License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[linux-block.git] / arch / powerpc / kernel / rtas-proc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *   Copyright (C) 2000 Tilmann Bitterberg
4  *   (tilmann@bitterberg.de)
5  *
6  *   RTAS (Runtime Abstraction Services) stuff
7  *   Intention is to provide a clean user interface
8  *   to use the RTAS.
9  *
10  *   TODO:
11  *   Split off a header file and maybe move it to a different
12  *   location. Write Documentation on what the /proc/rtas/ entries
13  *   actually do.
14  */
15
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/proc_fs.h>
19 #include <linux/stat.h>
20 #include <linux/ctype.h>
21 #include <linux/time.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/seq_file.h>
25 #include <linux/bitops.h>
26 #include <linux/rtc.h>
27
28 #include <linux/uaccess.h>
29 #include <asm/processor.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/rtas.h>
33 #include <asm/machdep.h> /* for ppc_md */
34 #include <asm/time.h>
35
36 /* Token for Sensors */
37 #define KEY_SWITCH              0x0001
38 #define ENCLOSURE_SWITCH        0x0002
39 #define THERMAL_SENSOR          0x0003
40 #define LID_STATUS              0x0004
41 #define POWER_SOURCE            0x0005
42 #define BATTERY_VOLTAGE         0x0006
43 #define BATTERY_REMAINING       0x0007
44 #define BATTERY_PERCENTAGE      0x0008
45 #define EPOW_SENSOR             0x0009
46 #define BATTERY_CYCLESTATE      0x000a
47 #define BATTERY_CHARGING        0x000b
48
49 /* IBM specific sensors */
50 #define IBM_SURVEILLANCE        0x2328 /* 9000 */
51 #define IBM_FANRPM              0x2329 /* 9001 */
52 #define IBM_VOLTAGE             0x232a /* 9002 */
53 #define IBM_DRCONNECTOR         0x232b /* 9003 */
54 #define IBM_POWERSUPPLY         0x232c /* 9004 */
55
56 /* Status return values */
57 #define SENSOR_CRITICAL_HIGH    13
58 #define SENSOR_WARNING_HIGH     12
59 #define SENSOR_NORMAL           11
60 #define SENSOR_WARNING_LOW      10
61 #define SENSOR_CRITICAL_LOW      9
62 #define SENSOR_SUCCESS           0
63 #define SENSOR_HW_ERROR         -1
64 #define SENSOR_BUSY             -2
65 #define SENSOR_NOT_EXIST        -3
66 #define SENSOR_DR_ENTITY        -9000
67
68 /* Location Codes */
69 #define LOC_SCSI_DEV_ADDR       'A'
70 #define LOC_SCSI_DEV_LOC        'B'
71 #define LOC_CPU                 'C'
72 #define LOC_DISKETTE            'D'
73 #define LOC_ETHERNET            'E'
74 #define LOC_FAN                 'F'
75 #define LOC_GRAPHICS            'G'
76 /* reserved / not used          'H' */
77 #define LOC_IO_ADAPTER          'I'
78 /* reserved / not used          'J' */
79 #define LOC_KEYBOARD            'K'
80 #define LOC_LCD                 'L'
81 #define LOC_MEMORY              'M'
82 #define LOC_NV_MEMORY           'N'
83 #define LOC_MOUSE               'O'
84 #define LOC_PLANAR              'P'
85 #define LOC_OTHER_IO            'Q'
86 #define LOC_PARALLEL            'R'
87 #define LOC_SERIAL              'S'
88 #define LOC_DEAD_RING           'T'
89 #define LOC_RACKMOUNTED         'U' /* for _u_nit is rack mounted */
90 #define LOC_VOLTAGE             'V'
91 #define LOC_SWITCH_ADAPTER      'W'
92 #define LOC_OTHER               'X'
93 #define LOC_FIRMWARE            'Y'
94 #define LOC_SCSI                'Z'
95
96 /* Tokens for indicators */
97 #define TONE_FREQUENCY          0x0001 /* 0 - 1000 (HZ)*/
98 #define TONE_VOLUME             0x0002 /* 0 - 100 (%) */
99 #define SYSTEM_POWER_STATE      0x0003 
100 #define WARNING_LIGHT           0x0004
101 #define DISK_ACTIVITY_LIGHT     0x0005
102 #define HEX_DISPLAY_UNIT        0x0006
103 #define BATTERY_WARNING_TIME    0x0007
104 #define CONDITION_CYCLE_REQUEST 0x0008
105 #define SURVEILLANCE_INDICATOR  0x2328 /* 9000 */
106 #define DR_ACTION               0x2329 /* 9001 */
107 #define DR_INDICATOR            0x232a /* 9002 */
108 /* 9003 - 9004: Vendor specific */
109 /* 9006 - 9999: Vendor specific */
110
111 /* other */
112 #define MAX_SENSORS              17  /* I only know of 17 sensors */    
113 #define MAX_LINELENGTH          256
114 #define SENSOR_PREFIX           "ibm,sensor-"
115 #define cel_to_fahr(x)          ((x*9/5)+32)
116
117 struct individual_sensor {
118         unsigned int token;
119         unsigned int quant;
120 };
121
122 struct rtas_sensors {
123         struct individual_sensor sensor[MAX_SENSORS];
124         unsigned int quant;
125 };
126
127 /* Globals */
128 static struct rtas_sensors sensors;
129 static struct device_node *rtas_node = NULL;
130 static unsigned long power_on_time = 0; /* Save the time the user set */
131 static char progress_led[MAX_LINELENGTH];
132
133 static unsigned long rtas_tone_frequency = 1000;
134 static unsigned long rtas_tone_volume = 0;
135
136 /* ****************************************************************** */
137 /* Declarations */
138 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
139 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
140 static ssize_t ppc_rtas_clock_write(struct file *file,
141                 const char __user *buf, size_t count, loff_t *ppos);
142 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
143 static ssize_t ppc_rtas_progress_write(struct file *file,
144                 const char __user *buf, size_t count, loff_t *ppos);
145 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
146 static ssize_t ppc_rtas_poweron_write(struct file *file,
147                 const char __user *buf, size_t count, loff_t *ppos);
148
149 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
150                 const char __user *buf, size_t count, loff_t *ppos);
151 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
152 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
153                 const char __user *buf, size_t count, loff_t *ppos);
154 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
155 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
156
157 static int sensors_open(struct inode *inode, struct file *file)
158 {
159         return single_open(file, ppc_rtas_sensors_show, NULL);
160 }
161
162 static const struct file_operations ppc_rtas_sensors_operations = {
163         .open           = sensors_open,
164         .read           = seq_read,
165         .llseek         = seq_lseek,
166         .release        = single_release,
167 };
168
169 static int poweron_open(struct inode *inode, struct file *file)
170 {
171         return single_open(file, ppc_rtas_poweron_show, NULL);
172 }
173
174 static const struct file_operations ppc_rtas_poweron_operations = {
175         .open           = poweron_open,
176         .read           = seq_read,
177         .llseek         = seq_lseek,
178         .write          = ppc_rtas_poweron_write,
179         .release        = single_release,
180 };
181
182 static int progress_open(struct inode *inode, struct file *file)
183 {
184         return single_open(file, ppc_rtas_progress_show, NULL);
185 }
186
187 static const struct file_operations ppc_rtas_progress_operations = {
188         .open           = progress_open,
189         .read           = seq_read,
190         .llseek         = seq_lseek,
191         .write          = ppc_rtas_progress_write,
192         .release        = single_release,
193 };
194
195 static int clock_open(struct inode *inode, struct file *file)
196 {
197         return single_open(file, ppc_rtas_clock_show, NULL);
198 }
199
200 static const struct file_operations ppc_rtas_clock_operations = {
201         .open           = clock_open,
202         .read           = seq_read,
203         .llseek         = seq_lseek,
204         .write          = ppc_rtas_clock_write,
205         .release        = single_release,
206 };
207
208 static int tone_freq_open(struct inode *inode, struct file *file)
209 {
210         return single_open(file, ppc_rtas_tone_freq_show, NULL);
211 }
212
213 static const struct file_operations ppc_rtas_tone_freq_operations = {
214         .open           = tone_freq_open,
215         .read           = seq_read,
216         .llseek         = seq_lseek,
217         .write          = ppc_rtas_tone_freq_write,
218         .release        = single_release,
219 };
220
221 static int tone_volume_open(struct inode *inode, struct file *file)
222 {
223         return single_open(file, ppc_rtas_tone_volume_show, NULL);
224 }
225
226 static const struct file_operations ppc_rtas_tone_volume_operations = {
227         .open           = tone_volume_open,
228         .read           = seq_read,
229         .llseek         = seq_lseek,
230         .write          = ppc_rtas_tone_volume_write,
231         .release        = single_release,
232 };
233
234 static int rmo_buf_open(struct inode *inode, struct file *file)
235 {
236         return single_open(file, ppc_rtas_rmo_buf_show, NULL);
237 }
238
239 static const struct file_operations ppc_rtas_rmo_buf_ops = {
240         .open           = rmo_buf_open,
241         .read           = seq_read,
242         .llseek         = seq_lseek,
243         .release        = single_release,
244 };
245
246 static int ppc_rtas_find_all_sensors(void);
247 static void ppc_rtas_process_sensor(struct seq_file *m,
248         struct individual_sensor *s, int state, int error, const char *loc);
249 static char *ppc_rtas_process_error(int error);
250 static void get_location_code(struct seq_file *m,
251         struct individual_sensor *s, const char *loc);
252 static void check_location_string(struct seq_file *m, const char *c);
253 static void check_location(struct seq_file *m, const char *c);
254
255 static int __init proc_rtas_init(void)
256 {
257         if (!machine_is(pseries))
258                 return -ENODEV;
259
260         rtas_node = of_find_node_by_name(NULL, "rtas");
261         if (rtas_node == NULL)
262                 return -ENODEV;
263
264         proc_create("powerpc/rtas/progress", S_IRUGO|S_IWUSR, NULL,
265                     &ppc_rtas_progress_operations);
266         proc_create("powerpc/rtas/clock", S_IRUGO|S_IWUSR, NULL,
267                     &ppc_rtas_clock_operations);
268         proc_create("powerpc/rtas/poweron", S_IWUSR|S_IRUGO, NULL,
269                     &ppc_rtas_poweron_operations);
270         proc_create("powerpc/rtas/sensors", S_IRUGO, NULL,
271                     &ppc_rtas_sensors_operations);
272         proc_create("powerpc/rtas/frequency", S_IWUSR|S_IRUGO, NULL,
273                     &ppc_rtas_tone_freq_operations);
274         proc_create("powerpc/rtas/volume", S_IWUSR|S_IRUGO, NULL,
275                     &ppc_rtas_tone_volume_operations);
276         proc_create("powerpc/rtas/rmo_buffer", S_IRUSR, NULL,
277                     &ppc_rtas_rmo_buf_ops);
278         return 0;
279 }
280
281 __initcall(proc_rtas_init);
282
283 static int parse_number(const char __user *p, size_t count, unsigned long *val)
284 {
285         char buf[40];
286         char *end;
287
288         if (count > 39)
289                 return -EINVAL;
290
291         if (copy_from_user(buf, p, count))
292                 return -EFAULT;
293
294         buf[count] = 0;
295
296         *val = simple_strtoul(buf, &end, 10);
297         if (*end && *end != '\n')
298                 return -EINVAL;
299
300         return 0;
301 }
302
303 /* ****************************************************************** */
304 /* POWER-ON-TIME                                                      */
305 /* ****************************************************************** */
306 static ssize_t ppc_rtas_poweron_write(struct file *file,
307                 const char __user *buf, size_t count, loff_t *ppos)
308 {
309         struct rtc_time tm;
310         unsigned long nowtime;
311         int error = parse_number(buf, count, &nowtime);
312         if (error)
313                 return error;
314
315         power_on_time = nowtime; /* save the time */
316
317         to_tm(nowtime, &tm);
318
319         error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL, 
320                         tm.tm_year, tm.tm_mon, tm.tm_mday, 
321                         tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
322         if (error)
323                 printk(KERN_WARNING "error: setting poweron time returned: %s\n", 
324                                 ppc_rtas_process_error(error));
325         return count;
326 }
327 /* ****************************************************************** */
328 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
329 {
330         if (power_on_time == 0)
331                 seq_printf(m, "Power on time not set\n");
332         else
333                 seq_printf(m, "%lu\n",power_on_time);
334         return 0;
335 }
336
337 /* ****************************************************************** */
338 /* PROGRESS                                                           */
339 /* ****************************************************************** */
340 static ssize_t ppc_rtas_progress_write(struct file *file,
341                 const char __user *buf, size_t count, loff_t *ppos)
342 {
343         unsigned long hex;
344
345         if (count >= MAX_LINELENGTH)
346                 count = MAX_LINELENGTH -1;
347         if (copy_from_user(progress_led, buf, count)) { /* save the string */
348                 return -EFAULT;
349         }
350         progress_led[count] = 0;
351
352         /* Lets see if the user passed hexdigits */
353         hex = simple_strtoul(progress_led, NULL, 10);
354
355         rtas_progress ((char *)progress_led, hex);
356         return count;
357
358         /* clear the line */
359         /* rtas_progress("                   ", 0xffff);*/
360 }
361 /* ****************************************************************** */
362 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
363 {
364         if (progress_led[0])
365                 seq_printf(m, "%s\n", progress_led);
366         return 0;
367 }
368
369 /* ****************************************************************** */
370 /* CLOCK                                                              */
371 /* ****************************************************************** */
372 static ssize_t ppc_rtas_clock_write(struct file *file,
373                 const char __user *buf, size_t count, loff_t *ppos)
374 {
375         struct rtc_time tm;
376         unsigned long nowtime;
377         int error = parse_number(buf, count, &nowtime);
378         if (error)
379                 return error;
380
381         to_tm(nowtime, &tm);
382         error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, 
383                         tm.tm_year, tm.tm_mon, tm.tm_mday, 
384                         tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
385         if (error)
386                 printk(KERN_WARNING "error: setting the clock returned: %s\n", 
387                                 ppc_rtas_process_error(error));
388         return count;
389 }
390 /* ****************************************************************** */
391 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
392 {
393         int ret[8];
394         int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
395
396         if (error) {
397                 printk(KERN_WARNING "error: reading the clock returned: %s\n", 
398                                 ppc_rtas_process_error(error));
399                 seq_printf(m, "0");
400         } else { 
401                 unsigned int year, mon, day, hour, min, sec;
402                 year = ret[0]; mon  = ret[1]; day  = ret[2];
403                 hour = ret[3]; min  = ret[4]; sec  = ret[5];
404                 seq_printf(m, "%lu\n",
405                                 mktime(year, mon, day, hour, min, sec));
406         }
407         return 0;
408 }
409
410 /* ****************************************************************** */
411 /* SENSOR STUFF                                                       */
412 /* ****************************************************************** */
413 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
414 {
415         int i,j;
416         int state, error;
417         int get_sensor_state = rtas_token("get-sensor-state");
418
419         seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
420         seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
421         seq_printf(m, "********************************************************\n");
422
423         if (ppc_rtas_find_all_sensors() != 0) {
424                 seq_printf(m, "\nNo sensors are available\n");
425                 return 0;
426         }
427
428         for (i=0; i<sensors.quant; i++) {
429                 struct individual_sensor *p = &sensors.sensor[i];
430                 char rstr[64];
431                 const char *loc;
432                 int llen, offs;
433
434                 sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
435                 loc = of_get_property(rtas_node, rstr, &llen);
436
437                 /* A sensor may have multiple instances */
438                 for (j = 0, offs = 0; j <= p->quant; j++) {
439                         error = rtas_call(get_sensor_state, 2, 2, &state, 
440                                           p->token, j);
441
442                         ppc_rtas_process_sensor(m, p, state, error, loc);
443                         seq_putc(m, '\n');
444                         if (loc) {
445                                 offs += strlen(loc) + 1;
446                                 loc += strlen(loc) + 1;
447                                 if (offs >= llen)
448                                         loc = NULL;
449                         }
450                 }
451         }
452         return 0;
453 }
454
455 /* ****************************************************************** */
456
457 static int ppc_rtas_find_all_sensors(void)
458 {
459         const unsigned int *utmp;
460         int len, i;
461
462         utmp = of_get_property(rtas_node, "rtas-sensors", &len);
463         if (utmp == NULL) {
464                 printk (KERN_ERR "error: could not get rtas-sensors\n");
465                 return 1;
466         }
467
468         sensors.quant = len / 8;      /* int + int */
469
470         for (i=0; i<sensors.quant; i++) {
471                 sensors.sensor[i].token = *utmp++;
472                 sensors.sensor[i].quant = *utmp++;
473         }
474         return 0;
475 }
476
477 /* ****************************************************************** */
478 /*
479  * Builds a string of what rtas returned
480  */
481 static char *ppc_rtas_process_error(int error)
482 {
483         switch (error) {
484                 case SENSOR_CRITICAL_HIGH:
485                         return "(critical high)";
486                 case SENSOR_WARNING_HIGH:
487                         return "(warning high)";
488                 case SENSOR_NORMAL:
489                         return "(normal)";
490                 case SENSOR_WARNING_LOW:
491                         return "(warning low)";
492                 case SENSOR_CRITICAL_LOW:
493                         return "(critical low)";
494                 case SENSOR_SUCCESS:
495                         return "(read ok)";
496                 case SENSOR_HW_ERROR:
497                         return "(hardware error)";
498                 case SENSOR_BUSY:
499                         return "(busy)";
500                 case SENSOR_NOT_EXIST:
501                         return "(non existent)";
502                 case SENSOR_DR_ENTITY:
503                         return "(dr entity removed)";
504                 default:
505                         return "(UNKNOWN)";
506         }
507 }
508
509 /* ****************************************************************** */
510 /*
511  * Builds a string out of what the sensor said
512  */
513
514 static void ppc_rtas_process_sensor(struct seq_file *m,
515         struct individual_sensor *s, int state, int error, const char *loc)
516 {
517         /* Defined return vales */
518         const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t", 
519                                                 "Maintenance" };
520         const char * enclosure_switch[]  = { "Closed", "Open" };
521         const char * lid_status[]        = { " ", "Open", "Closed" };
522         const char * power_source[]      = { "AC\t", "Battery", 
523                                                 "AC & Battery" };
524         const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
525         const char * epow_sensor[]       = { 
526                 "EPOW Reset", "Cooling warning", "Power warning",
527                 "System shutdown", "System halt", "EPOW main enclosure",
528                 "EPOW power off" };
529         const char * battery_cyclestate[]  = { "None", "In progress", 
530                                                 "Requested" };
531         const char * battery_charging[]    = { "Charging", "Discharching", 
532                                                 "No current flow" };
533         const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable", 
534                                                 "Exchange" };
535
536         int have_strings = 0;
537         int num_states = 0;
538         int temperature = 0;
539         int unknown = 0;
540
541         /* What kind of sensor do we have here? */
542         
543         switch (s->token) {
544                 case KEY_SWITCH:
545                         seq_printf(m, "Key switch:\t");
546                         num_states = sizeof(key_switch) / sizeof(char *);
547                         if (state < num_states) {
548                                 seq_printf(m, "%s\t", key_switch[state]);
549                                 have_strings = 1;
550                         }
551                         break;
552                 case ENCLOSURE_SWITCH:
553                         seq_printf(m, "Enclosure switch:\t");
554                         num_states = sizeof(enclosure_switch) / sizeof(char *);
555                         if (state < num_states) {
556                                 seq_printf(m, "%s\t", 
557                                                 enclosure_switch[state]);
558                                 have_strings = 1;
559                         }
560                         break;
561                 case THERMAL_SENSOR:
562                         seq_printf(m, "Temp. (C/F):\t");
563                         temperature = 1;
564                         break;
565                 case LID_STATUS:
566                         seq_printf(m, "Lid status:\t");
567                         num_states = sizeof(lid_status) / sizeof(char *);
568                         if (state < num_states) {
569                                 seq_printf(m, "%s\t", lid_status[state]);
570                                 have_strings = 1;
571                         }
572                         break;
573                 case POWER_SOURCE:
574                         seq_printf(m, "Power source:\t");
575                         num_states = sizeof(power_source) / sizeof(char *);
576                         if (state < num_states) {
577                                 seq_printf(m, "%s\t", 
578                                                 power_source[state]);
579                                 have_strings = 1;
580                         }
581                         break;
582                 case BATTERY_VOLTAGE:
583                         seq_printf(m, "Battery voltage:\t");
584                         break;
585                 case BATTERY_REMAINING:
586                         seq_printf(m, "Battery remaining:\t");
587                         num_states = sizeof(battery_remaining) / sizeof(char *);
588                         if (state < num_states)
589                         {
590                                 seq_printf(m, "%s\t", 
591                                                 battery_remaining[state]);
592                                 have_strings = 1;
593                         }
594                         break;
595                 case BATTERY_PERCENTAGE:
596                         seq_printf(m, "Battery percentage:\t");
597                         break;
598                 case EPOW_SENSOR:
599                         seq_printf(m, "EPOW Sensor:\t");
600                         num_states = sizeof(epow_sensor) / sizeof(char *);
601                         if (state < num_states) {
602                                 seq_printf(m, "%s\t", epow_sensor[state]);
603                                 have_strings = 1;
604                         }
605                         break;
606                 case BATTERY_CYCLESTATE:
607                         seq_printf(m, "Battery cyclestate:\t");
608                         num_states = sizeof(battery_cyclestate) / 
609                                         sizeof(char *);
610                         if (state < num_states) {
611                                 seq_printf(m, "%s\t", 
612                                                 battery_cyclestate[state]);
613                                 have_strings = 1;
614                         }
615                         break;
616                 case BATTERY_CHARGING:
617                         seq_printf(m, "Battery Charging:\t");
618                         num_states = sizeof(battery_charging) / sizeof(char *);
619                         if (state < num_states) {
620                                 seq_printf(m, "%s\t", 
621                                                 battery_charging[state]);
622                                 have_strings = 1;
623                         }
624                         break;
625                 case IBM_SURVEILLANCE:
626                         seq_printf(m, "Surveillance:\t");
627                         break;
628                 case IBM_FANRPM:
629                         seq_printf(m, "Fan (rpm):\t");
630                         break;
631                 case IBM_VOLTAGE:
632                         seq_printf(m, "Voltage (mv):\t");
633                         break;
634                 case IBM_DRCONNECTOR:
635                         seq_printf(m, "DR connector:\t");
636                         num_states = sizeof(ibm_drconnector) / sizeof(char *);
637                         if (state < num_states) {
638                                 seq_printf(m, "%s\t", 
639                                                 ibm_drconnector[state]);
640                                 have_strings = 1;
641                         }
642                         break;
643                 case IBM_POWERSUPPLY:
644                         seq_printf(m, "Powersupply:\t");
645                         break;
646                 default:
647                         seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
648                                         s->token);
649                         unknown = 1;
650                         have_strings = 1;
651                         break;
652         }
653         if (have_strings == 0) {
654                 if (temperature) {
655                         seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
656                 } else
657                         seq_printf(m, "%10d\t", state);
658         }
659         if (unknown == 0) {
660                 seq_printf(m, "%s\t", ppc_rtas_process_error(error));
661                 get_location_code(m, s, loc);
662         }
663 }
664
665 /* ****************************************************************** */
666
667 static void check_location(struct seq_file *m, const char *c)
668 {
669         switch (c[0]) {
670                 case LOC_PLANAR:
671                         seq_printf(m, "Planar #%c", c[1]);
672                         break;
673                 case LOC_CPU:
674                         seq_printf(m, "CPU #%c", c[1]);
675                         break;
676                 case LOC_FAN:
677                         seq_printf(m, "Fan #%c", c[1]);
678                         break;
679                 case LOC_RACKMOUNTED:
680                         seq_printf(m, "Rack #%c", c[1]);
681                         break;
682                 case LOC_VOLTAGE:
683                         seq_printf(m, "Voltage #%c", c[1]);
684                         break;
685                 case LOC_LCD:
686                         seq_printf(m, "LCD #%c", c[1]);
687                         break;
688                 case '.':
689                         seq_printf(m, "- %c", c[1]);
690                         break;
691                 default:
692                         seq_printf(m, "Unknown location");
693                         break;
694         }
695 }
696
697
698 /* ****************************************************************** */
699 /* 
700  * Format: 
701  * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
702  * the '.' may be an abbreviation
703  */
704 static void check_location_string(struct seq_file *m, const char *c)
705 {
706         while (*c) {
707                 if (isalpha(*c) || *c == '.')
708                         check_location(m, c);
709                 else if (*c == '/' || *c == '-')
710                         seq_printf(m, " at ");
711                 c++;
712         }
713 }
714
715
716 /* ****************************************************************** */
717
718 static void get_location_code(struct seq_file *m, struct individual_sensor *s,
719                 const char *loc)
720 {
721         if (!loc || !*loc) {
722                 seq_printf(m, "---");/* does not have a location */
723         } else {
724                 check_location_string(m, loc);
725         }
726         seq_putc(m, ' ');
727 }
728 /* ****************************************************************** */
729 /* INDICATORS - Tone Frequency                                        */
730 /* ****************************************************************** */
731 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
732                 const char __user *buf, size_t count, loff_t *ppos)
733 {
734         unsigned long freq;
735         int error = parse_number(buf, count, &freq);
736         if (error)
737                 return error;
738
739         rtas_tone_frequency = freq; /* save it for later */
740         error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
741                         TONE_FREQUENCY, 0, freq);
742         if (error)
743                 printk(KERN_WARNING "error: setting tone frequency returned: %s\n", 
744                                 ppc_rtas_process_error(error));
745         return count;
746 }
747 /* ****************************************************************** */
748 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
749 {
750         seq_printf(m, "%lu\n", rtas_tone_frequency);
751         return 0;
752 }
753 /* ****************************************************************** */
754 /* INDICATORS - Tone Volume                                           */
755 /* ****************************************************************** */
756 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
757                 const char __user *buf, size_t count, loff_t *ppos)
758 {
759         unsigned long volume;
760         int error = parse_number(buf, count, &volume);
761         if (error)
762                 return error;
763
764         if (volume > 100)
765                 volume = 100;
766         
767         rtas_tone_volume = volume; /* save it for later */
768         error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
769                         TONE_VOLUME, 0, volume);
770         if (error)
771                 printk(KERN_WARNING "error: setting tone volume returned: %s\n", 
772                                 ppc_rtas_process_error(error));
773         return count;
774 }
775 /* ****************************************************************** */
776 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
777 {
778         seq_printf(m, "%lu\n", rtas_tone_volume);
779         return 0;
780 }
781
782 #define RMO_READ_BUF_MAX 30
783
784 /* RTAS Userspace access */
785 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
786 {
787         seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
788         return 0;
789 }