Merge branch 'kvm-late-6.1' into HEAD
[linux-block.git] / arch / powerpc / lib / code-patching.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright 2008 Michael Ellerman, IBM Corporation.
4  */
5
6 #include <linux/kprobes.h>
7 #include <linux/mmu_context.h>
8 #include <linux/random.h>
9 #include <linux/vmalloc.h>
10 #include <linux/init.h>
11 #include <linux/cpuhotplug.h>
12 #include <linux/uaccess.h>
13 #include <linux/jump_label.h>
14
15 #include <asm/debug.h>
16 #include <asm/pgalloc.h>
17 #include <asm/tlb.h>
18 #include <asm/tlbflush.h>
19 #include <asm/page.h>
20 #include <asm/code-patching.h>
21 #include <asm/inst.h>
22
23 static int __patch_instruction(u32 *exec_addr, ppc_inst_t instr, u32 *patch_addr)
24 {
25         if (!ppc_inst_prefixed(instr)) {
26                 u32 val = ppc_inst_val(instr);
27
28                 __put_kernel_nofault(patch_addr, &val, u32, failed);
29         } else {
30                 u64 val = ppc_inst_as_ulong(instr);
31
32                 __put_kernel_nofault(patch_addr, &val, u64, failed);
33         }
34
35         asm ("dcbst 0, %0; sync; icbi 0,%1; sync; isync" :: "r" (patch_addr),
36                                                             "r" (exec_addr));
37
38         return 0;
39
40 failed:
41         return -EPERM;
42 }
43
44 int raw_patch_instruction(u32 *addr, ppc_inst_t instr)
45 {
46         return __patch_instruction(addr, instr, addr);
47 }
48
49 struct patch_context {
50         union {
51                 struct vm_struct *area;
52                 struct mm_struct *mm;
53         };
54         unsigned long addr;
55         pte_t *pte;
56 };
57
58 static DEFINE_PER_CPU(struct patch_context, cpu_patching_context);
59
60 static int map_patch_area(void *addr, unsigned long text_poke_addr);
61 static void unmap_patch_area(unsigned long addr);
62
63 static bool mm_patch_enabled(void)
64 {
65         return IS_ENABLED(CONFIG_SMP) && radix_enabled();
66 }
67
68 /*
69  * The following applies for Radix MMU. Hash MMU has different requirements,
70  * and so is not supported.
71  *
72  * Changing mm requires context synchronising instructions on both sides of
73  * the context switch, as well as a hwsync between the last instruction for
74  * which the address of an associated storage access was translated using
75  * the current context.
76  *
77  * switch_mm_irqs_off() performs an isync after the context switch. It is
78  * the responsibility of the caller to perform the CSI and hwsync before
79  * starting/stopping the temp mm.
80  */
81 static struct mm_struct *start_using_temp_mm(struct mm_struct *temp_mm)
82 {
83         struct mm_struct *orig_mm = current->active_mm;
84
85         lockdep_assert_irqs_disabled();
86         switch_mm_irqs_off(orig_mm, temp_mm, current);
87
88         WARN_ON(!mm_is_thread_local(temp_mm));
89
90         suspend_breakpoints();
91         return orig_mm;
92 }
93
94 static void stop_using_temp_mm(struct mm_struct *temp_mm,
95                                struct mm_struct *orig_mm)
96 {
97         lockdep_assert_irqs_disabled();
98         switch_mm_irqs_off(temp_mm, orig_mm, current);
99         restore_breakpoints();
100 }
101
102 static int text_area_cpu_up(unsigned int cpu)
103 {
104         struct vm_struct *area;
105         unsigned long addr;
106         int err;
107
108         area = get_vm_area(PAGE_SIZE, VM_ALLOC);
109         if (!area) {
110                 WARN_ONCE(1, "Failed to create text area for cpu %d\n",
111                         cpu);
112                 return -1;
113         }
114
115         // Map/unmap the area to ensure all page tables are pre-allocated
116         addr = (unsigned long)area->addr;
117         err = map_patch_area(empty_zero_page, addr);
118         if (err)
119                 return err;
120
121         unmap_patch_area(addr);
122
123         this_cpu_write(cpu_patching_context.area, area);
124         this_cpu_write(cpu_patching_context.addr, addr);
125         this_cpu_write(cpu_patching_context.pte, virt_to_kpte(addr));
126
127         return 0;
128 }
129
130 static int text_area_cpu_down(unsigned int cpu)
131 {
132         free_vm_area(this_cpu_read(cpu_patching_context.area));
133         this_cpu_write(cpu_patching_context.area, NULL);
134         this_cpu_write(cpu_patching_context.addr, 0);
135         this_cpu_write(cpu_patching_context.pte, NULL);
136         return 0;
137 }
138
139 static void put_patching_mm(struct mm_struct *mm, unsigned long patching_addr)
140 {
141         struct mmu_gather tlb;
142
143         tlb_gather_mmu(&tlb, mm);
144         free_pgd_range(&tlb, patching_addr, patching_addr + PAGE_SIZE, 0, 0);
145         mmput(mm);
146 }
147
148 static int text_area_cpu_up_mm(unsigned int cpu)
149 {
150         struct mm_struct *mm;
151         unsigned long addr;
152         pte_t *pte;
153         spinlock_t *ptl;
154
155         mm = mm_alloc();
156         if (WARN_ON(!mm))
157                 goto fail_no_mm;
158
159         /*
160          * Choose a random page-aligned address from the interval
161          * [PAGE_SIZE .. DEFAULT_MAP_WINDOW - PAGE_SIZE].
162          * The lower address bound is PAGE_SIZE to avoid the zero-page.
163          */
164         addr = (1 + (get_random_long() % (DEFAULT_MAP_WINDOW / PAGE_SIZE - 2))) << PAGE_SHIFT;
165
166         /*
167          * PTE allocation uses GFP_KERNEL which means we need to
168          * pre-allocate the PTE here because we cannot do the
169          * allocation during patching when IRQs are disabled.
170          *
171          * Using get_locked_pte() to avoid open coding, the lock
172          * is unnecessary.
173          */
174         pte = get_locked_pte(mm, addr, &ptl);
175         if (!pte)
176                 goto fail_no_pte;
177         pte_unmap_unlock(pte, ptl);
178
179         this_cpu_write(cpu_patching_context.mm, mm);
180         this_cpu_write(cpu_patching_context.addr, addr);
181
182         return 0;
183
184 fail_no_pte:
185         put_patching_mm(mm, addr);
186 fail_no_mm:
187         return -ENOMEM;
188 }
189
190 static int text_area_cpu_down_mm(unsigned int cpu)
191 {
192         put_patching_mm(this_cpu_read(cpu_patching_context.mm),
193                         this_cpu_read(cpu_patching_context.addr));
194
195         this_cpu_write(cpu_patching_context.mm, NULL);
196         this_cpu_write(cpu_patching_context.addr, 0);
197
198         return 0;
199 }
200
201 static __ro_after_init DEFINE_STATIC_KEY_FALSE(poking_init_done);
202
203 void __init poking_init(void)
204 {
205         int ret;
206
207         if (!IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
208                 return;
209
210         if (mm_patch_enabled())
211                 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
212                                         "powerpc/text_poke_mm:online",
213                                         text_area_cpu_up_mm,
214                                         text_area_cpu_down_mm);
215         else
216                 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
217                                         "powerpc/text_poke:online",
218                                         text_area_cpu_up,
219                                         text_area_cpu_down);
220
221         /* cpuhp_setup_state returns >= 0 on success */
222         if (WARN_ON(ret < 0))
223                 return;
224
225         static_branch_enable(&poking_init_done);
226 }
227
228 static unsigned long get_patch_pfn(void *addr)
229 {
230         if (IS_ENABLED(CONFIG_MODULES) && is_vmalloc_or_module_addr(addr))
231                 return vmalloc_to_pfn(addr);
232         else
233                 return __pa_symbol(addr) >> PAGE_SHIFT;
234 }
235
236 /*
237  * This can be called for kernel text or a module.
238  */
239 static int map_patch_area(void *addr, unsigned long text_poke_addr)
240 {
241         unsigned long pfn = get_patch_pfn(addr);
242
243         return map_kernel_page(text_poke_addr, (pfn << PAGE_SHIFT), PAGE_KERNEL);
244 }
245
246 static void unmap_patch_area(unsigned long addr)
247 {
248         pte_t *ptep;
249         pmd_t *pmdp;
250         pud_t *pudp;
251         p4d_t *p4dp;
252         pgd_t *pgdp;
253
254         pgdp = pgd_offset_k(addr);
255         if (WARN_ON(pgd_none(*pgdp)))
256                 return;
257
258         p4dp = p4d_offset(pgdp, addr);
259         if (WARN_ON(p4d_none(*p4dp)))
260                 return;
261
262         pudp = pud_offset(p4dp, addr);
263         if (WARN_ON(pud_none(*pudp)))
264                 return;
265
266         pmdp = pmd_offset(pudp, addr);
267         if (WARN_ON(pmd_none(*pmdp)))
268                 return;
269
270         ptep = pte_offset_kernel(pmdp, addr);
271         if (WARN_ON(pte_none(*ptep)))
272                 return;
273
274         /*
275          * In hash, pte_clear flushes the tlb, in radix, we have to
276          */
277         pte_clear(&init_mm, addr, ptep);
278         flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
279 }
280
281 static int __do_patch_instruction_mm(u32 *addr, ppc_inst_t instr)
282 {
283         int err;
284         u32 *patch_addr;
285         unsigned long text_poke_addr;
286         pte_t *pte;
287         unsigned long pfn = get_patch_pfn(addr);
288         struct mm_struct *patching_mm;
289         struct mm_struct *orig_mm;
290         spinlock_t *ptl;
291
292         patching_mm = __this_cpu_read(cpu_patching_context.mm);
293         text_poke_addr = __this_cpu_read(cpu_patching_context.addr);
294         patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
295
296         pte = get_locked_pte(patching_mm, text_poke_addr, &ptl);
297         if (!pte)
298                 return -ENOMEM;
299
300         __set_pte_at(patching_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
301
302         /* order PTE update before use, also serves as the hwsync */
303         asm volatile("ptesync": : :"memory");
304
305         /* order context switch after arbitrary prior code */
306         isync();
307
308         orig_mm = start_using_temp_mm(patching_mm);
309
310         err = __patch_instruction(addr, instr, patch_addr);
311
312         /* hwsync performed by __patch_instruction (sync) if successful */
313         if (err)
314                 mb();  /* sync */
315
316         /* context synchronisation performed by __patch_instruction (isync or exception) */
317         stop_using_temp_mm(patching_mm, orig_mm);
318
319         pte_clear(patching_mm, text_poke_addr, pte);
320         /*
321          * ptesync to order PTE update before TLB invalidation done
322          * by radix__local_flush_tlb_page_psize (in _tlbiel_va)
323          */
324         local_flush_tlb_page_psize(patching_mm, text_poke_addr, mmu_virtual_psize);
325
326         pte_unmap_unlock(pte, ptl);
327
328         return err;
329 }
330
331 static int __do_patch_instruction(u32 *addr, ppc_inst_t instr)
332 {
333         int err;
334         u32 *patch_addr;
335         unsigned long text_poke_addr;
336         pte_t *pte;
337         unsigned long pfn = get_patch_pfn(addr);
338
339         text_poke_addr = (unsigned long)__this_cpu_read(cpu_patching_context.addr) & PAGE_MASK;
340         patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
341
342         pte = __this_cpu_read(cpu_patching_context.pte);
343         __set_pte_at(&init_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
344         /* See ptesync comment in radix__set_pte_at() */
345         if (radix_enabled())
346                 asm volatile("ptesync": : :"memory");
347
348         err = __patch_instruction(addr, instr, patch_addr);
349
350         pte_clear(&init_mm, text_poke_addr, pte);
351         flush_tlb_kernel_range(text_poke_addr, text_poke_addr + PAGE_SIZE);
352
353         return err;
354 }
355
356 int patch_instruction(u32 *addr, ppc_inst_t instr)
357 {
358         int err;
359         unsigned long flags;
360
361         /*
362          * During early early boot patch_instruction is called
363          * when text_poke_area is not ready, but we still need
364          * to allow patching. We just do the plain old patching
365          */
366         if (!IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) ||
367             !static_branch_likely(&poking_init_done))
368                 return raw_patch_instruction(addr, instr);
369
370         local_irq_save(flags);
371         if (mm_patch_enabled())
372                 err = __do_patch_instruction_mm(addr, instr);
373         else
374                 err = __do_patch_instruction(addr, instr);
375         local_irq_restore(flags);
376
377         return err;
378 }
379 NOKPROBE_SYMBOL(patch_instruction);
380
381 int patch_branch(u32 *addr, unsigned long target, int flags)
382 {
383         ppc_inst_t instr;
384
385         if (create_branch(&instr, addr, target, flags))
386                 return -ERANGE;
387
388         return patch_instruction(addr, instr);
389 }
390
391 /*
392  * Helper to check if a given instruction is a conditional branch
393  * Derived from the conditional checks in analyse_instr()
394  */
395 bool is_conditional_branch(ppc_inst_t instr)
396 {
397         unsigned int opcode = ppc_inst_primary_opcode(instr);
398
399         if (opcode == 16)       /* bc, bca, bcl, bcla */
400                 return true;
401         if (opcode == 19) {
402                 switch ((ppc_inst_val(instr) >> 1) & 0x3ff) {
403                 case 16:        /* bclr, bclrl */
404                 case 528:       /* bcctr, bcctrl */
405                 case 560:       /* bctar, bctarl */
406                         return true;
407                 }
408         }
409         return false;
410 }
411 NOKPROBE_SYMBOL(is_conditional_branch);
412
413 int create_cond_branch(ppc_inst_t *instr, const u32 *addr,
414                        unsigned long target, int flags)
415 {
416         long offset;
417
418         offset = target;
419         if (! (flags & BRANCH_ABSOLUTE))
420                 offset = offset - (unsigned long)addr;
421
422         /* Check we can represent the target in the instruction format */
423         if (!is_offset_in_cond_branch_range(offset))
424                 return 1;
425
426         /* Mask out the flags and target, so they don't step on each other. */
427         *instr = ppc_inst(0x40000000 | (flags & 0x3FF0003) | (offset & 0xFFFC));
428
429         return 0;
430 }
431
432 int instr_is_relative_branch(ppc_inst_t instr)
433 {
434         if (ppc_inst_val(instr) & BRANCH_ABSOLUTE)
435                 return 0;
436
437         return instr_is_branch_iform(instr) || instr_is_branch_bform(instr);
438 }
439
440 int instr_is_relative_link_branch(ppc_inst_t instr)
441 {
442         return instr_is_relative_branch(instr) && (ppc_inst_val(instr) & BRANCH_SET_LINK);
443 }
444
445 static unsigned long branch_iform_target(const u32 *instr)
446 {
447         signed long imm;
448
449         imm = ppc_inst_val(ppc_inst_read(instr)) & 0x3FFFFFC;
450
451         /* If the top bit of the immediate value is set this is negative */
452         if (imm & 0x2000000)
453                 imm -= 0x4000000;
454
455         if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0)
456                 imm += (unsigned long)instr;
457
458         return (unsigned long)imm;
459 }
460
461 static unsigned long branch_bform_target(const u32 *instr)
462 {
463         signed long imm;
464
465         imm = ppc_inst_val(ppc_inst_read(instr)) & 0xFFFC;
466
467         /* If the top bit of the immediate value is set this is negative */
468         if (imm & 0x8000)
469                 imm -= 0x10000;
470
471         if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0)
472                 imm += (unsigned long)instr;
473
474         return (unsigned long)imm;
475 }
476
477 unsigned long branch_target(const u32 *instr)
478 {
479         if (instr_is_branch_iform(ppc_inst_read(instr)))
480                 return branch_iform_target(instr);
481         else if (instr_is_branch_bform(ppc_inst_read(instr)))
482                 return branch_bform_target(instr);
483
484         return 0;
485 }
486
487 int translate_branch(ppc_inst_t *instr, const u32 *dest, const u32 *src)
488 {
489         unsigned long target;
490         target = branch_target(src);
491
492         if (instr_is_branch_iform(ppc_inst_read(src)))
493                 return create_branch(instr, dest, target,
494                                      ppc_inst_val(ppc_inst_read(src)));
495         else if (instr_is_branch_bform(ppc_inst_read(src)))
496                 return create_cond_branch(instr, dest, target,
497                                           ppc_inst_val(ppc_inst_read(src)));
498
499         return 1;
500 }