831                         WARN_ON_ONCE(1);
2832                 }
2833                 break;
2834
2835         default:
2836                 WARN_ON_ONCE(1);
2837         }
2838         regs->nip = next_pc;
2839 }
2840 NOKPROBE_SYMBOL(emulate_update_regs);
2841
2842 /*
2843  * Emulate a previously-analysed load or store instruction.
2844  * Return values are:
2845  * 0 = instruction emulated successfully
2846  * -EFAULT = address out of range or access faulted (regs->dar
2847  *           contains the faulting address)
2848  * -EACCES = misaligned access, instruction requires alignment
2849  * -EINVAL = unknown operation in *op
2850  */
2851 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
2852 {
2853         int err, size, type;
2854         int i, rd, nb;
2855         unsigned int cr;
2856         unsigned long val;
2857         unsigned long ea;
2858         bool cross_endian;
2859
2860         err = 0;
2861         size = GETSIZE(op->type);
2862         type = GETTYPE(op->type);
2863         cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
2864         ea = truncate_if_32bit(regs->msr, op->ea);
2865
2866         switch (type) {
2867         case LARX:
2868                 if (ea & (size - 1))
2869                         return -EACCES;         /* can't handle misaligned */
2870                 if (!address_ok(regs, ea, size))
2871                         return -EFAULT;
2872                 err = 0;
2873                 val = 0;
2874                 switch (size) {
2875 #ifdef __powerpc64__
2876                 case 1:
2877                         __get_user_asmx(val, ea, err, "lbarx");
2878                         break;
2879                 case 2:
2880                         __get_user_asmx(val, ea, err, "lharx");
2881                         break;
2882 #endif
2883                 case 4:
2884                         __get_user_asmx(val, ea, err, "lwarx");
2885                         break;
2886 #ifdef __powerpc64__
2887                 case 8:
2888                         __get_user_asmx(val, ea, err, "ldarx");
2889                         break;
2890                 case 16:
2891                         err = do_lqarx(ea, &regs->gpr[op->reg]);
2892                         break;
2893 #endif
2894                 default:
2895                         return -EINVAL;
2896                 }
2897                 if (err) {
2898                         regs->dar = ea;
2899                         break;
2900                 }
2901                 if (size < 16)
2902                         regs->gpr[op->reg] = val;
2903                 break;
2904
2905         case STCX:
2906                 if (ea & (size - 1))
2907                         return -EACCES;         /* can't handle misaligned */
2908                 if (!address_ok(regs, ea, size))
2909                         return -EFAULT;
2910                 err = 0;
2911                 switch (size) {
2912 #ifdef __powerpc64__
2913                 case 1:
2914                         __put_user_asmx(op->val, ea, err, "stbcx.", cr);
2915                         break;
2916                 case 2:
2917                         __put_user_asmx(op->val, ea, err, "stbcx.", cr);
2918                         break;
2919 #endif
2920                 case 4:
2921                         __put_user_asmx(op->val, ea, err, "stwcx.", cr);
2922                         break;
2923 #ifdef __powerpc64__
2924                 case 8:
2925                         __put_user_asmx(op->val, ea, err, "stdcx.", cr);
2926                         break;
2927                 case 16:
2928                         err = do_stqcx(ea, regs->gpr[op->reg],
2929                                        regs->gpr[op->reg + 1], &cr);
2930                         break;
2931 #endif
2932                 default:
2933                         return -EINVAL;
2934                 }
2935                 if (!err)
2936                         regs->ccr = (regs->ccr & 0x0fffffff) |
2937                                 (cr & 0xe0000000) |
2938                                 ((regs->xer >> 3) & 0x10000000);
2939                 else
2940                         regs->dar = ea;
2941                 break;
2942
2943         case LOAD:
2944 #ifdef __powerpc64__
2945                 if (size == 16) {
2946                         err = emulate_lq(regs, ea, op->reg, cross_endian);
2947                         break;
2948                 }
2949 #endif
2950                 err = read_mem(&regs->gpr[op->reg], ea, size, regs);
2951                 if (!err) {
2952                         if (op->type & SIGNEXT)
2953                                 do_signext(&regs->gpr[op->reg], size);
2954                         if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
2955                                 do_byterev(&regs->gpr[op->reg], size);
2956                 }
2957                 break;
2958
2959 #ifdef CONFIG_PPC_FPU
2960         case LOAD_FP:
2961                 /*
2962                  * If the instruction is in userspace, we can emulate it even
2963                  * if the VMX state is not live, because we have the state
2964                  * stored in the thread_struct.  If the instruction is in
2965                  * the kernel, we must not touch the state in the thread_struct.
2966                  */
2967                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2968                         return 0;
2969                 err = do_fp_load(op, ea, regs, cross_endian);
2970                 break;
2971 #endif
2972 #ifdef CONFIG_ALTIVEC
2973         case LOAD_VMX:
2974                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2975                         return 0;
2976                 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
2977                 break;
2978 #endif
2979 #ifdef CONFIG_VSX
2980         case LOAD_VSX: {
2981                 unsigned long msrbit = MSR_VSX;
2982
2983                 /*
2984                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2985                  * when the target of the instruction is a vector register.
2986                  */
2987                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2988                         msrbit = MSR_VEC;
2989                 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2990                         return 0;
2991                 err = do_vsx_load(op, ea, regs, cross_endian);
2992                 break;
2993         }
2994 #endif
2995         case LOAD_MULTI:
2996                 if (!address_ok(regs, ea, size))
2997                         return -EFAULT;
2998                 rd = op->reg;
2999                 for (i = 0; i < size; i += 4) {
3000                         unsigned int v32 = 0;
3001
3002                         nb = size - i;
3003                         if (nb > 4)
3004                                 nb = 4;
3005                         err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3006                         if (err)
3007                                 break;
3008                         if (unlikely(cross_endian))
3009                                 v32 = byterev_4(v32);
3010                         regs->gpr[rd] = v32;
3011                         ea += 4;
3012                         /* reg number wraps from 31 to 0 for lsw[ix] */
3013                         rd = (rd + 1) & 0x1f;
3014                 }
3015                 break;
3016
3017         case STORE:
3018 #ifdef __powerpc64__
3019                 if (size == 16) {
3020                         err = emulate_stq(regs, ea, op->reg, cross_endian);
3021                         break;
3022                 }
3023 #endif
3024                 if ((op->type & UPDATE) && size == sizeof(long) &&
3025                     op->reg == 1 && op->update_reg == 1 &&
3026                     !(regs->msr & MSR_PR) &&
3027                     ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3028                         err = handle_stack_update(ea, regs);
3029                         break;
3030                 }
3031                 if (unlikely(cross_endian))
3032                         do_byterev(&op->val, size);
3033                 err = write_mem(op->val, ea, size, regs);
3034                 break;
3035
3036 #ifdef CONFIG_PPC_FPU
3037         case STORE_FP:
3038                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3039                         return 0;
3040                 err = do_fp_store(op, ea, regs, cross_endian);
3041                 break;
3042 #endif
3043 #ifdef CONFIG_ALTIVEC
3044         case STORE_VMX:
3045                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3046                         return 0;
3047                 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3048                 break;
3049 #endif
3050 #ifdef CONFIG_VSX
3051         case STORE_VSX: {
3052                 unsigned long msrbit = MSR_VSX;
3053
3054                 /*
3055                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3056                  * when the target of the instruction is a vector register.
3057                  */
3058                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3059                         msrbit = MSR_VEC;
3060                 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3061                         return 0;
3062                 err = do_vsx_store(op, ea, regs, cross_endian);
3063                 break;
3064         }
3065 #endif
3066         case STORE_MULTI:
3067                 if (!address_ok(regs, ea, size))
3068                         return -EFAULT;
3069                 rd = op->reg;
3070                 for (i = 0; i < size; i += 4) {
3071                         unsigned int v32 = regs->gpr[rd];
3072
3073                         nb = size - i;
3074                         if (nb > 4)
3075                                 nb = 4;
3076                         if (unlikely(cross_endian))
3077                                 v32 = byterev_4(v32);
3078                         err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3079                         if (err)
3080                                 break;
3081                         ea += 4;
3082                         /* reg number wraps from 31 to 0 for stsw[ix] */
3083                         rd = (rd + 1) & 0x1f;
3084                 }
3085                 break;
3086
3087         default:
3088                 return -EINVAL;
3089         }
3090
3091         if (err)
3092                 return err;
3093
3094         if (op->type & UPDATE)
3095                 regs->gpr[op->update_reg] = op->ea;
3096
3097         return 0;
3098 }
3099 NOKPROBE_SYMBOL(emulate_loadstore);
3100
3101 /*
3102  * Emulate instructions that cause a transfer of control,
3103  * loads and stores, and a few other instructions.
3104  * Returns 1 if the step was emulated, 0 if not,
3105  * or -1 if the instruction is one that should not be stepped,
3106  * such as an rfid, or a mtmsrd that would clear MSR_RI.
3107  */
3108 int emulate_step(struct pt_regs *regs, unsigned int instr)
3109 {
3110         struct instruction_op op;
3111         int r, err, type;
3112         unsigned long val;
3113         unsigned long ea;
3114
3115         r = analyse_instr(&op, regs, instr);
3116         if (r < 0)
3117                 return r;
3118         if (r > 0) {
3119                 emulate_update_regs(regs, &op);
3120                 return 1;
3121         }
3122
3123         err = 0;
3124         type = GETTYPE(op.type);
3125
3126         if (OP_IS_LOAD_STORE(type)) {
3127                 err = emulate_loadstore(regs, &op);
3128                 if (err)
3129                         return 0;
3130                 goto instr_done;
3131         }
3132
3133         switch (type) {
3134         case CACHEOP:
3135                 ea = truncate_if_32bit(regs->msr, op.ea);
3136                 if (!address_ok(regs, ea, 8))
3137                         return 0;
3138                 switch (op.type & CACHEOP_MASK) {
3139                 case DCBST:
3140                         __cacheop_user_asmx(ea, err, "dcbst");
3141                         break;
3142                 case DCBF:
3143                         __cacheop_user_asmx(ea, err, "dcbf");
3144                         break;
3145                 case DCBTST:
3146                         if (op.reg == 0)
3147                                 prefetchw((void *) ea);
3148                         break;
3149                 case DCBT:
3150                         if (op.reg == 0)
3151                                 prefetch((void *) ea);
3152                         break;
3153                 case ICBI:
3154                         __cacheop_user_asmx(ea, err, "icbi");
3155                         break;
3156                 case DCBZ:
3157                         err = emulate_dcbz(ea, regs);
3158                         break;
3159                 }
3160                 if (err) {
3161                         regs->dar = ea;
3162                         return 0;
3163                 }
3164                 goto instr_done;
3165
3166         case MFMSR:
3167                 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3168                 goto instr_done;
3169
3170         case MTMSR:
3171                 val = regs->gpr[op.reg];
3172                 if ((val & MSR_RI) == 0)
3173                         /* can't step mtmsr[d] that would clear MSR_RI */
3174                         return -1;
3175                 /* here op.val is the mask of bits to change */
3176                 regs->msr = (regs->msr & ~op.val) | (val & op.val);
3177                 goto instr_done;
3178
3179 #ifdef CONFIG_PPC64
3180         case SYSCALL:   /* sc */
3181                 /*
3182                  * N.B. this uses knowledge about how the syscall
3183                  * entry code works.  If that is changed, this will
3184                  * need to be changed also.
3185                  */
3186                 if (regs->gpr[0] == 0x1ebe &&
3187                     cpu_has_feature(CPU_FTR_REAL_LE)) {
3188                         regs->msr ^= MSR_LE;
3189                         goto instr_done;
3190                 }
3191                 regs->gpr[9] = regs->gpr[13];
3192                 regs->gpr[10] = MSR_KERNEL;
3193                 regs->gpr[11] = regs->nip + 4;
3194                 regs->gpr[12] = regs->msr & MSR_MASK;
3195                 regs->gpr[13] = (unsigned long) get_paca();
3196                 regs->nip = (unsigned long) &system_call_common;
3197                 regs->msr = MSR_KERNEL;
3198                 return 1;
3199
3200         case RFI:
3201                 return -1;
3202 #endif
3203         }
3204         return 0;
3205
3206  instr_done:
3207         regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
3208         return 1;
3209 }
3210 NOKPROBE_SYMBOL(emulate_step);