Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-block.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5  */
6
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/highmem.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/srcu.h>
17 #include <linux/anon_inodes.h>
18 #include <linux/file.h>
19 #include <linux/debugfs.h>
20
21 #include <asm/kvm_ppc.h>
22 #include <asm/kvm_book3s.h>
23 #include <asm/book3s/64/mmu-hash.h>
24 #include <asm/hvcall.h>
25 #include <asm/synch.h>
26 #include <asm/ppc-opcode.h>
27 #include <asm/cputable.h>
28 #include <asm/pte-walk.h>
29
30 #include "book3s.h"
31 #include "trace_hv.h"
32
33 //#define DEBUG_RESIZE_HPT      1
34
35 #ifdef DEBUG_RESIZE_HPT
36 #define resize_hpt_debug(resize, ...)                           \
37         do {                                                    \
38                 printk(KERN_DEBUG "RESIZE HPT %p: ", resize);   \
39                 printk(__VA_ARGS__);                            \
40         } while (0)
41 #else
42 #define resize_hpt_debug(resize, ...)                           \
43         do { } while (0)
44 #endif
45
46 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
47                                 long pte_index, unsigned long pteh,
48                                 unsigned long ptel, unsigned long *pte_idx_ret);
49
50 struct kvm_resize_hpt {
51         /* These fields read-only after init */
52         struct kvm *kvm;
53         struct work_struct work;
54         u32 order;
55
56         /* These fields protected by kvm->arch.mmu_setup_lock */
57
58         /* Possible values and their usage:
59          *  <0     an error occurred during allocation,
60          *  -EBUSY allocation is in the progress,
61          *  0      allocation made successfuly.
62          */
63         int error;
64
65         /* Private to the work thread, until error != -EBUSY,
66          * then protected by kvm->arch.mmu_setup_lock.
67          */
68         struct kvm_hpt_info hpt;
69 };
70
71 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
72 {
73         unsigned long hpt = 0;
74         int cma = 0;
75         struct page *page = NULL;
76         struct revmap_entry *rev;
77         unsigned long npte;
78
79         if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
80                 return -EINVAL;
81
82         page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
83         if (page) {
84                 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
85                 memset((void *)hpt, 0, (1ul << order));
86                 cma = 1;
87         }
88
89         if (!hpt)
90                 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
91                                        |__GFP_NOWARN, order - PAGE_SHIFT);
92
93         if (!hpt)
94                 return -ENOMEM;
95
96         /* HPTEs are 2**4 bytes long */
97         npte = 1ul << (order - 4);
98
99         /* Allocate reverse map array */
100         rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
101         if (!rev) {
102                 if (cma)
103                         kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
104                 else
105                         free_pages(hpt, order - PAGE_SHIFT);
106                 return -ENOMEM;
107         }
108
109         info->order = order;
110         info->virt = hpt;
111         info->cma = cma;
112         info->rev = rev;
113
114         return 0;
115 }
116
117 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
118 {
119         atomic64_set(&kvm->arch.mmio_update, 0);
120         kvm->arch.hpt = *info;
121         kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
122
123         pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
124                  info->virt, (long)info->order, kvm->arch.lpid);
125 }
126
127 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
128 {
129         long err = -EBUSY;
130         struct kvm_hpt_info info;
131
132         mutex_lock(&kvm->arch.mmu_setup_lock);
133         if (kvm->arch.mmu_ready) {
134                 kvm->arch.mmu_ready = 0;
135                 /* order mmu_ready vs. vcpus_running */
136                 smp_mb();
137                 if (atomic_read(&kvm->arch.vcpus_running)) {
138                         kvm->arch.mmu_ready = 1;
139                         goto out;
140                 }
141         }
142         if (kvm_is_radix(kvm)) {
143                 err = kvmppc_switch_mmu_to_hpt(kvm);
144                 if (err)
145                         goto out;
146         }
147
148         if (kvm->arch.hpt.order == order) {
149                 /* We already have a suitable HPT */
150
151                 /* Set the entire HPT to 0, i.e. invalid HPTEs */
152                 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
153                 /*
154                  * Reset all the reverse-mapping chains for all memslots
155                  */
156                 kvmppc_rmap_reset(kvm);
157                 err = 0;
158                 goto out;
159         }
160
161         if (kvm->arch.hpt.virt) {
162                 kvmppc_free_hpt(&kvm->arch.hpt);
163                 kvmppc_rmap_reset(kvm);
164         }
165
166         err = kvmppc_allocate_hpt(&info, order);
167         if (err < 0)
168                 goto out;
169         kvmppc_set_hpt(kvm, &info);
170
171 out:
172         if (err == 0)
173                 /* Ensure that each vcpu will flush its TLB on next entry. */
174                 cpumask_setall(&kvm->arch.need_tlb_flush);
175
176         mutex_unlock(&kvm->arch.mmu_setup_lock);
177         return err;
178 }
179
180 void kvmppc_free_hpt(struct kvm_hpt_info *info)
181 {
182         vfree(info->rev);
183         info->rev = NULL;
184         if (info->cma)
185                 kvm_free_hpt_cma(virt_to_page(info->virt),
186                                  1 << (info->order - PAGE_SHIFT));
187         else if (info->virt)
188                 free_pages(info->virt, info->order - PAGE_SHIFT);
189         info->virt = 0;
190         info->order = 0;
191 }
192
193 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
194 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
195 {
196         return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
197 }
198
199 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
200 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
201 {
202         return (pgsize == 0x10000) ? 0x1000 : 0;
203 }
204
205 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
206                      unsigned long porder)
207 {
208         unsigned long i;
209         unsigned long npages;
210         unsigned long hp_v, hp_r;
211         unsigned long addr, hash;
212         unsigned long psize;
213         unsigned long hp0, hp1;
214         unsigned long idx_ret;
215         long ret;
216         struct kvm *kvm = vcpu->kvm;
217
218         psize = 1ul << porder;
219         npages = memslot->npages >> (porder - PAGE_SHIFT);
220
221         /* VRMA can't be > 1TB */
222         if (npages > 1ul << (40 - porder))
223                 npages = 1ul << (40 - porder);
224         /* Can't use more than 1 HPTE per HPTEG */
225         if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
226                 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
227
228         hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
229                 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
230         hp1 = hpte1_pgsize_encoding(psize) |
231                 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
232
233         for (i = 0; i < npages; ++i) {
234                 addr = i << porder;
235                 /* can't use hpt_hash since va > 64 bits */
236                 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
237                         & kvmppc_hpt_mask(&kvm->arch.hpt);
238                 /*
239                  * We assume that the hash table is empty and no
240                  * vcpus are using it at this stage.  Since we create
241                  * at most one HPTE per HPTEG, we just assume entry 7
242                  * is available and use it.
243                  */
244                 hash = (hash << 3) + 7;
245                 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
246                 hp_r = hp1 | addr;
247                 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
248                                                  &idx_ret);
249                 if (ret != H_SUCCESS) {
250                         pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
251                                addr, ret);
252                         break;
253                 }
254         }
255 }
256
257 int kvmppc_mmu_hv_init(void)
258 {
259         unsigned long host_lpid, rsvd_lpid;
260
261         if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
262                 return -EINVAL;
263
264         host_lpid = 0;
265         if (cpu_has_feature(CPU_FTR_HVMODE))
266                 host_lpid = mfspr(SPRN_LPID);
267
268         /* POWER8 and above have 12-bit LPIDs (10-bit in POWER7) */
269         if (cpu_has_feature(CPU_FTR_ARCH_207S))
270                 rsvd_lpid = LPID_RSVD;
271         else
272                 rsvd_lpid = LPID_RSVD_POWER7;
273
274         kvmppc_init_lpid(rsvd_lpid + 1);
275
276         kvmppc_claim_lpid(host_lpid);
277         /* rsvd_lpid is reserved for use in partition switching */
278         kvmppc_claim_lpid(rsvd_lpid);
279
280         return 0;
281 }
282
283 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
284                                 long pte_index, unsigned long pteh,
285                                 unsigned long ptel, unsigned long *pte_idx_ret)
286 {
287         long ret;
288
289         preempt_disable();
290         ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
291                                 kvm->mm->pgd, false, pte_idx_ret);
292         preempt_enable();
293         if (ret == H_TOO_HARD) {
294                 /* this can't happen */
295                 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
296                 ret = H_RESOURCE;       /* or something */
297         }
298         return ret;
299
300 }
301
302 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
303                                                          gva_t eaddr)
304 {
305         u64 mask;
306         int i;
307
308         for (i = 0; i < vcpu->arch.slb_nr; i++) {
309                 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
310                         continue;
311
312                 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
313                         mask = ESID_MASK_1T;
314                 else
315                         mask = ESID_MASK;
316
317                 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
318                         return &vcpu->arch.slb[i];
319         }
320         return NULL;
321 }
322
323 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
324                         unsigned long ea)
325 {
326         unsigned long ra_mask;
327
328         ra_mask = kvmppc_actual_pgsz(v, r) - 1;
329         return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
330 }
331
332 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
333                         struct kvmppc_pte *gpte, bool data, bool iswrite)
334 {
335         struct kvm *kvm = vcpu->kvm;
336         struct kvmppc_slb *slbe;
337         unsigned long slb_v;
338         unsigned long pp, key;
339         unsigned long v, orig_v, gr;
340         __be64 *hptep;
341         long int index;
342         int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
343
344         if (kvm_is_radix(vcpu->kvm))
345                 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
346
347         /* Get SLB entry */
348         if (virtmode) {
349                 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
350                 if (!slbe)
351                         return -EINVAL;
352                 slb_v = slbe->origv;
353         } else {
354                 /* real mode access */
355                 slb_v = vcpu->kvm->arch.vrma_slb_v;
356         }
357
358         preempt_disable();
359         /* Find the HPTE in the hash table */
360         index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
361                                          HPTE_V_VALID | HPTE_V_ABSENT);
362         if (index < 0) {
363                 preempt_enable();
364                 return -ENOENT;
365         }
366         hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
367         v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
368         if (cpu_has_feature(CPU_FTR_ARCH_300))
369                 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
370         gr = kvm->arch.hpt.rev[index].guest_rpte;
371
372         unlock_hpte(hptep, orig_v);
373         preempt_enable();
374
375         gpte->eaddr = eaddr;
376         gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
377
378         /* Get PP bits and key for permission check */
379         pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
380         key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
381         key &= slb_v;
382
383         /* Calculate permissions */
384         gpte->may_read = hpte_read_permission(pp, key);
385         gpte->may_write = hpte_write_permission(pp, key);
386         gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
387
388         /* Storage key permission check for POWER7 */
389         if (data && virtmode) {
390                 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
391                 if (amrfield & 1)
392                         gpte->may_read = 0;
393                 if (amrfield & 2)
394                         gpte->may_write = 0;
395         }
396
397         /* Get the guest physical address */
398         gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
399         return 0;
400 }
401
402 /*
403  * Quick test for whether an instruction is a load or a store.
404  * If the instruction is a load or a store, then this will indicate
405  * which it is, at least on server processors.  (Embedded processors
406  * have some external PID instructions that don't follow the rule
407  * embodied here.)  If the instruction isn't a load or store, then
408  * this doesn't return anything useful.
409  */
410 static int instruction_is_store(unsigned int instr)
411 {
412         unsigned int mask;
413
414         mask = 0x10000000;
415         if ((instr & 0xfc000000) == 0x7c000000)
416                 mask = 0x100;           /* major opcode 31 */
417         return (instr & mask) != 0;
418 }
419
420 int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu,
421                            unsigned long gpa, gva_t ea, int is_store)
422 {
423         u32 last_inst;
424
425         /*
426          * Fast path - check if the guest physical address corresponds to a
427          * device on the FAST_MMIO_BUS, if so we can avoid loading the
428          * instruction all together, then we can just handle it and return.
429          */
430         if (is_store) {
431                 int idx, ret;
432
433                 idx = srcu_read_lock(&vcpu->kvm->srcu);
434                 ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
435                                        NULL);
436                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
437                 if (!ret) {
438                         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
439                         return RESUME_GUEST;
440                 }
441         }
442
443         /*
444          * If we fail, we just return to the guest and try executing it again.
445          */
446         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
447                 EMULATE_DONE)
448                 return RESUME_GUEST;
449
450         /*
451          * WARNING: We do not know for sure whether the instruction we just
452          * read from memory is the same that caused the fault in the first
453          * place.  If the instruction we read is neither an load or a store,
454          * then it can't access memory, so we don't need to worry about
455          * enforcing access permissions.  So, assuming it is a load or
456          * store, we just check that its direction (load or store) is
457          * consistent with the original fault, since that's what we
458          * checked the access permissions against.  If there is a mismatch
459          * we just return and retry the instruction.
460          */
461
462         if (instruction_is_store(last_inst) != !!is_store)
463                 return RESUME_GUEST;
464
465         /*
466          * Emulated accesses are emulated by looking at the hash for
467          * translation once, then performing the access later. The
468          * translation could be invalidated in the meantime in which
469          * point performing the subsequent memory access on the old
470          * physical address could possibly be a security hole for the
471          * guest (but not the host).
472          *
473          * This is less of an issue for MMIO stores since they aren't
474          * globally visible. It could be an issue for MMIO loads to
475          * a certain extent but we'll ignore it for now.
476          */
477
478         vcpu->arch.paddr_accessed = gpa;
479         vcpu->arch.vaddr_accessed = ea;
480         return kvmppc_emulate_mmio(vcpu);
481 }
482
483 int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu,
484                                 unsigned long ea, unsigned long dsisr)
485 {
486         struct kvm *kvm = vcpu->kvm;
487         unsigned long hpte[3], r;
488         unsigned long hnow_v, hnow_r;
489         __be64 *hptep;
490         unsigned long mmu_seq, psize, pte_size;
491         unsigned long gpa_base, gfn_base;
492         unsigned long gpa, gfn, hva, pfn, hpa;
493         struct kvm_memory_slot *memslot;
494         unsigned long *rmap;
495         struct revmap_entry *rev;
496         struct page *page;
497         long index, ret;
498         bool is_ci;
499         bool writing, write_ok;
500         unsigned int shift;
501         unsigned long rcbits;
502         long mmio_update;
503         pte_t pte, *ptep;
504
505         if (kvm_is_radix(kvm))
506                 return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr);
507
508         /*
509          * Real-mode code has already searched the HPT and found the
510          * entry we're interested in.  Lock the entry and check that
511          * it hasn't changed.  If it has, just return and re-execute the
512          * instruction.
513          */
514         if (ea != vcpu->arch.pgfault_addr)
515                 return RESUME_GUEST;
516
517         if (vcpu->arch.pgfault_cache) {
518                 mmio_update = atomic64_read(&kvm->arch.mmio_update);
519                 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
520                         r = vcpu->arch.pgfault_cache->rpte;
521                         psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
522                                                    r);
523                         gpa_base = r & HPTE_R_RPN & ~(psize - 1);
524                         gfn_base = gpa_base >> PAGE_SHIFT;
525                         gpa = gpa_base | (ea & (psize - 1));
526                         return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
527                                                 dsisr & DSISR_ISSTORE);
528                 }
529         }
530         index = vcpu->arch.pgfault_index;
531         hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
532         rev = &kvm->arch.hpt.rev[index];
533         preempt_disable();
534         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
535                 cpu_relax();
536         hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
537         hpte[1] = be64_to_cpu(hptep[1]);
538         hpte[2] = r = rev->guest_rpte;
539         unlock_hpte(hptep, hpte[0]);
540         preempt_enable();
541
542         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
543                 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
544                 hpte[1] = hpte_new_to_old_r(hpte[1]);
545         }
546         if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
547             hpte[1] != vcpu->arch.pgfault_hpte[1])
548                 return RESUME_GUEST;
549
550         /* Translate the logical address and get the page */
551         psize = kvmppc_actual_pgsz(hpte[0], r);
552         gpa_base = r & HPTE_R_RPN & ~(psize - 1);
553         gfn_base = gpa_base >> PAGE_SHIFT;
554         gpa = gpa_base | (ea & (psize - 1));
555         gfn = gpa >> PAGE_SHIFT;
556         memslot = gfn_to_memslot(kvm, gfn);
557
558         trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
559
560         /* No memslot means it's an emulated MMIO region */
561         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
562                 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
563                                               dsisr & DSISR_ISSTORE);
564
565         /*
566          * This should never happen, because of the slot_is_aligned()
567          * check in kvmppc_do_h_enter().
568          */
569         if (gfn_base < memslot->base_gfn)
570                 return -EFAULT;
571
572         /* used to check for invalidations in progress */
573         mmu_seq = kvm->mmu_notifier_seq;
574         smp_rmb();
575
576         ret = -EFAULT;
577         page = NULL;
578         writing = (dsisr & DSISR_ISSTORE) != 0;
579         /* If writing != 0, then the HPTE must allow writing, if we get here */
580         write_ok = writing;
581         hva = gfn_to_hva_memslot(memslot, gfn);
582
583         /*
584          * Do a fast check first, since __gfn_to_pfn_memslot doesn't
585          * do it with !atomic && !async, which is how we call it.
586          * We always ask for write permission since the common case
587          * is that the page is writable.
588          */
589         if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
590                 write_ok = true;
591         } else {
592                 /* Call KVM generic code to do the slow-path check */
593                 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
594                                            writing, &write_ok, NULL);
595                 if (is_error_noslot_pfn(pfn))
596                         return -EFAULT;
597                 page = NULL;
598                 if (pfn_valid(pfn)) {
599                         page = pfn_to_page(pfn);
600                         if (PageReserved(page))
601                                 page = NULL;
602                 }
603         }
604
605         /*
606          * Read the PTE from the process' radix tree and use that
607          * so we get the shift and attribute bits.
608          */
609         spin_lock(&kvm->mmu_lock);
610         ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
611         pte = __pte(0);
612         if (ptep)
613                 pte = READ_ONCE(*ptep);
614         spin_unlock(&kvm->mmu_lock);
615         /*
616          * If the PTE disappeared temporarily due to a THP
617          * collapse, just return and let the guest try again.
618          */
619         if (!pte_present(pte)) {
620                 if (page)
621                         put_page(page);
622                 return RESUME_GUEST;
623         }
624         hpa = pte_pfn(pte) << PAGE_SHIFT;
625         pte_size = PAGE_SIZE;
626         if (shift)
627                 pte_size = 1ul << shift;
628         is_ci = pte_ci(pte);
629
630         if (psize > pte_size)
631                 goto out_put;
632         if (pte_size > psize)
633                 hpa |= hva & (pte_size - psize);
634
635         /* Check WIMG vs. the actual page we're accessing */
636         if (!hpte_cache_flags_ok(r, is_ci)) {
637                 if (is_ci)
638                         goto out_put;
639                 /*
640                  * Allow guest to map emulated device memory as
641                  * uncacheable, but actually make it cacheable.
642                  */
643                 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
644         }
645
646         /*
647          * Set the HPTE to point to hpa.
648          * Since the hpa is at PAGE_SIZE granularity, make sure we
649          * don't mask out lower-order bits if psize < PAGE_SIZE.
650          */
651         if (psize < PAGE_SIZE)
652                 psize = PAGE_SIZE;
653         r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
654         if (hpte_is_writable(r) && !write_ok)
655                 r = hpte_make_readonly(r);
656         ret = RESUME_GUEST;
657         preempt_disable();
658         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
659                 cpu_relax();
660         hnow_v = be64_to_cpu(hptep[0]);
661         hnow_r = be64_to_cpu(hptep[1]);
662         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
663                 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
664                 hnow_r = hpte_new_to_old_r(hnow_r);
665         }
666
667         /*
668          * If the HPT is being resized, don't update the HPTE,
669          * instead let the guest retry after the resize operation is complete.
670          * The synchronization for mmu_ready test vs. set is provided
671          * by the HPTE lock.
672          */
673         if (!kvm->arch.mmu_ready)
674                 goto out_unlock;
675
676         if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
677             rev->guest_rpte != hpte[2])
678                 /* HPTE has been changed under us; let the guest retry */
679                 goto out_unlock;
680         hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
681
682         /* Always put the HPTE in the rmap chain for the page base address */
683         rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
684         lock_rmap(rmap);
685
686         /* Check if we might have been invalidated; let the guest retry if so */
687         ret = RESUME_GUEST;
688         if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
689                 unlock_rmap(rmap);
690                 goto out_unlock;
691         }
692
693         /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
694         rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
695         r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
696
697         if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
698                 /* HPTE was previously valid, so we need to invalidate it */
699                 unlock_rmap(rmap);
700                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
701                 kvmppc_invalidate_hpte(kvm, hptep, index);
702                 /* don't lose previous R and C bits */
703                 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
704         } else {
705                 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
706         }
707
708         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
709                 r = hpte_old_to_new_r(hpte[0], r);
710                 hpte[0] = hpte_old_to_new_v(hpte[0]);
711         }
712         hptep[1] = cpu_to_be64(r);
713         eieio();
714         __unlock_hpte(hptep, hpte[0]);
715         asm volatile("ptesync" : : : "memory");
716         preempt_enable();
717         if (page && hpte_is_writable(r))
718                 set_page_dirty_lock(page);
719
720  out_put:
721         trace_kvm_page_fault_exit(vcpu, hpte, ret);
722
723         if (page)
724                 put_page(page);
725         return ret;
726
727  out_unlock:
728         __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
729         preempt_enable();
730         goto out_put;
731 }
732
733 void kvmppc_rmap_reset(struct kvm *kvm)
734 {
735         struct kvm_memslots *slots;
736         struct kvm_memory_slot *memslot;
737         int srcu_idx;
738
739         srcu_idx = srcu_read_lock(&kvm->srcu);
740         slots = kvm_memslots(kvm);
741         kvm_for_each_memslot(memslot, slots) {
742                 /* Mutual exclusion with kvm_unmap_hva_range etc. */
743                 spin_lock(&kvm->mmu_lock);
744                 /*
745                  * This assumes it is acceptable to lose reference and
746                  * change bits across a reset.
747                  */
748                 memset(memslot->arch.rmap, 0,
749                        memslot->npages * sizeof(*memslot->arch.rmap));
750                 spin_unlock(&kvm->mmu_lock);
751         }
752         srcu_read_unlock(&kvm->srcu, srcu_idx);
753 }
754
755 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
756                               unsigned long gfn);
757
758 static int kvm_handle_hva_range(struct kvm *kvm,
759                                 unsigned long start,
760                                 unsigned long end,
761                                 hva_handler_fn handler)
762 {
763         int ret;
764         int retval = 0;
765         struct kvm_memslots *slots;
766         struct kvm_memory_slot *memslot;
767
768         slots = kvm_memslots(kvm);
769         kvm_for_each_memslot(memslot, slots) {
770                 unsigned long hva_start, hva_end;
771                 gfn_t gfn, gfn_end;
772
773                 hva_start = max(start, memslot->userspace_addr);
774                 hva_end = min(end, memslot->userspace_addr +
775                                         (memslot->npages << PAGE_SHIFT));
776                 if (hva_start >= hva_end)
777                         continue;
778                 /*
779                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
780                  * {gfn, gfn+1, ..., gfn_end-1}.
781                  */
782                 gfn = hva_to_gfn_memslot(hva_start, memslot);
783                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
784
785                 for (; gfn < gfn_end; ++gfn) {
786                         ret = handler(kvm, memslot, gfn);
787                         retval |= ret;
788                 }
789         }
790
791         return retval;
792 }
793
794 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
795                           hva_handler_fn handler)
796 {
797         return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
798 }
799
800 /* Must be called with both HPTE and rmap locked */
801 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
802                               struct kvm_memory_slot *memslot,
803                               unsigned long *rmapp, unsigned long gfn)
804 {
805         __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
806         struct revmap_entry *rev = kvm->arch.hpt.rev;
807         unsigned long j, h;
808         unsigned long ptel, psize, rcbits;
809
810         j = rev[i].forw;
811         if (j == i) {
812                 /* chain is now empty */
813                 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
814         } else {
815                 /* remove i from chain */
816                 h = rev[i].back;
817                 rev[h].forw = j;
818                 rev[j].back = h;
819                 rev[i].forw = rev[i].back = i;
820                 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
821         }
822
823         /* Now check and modify the HPTE */
824         ptel = rev[i].guest_rpte;
825         psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
826         if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
827             hpte_rpn(ptel, psize) == gfn) {
828                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
829                 kvmppc_invalidate_hpte(kvm, hptep, i);
830                 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
831                 /* Harvest R and C */
832                 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
833                 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
834                 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
835                         kvmppc_update_dirty_map(memslot, gfn, psize);
836                 if (rcbits & ~rev[i].guest_rpte) {
837                         rev[i].guest_rpte = ptel | rcbits;
838                         note_hpte_modification(kvm, &rev[i]);
839                 }
840         }
841 }
842
843 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
844                            unsigned long gfn)
845 {
846         unsigned long i;
847         __be64 *hptep;
848         unsigned long *rmapp;
849
850         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
851         for (;;) {
852                 lock_rmap(rmapp);
853                 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
854                         unlock_rmap(rmapp);
855                         break;
856                 }
857
858                 /*
859                  * To avoid an ABBA deadlock with the HPTE lock bit,
860                  * we can't spin on the HPTE lock while holding the
861                  * rmap chain lock.
862                  */
863                 i = *rmapp & KVMPPC_RMAP_INDEX;
864                 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
865                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
866                         /* unlock rmap before spinning on the HPTE lock */
867                         unlock_rmap(rmapp);
868                         while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
869                                 cpu_relax();
870                         continue;
871                 }
872
873                 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
874                 unlock_rmap(rmapp);
875                 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
876         }
877         return 0;
878 }
879
880 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
881 {
882         hva_handler_fn handler;
883
884         handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
885         kvm_handle_hva_range(kvm, start, end, handler);
886         return 0;
887 }
888
889 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
890                                   struct kvm_memory_slot *memslot)
891 {
892         unsigned long gfn;
893         unsigned long n;
894         unsigned long *rmapp;
895
896         gfn = memslot->base_gfn;
897         rmapp = memslot->arch.rmap;
898         if (kvm_is_radix(kvm)) {
899                 kvmppc_radix_flush_memslot(kvm, memslot);
900                 return;
901         }
902
903         for (n = memslot->npages; n; --n, ++gfn) {
904                 /*
905                  * Testing the present bit without locking is OK because
906                  * the memslot has been marked invalid already, and hence
907                  * no new HPTEs referencing this page can be created,
908                  * thus the present bit can't go from 0 to 1.
909                  */
910                 if (*rmapp & KVMPPC_RMAP_PRESENT)
911                         kvm_unmap_rmapp(kvm, memslot, gfn);
912                 ++rmapp;
913         }
914 }
915
916 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
917                          unsigned long gfn)
918 {
919         struct revmap_entry *rev = kvm->arch.hpt.rev;
920         unsigned long head, i, j;
921         __be64 *hptep;
922         int ret = 0;
923         unsigned long *rmapp;
924
925         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
926  retry:
927         lock_rmap(rmapp);
928         if (*rmapp & KVMPPC_RMAP_REFERENCED) {
929                 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
930                 ret = 1;
931         }
932         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
933                 unlock_rmap(rmapp);
934                 return ret;
935         }
936
937         i = head = *rmapp & KVMPPC_RMAP_INDEX;
938         do {
939                 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
940                 j = rev[i].forw;
941
942                 /* If this HPTE isn't referenced, ignore it */
943                 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
944                         continue;
945
946                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
947                         /* unlock rmap before spinning on the HPTE lock */
948                         unlock_rmap(rmapp);
949                         while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
950                                 cpu_relax();
951                         goto retry;
952                 }
953
954                 /* Now check and modify the HPTE */
955                 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
956                     (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
957                         kvmppc_clear_ref_hpte(kvm, hptep, i);
958                         if (!(rev[i].guest_rpte & HPTE_R_R)) {
959                                 rev[i].guest_rpte |= HPTE_R_R;
960                                 note_hpte_modification(kvm, &rev[i]);
961                         }
962                         ret = 1;
963                 }
964                 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
965         } while ((i = j) != head);
966
967         unlock_rmap(rmapp);
968         return ret;
969 }
970
971 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
972 {
973         hva_handler_fn handler;
974
975         handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
976         return kvm_handle_hva_range(kvm, start, end, handler);
977 }
978
979 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
980                               unsigned long gfn)
981 {
982         struct revmap_entry *rev = kvm->arch.hpt.rev;
983         unsigned long head, i, j;
984         unsigned long *hp;
985         int ret = 1;
986         unsigned long *rmapp;
987
988         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
989         if (*rmapp & KVMPPC_RMAP_REFERENCED)
990                 return 1;
991
992         lock_rmap(rmapp);
993         if (*rmapp & KVMPPC_RMAP_REFERENCED)
994                 goto out;
995
996         if (*rmapp & KVMPPC_RMAP_PRESENT) {
997                 i = head = *rmapp & KVMPPC_RMAP_INDEX;
998                 do {
999                         hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
1000                         j = rev[i].forw;
1001                         if (be64_to_cpu(hp[1]) & HPTE_R_R)
1002                                 goto out;
1003                 } while ((i = j) != head);
1004         }
1005         ret = 0;
1006
1007  out:
1008         unlock_rmap(rmapp);
1009         return ret;
1010 }
1011
1012 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1013 {
1014         hva_handler_fn handler;
1015
1016         handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
1017         return kvm_handle_hva(kvm, hva, handler);
1018 }
1019
1020 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1021 {
1022         hva_handler_fn handler;
1023
1024         handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
1025         kvm_handle_hva(kvm, hva, handler);
1026 }
1027
1028 static int vcpus_running(struct kvm *kvm)
1029 {
1030         return atomic_read(&kvm->arch.vcpus_running) != 0;
1031 }
1032
1033 /*
1034  * Returns the number of system pages that are dirty.
1035  * This can be more than 1 if we find a huge-page HPTE.
1036  */
1037 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1038 {
1039         struct revmap_entry *rev = kvm->arch.hpt.rev;
1040         unsigned long head, i, j;
1041         unsigned long n;
1042         unsigned long v, r;
1043         __be64 *hptep;
1044         int npages_dirty = 0;
1045
1046  retry:
1047         lock_rmap(rmapp);
1048         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1049                 unlock_rmap(rmapp);
1050                 return npages_dirty;
1051         }
1052
1053         i = head = *rmapp & KVMPPC_RMAP_INDEX;
1054         do {
1055                 unsigned long hptep1;
1056                 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1057                 j = rev[i].forw;
1058
1059                 /*
1060                  * Checking the C (changed) bit here is racy since there
1061                  * is no guarantee about when the hardware writes it back.
1062                  * If the HPTE is not writable then it is stable since the
1063                  * page can't be written to, and we would have done a tlbie
1064                  * (which forces the hardware to complete any writeback)
1065                  * when making the HPTE read-only.
1066                  * If vcpus are running then this call is racy anyway
1067                  * since the page could get dirtied subsequently, so we
1068                  * expect there to be a further call which would pick up
1069                  * any delayed C bit writeback.
1070                  * Otherwise we need to do the tlbie even if C==0 in
1071                  * order to pick up any delayed writeback of C.
1072                  */
1073                 hptep1 = be64_to_cpu(hptep[1]);
1074                 if (!(hptep1 & HPTE_R_C) &&
1075                     (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1076                         continue;
1077
1078                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1079                         /* unlock rmap before spinning on the HPTE lock */
1080                         unlock_rmap(rmapp);
1081                         while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1082                                 cpu_relax();
1083                         goto retry;
1084                 }
1085
1086                 /* Now check and modify the HPTE */
1087                 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1088                         __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1089                         continue;
1090                 }
1091
1092                 /* need to make it temporarily absent so C is stable */
1093                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1094                 kvmppc_invalidate_hpte(kvm, hptep, i);
1095                 v = be64_to_cpu(hptep[0]);
1096                 r = be64_to_cpu(hptep[1]);
1097                 if (r & HPTE_R_C) {
1098                         hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1099                         if (!(rev[i].guest_rpte & HPTE_R_C)) {
1100                                 rev[i].guest_rpte |= HPTE_R_C;
1101                                 note_hpte_modification(kvm, &rev[i]);
1102                         }
1103                         n = kvmppc_actual_pgsz(v, r);
1104                         n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1105                         if (n > npages_dirty)
1106                                 npages_dirty = n;
1107                         eieio();
1108                 }
1109                 v &= ~HPTE_V_ABSENT;
1110                 v |= HPTE_V_VALID;
1111                 __unlock_hpte(hptep, v);
1112         } while ((i = j) != head);
1113
1114         unlock_rmap(rmapp);
1115         return npages_dirty;
1116 }
1117
1118 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1119                               struct kvm_memory_slot *memslot,
1120                               unsigned long *map)
1121 {
1122         unsigned long gfn;
1123
1124         if (!vpa->dirty || !vpa->pinned_addr)
1125                 return;
1126         gfn = vpa->gpa >> PAGE_SHIFT;
1127         if (gfn < memslot->base_gfn ||
1128             gfn >= memslot->base_gfn + memslot->npages)
1129                 return;
1130
1131         vpa->dirty = false;
1132         if (map)
1133                 __set_bit_le(gfn - memslot->base_gfn, map);
1134 }
1135
1136 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1137                         struct kvm_memory_slot *memslot, unsigned long *map)
1138 {
1139         unsigned long i;
1140         unsigned long *rmapp;
1141
1142         preempt_disable();
1143         rmapp = memslot->arch.rmap;
1144         for (i = 0; i < memslot->npages; ++i) {
1145                 int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1146                 /*
1147                  * Note that if npages > 0 then i must be a multiple of npages,
1148                  * since we always put huge-page HPTEs in the rmap chain
1149                  * corresponding to their page base address.
1150                  */
1151                 if (npages)
1152                         set_dirty_bits(map, i, npages);
1153                 ++rmapp;
1154         }
1155         preempt_enable();
1156         return 0;
1157 }
1158
1159 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1160                             unsigned long *nb_ret)
1161 {
1162         struct kvm_memory_slot *memslot;
1163         unsigned long gfn = gpa >> PAGE_SHIFT;
1164         struct page *page, *pages[1];
1165         int npages;
1166         unsigned long hva, offset;
1167         int srcu_idx;
1168
1169         srcu_idx = srcu_read_lock(&kvm->srcu);
1170         memslot = gfn_to_memslot(kvm, gfn);
1171         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1172                 goto err;
1173         hva = gfn_to_hva_memslot(memslot, gfn);
1174         npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1175         if (npages < 1)
1176                 goto err;
1177         page = pages[0];
1178         srcu_read_unlock(&kvm->srcu, srcu_idx);
1179
1180         offset = gpa & (PAGE_SIZE - 1);
1181         if (nb_ret)
1182                 *nb_ret = PAGE_SIZE - offset;
1183         return page_address(page) + offset;
1184
1185  err:
1186         srcu_read_unlock(&kvm->srcu, srcu_idx);
1187         return NULL;
1188 }
1189
1190 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1191                              bool dirty)
1192 {
1193         struct page *page = virt_to_page(va);
1194         struct kvm_memory_slot *memslot;
1195         unsigned long gfn;
1196         int srcu_idx;
1197
1198         put_page(page);
1199
1200         if (!dirty)
1201                 return;
1202
1203         /* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1204         gfn = gpa >> PAGE_SHIFT;
1205         srcu_idx = srcu_read_lock(&kvm->srcu);
1206         memslot = gfn_to_memslot(kvm, gfn);
1207         if (memslot && memslot->dirty_bitmap)
1208                 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1209         srcu_read_unlock(&kvm->srcu, srcu_idx);
1210 }
1211
1212 /*
1213  * HPT resizing
1214  */
1215 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1216 {
1217         int rc;
1218
1219         rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1220         if (rc < 0)
1221                 return rc;
1222
1223         resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1224                          resize->hpt.virt);
1225
1226         return 0;
1227 }
1228
1229 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1230                                             unsigned long idx)
1231 {
1232         struct kvm *kvm = resize->kvm;
1233         struct kvm_hpt_info *old = &kvm->arch.hpt;
1234         struct kvm_hpt_info *new = &resize->hpt;
1235         unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1236         unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1237         __be64 *hptep, *new_hptep;
1238         unsigned long vpte, rpte, guest_rpte;
1239         int ret;
1240         struct revmap_entry *rev;
1241         unsigned long apsize, avpn, pteg, hash;
1242         unsigned long new_idx, new_pteg, replace_vpte;
1243         int pshift;
1244
1245         hptep = (__be64 *)(old->virt + (idx << 4));
1246
1247         /* Guest is stopped, so new HPTEs can't be added or faulted
1248          * in, only unmapped or altered by host actions.  So, it's
1249          * safe to check this before we take the HPTE lock */
1250         vpte = be64_to_cpu(hptep[0]);
1251         if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1252                 return 0; /* nothing to do */
1253
1254         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1255                 cpu_relax();
1256
1257         vpte = be64_to_cpu(hptep[0]);
1258
1259         ret = 0;
1260         if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1261                 /* Nothing to do */
1262                 goto out;
1263
1264         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1265                 rpte = be64_to_cpu(hptep[1]);
1266                 vpte = hpte_new_to_old_v(vpte, rpte);
1267         }
1268
1269         /* Unmap */
1270         rev = &old->rev[idx];
1271         guest_rpte = rev->guest_rpte;
1272
1273         ret = -EIO;
1274         apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1275         if (!apsize)
1276                 goto out;
1277
1278         if (vpte & HPTE_V_VALID) {
1279                 unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1280                 int srcu_idx = srcu_read_lock(&kvm->srcu);
1281                 struct kvm_memory_slot *memslot =
1282                         __gfn_to_memslot(kvm_memslots(kvm), gfn);
1283
1284                 if (memslot) {
1285                         unsigned long *rmapp;
1286                         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1287
1288                         lock_rmap(rmapp);
1289                         kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1290                         unlock_rmap(rmapp);
1291                 }
1292
1293                 srcu_read_unlock(&kvm->srcu, srcu_idx);
1294         }
1295
1296         /* Reload PTE after unmap */
1297         vpte = be64_to_cpu(hptep[0]);
1298         BUG_ON(vpte & HPTE_V_VALID);
1299         BUG_ON(!(vpte & HPTE_V_ABSENT));
1300
1301         ret = 0;
1302         if (!(vpte & HPTE_V_BOLTED))
1303                 goto out;
1304
1305         rpte = be64_to_cpu(hptep[1]);
1306
1307         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1308                 vpte = hpte_new_to_old_v(vpte, rpte);
1309                 rpte = hpte_new_to_old_r(rpte);
1310         }
1311
1312         pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1313         avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1314         pteg = idx / HPTES_PER_GROUP;
1315         if (vpte & HPTE_V_SECONDARY)
1316                 pteg = ~pteg;
1317
1318         if (!(vpte & HPTE_V_1TB_SEG)) {
1319                 unsigned long offset, vsid;
1320
1321                 /* We only have 28 - 23 bits of offset in avpn */
1322                 offset = (avpn & 0x1f) << 23;
1323                 vsid = avpn >> 5;
1324                 /* We can find more bits from the pteg value */
1325                 if (pshift < 23)
1326                         offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1327
1328                 hash = vsid ^ (offset >> pshift);
1329         } else {
1330                 unsigned long offset, vsid;
1331
1332                 /* We only have 40 - 23 bits of seg_off in avpn */
1333                 offset = (avpn & 0x1ffff) << 23;
1334                 vsid = avpn >> 17;
1335                 if (pshift < 23)
1336                         offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1337
1338                 hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1339         }
1340
1341         new_pteg = hash & new_hash_mask;
1342         if (vpte & HPTE_V_SECONDARY)
1343                 new_pteg = ~hash & new_hash_mask;
1344
1345         new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1346         new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1347
1348         replace_vpte = be64_to_cpu(new_hptep[0]);
1349         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1350                 unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1351                 replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1352         }
1353
1354         if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1355                 BUG_ON(new->order >= old->order);
1356
1357                 if (replace_vpte & HPTE_V_BOLTED) {
1358                         if (vpte & HPTE_V_BOLTED)
1359                                 /* Bolted collision, nothing we can do */
1360                                 ret = -ENOSPC;
1361                         /* Discard the new HPTE */
1362                         goto out;
1363                 }
1364
1365                 /* Discard the previous HPTE */
1366         }
1367
1368         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1369                 rpte = hpte_old_to_new_r(vpte, rpte);
1370                 vpte = hpte_old_to_new_v(vpte);
1371         }
1372
1373         new_hptep[1] = cpu_to_be64(rpte);
1374         new->rev[new_idx].guest_rpte = guest_rpte;
1375         /* No need for a barrier, since new HPT isn't active */
1376         new_hptep[0] = cpu_to_be64(vpte);
1377         unlock_hpte(new_hptep, vpte);
1378
1379 out:
1380         unlock_hpte(hptep, vpte);
1381         return ret;
1382 }
1383
1384 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1385 {
1386         struct kvm *kvm = resize->kvm;
1387         unsigned  long i;
1388         int rc;
1389
1390         for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1391                 rc = resize_hpt_rehash_hpte(resize, i);
1392                 if (rc != 0)
1393                         return rc;
1394         }
1395
1396         return 0;
1397 }
1398
1399 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1400 {
1401         struct kvm *kvm = resize->kvm;
1402         struct kvm_hpt_info hpt_tmp;
1403
1404         /* Exchange the pending tables in the resize structure with
1405          * the active tables */
1406
1407         resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1408
1409         spin_lock(&kvm->mmu_lock);
1410         asm volatile("ptesync" : : : "memory");
1411
1412         hpt_tmp = kvm->arch.hpt;
1413         kvmppc_set_hpt(kvm, &resize->hpt);
1414         resize->hpt = hpt_tmp;
1415
1416         spin_unlock(&kvm->mmu_lock);
1417
1418         synchronize_srcu_expedited(&kvm->srcu);
1419
1420         if (cpu_has_feature(CPU_FTR_ARCH_300))
1421                 kvmppc_setup_partition_table(kvm);
1422
1423         resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1424 }
1425
1426 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1427 {
1428         if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1429                 return;
1430
1431         if (!resize)
1432                 return;
1433
1434         if (resize->error != -EBUSY) {
1435                 if (resize->hpt.virt)
1436                         kvmppc_free_hpt(&resize->hpt);
1437                 kfree(resize);
1438         }
1439
1440         if (kvm->arch.resize_hpt == resize)
1441                 kvm->arch.resize_hpt = NULL;
1442 }
1443
1444 static void resize_hpt_prepare_work(struct work_struct *work)
1445 {
1446         struct kvm_resize_hpt *resize = container_of(work,
1447                                                      struct kvm_resize_hpt,
1448                                                      work);
1449         struct kvm *kvm = resize->kvm;
1450         int err = 0;
1451
1452         if (WARN_ON(resize->error != -EBUSY))
1453                 return;
1454
1455         mutex_lock(&kvm->arch.mmu_setup_lock);
1456
1457         /* Request is still current? */
1458         if (kvm->arch.resize_hpt == resize) {
1459                 /* We may request large allocations here:
1460                  * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1461                  */
1462                 mutex_unlock(&kvm->arch.mmu_setup_lock);
1463
1464                 resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1465                                  resize->order);
1466
1467                 err = resize_hpt_allocate(resize);
1468
1469                 /* We have strict assumption about -EBUSY
1470                  * when preparing for HPT resize.
1471                  */
1472                 if (WARN_ON(err == -EBUSY))
1473                         err = -EINPROGRESS;
1474
1475                 mutex_lock(&kvm->arch.mmu_setup_lock);
1476                 /* It is possible that kvm->arch.resize_hpt != resize
1477                  * after we grab kvm->arch.mmu_setup_lock again.
1478                  */
1479         }
1480
1481         resize->error = err;
1482
1483         if (kvm->arch.resize_hpt != resize)
1484                 resize_hpt_release(kvm, resize);
1485
1486         mutex_unlock(&kvm->arch.mmu_setup_lock);
1487 }
1488
1489 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1490                                      struct kvm_ppc_resize_hpt *rhpt)
1491 {
1492         unsigned long flags = rhpt->flags;
1493         unsigned long shift = rhpt->shift;
1494         struct kvm_resize_hpt *resize;
1495         int ret;
1496
1497         if (flags != 0 || kvm_is_radix(kvm))
1498                 return -EINVAL;
1499
1500         if (shift && ((shift < 18) || (shift > 46)))
1501                 return -EINVAL;
1502
1503         mutex_lock(&kvm->arch.mmu_setup_lock);
1504
1505         resize = kvm->arch.resize_hpt;
1506
1507         if (resize) {
1508                 if (resize->order == shift) {
1509                         /* Suitable resize in progress? */
1510                         ret = resize->error;
1511                         if (ret == -EBUSY)
1512                                 ret = 100; /* estimated time in ms */
1513                         else if (ret)
1514                                 resize_hpt_release(kvm, resize);
1515
1516                         goto out;
1517                 }
1518
1519                 /* not suitable, cancel it */
1520                 resize_hpt_release(kvm, resize);
1521         }
1522
1523         ret = 0;
1524         if (!shift)
1525                 goto out; /* nothing to do */
1526
1527         /* start new resize */
1528
1529         resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1530         if (!resize) {
1531                 ret = -ENOMEM;
1532                 goto out;
1533         }
1534
1535         resize->error = -EBUSY;
1536         resize->order = shift;
1537         resize->kvm = kvm;
1538         INIT_WORK(&resize->work, resize_hpt_prepare_work);
1539         kvm->arch.resize_hpt = resize;
1540
1541         schedule_work(&resize->work);
1542
1543         ret = 100; /* estimated time in ms */
1544
1545 out:
1546         mutex_unlock(&kvm->arch.mmu_setup_lock);
1547         return ret;
1548 }
1549
1550 static void resize_hpt_boot_vcpu(void *opaque)
1551 {
1552         /* Nothing to do, just force a KVM exit */
1553 }
1554
1555 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1556                                     struct kvm_ppc_resize_hpt *rhpt)
1557 {
1558         unsigned long flags = rhpt->flags;
1559         unsigned long shift = rhpt->shift;
1560         struct kvm_resize_hpt *resize;
1561         long ret;
1562
1563         if (flags != 0 || kvm_is_radix(kvm))
1564                 return -EINVAL;
1565
1566         if (shift && ((shift < 18) || (shift > 46)))
1567                 return -EINVAL;
1568
1569         mutex_lock(&kvm->arch.mmu_setup_lock);
1570
1571         resize = kvm->arch.resize_hpt;
1572
1573         /* This shouldn't be possible */
1574         ret = -EIO;
1575         if (WARN_ON(!kvm->arch.mmu_ready))
1576                 goto out_no_hpt;
1577
1578         /* Stop VCPUs from running while we mess with the HPT */
1579         kvm->arch.mmu_ready = 0;
1580         smp_mb();
1581
1582         /* Boot all CPUs out of the guest so they re-read
1583          * mmu_ready */
1584         on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1585
1586         ret = -ENXIO;
1587         if (!resize || (resize->order != shift))
1588                 goto out;
1589
1590         ret = resize->error;
1591         if (ret)
1592                 goto out;
1593
1594         ret = resize_hpt_rehash(resize);
1595         if (ret)
1596                 goto out;
1597
1598         resize_hpt_pivot(resize);
1599
1600 out:
1601         /* Let VCPUs run again */
1602         kvm->arch.mmu_ready = 1;
1603         smp_mb();
1604 out_no_hpt:
1605         resize_hpt_release(kvm, resize);
1606         mutex_unlock(&kvm->arch.mmu_setup_lock);
1607         return ret;
1608 }
1609
1610 /*
1611  * Functions for reading and writing the hash table via reads and
1612  * writes on a file descriptor.
1613  *
1614  * Reads return the guest view of the hash table, which has to be
1615  * pieced together from the real hash table and the guest_rpte
1616  * values in the revmap array.
1617  *
1618  * On writes, each HPTE written is considered in turn, and if it
1619  * is valid, it is written to the HPT as if an H_ENTER with the
1620  * exact flag set was done.  When the invalid count is non-zero
1621  * in the header written to the stream, the kernel will make
1622  * sure that that many HPTEs are invalid, and invalidate them
1623  * if not.
1624  */
1625
1626 struct kvm_htab_ctx {
1627         unsigned long   index;
1628         unsigned long   flags;
1629         struct kvm      *kvm;
1630         int             first_pass;
1631 };
1632
1633 #define HPTE_SIZE       (2 * sizeof(unsigned long))
1634
1635 /*
1636  * Returns 1 if this HPT entry has been modified or has pending
1637  * R/C bit changes.
1638  */
1639 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1640 {
1641         unsigned long rcbits_unset;
1642
1643         if (revp->guest_rpte & HPTE_GR_MODIFIED)
1644                 return 1;
1645
1646         /* Also need to consider changes in reference and changed bits */
1647         rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1648         if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1649             (be64_to_cpu(hptp[1]) & rcbits_unset))
1650                 return 1;
1651
1652         return 0;
1653 }
1654
1655 static long record_hpte(unsigned long flags, __be64 *hptp,
1656                         unsigned long *hpte, struct revmap_entry *revp,
1657                         int want_valid, int first_pass)
1658 {
1659         unsigned long v, r, hr;
1660         unsigned long rcbits_unset;
1661         int ok = 1;
1662         int valid, dirty;
1663
1664         /* Unmodified entries are uninteresting except on the first pass */
1665         dirty = hpte_dirty(revp, hptp);
1666         if (!first_pass && !dirty)
1667                 return 0;
1668
1669         valid = 0;
1670         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1671                 valid = 1;
1672                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1673                     !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1674                         valid = 0;
1675         }
1676         if (valid != want_valid)
1677                 return 0;
1678
1679         v = r = 0;
1680         if (valid || dirty) {
1681                 /* lock the HPTE so it's stable and read it */
1682                 preempt_disable();
1683                 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1684                         cpu_relax();
1685                 v = be64_to_cpu(hptp[0]);
1686                 hr = be64_to_cpu(hptp[1]);
1687                 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1688                         v = hpte_new_to_old_v(v, hr);
1689                         hr = hpte_new_to_old_r(hr);
1690                 }
1691
1692                 /* re-evaluate valid and dirty from synchronized HPTE value */
1693                 valid = !!(v & HPTE_V_VALID);
1694                 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1695
1696                 /* Harvest R and C into guest view if necessary */
1697                 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1698                 if (valid && (rcbits_unset & hr)) {
1699                         revp->guest_rpte |= (hr &
1700                                 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1701                         dirty = 1;
1702                 }
1703
1704                 if (v & HPTE_V_ABSENT) {
1705                         v &= ~HPTE_V_ABSENT;
1706                         v |= HPTE_V_VALID;
1707                         valid = 1;
1708                 }
1709                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1710                         valid = 0;
1711
1712                 r = revp->guest_rpte;
1713                 /* only clear modified if this is the right sort of entry */
1714                 if (valid == want_valid && dirty) {
1715                         r &= ~HPTE_GR_MODIFIED;
1716                         revp->guest_rpte = r;
1717                 }
1718                 unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1719                 preempt_enable();
1720                 if (!(valid == want_valid && (first_pass || dirty)))
1721                         ok = 0;
1722         }
1723         hpte[0] = cpu_to_be64(v);
1724         hpte[1] = cpu_to_be64(r);
1725         return ok;
1726 }
1727
1728 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1729                              size_t count, loff_t *ppos)
1730 {
1731         struct kvm_htab_ctx *ctx = file->private_data;
1732         struct kvm *kvm = ctx->kvm;
1733         struct kvm_get_htab_header hdr;
1734         __be64 *hptp;
1735         struct revmap_entry *revp;
1736         unsigned long i, nb, nw;
1737         unsigned long __user *lbuf;
1738         struct kvm_get_htab_header __user *hptr;
1739         unsigned long flags;
1740         int first_pass;
1741         unsigned long hpte[2];
1742
1743         if (!access_ok(buf, count))
1744                 return -EFAULT;
1745         if (kvm_is_radix(kvm))
1746                 return 0;
1747
1748         first_pass = ctx->first_pass;
1749         flags = ctx->flags;
1750
1751         i = ctx->index;
1752         hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1753         revp = kvm->arch.hpt.rev + i;
1754         lbuf = (unsigned long __user *)buf;
1755
1756         nb = 0;
1757         while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1758                 /* Initialize header */
1759                 hptr = (struct kvm_get_htab_header __user *)buf;
1760                 hdr.n_valid = 0;
1761                 hdr.n_invalid = 0;
1762                 nw = nb;
1763                 nb += sizeof(hdr);
1764                 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1765
1766                 /* Skip uninteresting entries, i.e. clean on not-first pass */
1767                 if (!first_pass) {
1768                         while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1769                                !hpte_dirty(revp, hptp)) {
1770                                 ++i;
1771                                 hptp += 2;
1772                                 ++revp;
1773                         }
1774                 }
1775                 hdr.index = i;
1776
1777                 /* Grab a series of valid entries */
1778                 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1779                        hdr.n_valid < 0xffff &&
1780                        nb + HPTE_SIZE < count &&
1781                        record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1782                         /* valid entry, write it out */
1783                         ++hdr.n_valid;
1784                         if (__put_user(hpte[0], lbuf) ||
1785                             __put_user(hpte[1], lbuf + 1))
1786                                 return -EFAULT;
1787                         nb += HPTE_SIZE;
1788                         lbuf += 2;
1789                         ++i;
1790                         hptp += 2;
1791                         ++revp;
1792                 }
1793                 /* Now skip invalid entries while we can */
1794                 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1795                        hdr.n_invalid < 0xffff &&
1796                        record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1797                         /* found an invalid entry */
1798                         ++hdr.n_invalid;
1799                         ++i;
1800                         hptp += 2;
1801                         ++revp;
1802                 }
1803
1804                 if (hdr.n_valid || hdr.n_invalid) {
1805                         /* write back the header */
1806                         if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1807                                 return -EFAULT;
1808                         nw = nb;
1809                         buf = (char __user *)lbuf;
1810                 } else {
1811                         nb = nw;
1812                 }
1813
1814                 /* Check if we've wrapped around the hash table */
1815                 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1816                         i = 0;
1817                         ctx->first_pass = 0;
1818                         break;
1819                 }
1820         }
1821
1822         ctx->index = i;
1823
1824         return nb;
1825 }
1826
1827 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1828                               size_t count, loff_t *ppos)
1829 {
1830         struct kvm_htab_ctx *ctx = file->private_data;
1831         struct kvm *kvm = ctx->kvm;
1832         struct kvm_get_htab_header hdr;
1833         unsigned long i, j;
1834         unsigned long v, r;
1835         unsigned long __user *lbuf;
1836         __be64 *hptp;
1837         unsigned long tmp[2];
1838         ssize_t nb;
1839         long int err, ret;
1840         int mmu_ready;
1841         int pshift;
1842
1843         if (!access_ok(buf, count))
1844                 return -EFAULT;
1845         if (kvm_is_radix(kvm))
1846                 return -EINVAL;
1847
1848         /* lock out vcpus from running while we're doing this */
1849         mutex_lock(&kvm->arch.mmu_setup_lock);
1850         mmu_ready = kvm->arch.mmu_ready;
1851         if (mmu_ready) {
1852                 kvm->arch.mmu_ready = 0;        /* temporarily */
1853                 /* order mmu_ready vs. vcpus_running */
1854                 smp_mb();
1855                 if (atomic_read(&kvm->arch.vcpus_running)) {
1856                         kvm->arch.mmu_ready = 1;
1857                         mutex_unlock(&kvm->arch.mmu_setup_lock);
1858                         return -EBUSY;
1859                 }
1860         }
1861
1862         err = 0;
1863         for (nb = 0; nb + sizeof(hdr) <= count; ) {
1864                 err = -EFAULT;
1865                 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1866                         break;
1867
1868                 err = 0;
1869                 if (nb + hdr.n_valid * HPTE_SIZE > count)
1870                         break;
1871
1872                 nb += sizeof(hdr);
1873                 buf += sizeof(hdr);
1874
1875                 err = -EINVAL;
1876                 i = hdr.index;
1877                 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1878                     i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1879                         break;
1880
1881                 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1882                 lbuf = (unsigned long __user *)buf;
1883                 for (j = 0; j < hdr.n_valid; ++j) {
1884                         __be64 hpte_v;
1885                         __be64 hpte_r;
1886
1887                         err = -EFAULT;
1888                         if (__get_user(hpte_v, lbuf) ||
1889                             __get_user(hpte_r, lbuf + 1))
1890                                 goto out;
1891                         v = be64_to_cpu(hpte_v);
1892                         r = be64_to_cpu(hpte_r);
1893                         err = -EINVAL;
1894                         if (!(v & HPTE_V_VALID))
1895                                 goto out;
1896                         pshift = kvmppc_hpte_base_page_shift(v, r);
1897                         if (pshift <= 0)
1898                                 goto out;
1899                         lbuf += 2;
1900                         nb += HPTE_SIZE;
1901
1902                         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1903                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1904                         err = -EIO;
1905                         ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1906                                                          tmp);
1907                         if (ret != H_SUCCESS) {
1908                                 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1909                                        "r=%lx\n", ret, i, v, r);
1910                                 goto out;
1911                         }
1912                         if (!mmu_ready && is_vrma_hpte(v)) {
1913                                 unsigned long senc, lpcr;
1914
1915                                 senc = slb_pgsize_encoding(1ul << pshift);
1916                                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1917                                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1918                                 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1919                                         lpcr = senc << (LPCR_VRMASD_SH - 4);
1920                                         kvmppc_update_lpcr(kvm, lpcr,
1921                                                            LPCR_VRMASD);
1922                                 } else {
1923                                         kvmppc_setup_partition_table(kvm);
1924                                 }
1925                                 mmu_ready = 1;
1926                         }
1927                         ++i;
1928                         hptp += 2;
1929                 }
1930
1931                 for (j = 0; j < hdr.n_invalid; ++j) {
1932                         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1933                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1934                         ++i;
1935                         hptp += 2;
1936                 }
1937                 err = 0;
1938         }
1939
1940  out:
1941         /* Order HPTE updates vs. mmu_ready */
1942         smp_wmb();
1943         kvm->arch.mmu_ready = mmu_ready;
1944         mutex_unlock(&kvm->arch.mmu_setup_lock);
1945
1946         if (err)
1947                 return err;
1948         return nb;
1949 }
1950
1951 static int kvm_htab_release(struct inode *inode, struct file *filp)
1952 {
1953         struct kvm_htab_ctx *ctx = filp->private_data;
1954
1955         filp->private_data = NULL;
1956         if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1957                 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1958         kvm_put_kvm(ctx->kvm);
1959         kfree(ctx);
1960         return 0;
1961 }
1962
1963 static const struct file_operations kvm_htab_fops = {
1964         .read           = kvm_htab_read,
1965         .write          = kvm_htab_write,
1966         .llseek         = default_llseek,
1967         .release        = kvm_htab_release,
1968 };
1969
1970 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1971 {
1972         int ret;
1973         struct kvm_htab_ctx *ctx;
1974         int rwflag;
1975
1976         /* reject flags we don't recognize */
1977         if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1978                 return -EINVAL;
1979         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1980         if (!ctx)
1981                 return -ENOMEM;
1982         kvm_get_kvm(kvm);
1983         ctx->kvm = kvm;
1984         ctx->index = ghf->start_index;
1985         ctx->flags = ghf->flags;
1986         ctx->first_pass = 1;
1987
1988         rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1989         ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1990         if (ret < 0) {
1991                 kfree(ctx);
1992                 kvm_put_kvm_no_destroy(kvm);
1993                 return ret;
1994         }
1995
1996         if (rwflag == O_RDONLY) {
1997                 mutex_lock(&kvm->slots_lock);
1998                 atomic_inc(&kvm->arch.hpte_mod_interest);
1999                 /* make sure kvmppc_do_h_enter etc. see the increment */
2000                 synchronize_srcu_expedited(&kvm->srcu);
2001                 mutex_unlock(&kvm->slots_lock);
2002         }
2003
2004         return ret;
2005 }
2006
2007 struct debugfs_htab_state {
2008         struct kvm      *kvm;
2009         struct mutex    mutex;
2010         unsigned long   hpt_index;
2011         int             chars_left;
2012         int             buf_index;
2013         char            buf[64];
2014 };
2015
2016 static int debugfs_htab_open(struct inode *inode, struct file *file)
2017 {
2018         struct kvm *kvm = inode->i_private;
2019         struct debugfs_htab_state *p;
2020
2021         p = kzalloc(sizeof(*p), GFP_KERNEL);
2022         if (!p)
2023                 return -ENOMEM;
2024
2025         kvm_get_kvm(kvm);
2026         p->kvm = kvm;
2027         mutex_init(&p->mutex);
2028         file->private_data = p;
2029
2030         return nonseekable_open(inode, file);
2031 }
2032
2033 static int debugfs_htab_release(struct inode *inode, struct file *file)
2034 {
2035         struct debugfs_htab_state *p = file->private_data;
2036
2037         kvm_put_kvm(p->kvm);
2038         kfree(p);
2039         return 0;
2040 }
2041
2042 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2043                                  size_t len, loff_t *ppos)
2044 {
2045         struct debugfs_htab_state *p = file->private_data;
2046         ssize_t ret, r;
2047         unsigned long i, n;
2048         unsigned long v, hr, gr;
2049         struct kvm *kvm;
2050         __be64 *hptp;
2051
2052         kvm = p->kvm;
2053         if (kvm_is_radix(kvm))
2054                 return 0;
2055
2056         ret = mutex_lock_interruptible(&p->mutex);
2057         if (ret)
2058                 return ret;
2059
2060         if (p->chars_left) {
2061                 n = p->chars_left;
2062                 if (n > len)
2063                         n = len;
2064                 r = copy_to_user(buf, p->buf + p->buf_index, n);
2065                 n -= r;
2066                 p->chars_left -= n;
2067                 p->buf_index += n;
2068                 buf += n;
2069                 len -= n;
2070                 ret = n;
2071                 if (r) {
2072                         if (!n)
2073                                 ret = -EFAULT;
2074                         goto out;
2075                 }
2076         }
2077
2078         i = p->hpt_index;
2079         hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2080         for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2081              ++i, hptp += 2) {
2082                 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2083                         continue;
2084
2085                 /* lock the HPTE so it's stable and read it */
2086                 preempt_disable();
2087                 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2088                         cpu_relax();
2089                 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2090                 hr = be64_to_cpu(hptp[1]);
2091                 gr = kvm->arch.hpt.rev[i].guest_rpte;
2092                 unlock_hpte(hptp, v);
2093                 preempt_enable();
2094
2095                 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2096                         continue;
2097
2098                 n = scnprintf(p->buf, sizeof(p->buf),
2099                               "%6lx %.16lx %.16lx %.16lx\n",
2100                               i, v, hr, gr);
2101                 p->chars_left = n;
2102                 if (n > len)
2103                         n = len;
2104                 r = copy_to_user(buf, p->buf, n);
2105                 n -= r;
2106                 p->chars_left -= n;
2107                 p->buf_index = n;
2108                 buf += n;
2109                 len -= n;
2110                 ret += n;
2111                 if (r) {
2112                         if (!ret)
2113                                 ret = -EFAULT;
2114                         goto out;
2115                 }
2116         }
2117         p->hpt_index = i;
2118
2119  out:
2120         mutex_unlock(&p->mutex);
2121         return ret;
2122 }
2123
2124 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2125                            size_t len, loff_t *ppos)
2126 {
2127         return -EACCES;
2128 }
2129
2130 static const struct file_operations debugfs_htab_fops = {
2131         .owner   = THIS_MODULE,
2132         .open    = debugfs_htab_open,
2133         .release = debugfs_htab_release,
2134         .read    = debugfs_htab_read,
2135         .write   = debugfs_htab_write,
2136         .llseek  = generic_file_llseek,
2137 };
2138
2139 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2140 {
2141         debugfs_create_file("htab", 0400, kvm->arch.debugfs_dir, kvm,
2142                             &debugfs_htab_fops);
2143 }
2144
2145 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2146 {
2147         struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2148
2149         vcpu->arch.slb_nr = 32;         /* POWER7/POWER8 */
2150
2151         mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2152
2153         vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2154 }